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ARTICLE INFO ABSTRACT

Keywords: With the escalating requirement for global sustainable energy solutions and the complexities linked with the
Artificial neural network complete transition to new technologies, internal combustion engines (ICEs) powered with biofuels like ethanol
Prediction are gaining significance over time. However, problems linked to the performance and emissions of such ICEs
g‘:g;?zszﬁs:;face methodology necessitate accurate prediction and optimization. The study employed the integration of artificial neural net-

Alcoholic fuel works (ANN) and multi-level historical design of response surface methodology (RSM) to address these chal-

SDG lenges in alignment with the Sustainable Development Goals (SDGs). A single-cylinder spark ignition (SI) engine
powered with ethanol-gasoline blends at different loads and speeds was used to gather data. Among six initially
trained ANN models, the most efficient model with a regression coefficient (RZ) of 0.9952 (training), 0.98579
(validation), 0.98847 (testing), and 0.99307 (overall) was employed to predict outputs such as brake power,
brake specific fuel consumption (BSFC), brake thermal energy (BTE), concentration of carbon dioxide (CO3),
carbon monoxide (CO), hydrocarbons (HC), and oxides of nitrogen NOx. Predicted outputs were optimized by
incorporating RSM. On implementing optimized conditions, it was observed that BP and BTE increased by
19.9%, and 29.8%, respectively. Additionally, CO, and HC emissions experienced substantial reductions of
28.1%, and 40.6%, respectively. This research can help engine producers and researchers make refined decisions
and achieve improved performance and emissions. The study directly supports SDG 7, SDG 9, SDG 12, SDG 13,
and SGD 17, which call for achieving affordable, clean energy, sustainable industrialization, responsible con-
sumption, and production, taking action on climate change, and partnership to advance the SDGs as a whole
respectively.

Introduction combustion engines (ICEs) are thought to provide solutions to these

problems [3-6]. Investigation of these alternative fuels directly pro-

It is estimated that by 2050, there will be 9.2 billion people on the
planet, with the transport industry potentially consuming over one-third
of the world’s energy and more than half of total oil production [1,2]. In
line with the issues addressed by the Sustainable Development Goals
(SDGs), this population upsurge and industrial expansion have resulted
in the unavoidable depletion of conventional fuels and increasing
threats to environmental sustainability, energy security, and economic
stability. Alternative fuels such as biofuels and hydrogen for internal
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motes SDGs 7 (Affordable and Clean Energy) and 13 (Climate Action),
which reinforce transitioning to sustainable and clean energy sources to
address climate change. SGD 7 highlights the significance of switching
from polluting and unsustainable energy sources to cleaner ones.
Additionally, it assists in establishing a balance between addressing the
urgent need to combat climate change, promoting economic growth,
and fulfilling energy demands. [7-9]. However, the complete transition
to new technologies encounters socio-technological obstacles and
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Table 1

Summary of researchers’ work exploring techniques on SI engine performance and emissions with biofuel mixtures.
Author Name and Reference Fuel Blend ANN RSM BP BSFC BTE (e(e] CO, HC NOy
Yiicesu et al. [22] Gasoline, Ethanol, and Methanol v v T l - - - - -
Simsek et al. [23] Gasoline, LPG, and Bio Gas - - 1 1 | | | )
Najafi et al. [24] Gasoline, and Ethanol v - 1 i 1 T 1 1
Uslu et al. [25] Gasoline and I-amyl Alcohol v v - T ) | - | 1
Barboza et al. [26] Gasoline hydrogen peroxide and ethanol v v - - T | T l l
Palani et al. [27] Gasoline, ethanol, n-butanol - v - 1 T 1 - 1 T
Yusri et al. [28] Gasoline and secondary butyl alcohol - v 1 i 1 1 1 1
Kaliyaperumal et al. [29] Gasoline and Gasohol/Hydrogen v - - T T | T 1 )
Yaman et al. [30] Gasoline and 1-heptanol - - 1 1 ) T | T

Solubility in water (ml/100 ml H,0)

Infinitely soluble

Table 2

E100 and EQ's characteristics.
Property Ethanol Gasoline
Chemical Formula C,HsOH CgHio
Composition (C, H, 0) mass% 52.17, 13.04, 34.78 87%, 13%, 0%
Calorific Value (MJ/kg) 26.7 46
Heat of evaporation (kJ/kg) 904 325
Stoichiometric A/F ratio 9.0 14.7
Oxygen content % mass 34.8% 0%
Density kg/m? 789 740
Flash Point (°C) 13 —43
Auto Ignition Temperature (°C) 420 270

