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Abstract
Simulation studies are powerful tools in epidemiology and biostatistics, but they can be hard to conduct successfully. Sometimes unexpected
results are obtained. We offer advice on how to check a simulation study when this occurs, and how to design and conduct the study to give
results that are easier to check. Simulation studies should be designed to include some settings in which answers are already known. They
should be coded in stages, with data-generating mechanisms checked before simulated data are analysed. Results should be explored carefully,
with scatterplots of standard error estimates against point estimates surprisingly powerful tools. Failed estimation and outlying estimates should
be identified and dealt with by changing data-generating mechanisms or coding realistic hybrid analysis procedures. Finally, we give a series of
ideas that have been useful to us in the past for checking unexpected results. Following our advice may help to prevent errors and to improve
the quality of published simulation studies.
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Introduction

Simulation studies are widely used to evaluate statistical
methods in epidemiology and biostatistics. We, like many epi-
demiologists and biostatisticians, often find ourselves not be-
lieving, or being sceptical of, the results of a simulation study
done by a colleague, a student or ourselves. This article makes
a number of suggestions based on our experience of discover-
ing mistakes in our own and collaborators’ simulation studies.
Our aims are to provide a structured approach to determining
whether the results really are wrong and, if so, to identifying
the source of the errors and how they can be corrected.

We can divide the execution of a simulation study into
three stages: ‘design’ (identifying the aims, data-generating
mechanisms, estimands, methods of analysis and performance
measures1); ‘conduct’ (writing the code to simulate multiple
data sets and analyse each one, yielding a data set of esti-
mates); and ‘analysis’ (computing the performance measures
from the estimates data set). Our advice is intended to apply
after the analysis stage is complete. Often the most useful ad-
vice is to go back and modify the design or conduct of the
simulation study. We therefore structure our advice into these

three stages of the simulation study. The advice given under
‘design’ and ‘conduct’ is equally applicable at the start of a
simulation study. Some parts of our approach are very widely
applicable whereas other parts are tailored to a specific set-
ting: they are not all appropriate in every setting.

In this article, we first set out some established terminology
for simulation studies and describe a running example simula-
tion study. We then give our points of advice, arranged as ‘de-
sign’, ‘conduct’ and ‘analysis’. Most of the points of advice
are illustrated using the running example. Readers are encour-
aged to read the illustrations alongside the Stata and/or R
code and output available in the Supplementary Materials
(available as Supplementary data at IJE online) and at https://
github.com/UCL/simcheck. We end with a short summary.

Terminology

Table 1 summarizes various terms used in simulation studies,
including the aspects of a simulation study, the data sets used
and some performance measures.1

Key Messages

• Some standard techniques can help to avoid or to correct errors in simulation studies.

• Simulation studies should be designed to include well-understood settings in which results can be checked against known answers.

• Simulation studies should be coded carefully and simulated data sets should be checked.

• Estimates from simulation studies should be checked carefully for outliers and failed estimation.

• We suggest various ways to check surprising results.
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Example

We illustrate our advice using a hypothetical simulation study
exploring the use of multiple imputation for epidemiological
data with missing values in the confounders (Table 2 and
Figure 1). The study aims to compare multiple imputation
with complete case analysis and is loosely based on a pub-
lished study.2

Design: planning the simulation

(i) Include a setting with known properties

We frequently do simulation studies to learn the properties of
methods of analysis, but often we can identify a particular
data-generating mechanism and a particular method of analy-
sis where we know some aspect of the answer. This requires
knowledge of the statistical properties of the methods. We
can then check our results against these known answers.

Example
In the multiple imputation simulation study, we included analy-
sis of the full data before data deletion. Assuming the analysis
procedure is correct, we expect this to be unbiased with correct
coverage and more precise than any methods of analysis of the
incomplete data. We also include a complete case analysis in a
scenario with data missing completely at random, which is
expected to be unbiased with correct coverage and less precise
than multiple imputation methods of analysis.2

The above statements about lack of bias are not strictly correct,
since logistic regression is biased in small samples. We could there-
fore include a further setting with a larger sample size.

