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Abstract

Evidence-based medicine, the practice in which healthcare professionals refer
to the best available evidence when making decisions, forms the foundation
of modern healthcare. However, it relies on labour-intensive systematic re-
views, where domain specialists must aggregate and extract information from
thousands of publications, primarily of randomised controlled trial (RCT)
results, into evidence tables. This paper investigates automating evidence
table generation by decomposing the problem across two language process-
ing tasks: named entity recognition, which identifies key entities within text,
such as drug names, and relation extraction, which maps their relationships
for separating them into ordered tuples. We focus on the automatic tabu-
lation of sentences from published RCT abstracts that report the results of
the study outcomes. Two deep neural net models were developed as part
of a joint extraction pipeline, using the principles of transfer learning and
transformer-based language representations. To train and test these mod-
els, a new gold-standard corpus was developed, comprising over 550 result
sentences from six disease areas. This approach demonstrated significant
advantages, with our system performing well across multiple natural lan-
guage processing tasks and disease areas, as well as in generalising to disease
domains unseen during training. Furthermore, we show these results were
achievable through training our models on as few as 170 example sentences.
The final system is a proof of concept that the generation of evidence ta-
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bles can be semi-automated, representing a step towards fully automating
systematic reviews.
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1. Introduction

Over the last three decades, decision making in clinical practice has been
driven by the systematic evaluation of healthcare evidence in what is known
as evidence-based medicine (EBM). Defined as: “the conscientious, explicit
and judicious use of current best evidence in making decisions about the care
of individual patients”, EBM sets systematic evaluation standards to reduce
bias and improve quality in clinical reports [1, 2]. Its goal is to combine high
quality evidence with clinical experience and patient preference to achieve
the best possible outcomes in care.

The gold standard for evidence in the healthcare domain is the ran-
domised controlled trial (RCT) – a study where selected participants are
randomly allocated into groups to test a specific drug, treatment or other
intervention. These groups, also known as trial arms, are allocated either
the study intervention (study arm[s]) or a comparator (control arm[s]) that
could be another intervention or placebo. Both arms are then measured and
compared over a period of time on a set of predefined outcomes, primarily
efficacy and safety, to ascertain the effectiveness of the study intervention.

In the same time-frame that EBM has become the mainstay of mod-
ern medicine, the number of registered clinical trial studies has risen greatly
[3]. Many disease areas are crowded with old and new treatments, each of
which may be evidenced by several clinical trials that report varying risks
and benefits in different patient groups. This makes it difficult or simply
impossible for individual clinicians to keep abreast of the latest evidence
through the traditional method of reading papers. Instead, they must turn
to systematic literature reviews, which aggregate available evidence, predom-
inantly from RCTs, for answering predefined clinical questions and making
decision recommendations. As such, systematic reviews are extensively used
by healthcare bodies for developing clinical guidance, including the National
Institute for Health and Care Excellence (NICE) in the UK, the European
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Figure 1: An example of how an evidence table for an RCT investigation of a glaucoma
treatment might look in NICE clinical guidelines [5]. CI: confidence interval.

Medicines Agency (EMA), the U.S. Food and Drug Administration (FDA)
and the World Health Organisation (WHO).

Conducting systematic reviews is a labour intensive process: published
RCT papers must be searched for on medical publication sites such as PubMed,
Medline or UptoDate, screened for inclusion, and then read carefully to ex-
tract the relevant information into evidence tables (Figure 1). To provide an
appropriate summary, this information needs to be relatively extensive and
detailed, including data on the trial arms, patient populations and study
results. The information extraction (IE) step is generally performed us-
ing a predefined framework, which provides a consistent approach to de-
composing clinical questions, so that specific and recurring data elements
can be retrieved to answer them, the most common being the Population,
Intervention, Control, Outcome (PICO) framework [4].

While annotation software tools are available, much of the systematic re-
view process still requires manual input from domain specialists that is both
time-consuming and expensive [6, 7]. It has been estimated that the average
yearly cost of systematic reviews is about 18 million dollars for each academic
institution and 17 million dollars for each pharmaceutical company [7]. An
automated system that can extract information from RCTs and automati-
cally tabulate it into evidence tables is therefore highly desirable. However,
the real value of such a system lies in its potential to overcome some of the
key limitations of clinical guidelines [8]. New guidelines often take years to
produce, and can quickly go out of date as new evidence becomes available.
They also rarely account for the whole multitude of different patient char-
acteristics and local regulations that a decision maker may face, restricted
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by the prohibitive cost and complexity of conducting a single or multiple
systematic reviews to cover every imaginable detail. As a tool for healthcare
bodies or even decision makers themselves, automated evidence aggregation
could keep up with the pace of new publications and reduce the cost barrier to
developing personalised recommendations for specific patient characteristics
and local requirements [8].

There has been some headway towards this goal; a number of natural
language processing (NLP) studies have looked at rule-based [9, 10], statis-
tical [9, 11–13] and, more recently, neural net (NN) models [14–16] for the
automated extraction of information from RCTs, achieving varied results.
Many of these investigations have focused on identifying relevant informa-
tion at the sentence level, requiring further methods or human intervention
to process the granular detail needed for an evidence table. Extraction of
more detailed information, using techniques such as named entity recognition
(NER) [16–21] and relation extraction (RE) [22–25], has progressed greatly
over the last few years, largely thanks to improvements in the way language
is represented by machines [26–28], transfer learning [27], and the release
of large gold-standard corpora of clinical trial annotations [29]. However,
to our knowledge no study to date has utilised advanced NER and RE tech-
niques in combination to automatically extract and differentiate intervention,
outcome, and outcome measure entities into the appropriate columns of an
evidence table for a systematic review.

In the current study, we investigate automatic IE from RCTs for such
a task, focusing on the tabulation of result sentences from the abstracts of
published papers. To achieve this, we decompose the problem across an
NLP pipeline with two transformer-based components – an NER model for
extracting full-sequence entities and a RE model for identifying the relations
between them – whose output we use to construct appropriate tuples for
an evidence table (Figure 2). Specifically, we look to identify intervention,
outcome and outcome measure entities, and use their respective relationships
to sort them into tuples of the form (outcome, arm 1, arm 2 ).

In addition, we present a new gold-standard corpus used to train our
models of over 550 result sentences from across six disease areas, with both
named-entity and relational annotations. This corpus is made publicly avail-
able along with the system code in our study repository1. Evaluation of our

1https://github.com/jetsunwhitton/RCT-ART.git
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Figure 2: A simple example of how an input result sentence (1) can be processed through
NER (2) and RE (3) and then tabulated (4) to form a segment of the example evidence
table from Figure 1.

system explores performance differences gained by fine-tuning language rep-
resentation models that were pre-trained on domain-specific corpora versus
fine-tuning a model that was pre-trained on a general corpus. We demon-
strate that the system performs well across multiple NLP tasks and in gen-
eralising to unseen disease area domains. We also show that it can achieve
this performance with training on as few as 170 example sentences.

2. Background

2.1. Related work

Automating IE from healthcare publications has been the subject of con-
siderable research, across a variety of NLP methods. PICO extraction is a
key component of many of these studies, and is often a first step in more com-
plex tasks such as argument mining and question answering [30–32]. How-
ever, there are significant differences across publications in terms of the PICO
elements targeted for extraction, as well as their levels of detail, with investi-
gations tending to focus on either full sentence classification or fine-grained,
sub-sentence extraction of named entities.

2.1.1. NLP and clinical trials

NLP is becoming an increasingly valuable tool for clinical trial research,
with its applications including trial design optimisation, patient recruitment
and eligibility screening, and preparation for regulatory submissions [33].

Automated IE from unstructured data such as published articles – either
through NER (see subsection 2.1.2) or classification of full sentences – is the
first step for many of these tasks, and has undergone rapid advancement in
techniques. In 2005, Demner-fushman et al. [9] classified published RCT
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sentences containing study outcomes using an assortment of rule-based and
statistical methods. Fifteen years later, a study by Zhang et al. [15] success-
fully demonstrated how long-term short-term memory and transformer-based
architectures can be used to classify sentences across the full PICO frame-
work.

Medical concept normalisation represents another important line of re-
search that builds on IE of clinical trial data, [34–38] due to the wide varia-
tion in medical terminology that occurs even in structured repositories such
as ClinicalTrials.gov [38]. By extracting different names for the same con-
cept and mapping them to a unified term, normalisation can ensure trial data
conforms to a standardised taxonomy for downstream applications [34–38].
Sophisticated NLP techniques are facilitating new breakthroughs in this task,
such as in a study by Miftahutdinov et al. [38], who trained a transformer-
based model with a triplet loss function to map distances between medical
term mentions and positive and negative concept examples.

Automated patient matching to clinical trial eligibility criteria through
searching health records is also being advanced greatly by modern NLP meth-
ods [39, 40]. In 2010, the first system to automatically retrieve trial eligibility
information used simple pattern matching on surgical pathology reports [41].
A recent study by Hassanzadeh et al. [40] showcases how the subsequent
decade of advancements in NLP can be applied to this field, combining con-
cept normalisation with document vector embedding to semantically enrich
patient records for eligibility classification by a NN.

