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Abstract 

Uncertainty in the relevant buffer size of metro station catchment areas may drive 

inconsistencies in the findings on the built environment and metro ridership. Although 

previous studies estimate the effect of this uncertainty, the results are far from definitive. 

By utilizing finer-grained big data and non-parametric machine learning approaches, 

this study conducted a sensitivity analysis defining built environment factors within 

four radial buffer sizes: 300 m, 600 m, 800 m, and 1000 m on associations with metro 

ridership. The results suggest that: (1) different buffer sizes have little influence on the 

ordinary least-squares model’s predictive power, but significant influence on the 

machine learning model; (2) the use of a 600 m buffer size around the transit station 

demonstrates the best model fit and variation explanation compared to others; (3) 

findings on the relative importance, ranks, and nonlinear associations with metro 

ridership can be impacted as the choice of geographic delineation of buffer sizes deviate 

from the true relevant geographic context of built environment variables. The results 

assist planners in setting a benchmark for metro catchment areas for station-area 

planning and demand forecasting, more importantly, the findings highlight the 

importance of meticulously selecting the analytical spatial unit for area-based variables, 

especially when utilizing non-parametric machine learning approaches in research. 
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1. Introduction  1 

Many countries around the world have experienced rapid urbanization and 2 

increased motorization over the past decades, while negative externalities such as urban 3 

sprawl, traffic congestion, and environmental pollution are pervasive throughout many 4 

megacities (Batty et al., 2003). Since the early 1990s, the concept of transit-oriented 5 

development (TOD) has garnered widespread attention (Calthorpe, 1993) and has 6 

emerged as a promising instrument for mitigating automobile dependence and urban 7 

sprawl in numerous countries (Cervero, 1998; Cervero et al., 2002; Bertolini et al., 2012; 8 

Nasri and Zhang, 2014; Papa and Bertolini, 2015; Xu et al., 2017). 9 

To understand the determinants of metro ridership and to forecast metro demand, 10 

many studies use the direct ridership model (DRM) to investigate the relationship 11 

between the station-area built environment and metro ridership (An et al., 2019; Ding 12 

et al., 2019; Loo et al., 2010). Compared to the conventional four-step model (i.e., trip 13 

generation, trip distribution, mode choice, and traffic assignment), the DRM offers a 14 

cost-effective alternative because of ‘‘rapid response, simplicity of use, ease of results 15 

interpretation, low information requirements and low cost’’ (Cardozo et al., 2012: 556). 16 

Beyond forecasting, the elasticity values in the DRM expose the potential consequences 17 

of urban planning strategies on transit ridership, such as the introduction of new urban 18 

developments or the densification of existing ones, which are particularly crucial to 19 

TOD (Cervero, 2006). However, despite the DRM being widely used in the literature, 20 

the findings on the relationship between the built environment over the past three 21 

decades have been inconsistent, the discrepancies across studies could be attributed to 22 

the heterogeneity in city context, analytical methodology, trip heterogeneity, and 23 

notably, the delineation of catchment areas (An et al., 2019; Chen et al., 2022). 24 

Most DRMs typically apply a radius buffer ranging from 300 m to 1000 m, rather 25 
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arbitrarily, as the catchment area for a metro station (Guerra et al., 2012; Jun et al., 1 

2015). This distance range is seemingly referred to as walking distances within 5-15 2 

minutes, but it is still unclear what the most appropriate context is for understanding 3 

the relationship between the built environment and metro ridership. Although some 4 

studies assert that varying catchment areas have minimal influence on a DRM's 5 

predictive power for station-level metro ridership (Guerra et al., 2012), others argue 6 

that the effects of the station-area built environment vary significantly based on the 7 

choice of buffer sizes, as demonstrated in Seoul (Jun et al., 2015). This inconsistency 8 

in defining buffers underscores the problem of uncertain geographic context, which is 9 

defined as “the spatial uncertainty in the actual areas that exert the contextual influences 10 

under study” by Kwan (2012). This uncertainty arises from an incomplete 11 

understanding of the “true causally relevant” catchment area where the built 12 

environment exerts effects on metro ridership. 13 

However, capturing the “true causally relevant” catchment area where the built 14 

environment exerts effects on metro ridership is not easy. Firstly, early studies often 15 

defined a station-area built environment based on administrative boundary (e.g., census 16 

tracts or ZIP codes) or Transport Analysis Zone (TAZ) (Ding et al., 2019; Guerra et al., 17 

2012; Shao et al., 2020). While administrative boundaries or Traffic Analysis Zones 18 

(TAZ) provide convenience in data collection for statistics or travel surveys, they can 19 

inadvertently lead to issues due to their coarse-grained nature. These issues include 20 

aggregation biases or the modifiable areal unit problem (MAUP), which is a source of 21 

statistical bias that can significantly impact the results of statistical hypothesis tests, in 22 

other words, the scale and zoning pattern of the catchment area used may lead to 23 

different results (James et al., 2014). For example, even though metro station areas 24 

typically feature higher employment density than other regions, due to the use of TAZ 25 
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as the spatial analytical unit, studies are compelled to assume a uniform distribution of 1 

employment. This assumption can inadvertently lead to a misrepresentation of the true 2 

spatial distribution of employment, especially in cases where the employment density 3 

significantly varies within the TAZ (Shao et al., 2020). 4 

Secondly, previous DRMs often assume that station-based built environment 5 

factors have a pre-defined generalized linear relationship with metro ridership. This 6 

assumption is based on the general principle that the relationship between the built 7 

environment and metro ridership is likely to be proportional, meaning that an increase 8 

in one factor leads to a corresponding increase in the other. However, an ordinary least 9 

square (OLS) regression approach has been criticized for its ability to account for 10 

spatial variation and nonlinear correlations. To deal with the spatial autocorrelation 11 

problem, some studies adopted geographically weighted regression (GWR) to examine 12 

the relationship between the built environment and metro ridership (Cardozo et al., 2012; 13 

Jun et al., 2015). The results confirmed that the effect of the built environment varies 14 

across space. However, the GWR approach has its limitations when it comes to 15 

investigating the non-linear and threshold effects of the built environment and metro 16 

ridership (Shao et al., 2020). In this case, the predictive power and relevance of the 17 

DRM might be constrained by the modelling approaches, and the results of the “true 18 

causally relevant” catchment area can still be unrobust. 19 

The rise of big data (e.g., mobile phone signal, smart card data, point of interest) 20 

and new modelling methods (e.g., machine learning) provide possible means for 21 

mitigating the uncertain geographic context problem with regard to the availability of 22 

detailed spatial data with advanced models capable of handling intricate nonlinear 23 

relationships and interactions between independent and dependent variables. On the one 24 

hand, big data offers further promise to expand the representation of the hard-to-reach 25 
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population, land use, and spatial features, with great opportunities to overcome the 1 

aggregation biases caused by coarse-grained data. On the other hand, machine learning 2 

approaches relax the assumption of generalized linearity and illustrate more complex 3 

associations between the built environment and metro ridership while accounting for 4 

spatial effects (Ding et al., 2019; Li, 2022). It may, therefore, be interesting to see 5 

whether new (finer-grained) data and new (machine learning) methods can offer an 6 

innovative insight into the effects of buffer size on the relationships between the built 7 

environment and metro ridership. 8 

This study aims to use DRM through the application of eXtreme Gradient Boosting 9 