Infinitely soluble

Table 3

Test engine facets.
Engine Parameter Value
Bore(mm) 68
Stroke (mm) 45
Displacement (cm®) 163
Compression ratio 8.5:1
Net power (kW/rpm) 3.6/3600
Fuel tank capacity (Liters) 3.1
Fuel consumption at constant rated power (Liter/hour) @ 3600 rpm 1.4
Engine Oil Capacity (Liters) 0.6

necessitates a significant investment. Hence, biofuel-powered internal
combustion engines (ICEs) are expected to remain noteworthy [10-12].
Nevertheless, optimizing their parameters to comply with emissions
regulations, ensure energy security, improve efficiency, and meet con-
sumer expectations poses multifaceted challenges. The SGD 9 (Industry,
Innovation, and Infrastructure) is aligned with these challenges, which
focuses on sustainable industrialization, innovation, and infrastructure
to empower environmental sustainability and economic growth
[13-15]. Traditional methods involving precise instruments and costly
experimentation are time-consuming. These issues are aligned with SDG
12 (Responsible Consumption and Production) [7,14,16]. Consequently,
the development of substitute solutions is a pressing need that supports
sustainable consumption and production practices. Computational
modeling techniques have been used to identify the relationships be-
tween operating parameters and accurately predict numerous charac-
teristics of internal combustion engines (ICEs), such as performance,
combustion, and emissions [17]. Among these techniques, artificial
neural networks (ANN) and response surface methodology (RSM) have
emerged as prominent techniques that make accurate predictions and
optimize by utilizing diverse input configurations, respectively [18-20].
Table 1 provides a summary of previous research conducted by various
scholars employing different techniques for this purpose. An ANN effi-
ciently handles numerical data with several variables that would be
challenging otherwise. In contrast to conventional techniques, a well-
trained neural network makes faster predictions, bypassing time-
consuming and complex mathematical problem-solving as well as the

need for expensive and complex physical and computer models [21].

The performance of SI engines utilizing ethanol-methanol blends was
determined by Kapusuz et al. [31]. The study shows that the mixture of
11% methanol and 1% ethanol by volume exhibited improved perfor-
mance, yielding regression coefficients within the range of 0.931-0.990.
Samet et al. [32] developed an ANN model to predict results for a diesel
engine fueled with a diethyl ether blend up to 10%, achieving regression
coefficients (R2) ranging from 0.964 to 0.9878 and mean relative error
(MRE) values ranging from 0.51% to 4.8%. Khandal et al. [33] examined
the performance of a diesel engine powered by a mixture of plastic py-
rolysis oil, diesel, and ethanol by employing the ANN model. The ANN
technique is also utilized by Shivakumar [34] to evaluate engine effi-
ciency and emissions. The performance of the butanol-gasoline based SI
engine was predicted by Liu et al. [35]. Moreover, Rezaei et al. [36],
conducted a study and established that the ANN model showcased faster
convergence and exceptional performance.

Table 1 showcases prior studies optimizing engines based on
experimental data, rather than utilizing predicted data. In the present
study, the ANN model efficiently predicted output values based on given
inputs. These input-predicted output pairs were then optimized using
the RSM technique. This integration significantly reduces the number of
experimental runs. In scenarios where new, unseen input data is
encountered, no longer a need to conduct expensive experiments to
obtain corresponding outputs. Instead, the well-trained ANN model
accurately predicts the required outputs and the RSM optimization
process delivers optimal operating conditions for the engine. The
research highlights how the ANN model’s architecture influences per-
formance. This methodology aids in identifying the most accurate and
robust model for predicting engine operations. By considering a broader
range of outputs, the research contributes to a more comprehensive
understanding of the engine’s operating parameters and opens new
possibilities for optimizing engine operations.

The contribution of this research to achieving multiple SDGs simul-
taneously and fostering a sustainable and resilient future for the planet
as a whole makes it distinctive. The integration of two cutting-edge
computational techniques (ANN and multi-level RSM) to predict and
optimize operations of the ethanol-powered engine offers a deeper
comprehension of the complex interactions between fuel blends, engine
performance, and environmental impact. This distinctive aspect of this
study opens up exciting possibilities for dropping experimental runs and
intricate mathematical modeling. The study represents a notable strive
for affordable and clean energy, sustainable industrialization, respon-
sible consumption and production, and climate action.