Conduct: coding the simulation

(ii) Write well-structured code

It is helpful to write code that separates data generation, data
analysis and computation of performance measures, so that

Table 1. Terms used in simulation studies1

Term Explanation

Aspects of a simulation study1

Aims What question(s) the simulation study addresses
Data-generating mechanisms How the simulated data sets are to be generated
Estimands The quantity or quantities to be estimated by the analysis of each simulated data set
Methods of analysis How the simulated data sets are to be analysed: typically producing a point estimate, its

standard error estimate and a CI
Performance measures How the performance of the methods of analysis is to be summarized
Implementation How the simulation is to be performed, including the software used, the number of

repetitions and the handling of random number states
Data sets involved in a simulation study1

Simulated data set A data set produced by one of the data-generating mechanisms in one repetition
Estimates data set A data set containing results of each method of analysis for each simulated data set

across many repetitions, used to estimate performance
States data set A data set containing random number states for each simulated data set, that can be

used to recreate any simulated data set
Performance measures data set A data set containing the estimated performance measures for each data-generating

mechanism and each method of analysis
Some performance measures
Bias How the mean point estimate differs from the true estimand value
Empirical standard error The standard deviation of the point estimates in an estimates data set
Model-based standard error The averagea standard error estimate in an estimates data set
Relative error in model-based standard error The difference between the model-based standard error and the empirical standard error,

expressed as a fraction of the latter
Coverage The proportion of CIs that include the true estimand value

a Strictly, the root mean square of the standard error estimates.

Table 2. Key features of the example simulation study

Aim To compare multiple imputation with complete case analysis

Data-generating methodsa Quantitative confounder C is drawn from a standard Normal distribution. Binary exposure E and
binary outcome D are drawn from logistic models depending on C (so E does not cause D). Values
of C are made missing, initially using a missing completely at random model.
Parameters to be varied are the marginal probabilities of E and D, the strength of the dependence of
E and D on C, and the missing data mechanism. The sample size of 500 is fixed.

Estimand The log odds ratio between E and D, conditional on C. Its true value is zero.
Methods Logistic regression of D on E and C, using

i) full data before data deletion in C
ii) complete cases (excluding cases with missing C)
iii) multiply imputed data to handle missing values of C—various imputation models may be used.

Performance measures Bias, empirical standard error, relative error in model-based standard error, coverage.
Implementation 1000 repetitions—advice on choosing this is available.1

a Specific values used in the data-generating mechanisms can be found in the code.
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each part can be studied separately. Code should be well com-
mented to help collaborators and the coder’s future self; the fi-
nal code should later be published and comments will then
help the general reader.

Example
The Stata script simcheck02.do and the R script
simcheck02.R separate out data generation and data analysis.
We will add the calculation of performance measures later.

(iii) Study a single very large data set

The code for data generation should next be used to generate
a single very large data set. Viewing descriptive statistics (e.g.
histogram of a continuous outcome, cross-tabulation of expo-
sure by outcome event) allows a check that the data match
one’s intentions.

In many cases, the model used to generate the data can be
directly fitted to the simulated data. This should recover the
parameters of the data-generating model such that CIs for the
results usually include the known true values.

Then the simulation code should be used to do the analyses.
The results should be carefully checked for correct back-
ground information (e.g. is the number of observations cor-
rect?) and for credibility. Again, where methods are known to
be correct, CIs for the results should usually include the
known true values.

Example
The scripts simcheck03.do and simcheck03.R generate a sin-
gle data set of size 100 000 using a particular data-generating
mechanism. They include standard descriptive statistics such
as a cross-tabulation of D against E, showing that there is
an unconditional association between D and E (log odds
ratio¼ 0.74 in Stata and 0.70 in R). This is important because
one way in which imputation procedures could perform badly
is by failing to control for confounding. The scripts also show
that the logistic regressions of E and D on C have coefficient
values very near to the values in the data-generating mecha-
nism and that the analysis program runs successfully.

(iv) Run the simulation with a small number of

repetitions

The simulation code should next be checked with a small
number of repetitions: three repetitions are often enough at

this stage. The screen output should be switched on so that it
can be studied. The size of the simulated data set should be
checked for each repetition.

It is useful to verify that the second and third repetitions
produce different data and results. Sometimes simulation
code wrongly sets the random number state after starting the
first repetition. If (for example) this is at the end of a repeti-
tion, then the second and third repetitions would produce
identical data and results.

This is the first time that we have created an estimates data
set so it is timely to check that the estimates data set has the
right structure, is indexed with the correct simulation repeti-
tion number and contains values that match the values
reported in the screen output. For example, sometimes users
store a variance when they meant to store a standard error es-
timate. Confusion can arise if screen output displays exponen-
tiated parameters (odds ratios) but estimates are stored on the
estimation scale (log odds ratios).

