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A B S T R A C T   

With the escalating requirement for global sustainable energy solutions and the complexities linked with the 
complete transition to new technologies, internal combustion engines (ICEs) powered with biofuels like ethanol 
are gaining significance over time. However, problems linked to the performance and emissions of such ICEs 
necessitate accurate prediction and optimization. The study employed the integration of artificial neural net
works (ANN) and multi-level historical design of response surface methodology (RSM) to address these chal
lenges in alignment with the Sustainable Development Goals (SDGs). A single-cylinder spark ignition (SI) engine 
powered with ethanol-gasoline blends at different loads and speeds was used to gather data. Among six initially 
trained ANN models, the most efficient model with a regression coefficient (R2) of 0.9952 (training), 0.98579 
(validation), 0.98847 (testing), and 0.99307 (overall) was employed to predict outputs such as brake power, 
brake specific fuel consumption (BSFC), brake thermal energy (BTE), concentration of carbon dioxide (CO2), 
carbon monoxide (CO), hydrocarbons (HC), and oxides of nitrogen NOx. Predicted outputs were optimized by 
incorporating RSM. On implementing optimized conditions, it was observed that BP and BTE increased by 
19.9%, and 29.8%, respectively. Additionally, CO, and HC emissions experienced substantial reductions of 
28.1%, and 40.6%, respectively. This research can help engine producers and researchers make refined decisions 
and achieve improved performance and emissions. The study directly supports SDG 7, SDG 9, SDG 12, SDG 13, 
and SGD 17, which call for achieving affordable, clean energy, sustainable industrialization, responsible con
sumption, and production, taking action on climate change, and partnership to advance the SDGs as a whole 
respectively.   

Introduction 

It is estimated that by 2050, there will be 9.2 billion people on the 
planet, with the transport industry potentially consuming over one-third 
of the world’s energy and more than half of total oil production [1,2]. In 
line with the issues addressed by the Sustainable Development Goals 
(SDGs), this population upsurge and industrial expansion have resulted 
in the unavoidable depletion of conventional fuels and increasing 
threats to environmental sustainability, energy security, and economic 
stability. Alternative fuels such as biofuels and hydrogen for internal 

combustion engines (ICEs) are thought to provide solutions to these 
problems [3–6]. Investigation of these alternative fuels directly pro
motes SDGs 7 (Affordable and Clean Energy) and 13 (Climate Action), 
which reinforce transitioning to sustainable and clean energy sources to 
address climate change. SGD 7 highlights the significance of switching 
from polluting and unsustainable energy sources to cleaner ones. 
Additionally, it assists in establishing a balance between addressing the 
urgent need to combat climate change, promoting economic growth, 
and fulfilling energy demands. [7–9]. However, the complete transition 
to new technologies encounters socio-technological obstacles and 
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necessitates a significant investment. Hence, biofuel-powered internal 
combustion engines (ICEs) are expected to remain noteworthy [10–12]. 
Nevertheless, optimizing their parameters to comply with emissions 
regulations, ensure energy security, improve efficiency, and meet con
sumer expectations poses multifaceted challenges. The SGD 9 (Industry, 
Innovation, and Infrastructure) is aligned with these challenges, which 
focuses on sustainable industrialization, innovation, and infrastructure 
to empower environmental sustainability and economic growth 
[13–15]. Traditional methods involving precise instruments and costly 
experimentation are time-consuming. These issues are aligned with SDG 
12 (Responsible Consumption and Production) [7,14,16]. Consequently, 
the development of substitute solutions is a pressing need that supports 
sustainable consumption and production practices. Computational 
modeling techniques have been used to identify the relationships be
tween operating parameters and accurately predict numerous charac
teristics of internal combustion engines (ICEs), such as performance, 
combustion, and emissions [17]. Among these techniques, artificial 
neural networks (ANN) and response surface methodology (RSM) have 
emerged as prominent techniques that make accurate predictions and 
optimize by utilizing diverse input configurations, respectively [18–20]. 
Table 1 provides a summary of previous research conducted by various 
scholars employing different techniques for this purpose. An ANN effi
ciently handles numerical data with several variables that would be 
challenging otherwise. In contrast to conventional techniques, a well- 
trained neural network makes faster predictions, bypassing time- 
consuming and complex mathematical problem-solving as well as the 

need for expensive and complex physical and computer models [21]. 
The performance of SI engines utilizing ethanol-methanol blends was 

determined by Kapusuz et al. [31]. The study shows that the mixture of 
11% methanol and 1% ethanol by volume exhibited improved perfor
mance, yielding regression coefficients within the range of 0.931–0.990. 
Samet et al. [32] developed an ANN model to predict results for a diesel 
engine fueled with a diethyl ether blend up to 10%, achieving regression 
coefficients (R2) ranging from 0.964 to 0.9878 and mean relative error 
(MRE) values ranging from 0.51% to 4.8%. Khandal et al. [33] examined 
the performance of a diesel engine powered by a mixture of plastic py
rolysis oil, diesel, and ethanol by employing the ANN model. The ANN 
technique is also utilized by Shivakumar [34] to evaluate engine effi
ciency and emissions. The performance of the butanol-gasoline based SI 
engine was predicted by Liu et al. [35]. Moreover, Rezaei et al. [36], 
conducted a study and established that the ANN model showcased faster 
convergence and exceptional performance. 