Materials and methods
This section presents the preparation of fuel blends, experimental

design for testing, ANN model development, and methods and defini-
tions for RSM-based optimization.

Formulation of fuel blends

In this study, ethanol was sourced from Shahmurad Ethanol Limited,
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Fig. 1. The layout of the test rig and experimental configuration.

Table 4
Comprehensive testing scheme.
Factors Description
Fuel EO, E3, E6, E9, E12, E15, E21
Loads 50% and 100%
Speed range 1300-3700 RPM (with an increase of 300 rpm)

Performance Parameters
Emission Parameters

Torque, BP, BSFC and BTE
CO,, CO, HC, NOx

Ambient Temperature 27C
Atmospheric Pressure 1 atm
Table 5

Specification of ANN models structures.

Specifications

Description

ANN-1HL-9 N, ANN-1HL-11, ANN-1HL-

15 N, ANN-2HL-9 N, ANN-2HL-11 N,
ANN-2HL-15 N
Training Algorithm
Epochs
In-Training Performance Plots
Post-training performance parameters
Data Distribution

Stopping Criteria

The digits designate the number of
hidden layers and neurons in the hidden
layer

Levenberg-Marquardt

100

Regression and error histograms

MRE, RMSE, and R?

70% Training, 15% (Testing) and 15%
(validation)

Minimization of mean square error

a principal ethanol producer in Pakistan, and gasoline was obtained
from Pakistan State Oil (PSO). Gasoline was marked as the reference for
all the blends. Table 2 outlines ethanol (E100) and gasoline (EO)
attributes.

The ethanol was added to gasoline at various concentrations of 0%,
3%, 6%, 9%, 12%, 15%, 18%, and 21% by volume, resulting in fuel
blends represented as E3, E6, E9, E12, E15, E18, and E21 respectively.
Blends were continuously stirred using a magnetic stirrer for 15 min to
ensure a fully homogeneous mixture of the fuels.

Experimental setup and testing plan

An air-cooled spark ignition (SI) engine with an overhead valve was
used during this study. Table 3 presents the qualifications of the test
engine.

For testing, the engine was connected through a mild steel shaft to a
7-inch Dynomite dynamometer, with a water-brake system. By utilizing
EMS-5002 analyzer, emissions were quantified. A 500-ml measuring
cylinder (0.5 ml grade) was used to measure fuel flow. The working fluid
was water for applying loads through the piping system. The experi-
mental setup schematic is illustrated in Fig. 1.

Data acquisition was accomplished using a system with signal con-
ditioning circuitry to convert sensor signals into digital data. DYNO-
MAX software measured engine performance, while the emissions
measurement system covered a wide range of engine speeds for
comprehensive data collection in different operating conditions. The
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Fig. 3. Structure of ANN-2HL-11 N.

engine testing involved no structural modifications. The engine speed
was progressively increased from 1300 rpm to 3700 rpm in 300 rpm
increments, with 50% and 100% loads applied. The steady-state oper-
ation was achieved using gasoline as the initial fuel. Blends were pre-
pared shortly before testing to maintain consistency and prevent
moisture accumulation. Three repetitions of each test were executed to
gauge its accuracy, and average readings were recorded. Dynomite 2010
software accurately recorded speed and load values. Fuel consumption,

BSFC, BP, and BTE were calculated using heating values and density.
Table 4 summarizes the testing scheme. (See Fig. 1.)).

Development of ANN models
Using MATLAB software for formulating and executing ANN models