Example
The scripts simcheck04.do and simcheck04.R run three repe-
titions of the simulation. The results look sensible and match
the screen output.

(v) Anticipate analysis failures

If a certain method of analysis can be anticipated to cause an
error in some simulated data sets (e.g. perfect prediction in a
logistic regression), the code should be written to capture the
error so that the simulation does not halt. The method failure
(with error code) should be stored in the estimates data set.
Strategies for handling failures are described in later points.

Example
The scripts simcheck05.do and simcheck05.R recognize that
either the imputation step or the model fitting to the imputed
data may fail. They therefore detect either of these failures
and post missing values to the estimates data set.

(vi) Make it easy to recreate any simulated data set

The estimates data set should include an identifier for the sim-
ulated data set alongside every estimate. If we can recreate the
simulated data set for any particular identifier, then we can
explore method failures and outliers (see points below). There
are two ways to do this. One way is to store the random num-
ber state at the start of each data generation in a states data

Figure 1. Directed acyclic graphs showing the data-generating mechanisms used in the example simulation study under three missing data mechanisms:

missing completely at random (MCAR), missing at random (MAR) and missing not at random (MNAR). C is the confounder, E is the exposure, D is the

outcome and MC denotes whether C is missing
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set so that the user can recreate any simulated data set. The al-
ternative is to store every simulated data set.

Some analyses, such as multiple imputation, also use ran-
dom numbers. Recreating such analyses requires resetting the
appropriate random number state. One way is to recreate the
simulated data set (as above) and then repeat the analysis; if
multiple analyses use random numbers then they must all be
repeated in the original order. The alternative is to store the
random number state at the start of each stochastic analysis.

Example
The scripts simcheck06.do and simcheck06.R store the ran-
dom number states in a separate file. They then show how to
reconstruct the third simulated data set.

Analysis: method failures and outliers

Once the code is written and tested, we are ready to run the
simulation study and start looking at the results. We first dis-
cuss detecting and handling method failures and outliers.

(vii) Count and understand method failures

For each data-generating mechanism and method, the user
should identify what fraction of repetitions led to failed esti-
mation. The reasons for failed estimation need to be under-
stood and the code should be improved if possible. That is, a
bad optimization routine should be improved if it makes a
method appear to fail. Unexpected results may be specific to
particular software or packages.

Example
The scripts simcheck07.do and simcheck07.R use a different
data-generating mechanism from previous runs. Inspecting
the estimates data set shows four method failures in Stata and
two in R. On closer exploration of the simulated data sets, we
find that these data are very sparse, having either no exposed
individuals or no outcome events in the individuals with ob-
served C (a random positivity violation that may not be
intended), and this is causing the complete case analysis to
fail. The R function glm behaves differently and returns esti-
mates even in the absence of outcome events.

The sensible conclusion (in our setting in which positivity
violations are not of main interest) is that the data-generating
mechanism is too extreme and should be changed to generate

more outcome events. For the purposes of illustration, we do
not do this yet.

(viii) Look for outliers

It is important to examine the estimates data set carefully. A
useful visual device is a scatter plot of the standard error esti-
mate against the point estimate over all repetitions, separated
by the data-generating mechanism and method. This scatter
plot can identify the presence of outliers. Estimates can be
outliers for the point estimate or the model-based standard er-
ror (or both). Such outliers are frequent causes, respectively,
of unexpected bias and of unexpected error in the model-
based standard error. A small number of outliers by them-
selves do not affect coverage and often researchers are puzzled
by, for example, a model-based standard error being appar-
ently very large without any impact on coverage.

Example
The scripts simcheck08.do and simcheck08.R explore the esti-
mates data sets produced by simcheck07.do and
simcheck07.R. They plot the standard error estimates against
the point estimates by method of analysis. Results differ be-
tween the packages. In Stata (Figure 2, upper part), a substan-
tial number of data sets have standard error estimates equal
to zero, which indicates a problem with the analysis. Further
inspection shows these data sets also have estimated coeffi-
cients equal to zero. In R (Figure 2, lower part), a substantial
number of data sets have very large standard error estimate
(2000–5000). These also have large point estimates, mostly
between –10 and –20, some near þ20.

We could change these outlying standard error estimates
and their associated point estimates to missing values, but it is
more important to understand their cause. We do this next.