Table 1 showcases prior studies optimizing engines based on 
experimental data, rather than utilizing predicted data. In the present 
study, the ANN model efficiently predicted output values based on given 
inputs. These input-predicted output pairs were then optimized using 
the RSM technique. This integration significantly reduces the number of 
experimental runs. In scenarios where new, unseen input data is 
encountered, no longer a need to conduct expensive experiments to 
obtain corresponding outputs. Instead, the well-trained ANN model 
accurately predicts the required outputs and the RSM optimization 
process delivers optimal operating conditions for the engine. The 
research highlights how the ANN model’s architecture influences per
formance. This methodology aids in identifying the most accurate and 
robust model for predicting engine operations. By considering a broader 
range of outputs, the research contributes to a more comprehensive 
understanding of the engine’s operating parameters and opens new 
possibilities for optimizing engine operations. 

The contribution of this research to achieving multiple SDGs simul
taneously and fostering a sustainable and resilient future for the planet 
as a whole makes it distinctive. The integration of two cutting-edge 
computational techniques (ANN and multi-level RSM) to predict and 
optimize operations of the ethanol-powered engine offers a deeper 
comprehension of the complex interactions between fuel blends, engine 
performance, and environmental impact. This distinctive aspect of this 
study opens up exciting possibilities for dropping experimental runs and 
intricate mathematical modeling. The study represents a notable strive 
for affordable and clean energy, sustainable industrialization, respon
sible consumption and production, and climate action. 

Materials and methods 

This section presents the preparation of fuel blends, experimental 
design for testing, ANN model development, and methods and defini
tions for RSM-based optimization. 

Formulation of fuel blends 

In this study, ethanol was sourced from Shahmurad Ethanol Limited, 

Table 1 
Summary of researchers’ work exploring techniques on SI engine performance and emissions with biofuel mixtures.  

Author Name and Reference Fuel Blend ANN RSM BP BSFC BTE CO CO2 HC NOx 

Yücesu et al. [22] Gasoline, Ethanol, and Methanol ✔ ✔ ↑ ↓ – – – – – 
Simsek et al. [23] Gasoline, LPG, and Bio Gas – –  ↑ ↑ ↓ ↓ ↓ ↑ 
Najafi et al. [24] Gasoline, and Ethanol ✔ – ↑ ↓ ↑ ↓ ↑ ↓ ↑ 
Uslu et al. [25] Gasoline and I-amyl Alcohol ✔ ✔ – ↑ ↑ ↓ – ↓ ↓ 
Barboza et al. [26] Gasoline hydrogen peroxide and ethanol ✔ ✔ – – ↑ ↓ ↑ ↓ ↓ 
Palani et al. [27] Gasoline, ethanol, n-butanol – ✔ – ↑ ↑ ↓ – ↓ ↑ 
Yusri et al. [28] Gasoline and secondary butyl alcohol – ✔ ↑ ↑ ↑ ↓ ↑ ↓ ↓ 
Kaliyaperumal et al. [29] Gasoline and Gasohol/Hydrogen ✔ – – ↑ ↑ ↓ ↑ ↓ ↑ 
Yaman et al. [30] Gasoline and 1-heptanol – ✔ – ↑ ↑ ↓ ↑ ↓ ↑  

Table 2 
E100 and E0′s characteristics.  

Property Ethanol Gasoline 

Chemical Formula C2H5OH C8H12 

Composition (C, H, 0) mass% 52.17, 13.04, 34.78 87%, 13%, 0% 
Calorific Value (MJ/kg) 26.7 46 
Heat of evaporation (kJ/kg) 904 325 
Stoichiometric A/F ratio 9.0 14.7 
Oxygen content % mass 34.8% 0% 
Density kg/m3 789 740 
Flash Point (◦C) 13 − 43 
Auto Ignition Temperature (oC) 420 270 
Solubility in water (ml/100 ml H20) Infinitely soluble Infinitely soluble  

Table 3 
Test engine facets.  

Engine Parameter Value 

Bore(mm)  68 

Stroke (mm) 45 
Displacement (cm3) 163 
Compression ratio 8.5:1 
Net power (kW/rpm) 3.6/3600 
Fuel tank capacity (Liters) 3.1 
Fuel consumption at constant rated power (Liter/hour) @ 3600 rpm 1.4 
Engine Oil Capacity (Liters) 0.6  
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a principal ethanol producer in Pakistan, and gasoline was obtained 
from Pakistan State Oil (PSO). Gasoline was marked as the reference for 
all the blends. Table 2 outlines ethanol (E100) and gasoline (E0) 
attributes. 

The ethanol was added to gasoline at various concentrations of 0%, 
3%, 6%, 9%, 12%, 15%, 18%, and 21% by volume, resulting in fuel 
blends represented as E3, E6, E9, E12, E15, E18, and E21 respectively. 
Blends were continuously stirred using a magnetic stirrer for 15 min to 
ensure a fully homogeneous mixture of the fuels. 

Experimental setup and testing plan 

An air-cooled spark ignition (SI) engine with an overhead valve was 
used during this study. Table 3 presents the qualifications of the test 
engine. 

For testing, the engine was connected through a mild steel shaft to a 
7-inch Dynomite dynamometer, with a water-brake system. By utilizing 
EMS-5002 analyzer, emissions were quantified. A 500-ml measuring 
cylinder (0.5 ml grade) was used to measure fuel flow. The working fluid 
was water for applying loads through the piping system. The experi
mental setup schematic is illustrated in Fig. 1. 

Data acquisition was accomplished using a system with signal con
ditioning circuitry to convert sensor signals into digital data. DYNO- 
MAX software measured engine performance, while the emissions 
measurement system covered a wide range of engine speeds for 
comprehensive data collection in different operating conditions. The 

Fig. 1. The layout of the test rig and experimental configuration.  

Table 4 
Comprehensive testing scheme.  