2.1.2. NER of PICO elements

NER involves the labelling of sub-sentence lengths of unstructured text
that describe named entities with predefined categories (e.g. labelling “as-
pirin” as “drug”). Around a decade ago, researchers using NER to extract
PICO elements generally focused on identification of only the population, in-
tervention and control categories. These studies tended to use statistical ma-
chine learning (ML) models such as conditional random fields (CRFs), sup-
port vector machines and näıve Bayes to classify noun-phrases and sentences,
and then further processed these with hand-crafted rules and regular expres-
sion matching to extract PICO elements [17, 18]. Although these approaches
have been shown to be effective to varying degrees, relying on hand-crafted
patterns and rules can limit a model’s ability to generalise. To overcome this
problem, Trenta et al. [10] restricted the use of rules and pattern-matching
in their two-stage classification system that used a statistical ML model to
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identify the syntactic heads of PICO entities (e.g. “patient” in “patient with
glaucoma” or “corneal” in “corneal implant”) in RCT abstracts. This study
included both outcomes and measure entities, and achieved encouraging re-
sults; however, classification of full-span entities was left to future research.

Another key limitation of PICO NER has been the lack of publicly avail-
able training data, with researchers such as Trenta et al. sourcing and anno-
tating their own RCT publications. Along with presenting an expensive and
time-consuming barrier to entry for this research area, the self-annotation
of text creates a number of issues; the most salient being that variations in
corpus annotation methods inhibits meaningful comparisons of system per-
formance across different studies. However, steps to overcome this barrier
were made in 2018, when Nye et al. [29] released the EBM-NLP corpus,
which contains 4,993 PICO annotated abstracts of RCTs from the MedLine
database, and was developed using a combination of crowdsourcing and ex-
pert review. This dataset has now been used by multiple studies to train
current state of the art (SOA) models, most commonly with deep NN archi-
tectures. These include: a recurrent NN trained by Brockmeier et al. [19]
for identifying PICO elements to score abstract relevancy against systematic
review questions; a long short-term memory (LSTM)-CRF model trained by
Nye et al. [21] for the PICO extraction component in their live and auto-
mated RCT classification system, Trialstreamer; and a LSTM-CRF model by
Kang et al. [20], who further labelled a subset of studies from the EBM-NLP
corpus with outcome measures to train one of the most comprehensive PICO
NER systems to date.

2.1.3. RE between PICO elements

RE is a core IE task with a variety of approaches, seeking to identify the
contextual relationships between sentences or entities, such as which outcome
measure belongs to which study arm (e.g. identifying that the outcome mea-
sure, “39.3% of patients had unacceptable intraocular pressure”, belongs to
the intervention arm that received the study drug, “latanoprost”). As the
gateway to semantic reasoning, identifying the relations between PICO enti-
ties is a complex task, especially if entities are jointly extracted, and is less
studied than NER alone, particularly prior to the development of contex-
tualised embeddings [22]. Since this milestone, however, PICO extraction
studies with this objective have begun to trend.

Initially, studies of RE with contextualised language representations fo-
cused on identifying general bio-medical entity-pair relations, rather than
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direct PICO elements. For example, studies by Lim and Kang [23] and Joël
et al. [42] sought to jointly extract gene–disease and drug–disease entity
pairs, respectively, and classify their relations, using LSTM architectures
to first extract entity pairs, and then relations via a grammar dependency
mechanism. More recently, Nye et al. [24] and DeYoung et al. [25] used
transformer-based models to extract ICO entities (ignoring population in
PICO) and their relations, using this information to construct ICO triplets,
where an intervention, control and outcome description are matched with a
comparative outcome description (e.g. intervention reduced outcome com-
pared with control).

In this study, we build on the concept of the ICO triplet, by looking
beyond comparative outcome descriptions. Instead, we seek to create triplet
tuples where outcome descriptions, the interventions for each study arm and
their individual outcome measures are divided into respective tuple positions
(i.e. columns of a table).

2.2. Transformer-based language representations

Precise understanding of context is an important challenge in NLP, partic-
ularly when it comes to the complexity of medical terminology and concepts.
Transformers [26] and transformer-based encoding architectures [27, 28] are a
relatively recent breakthrough that have greatly advanced contextualised lan-
guage representation, using attention mechanisms to embed and encode word
tokens and their contextual information into a feature vector space. Bidirec-
tional Encoder Representations from Transformers (BERT) [27] is one such
architecture, with its encoded representations considering contextual words
from both left-to-right and right-to-left of the target word token. This is
particularly important for NLP tasks such as NER and RE, which rely on
context from both directions.

Extensive research has now built on the original BERT system. Some
studies have sought to optimise performance through adapting BERT’s ar-
chitecture and training procedure, such as with the general model RoBERTa
[43]. Others have extended pre-training with enormous domain specific cor-
pora: SciBERT [44] and BioBERT [45] being two such systems in the biomed-
ical domain. Using the weights of the original BERT model as a base,
BioBERT is pre-trained on abstracts from PubMed and full text articles
from the PubMed Central archive, accounting for a sum-total of 14 billion
additional words, while SciBERT is pre-trained from scratch on 1.14 million
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papers from Semantic Scholar (over three billions words). Both models out-
perform the original BERT model on NLP tasks in the biomedical domain.
In the development of our NLP pipeline, we explore both of these domain-
specific language representations, as well as the general RoBERTa model for
comparison.

3. Dataset creation

In this section, we discuss the development of our dataset used to train
and test our RCT result tabulation system. The novel data included in
our corpus was created through annotating sentences from structured RCT
abstracts. We collected these abstracts from two sources, the Trenta et al.
[10] study dataset of glaucoma RCT abstracts and the EBM-NLP corpus
[29], which were preprocessed and cleaned before independent annotation by
three experts for the given task at hand. Our final gold-standard dataset
included over 558 annotated sentences from six disease-area domains.

3.1. Data collection

As the primary evidence in EBM systematic reviews, we used RCTs as
the source of data for our study. In particular, we decided to focus on the ab-
stracts of published RCT papers, as these are both freely available and offer
a structured summary of the trial, which should conform to the CONSORT
policies published in 2010 [46]. These guidelines outline how RCT publica-
tions should be constructed, and include a checklist to ensure all key trial
information and results are reported within the abstract, within the follow-
ing labelled sections: background, objective, method, results and conclusion.
In addition to ensuring they are a reliable RCT overview, these minimum
requirements for information mean abstracts from different studies are com-
parable in terms of included PICO entities, even across different disease-area
domains.

In line with our focus of extracting respective relationships between study
arms, outcomes and measures, we made two further key restrictions to data
collection, adapted from those used by Trenta et al [10]. First, we only
included abstracts from RCTs with a two-group study design. This was
done to simplify our task and limit the study’s scope, as sentence complexity
of reported results, as well as the number of entities and relationships to
track, increases in line with the addition of study arms beyond two. Second,
we limited our dataset to abstract result sentences that include at least one
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outcome and/or study arm and a clear, numerical measure with respective
relationships between these entities. Examples of such sentences can be seen
in subsection 3.3. These result sentences were annotated to form the novel
training and test data used for framing the NER and RE tasks as supervised-
learning classification problems.

3.2. Abstract sources

3.2.1. Trenta et al. glaucoma

Our dataset was initially composed from that of the Trenta et al. [10]
study, which similarly investigated the extraction of PICO information with
respect to study arms, albeit with a different approach that focused on
statistical-based methods. This dataset comprises RCT study abstracts in
the disease area of glaucoma, collated from PubMed with three search strate-
gies: 1) titles and abstracts including “glaucoma” and specifying the study
as an RCT; 2) titles including at least one prescription drug for glaucoma
or ocular hypertension from a predefined list, and specifying the study as an
RCT; 3) titles including at least one surgical procedure for glaucoma or ocu-
lar hypertension from a predefined list, and specifying the study as an RCT.
These queries retrieved 176 abstracts, with this set filtered using inclusion
criteria similar to those outlined in the previous section. We have included
all 99 of the resulting abstracts in our dataset, with 211 result sentences
included in our corpus.

3.2.2. The EBM-NLP corpus

To improve the generalisation capacity of our trained system, we looked
to extend our dataset beyond one disease-area domain with the recent EBM-
NLP corpus [29] for PICO extraction. The corpus is comprised of 4,993 RCT
abstracts sourced from the MedLine with a general focus on the domain areas
of cardiovascular disease, autism and cancer, covering a range of common
conditions. Unlike the glaucoma dataset of Trenta et al. [10], the EBM-NLP
corpus was developed with no particular data extraction method in mind,
and as such, had no inclusion criteria beyond requiring abstracts to describe
an RCT. Because of this, and the lack of separation between domain data,
it was necessary to screen the data for collection from this corpus, which
we accomplished through a mixture of automated techniques and manual
screening at the annotation stage. We retrieved datasets for five disease-area
domains, including autism (208 abstracts), blood cancer (74 abstracts), solid
tumour cancer (200 abstracts), diabetes (97 abstracts) and cardiovascular
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disease (159 abstracts), from which we included 45, 15, 129, 46 and 112
sentences in our study corpus, respectively.