(XGBoost) and Shapley Addictive exPlanations (SHAP) to conduct a sensitivity 10 

analysis of the uncertain buffer problem in the built environment and metro ridership. 11 

It addresses the following research questions: (1) Do different buffer size choices 12 

influence the performance of the direct ridership model? (2) If the answer is “yes”, 13 

which buffer size has the best model’s predictive power? (3) To what extent do buffer 14 

size choices impact the correlations between the built environment and metro ridership? 15 

This study provides a threefold contribution to the existing body of literature. 16 

Firstly, it is among the first to use a non-parametric approach and finer-grain data to 17 

examine the impact of varying analytical buffer sizes on the relationship between the 18 

built environment and metro ridership. Secondly, it provides valuable new empirical 19 

evidence regarding the optimal buffer size for maximizing the model's predictive power 20 

in the direct ridership model. Thirdly, it uncovers the extent to which buffer effects 21 

influence the results of machine learning models. 22 

The structure of this paper unfolds as follows. Section 2 offers a review of existing 23 

literature. Section 3 outlines the data employed in this study, delving into the variables 24 

and the modelling approaches utilized. Section 4 presents the analytical findings. 25 
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Section 5 concludes the paper with the key findings, implications, and limitations. 1 

 2 

2. Literature review 3 

2.1 The built environment and metro ridership 4 

Especially over the past three decades, urban sprawl and associated externalities 5 

have promised a substantial amount of studies on the relationship between the built 6 

environment and travel behaviour (Ewing and Cervero, 2010). The urban and transport 7 

strategy of TOD has been generating considerable interest in academics and practices 8 

(Bertolini et al., 2012; Calthorpe, 1993; Cervero et al., 2002). Among the TOD studies, 9 

the relationship between the built environment and metro ridership is the main focus 10 

(Ding et al., 2019). 11 

Prior studies often adopt direct ridership models to study the relationship between 12 

the station-area built environment and metro demand (Cervero, 2006). The model has 13 

advantages over the traditional four-step model, including simplicity of use, less data 14 

requirement, ease of interpretation, quick response and low costs (Cardozo et al., 2012). 15 

Although DRMs lack the detailed decision-making process of travellers like the four-16 

step model, they allow for in-depth analysis of the station environment, making them 17 

well-suited for studies that aim to understand factors influencing transit use. 18 

Additionally, DRMs utilize station catchment areas as the unit of analysis, as opposed 19 

to the traffic analysis zone (TAZs) used in the traditional four-step model. This approach 20 

aligns more sensibly with the scope of station-level metro ridership modelling, given 21 

that the scale of TAZs may be too extensive. DRMs are more adept at capturing the 22 

impact of the station-area built environment on metro ridership (Cervero, 2006; Ding 23 

et al., 2019). This methodology is also advantageous in harnessing Geographic 24 

Information Systems (GIS) as a tool for calculating these variables, alongside using 25 
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spatial disaggregation methods that permit a detailed study of the station-area built 1 

environment (what Cervero (2006) calls “fine-grained design details”). 2 

DRMs in the literature show that land use variables are key determinants of station-3 

level ridership. Cervero (2006) found that a 10% increase in residential density within 4 

0.5 miles of stations was associated with a 1.9% increase in daily metro ridership. Zhao 5 

et al. (2013) conducted an empirical study using large-scale smart card data in Nanjing 6 

and found that population density and employment density had a positive influence on 7 

intermodal transit trips, while population density had a larger influence on intermodal 8 

transit trips than employment density. Similar results were found by Kuby et al. (2004) 9 

and Jun et al. (2015). 10 

Land use diversity was found to have a significant effect on metro ridership. Li et 11 

al. (2020) discovered a strong correlation between land use diversity and increased 12 

ridership in Guangzhou, with the impact being notably higher in outer suburban areas 13 

for morning boardings and evening alightings. Shao et al. (2020) reported a significant 14 

influence of land use diversity on metro ridership, particularly when the entropy index 15 

of the diversity fell between 0.5 and 0.65. However, Chen et al. (2022) found that land 16 

use diversity has no significant associations with metro ridership in Wuhan. These 17 

conflicting findings underscore the need for further exploration and research to discern 18 

the true impact of land use diversity on station-level metro ridership. 19 

Previous studies also investigate the effect of design factors on metro ridership. 20 

Chen et al. (2022) found a positive correlation between increased intersection density 21 

and higher metro ridership. The rationale behind this association is that higher 22 

intersection density enhances accessibility to metro stations and diverse destinations. 23 

Specifically, a more pedestrian-oriented street network surrounding metro stations 24 

positively impacts metro ridership, as it can effectively reduce the walking distance to 25 
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metro stations and offer a wider variety of route choices for commuters (Nasri and 1 

Zhang, 2014). Similar results can be found by Ding et al. (2019). 2 

Distance to Central Business District (CBD) is another crucial factor affecting 3 

metro ridership. Andersson et al. (2021) and Zhao et al. (2013) found that stations 4 

located closer to CBD tend to have higher ridership due to the concentration of job 5 

opportunities, commercial activities, and services in the city centre. However, some 6 

studies found an insignificant correlation between the distance to CBD and metro 7 

ridership (Shao et al., 2020; An et al., 2019). The findings imply that the impact of 8 

proximity to CBD on metro usage may vary, particularly in polycentric urban 9 

configurations featuring multiple activity hubs or centres. 10 

Station-level metro ridership is affected not only by the built environment but also 11 

by station characteristics. Some studies found that terminal or transfer stations were 12 

significantly associated with more metro ridership. Sohn and Shim (2010) used the 13 

betweenness centrality, closeness centrality, and straightness centrality to represent the 14 

network efficiency for each station in Seoul. The results showed that high betweenness 15 

centrality has significant positive effects on metro ridership. Similar results were found 16 

in Shanghai (An et al., 2019) and Shenzhen (Shao et al., 2020). Previous studies further 17 

examined the effect of station age on metro ridership (Pan et al., 2017), demonstrating 18 

that stations with longer operating histories tend to have higher ridership. These 19 

findings underscore the co-evolution of urban development around metro stations and 20 

behavioural adaptation by commuters, and suggesting co-evolution may unfold over 21 

extended periods (Deng and Zhao, 2022). 22 

2.2 A benchmark for transit catchment area 23 

While recent years have seen widespread empirical contributions to the behavioural 24 

mechanisms underlying how station-area built environment variables affect metro 25 

ridership, research on the built environment over the last three decades has been 26 
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inconsistent. The inconsistency across studies is attributed to differences in the local 1 

context, analytical methods, travel purposes, and specifically, the heterogeneity in the 2 

delineation of metro catchment areas across studies, which impedes understanding the 3 

totality of the evidence of the built environment’s impact on metro ridership (James et 4 

al., 2014). 5 

Previous studies often define a radial buffer of 300-1000 m as the most acceptable 6 

buffer size as it is seemingly referred to walking distances within 5-15 minutes, but 7 

there is still no consensus on the most appropriate catchment radius of metro station. In 8 

the United States, the 0.5 miles (roughly equivalent to 800 meters) radius is the most 9 

commonly accepted distance for gauging a metro station’s catchment area and is the de 10 

facto standard for TOD planning (Guerra et al., 2012; Kuby et al., 2004). O'Sullivan 11 

and Morrall (1996) reported that in Canada the walking distance guidelines applied to 12 

all surface transport modes range from 300 m to 900 m. In South Korea, Seoul 13 

Metropolitan Government set an aerial distance of 500 m in radius as a standard for 14 

transportation studies (Sohn and Shim, 2010). In Shanghai, the official “Shanghai 15 