Factors Description 

Fuel E0, E3, E6, E9, E12, E15, E21 
Loads 50% and 100% 
Speed range 1300–3700 RPM (with an increase of 300 rpm) 
Performance Parameters Torque, BP, BSFC and BTE 
Emission Parameters CO2, CO, HC, NOx 
Ambient Temperature 27̊C 
Atmospheric Pressure 1 atm  

Table 5 
Specification of ANN models structures.  

Specifications Description 

ANN-1HL-9 N, ANN-1HL-11, ANN-1HL- 
15 N, ANN-2HL-9 N, ANN-2HL-11 N, 
ANN-2HL-15 N 

The digits designate the number of 
hidden layers and neurons in the hidden 
layer 

Training Algorithm Levenberg-Marquardt 
Epochs 100 
In-Training Performance Plots Regression and error histograms 
Post-training performance parameters MRE, RMSE, and R2 

Data Distribution 70% Training, 15% (Testing) and 15% 
(validation) 

Stopping Criteria Minimization of mean square error  
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engine testing involved no structural modifications. The engine speed 
was progressively increased from 1300 rpm to 3700 rpm in 300 rpm 
increments, with 50% and 100% loads applied. The steady-state oper
ation was achieved using gasoline as the initial fuel. Blends were pre
pared shortly before testing to maintain consistency and prevent 
moisture accumulation. Three repetitions of each test were executed to 
gauge its accuracy, and average readings were recorded. Dynomite 2010 
software accurately recorded speed and load values. Fuel consumption, 

BSFC, BP, and BTE were calculated using heating values and density. 
Table 4 summarizes the testing scheme. (See Fig. 1.)). 

Development of ANN models 

Using MATLAB software for formulating and executing ANN models 
offers several strengths and benefits [37]. The gathered dataset from the 
data acquisition system includes fuel ratio, load, RPM, torque, BP, BSFC, 

Fig. 2. Random distribution of data set for (a) torque and (b) CO2.  

Fig. 3. Structure of ANN-2HL-11 N.  
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BTE, CO, CO2, HC, and NOx concentration. With a standard deviation of 
1 and a mean of 0, the dataset was transformed by executing the ‘zscore’ 
argument in the z-score normalization. It ensures that all input features 
have equal weights during training. The transformation can shift the 
original range of values to include negative values or values greater than 
the original maximum. Z score for a data point is given by equation (1). 

Z =
(X − μ)

σ (1) 

where X is the original value, μ is the mean of the data, and σ is the 
standard deviation. The connectivity and structure of an ANN model are 
dictated by its architecture [38,39]. Table 5 outlines the initial six 
different structures that were established and trained in the study. The 
144 sets of experimental data were segregated into three distinct groups 
in this study. To facilitate the random selection of data points, the 
‘divideind’ function was utilized to divide the data as 70% (100/144) for 
training, 15% (22/144) for validation, and 15% (22/144) for testing. To 
ensure an unbiased evaluation of the model’s performance and the 
trained model’s generalizability, the data must be carefully divided into 
these sets. The random distribution of the data set for torque and CO2 is 
shown in Fig. 2. The trainlm function was employed for training, 
signifying the use of the Levenberg-Marquardt algorithm [40]. This al
gorithm empowers the effective handling of non-linear problems and 
rapid convergence by combining the benefits of the Gauss-Newton and 

Fig. 4. Flow chart for the methodology of ANN-integrated RSM.  

Table 6 
Model defining parameters.  

Numeric 
Factor 

Units Subtype Low 
Level 

High 
Level 

Mean Std. 
Dev. 

A Load % Continuous 50 100 75 25.09 

B Speed rpm Continuous 1300 3700 2500  777.3 
C Fuel 

Ratio 
% Continuous 0 21 10.50  6.69  

Table 7 
R2 for responses given by ANOVA.  

Response Adjusted R2 Predicted R2 

Torque  0.9379  0.9332 
BP  0.9797  0.9774 
BTE  0.7220  0.7107 
BSFC  0.6585  0.6437 
CO  0.9646  0.9624 
CO2  0.7929  0.7851 
HC  0.9255  0.9188 
NOx  0.9730  0.9707  

Table 8 
P-values of model terms.  

Response A B C AB AC BC 

Torque  <0.0001  <0.0001  <0.0001 0.0095 0.0104 <0.0001 
BP  <0.0001  <0.0001  <0.0001 <0.0001 0.8123 <0.0001 
BTE  <0.0001  <0.0001  0.0073 – – – 
BSFC  <0.0001  <0.0001  0.0196 – – — 
CO  <0.0001  <0.0001  <0.0001 <0.0001 <0.0001 0.6472 
CO2  <0.0001  <0.0001  <0.0001 – – – 
HC  <0.0001  <0.0001  <0.0001 0.041 <0.0001 0.0187 
NOx  <0.0001  <0.0001  <0.0001 0.5922 <0.0001 0.0002 
A = Fuel ratio B = Engine load C = RPM  
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gradient descent methods. The ReLU (Rectified Linear Unit) activation 
function was employed, while sigmoid and tanh are also commonly used 
for similar problems [25,41–43]. Fig. 3 presents the structure of an ANN 
model consisting of two hidden layers with 11 neurons in each layer. A 
loss function was employed to compute the prediction error. The error 
was then propagated backward through the network by executing the 
backpropagation algorithm. Weights and biases were adjusted based on 
the gradient of the loss function concerning these parameters. 

The adjusted weights and biases were then updated in each iteration 
using the optimization algorithm Adam. RMSprop is also well known 
[40,44]. By computing performance metrics such as R2 (coefficient of 
determination), MSE, and RMSE, the consistency and precision of the 
models were quantified. An ANN model with a complex structure starts 
to memorize the training data instead of learning patterns (overfitting), 
and an ANN model with a structure that is not complex enough to 
capture the underlying pattern in the data leads to underfitting. Both 
problems have a negative influence on performance. In this study, 

learning curves are plotted to check whether the model is overfitted, 
underfit, or a good fit. Once the ANN model was acceptable, engine 
performance and emissions were forecasted for unobserved data. By 
comparing the forecasted results with experimental values, the model’s 
dependability was confirmed. 

