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5 Supplementary Methods

5.1 Learning to cluster residues via embedding affinity

The goal of domain segmentation is to assign to each residue ri, a label ki, which allows residues belonging to the same
domain to be grouped via label k. A property of label k is that it is in a quotient space, that is, the exact value of index
k is not important and all labels are equivalent, so long as residues belonging to the same domain end up sharing the
same label [1, 2]. Forcing a domain to use a particular label increases the difficulty of the segmentation task, as similar
domains may inadvertently have conflicting labels. Several methods have been devised to encourage label-agnostic
assignment, one of which is to use an index-invariant learning objective such as via affinity learning [1]. Under this
learning regime, and in the context of protein domain segmentation, the embeddings of residues belonging to the same
domain are encouraged to be similar to one another when measured by a metric such as cosine similarity, and different
when part of different domains [2, 3]. Calculating the pairwise similarity (i.e. affinity) between all pairs of positions,
yields an affinity map, A, of shape [N,N ] (where N is the length of the protein). The ground truth domain arrangement
can also be represented by [N,N ] domain map R which can be constructed given pairs of residues ri and rj as,

Rij =

{
1, if ri, rj belong to the same domain
0, otherwise

(1)

During training, the goal of the network is to minimise the difference between objective R and the predicted map
A, by maximising or minimising the similarity of residue embeddings such that Aij ≈ Rij . Residues with similar
embeddings will naturally produce similar probability distributions and by extension, result in the same domain indices
being assigned, thus allowing residues to be clustered into domains in a label-agnostic manner.

5.2 Loss functions

The loss of positive and negative residue pairs (where Rij is equal to 1 and 0, respectively; Equation 1), can be
calculated as,

L+
ij = 1− Sij (2)

L−
ij = Sij (3)

where Sij is the cosine similarity between the embeddings of residues ri and rj . To guide affinity map A towards
domain map R, we calculate the overall loss of a single input protein using a balanced squared-affinity (BSA) loss,
formulated as,

LBSA = L+2 + L−2 (4)

The equal contributions of L+ and L− terms attempt to balance the push and pull forces on the embeddings which
leads to faster convergence, while squared terms emphasise the loss when deviations between Aij and Rij are large.
The loss of each minibatch is calculated as the sum of four components,

Ltotal = β1 · LIPA,BSA + β2 · Ldecoder,BSA

+Lbg,CE + Lconf,MSE
(5)

where LIPA,BSA and Ldecoder,BSA correspond to the BSA loss applied to the post-IPA single representation of
shape [N, 512] and post-decoder domain mask tensor of shape [N, k] and β1 and β2 are their respective weights (a
hyperparameter set to 1 during initial training and 2 during fine-tuning). Lbg,CE is a cross-entropy loss term applied to
the non-domain residue predictions of shape [N, 2]. Lconf,MSE is the mean squared error (MSE) loss applied to the
confidence score predictions and is trained to return values close to 1 when a residue is assigned to the correct domain,
and 0 otherwise.
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5.3 Evaluation Metrics

5.3.1 Domain pairing

As our network is trained in a label-agnostic manner, the predicted domain indices may not match the ground truth
values. Hence, the first exercise is to determine the correspondence between the ground truth and predicted domains
(Algorithm 1). The domain pairing is determined from the ground truth domain labels kgt, and the predicted domain
labels kpr, both of which are vectors of length N , where N is the number of residues in the input protein. Each element
kx,i (where x is gt or pr) describes the ground truth and predicted domain index of residue i. The unique set of non-zero
labels in kgt and kpr are given by Kgt and Kpr, and the number of domains in each, given by |Kgt| and |Kpr|. Note
that |Kpr| may not necessarily be equal to |Kgt|.
For each ground truth domain g in Kgt, we isolate all residue indices belonging to domain g, and determine p, the
non-zero modal value of kpr at these residue positions (by taking the mode of the array values). If p is not already
assigned to a ground truth domain, g and p are paired domain indices. This procedure maximises the overlap between a
predicted domain to its corresponding ground truth. From this pairing, we calculate the binary arrays domain_g and
domain_p of length N , which contain 1 where a residue is in domains g and p respectively, and 0 at all other positions.
The IoU and MCC scores are calculated from these arrays. If g cannot be matched to a value of p, which can occur for
example, when |Kpr| < |Kgt|, no predicted domain index can be paired, and a score of 0 is given. For each ground
truth domain, we record the domain-level IoU, MCC and the length of domain g. The final IoU and MCC scores W are
given by taking the domain-length weighted average of the per-domain scores (Equation 6):