Master Plan 2017-2035” recommended 600 m as a standard distance for metro planning 16 

(An et al., 2019), but the 800 m radius is more frequently used in Beijing (Li and Zhao, 17 

2017), and Shao et al. (2020) used 1000 m as a catchment area radius to capture the 18 

correlates of land use on metro ridership in Shenzhen. 19 

This lack of consistency in a benchmark for the buffer sizes connects to the 20 

“uncertain geographic context problem” defined by Kwan (2012), which refers to the 21 

impact of area-based contextual variables on individual behaviours or outcomes being 22 

influenced by the way geographic units (e.g., TAZ) are delineated. The uncertain 23 

geographic context problem arises from a limited understanding of the “truly causally 24 

relevant” area in which the environment influences individual behaviours (Kwan, 2012). 25 
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In other words, inaccurate selection of geographic boundaries for contextual units (e.g., 1 

buffer sizes) may lead to flawed or misleading conclusions about the relationship 2 

between the built environment and metro ridership. To mitigate the uncertain 3 

geographic context problem, Clark and Scott (2014) suggested three principles for 4 

selecting the appropriate scale to measure the built environment. First, selecting a scale 5 

related to the actual travel distances to/from the metro station; Second, using 6 

disaggregate data whenever possible; Third, choosing a scale that is appropriate for the 7 

policy-relevant. James et al. (2014) further added that conducting a sensitivity analysis 8 

of the uncertain geographic context problem in relation to the built environment and 9 

metro ridership is necessary. 10 

Guerra et al. (2012) conducted a sensitivity analysis of different buffer sizes by 11 

utilizing station-level built environment variables from 1,449 high-capacity transit 12 

stations across 21 American cities. The findings suggested that various catchment areas 13 

exerted little influence on a model's predictive power regarding station-level transit 14 

ridership. For the six catchment-area radii analyzed, the R2 for population fluctuated 15 

between 0.742 and 0.746, while for jobs, it varied from 0.723 to 0.745. However, it is 16 

worth noting that their study used fairly aggregated data (e.g., job data at the zip-code 17 

level, and population estimates at block level). This aggregation at the station level (i.e., 18 

within the 800 m network distance buffer) may introduce aggregation biases due to the 19 

coarse-grained nature of the data (Shao et al., 2020). Additionally, the study utilized 20 

OLS to examine the predictive power of DRM among different catchment-area radii, 21 

OLS might exhibit biases owing to its inherent restrictions, such as presuming linear 22 

relationships and being incapable of adequately addressing spatial autocorrelation 23 

(Cardozo et al., 2012). 24 

Jun et al. (2015) utilized a mixed geographically weighted regression model 25 
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(MWGR) along with more disaggregated geographic units to investigate the variations 1 

in built environment correlates of metro ridership across different pedestrian catchment 2 

areas (PCAs). The study discovered that the metro ridership impacts of the built 3 

environment vary significantly by PCA. The best-fit value of the MWGR model ranged 4 

from 0.773 for core PCAs (with a radius of 300 m) to 0.679 for secondary PCAs 5 

(covering 600-900 m). The results suggest that the impact of varying catchment-area 6 

radii cannot be disregarded. The selection of buffer size significantly influences the 7 

findings concerning the relationship between the built environment and ridership. The 8 

contradictory findings call for additional studies to investigate the effect of buffer sizes 9 

on the relationship between the built environment and metro ridership, especially 10 

utilizing high-resolution spatial data and advanced modelling techniques. 11 

2.3 Analysis with new data and new approach 12 

Over the last decade, the rise of big data, particularly on the built environment side 13 

generate a new potential to conduct a finer-grained sensitivity analysis of the uncertain 14 

buffer size in relation to the built environment and metro ridership. Big data, such as 15 

OpenStreetMap (OSM), Point of Interests (POIs), and smart card data (SCD) have been 16 

increasingly utilized in various research fields to derive insights into land use, 17 

transportation systems, and travel behaviours (An et al., 2019). Compared to frequently 18 

used census tracts, blocks or TAZs data, big data offers some promise to expand the 19 

representation of hard-to-reach built environment information (e.g., population density 20 

and employment density), with great opportunities to improve the accuracy of 21 

sensitivity analysis of buffer size effects on associations between the built environment 22 

and metro ridership (Kwan, 2012). 23 

Additionally, advanced analytical approaches, such as machine learning, offer a 24 

new tool to reveal complications that are less observable in traditional linear models 25 

(Shao et al., 2020). The assumption of a linear relationship between dependent and 26 
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independent variables limits the linear model performance when the relationship 1 

between these variables is nonlinear or irregular (van Wee and Handy, 2016). This is 2 

particularly probable in the context of TOD, given its characteristic high density, mixed-3 

use, and compact nature. In other words, the inherent limitation in traditional linear 4 

models could result in suboptimal or inaccurate predictions and may fail to capture 5 

important aspects of the sophisticated effects of buffer size. Moreover, traditional linear 6 

statistical models often struggle with such unobservable heterogeneity (Tang et al., 7 

2020). They operate under the assumption that relationships among variables are 8 

uniform across all observations. However, in reality, this is rarely the case. 9 

Unobservable heterogeneity can lead to specification errors in these models, as they do 10 

not account for this unseen variation. This issue can result in incorrect or biased 11 

estimates of parameters, leading to misleading conclusions.  12 

Machine learning models, on the other hand, do not rely on pre-specified model 13 

forms and are capable of capturing complex, non-linear relationships, and interactions 14 

among predictors in the relationship between the built environment and travel 15 

behaviour (Ding et al., 2019; Shao et al., 2020), which allows them to account for some 16 

of the unobservable heterogeneity. The models permit a degree of variation in estimated 17 

parameters across different observations. The variation conforms to a continuous 18 

distribution, such as a normal distribution, specified by the analyst. This flexibility in 19 

the model is designed to accommodate and account for the potential impact of unseen 20 

or unrecorded variability within the data (Tang et al., 2020). Besides, machine learning 21 

models such as SHAP-based XGBoost have emerged as viable alternatives to 22 

traditional spatial statistical models, particularly when dealing with intricate spatial and 23 

non-spatial effects that are unknown or not fully understood (Li, 2022). This makes 24 

such methods particularly suitable for addressing the “uncertain geographic context 25 