RSM methodology approach 

The current study is aimed at utilizing an ANN model to predict the 
optimal ethanol ratio, engine load, and speed and to attain efficient 
performance and reduced emissions. To accomplish this, the study in
corporates RSM through Design-Expert version 13 was used for defining 
the multi-level historical design. Fuel ratio, engine load, and RPM were 
chosen as continuous numeric factors, while ANN estimated values of 
torque, BP, BTE, BSFC, CO, CO2, HC, and NOx were nominated as 
response variables. Fig. 4 presents a graphical understanding of the 
innovative methodology for this integration. The model-defining pa
rameters are listed in Table 6. 

The model attributes were evaluated by applying analysis of variance 
(ANOVA). A significance benchmark of a p-value less than 0.05 was 
used. Given the null hypothesis’s validity, the p-value signifies the 
probability of seeing test results as extreme as the observed ones. 
[25,45–47]. The ratio of squared deviations to individual sums of 
squares (SOS) was employed to compute the percentage contribution 
(PC%) of each model term. The F-value, a test statistic in ANOVA, 
specifies the overall worth of mean differences between groups. A large 
F-value suggests significant differences among group means if it exceeds 
the critical value [28]. 

The predicted R2, a reasonable agreement between the predicted and 
adjusted R2, and the p-value determine the selection of an appropriate 
model. R2 values close to 1 specify a perfect linear curve. R2 values from 
the ANOVA test are listed in Table 7, signifying good model fit and 
agreement with experimental data. 

Table 8 provides insights into the significance of factors in the re
sponses based on their corresponding p-values. At 95% confidence level, 
the study was carried out. By analyzing the p-values presented in 
Table 8, it becomes evident that the ethanol ratio, engine speed, and 
load have significant effects on all the responses. 

Table 9 
Performance metrics of ANN structures for each output.  

Output  Performance Parameters  ANN Models Nomenclature 
ANN-1HL-9 N ANN-1HL-11 N ANN-1HL-15 N ANN-2HL-9 N ANN-2HL-11 N ANN-2HL-15 N 

Torque R2  0.99292  0.99415  0.99554  0.99560  0.99594  0.99537 
RMSE  0.11553  0.10089  0.09539  0.09821  0.09177  0.08847 
MRE  − 0.03516  − 0.02924  − 0.01398  − 0.01616  ¡0.03198  − 0.00464 

BP R2  0.99292  0.99415  0.99554  0.99560  0.99594  0.99537 
RMSE  0.11553  0.10089  0.09539  0.09821  0.07177  0.08847 
MRE  − 0.03516  − 0.01924  − 0.01398  − 0.01616  ¡0.03198  − 0.00464 

BSFC R2  0.99526  0.99484  0.99524  0.99565  0.99596  0.99541 
RMSE  1.79753  1.67847  1.77320  1.79918  1.81497  1.68845 
MRE  0.11166  0.00143  − 0.10810  0.17326  ¡0.80373  0.83854 

BTE R2  0.99373  0.99065  0.99234  0.99383  0.99456  0.99193 
RMSE  0.11524  0.13483  0.12218  0.11056  0.10001  0.12263 
MRE  0.40082  0.36798  − 0.04032  0.44777  ¡0.13693  0.46470 

CO R  0.99024  0.99391  0.99460  0.99389  0.99653  0.99406 
RMSE  0.14089  0.11364  0.09876  0.10496  0.09897  0.09984 
MRE  0.86602  0.61949  − 0.32298  ¡0.71277  − 0.27307  − 0.19510 

CO2 R2  0.98600  0.98872  0.98925  0.99211  0.99504  0.98386 
RMSE  0.16756  0.14854  0.12987  0.13083  0.14154  0.11318 
MRE  0.65879  0.37526  0.29761  0.43750  0.03063  0.46725 

HC R2  0.99353  0.98812  0.99432  0.99606  0.99709  0.99318 
RMSE  0.11490  0.14961  0.10801  0.08963  0.07541  0.10987 
MRE  0.00968  0.02983  0.06622  − 0.02307  0.02929  0.03305 

NOx R2  0.99507  0.99501  0.99589  0.99587  0.99669  0.99001 
RMSE  0.09964  0.10013  0.09327  0.08748  0.07533  0.08378 
MRE  0.15185  0.14952  0.03383  0.20429  0.17002  0.26562  

Fig. 5. Learning curves of the ANN-2HL-11 N model.  
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3 Results and discussions 

This section presents the performance results of the ANNMs (ANN 
models), the prediction outcomes derived from the trained model, and 
the optimized results achieved using RSM. 

Annms performance results 

The ability of an ANN model to capture the complex relationships in 
the data has a significant dependence on the number of hidden layers 
and neurons. An ANN model with a complex structure starts to memo
rize the training data instead of learning patterns (overfitting), and an 
ANN model with a structure that is not complex enough to capture the 
underlying pattern in the data leads to underfitting. Both problems have 
a negative influence on performance. Table 9 presents three key metrics 
to evaluate each model’s performance. The bold values are desired 
values, aiding in identifying the best-performing model. 

Learning curves are shown in Fig. 5 which shows moderately high 
initial training and validation loss. The loss steadily declines and reaches 
a plateau when more training and validation instances are added. 