(ix) Understand outliers

If outliers are found, it is helpful to open or recreate one or
more of the corresponding simulated data sets. The user
should verify the outlying estimate and explore the reasons
for it, such as by checking details of the analysis output and
by supplementary analysis such as exploring model residuals
or imputed data values.

Figure 2. Looking for outliers in the estimates data from simcheck08.do and simcheck08.R. CCA, complete case analysis; MI, multiple imputation
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Example
Scripts simcheck09.do and simcheck09.R each pull out one
particular problem data set identified in point (viii). In both
cases, the problem data set has no events among individuals
with observed confounders. The different outputs from the
two software packages (Figure 2) arise from the packages’ dif-
ferent handling of this problem. Stata has detected perfect pre-
diction,3 has dropped the exposure variable E from the model
and has reported zero values for the point estimate and its
standard error estimate. R has performed estimation regard-
less, has found the parameter estimate going towards plus or
minus infinity without achieving convergence and has
reported values when approximate convergence is achieved.

Solutions to these problems are discussed next.

(x) Deal with outliers

Any outliers are likely to strongly affect estimates of perfor-
mance. It may be appropriate to change the data-generating
mechanism to avoid outlying estimates. Otherwise, if outlying
estimates would not be believed or reported in practice—that
is, if the issue would be detected and the method of analysis
not used—then they should not be included in the analysis of
the simulation results. One way to do this is to exclude simu-
lated data sets that result in outlying estimates. However, this
can introduce a selection bias because the excluded simulated
data sets are unlikely to be representative. An alternative is to
code an automatic ‘backup procedure’ when a method returns
an absurd result. This changes the method being investigated
from a pure method to a hybrid procedure and it should
make performance measures more relevant to practice.
Alongside any of these approaches, the number of method
failures or outliers is a useful additional performance
measure.

Example
One way to avoid the problems seen in the multiple imputa-
tion simulation study is to increase the proportion of exposed
away from the sparse case seen. We adopt this approach in
the remaining points.

Alternatively, if we were interested in the sparse case, we
should ask whether outlying estimates might make sense in
practice. An analyst might accept a log odds ratio of –15 and
report an estimated odds ratio of zero, which implies either
no events in the exposed group or no non-events in the unex-
posed. However, they should certainly not accept the very
wide 95% CI. Instead they would probably use exact meth-
ods4 to generate a more correct CI. We could therefore code
such exact methods into our simulation study as a backup
procedure if extreme estimates are found.

A different way to fix the analysis, and a more convenient
solution for the simulation study, is to handle perfect predic-
tion by using penalized logistic regression.5 This could be
done as a backup procedure in analyses exhibiting a problem
or in all analyses. The latter is illustrated in simcheck10.do
and simcheck10.R.

Analysis: unexpected findings

(xi) Check Monte Carlo errors

Sometimes, some simulation findings are hard to believe: for
example, a method selected to be unbiased appears to be bi-
ased or one method appears to be more precise than another
when it should be less precise. In this case, it is important to

look at the Monte Carlo errors and decide whether the find-
ings are compatible with Monte Carlo error.

Example
The scripts simcheck11.do and simcheck11.R are our first
complete runs of a simulation study avoiding sparse data.
Results for bias suggest a larger bias in complete case analysis
(e.g. in Stata –0.094) than in the other methods (–0.068 full
data, þ0.063 multiple imputation). Given that we are simu-
lating under missing completely at random, we expect com-
plete case analysis to be unbiased. Instead of concluding that
our code is wrong, we should spot that these results are com-
patible with Monte Carlo error—that is, the observed bias for
complete case analysis is <2 Monte Carlo standard errors
(0.049�2¼0.098) and hence is perfectly compatible with
zero bias. In fact these results were produced with just 100
repetitions. To detect a bias of this magnitude, more repeti-
tions (say 1000) are needed.

(xii) Why are model-based standard errors wrong?

If model-based standard errors disagree with the empirical
standard errors, it is worth considering whether the sources of
variation in the data-generating mechanism and analysis cor-
respond. For example, in a missing data simulation study, if
each repetition under a given data-generating mechanism
starts from the same full data set, then uncertainty due to the
full data set will be reflected in the model-based standard er-
ror but not in the empirical standard error, making them not
comparable regardless of the analysis used.