3.3. Annotation

Our gold-standard data was created with a two-stage annotation process,
entity labelling and relationship labelling, using the Prodigy Python package
by Explosion [47]. Prodigy is an annotation tool for local-server, browser-
based text labelling across a variety of NLP tasks, and was made available to
us through a free research licence. As highlighted in the data collection sec-
tion, only result sentences with at least one numerical measure of an outcome
with respect to a treatment arm were included for annotation. Comparative
measures (e.g. an odds ratio comparison of two risk measures) are omitted.

Three medical writers, each with over five years’ experience, were re-
cruited as our expert annotators. Before each annotation task, the anno-
tators were trained on annotation guidelines, which we make available in
the supplementary Appendix. These guidelines include instructions on using
Prodigy and on each of the annotations tasks, outlining their requirements
in full, as well as any specific considerations for each of the label types, such
as rules for entity boundaries. During the training phase, the annotators also
had the opportunity to feedback on the guidelines, which were then refined
before the full independent annotation tasks were commenced. After inde-
pendent annotation, inter-annotator agreement (IAA) between the datasets
was calculated (see subsection 3.4) and a reconciliation phase, where anno-
tators resolved disagreements (see subsection 3.5), was conducted to define
the gold label corpus. A final pass over the merged dataset was conducted
to ensure that it was consistent with any new annotation rules defined to
resolve disagreements. These rules were added to the annotation guidance,
both for the final pass and for future studies that wish to follow this corpus
development methodology.

3.3.1. Entity annotation

Three types of entity (Figure 3) were labelled during this stage of the
annotation process: interventions (INTV), outcomes (OC) and measures
(MEAS). A brief overview of the annotation guidance for each of these labels
is as follows:

• INTV: label study treatments and comparators that patients have
been randomised to receive
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Figure 3: NER annotations in Prodigy.

• OC: label any description of the study results, most commonly describ-
ing measures of effectiveness and safety

• MEAS: label any clear, non-comparative, numeric measure that can
be related back to an outcome and/or intervention within the sentence

A decision was made early in the study not to distinguish between the
entity labels of interventions and their comparators, as well as their respec-
tive outcome measures (i.e. separate labels for the intervention measure and
comparator measure). While identifying these entities would make the task
of dividing data into the study-arm columns of an evidence table relatively
trivial, the similarly fine-detailed labels of the EBM-NLP corpus were shown
to significantly reduce model performance (F1 score reduction of from 0.68
to 0.46 vs broad labels) [29]. Moreover, outcome measures need to be re-
lated back to their respective outcomes, which would necessitate either even
more specific entity labels or overlapping entity spans, the latter being highly
non-trivial for NER models [48]. Instead, we sought to decompose the com-
plexity of the task by sub-dividing it between the NER and RE components of
our system. Masking the intervention–comparator division allows our NER
component to focus on classifying a simpler set of entity labels, which are
then passed to our RE component, where entities are further distinguished
through classifying the relations between entity pairs.

3.3.2. Relationship annotation

Entity relations were labelled between relevant entity pairs (Figure 4) in
each sentence, with three types of relationship labels: relations between mea-
sures and their RESpective outcome description (OC RES), and relations
between measures and their RESpective intervention arms, which we have
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Figure 4: RE annotations in Prodigy.

Figure 5: Output CSV of a gold-standard table, generated by our tabulation component
from the gold-standard NER and RE annotations.

limited to two in the current investigation (A1 RES, A2 RES). Relationship
labels were also directional, highlighting a parent-to-child dependency, with
the INTV and OC being parent entities and MEAS being the child entity.

Although further relations could have been annotated, such as the com-
parative relationship between study arms, we decided to limit complexity
through restricting these labels to the minimum needed for our tabulation
component to construct a result sentence into an evidence table (Figure 5),
with a column for each arm and row for an outcome description.
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3.4. Inter-Annotator Agreement

All three expert annotators independently labelled the full study corpus
for both annotation tasks. IAA between the three independent datasets was
calculated after each of the tasks to validate and assess reliability of the
annotations. Fleiss’ kappa, a generalisation of Scott’s pi [49], was chosen as
the statistical measure to calculate IAA. This was based on its suitability for
finite nominal-scale data and flexibility in being able to calculate agreement
between more than two annotators, unlike Scott’s pi or Cohen’s Kappa [49].
Fleiss’ Kappa assesses the observed agreement corrected for the agreement
expected by chance [49].

3.4.1. Entity annotation task agreement

IAA for this task was calculated at the token level to account for disagree-
ment in the annotation of entity boundaries, and covered all result sentences
that were included in the study and annotated. The Fleiss Kappa calcu-
lation included four categories – the three label types (OC, INTV, MEAS )
and no label given. The no label given category led to two approaches being
taken with regard to token inclusion in the calculation, based on previous
research findings that missing label categories tend to introduce substantial
bias to the Kappa coefficient [50]. The first of these approaches includes
all tokens, regardless of rating category, and resulted in a Fleiss Kappa of
0.82, which can be interpreted as almost perfect IAA. The second approach
omits tokens with no label given by any of the three annotators. The goal
of this approach was to reduce the bias introduced by this category through
removing tokens that all annotators agreed were not part of any entity, being
the most common unanimous clarification agreement by far and dispropor-
tionately weighting the calculation. The Fleiss Kappa for this approach was
0.71, indicating substantial agreement between the annotators.

3.4.2. Relation annotation task agreement

The IAA for the relation labels was calculated for all possible entity pairs
in each annotated sentence. Similarly to entity IAA assessment, the Fleiss
Kappa calculation included four categories, comprising the three label types
(A1 RES, A2 RES, OC RES ) and no label given. Again, two calculations
with different approaches were performed for the same reasons outlined pre-
viously, aiming to reduce the significant bias introduced by the no label given
class. The first of these included all entity pairs, regardless of category and
number of annotators, and resulted in a Fliess Kappa of 0.94, almost perfect
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IAA. The second approach omitted all entity pairs where all three annotators
did not map a relation (no label given), again being by far the most common
unanimous agreement and skewing the calculation. The Fleiss Kappa for this
approach was 0.84, indicating that the agreement remained almost perfect.

3.5. Disagreement

We sought to resolve disagreement between the independently annotated
datasets during the reconciliation phase. This phase involved comparing the
sentences without unanimous annotation agreement, first resolving any differ-
ences that were due to erroneous annotation or deviation from the guidelines,
with any remaining conflicts reviewed and discussed by all three annotators.
Once all disagreements in a sentence were resolved, it was added to the
merged dataset of sentences with unanimous annotation agreement.

Disagreements that warranted discussion were borne out of differences in
interpretation of the annotation guidelines and in expert opinion on what
information is necessary for constructing an evidence table. To focus these
debates on the objective of the corpus and limit annotation complexity, the
two-part question in italics below was developed as a discussion reference.

What are the minimum label requirements for each task needed to:

• Accurately represent each instance of the named entity categories?

• Divide the named entity instances into their correct respective positions
of an evidence table?

Resolutions for common and complex disagreements were defined as new
rules, which we report in the next two sections, and were added to the an-
notation guidance (see Appendix). The updated guidance was then used for
a final pass review of the merged dataset to produce the gold corpus.

3.5.1. Entity annotation disagreements

There were two common entity annotation disagreements, both related
to the outcome category. The first of these was whether to include mentions
of the time frame in which the outcome was to be measured as part of the
outcome entity (see Figure 6). One argument was to omit timings and focus
only on text describing the outcome in relation to its associated measure,
limiting the length and complexity of this entity. In addition, outcome time
frames are often mentioned separately from the main contiguous body of the
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Figure 6: An annotated result sentence with two time frames reported (dotted red lines)
for the assessed outcome, each of which have respective measures.

outcome description, adding complexity to the downstream relation mapping
task. From a clinical evidence view, however, outcome time frames are es-
sential to properly understand the action of a treatment (e.g. how a cancer
treatment affects 5-year survival). Furthermore, there are common examples
(Figure 6) throughout the corpus where measures are reported separately
across multiple time frames (e.g. IOP reduction at 3 month and 6 months),
making it impossible to separate these measures into a table without high-
lighting each time frame individually. Therefore, a decision was made to
highlight outcome time frames in addition to their main description body,
with both highlighted entities being mapped to the same respective measure
where necessary.

The second common disagreement was with regard to phrases referring
back to, or expanding on, separate outcome descriptions (see Figure 7). The
annotation guidance instructed the annotators to highlight these referential
phrases in sentences where the outcome description body was not present,
but there was a lack of consensus over sentences where these references and
their respective outcome body are both present. One argument, in line with
the annotation guidance, was to highlight only the span of text that is used
to semantically identify the measures related to the outcome (e.g. only high-
lighting success in “success was achieved by 20 patients when defined as an
IOP lowering of 3 mmHg”).

This was decided against, under the rationale that referential phrases
and outcome description are often equally important in identifying respective
measures and putting what they are measuring into context. It was therefore
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Figure 7: An annotated result sentence with a referential phrase (dotted red lines) referring
back to an outcome description that occurs in the same sentence.

decided to highlight both referential phrases and their respective outcome
description, with the two separately labelled entities each being mapped to
any jointly respective measures.