W =

∑
i=1 wi, Ji∑
i=1 wi

(6)

Where w represents an array of domain lengths and J represents the unweighted per-domain scores (either IoU or
MCC).

5.3.2 Intersect-over-union

The IoU measures the degree of overlap between a predicted domain segment and its equivalent ground truth, where
a score of 1 indicates that the two segments perfectly overlap, and 0 indicates no overlap. The overlap between two
segments can be treated as a binary prediction task which allows the equation,

IoU =
TP

TP + FP + FN
, ∈ [0, 1] (7)

where TP (true positives) are the number of overlapping residues between the two segments, FP (false positives) is the 
number of residues in the predicted domain that are not in the ground truth, and FN (false negatives) are the number of 
residues in the ground truth that are not in the predicted segment.

5.3.3 Matthews Correlation Coefficient

The IoU is useful for evaluating how well a true domain is represented by a predicted domain, however, does little 
to quantify the exact boundary positions. For the latter, we use an MCC score applied directly to the boundaries of 
each domain (Equation 8). A predicted boundary is deemed correct if it lies within a range of ±m residues from an 
actual boundary. For our assessment, we set the value of m to 20 residues. This choice prevents an excessive penalty on 
boundaries that may be slightly less precise, particularly when the broader topology of the domain assignment remains 
similar. For all paired ground truth and predicted domains, we take the expected and predicted boundary indices and 
use a linear sum assignment algorithm to obtain an optimal 1:1 pairing between the two, while respecting ±m.

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
, ∈ [−1, 1] (8)

where TP and FN is the number of paired and unpaired ground truth boundaries, FP is the number of unpaired predicted
boundaries, and TN are all other residue positions.

5.3.4 Domain count

The deviation between the expected |Kgt| and predicted number of domains |Kpr| in a single target can be quantified
by calculating the absolute error between them. Averaging across a set of targets {X}, provides the mean absolute error
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Algorithm 1 Domain Pairing Algorithm

1: function DOMAINPAIRING(kpr,kgt) ▷ kpr,kgt ∈ ZN

2: # Get the unique domain indices in Kgt and Kpr

3: Kgt ← unique(nonzero(kgt)) ▷ Ground truth domain indices, Kgt = {g1, g2, . . . , gG}
4: Kpr ← unique(nonzero(kpr)) ▷ Predicted domain indices, Kpr = {p1, p2, . . . , pP }

5: G← |Kgt| ▷ No. ground truth domains
6: P ← |Kpr| ▷ No. predicted domains

7: # Iterate over each ground truth domain index g in Kgt

8: used, domain_lengths, all_iou, all_mcc← list(), list(), list(), list()

9: for g in Kgt do
10: domain_g← int(kgt = g) ▷ Get mask for domain g, {0, 1}N
11: nres_domain← sum(domain_g) ▷ Get length of domain

12: p← mode(nonzero(kpr[domain_g])) ▷ Apply mask to kpr and get modal value of p

13: if p /∈ used and p ̸= 0 then
14: used← append(p) ▷ Keep track of already assigned values of p
15: domain_p← int(kpr = p) ▷ Get mask for domain p, {0, 1}N