offers several strengths and benefits [37]. The gathered dataset from the
data acquisition system includes fuel ratio, load, RPM, torque, BP, BSFC,
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BTE, CO, CO,, HC, and NOx concentration. With a standard deviation of
Table 6 1 and a mean of 0, the dataset was transformed by executing the ‘zscore’
Model defining parameters. argument in the z-score normalization. It ensures that all input features
Numeric Units  Subtype Low High Mean  Std. have equal weights during training. The transformation can shift the
Factor Level Level Dev. original range of values to include negative values or values greater than
A Load » Continuous 50 100 s 25.09 the original maximum. Z score for a data point is given by equation (1).
B Speed rpm Continuous 1300 3700 2500 777.3
C  Fuel % Continuous 0 21 10.50 6.69 7 X—n o)
Ratio 4
where X is the original value, p is the mean of the data, and o is the
standard deviation. The connectivity and structure of an ANN model are
Table 7 dictated by its architecture [38,39]. Table 5 outlines the initial six
R? for responses given by ANOVA. different structures that were established and trained in the study. The
Response Adjusted R? Predicted R? 144 sets of experimental data were segregated into three distinct groups
Torque 0.9379 0.9332 in this study. To facilitate the random selection of data points, the
BP 0.9797 0.9774 ‘divideind’ function was utilized to divide the data as 70% (100/144) for
BTE 0.7220 0.7107 training, 15% (22/144) for validation, and 15% (22/144) for testing. To
BSFC 0.6585 0.6437 ensure an unbiased evaluation of the model’s performance and the
ggz g:;’ggg g:?ggi trained model’s generalizability, the data must be carefully divided into
HC 0.9255 0.9188 these sets. The random distribution of the data set for torque and CO5 is
NOy 0.9730 0.9707 shown in Fig. 2. The trainlm function was employed for training,
signifying the use of the Levenberg-Marquardt algorithm [40]. This al-
gorithm empowers the effective handling of non-linear problems and
rapid convergence by combining the benefits of the Gauss-Newton and
Table 8
P-values of model terms.
Response A B C AB AC BC
Torque <0.0001 <0.0001 <0.0001 0.0095 0.0104 <0.0001
BP <0.0001 <0.0001 <0.0001 <0.0001 0.8123 <0.0001
BTE <0.0001 <0.0001 0.0073 - - -
BSFC <0.0001 <0.0001 0.0196 - - —
co <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.6472
CO, <0.0001 <0.0001 <0.0001 - - -
HC <0.0001 <0.0001 <0.0001 0.041 <0.0001 0.0187
NOx <0.0001 <0.0001 <0.0001 0.5922 <0.0001 0.0002

A = Fuel ratio B = Engine load C = RPM
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Table 9
Performance metrics of ANN structures for each output.
Output Performance Parameters ANN Models Nomenclature
ANN-1HL-9 N ANN-1HL-11 N ANN-1HL-15 N ANN-2HL-9 N ANN-2HL-11 N ANN-2HL-15 N
Torque R? 0.99292 0.99415 0.99554 0.99560 0.99594 0.99537
RMSE 0.11553 0.10089 0.09539 0.09821 0.09177 0.08847
MRE —0.03516 —0.02924 —0.01398 —0.01616 —0.03198 —0.00464
BP R? 0.99292 0.99415 0.99554 0.99560 0.99594 0.99537
RMSE 0.11553 0.10089 0.09539 0.09821 0.07177 0.08847
MRE —0.03516 —0.01924 —0.01398 —0.01616 —0.03198 —0.00464
BSFC R? 0.99526 0.99484 0.99524 0.99565 0.99596 0.99541
RMSE 1.79753 1.67847 1.77320 1.79918 1.81497 1.68845
MRE 0.11166 0.00143 ~0.10810 0.17326 —0.80373 0.83854
BTE R? 0.99373 0.99065 0.99234 0.99383 0.99456 0.99193
RMSE 0.11524 0.13483 0.12218 0.11056 0.10001 0.12263
MRE 0.40082 0.36798 —0.04032 0.44777 —0.13693 0.46470
co R 0.99024 0.99391 0.99460 0.99389 0.99653 0.99406
RMSE 0.14089 0.11364 0.09876 0.10496 0.09897 0.09984
MRE 0.86602 0.61949 —0.32298 —0.71277 -0.27307 —0.19510
CO; R? 0.98600 0.98872 0.98925 0.99211 0.99504 0.98386
RMSE 0.16756 0.14854 0.12987 0.13083 0.14154 0.11318
MRE 0.65879 0.37526 0.29761 0.43750 0.03063 0.46725
HC R? 0.99353 0.98812 0.99432 0.99606 0.99709 0.99318
RMSE 0.11490 0.14961 0.10801 0.08963 0.07541 0.10987
MRE 0.00968 0.02983 0.06622 -0.02307 0.02929 0.03305
NOx R? 0.99507 0.99501 0.99589 0.99587 0.99669 0.99001
RMSE 0.09964 0.10013 0.09327 0.08748 0.07533 0.08378
MRE 0.15185 0.14952 0.03383 0.20429 0.17002 0.26562
learning curves are plotted to check whether the model is overfitted,
15 underfit, or a good fit. Once the ANN model was acceptable, engine
Training Loss performance and emissions were forecasted for unobserved data. By
Validation Loss comparing the forecasted results with experimental values, the model’s
dependability was confirmed.
10l RSM methodology approach
g o - .
£ The current study is aimed at utilizing an ANN model to predict the
E optimal ethanol ratio, engine load, and speed and to attain efficient
g performance and reduced emissions. To accomplish this, the study in-
o corporates RSM through Design-Expert version 13 was used for defining
5T the multi-level historical design. Fuel ratio, engine load, and RPM were
chosen as continuous numeric factors, while ANN estimated values of
torque, BP, BTE, BSFC, CO, CO,, HC, and NOy were nominated as
response variables. Fig. 4 presents a graphical understanding of the
innovative methodology for this integration. The model-defining pa-
| . ‘ . ‘ rameters are listed in Table 6.
0
1 2 3 4 5 6 7 8 9 The model attributes were evaluated by applying analysis of variance