3.5.2. Relation annotation disagreements

There was just one recurring disagreement during the reconciliation phase
of the relation annotation task. This was with regard to the somewhat un-
common occurrence of both study arms achieving the same measurement for
the same outcome (see Figure 8). This set of cases was overlooked in the
guidance, and the concern was that mapping separate study arms to the
same outcome measure would cause tabulation issues. It was noted, how-
ever, that the measure entity should just be repeated in each respective arm
column of the table, resulting in the decision to map both arms to the single
measure entity in these cases.

3.6. Dataset statistics

The total annotation statistics of the gold corpus can be seen in Table 1.
The total size of the gold corpus was 558 sentences, comprising 3,541 entity
annotations and 3,182 relation annotations.

Making up 41% of the entity labels, MEAS was the common annotation
for this task, followed by INTV (31%) and OC (28%). This slight imbalance
in favour of measurements is likely due to them being the only mandatory en-
tity for a sentence to be included in the corpus, with most sentences including
at least two MEAS labels.

The OC RES label was the most common relation annotation by a signif-
icant margin at 58%, occurring at over twice the rate of the A1 RES (23%)
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Figure 8: An annotated result sentence where both arms achieved the same measure
(dotted red line) for the outcome hypotony.

Table 1: Total number and proportions of entity and relation annotations in the gold
corpus.

and A2 RES (20%) labels. The primary reason for this imbalance is due to
each outcome usually including at least two mappings to respective measures
for each study arm, with the number of mappings doubling if the outcome
time frame was annotated separately from its main description body.

4. System design and implementation

We discuss the implementation and design of our NLP pipeline for RCT
result sentence tabulation in this section. Our system was designed to house
two key components – a model for NER of INTV, OC and MEAS elements
and a model for extracting the relations between them – both built on con-
textual BERT-based language representations. The output of these models is
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then processed by a tabulation module, which returns result sentence tables
in CSV format. In addition, we present Python functions and classes used in
data collection from the EBM-NLP corpus, preprocessing and for adapting
inbuilt spaCy components for our pipeline.

4.1. System architecture design and overview

Our extraction system was developed in Python 3.9.6 with the open-
source NLP library spaCy (version 3.1). spaCy includes a variety of NLP
tools for tasks ranging from rule-based sentence segmentation to BERT-based
NER and was developed for building custom language processing pipelines
[51, 52]. It also connects to the HuggingFace transformer library, which
allowed us to import different BERT-based language representations for use
in our models, including SciBERT, BioBERT and RoBERTa.

An overview of the full architecture of our study system can be seen in
Figure 9, and consists of five key components. The first is a data collection
module for retrieving abstracts from the EBM-NLP corpus and Trenta et al.
study dataset, and processing them for annotation with Prodigy. The second
component is a preprocessing module that prepares the annotated data for
training our spaCy pipeline models. Performing the key tasks of our system,
these models form our third and fourth components and are for NER and RE,
respectively. The final, fifth component tabulates result sentences, applying
both the NER and RE models sequentially to input text, outputting these
tables as CSV files.

4.2. The data collection and preprocessing components

Built as a Python module, our data collection component has two parts:
a class for screening and sorting abstracts from the EBM-NLP corpus as
outlined in subsubsection 3.2.2; and a collection of functions for segmenting
retrieved abstracts into sentences and processing them for annotation with
Prodigy. The preprocessing component was also built as a Python module,
and was used to process our gold-standard dataset after annotation into
training and test input for our models.

Before preprocessing began, single domain subsets of the gold annotated
dataset were created for cross-domain testing. The full gold corpus and
individual domain datasets were then converted from the JSONL format
output by Prodigy to the spaCy Doc format – the primary data-structure
used by our models. This format natively comprises full sentence texts and
their tokens, as well as labelled entities, but had to be extended with a custom
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Figure 9: The architecture of our full study system.
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attribute for relation labels. Before the training phase, all datasets were split
into training (train), development (dev) and test sets, with sentence order
randomised before the split.

4.3. The NER component

Our NER component was developed as a spaCy pipeline, with a language
representation model feeding into the NER prediction model provided by
the library. Importantly, this NER extractor works with interchangeable
language representations, including pre-trained transformer-based models.

4.3.1. Design

The spaCy NER model has a transition-based parser architecture, in-
spired by the chunking model from Lample et al. [53], and uses the BILOU
tagging scheme, which reportedly promotes better system performance than
its simpler BIO counterpart [54]. In the Lample et al. model, a sequence of
tokens is incrementally passed from a buffer to an entity stack for labelling
or straight to the output list, with a greedy algorithm choosing the optimal
action to take. The spaCy adaptation of this architecture has the following
BILUO-directed actions to choose from:

Begin: Begin a new entity by adding token to stack

In: Continue the current entity by adding token to stack

Last: Entity label stack with current token as last word, move stack
to output

Unit: Label current token as a single-word entity and move to output

Out: Move current token straight to output without marking as entity

We describe an optimal set of actions with an example sentence from
the glaucoma domain in Figure 10. The scores for each possible action are
calculated at each time step by feeding a representation of the current state
of the stack and buffer to a multilayer perceptron, with the best action chosen
until the algorithm reaches a termination state. The state representation is
derived through combining the word embeddings of the tokens that make
up the entity stack and the buffer, which are passed to the transition-based
parser layer from an upstream language representation model, in our case a
pre-trained transformer model.
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Figure 10: Example of optimal actions taken as an input sequence is passed into the
dependency parser.

Components in a spaCy pipeline are built with “listener” layers that
allow them to receive word embeddings from layers made of interchangeable
language models. An overview of the layers of this model design is outlined
in Figure 11. The listener layer of the NER model is also used for back-
propagation, passing the error gradients used to adjust the model weights
back upstream to fine-tune the language representation layers. Gradients are
calculated from a loss function that scores entity prediction errors per action
against the target gold annotations, with all layers of the NER component
being updated during the target task.

4.3.2. Implementation

The pipeline for our NER model was implemented as a spaCy config file,
a feature of the library that facilitates and centralises pipeline design and
modularity, where each layer of the model is defined, along with their hyper-
parameters for training and the random seed for weight initialisation. There
are a large number of variables that can be adjusted within the spaCy config
system for customising models. Here, we describe the main config choices
made in the implementation of our system, and refer the reader to the spaCy
library documentation for settings not discussed [55].

For our transformer-based language representation layers, we experiment
with three pre-trained BERT models: SciBERT and BioBERT, both exten-
sively trained on medical study abstracts, and the generally trained model
RoBERTa, which was included for comparison. We chose the “cased” ver-
sion of all these models, where the capitalisation of words is considered, as
these have been shown to perform better for NER, with evidence for this in
the medical domain [56]. A separate config was created for each pre-trained
model.
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Figure 11: Schematic of the NER component architecture.

Our hyper-parameters for training were initially set to match those used
by Devlin et al. [27] for fine-tuning the original BERT model. These included
a training example batch size of 32, a dropout rate of 0.1 and a learning rate
of 5e-5 with Adam optimisation [57] used to fine-tune the system. After
experimenting with a limited number of alternative hyper-parameter values
(batches: 16, 32, 64, 128; drops: 0.1, 0.2, 0.3; learning rates: 5e-5, 3e-5,
2e-5), in our final model configuration we adjusted the batch size to 64 and
the dropout rate to 0.2, both gaining us incremental performance increases
on our test data.

Models were trained with early stopping, activated by a patience param-
eter of 1,000 steps with no performance gains on the dev set, with a limit
of 20,000 steps and no cap on epochs (the spaCy framework is uncommon
in using steps rather than epochs for patience). A single machine was used
to train all models, operating with a GeForce RTX 3080 GPU (10GB video
RAM) and 16GB of RAM. Training time for fine-tuning on the full study
corpus train set was around 6 minutes for each of the base models.
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4.4. The RE component

Similar to our named-entity extractor, the RE component of our system
was built as a spaCy pipeline, again using BERT-based language represen-
tations. However, as the library does not include an inbuilt RE model, we
needed to implement it as a custom component of the pipeline, which we
adapted from a spaCy project template [58].

4.4.1. Design

Designed with multiple layers, our RE model is built with a multi-label
classification objective, where it scores a probability for each of our rela-
tion labels between entity pairs within the input sequence. As with our
NER model, a listener layer passes word embeddings from a downstream
transformer. In this case, however, two extra layers are required before clas-
sification. The first extracts word vectors for entities (checking the entity
span labels of the Doc object), with the vectors of multi-token entities being
“pooled” into a single vector, by taking their mean. The second pairs po-
tential relation instances of entity pairs, in both directions to assess parent
(i.e. subject) and child (i.e. object) status, outputting these instances as
a tensor of the paired entity vectors. For classification, the output tensors
are forwarded to a linear layer, and then to a sigmoid activation function
for multi-label classification. The final output is a probability matrix for
each entity pair across all of the defined relation labels, and both possible
parent–child directions of the pair. A full overview of this architecture can
be reviewed in Figure 12.

The relation-type label of entity pairs is identified by the highest prob-
ability in the matrix, with a hyper-parameter probability threshold value
being set for the existence of any relation at all (e.g. if no probability in the
matrix is above P (0.5) then no relation is classed). This binary classifica-
tion is performed on the matrix output of the model architecture above by
a downstream component (see next section) or at system evaluation.

