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Abstract 

 

Background: Aging is characterized by loss of resilience, the ability to resist or recover from 

stressors. Network analysis has shown promise in investigating dynamic relationships 

underlying resilience. We aimed to use network analysis to measure resilience in a longitudinal 

cohort of older adults and quantify whole-system vulnerabilities associated with frailty. 

 

Methods: We used data from the Rugao Longitudinal Ageing Study, including 71 biomarkers 

from participants classified as robust, prefrail, or frail. We quantified biomarker correlations 

and topological parameters. Additionally, we proposed propagation models to simulate damage 

and recovery dynamics, investigating network resilience under various conditions. 

 

Results: We classified 1754 individuals into robust (n=369), prefrail (n=1103), and frail 

(n=282) groups with 71 biomarkers. Several biomarkers were linked to frailty, including those 

related to blood pressure, ECG, kidney function, platelets, white blood cells. Each frailty stage 

was associated with increased network correlations. The frail network showed increased 

average degree and connectance, decreased average path length and diameter, and reduced 

modularity compared to robust and prefrail networks. Hub biomarkers, particularly β2-

microglobulin and platelet count, played a significant role, potentially propagating dysfunction 

across physiological systems. Simulations revealed that damage to critical hubs led to longer 

recovery times in the frail network than robust and prefrail networks. 
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Conclusion: Network analysis could serve as a valuable tool for quantifying resilience and 

identifying vulnerabilities in older adults with frailty. Our findings contribute to understanding 

frailty-related physiological disturbances and offer potential for personalized healthcare 

interventions targeting resilience in older populations. 

Keywords： Frailty, resilience, complex system, phenotype network, aging  
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Introduction 

Older age is characterized by multimorbidity and frailty, with impairments across 

physiological, cognitive and physical capabilities (1,2). Resilience is the ability to resist or 

recover from the effects of a stressor, along a continuum from health to frailty (Figure 1A) 

(3,4,5). Quantifying resilience is essential if we are to target it as a therapeutic strategy to 

prevent adverse outcomes, disability, and mortality (6,7). Dynamical systems physiology is an 

attempt to bring together biological substrates linking resilience and frailty (8).  

The measurement of resilience has been evolving. First, static indicators, such as survival 

following the onset of poor health (9) or the residual differences between age and frailty 

(distinguishing adapters and prematurely frail) (10), were used. While useful for population 

research, this approach is insufficient to capture any temporal dynamics. Secondly, stimulus-

response experiments have been conducted to quantify resilience, including glucose tolerance 

tests (11), isometric exercises (12) and adrenocorticotropic hormone stimulation tests (13). 

These characterize resilience in an individual, particularly for specific organ systems, though 

they are more challenging to apply at scale. Thirdly, dynamical indicators of resilience (DIOR) 

based on variance and temporal autocorrelation have been applied to time-series data (5,14,15). 

In particular, longitudinal DIOR analysis of blood markers predicted mortality corresponding 

to a complete loss of resilience and frailty (14). Building on these ideas, establishing resilience 

operationally will lead to new insights into underlying causes of frailty, its treatment and 

prevention. 

Network analysis has great potential to uncover some dynamic relationships underpinning 

resilience (16). Fundamentally, the technique starts by quantifying the correlations between a 
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range of physiological biomarkers (14,17). These conceptualize biomarkers as nodes, 

connected by any number of degrees (18,19,20). The number, strength, and paths throughout 

the network conform to topological parameters, and these characteristics can indicate network 

resilience (21). Networks with low resilience have mutually dependent increases in cross-

correlations, making them vulnerable to whole-system failure (22,23). A general property of 

resilient networks is that they have scale-free attributes: the relationship between strongly 

connected hubs is exponentially related to the number of nodes with fewer connections 

regardless of network size (Figure 1B). As complex networks lose resilience, local clustering 

may become evident, and scale-free characteristics might start to reduce (Figure 1B). We 

recently applied this approach to describe internal correlation structures of physiological 

biomarkers underlying aging (24). 