Epochs

Fig. 5. Learning curves of the ANN-2HL-11 N model.

gradient descent methods. The ReLU (Rectified Linear Unit) activation
function was employed, while sigmoid and tanh are also commonly used
for similar problems [25,41-43]. Fig. 3 presents the structure of an ANN
model consisting of two hidden layers with 11 neurons in each layer. A
loss function was employed to compute the prediction error. The error
was then propagated backward through the network by executing the
backpropagation algorithm. Weights and biases were adjusted based on
the gradient of the loss function concerning these parameters.

The adjusted weights and biases were then updated in each iteration
using the optimization algorithm Adam. RMSprop is also well known
[40,44]. By computing performance metrics such as R? (coefficient of
determination), MSE, and RMSE, the consistency and precision of the
models were quantified. An ANN model with a complex structure starts
to memorize the training data instead of learning patterns (overfitting),
and an ANN model with a structure that is not complex enough to
capture the underlying pattern in the data leads to underfitting. Both
problems have a negative influence on performance. In this study,

(ANOVA). A significance benchmark of a p-value less than 0.05 was
used. Given the null hypothesis’s validity, the p-value signifies the
probability of seeing test results as extreme as the observed ones.
[25,45-47]. The ratio of squared deviations to individual sums of
squares (SOS) was employed to compute the percentage contribution
(PC%) of each model term. The F-value, a test statistic in ANOVA,
specifies the overall worth of mean differences between groups. A large
F-value suggests significant differences among group means if it exceeds
the critical value [28].

The predicted R?, a reasonable agreement between the predicted and
adjusted R, and the p-value determine the selection of an appropriate
model. R? values close to 1 specify a perfect linear curve. R? values from
the ANOVA test are listed in Table 7, signifying good model fit and
agreement with experimental data.

Table 8 provides insights into the significance of factors in the re-
sponses based on their corresponding p-values. At 95% confidence level,
the study was carried out. By analyzing the p-values presented in
Table 8, it becomes evident that the ethanol ratio, engine speed, and
load have significant effects on all the responses.
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Fig. 6. Regression plots of the ANN-2HL-15 N model.

3 Results and discussions

This section presents the performance results of the ANNMs (ANN
models), the prediction outcomes derived from the trained model, and
the optimized results achieved using RSM.

Annms performance results

The ability of an ANN model to capture the complex relationships in
the data has a significant dependence on the number of hidden layers
and neurons. An ANN model with a complex structure starts to memo-
rize the training data instead of learning patterns (overfitting), and an
ANN model with a structure that is not complex enough to capture the
underlying pattern in the data leads to underfitting. Both problems have
a negative influence on performance. Table 9 presents three key metrics
to evaluate each model’s performance. The bold values are desired
values, aiding in identifying the best-performing model.

Learning curves are shown in Fig. 5 which shows moderately high
initial training and validation loss. The loss steadily declines and reaches
a plateau when more training and validation instances are added.

A well-fitted model is indicated by the proximity of training and
validation losses, with validation somewhat greater. This result em-
phasizes the significance of finding the right balance between model
complexity and the capacity to generalize patterns from the data,
avoiding both overfitting and underfitting and ultimately resulting in
enhanced performance. Based on the regression plot, shown in Fig. 6
data points tend to cluster around the diagonal line and the ANN-2HL-
11 N model achieves high R values of 0.99521 (training), 0.98579

(validation), 0.98847 (testing), and 0.99307 overall. This shows that the
ANN-2HL-11 N model accurately captures underlying patterns and re-
lationships, which reinforces its performance.