13 

 

problem” in smaller spatial units, such as metro catchment areas. The capability of these 1 

techniques to handle complex spatial relationships provides additional assurance when 2 

investigating these intricate contexts. 3 

In summary, numerous studies have investigated the relationship between the built 4 

environment and metro ridership, but the findings remain inconsistent. The 5 

inconsistency may be due to the heterogeneity in the delineation of metro catchment 6 

areas across studies, which have not been thoroughly examined, particularly in studies 7 

using finer-grained big data and non-parametric modelling approaches. To address 8 

research gaps, this study applied a machine learning approach along with high-9 

resolution data to examine whether and how different analytical buffer sizes affect the 10 

correlations between the built environment and metro ridership. 11 

 12 

3. Methods 13 

3.1 Study area and variables 14 

This study focuses on Shanghai as its case study. As one of the most populous cities 15 

in China, Shanghai has an urbanized area of 6,340.5 km2 and a total population of 24.9 16 

million in 2021. By the end of 2020, Shanghai's metro network comprised 18 lines, 17 

covering approximately 729.2 km, and included 430 metro stations, thereby making it 18 

the most extensive metro network worldwide. The metro system, a vital transportation 19 

mode for Shanghai's citizens, saw an average daily ridership of 10.2 million in 2019. 20 

The study utilized data from the Shanghai Metro, specifically, the ridership data 21 

recorded on September 18th, 2019, a typical Wednesday. This dataset encompasses 22 

daily ridership figures for 341 stations across 17 lines in Shanghai, as depicted in Fig.  23 

1. The average daily ridership per station in Shanghai on this day was 40,391. The 24 

station with the highest recorded ridership was People's Square station, with a count of 25 
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241,742, while Wangyuan Road station observed the lowest ridership, reporting only 1 

1,830 riders. 2 

 3 

Fig.1. Study area in Shanghai and station ridership (2019). 4 

A total of 15 independent variables were included in DRM and categorized into 5 

two groups: (1) built environment variables and (2) station characteristic variables. For 6 

built environment variables, population and employment density were measured using 7 

mobile phone signal data obtained from China Unicom, one of the largest mobile 8 

providers in China. The data provides finer-grained population density information 9 

compared to census data and has been validated repeatedly for its high quality (Yang et 10 

al., 2023). Commercial land use, business land use, public land use, and residential land 11 
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use were measured by counting the POIs within a predefined distance, prior studies 1 

have demonstrated a significant impact of these POI types on metro ridership (An et al., 2 

2019), and this variables were included to examine the effects of different land uses on 3 

metro ridership. Land use diversity was measured using a land-use entropy approach 4 

(Cervero and Kockelman, 1997) based on POIs data from Amap (Yang et al., 2023). 5 

The average Floor Area Ratio (FAR) around metro stations was computed using ArcGIS, 6 

based on building footprint and floor data obtained from Baidu Map. Street density was 7 

measured in ArcGIS using the data from OSM. The number of bus stops was computed 8 

in ArcGIS, using data from Amap. The distance to the city centre was calculated as the 9 

straight-line distance from the metro station to the People's Square station. 10 

With respect to station characteristic variables, we utilized the number of station 11 

entrances and the number of lines, instead of a simple transfer station binary variable, 12 

to more comprehensively represent the characteristics of metro stations. We 13 

hypothesized that these variables, by expanding service areas both at a micro and macro 14 

level, play a pivotal role in influencing metro ridership. The data on the number of 15 

entrances and lines per station were collected from shmetro.com. Betweenness 16 

centrality was calculated for each station as it provided an important measure of a 17 

station's role and importance within the network (Freeman, 1978). This metric 18 

quantifies the number of times a station acts as a bridge along the shortest path between 19 

two other stations (Sohn and Shim, 2010). Therefore, a station with high betweenness 20 

centrality has a large influence on the flow of passengers through the network, as it 21 

connects many pairs of stations. By incorporating this metric into the analysis, we can 22 

better understand how the strategic positioning of a station within the network can 23 

impact metro ridership. Drawing from Sohn and Shim (2010) as well as our preliminary 24 

analysis, we have chosen to omit closeness centrality from our study due to its lack of 25 
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significant correlation with metro ridership. We assume that closeness centrality tends 1 

to reflect the average distance from a node to all other nodes in a network, which can 2 

be influenced greatly by the spatial configuration of the transit network. If the network 3 

is not designed in a way that proximity (in terms of path lengths) correlates with 4 

ridership (e.g., a hub-and-spoke system where ridership is more dependent on transfers 5 

than proximity to other stations), the correlation may not be strong. Additionally, to 6 

account for the influence of time on metro ridership, we incorporated a variable 7 

representing the age of the station. This allows us to investigate the long-term temporal 8 

impacts on metro ridership. The rationale behind this is the recognition that the ridership 9 

of a metro station is not just dependent on its current attributes, but also on its historical 10 

performance and user adoption rate over time. Older stations might have developed 11 

established commuter patterns, local dependencies, and more mature surrounding 12 

infrastructures, leading to potentially higher ridership. Conversely, newer stations may 13 

still be in the phase of growing their user base. By including station age as a variable, 14 

we can better account for these temporal dynamics in our analysis. 15 

The independent variables possessing fine-grained spatial configuration were 16 

calculated within four different buffer scales: 300 m, 600 m, 800 m, and 1000 m (see 17 

Fig. 2). The buffer scales were delineated by drawing straight lines radiating out from 18 

the station points, adhering to the radial-based approach typically utilized in DRM and 19 

planning standards (Guerra et al., 2012). To address potential issues of multicollinearity, 20 

we calculated the variance inflation factor (VIF) for each independent variable. All 21 

variables exhibited a VIF value of less than 5, indicating that multicollinearity should 22 

not pose a significant problem in the analysis. Table 1 provides a detailed description 23 

of all the independent and dependent variables used in this study. 24 
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 1 

Fig.2. The built environment factors in the station served buffer. 2 
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Table 1. Descriptive statistics of variables. 

Variable Description Mean St.dev. 

Dependent Variable 

Metro ridership The total daily ridership for the metro station 40390.7 36136.8 

Built environment variables 

Population density (300 m) No. of population per km2 within a 300 m buffer (thousand people/km2) 18.09 11.74 

Population density (600 m) No. of population per km2 within a 600 m buffer (thousand people/km2) 18.01 11.34 

Population density (800 m) No. of population per km2 within an 800 m buffer (thousand people/km2) 17.94 11.05 

Population density (1000 m) No. of population per km2 within a 1000 m buffer (thousand people/km2) 17.85 10.77 

Employment density (300 m) No. of employment per km2 within a 300 m buffer (thousand people/km2) 8.56 6.63 

Employment density (600 m) No. of employment per km2 within a 600 m buffer (thousand people/km2) 8.60 6.63 

Employment density (800 m) No. of employment per km2 within an 800 m buffer (thousand people/km2) 8.62 6.59 

Employment density (1000 m) No. of employment per km2 within a 1000 m buffer (thousand people/km2) 8.61 6.50 