For training, the loss function is calculated as mean square error, tak-
ing the difference between predicted probabilities of the output matrix and
gold-standard annotations, where probabilities are set to one for existing re-
lationships and zero for non-existing relations. Again, back-propagation is
used to train each layer of the pipeline, with the listener layer passing gradi-
ents back upstream to fine-tune the transformer language representation.
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Figure 12: Schematic of the RE component architecture.
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4.4.2. Implementation

Two Python modules underlie the RE component architecture outlined in
the previous section: a module for the functional layers of the RE model, built
using the Thinc library (an ML library cousin of spaCy, built on Pytorch),
and a pipe module that integrates these layers for use in a spaCy pipeline.
Functions within these modules are made accessible as model layers to the
spaCy config system, which as with the NER component, was used to define
and train the RE component.

We again created three separate configs for testing different language rep-
resentation layers – one for each of the same pre-trained BERT models used in
the NER component. For the layers of the RE models itself, we experimented
with different criteria for selecting an entity pair instance for classification,
first looking at a more restrictive approach that only selected pairs of interest
([OC and MEAS] or [INTV and MEAS]). However, this was found to reduce
model recall performance by around 10% without improving precision. As a
result of this exploration, the final model had a relaxed function for entity
pair instances, retrieving all possible combinations of separate entities within
a certain distance of 100 tokens of each other.

Hyper-parameter tuning was explored with the methodology we used for
the NER component, which resulted in the selection of the same parameters
for training (batch size: 64; dropout rate: 0.2; learning rate: 5e-5 [Adam Op-
timisation [57]]). The RE models were also trained using early stopping with
the same step and epoch parameters, and on the same machine. Training
time for fine-tuning on the full study corpus train set was around 5 minutes
for each of the base models.

4.5. The tabulation component

The final component structures the full pipeline for the task of tabulating
result sentences, using the joint predictions of our NER and RE components.
Developed as a Python module, it processes batches of input sentences in Doc
format over three stages. The initial two stages load the trained models to
sequentially extract the entities and relations of the full input batch, adding
these predictions to the Docs. These are then forwarded to the tabulation
function, where the entity and relation labels are used to parse the sentence
content into a structured table, which is outputted as a CSV file.

The tabulation function is where the probability threshold hyper-parameter
for a detected entity–pair relation is set. As would be expected, a lower
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threshold improves recall performance, while a higher one improves preci-
sion. We found that the optimum threshold as measured by F1 score was
0.5, which was selected for the final system.

5. Evaluation

In this section, we report the results of our system evaluation across five IE
tasks: NER, RE on gold-annotated entities, joint NER + RE, tabulation with
exact tuple matching and tabulation with relaxed tuple matching. Test data
performance with different BERT-based language representations is assessed
for the full dataset across all domains. We also investigated our system’s
ability to execute these tasks when trained with a varying number of examples
and at generalising to unseen disease area domains. The section is closed with
an error analysis of the system models.

5.1. Evaluation methodology

The system was evaluated against gold-standard labels in terms of pre-
cision (P ), recall (R) and their harmonic mean, F -score – the latter being
calculated with no emphasis on either of the former (F1 score). For our
multi-label classification tasks (NER, RE and joint NER + RE), due to our
labels being slightly imbalanced (see subsection 3.6) and no priority differ-
ences between classes, we used micro-averaging to obtain F1 scores, with true
positives (tp), false positives (fp) and false negatives (fn) being summed
globally across classes. Only NER could be evaluated using inbuilt spaCy
library tools, which meant custom evaluation functions had to be developed
for assessing the other system tasks. Here, we give a brief outline of how
each of these was measured.

5.1.1. NER evaluation

The inbuilt spaCy NER evaluation function assesses tp, fp and fn on a
per-entity basis with exact match. That is, it does not count partial matches
of multi-token entities as tp. For the NER task scores, all of the exactly
matched entities across classes are marked as tp, with the set of predicted
not in gold counted as fp, and the set of gold not in predicted counted as
fn.
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5.1.2. RE evaluation on gold entities

To investigate the performance of its underlying model, the RE task
was assessed on test data with gold-standard entity annotations. Predicted
entity-pair relation labels (above probability threshold of 0.5) are counted as
tp if they matched the gold relation label of the same entity pair tuple (or-
dered tuples: (a, b) and (b, a) represent different parent–child relationships).
Predicted class labels not matching the class of the reference annotation are
marked as fp. Those that do not breach the classification threshold, but
were in the list of gold relation annotations are marked fn.

5.1.3. Joint NER + RE evaluation

The joint NER + RE task involves first predicting named-entities within
an input sequence and then the relations between these predicted entity pairs.
Evaluation of this task was somewhat more complex than the prior two, and
was achieved through extending the RE evaluation function. First, all entity
pairs are checked to see if they have relation annotations within the gold
dataset. Those that do, are passed through to the RE evaluation function
and assessed in the same way as previously described. Entity pairs not within
the gold dataset are checked to see if they have relations above the prediction
threshold, and classed as fp if they do. Predicted entities with no relation
and not part of a gold annotated entity-pair (not all gold-labelled entities
have relations) are evaluated with the prior NER evaluation methodology
described.

5.1.4. Tabulation strict tuple matching

To assess the overall performance of the full system in tabulating RCT
result sentence, tuples (order: outcome, arm 1, arm 2 ) from the predicted
output CSV files were matched against tuples from corresponding (same
input sentence) gold-standard CSV files, with two matching criteria. The
strict criteria required for tuples to exactly match, both in order and entries,
for the prediction to be marked as tp. Predicted tables without an exact
match were counted as fp. The system outputs a CSV for every input
sentence, so the number of predicted and gold CSVs always match, but their
number of tuples (rows) could differ. Predicted tuples that were not within
the gold CSV were counted as fp, while tuples in the gold CSV that were
not in the predicted CSV were counted as fn.
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5.1.5. Tabulation relaxed tuple matching

The second tuple-matching criterion was implemented after inspection of
output CSVs found that, while not matching exactly, many predicted entities
overlapped with gold CSV entities (see subsection 5.6). Inspired by the Type
Matching criterion used by a number of biomedical entity studies [52, 59, 60],
relaxed tuple matching marks a predicted tuple as tp if the entities have some
token overlap with those of the corresponding gold tuple, and match its order.

5.2. Experimental settings

Investigation-specific partitions of the study corpus were made to train
and test models for our experiments. The size, composition, and “train, dev,
test” split of these partitions are outlined in the description of their respective
experiment in the following sections.

The system architecture, model training implementations and hardware
outlined section 4 remained the same for all investigations. Each experiment
was conducted over ten runs, with model weights initialised with a different
random seed for each run2, implemented in independent spaCy config files,
which we make available in our study repository. Mean performance scores
for each experiment were calculated by averaging model performance scores
across the ten runs and are reported with standard deviations (SD).

Repeated measures ANOVA was used to compare the mean F1 score per-
formance of the different base language models, BioBERT, SciBERT, and
RoBERTa. For tasks with a significant ANOVA result, post-hoc pairwise
comparisons were conducted to test for significance between each model pair
using the Bonferroni correction to account for multiple comparisons. Statis-
tical significance was set at an alpha threshold of 0.05.

5.3. System performance on the all-domain dataset with different language
representations

Results across the five tasks for each BERT-based version of our system,
trained and tested on the all-domains dataset (70:10:20 train, dev, test split),
can be found in Table 2, and are given in terms of mean P , R and F1 scores.

The highest mean F1 scores for the independent tasks of NER and RE on
gold entities were 0.86±0.01 (BioBERT) and 0.80±0.01 (BioBERT), respec-
tively. For the dependent tasks, the highest scores were 0.73±0.01 (BioBERT)

2Random seeds 3, 18, 23, 34, 67, 76, 89, 234, 263 and 452.
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Table 2: System performance results of the five IE tasks for each BERT-based language
representation trained on the all-domains test set. We report mean and SD values from
10 runs.

for joint NER + RE and 0.67±0.02 (BioBERT) for tabulation with strict en-
tity matching. As these latter two tasks are downstream in the pipeline, the
first dependent on the NER component and the second dependent on joint
NER + RE, their respective performance decreases are to be expected. The
highest F1 score for relaxed tabulation, however, was 0.81±0.02 (BioBERT),
likely reflecting the impact of loosening performance dependency on the up-
stream task of NER.

Repeated measures ANOVA revealed significant differences between the
mean F1 scores of the base language models across four of the five tasks: RE
on gold entities [F (2,18)=9.97, p=0.0012], joint NER + RE [F (2,18)=4.18,
p=0.0322], strict tabulation [F (2,18)=17.26, p=0.0001] and relaxed tabula-
tion [F (2,18)=10.36, p=0.0010].