Predicted outputs were plotted against experimental values to thor-
oughly evaluate the performance and accuracy of the trained model. In
Fig. 7(a) the model’s performance throughout the training process is
assessed for torque. These randomly selected 100 data points are the
part of training set which is 70% (100/144) of the available dataset. The
focus is on the relative position of predicted and experimental values of
each experiment. Each experiment was performed for a different set of
conditions. Therefore, there is no physical relationship between the
variable values and the increasing number of experiments in this figure.
The negative values of torque that were initially below the mean of the
dataset are the result of Z-score normalization. Instead of focusing on the
absolute values themselves, this shift towards negative values is more
about the relative positions and distributions of the normalized data.
The predicted and experimental values of torque for each experiment are
closely located in Fig. 7 (a) which is graphical evidence of the perfor-
mance metrics of ANN-2HL-11 N presented in Table 9. Once the ANN
model was fully trained, Fig. 7 (b), displays the actual predicted and
experimental values following reverse normalization. The entire data set
of torque is clustered along a diagonal line (45 degrees). Fig. 7(c and d)
presents similar trends for BP. Performance for BSFC, BTE, and emis-
sions is assessed in Figs. 8, 9, and 10 respectively.

In these plots, the negative values for the BP, BTE, BSFC, and emis-
sions are not interpreted as practically or physically negative values.
Instead, they show how the normalized data points are positioned about
the dataset’s original mean. It is important to note that these plots aim to
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Table 10

Setup for optimization.
Variable Optimization Criteria Lower Limit Upper Limit Importance Lower Weight Upper Weight
A: Fuel Concentration is in range 0 21 3 1 1
B: Load is in range 50 100 3 1 1
C: RPM is in range 1300 3700 3 1 1
Torque is in range 2.631 7.71142 3 1 1
Brake Power maximize 0.35863 3.22758 3 1 1
BSFC minimize 0.30895 0.75138 3 1 1
BE maximize 9.15977 22.4894 3 1 1
Cco is in range 0.0707 8.68 3 1 1
CO, is in range 1.75 12.57 3 1 1
HC minimize 18.53 297 3 1 1
NOx is in range 97 1911.86 3 1 1

Torque (Nm)
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Fig. 12. Surface analysis of BP at (a) 50% load and at (b) 100% load.

highlight the predictive model’s consistency in capturing trends and
overall behavior. The close alignment between predicted and experi-
mental values within the expected error range reaffirms the effective-
ness of the model.

Rsm-based optimization results

To optimize the engine, BSFC, emissions, BTE, and BP were to be
minimized and maximized while keeping all study factors within-range
criterion. Table 10 demonstrates the defined limitations and optimiza-
tion arrangement. Optimal model fitting and interpretation of the results
depends on “Weight” and “Importance” in RSM. The weight allows for
proper consideration of the variability and reliability of experimental
data, while the importance helps identify the critical factors driving the

10

response variable. By providing valuable insights into the relationship
between factors and responses, they contribute to the robustness and
effectiveness of the RSM analysis.

In Fig. 11, the engine demonstrates lower torque output at 1300 rpm,
attributed to reduced power generation at lower speeds, known as the
“low-end torque” region. As RPM increases beyond this range for all fuel
blends in the study, torque output consistently rises. It is attributed to
enhanced energy input and output due to the faster burning of fuel at
higher speeds [48,49]. At 100% load (Fig. 11(b)), the engine reaches its
peak torque region around 3100 rpm, resulting in a 7.7 Nm for E21.
However, beyond this region, as RPM continues to increase, torque
output declines, known as the “fall-off” or “decline” in torque. As the
engine encounters limitations in terms of intake flow, cylinder filling,
frictional losses, valvetrain operation, exhaust backpressure, and
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Fig. 15. Surface analysis of torque at (a) 50% load and at (b) 100% load.

mechanical stress [50]. The ethanol ratio consistently increases torque,
attributed to ethanol’s higher-octane rating, better air-fuel mixture,
cooling effect, and ability to achieve higher compression ratios.
Increasing the ethanol ratio from 0% to 21% at 100% load and 3100
rpm, resulted in a 16.86% increase in torque.