A well-fitted model is indicated by the proximity of training and 
validation losses, with validation somewhat greater. This result em
phasizes the significance of finding the right balance between model 
complexity and the capacity to generalize patterns from the data, 
avoiding both overfitting and underfitting and ultimately resulting in 
enhanced performance. Based on the regression plot, shown in Fig. 6 
data points tend to cluster around the diagonal line and the ANN-2HL- 
11 N model achieves high R values of 0.99521 (training), 0.98579 

(validation), 0.98847 (testing), and 0.99307 overall. This shows that the 
ANN-2HL-11 N model accurately captures underlying patterns and re
lationships, which reinforces its performance. 

Predicted outputs were plotted against experimental values to thor
oughly evaluate the performance and accuracy of the trained model. In 
Fig. 7(a) the model’s performance throughout the training process is 
assessed for torque. These randomly selected 100 data points are the 
part of training set which is 70% (100/144) of the available dataset. The 
focus is on the relative position of predicted and experimental values of 
each experiment. Each experiment was performed for a different set of 
conditions. Therefore, there is no physical relationship between the 
variable values and the increasing number of experiments in this figure. 
The negative values of torque that were initially below the mean of the 
dataset are the result of Z-score normalization. Instead of focusing on the 
absolute values themselves, this shift towards negative values is more 
about the relative positions and distributions of the normalized data. 
The predicted and experimental values of torque for each experiment are 
closely located in Fig. 7 (a) which is graphical evidence of the perfor
mance metrics of ANN-2HL-11 N presented in Table 9. Once the ANN 
model was fully trained, Fig. 7 (b), displays the actual predicted and 
experimental values following reverse normalization. The entire data set 
of torque is clustered along a diagonal line (45 degrees). Fig. 7(c and d) 
presents similar trends for BP. Performance for BSFC, BTE, and emis
sions is assessed in Figs. 8, 9, and 10 respectively. 

In these plots, the negative values for the BP, BTE, BSFC, and emis
sions are not interpreted as practically or physically negative values. 
Instead, they show how the normalized data points are positioned about 
the dataset’s original mean. It is important to note that these plots aim to 

Fig. 6. Regression plots of the ANN-2HL-15 N model.  
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Fig. 7. Predicted values in comparison with experimental values of (a) normalized, and (b) actual torque dataset and, (c) normalized and (d) actual BP dataset.  

Fig. 8. Predicted values in comparison with experimental values of (a) normalized and (b) actual BSFC dataset, and (c) normalized, and (d) actual BTE dataset.  
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Fig. 9. Predicted values in comparison with experimental values of (a) normalized and (b) actual CO dataset, and (c) normalized, and (d) actual CO2 dataset.  

Fig. 10. Predicted values in comparison with experimental values of (a) normalized, and (b) actual HC dataset, and (c) normalized, and (d) actual NOx dataset.  
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highlight the predictive model’s consistency in capturing trends and 
overall behavior. The close alignment between predicted and experi
mental values within the expected error range reaffirms the effective
ness of the model. 

Rsm-based optimization results 

To optimize the engine, BSFC, emissions, BTE, and BP were to be 
minimized and maximized while keeping all study factors within-range 
criterion. Table 10 demonstrates the defined limitations and optimiza
tion arrangement. Optimal model fitting and interpretation of the results 
depends on “Weight” and “Importance” in RSM. The weight allows for 
proper consideration of the variability and reliability of experimental 
data, while the importance helps identify the critical factors driving the 

response variable. By providing valuable insights into the relationship 
between factors and responses, they contribute to the robustness and 
effectiveness of the RSM analysis. 

In Fig. 11, the engine demonstrates lower torque output at 1300 rpm, 
attributed to reduced power generation at lower speeds, known as the 
“low-end torque” region. As RPM increases beyond this range for all fuel 
blends in the study, torque output consistently rises. It is attributed to 
enhanced energy input and output due to the faster burning of fuel at 
higher speeds [48,49]. At 100% load (Fig. 11(b)), the engine reaches its 
peak torque region around 3100 rpm, resulting in a 7.7 Nm for E21. 
However, beyond this region, as RPM continues to increase, torque 
output declines, known as the “fall-off” or “decline” in torque. As the 
engine encounters limitations in terms of intake flow, cylinder filling, 
frictional losses, valvetrain operation, exhaust backpressure, and 

Table 10 
Setup for optimization.  

Variable Optimization Criteria Lower Limit Upper Limit Importance Lower Weight Upper Weight 

A: Fuel Concentration is in range 0 21 3 1 1 
B: Load is in range 50 100 3 1 1 
C: RPM is in range 1300 3700 3 1 1 
Torque is in range 2.631 7.71142 3 1 1 
Brake Power maximize 0.35863 3.22758 3 1 1 
BSFC minimize 0.30895 0.75138 3 1 1 
BE maximize 9.15977 22.4894 3 1 1 
CO is in range 0.0707 8.68 3 1 1 
CO2 is in range 1.75 12.57 3 1 1 
HC minimize 18.53 297 3 1 1 
NOx is in range 97 1911.86 3 1 1  

Fig. 11. Surface analysis of torque at (a) 50% load and at (b) 100% load.  

Fig. 12. Surface analysis of BP at (a) 50% load and at (b) 100% load.  
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mechanical stress [50]. The ethanol ratio consistently increases torque, 
attributed to ethanol’s higher-octane rating, better air–fuel mixture, 
cooling effect, and ability to achieve higher compression ratios. 
Increasing the ethanol ratio from 0% to 21% at 100% load and 3100 
rpm, resulted in a 16.86% increase in torque. 

In Fig. 12, it can be observed that at lower speeds, the engine dem
onstrates a comparatively lower BP. By increasing the RPM to a specific 

range, the BP increases. Enriching ethanol increases density, smooths 
combustion (due to oxygen), and boost BP, but higher concentrations 
decrease calorific value and BP [51]. Maximum brake was observed for 
increasing the ethanol ratio from 0% to 18% at 100% load and 3100 
rpm, which resulted in a 23.70% increase in BP. 