Commercial land use (300 m) 
No. of POIs covering macro-level categories of catering, living service, and ping per 

km2 within a 300 m buffer (count) 
30.2 38.1 

Commercial land use (600 m) 
No. of POIs covering macro-level categories of catering, living service, and ping per 

km2 within a 600 m buffer (count) 
88.7 90.6 

Commercial land use (800 m) 
No. of POIs covering macro-level categories of catering, living service, and ping per 

km2 within an 800 m buffer (count) 
143.4 137.7 

Commercial land use (1000 m) 
No. of POIs covering macro-level categories of catering, living service, and ping per 

km2 within a 1000 m buffer (count) 
251.8 225.6 

Business land use (300 m) No. of companies within a 300 m buffer (count) 11.2 26.9 

Business land use (600 m) No. of companies within a 600 m buffer (count) 41.8 79.8 

Business land use (800 m) No. of companies within an 800 m buffer (count) 73.5 122.1 

Business land use (1000 m) No. of companies within a 1000 m buffer (count) 133.0 190.7 
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Public land use (300 m) 
No. of POIs covering macro-level categories of education and culture within a 300 

m buffer (count) 
2.2 4.5 

Public land use (600 m) 
No. of POIs covering first-level categories of education and culture within a 600 m 

buffer (count) 
8.9 11.8 

Public land use (800 m) 
No. of POIs covering macro-level categories of education and culture within an 800 

m buffer (count) 
16.8 19.1 

Public land use (1000 m) 
No. of POIs covering macro-level categories of education and culture within a 1000 

m buffer (count) 
30.6 33.0 

Residential land use (300 m) 
No. of POIs covering middle-level categories of residence within a 300 m buffer 

(count) 
6.2 7.8 

Residential land use (600 m) 
No. of POIs covering middle-level categories of residence within a 600 m buffer 

(count) 
29.1 31.3 

Residential land use (800 m) 
No. of POIs covering middle-level categories of residence within an 800 m buffer 

(count) 
53.0 55.3 

Residential land use (1000 m) 
No. of POIs covering middle-level categories of residence within a 1000 m buffer 

(count) 
94.9 96.9 

Land use diversity (300 m) Land use mix (entropy) within a 300 m buffer 0.47 0.25 

Land use diversity (600 m) Land use mix (entropy) within a 600 m buffer 0.62 0.204 

Land use diversity (800 m) Land use mix (entropy) within an 800 m buffer 0.66 0.18 

Land use diversity (1000 m) Land use mix (entropy) within a 1000 m buffer 0.70 0.143 

FAR (300 m) The ratio of floor area over the land area within a 300 m buffer 1.87 1.22 

FAR (600 m) The ratio of floor area over the land area within a 600 m buffer 1.8 1.0 

FAR (800 m) The ratio of floor area over the land area within an 800 m buffer 1.86 1.02 

FAR (1000 m) The ratio of floor area over the land area within a 1000 m buffer 1.27 0.69 

Street density (300 m) The length of street per square kilometre within a 300 m buffer (km/km2) 8.3 3.8 

Street density (600 m) The length of street per square kilometre within a 600 m buffer (km/km2) 7.5 3.27 
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Street density (800 m) The length of street per square kilometre within an 800 m buffer (km/km2) 7.7 3.2 

Street density (1000 m) The length of street per square kilometre within a 1000 m buffer (km/km2) 5.3 2.23 

Bus stops (300 m) No. of bus stops within a 300 m buffer (count) 9.8 6.2 

Bus stops (600 m) No. of bus stops within a 600 m buffer (count) 22.5 13.4 

Bus stops (800 m) No. of bus stops within an 800 m buffer (count) 35.2 19.6 

Bus stops (1000 m) No. of bus stops within a 1000 m buffer (count) 60.1 32.2 

Distance to CBD Straight-line distance to People Square Station (km) 15.25 11.24 

Station characteristic variables 

Line No. of metro lines that the station can ride (count) 1.18 0.48 

Entrances No. of entrances of the metro station (count) 4.5 2.6 

Station age No. of years since the opening of the station (years) 10.4 5.6 

Betweenness centrality 

The betweenness centrality is expressed as 𝐶𝑟
𝐵  ∑

𝛿𝑠𝑡(𝑟)

𝛿𝑠𝑡
𝑠≠𝑟≠𝑡  , where 𝛿𝑠𝑡   is the 

number of shortest paths between node s and node t, and 𝛿𝑠𝑡(𝑟) is the number of 
shortest paths from s to node t that pass through node r. 

0.045 0.0395 
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3.2 Analytical approaches 1 

3.2.1 Machine learning approach: eXtreme Gradient Boosting 2 

The eXtreme Gradient Boosting (XGBoost) model was chosen from a range of 3 

machine learning algorithms (e.g., random forest and gradient boosting decision tree) 4 

to analyze the correlations between the selected explanatory variables and CB ridership. 5 

XGBoost, which was introduced by Chen and Guestrin (2016), has become increasingly 6 

popular in urban and transportation research (Yang et al., 2021; Liu et al., 2023). It is a 7 

robust machine learning algorithm, known for its ability to handle large datasets and 8 

model complex, nonlinear relationships. Its design allows for the efficient processing 9 

of big data and intricate patterns, surpassing traditional linear models in predictive 10 

accuracy. XGBoost also exhibits resilience towards outliers and missing data, and 11 

includes regularization parameters to prevent overfitting (Li, 2022). 12 

Similar to the gradient boosting decision tree (GBDT), XGBoost combines 13 

decision trees and gradient boosting, but its processing speed is ten times faster than 14 

that of GBDT. In addition, XGBoost has been found to outperform alternative methods 15 

in terms of predictive accuracy and model fit (Li, 2022). To verify the efficacy of the 16 

XGBoost model, we compared the preliminary model results with those obtained with 17 

the random forest and gradient-boosting decision tree models. The results confirmed 18 

that the XGBoost models outperformed the random forest and GBDT models in terms 19 

of predictive accuracy and model fit. 20 

Mathematically, XGBoost uses additive functions to predict the final result as 21 

shown in Eq. (2): 22 

 𝑦𝑖̂ = ∑ 𝑓𝑘(x𝑖)
𝐾
𝑘=1 , 𝑓𝑘 ∈ ℱ (2) 23 

where K is the number of independent trees used to predict the output 𝑦𝑖̂ , and ℱ 24 

represents the space of regression trees. As for the determination of the structure of each 25 
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tree, the learning object to be minimized is given as follows: 1 