16: domain_iou← calculate_iou(domain_g, domain_p) ▷ Equation 7
17: domain_mcc← calculate_mcc(domain_g, domain_p) ▷ Equation 8
18: else
19: # Assign scores of 0 if no value of p can be assigned
20: domain_iou← 0

21: domain_mcc← 0

22: domain_lengths← append(nres_domain)
23: all_iou← append(domain_iou)
24: all_mcc← append(domain_mcc)

25: # Calculate the domain-length weighted average scores
26: iou← get_length_weighted_average(all_iou, domain_lengths) ▷ Equation 6
27: mcc← get_length_weighted_average(all_mcc, domain_lengths) ▷ Equation 6

28: return iou,mcc
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(MAE) metric which summarises the average deviation of the predicted domain count against the ground truth and is
given by,

MAE =
1

|{X}|
∑
j=1

||Kpr,j | − |Kgt,j ||, ∈ [0,∞] (9)
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Supplementary Table 1: Training and test set statistics.
Training % of total Testing % of total Total

No. Components 537 82.0 118 18.0 655
of which contain a single superfamily 62 83.8 12 16.2 74
of which contain >1 superfamily 475 81.8 106 18.2 581

No. Topologies 974 86.0 158 14.0 1132
No. Superfamilies 3587 92.4 293 7.6 3880
No. Domains 43214 96.0 1780 4.0 44994
No. Chains 18231 96.2 725 3.8 18956