We set out to apply network analysis to data from a longitudinal study in which physiological 

biomarkers had been obtained in participants classified with different degrees of frailty. We 

wanted to quantify the number and degree of cross-correlations, any differences in the resulting 

network topology, and then simulate the effect of damage at any set of points in the network, 

and predict the potential for damage propagation or whole-system recovery under a range of 

conditions. 
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Methods  

Study population and participants  

The Rugao Longitudinal Ageing Study (RLAS) is a population-based study from Rugao, 

Jiangsu Province, China. Since 2014, the aging arm of RLAS has been following n=1788 

participants aged 70-84 from a medium-sized township in Rugao (91% of the eligible 

population), collecting demographic, clinical, and laboratory measures (Supplementary File 

1). Waves 2, 3, and 4 (2016, 2017, 2019 respectively) collected data on frailty. Wave 4 also 

measured 71 biomarkers, classified into 17 physiological systems: anthropometry, blood 

pressure, electrocardiographic, lipids, glucose, endocrine, venous blood gas, electrolytes, 

inflammation, vascular function, liver function, heart function, kidney function, platelets, white 

blood cells, red blood cells, and reticulocytes (Table S1). Our principal cross-sectional analyses 

are at Wave 4: biomarker networks for each frailty category. Longitudinal analyses were for 

transitions between frailty states from Waves 2, 3, and 4 in relation to the biomarker networks 

derived at Wave 4 (details below). 

Operationalization of frailty 

The frailty phenotype was defined using five features: weight loss, exhaustion, low activity, 

weakness, and slowness. Weight loss, exhaustion and low activity were self-reported (Have you 

lost more than 4.5 kg or 5% of your body weight in the past 12 months? Have you felt tired at 

least 3 or 4 days per week? Do you need help to walk?). Weakness was defined as being <20th 

centile for Chinese adult population-standard norms in maximum handgrip strength using a 

dynamometer for three trials of each hand, or those unable to be assessed. Participants in the 

worst 20th centile for Chinese adult population-standard norms of the timed-up-and-go (taking 
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the longest time), or those who could not complete the task were categorized as having 

slowness. (Supplementary File 1) (25). Participants with three or more features were defined 

as frail, one or two as prefrail and none as robust. 

Construction of biomarker networks 

To create a network between pairs of biomarker nodes, we calculated the maximum information 

coefficient (MIC) using the R package minerva (26). Compared with Pearson, Spearman and 

Kendall correlation, the MIC could capture both linear and nonlinear correlation between 

biomarkers (24). Hubs are nodes with relatively more connections (degrees); these are not 

defined in absolute terms, and their identification is data-driven. To make the networks 

comparable, so we took equal random samples from each robust, prefrail, and frail group; across 

Waves 2 to 4, n=150, 150, 200 corresponded to the smallest, size-limiting group. We used the 

mean MIC values calculated separately for men and women. Subsampling was performed 100 

times; we used the median of resampled MIC values for the final network. We applied hard 

thresholds from random matrices theory (RMT), effective at pruning networks, to filter out 

noise and spurious correlations. As hard thresholds of MIC can affect the number of edges in 

networks, the same procedures and thresholds were used for all three groups. 

Network topology 

Networks are described by several topological parameters (Figure 1B). These include: average 

degree, connectance, diameters, average path length, centralization betweenness, centralization 

degree, modularity, and clustering coefficient. In addition, we considered scale-free and small-

world (local clustering) attributes. 
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Propagation models 

We proposed propagation models to simulate the dynamics of spread on complex networks. 

Each node had two statuses: healthy or damaged. To simulate the perturbation caused by a 

stressor or stimulus, a proportion of nodes (α) were randomly set to be damaged. Damaged 

nodes could recover with fixed probability (u), and healthy nodes could become damaged due 

to connections with damaged nodes (r). To quantify network resilience, we simulated random 

damage to nodes and hubs, using the unit time for 50% of damaged nodes to recover (RT50) as 

the indicator. We considered four scenarios: where in respect of the damage rate (u), the 

recovery rate (r) was equal (Scenario 1), less (Scenario 2), or greater (Scenario 3). Scenario 4 

fixed the recovery rate to decrease from robust to frail status (Supplementary File 3). 