 𝑂𝑏𝑗 = ∑ 𝑙(𝑦𝑖̂, 𝑦𝑖)𝑖 + ∑ Ω(𝑓𝑘)𝑘  (3) 2 

where the first term 𝑙(𝑦𝑖̂, 𝑦𝑖) respectively represents the loss function determined by 3 

the difference between the predicted value 𝑦𝑖̂ and the ground truth 𝑦𝑖, and the later 4 

term Ω(𝑓𝑘) indicates the regularization parameters as Eq. (4): 5 

 Ω(𝑓) = 𝛾𝑇 +
1

2
𝜆‖𝜔𝑖‖

2 (4) 6 

Here 𝛾 penalizes the number of leave nodes of the tree T to avoid over-fitting, 𝜔 7 

represents the score of the i-th leaf, and 𝜆 is a regularization parameter of each leaf to 8 

keep the variances of leaf weights at a low level. For a fixed structure q(x), we can 9 

compute the optimal solution 𝜔𝑗
∗of leaf j by Eq. (5), and simplify the objective function 10 

by Eq. (6). 11 

 𝜔𝑗
∗ = −

𝐺𝑗

𝐻𝑖+𝜆
 𝛾𝑇 (5) 12 

 𝑂𝑏𝑗̃ (𝑡)(𝑞) = −
1

2
∑

𝐺𝑗
2

𝐻𝑗+𝜆
+𝑇

𝑗=1  𝛾𝑇 (6) 13 

3.2.2 Interpretation of machine learning: SHapley Addictive exPlanations 14 

To interpret the XGBoost models in this study, we applied the Shapley Additive 15 

exPlanations (SHAP) technique, a sophisticated machine learning interpretation 16 

method proposed by Lundberg and Lee (2017). SHAP quantifies the contribution of 17 

each input variable within the XGBoost model. In contrast to global interpretation 18 

methods such as Partial Dependence Plots (PDP), SHAP provides a local interpretation 19 

technique that yields explanations at an individual instance level (Li, 2022). This 20 

capability facilitates the unveiling of local heterogeneities that may be obscured by 21 

issues of data sparsity or outlier effects, while SHAP merges global interpretations with 22 

local interpretations by leveraging the additivity attribute of Shapley values (Lundberg 23 

and Lee, 2017). This approach becomes particularly advantageous when the research 24 
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goal is to probe more deeply into the complex relationships between dependent and 1 

independent variables. 2 

SHAP is a consistent feature attribution method using a linear formula combined 3 

with the sum of variable effects and an intercept as the approximation of the prediction 4 

as Eq. (7): 5 

 𝑓(𝑥) = 𝑔(𝑥′) = 𝜙0 + ∑ 𝜙𝑖𝑥′𝑖
𝑀
𝑖=1  (7) 6 

SHAP enables us to interpret the resultant models globally and locally using the SHAP 7 

feature importance (Li, 2022). Here 𝑓(𝑥) represents the original model for a specific 8 

input x, and 𝑔(𝑥′)  represents the explanation model matching 𝑓(𝑥) . Feature 9 

attributions are indicated by the Shapley values 𝜙𝑖, defined as a weighted average of 10 

all possible differences: 11 

 𝜙𝑖 = ∑
|𝑆|!(|𝐹|−|𝑆|−1)!

|𝐹|!
[𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆)]𝑆⊆𝐹\{𝑖}  (8) 12 

Take the importance value to feature i, which is allocated based on its marginal 13 

contribution. Model 𝑓𝑆∪{𝑖} is trained with the feature presentation, while the model 𝑓𝑆 14 

is trained with the feature withheld. Since the effect of withholding a feature depends 15 

on other features in the model, the preceding differences are computed for all possible 16 

subsets 𝑆 ⊆ 𝐹\{𝑖}, as shown in Eq. (8). 17 

The Shapley value, symbolized as 𝜑𝑖 for a specific feature i can hold positive, 18 

negative, or zero. These indicate whether the feature enhances, reduces, or leaves the 19 

prediction unchanged relative to the average prediction. To illustrate, a positive SHAP 20 

value (𝜑𝑖   0) implies that the presence of feature i elevates the prediction for the 21 

specific instance against the average prediction, suggesting a positive contribution 22 

towards the anticipated outcome. 23 

To obtain the optimal parameter settings and avoid the overfitting problem, a five-24 

fold cross-validation procedure was used to train the XGBoost models. This study sets 25 
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different numbers of trees (5000, 10000, 15000, 20000, 25000), with depth (4, 5, 6, 8, 1 

9) and the shrinkage parameter (0.001, 0.05, 0.01, 0.1). After iterations, the best 2 

performance with the lowest mean absolute error (MAE), root means square error 3 

(RMSE), and R2 were obtained when the number of trees, depth, and shrinkage were 4 

set as parameters in Table 2. 5 

Table 2. Hyper-parameters for the XGBoost models. 6 

 300 m 600 m 800 m 1000 m 

n_estimators 15000 15000 15000 15000 

learning_rate 0.001 0.001 0.001 0.001 

max_depth 9 4 9 5 

Training set 

training_sample 307 (90%) 307 (90%) 307 (90%) 307 (90%) 

R2 0.99 1.00 0.99 0.99 

MAE 4686.0 3541.5 3839.0 4184.5 

RMSE 7475.7 5761.8 6504.4 7250.5 

Testing set 

testing_sample 34 (10%) 34 (10%) 34 (10%) 34 (10%) 

R2 0.78 0.90 0.85 0.80 

MAE 10638.4 8171.7 9084.5 10134.3 

RMSE 16172.7 10805.4 12711.0 14975.7 

 7 

4. Results 8 

4.1 Performance of the XGBoost models 9 

We compared the R2, MAE, and RMSE between conventional OLS models and the 10 

XGBoost model within four different buffers (see Table 3). Firstly, across all buffer 11 

sizes, the XGBoost models outperformed the OLS regression models. The XGBoost 12 

models improved the R² from 0.10 to 0.19, decreased the MAE from 2355.1 to 2723.5, 13 

and reduced the RMSE from 319.9 to 2472.2. These results align with our expectations. 14 

By easing the linearity assumption, XGBoost can model intricate, non-linear 15 
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relationships between the dependent and independent variables. In addition, XGBoost 1 

is more robust to outliers and has an innate ability to handle missing values without the 2 

need for explicit imputation or removal, thereby enhancing the model's predictive 3 

power. 4 

Second, when compared to the XGBoost model, the variance in performance of the 5 

OLS models across the four buffer sizes was relatively minor, with the largest R² 6 

interval being approximately 0.05. This finding aligns with Guerra et al. (2012), which 7 

posited that variations in catchment areas have a limited effect on a model's predictive 8 

power. Nevertheless, the XGBoost model demonstrated a different trend, where 9 

different buffer sizes indeed influence the model's predictive power, with the largest R² 10 

interval reaching 0.12. The widening difference across various catchment areas may be 11 

attributed to the mechanisms intrinsic to machine learning models. The XGBoost 12 

models are adept at detecting subtle nuances relationship between the built environment 13 

and metro station, resulting in increased disparities among models of varying buffer 14 

sizes. This may elucidate the findings of Jun et al. (2015), who discovered that the 15 

impact of the built environment on metro ridership significantly varies by PCA by using 16 

the MGWR model in conjunction with a finer-grained built environment dataset. 17 

Third, both the OLS and XGBoost models across the four buffer models 18 

accentuated that the model incorporating a 600 m buffer size boasts superior predictive 19 

power compared to models that use other buffer sizes. This observation makes a 20 

compelling case for selecting a 600 m buffer as the recommended choice for predicting 21 

station-area metro ridership and station-area surrounding developments. The results 22 

align with Jun et al. (2015), which is understandable considering that a 600 m distance 23 

typically equates to a walkable distance within 10 minutes from a metro station, and a 24 