Redundant chains (seqid > 0.99) 944 93.8 62 6.2 1006
Final No. Chains 17287 96.3 663 3.7 17950
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Supplementary Figure 1: CATH superfamily graph. The graph is composed of 3880 nodes across 655 components
(i.e. sub-graphs) where each node represents a CATH superfamily. Two nodes are connected when a PDB chain
containing domains from both superfamilies can be found. The 10 most connected superfamilies are highlighted by
labels A-J. A summary of each hub superfamily is shown in the legend at the bottom of the figure. Blue and red
components represent those assigned to either the training or test set. The lack of components sharing both green and
red nodes indicates that both sets do not overlap at the superfamily level. Additional training and testing set statistics
are reported in Supp. Table 1.
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Supplementary Figure 2: Training and test set statistics. a) Chain lengths and domain count distributions for
targets in the training and test sets. Bins with very few members are labelled with the bin count for clarity. b) Chain
length distributions delimited by domain count for i) training and ii) test sets. The bar within each box represents the
distribution median. Outliers are defined as chains with a length exceeding 1.5xIQR. The two targets in the training set
with a domain count of 1 result from holding pen domains being removed from multi-domain chains.
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Supplementary Figure 3: Examples of targets where Merizo agrees with ECOD but not CATH. The i) CATH
domain map and structure, ii) Merizo-predicted domain map and iii) ECOD domain map and structure are shown for
two sets of multidomain targets from the CATH-663 set. Set (a) contains the subunit structures of Protochlorophyllide
Oxidoreductase (2xdqA and 2xdqB) and precursor-bound NifEN (3pdiA and 3pdiB). All four chains are classified as
three domains by ECOD and Merizo but vary in domain assignment by CATH despite having similar structures. The
grey box highlights a region of three helices which differ in assignment in each chain. In example (b), the assignment
of the C-terminal domain in human fibrinogen (3ghgB and 3ghgC) differs in CATH despite having only a 0.77Å RMSD
difference (only residues highlighted by the grey box are aligned). Domain assignments by Merizo and ECOD are
mostly identical with the exception of Merizo classifying a portion of the N-terminal tail as a separate domain.
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Supplementary Figure 4: Examples of domain assignments from Merizo before and after finetuning. Panel a)
and b) correspond to the same models as shown in Figure 3d. In each example, the segmentation result after (left) and
before (right) finetuning on NDRs is shown. Asterisks (*) highlight areas where domain assignments have been made
to NDR regions. Domains have been demarcated using contrasting colours.
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Supplementary Figure 5: Domain assignments by UniDoc before and after plDDT filtering. a) Example models
and UniDoc assignments for i) AF-Q5VTH9-F1-model_v4, ii) AF-Q53SF7-F1-model_v4 and iii) AF-O60732-F1-
model_v4. Left column shows the UniDoc assignment for the full chain model. Centre column shows the UniDoc
assignment on the same structure, after a residue plDDT of 60 is applied (residues with a plDDT of less than 60 are
removed). Right column shows the UniDoc assignment at a plDDT threshold of 70. Domains are shown in distinct
colours and demarcated using letters A-D. b) Examples of domain damage by applying a plDDT threshold of 60. Some
residues are omitted in b) for clarity.
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Supplementary Figure 6: Determining an optimal pIoU threshold Precision-recall curve showing the precision,
recall and F1-score obtained when using the pIoU as a binary measure of domain assignment quality. The highest
F1-score obtained is from using a pIoU cutoff of 0.75. Domains with a pIoU of 0.75 or greater are likely true positives,
while those below this value are likely false positives.
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Supplementary Figure 7: Examples of folds identified in the AFDB-human set not matched to CATH representa-
tive domains. In each panel a-f, the full AFDB model as well as the non-CATH-matched domain is shown. Models
shown are the cluster representatives of the subset of domains identified in the AFDB-human set that cannot be aligned
to a CATH S40 representative domain based on the SSAP score. The cluster size as well as the lowest domain plddt
(average plDDT across the domain) is shown for each example.
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Supplementary Figure 8: Number of domains putatively assigned to CATH topologies in the AFDB-human set.
The 10 most abundant CATH topologies identified in each CATH class are shown. Data encompasses 34,564 domains
that could be matched to CATH S40 representative domains with a SSAP score of at least 70, indicating topology-level
similarity.
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Supplementary Figure 9: Examples of CATH and ECOD domain annotations for multi-domain proteins with
domain boundaries on secondary structure elements. Four examples are shown where in each case, the CATH
domain boundary assignment is within a secondary structure element (red box). In c) both CATH and ECOD assign a
boundary to the middle of a long helix which runs adjacent to the two domains. Domain boundary assignments by
UniDoc are restricted to residues not part of secondary structure elements, while Merizo does not have this restriction.
In examples b and d, UniDoc assigns the boundary to the end of the nearest β-strand, while the assignment by Merizo
is more precise and is made to the strands themselves.
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Supplementary Figure 10: Examples of SCOPe domain annotations and assignments by Merizo and UniDoc.
a) Examples of SCOPe domain boundaries which are part of secondary structure elements. The domain boundary is
highlighted by a green box in each example. The inset in panel ii), highlights an internal chain break in the structure
proceeding the boundary SSE. b) The domain assignment of calmodulin from SCOPe, Merizo and UniDoc. In all
examples shown, domains are coloured in distinct colours and NDRs are shown in white.
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Supplementary Figure 11: Comparison of runtimes for the AFDB-27 set The model lengths of the AFDB-human
set were divided into 100-residue bins (27 in total) and one model was selected from each bin at random, to form a
set of 27 models encompassing the full range of AFDB model lengths. Each method was timed on how long it took
to segment models. Merizo timings were conducted on either a single GPU (NVIDIA GTX 1080Ti with 11GB of
memory) or a single CPU (Intel Xeon E5-1620 v3 @ 3.50GHz). Line functions of the form y = bxk were fit to each set
of data points with the exception of UniDoc data which was fit to an exponential function. Note that 6 of the longest
models were not processed by Merizo (GPU) due to memory limitations.
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Supplementary Figure 12: Segmentation maps for CASP15 multi-domain targets. i) Domain classifications as
provided by CASP organisers (left) vs ii) Merizo predictions, are shown for three multidomain targets T1120, T1121
and T1170. Targets T1121 and T1170 are annotated as two-domain proteins in CASP15 but are predicted as three
domains by Merizo.
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