Post-hoc pairwise comparison across these tasks showed that the mean
F1 scores for BioBERT reported above were significantly higher for RE on
gold entities than those of SciBERT [0.79±0.01, p=0.0075] and RoBERTa
[0.79±0.01, p=0.0043]. BioBERT also achieved significantly higher mean
scores for strict tabulation than both SciBERT [0.63±0.02, p=0.0007] and
RoBERTa [0.63±0.02, p=0.0002], as well as for relaxed tabulation [SciBERT:
0.78±0.02, p=0.0041; RoBERTa: 0.78±0.02, p=0.0004]. However, no signif-
icant pairwise results were found between any of the model architectures for
the joint NER + RE task, despite a significant ANOVA reading, potentially
due to the conservative nature of the Bonferroni correction. There were no
significant differences between SciBERT and RoBERTa on any tasks.

These results only partially follow our expectations set by the litera-
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ture, where domain-specific BERT models tend to perform better on in-
domain tasks [44, 45], with SciBERT’s performance being almost identical
to RoBERTa’s across all tasks. One explanation could be that RoBERTa has
an improved training procedure that has been shown to improve its perfor-
mance versus the original BERT system [43], potentially offsetting SciBERT’s
domain-specific performance gains. Another reason, and perhaps more likely,
is that the pre-training dataset of RoBERTa is around ten times the size of
that of SciBERT, which has been demonstrated to be a key hyperparame-
ter for downstream tasks [43]. BioBERT has a pre-training corpora around
five times larger that that of SciBERT, which may be why it frequently out-
performed the other models, balancing domain-specificity with pre-training
dataset size. Finding an optimum threshold between these two factors may
be an interesting area for future exploration.

The performance differences between the base language models on the
independent classification tasks were marginal, with mean F1 score differ-
ences not exceeding 0.1 points. These results were only significant for the
RE on gold entities task in favour of BioBERT in both pairwise comparisons,
revealing that this base model’s advantage may lie in its ability to work with
relational context between medical terminology. For the tabulation tasks, the
performance gap between BioBERT and the other two architectures widens,
with the F1 scores for BioBERT 0.04 points higher than those of both SciB-
ERT and RoBERTa for strict tabulation and 0.03 points higher for relaxed.
These finding indicate that small differences in performance at the indepen-
dent task stages are amplified downstream in our system.

5.3.1. NER performance on individual class labels

System performance at classifying the individual NER class labels of the
all-domains test set can be viewed in Table 3.

The INTV label was the highest performing classification with a mean
F1 score of 0.93±0.01 (BioBERT), followed by MEAS with 0.89±0.01 (SciB-
ERT) and, lastly, OC with 0.76±0.02 (BioBERT). These differences are sim-
ilar to those in the literature, with outcomes tending to be one of the harder
PICO elements to classify, likely due to high variation in entity length and
poor inter-annotator agreement on their boundaries [29]. Furthermore, INTV
and MEAS entities tended to be shorter and follow more consistent lexical
forms.

Comparing individual NER class label performance across the base model
architectures, significance was only found for the OC label [F (2,18)=5.51,
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Table 3: Performance of the NER component for individual entity labels on the all-domains
test. We report mean and SD values from 10 runs.

p=0.0136] by repeated measures ANOVA. This result went against our pre-
diction that RoBERTa as the general model would struggle with the INTV
and MEAS labels, due to the former being composed of highly domain-
specific tokens, such as generic drug names, and the latter being domain-
specific constructions of numbers and units.

Post-hoc pairwise comparison between the models for the OC label found
a significant difference between the performance of BioBERT versus SciB-
ERT [0.72±0.02, p=0.0049], with the former having a 0.04 point higher mean
F1 score than the latter. Again, this may be due to its higher pre-training
dataset size. No significance was found for the other two pairwise compar-
isons.

5.3.2. RE performance on individual class labels

We present system performance at classifying the individual RE class
labels when given gold-standard entities on the all-domains test set in Table
4.

Best classification performance was the same for both the A1 RES and
A2 RES labels (interventions mapped to their respective measures by arm) at
0.90±0.02 mean F1 score (both BioBERT), dropping to 0.73±0.01 (BioBERT)
for the OC RES label (outcome mapped to respective measure). As gold-
standard entities are provided to the RE component for evaluating this task,
it is unclear whether the performance drop for the OC RES label is due to
the outcome entity itself or the context linking it to its measure (or, perhaps
more likely, a combination of the two).

Significant differences between mean F1 scores were found between the
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Table 4: Performance of the RE component for individual relation labels on the all-domains
test set. We report mean and SD values from 10 runs.

three architectures for two of the three RE labels, A1 RES [F (2,18)=10.24,
p=0.0011] and A2 RES [F (2,18)=4.73, p=0.0224]. Comparing the language
representations on these two labels with pairwise comparisons, BioBERT
performed significantly better on the A1 RES label than both SciBERT
[0.86±0.02, p=0.0049] and RoBERTa [0.87±0.01, p=0.0068] by 0.04 and 0.03
mean F1 score points, respectively. BioBERT also performed significantly
better than SciBERT on the A2 RES label [0.87±0.02, p=0.012] with a 0.03
point higher mean F1 score, but was not significantly better than RoBERTa.
The was no significant difference between SciBERT and RoBERTa on either
of the labels.

We hypothesise that BioBERT’s superiority on A1 RES and A2 RES la-
bels may be due to RE placing a greater emphasis on the contextual words
around named entities, such as verbs and prepositions, which hold syntactic
information such as subject–object ownership (e.g. [INTV] achieved [OC] of
[MEAS]), and are generally not domain-specific. Therefore, being pre-trained
on the original general BERT corpora in addition to medical literature po-
tentially positions BioBERT more favourably to identify relations between
medical entities. This would also explain the comparatively poor perfor-
mance of BioBERT in mapping outcome relations, where the proportion of
domain-specific tokens in outcome entities (generally formed of descriptive
phrases that mix medical and non-medical words) is lower than in interven-
tion entities (primarily formed of specific drug names).
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Figure 13: System (BioBERT language model) performance results across the five IE
tasks after training on varying proportions of the all-domains training set. We report
mean values from 10 runs and SD as error bars.

5.4. All-domain performance with respect to the number of training examples

Figure 13 shows the impact of varying the number of training examples
on the mean F1 scores of the five evaluation tasks.

This investigation was conducted by taking proportions of the all-domains
training set from 5% to 10% and then in increments of 10% to maximum,
with an NER and RE component trained on each size stratification. As the
base language model that performed best on all five tasks, particularly the
strict tabulation task, we selected the BioBERT model for this experiment,
as well as out-of-domain testing and domain comparison testing in the next
sections.

Across NER and all of the dependent tasks, mean F1 score improved as
the proportion of the original training set was increased, rapidly from 5%
of the set to around 30%, where performance gains began to plateau with
diminished returns from 40% to 100%. For the independent RE on gold
entities task, performance at 5% was still surprisingly high with a mean F1

score of 0.72±0.01, demonstrating that relatively high performance for this
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task can be achieved by fine-tuning BERT-based models with as few as 27
example sentences.

The NER, joint NER + RE and strict tabulation tasks were the most sen-
sitive to size adjustments in training samples, with the greatest performances
dips at 5% and the steepest gradients of ascent as more training examples
were introduced. This is unsurprising, particularly for joint NER + RE and
strict tabulation, which are downstream of the independent tasks. Upstream
errors propagate further errors as they are passed down the pipeline, reducing
the performance of each downstream task (e.g. one missed entity → two re-
lated relations missed → three related tuples missed). This may explain the
drop in performance across all downstream components at 50% training set
proportion, with the slight decrease in RE performance at this stratification
being amplified in each of the tabulation tasks.

From 20% of the all-domains training set, the relative performance dif-
ferences between tasks begin to resemble those of the full set. Interestingly,
relaxed tabulation closely tracks the performance of the RE on gold entities
task from this point to the full training set, perhaps due to being less strictly
dependent on the performance of the NER component.

5.5. Generalisation performance across domains

In this section we explore generalisation of our system across disease
areas, redistributing the all-domains dataset into train and test sets that
are separated by domain (with the dev set including the same domains as
the train set), and retraining our BERT-based (BioBERT) NER and RE
components for each experiment.

5.5.1. One unseen disease area domain

Figure 14 shows mean F1 score performance on each of the domain areas
when removed from the all-domains dataset and used as an unseen test set,
with the models being trained on a randomised set of all other domains (e.g.
train set domains: blood cancer, cardiovascular disease, diabetes, glaucoma;
test set domain: autism). We report relatively comparable performance
across domains on all five tasks, with the unseen cardiovascular disease test
set having the greatest number of lowest scoring tasks (4 tasks). This result is
somewhat unexpected, as cardiovascular disease is the broadest domain and
has significant overlap with the other domains in terminology, particularly
diabetes. It may be that this domain gives the system a performance ad-
vantage on narrower, cardiovascular-related disease domains, while examples
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Figure 14: System (BioBERT language model) performance results of the five IE tasks on
different unseen disease-area domain test sets. We report mean values from 10 runs and
SD as error bars.

from these more specific domains do not impart enough information about
the broad disease area as a whole.

Interestingly, autism was the only disease area where performance on the
RE on gold entities task was higher than NER. This may be due to all five
of the other disease area being more widely researched than autism, with a
wider pool of studies across a wider range of patient groups. Sentences from
these unseen domain test sets may therefore have greater variance in the way
they report results, with lower consistency in word dependencies impacting
on RE performance.