In Fig. 12, it can be observed that at lower speeds, the engine dem-
onstrates a comparatively lower BP. By increasing the RPM to a specific

11

range, the BP increases. Enriching ethanol increases density, smooths
combustion (due to oxygen), and boost BP, but higher concentrations
decrease calorific value and BP [51]. Maximum brake was observed for
increasing the ethanol ratio from 0% to 18% at 100% load and 3100
rpm, which resulted in a 23.70% increase in BP.

Fig. 13 demonstrates that the BTE increases within a specific RPM
range, reaching its highest value of 22.49% at 2800 rpm and 100% load
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for E21. Increasing the engine speed from 1300 rpm to 2800 rpm leads to
a significant 26.8% improvement in BTE. However, BTE starts to decline
at speeds above 2800 rpm. Lean mixtures at lower speeds increase BTE,
but faster and abrupt combustion at higher speeds decreases BTE [27].
BTE shows an upward trend with higher ethanol ratios, especially when
the ratio rises from 0% to 6%, resulting in a higher-octane rating and
compression ratio and increased BP and BTE.

12

In Fig. 14, the BSFC initially decreases as RPM increases within a
specific range, but beyond that range, it starts to rise. Lower speeds
result in a decrease in BSFC due to a substantial increase in BP. However,
at higher speeds, the swift and unexpected combustion leads to a rapid
increase in BSFC [52]. For instance, increasing the engine speed from
1300 rpm to 2800 rpm at 100% load for E3 led to a 26% decrease in
BSFC. At speeds higher than 2800 rpm, BSFC began to increase. The
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Table 11
Results of the confirmation test.
Torque BP BTE BSFC Cco CO, HC NOy
Optimized Value 7.71 3.87 20.72 0.391 5.6 6.01 34.99 2577.5
Test Value 7.92 3.99 21.24 0.379 5.8 6.23 33.69 2489.9
Error (%) 2.8 3.3 2.5 3.1 3.5 3.6 3.7 3.4
Table 12
Outputs comparison at optimal operating conditions with pure gasoline fuel.
Torque (Nm) BP (kW) BTE (%) BSFC (kg/kW.h) CO (% V) HC (ppm) NOy (ppm)
EO 7.0 3.23 15.96 0.346 7.79 58.41 1819
E18.5 7.71 3.87 20.72 0.391 5.6 34.99 2577.5
% Difference 9.4 19.9 29.8 12.9 —28.1 —40.1 41.7%
ethanol’s lower energy content and different stoichiometric air-fuel
Table 13 ratio requirements compared to gasoline and its altered combustion
Assessment of ANN and RSM model performances. characteristics [53-55].
ANN RSM A reduction in HC concentration is shown in Fig. 15 as the ethanol
R’ MRE RSME R’ MRE RSME ratio and RPM increase. The lowest recorded HC value of 8.53 ppm
Torque 0.9959 ~0.0319 0.0917 0.9162 ~0.0345 0.0991 occurred at 3700 rpm and 100% load for E21. This can be attributed to
BP 0.9959 -0.0717 0.0319 0.9063 -0.0782 0.0348 the higher oxygen content in the fuel, resulting in a relative increase in
BSFC 0.9959 -1.8149 08037  0.9162 -1.9601  0.8680 the air-fuel ratio (AFR) and subsequently reducing HC emissions. When
BTE 0.9945 -0.1000 0.1369 0.8951 -0.1100 0.1506 the engine speed increased from 1300 rpm to 2800 rpm and the fuel
Cco 0.9965 -0.0989 0.2730 0.8669 -0.1118 0.3085 . e .
€0, 0.9950 0.1415 0.0306 0.8855 0.1571 0.0339 ratio changed from EO to E21, there was a significant reduction of
HC 0.9970 0.0754 0.0292 0.8973 0.0829 0.0322 approximately 46.31% in HC concentration. Fig. 16 demonstrates an
NOx 0.9966 0.0753 0.1700 0.9867 0.0760 0.1717 increase in NOy concentrations as the ethanol ratio and RPM increase.