Fig. 13 demonstrates that the BTE increases within a specific RPM 
range, reaching its highest value of 22.49% at 2800 rpm and 100% load 

Fig. 13. Surface analysis of BTE at (a) 50% load and at (b) 100% load.  

Fig. 14. Surface analysis of BSFC at (a) 50% load and at (b) 100% load.  

Fig. 15. Surface analysis of torque at (a) 50% load and at (b) 100% load.  
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for E21. Increasing the engine speed from 1300 rpm to 2800 rpm leads to 
a significant 26.8% improvement in BTE. However, BTE starts to decline 
at speeds above 2800 rpm. Lean mixtures at lower speeds increase BTE, 
but faster and abrupt combustion at higher speeds decreases BTE [27]. 
BTE shows an upward trend with higher ethanol ratios, especially when 
the ratio rises from 0% to 6%, resulting in a higher-octane rating and 
compression ratio and increased BP and BTE. 

In Fig. 14, the BSFC initially decreases as RPM increases within a 
specific range, but beyond that range, it starts to rise. Lower speeds 
result in a decrease in BSFC due to a substantial increase in BP. However, 
at higher speeds, the swift and unexpected combustion leads to a rapid 
increase in BSFC [52]. For instance, increasing the engine speed from 
1300 rpm to 2800 rpm at 100% load for E3 led to a 26% decrease in 
BSFC. At speeds higher than 2800 rpm, BSFC began to increase. The 

Fig. 16. Surface analysis of torque at (a) 50% load and at (b) 100% load.  

Fig. 17. Surface analysis of CO at (a) 50% load and at (b) 100% load.  

Fig. 18. Surface analysis of CO2 at (a) 50% load and at (b) 100% load.  
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lowest BSFC value occurred at 2800 rpm and 100% load. Moreover, 
increasing the ethanol ratio from 0% to 21% at 100% load and 2800 rpm 
resulted in a 19.5% increase in BSFC. The increase in BSFC is due to 

ethanol’s lower energy content and different stoichiometric air–fuel 
ratio requirements compared to gasoline and its altered combustion 
characteristics [53–55]. 

A reduction in HC concentration is shown in Fig. 15 as the ethanol 
ratio and RPM increase. The lowest recorded HC value of 8.53 ppm 
occurred at 3700 rpm and 100% load for E21. This can be attributed to 
the higher oxygen content in the fuel, resulting in a relative increase in 
the air–fuel ratio (AFR) and subsequently reducing HC emissions. When 
the engine speed increased from 1300 rpm to 2800 rpm and the fuel 
ratio changed from E0 to E21, there was a significant reduction of 
approximately 46.31% in HC concentration. Fig. 16 demonstrates an 
increase in NOx concentrations as the ethanol ratio and RPM increase. 
The level of NOx emissions is influenced by exhaust temperature, which 
escalates with load and speed [56]. It is evident that as the ethanol 
content in the fuel rises, so does the emission of NOx. Accelerated fuel 
combustion leads to higher flame temperatures, contributing to 
increased NOx [57,58]. 

Fig. 19. Ramp chart displaying the optimal operational parameters for the engine.  

Table 11 
Results of the confirmation test.   

Torque BP BTE BSFC CO CO2 HC NOx 

Optimized Value  7.71  3.87  20.72  0.391  5.6  6.01  34.99  2577.5 
Test Value  7.92  3.99  21.24  0.379  5.8  6.23  33.69  2489.9 
Error (%)  2.8  3.3  2.5  3.1  3.5  3.6  3.7  3.4  

Table 12 
Outputs comparison at optimal operating conditions with pure gasoline fuel.   

Torque (Nm) BP (kW) BTE (%) BSFC (kg/kW.h) CO (% V) HC (ppm) NOx (ppm) 

E0  7.0  3.23  15.96  0.346  7.79  58.41 1819 
E18.5  7.71  3.87  20.72  0.391  5.6  34.99 2577.5 
% Difference  9.4  19.9  29.8  12.9  − 28.1  − 40.1 41.7%  

Table 13 
Assessment of ANN and RSM model performances.   

ANN RSM  
R2 MRE RSME R2 MRE RSME 

Torque  0.9959  − 0.0319  0.0917  0.9162  − 0.0345  0.0991 
BP  0.9959  -0.0717  0.0319  0.9063  -0.0782  0.0348 
BSFC  0.9959  -1.8149  0.8037  0.9162  -1.9601  0.8680 
BTE  0.9945  -0.1000  0.1369  0.8951  -0.1100  0.1506 
CO  0.9965  -0.0989  0.2730  0.8669  -0.1118  0.3085 
CO2  0.9950  0.1415  0.0306  0.8855  0.1571  0.0339 
HC  0.9970  0.0754  0.0292  0.8973  0.0829  0.0322 
NOx  0.9966  0.0753  0.1700  0.9867  0.0760  0.1717  
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Increasing the ethanol concentration in the gasoline-ethanol blend, 
as depicted in Fig. 17, leads to a noticeable decrease in CO emissions 
[59,60]. This is attributed to improved combustion completeness and a 
shift towards a stoichiometric air–fuel ratio. At 1300 rpm and 100% 
load, the lowest CO emission was observed for E21, with a significant 
reduction of 32.21% when the ethanol ratio increased from 0% to 21%. 
Fig. 18 shows that lower RPMs result in lower CO2 emissions due to 
reduced fuel consumption at lower power outputs. As RPM increases, 
CO2 emissions rise as the engine operates at higher power outputs, 
leading to increased fuel consumption. However, beyond 2800 rpm, 
engine efficiency decreases, leading to reduced fuel consumption and 
lower CO2 emissions. 