Statistical analysis 

Data analysis was conducted in R (version 4.0). We used igraph to visualize the network 

structure and compute the network topological parameters. To investigate parameter differences 

between robust, prefrail and frail networks (variable importance in projection, VIP value), we 

used partial least-squares discriminant analysis (PLS-DA, R package ropls), adjusted by age, 

sex ratio, education, smoking status and alcohol use. 

Results 

Disturbances of networks in frailty: increased correlation between biomarkers 

We were able to classify 1754 (98%) individuals in RLAS Wave 4 into robust (n=369), prefrail 

(n=1103) and frail (n=282) groups (Table 1). Many of the 71 biomarkers were associated with 

frailty (Table S1). Specifically, blood pressure (pulse pressure), ECG (dominant R wave in V5), 

kidney function (β2 microglobulin, cystatin C), platelets (plateletcrit, count), white blood cells 
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(monocyte count, neutrophil %, total leukocytes) were associated with the frailty phenotype.  

There were more abnormal biomarkers, with increasing MIC, across the stages of Wave 4 frailty 

(Figure S1A). From Wave 3 to Wave 4, individuals remaining robust (n=128) also had lower 

MIC compared with individuals who transitioned from non-frail into frail states (n=152) 

(Figure S1B); differences in MIC distributions of frail networks were already apparent at Wave 

2, 3 clinical assessments (Figure S1C-D). 

 

The networks for robust, prefrail and frail groups were filtered at a MIC threshold set at 0.28, 

determined by random matrix theory (Figure S1E). There were 125, 116 and 186 edges in the 

networks respectively, resulting from increased correlations between biomarkers in the frail 

group. (Figure 2). Correlations that were notably high were between: B-type natriuretic peptide 

(BNP, Heart function) and alanine aminotransferase (ALT, Liver function), folate (FOL, 

Vascular) and cystatin C (Cys.C, Kidney), high fluorescence reticulocyte (HFR, Reticulocyte) 

and white blood cell count (White Blood Cells), β2-microglobulin (β2.MG, Kidney function) 

and hematocrit (HCT, Red Blood Cells) (Figure S2). 

 

Topological differences in networks across frailty status 

Compared with networks of robust and prefrail groups, the average degree and connectance of 

the network in frail group increased while the average path length and diameter decreased 

(Figure 3A). This was driven by more connections in the frail network. The modularity also 

decreased in this network, suggesting that the greater number of connections in the frail network 

were made across physiological systems (Figure 3A, Figure 2). Centralization betweenness 
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(brokered connections) and centralization degree (direct connections) are measures of how 

critical certain nodes are in a network; the centralization degree slightly increased in the frail 

group while centralization betweenness decreased. Moreover, we evaluated small-world 

coefficients (σ) that described higher clustering coefficients and shorter average path lengths 

indicative of local clustering compared to a random network model (Supplementary File 2). 

The σ was 2.94, 2.80 and 1.74 in robust, prefrail and frail groups, respectively. In general, 

networks also had scale-free attributes where biomarker connections were characterized by a 

few but significant number of nodes (hubs), with an exponential decay of number of nodes with 

fewer connections (power-law distribution). However, this feature decreased from robust to 

frail groups, indicating frail networks would have more vulnerability to random failures (Figure 

3B). 

 

Disturbances in frail networks: emerging dysfunctional hubs 

We focused on hubs with many connections; in keeping with scale-free attributes, most 

biomarkers had few connections (Figure S3A). The top three hub biomarkers were white blood 

cell count (WBC), triglyceride (TG), and uric acid (UA) in the robust group. They were body 

mass index (BMI), lymphocyte count (LY#) and QT interval (QT) in the prefrail group. 

Compared with the robust and prefrail group, the hub biomarkers such as β2-microglobulin 

(β2.MG), platelet count (PLT), hematocrit (HCT), B-type natriuretic peptide (BNP) and red 

blood cell distribution width (RDW) had increasing degree or betweenness centrality in the frail 

group (Figure S3B). In addition, the emerging hubs, such as β2.MG and PLT, were identified 

by PLSA-DA as being associated with frailty. The degree centrality of these biomarkers (Figure 

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

edgerontology/advance-article/doi/10.1093/gerona/glad243/7308756 by C
atherine Sharp user on 17 O

ctober 2023



 

 11 / 27 
 

S3C) was significantly correlated with VIP value from discriminant analysis (r=0.31, p=0.016), 

while the correlations were not significant in robust and prefrail groups. These changes in 

network centrality suggested that hub biomarkers were dysfunctional, and could propagate 

through interactions between physiological systems underlying frailty.  