600 m span roughly corresponds to the size of one or two street blocks in Shanghai, 25 
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which is a typical size that suits a property development. Furthermore, this superiority 1 

of the 600 m spatial scale finds corroborative support in the work of Jiang et al. (2020), 2 

which revealed pronounced positive external effects on surrounding property prices 3 

within a distance of approximately 600 m in Shanghai. This suggests that the enhanced 4 

accessibility provided by the proximity to a metro station within this 600 m zone is 5 

factored into the housing prices, reflecting its perceived value to residents and investors. 6 

Table 3. Performance of the XGBoost model and comparison. 7 

 300 m 600 m 800 m 1000 m 

 OLS XGBoost OLS XGBoost OLS XGBoost OLS XGBoost 

R2 0.68 0.78 0.71 0.90 0.68 0.85 0.66 0.80 

MAE 13190.3 10638.4 10671.9 8171.7 11439.6 9084.5 12857.8 10134.3 

RMSE 16492.6 16172.7 13277.6 10805.4 14079.7 12711.0 16455.4 14975.7 

 8 

4.2 The relative importance of independent variables 9 

The study further compared the relative importance and rankings of independent 10 

variables among four different buffer size models, the results show that buffer size 11 

indeed has a significant effect on the relationship between the built environment and 12 

metro ridership. 13 

The collective contributions of the built environment and station characteristic 14 

factors vary across different buffer sizes (see Table 4). For example, the collective 15 

contribution rate of built environment factors stands at 53.1%, 56.9%, 50.9%, and 40.4% 16 

for the 300 m, 600 m, 800 m, and 1000 m buffer models, respectively. In contrast, 17 

station characteristics demonstrate a continuously increasing contribution rate: 46.9%, 18 

43.1%, 49.1%, and 59.6% for the 300 m, 600 m, 800 m, and 1000 m buffer models, 19 

respectively. The results provide two insights. First, station characteristic variables, 20 

frequently overlooked in the literature, indeed play a pivotal role in influencing metro 21 

ridership, especially for the number of lines and entrances as well as station age, which 22 
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construct a basic and direct way to capture metro ridership from surrounding areas. In 1 

contrast, the effect of single built environment variables on metro ridership is margin, 2 

but “the combined effect of several built environmental variables on travel could be 3 

quite large” (Ewing and Cervero, 2010: 275). Second, the results suggest that the 4 

influences of the built environment are highly interactive with proximity to the metro 5 

station, with the maximum influence exerted within a 600 m catchment area, which is 6 

interestingly consistent with the findings in the predictive performance of the model 7 

across different buffers. This not only further underscores the reason for the superior 8 

model performance when incorporating a 600 m buffer but also advocates for urban 9 

designers and planners to prioritize this 600 m catchment area surrounding the station 10 

to maximize the effectiveness of built environment-related interventions. 11 

Table 4. The XGBoost model results. 12 

 300 m 600 m 800 m 1000 m 

 Rank RI Rank RI Rank RI Rank RI 

Built environment variables 

Population 

density 
14 2.5% 13 3.0% 15 2.4% 12 2.7% 

Employment 

density 
6 6.4% 6 4.7% 8 3.9% 7 5.0% 

Commercial 

land use 
3 14.7% 2 19.6% 3 15.5% 6 5.2% 

Business land 

use 
12 2.9% 7 3.9% 5 5.5% 4 5.6% 

Public land use 15 2.1% 15 2.8% 14 2.5% 13 2.1% 

Residential 

land use 
13 2.9% 10 3.4% 10 2.8% 12 3.4% 

Land use 

diversity 
8 3.7% 8 3.6% 13 2.6% 14 2.1% 

FAR 5 6.7% 5 5.7% 6 4.6% 10 3.1% 

Distance to the 

city centre 
11 3.4% 12 3.2% 9 3.9% 8 3.5% 

Street density 9 3.7% 11 3.4% 7 4.4% 5 5.6% 

Bus stops 7 4.1% 9 3.6% 11 2.8% 15 2.0% 
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Sum  53.1%  56.9%  50.9%  40.4% 

Station characteristic variables 

Lines 2 15.2% 3 11.1% 1 22.4% 1 29.8% 

Entrances 1 21.1% 1 21.6% 2 17.1% 2 19.5% 

Station age 4 7.0% 4 7.4% 4 7.0% 3 7.4% 

Betweenness 

centrality 
10 3.6% 14 2.9% 12 2.6% 11 2.9% 

Sum  46.9%  43.1%  49.1%  59.6% 

*RI: Related Importance 1 

The ranking of individual built environment factors display heterogeneous and 2 

inconsistent results across different buffer sizes (see Fig. 3). Although the most 3 

impactful features generally maintain a consistent rank across various buffer size 4 

models, the ranks of less influential variables fluctuate significantly. For example, the 5 

number of entrances appears to hold significant importance, ranking first in the 300 m 6 

and 600 m models, and second in the 800 m and 1000 m models. Conversely, business 7 

land use demonstrates a progressive increase in importance, ranking 12th in the 300 m 8 

model, 7th in the 600 m model, 5th in the 800 m model, and 4th in the 1000 m model. 9 

A plausible explanation could be that highly important variables account for the 10 

majority of variance in metro ridership, thus exerting a larger influence on prediction 11 

outcomes. Less influential variables, on the other hand, may owe their reduced 12 

importance to weak intrinsic correlations, multicollinearity, or inherent noise, rendering 13 

them less critical for accurate predictions and more prone to substitution by other 14 

intervening factors (Hu et al., 2023). 15 

Specifically, the findings indicate that commercial land use, FAR, and land use 16 

diversity, which are often recommended for enhancing TOD, demonstrate similar 17 

effects on metro ridership within a 600 m radius. However, their influence on metro 18 

ridership decreases dramatically as the buffer size exceeds 600 m. This suggests the 19 

importance of proximity to the metro stations in leveraging these TOD-favorable factors 20 
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for TOD, which follows the principles of agglomeration economies. Conversely, the 1 

significance of business land use and street density escalates as the buffer size broadens. 2 

As Kwan (2012) propounds, different land use variables have their different "truly 3 

causally relevant" area where the environment influences travel behaviour. Our findings 4 

affirm this proposition and further uncover that the benefits of proximity to the metro 5 

station for business land use may be less potent or competitive compared to other land 6 

uses (e.g., commercial land use). Meanwhile, the positive implications of spatial 7 

connectivity, anchored on the street network, are more evident at larger scales. 8 

 9 

Fig. 3. Buffer effect on the results of the ranks of independent variables. 10 

4.3 Nonlinear effect of independent variables 11 

The influence of different buffer sizes on the SHAP value plots for all variables 12 

was also examined to ascertain whether these sizes significantly impact the nonlinear 13 

relationship between the built environment and metro ridership. 14 
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Fig. 4 illustrates the SHAP plots for population density and employment density 1 

across four buffer scales. For population density, the SHAP plots show an inverse U-2 

shaped relationship between population density and metro ridership from 0 to 30 3 

thousand people/km2. Once it exceeds that threshold, the relationship once again turns 4 

positive, albeit somewhat dispersed, and this pattern is consistent across all four buffer 5 

size models. Given the minor variations in population across the different buffer zones, 6 

this outcome appears reasonable. For employment density, the SHAP plots reveal a less 7 

consistent nonlinear relationship across the four buffer sizes. In the 300 m and 600 m 8 

models, these plots depict an inverse V-shaped relationship between employment 9 

density and metro ridership. However, the adverse influence of employment density on 10 

metro ridership weakens considerably in the 800 m and 1000 m models. This 11 

discrepancy can potentially be ascribed to the variance in employment density across 12 

different buffers (see Table 1), which becomes less pronounced as the spatial scale of 13 

analysis expands. 14 

 15 

Fig. 4. The SHAP value plots of population and employment density. 16 

Fig. 5 illustrates the SHAP plots for various land uses across four buffer scales, 17 

revealing that buffer size substantially impacts the nonlinear relationship between land 18 

uses and metro ridership. Despite being measured in counts instead of density, land uses 19 
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exhibit significant fluctuations among the four distinct buffer sizes. Take commercial 1 

land use as an example. In the 300 m, 600 m, and 800 m models, the curve is relatively 2 

steep, but once the value exceeds 100 in the 1000 m model, the curve markedly flattens. 3 