lowest BSFC value occurred at 2800 rpm and 100% load. Moreover,
increasing the ethanol ratio from 0% to 21% at 100% load and 2800 rpm
resulted in a 19.5% increase in BSFC. The increase in BSFC is due to
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The level of NOx emissions is influenced by exhaust temperature, which
escalates with load and speed [56]. It is evident that as the ethanol
content in the fuel rises, so does the emission of NOx. Accelerated fuel
combustion leads to higher flame temperatures, contributing to
increased NOx [57,58].
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Increasing the ethanol concentration in the gasoline-ethanol blend,
as depicted in Fig. 17, leads to a noticeable decrease in CO emissions
[59,60]. This is attributed to improved combustion completeness and a
shift towards a stoichiometric air—fuel ratio. At 1300 rpm and 100%
load, the lowest CO emission was observed for E21, with a significant
reduction of 32.21% when the ethanol ratio increased from 0% to 21%.
Fig. 18 shows that lower RPMs result in lower CO5 emissions due to
reduced fuel consumption at lower power outputs. As RPM increases,
CO, emissions rise as the engine operates at higher power outputs,
leading to increased fuel consumption. However, beyond 2800 rpm,
engine efficiency decreases, leading to reduced fuel consumption and
lower CO5 emissions.

Fig. 19 illustrates ramp chart displaying the optimal operational
parameters for the engine. The optimal operating conditions for the
engine were determined to be an ethanol volume fraction of 18.5%, an
engine speed of 3699.9 rpm, and a 100% load setting.

Under these conditions, the engine exhibited favorable performance
and emission characteristics, including torque of 7.71 Nm, BP of 3.87
kW, BSFC of 0.391 kg/kW.h, BTE of 20.72%, and low emissions of CO
(5.6 % V), CO2 (10.71 % V), HC (34.99 ppm), and NOx (2577.5 ppm).
The calculated composite desirability (D) value of 0.887 validates the
optimized model, indicating that the engine responses have been accu-
rately optimized. Operating the engine at the identified parameters
would yield the most desirable results, aligning with the objectives of
the study. Experimental verification of the optimized results was con-
ducted through a confirmation test and results are summarized in
Table 11.

The outputs comparison for the engine running at 3700 rpm, 100%
load, and 18.5% ethanol at the same speed and load condition but purely
fueled with gasoline is shown in Table 12. The positive values indicate a
percentage increase and a negative sign indicates a percentage reduc-
tion. The performance matrices between ANN and RSM are compared in
Table 13. The ANN model exhibits high R2, low MRE, and RSME than
RSM.

Conclusion

The ANN-2HL-15 N model was considered the best model among the
six trained models. The model demonstrated exceptional efficiency, with
high R? values of 0.9952 (training), 0.98579 (validation), 0.98847
(testing), and 0.99307 (overall). It also exhibited the lowest RMSE and
MSE values and provided accurate predictions within the range of actual
experimental results. The MRE ranged from 0.047% to 0.40%. These
results highlight the ANN model’s potential for precisely predicting
operational effectiveness and discharge levels in small-scale single-cyl-
inder SI engines. The predicted operational parameters and the dis-
charged pollutants were then optimized by integrating a multi-level
historical design of RSM.

An ethanol volume fraction of 18.5 %, engine speed of 3700 rpm, and
100% load were identified as optimal operating conditions. Noteworthy
improvements resulted from applying these conditions compared to
running the engine on gasoline. Specifically, BP and BTE increased by
19.9%, and 29.8%, respectively. Additionally, CO, and HC emissions
experienced substantial reductions of 28.1%, and 40.6%, respectively.
The increased oxygen and hydrogen content in the blend led to
improved combustion, resulting in higher heat generation and elevated
emission gas temperatures. Therefore 41.7% increase in NOx emissions
was observed. As the test results and optimized values are closely
associated, this research has affirmed its resilience for forecasting and
optimizing.

The results of this study, which looks at the emissions and perfor-
mance of the ICE fueled by ethanol, are in line with SDGs 7 and 13.
Regarding optimization and prediction, the distinctive combination of
ANN and RSM encourages sustainable industrialization, more consci-
entious consumption, and more ethical production patterns. All these
are crucial components of SDGs 9 and 12. To make refined decisions and

Energy Conversion and Management: X 20 (2023) 100438

achieve improved performance and emissions, this research can benefit
engine producers and researchers. This alliance between scholars and
industry stakeholders supports SDG 17 (Partnerships for the Goals),
which also encourages knowledge-sharing to advance the SDGs as a
whole.

For future research, dynamic model adaptation has the potential to
enhance the capabilities of the established ANN model for ethanol-
powered ICEs. Dynamic optimization of such ICEs by utilizing a real-
time monitoring and control system along with an ANN predictive
model can further enhance performance and reduce emissions. It re-
inforces the significance of the study by including varying conditions in
transient states for the optimization process. Efficiency can be enhanced
further by powertrains that combine ethanol utilization with electric
energy.
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