Example
The scripts simcheck12.do and simcheck12.R demonstrate
this issue. Previous scripts drew a new full data set for each
repetition, but these scripts create each simulated data set by
deleting values from the same full data set. The model-based
standard errors (e.g. in Stata 0.52 and 0.46 for complete case
analysis and multiple imputation, respectively) are found to
be substantially larger than the empirical standard errors
(0.27 and 0.17). This is because the model-based standard
errors account for sampling variation in the full data set
whereas the sampling variation in the full data set does not
exist in the simulation study so is not reflected in the empirical
standard error. One solution here is to generate a new full
data set for each repetition.

(xiii) Why is coverage poor?

If coverage is poor, it is helpful to identify whether it is driven
by bias, by intervals of the wrong width or both. Zip plots are
a useful visualization devices for this purpose. They plot each
interval, ordered according to compatibility with the true
value, giving the impression of a ‘zip’ (or ‘zipper’).1

Example
Figure 3 shows illustrative zip plots, created by Stata script
simzipplot.do and using the new siman suite in Stata (avail-
able at https://github.com/UCL/siman); a similar plot can be
achieved using the rsimsum package in R. One thousand CIs
are ranked by their P-values and coloured red if they fail to
cover the true value: zero. The left-hand panel shows correct
coverage. The middle panel shows low coverage due to nega-
tive bias, with most CIs (including an excess of non-covering
ones) lying to the left of the true value. The right-hand panel
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shows low coverage due to low standard error, with an excess
of non-covering CIs occurring symmetrically.

(xiv) Why are power and type I error wrong?

Somewhat different errors can arise when focusing on test
characteristics. Some pitfalls are to interchange power and
type I error, or to mistake one-sided and two-sided type I
tests.

Example
Errors are easy to make if simulating a non-inferiority trial.6

Here, generating data under no treatment effect gives the
power whereas generating data with a treatment effect equal
to the margin gives the type I error rate.

(xv) When do unexpected findings occur?

If some findings remain hard to believe, it may be helpful to
ask under what settings these findings occur. For example, if
they occur only when the data-generating mechanism includes
a particular source of variation, then maybe analyses are not
allowing for this source of variation.

Example
We encountered this problem in a simulation study in a meta-
analysis. Roughly, data were generated under a common-effect
model and a random-effects model.7 However, model-based
standard errors were larger than empirical standard errors when
data were generated under the random-effects model. It turned
out that the random effects were being generated once at
the start of the simulation study and not changed thereafter—
effectively a fixed-effect rather than random-effects model. As a
result, the empirical standard error did not account for variation
in the random effects whereas the model-based standard errors
did. Generating the random effects afresh at each repetition fixed
the problem.

(xvi) General checking method

If after the above steps the results of the simulation study are
still in doubt, it can be useful to recode the simulation study

in a different statistical package or have a different person
code it. Sometimes another closely related simulation study
that has been published with code is helpful. The user should
first check that the published code does reproduce the pub-
lished results. They can then change the published
data-generating mechanisms to match those in the current
simulation study (as closely as possible), run them and com-
pare the results. Alternatively they can change their own data-
generating mechanism parameters to match the published
ones (as closely as possible) and run them and compare the
results. This should help to narrow down where any errors
are occurring. However, if code has been carefully checked
and still gives an unexpected result, it is important to consider
that the findings may be genuine showing that the theory may
be wrong.

A successful simulation study

The scripts simcheck99.do and simcheck99.R show a success-
ful simulation study using three missing data mechanisms:
MCAR, missing completely at random; MAR, missing at ran-
dom; and MNAR, missing not at random. There are many
MAR and MNAR mechanisms, and our results apply only to
the particular mechanisms chosen. Results from the Stata
code are shown in Table 3. Entries in italics show results to be
compared against existing knowledge: for example, multiple
imputation has empirical standard error between full data
and complete case analysis. Entries in bold show the key find-
ings, namely (i) complete case analysis shows evidence of bias
under MAR only; (ii) multiple imputation (MI) shows evi-
dence of bias under MNAR only; and (iii) coverage of 95%
CIs is acceptable for both methods, despite these biases and
small errors in the model-based standard error.

Conclusion

Our advice covers a number of issues that have caused diffi-
culties in simulation studies that we have worked on, and we
hope they are useful to others. Other useful literature on

Figure 3. Zip plots illustrating correct coverage, undercoverage due to bias and undercoverage due to low standard error
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simulation studies is available.1,8 Our motivation was to ex-
plain surprising simulation results after a simulation study is
run, but quality should be designed in from the start. We
stress that simulation studies should be designed to be easy to
check and should be checked repeatedly during the conduct
and analysis stages.
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