Simulations in frail networks lead to longer recovery 

Testing the effect of network damage under different scenarios, we found random/hub damage 

led to longer recovery times in the frail network (Figure S4). Under conditions where the frail 

network had a higher damage rate, the RT50 recovery times were 19.5, 27.0 and 40.5 for robust, 

prefrail and frail networks respectively (Supplemetary File 3). When damage occurred in 

critical hubs, recovery time of the frail network was also greater than the other groups (Figure 

4). Compared with random damage, the frail network was more vulnerable to hub damage. In 

this context, the median differences of RT50 were 1.5, 2.5, and 6 for robust, prefrail and frail 

groups.  

 

We simulated the impact of different ratios of node recovery and damage (r/u) on the RT50 

recovery rate. For random, compared with hub damage, the frail network had shorter RT50 with 

different ratios of recovery and damage rate (Figure S4D). With decreasing recovery : damage 

ratios, RT50 increased nonlinearly from robust to frail networks, and RT50 was even longer 

when critical hubs were damaged in the frail network (Figure S4D). 
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Discussion 

Compared with robust and prefrail groups, the frail group demonstrated increased correlations 

and connections between biomarker networks, indicating enhanced dependence between 

physiological systems underlying frailty. Frail networks also showed topological disturbances, 

and dysfunctional hubs, reflecting a transition from modular organization to random and chaotic 

states. Dynamic simulations suggested the frail network had impaired ability to recover. These 

findings suggest that the collapse of nodes in the network of the frail group is more likely to 

lead to a loss of resilience for the entire system. Taken together, we showed network analysis 

can be usefully applied to longitudinal cohort data to give inferences into how to quantify 

whole-system vulnerability. 

Our demonstration of increased cross-correlations in frailty, between organ (e.g., kidney, heart) 

and regulatory (e.g., autonomic, endocrine, immune) systems directly quantifies 

interconnections at risk (7,27,28,29). For example, excessive inflammatory cytokines could 

impact hypothalamic-pituitary axis activity and skeletal muscle metabolism after disruptive 

stressor events (3). Network topological changes, their predicted propagation dynamics, and 

their dependence on critical hubs suggest ways organ systems may become synergistically 

impaired (24,28) and how the number of dysregulated systems become exponentially associated 

with frailty (30). These emerging dysfunctional hub nodes, including β2-microglobulin 

(β2.MG) and platelet (PLT), could facilitate our understanding of the mechanisms of resilience 

and frailty. Previous studies have found that serum β2.MG was significantly associated with 

frailty (31,32,33). While these findings need to be replicated in other cohorts, the broader point 
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is that network analysis offers an opportunity to delineate potential vulnerabilities, and what 

might account for intra-individual and inter-individual variation. 

A similar network model has been proposed in frailty, using theoretical deficits in the frailty 

index to explain vulnerability to damage propagation (20,34). Node damage and recovery rates 

were allowed to be dynamic and age-dependent, reflecting that prospective cohorts show 

differences in the rate at which subsystems and their interactions age (35). Our model was 

simplified with three parameters: the proportion of damage nodes, recovery rate and damage 

rate and could measure resilience as a recovery time metric. Our study extends this network 

approach, showing it could be practicable and efficient for cross-sectional data. While  previous 

studies have reported increased connections on biomarker networks in diseases and frailty 

(22,36,37), we go beyond these observations to show the utility for networks to describe 

vulnerabilities in damage propagation. 