Fig. 19 illustrates ramp chart displaying the optimal operational 
parameters for the engine. The optimal operating conditions for the 
engine were determined to be an ethanol volume fraction of 18.5%, an 
engine speed of 3699.9 rpm, and a 100% load setting. 

Under these conditions, the engine exhibited favorable performance 
and emission characteristics, including torque of 7.71 Nm, BP of 3.87 
kW, BSFC of 0.391 kg/kW.h, BTE of 20.72%, and low emissions of CO 
(5.6 % V), CO2 (10.71 % V), HC (34.99 ppm), and NOx (2577.5 ppm). 
The calculated composite desirability (D) value of 0.887 validates the 
optimized model, indicating that the engine responses have been accu
rately optimized. Operating the engine at the identified parameters 
would yield the most desirable results, aligning with the objectives of 
the study. Experimental verification of the optimized results was con
ducted through a confirmation test and results are summarized in 
Table 11. 

The outputs comparison for the engine running at 3700 rpm, 100% 
load, and 18.5% ethanol at the same speed and load condition but purely 
fueled with gasoline is shown in Table 12. The positive values indicate a 
percentage increase and a negative sign indicates a percentage reduc
tion. The performance matrices between ANN and RSM are compared in 
Table 13. The ANN model exhibits high R2, low MRE, and RSME than 
RSM. 

Conclusion 

The ANN-2HL-15 N model was considered the best model among the 
six trained models. The model demonstrated exceptional efficiency, with 
high R2 values of 0.9952 (training), 0.98579 (validation), 0.98847 
(testing), and 0.99307 (overall). It also exhibited the lowest RMSE and 
MSE values and provided accurate predictions within the range of actual 
experimental results. The MRE ranged from 0.047% to 0.40%. These 
results highlight the ANN model’s potential for precisely predicting 
operational effectiveness and discharge levels in small-scale single-cyl
inder SI engines. The predicted operational parameters and the dis
charged pollutants were then optimized by integrating a multi-level 
historical design of RSM. 

An ethanol volume fraction of 18.5 %, engine speed of 3700 rpm, and 
100% load were identified as optimal operating conditions. Noteworthy 
improvements resulted from applying these conditions compared to 
running the engine on gasoline. Specifically, BP and BTE increased by 
19.9%, and 29.8%, respectively. Additionally, CO, and HC emissions 
experienced substantial reductions of 28.1%, and 40.6%, respectively. 
The increased oxygen and hydrogen content in the blend led to 
improved combustion, resulting in higher heat generation and elevated 
emission gas temperatures. Therefore 41.7% increase in NOx emissions 
was observed. As the test results and optimized values are closely 
associated, this research has affirmed its resilience for forecasting and 
optimizing. 

The results of this study, which looks at the emissions and perfor
mance of the ICE fueled by ethanol, are in line with SDGs 7 and 13. 
Regarding optimization and prediction, the distinctive combination of 
ANN and RSM encourages sustainable industrialization, more consci
entious consumption, and more ethical production patterns. All these 
are crucial components of SDGs 9 and 12. To make refined decisions and 

achieve improved performance and emissions, this research can benefit 
engine producers and researchers. This alliance between scholars and 
industry stakeholders supports SDG 17 (Partnerships for the Goals), 
which also encourages knowledge-sharing to advance the SDGs as a 
whole. 

For future research, dynamic model adaptation has the potential to 
enhance the capabilities of the established ANN model for ethanol- 
powered ICEs. Dynamic optimization of such ICEs by utilizing a real- 
time monitoring and control system along with an ANN predictive 
model can further enhance performance and reduce emissions. It re
inforces the significance of the study by including varying conditions in 
transient states for the optimization process. Efficiency can be enhanced 
further by powertrains that combine ethanol utilization with electric 
energy. 

CRediT authorship contribution statement 

Muhammad Usman: Conceptualization, Validation, Writing – re
view & editing, Supervision. Muhammad Kashif Jamil: Conceptuali
zation, Methodology. Waqar Muhammad Ashraf: Software, Formal 
analysis. Syed Saqib: Validation, Supervision. Touqeer Ahmad: 
Methodology, Software. Yasser Fouad: Resources, Writing – review & 
editing, Funding acquisition. Husnain Raza: Formal analysis, Writing – 
original draft. Umar Ashfaq: Investigation, Writing – original draft. 
Aamir Pervaiz: Investigation, Resources. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

No data was used for the research described in the article. 

Acknowledgments 

The authors extend their appreciation to the Researchers Supporting 
Project number (RSPD2023R698), King Saud University, Riyadh, Saudi 
Arabia for funding this research work. 

The authors also acknowledge University College London for the 
technical support and APC by the transformative agreement. 

References 

[1] Kalghatgi G. Development of fuel/engine systems—the way forward to sustainable 
transport. Engineering 2019;5(3):510–8. 

[2] Montanarella L, Vargas R. Global governance of soil resources as a necessary 
condition for sustainable development. Curr. Opin. Environ. Sustain. 2012;4(5): 
559–64. 

[3] Leach F, et al. The scope for improving the efficiency and environmental impact of 
internal combustion engines. Transportat. Eng. 2020;1:100005. 

[4] Simsek S, Ozdalyan B. Improvements to the composition of fusel oil and analysis of 
the effects of fusel oil–gasoline blends on a spark-ignited (SI) engine’s performance 
and emissions. Energies 2018;11(3):625. 

[5] Martins J, Brito F. Alternative fuels for internal combustion engines. Energies 2020; 
13(16):4086. 