5.5.2. Varying the number of training domains

To explore the importance of training with a domain variety, we trained
our system on datasets composed of abstract sentences from a varying num-
ber of disease areas.

Three training datasets were composed for this investigation: glaucoma
alone (210 randomised examples); glaucoma and cardiovascular disease (105:105
randomised examples); and glaucoma, cardiovascular disease and solid tu-
mour cancer (70:70:70 randomised examples). These domains were selected
based on their size, allowing for training sets large enough (¿30% of all-
domain set) to offset the effect of the number of examples on performance.

We show the results of training on these varying domain sets in Figure
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Figure 15: System (BioBERT language model) performance on the autism test set as
training domain variety increases. We report mean values from 10 runs and SD as error
bars.

15, where the autism test set was chosen as the least-related disease area.
From one to two domains, all five system tasks see substantial mean F1 score
increases, including a 0.16 point increase for strict tabulation. From two
to three domains, we see only moderate performance increases across the
tasks, with just 0.03 point improvement on strict tabulation. This indicates
that only two domains may be enough for reasonable out-of-domain system
performance, with returns diminishing as domains are added beyond this
point. More data is needed across more domains, however, to confirm this in
a future study.

5.5.3. Comparison of single domain performance

We compare the performance of our system when trained and tested on
individual domain disease areas in Figure 16.

We again chose the largest three domains for comparison, for the same
reasons as outlined in the varying domains section, with each capped to 112
examples (70:10:20 train, dev, test split) for meaningful comparison.

Glaucoma was the strongest performing dataset out of the three domains,
with mean F1 scores similar or exceeding (RE on gold entities task) those
achieved by the system on the all-domains dataset.

Cardiovascular disease performed relatively poorly on the NER (0.72±0.03)
and RE on gold entity tasks (0.61±0.03) when compared with the other two
disease areas, as well as on joint NER + RE extraction (0.61±0.04) although
by a lower margin. As discussed in subsubsection 5.3.1, cardiovascular dis-
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Figure 16: Comparison of system (BioBERT language model) performance after training
on different disease areas with the same number of examples, tested on an unseen test set
from same domain. We report mean values from 10 runs and SD as error bars.

ease is the broadest domain, grouping a number of different diseases, likely
giving it higher variance in result reporting and sentence construction. This
could account for the lower RE performance, with less consistent word de-
pendencies between the entity pairs for the model to learn from.

Solid tumour cancer achieved higher NER and RE on gold entity per-
formance scores than cardiovascular disease, but had the lowest scores for
the tabulation tasks out of all three domains. Again, this makes sense when
considering the disease area. In terms of NER, RCT objectives in oncology
are often limited to overall survival, progression-free survival, response rate
and safety, while many interventions, particularly chemotherapy, have been
in use for years and feature repeatedly across studies. However, study struc-
tures in oncology are complex, with different combinations of interventions
given and tested across cycles, making it difficult for the system to extract
all of the correct information into correctly ordered tuples.

5.6. Error analysis

In this section, we take a closer look at the common errors occurring
within the two main IE models in our system.

5.6.1. NER errors

We present a normalised confusion matrix for our discussion of NER errors
in Figure 17, which displays token level classifications of the BioBERT-based
component on the all-domains dataset.

38



Figure 17: Normalised confusion matrix of token-level NER predictions on the all-domains
test set.

Figure 18: Incomplete OC label error. Gold-standard OC labels are in green, while the
predicated label is in red.

Incorrect negative classifications are the most common type of misclas-
sification error, particularly affecting the OC label. This is reflected in the
commonly observed issue of the model incompletely identifying the tokens in
these entities (see Figure 18), likely due to the reasons discussed in subsub-
section 5.3.1, with outcome entities variable both in length and annotator
boundary agreement.

Another commonly observed error, reflected in Figure 18, is the misclas-
sification of numeric tokens with the MEAS label, primarily occurring with
intervention entities which includes concentration values (see Figure 19), or
non-entity numbers. For the former issue, a post-processing rule that looks
one token ahead of interventions for concentration values may be worth in-
vestigating.

5.6.2. RE errors

A normalised confusion matrix is also presented for RE errors in Figure
20, which displays the entity-pair RE classifications of the BioBERT-based
component on the all-domains dataset.
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Figure 19: MEAS misclassification error. Gold-standard INTV labels are in green, while
the predicated label is in red.

Figure 20: Normalised confusion matrix of entity-pair RE predictions on the all-domains
test set.
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Figure 21: Negative relation classification error. The model only successfully recognises
one relation (pink), and misses five (green).

Negative classification of existing relations is the most common type of
error, and again occurs most frequently in outcomes and their respective
measures. As discussed previously, in disease areas like solid tumour can-
cer, trial structure can make mapping relations between outcomes and their
measures particularly difficult. In Figure 21 we can see a case of this, where
the system fails to categorise a relation between the number of chemotherapy
cycles and the proportion of patients who received them.

While reducing the probability threshold of relation classification would
reduce the fn error rate, during the implementation stage it was found to
impact too greatly on tabulation precision. Presumably, this is because the
process of sorting entities through their relations is more sensitive to increases
in fp errors, where one incorrect entity results in a fp for the whole tuple.

At the current threshold, positive relationship classes tend not to be mis-
classified as other positive relationships, with A1 RES or A2 RES classes
very occasionally being classified as OC RES, and vice versa. Surprisingly,
respective arm-1– and arm-2–measure relationships had zero instances of be-
ing miscast as each other, considering the similarity of these relations.

6. Conclusion

In this study, we address a key problem in automating systematic re-
views with a system that can tabulate result sentences from published RCT
abstracts. Our NLP pipeline achieves this task in three stages: extracting
interventions, outcomes and their measures as named entities; identifying the
respective relations between them; and using this relational data to sort enti-
ties into the appropriate outcome, arm 1 and arm 2 columns of an evidence
table.

For the two NLP tasks central to our system, NER and RE, we took a
transfer learning approach. Through fine-tuning BERT-based transformer
models, pre-trained on billions of domain-specific tokens, our system embeds

41



and encodes input sentences into context-rich language representations for
these classification tasks. We have also developed an extensive corpus of over
550 RCT result sentences across six disease areas for training these models
and testing them, as well as our whole system.

6.1. Results discussion

In its primary task of tabulation, our system (BioBERT-based mod-
els) achieved a mean F1 score of 0.67±0.02 with strict entity matching and
0.81±0.02 with relaxed. If we consider the general NLP tasks of the system
against the literature, our mean F1 scores are relatively high for domain-
specific NER (0.86±0.01), RE (0.80±0.01) and joint NER + RE (0.73±0.01),
on a test set that includes six different disease area domains; however, the
data inclusion criteria of our study must be considered when making such
comparisons. We also found that our system generalised well when tested
on disease area domains unseen during training, with as few as two domains
needed within the training set to achieve this performance. Furthermore, our
overall results obtained on the all-domains dataset can be achieved by fine-
tuning the layers of our models with relatively small training sets of around
170 example sentences.

In the context of the Trenta et al. [10] study, from which we derived these
criteria and our glaucoma dataset, we see how much the field has progressed
thanks to the recent innovations in contextual language representation. Our
pipeline not only differentiates entities that their one hot vector -based clas-
sification system performed poorly on, such as outcome measures by study
arm, but also extracts full entity spans rather than just single-token syntactic
heads.

A more contemporary study by Mutinda et al. [16] has also investigated
automation of the systematic review process through tabulation and achieved
promising results with BERT-based language models, albeit with wide dif-
ferences in approach to system architecture. Unlike our study, they utilised
NER alone, training a single model on a corpus of full abstracts from a single
disease area (breast cancer) with a comprehensive set of PICO entity labels,
including differentiation of interventions into study and control treatments,
as well as outcomes measures into specific categories such as mean, absolute
and percentage values. A rule-based method was then used to separate mea-
sure and intervention groups by outcomes into structured tables, with the
system limited at this stage to absolute measure values for calculating statis-
tics. In comparison, our system has a far more limited NER stage, but uses
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an RE model, rather than pre-determined rules, to map entities for the task
of tabulation. Both systems scored comparable F1 scores for NER; however,
Mutinda et al. do not report F1 scores for end-to-end tabulation performance,
making it difficult to compare system performance for this task. A notable
error highlighted in their study is the misclassification of entity classes, such
as mixing study treatments with controls. Our system had limited misclassi-
fication errors between entity labels (see section 5.6), potentially highlighting
the benefits of decomposing this objective across separate models for NER
and RE. Indeed, Mutinda et al. highlight RE as an area for future exploration
in their discussion to overcome the limitations of rule-based tabulation.

6.2. Limitations

In terms of the limitations of our pipeline, a number are worth discussing
here. Firstly, our system has a narrow focus on measure entities, omitting the
comparative statistics between arm respective values, which are an essential
part of evidence tables. As they have been addressed by other studies, such
as that of Kang et al. [20], we made a decision at the start of the study
to focus only on entities that could be clearly divided into table columns.
However, the system could be easily extended to include these measures,
with a new comparative statistics entity class that could be related back to
the specific outcome entity. Our system also had broad NER classification
classes compared with studies such that of Mutinda et al. [16], in part due
to our goal of decomposing our objective across two models. Extending their
dataset with relation annotations to retrain and test our system may be an
interesting area for further exploration.