This trend suggests that the positive influence of commercial land use on metro 4 

ridership diminishes as the distance from the metro station increases. This observation 5 

is consistent with the findings detailed in Table 2 and Fig. 3. Similar variations can also 6 

be observed for other land use types. These findings further attest to the existence of 7 

the "uncertain geographic context problem" within the station catchment area (Kwan, 8 

2012), even this area is on a comparatively smaller spatial scale. 9 

 10 

Fig. 5. The SHAP value plots of land use variables. 11 

Fig. 6 illustrates the SHAP plots for diversity, design, and destination accessibility 12 
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variables. In contrast to land use variables, metrics such as land use diversity, FAR, and 1 

street density are quantified in densities terms rather than counts. Results reveal that the 2 

buffer size exerts varying degrees of influence on the relationship between the built 3 

environment and metro station ridership. For example, the effect of street density on 4 

metro ridership within the 300 m and 600 m buffer models is relatively consistent, as 5 

evidenced by flatter curves. However, within the 600 m and 1000 m models, the curves 6 

for the street network become fluctuating and ascend upwards. A plausible explanation 7 

could be that smaller buffer sizes fail to encapsulate comprehensive information on the 8 

street network required to act as a proxy for spatial connectivity. This discrepancy could 9 

account for the contrasting findings in the literature, with some studies associating a 10 

positive relationship between the street network and metro stations (Shao et al., 2020), 11 

while others did not observe such a correlation (An et al., 2019). The SHAP plots for 12 

bus stops and distance to CBD also confirm that the buffer size may affect their nuanced 13 

correlations with metro ridership. 14 
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 1 

Fig. 6. The SHAP value plots of diversity, design, and destination accessibility variables. 2 

Fig. 7 illustrates the SHAP plots for station characteristic variables. Contrary to 3 

built environment variables, these plots indicate that the buffer size does not 4 

significantly impact the correlations with metro ridership. This observation is justified 5 

for two possible reasons. First, the values of station characteristic variables remain 6 

consistent across different buffer sizes. This uniformity prevents the introduction of 7 

inconsistent values of independent variables into the analysis, thereby eliminating 8 

potential skewness in the results. Second, from a theoretical perspective, the influence 9 
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mechanism of station characteristic variables is expected to remain independent of the 1 

analytical spatial scale. This is because these variables inherently pertain to the 2 

characteristics of the station itself, and are not influenced by the spatial scale of the 3 

surrounding environment. Consequently, the scale of analysis does not distort their 4 

correlations with metro ridership. 5 

 6 

Fig. 7. The SHAP value plots of station characteristics variables. 7 

5. Conclusions 8 

Using smart card data from Shanghai, this study applied the XGBoost and SHAP 9 

methods to conduct a sensitivity analysis defining built environment factors within four 10 

radial buffer sizes: 300 m, 600 m, 800 m, and 1000 m on associations with metro 11 

ridership. The findings contribute to the literature threefold. First, it compares the model 12 
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predictive performance of the OLS models and XGBoost models across four different 1 

buffers, results show that different buffer sizes have little influence on the OLS model, 2 

but significant on the XGBoost model, while the use of a 600 m buffer size around the 3 

metro station demonstrates the best model fit and variation explanation for both models 4 

compared to other buffers. The results align with Guerra et al. (2012) findings, which 5 

indicate that the influence of varying catchment areas on a model's predictive power is 6 

minimal. However, we argue that this conclusion might be limited to the OLS model. 7 

By incorporating spatial autocorrelation and nonlinear effects into the model, it appears 8 

that changing buffer sizes have a negligible impact on the relationship between built 9 

environment variables and metro ridership. Besides, results from the OLS and XGBoost 10 

models support the use of a 600 m buffer size for forecasting metro ridership or for 11 

proposing station-area land use interventions. Despite the variability of these thresholds 12 

in case studies across the globe, this study introduces an evidence-based approach for 13 

setting the suitable analytical scale in related analyses. This is of particular importance 14 

given the prevalent tendency in current research and practice to determine the analytical 15 

buffer size somewhat indiscriminately. 16 

Second, the variability in relative importance and rankings of built environment 17 

variables and station characteristic variables across the four buffer models demonstrates 18 

that different variables possess their own "true causally relevant" areas where the 19 

environment has a significant impact on metro ridership (Kwan, 2012). For example, 20 

results imply that commercial land use, FAR, and land use diversity, three TOD-21 

favourable factors, exert a stronger influence on metro ridership the closer they are to 22 

the metro station. In contrast, the significance of business land use and street density 23 

grows as the buffer size expands. These findings could potentially explain the 24 

inconsistent empirical results reported in existing literature, while the sensitivity 25 



36 

 

analyses offer new insight into the ways and degree to which built environment 1 

variables influence metro ridership across different geographic delineations of 2 

contextual units. 3 

Third, this study further examined how the choice of buffer influences nonlinear 4 

correlations between variables and metro ridership. The findings reveal a notable 5 

heterogeneity among the selected independent variables. The nonlinear effects of built 6 

environment variables, most notably employment density, commercial land use, FAR, 7 

street density, and bus stops, show significant sensitivity to the choice of analytical 8 

buffers. This sensitivity could potentially be attributed to two factors. One is the 9 

different "true causally relevant" areas wherein each variable exerts its influence on 10 

metro ridership. The other is the variation in the spatial distribution of variables within 11 

different buffers. These results corroborate the results of different rankings of 12 

independent variables among the different buffers. In sum, the findings underscore the 13 

need for researchers to be meticulous when defining the analytical spatial area in their 14 

studies. This caution is particularly essential when employing more sophisticated 15 

machine learning methodologies. 16 

Some elements need to be further investigated. First, the buffers in this study were 17 

calculated by a radical buffer method. The advantage of this method is that it is easy to 18 

calculate and understand, but it may not be the best representation of pedestrian 19 

catchment areas in reality. Other methods such as line-based buffer or time-based buffer 20 

might gain more interesting results. Second, the study was undertaken in Shanghai, a 21 

megacity with a complex and distinctive urban context and travel behaviour, therefore, 22 

the results of this study may be specific to Shanghai, and future research should explore 23 

additional cases and compare variations among cities to draw more generalized 24 

conclusions. 25 
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