[6] Mathur S, Waswani H, Singh D, Ranjan R. Alternative Fuels for Agriculture 
Sustainability: Carbon Footprint and Economic Feasibility. AgriEngineering 2022;4 
(4):993–1015. 

[7] Rony ZI, et al. Alternative fuels to reduce greenhouse gas emissions from marine 
transport and promote UN sustainable development goals. Fuel 2023;338:127220. 

[8] Acheampong M, et al. In pursuit of Sustainable Development Goal (SDG) number 7: 
Will biofuels be reliable? Renew. Sustain. Energy Rev. 2017;75:927–37. 

[9] Bhan C, Verma L, Singh J. In: Environmental Concerns and Sustainable 
Development: Volume 1: Air, Water and Energy Resources. Singapore: Springer 
Singapore; 2020. p. 317–31. 

[10] Tsita KG, et al. Next generation biofuels derived from thermal and chemical 
conversion of the Greek transport sector. Therm. Sci. Eng. Progr. 2020;17:100387. 

M. Usman et al.                                                                                                                                                                                                                                 

http://refhub.elsevier.com/S2590-1745(23)00094-6/h0005
http://refhub.elsevier.com/S2590-1745(23)00094-6/h0005
http://refhub.elsevier.com/S2590-1745(23)00094-6/h0010
http://refhub.elsevier.com/S2590-1745(23)00094-6/h0010
http://refhub.elsevier.com/S2590-1745(23)00094-6/h0010
http://refhub.elsevier.com/S2590-1745(23)00094-6/h0015
http://refhub.elsevier.com/S2590-1745(23)00094-6/h0015
http://refhub.elsevier.com/S2590-1745(23)00094-6/h0020
http://refhub.elsevier.com/S2590-1745(23)00094-6/h0020
http://refhub.elsevier.com/S2590-1745(23)00094-6/h0020
http://refhub.elsevier.com/S2590-1745(23)00094-6/h0025
http://refhub.elsevier.com/S2590-1745(23)00094-6/h0025
http://refhub.elsevier.com/S2590-1745(23)00094-6/h0030
http://refhub.elsevier.com/S2590-1745(23)00094-6/h0030
http://refhub.elsevier.com/S2590-1745(23)00094-6/h0030
http://refhub.elsevier.com/S2590-1745(23)00094-6/h0035
http://refhub.elsevier.com/S2590-1745(23)00094-6/h0035
http://refhub.elsevier.com/S2590-1745(23)00094-6/h0040
http://refhub.elsevier.com/S2590-1745(23)00094-6/h0040
http://refhub.elsevier.com/S2590-1745(23)00094-6/h0045
http://refhub.elsevier.com/S2590-1745(23)00094-6/h0045
http://refhub.elsevier.com/S2590-1745(23)00094-6/h0045
http://refhub.elsevier.com/S2590-1745(23)00094-6/h0050
http://refhub.elsevier.com/S2590-1745(23)00094-6/h0050


Energy Conversion and Management: X 20 (2023) 100438

15

[11] Kalghatgi GT. Developments in internal combustion engines and implications for 
combustion science and future transport fuels. Proc. Combust. Inst. 2015;35(1): 
101–15. 

[12] Aliramezani M, Koch CR, Shahbakhti M. Modeling, diagnostics, optimization, and 
control of internal combustion engines via modern machine learning techniques: A 
review and future directions. Prog. Energy Combust. Sci. 2022;88:100967. 

[13] Kumar S, Kumar N, Vivekadhish S. Millennium Development Goals (MDGs) to 
Sustainable Development Goals (SDGs): Addressing Unfinished Agenda and 
Strengthening Sustainable Development and Partnership. Indian J. Community 
Med. 2016;41(1):1–4. 

[14] Biermann F, Kanie N, Kim RE. Global governance by goal-setting: the novel 
approach of the UN Sustainable Development Goals. Curr. Opin. Environ. Sustain. 
2017;26:26–31. 

[15] Zhao W, et al. Technological and environmental advantages of a new engine 
combustion mode: Dual Biofuel Intelligent Charge Compression Ignition. Fuel 
2022;326:125067. 

[16] Costanza R, Daly L, Fioramonti L, Giovannini E, Kubiszewski I, Mortensen LF, et al. 
Modelling and measuring sustainable wellbeing in connection with the UN 
Sustainable Development Goals. Ecol. Econ. 2016;130:350–5. 

[17] Shrivastava N, Khan ZM. Application of soft computing in the field of internal 
combustion engines: a review. Arch. Comput. Meth. Eng. 2018;25(3):707–26. 

[18] Thodda G, Madhavan VR, Thangavelu L. Predictive modelling and optimization of 
performance and emissions of acetylene fuelled CI engine using ANN and RSM. 
Energy Sources Part A 2023;45(2):3544–62. 

[19] Khandal SV, Razak A, Veza I, Afzal A, Alwetaishi M, Shaik S, et al. Hydrogen and 
dual fuel mode performing in engine with different combustion chamber shapes: 
Modelling and analysis using RSM-ANN technique. Int. J. Hydrogen Energy 2022. 

[20] Sharma P, Chhillar A, Said Z, Memon S. Exploring the exhaust emission and 
efficiency of algal biodiesel powered compression ignition engine: Application of 
box–behnken and desirability based multi-objective response surface methodology. 
Energies 2021;14(18):5968. 

[21] Veza I, Afzal A, Mujtaba MA, Tuan Hoang A, Balasubramanian D, Sekar M, et al. 
Review of artificial neural networks for gasoline, diesel and homogeneous charge 
compression ignition engine. Alex. Eng. J. 2022;61(11):8363–91. 

[22] Yücesu HS, Sozen A, Topgül T, Arcaklioğlu E. Comparative study of mathematical 
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