 

There were some study limitations. Although 71 biomarkers were measured, these may not 

provide a comprehensive assessment of physiology and some important systems, such as 

autonomic nervous systems, were not well covered. The simulation analysis implemented a 

simple propagation model based on the damage onset and recovery assumptions, which may 

not reflect the true dynamics. Therefore, further work is needed to investigate the dynamic 

interactions between physiological subsystems. Considering the limited sample size of the 

RLAS, it would be necessary to validate the network analysis of resilience across frail states in 

other large cohorts. In addition, we used available physiological markers, but multiscale ‘omics 

data might have given better mechanistic insights into frailty and resilience. Furthermore, 
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continuously collected data through wearable sensor devices or high-frequency longitudinal 

phenotyping would likely refine our models (4,17). Other simulation approaches have 

promising applications in human aging, such as predicting tipping points at which the system 

shifts abruptly from one state to another, though this requires detailed measurement of both 

stressor and any response (4,38). 

 

In summary, we investigated the disturbances of physiological systems in frailty through 

network analysis and evaluated its effects on resilience. Specifically, we found that network 

disturbances through dynamic simulations were more apparent in the frail group. These results 

facilitate our understanding of resilience frailty from a complex network perspective. The 

approach provides insights into quantifying resilience at clinical and population levels, with the 

potential to promote personalized healthcare for older people (3,39,40). 
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Table 1. Characteristics of study population stratified by frail status. 

Demographic  Robust Prefrail Frailty P-value 

Sample Size  Wave 4 (2019) 369 (21.04) 1103 

(62.89) 

282 (16.08)  

(N, %) Wave 3 (2017) 584 (31.91) 1044 

(57.04) 

202 (11.04)  

 Wave 2 (2016) 633 (36.28) 936 (53.64) 176 (10.09)  

Age Wave 4 77.61 ± 4.43 78.56 ± 4.81 80.22 ± 4.74 < 0.001 

M ± SD, years Wave 3 76.92 ± 4.14 78.39 ± 4.48 79.38 ± 4.60  

 Wave 2 76.87 ± 4.34 77.04 ± 4.41 77.84 ± 4.42  

Gender Wave 4 229 (62.06) 485 (43.97) 76 (26.95) < 0.001 

Male, N (%) Wave 3 333 (57.02) 454 (43.49) 65 (32.18)  

 Wave 2 280 (44.23) 456 (48.72) 84 (47.73)  

Smoking ǂ Wave 4 128 (34.69) 262 (23.75) 32 (11.35) < 0.001 

Yes, N (%) Wave 3 138 (23.63) 193 (18.49) 35 (17.33)  

 Wave 2 136 (21.48) 257 (27.46) 44 (25.00)  

Alcohol Intake ǂ Wave 4 172 (46.61) 395 (32.55) 51 (18.09) < 0.001 

Yes, N (%) Wave 3 228 (39.04) 293 (28.07) 35 (17.33)  

 Wave 2 194 (30.65) 311 (33.23) 64 (36.36)  

Educational status 
ǂ 

Wave 4 97 (26.29) 515 (46.69) 172 (60.99) < 0.001 

Illiteracy, N (%) Wave 3 212 (36.30) 531 (50.86) 132 (65.35)  

 Wave 2 322 (50.87) 465 (49.68) 91 (51.70)  

Marital status ǂ Wave 4 236 (63.96) 714 (64.73) 159 (56.38) 0.451 

Married, N (%) Wave 3 385 (60.82) 657 (62.93) 131 (64.85)  

 Wave 2 394 (62.24) 608 (64.96) 116 (65.91)  

M: mean, SD: standard deviation. Continuous and categorical variables were present as mean with SD 

and frequency (%), Group difference were analyzed by chi-square or ANOVA test. Marital status & 

including separated, divorced, never married or widowed.  
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Figure legends: 

Figure 1. Human ageing processes with declined functions and decreased resilience on the 

ageing continuum of physiological reserve (A). The physiological system transited into frailty 

after the critical threshold and lost the capacity to cope with stressors. The topology of 

complex networks (B), including degree, connectance, diameters, betweenness, modularity, 

clustering coefficient, scale-free and small-world attributes (Supplementary File 2). 

Figure 2. Phenotype networks of robust, prefrail and frail groups.  

Figure 3. The topological parameters of phenotype networks (sample size = 100) in robust, 

prefrail and frail groups (A). The linear correlations between log frequency and log degree 

indicated scale-free attributes of the networks (B). 

Figure 4. A representative example of recovery processes of phenotype networks in damage 

simulation for robust, prefrail and frail groups (hub damage, Scenario 4). 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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