Another limitation was the constraint of our dataset to the sentence level.
Although interventions, outcomes and their respective measures occur fre-
quently together in sentences, multi-sentence constructions are not uncom-
mon, and represent a potential blind spot for our system. However, while
we chose to operate at the sentence level, this is not an inbuilt limitation of
our architecture. BERT language representations have a window of sequence
length within which they operate best – a potential solution to this limitation
may be to include as many sentences within this window as possible (without
truncating the last inclusion). In addition, our corpus was restricted to result
sentences from study abstracts, which rarely contain all of the information
needed for a systematic review.

To limit the scope of our investigation to the goal of automated tabula-
tion, the inclusion criteria for our corpus restricted it to clinical trials with
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a two arm study design and abstracts with at least one result sentence that
included at least one outcome and/or study arm, and a clear, numerical
measure. Many of the abstracts for published clinical trials do not conform
to these rules: trials with three or more arms are not uncommon and some
abstracts, particularly for older publications, do not include clear, numerical
measures. While this represents a significant gap between our current sys-
tem and manual data extraction for systematic reviews, these restrictions are
again not enforced by our system architecture. There is potential for future
iterations of this system to be trained and tested on less restrictive datasets.

Long entities represented a challenge for our system, being harder to
classify, particularly outcomes containing hierarchies of sub-entities, which
were often predicted individually. A solution based on our existing approach
may be to further decompose these entities into their constitute parts, and
share the problem with the RE component. For example, for the outcome
entity, “reduction in intraocular pressure of at least 18 mm Hg” , annotators
could label “reduction in intraocular pressure” as the main entity, while “at
least 18 mm Hg” could be tagged as a qualifier, with a relationship mapped
between them for the RE component to resolve.

Training and run-time efficiency were not considered during the devel-
opment of our system; however, it should be noted that transformers are
relatively resource-intensive models. Transformers require high specification
GPU hardware to run, and two of these models are included in our system.
While using a single transformer for both classification models was explored,
the observed reduction in performance (overall f1 score drops of up to 0.2)
was consider too great for this approach to be of value. Nevertheless, we
would argue the hardware and energy costs related to our system would be
outweighed by reductions in the human labour cost of systematic reviews.

6.3. Future research

Future research of our system could investigate expanding it to process
inputs with with less restrictive inclusion criteria, such as including sentences
from studies with more than two arms, as well as extending its extraction
scope to PICO elements from all abstract sentences. If extended to full ab-
stracts, it may be worth exploring the addition of a question–answer sentence
pairing module to the system pipeline (the second task BERT language repre-
sentations are trained on [27]) for linking sentences stating primary outcomes
to their respective result sentences. The distinction between a study’s pri-
mary and secondary outcomes is an important one for a systematic review,
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and is usually defined in the methodology section of an abstract. It would
also be interesting to test the system beyond abstracts, which only represent
the first stage of a systematic review. Once a study has been accepted for
inclusion, information from the full published paper must be extracted to
complete the evidence table. As our system accepts sentences as inputs, it is
not inconceivable that it could work well with the sentences from the results
section of a full paper.

Considering more advanced areas of research, our system or parts of it,
could be used as a component in frameworks for the automation of evidence-
based clinical recommendations. More specifically, tabulated result sentences
could be used to synthesise claims of the logical arguments that underlie these
recommendations. For more information on argumentation with results of
clinical trials, see [8].

6.4. Concluding remarks

While a great amount of work still remains in automating systematic
reviews of clinical evidence, our study has shown that a key barrier – differ-
entiating interventions, outcomes and their measures into relevant categories
– may be overcome with context-based language representations, and decom-
posing the classification problems across a pipeline approach. In the short
term, this technology could be used to semi-automate construction of evi-
dence tables, potentially as a first pass process that allows reviewers to start
from a pre-filled baseline. Long term, as language representations evolve, and
more innovative methods are developed to classify their outputs, it is con-
ceivable that future systems could play an even greater role in automating
the systematic review process, with medical domain experts needed only for
oversight. This could potentially result in thousands of hours saved in labour
costs across the healthcare industry, which could be redirected to achieve the
ultimate goal of improving patient care.
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Figure 2: An example of how an evidence table for an RCT investigation 
of a glaucoma treatment might look in NICE clinical guidelines 
\cite{nice_2017}}. CI: confidence interval.

Outcome Intervention Control Comparative Quality

Mean change in 
intraocular 
pressure (IOP)

-6.3 mmHg -0.2 mmHg Not reported High

Visual field 
progression at 24 
months

23 (12.6%) 
patients

57 (27.4%) 
patients

Hazard ratio: 0.49 
95% CI:0.21–0.67
p=0.037

Medium

Serious adverse 
events

12 events 7 events Not reported Low



Mean change in IOP from baseline was -6.3 mmHg in the study 
intervention group compared with -0.2 mmHg in the control group

Mean change in IOP from baseline was -6.3 mmHg in the study 
intervention group compared with -0.2 mmHg in the control group

Mean change in IOP from baseline was -6.3 mmHg in the study 
intervention group compared with -0.2 mmHg in the control group

1. INPUT RESULT SENTENCE 2. NAMED ENTITY RECOGNITION

3. RELATION EXTRACTION 4. TABULATION

Figure 2: A simple example of how an input result sentence (1) can 
processed through NER (2) and RE (3) and then tabulated (4) to form a 
segment of the example evidence table from Figure 1.

Outcome Intervention Control

Mean change in IOP -6.3 mmHg -0.2 mmHg
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Figure 9: The architecture of our full study system.



Figure 10: Example of optimal actions taken as an 
input sequence is passed into the dependency parser.

Actions Output Stack Buffer Entity
[] [] [interocular, pressure, in, the, latanoprost, arm]

begin [] [interocular] [pressure, in, the, latanoprost, arm]

last [(interocular pressure)-OC] [] [in, the, latanoprost, arm]

out [(interocular pressure)-OC, in] [] [the, latanoprost, arm] (interocular pressure)-OC

out [(interocular pressure)-OC, in, the] [] [latanoprost, arm]

unit [(interocular pressure)-OC, in, the, (latanoprost)-INTV] [] [arm] (latanoprost)-INTV

out [(interocular pressure)-OC, in, the, (latanoprost)-INTV, arm] [] []
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Figure 11: Schematic of the NER component architecture.



Figure 12: Schematic of the RE component architecture.

X1 X2 X3 X4 X5

C1 C2 C3 C4 C5

CLASSIFICATION LAYER

E1 E2 E3 E4 E5

Bidirectional transformer encoder

WordPiece embedding

LISTENER LAYER

BERT 
LANGUAGE
MODEL

The listener 
layer passes 
gradients back

Input 
sequence

Embedding
without 
context

Contextual 
embedding

Entity pair
tensor

ENTITY POOLING AND GET INSTANCES LAYERS

Ent1 Ent2 X All possible
entity pairs

Probability 
matrix

Binary classification of entity existence in downstream component



Figure 13: System (BioBERT language model) performance results across the 
five IE tasks after training on varying proportions of the all-domains training 
set. We report mean values from 10 runs and SD as error bars.
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Figure 14: System (BioBERT language model) performance results of the five 
IE tasks on different unseen disease-area domain test sets. We report mean 
values from 10 runs and SD as error bars.

0.80
0.81

0.80
0.84 0.85 0.840.85

0.80
0.75

0.81 0.82
0.77

0.73 0.72

0.68
0.70

0.75
0.72

0.60

0.65

0.58

0.66
0.62 0.62

0.78
0.81

0.74

0.81
0.79 0.78

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Autism Blood cancer Cardiovascular
disease

Diabetes Glaucoma Solid tumour cancer

M
ea

n
F 1

sc
or

e

Unseen domain test set

NER RE (GOLD ENTITIES) JOINT NER + RE TABULATION (STRICT) TABULATION (RELAXED)



Figure 15: System (BioBERT language model) performance on the autism test 
set as training domain variety increases. We report mean values from 10 runs 
and SD as error bars.
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Figure 16: Comparison of system (BioBERT language model) performance 
after training on different disease areas with the same number of examples, 
tested on an unseen test set from same domain. We report mean values from 
10 runs and SD as error bars.
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Figure 19: Incomplete OC label error. Gold-standard OC labels 
are in green, while the predicated label is in red.

Overall , 58 % of the 36 patients assigned to AMB successfully completed prophylaxis compared 
with 80 % of the 41 patients assigned to FLU ( < 0.05 )

OC



Figure 20: MEAS misclassification error. Gold-standard INTV 
labels are in green, while the predicated label is in red.

Latanoprost 0.005% once daily reduced IOP (+/- SEM) more effectively than latanoprost 0.0015% 
twice daily (9.8 +/- 0.9 mm Hg and 6.7 +/- 0.9 mm Hg, respectively)

INTV MEAS INTV MEAS



Figure 21: Negative relation classification error. The model only 
successfully recognises one relation (pink), and misses five (green).

A1_RES

In the C group , 13 % received no chemotherapy , 21 % one or two cycles , and 64 % all three cycles 
of their prescribed chemotherapy ( 60 % of the latter with no delays or modification ) . 

OC_RES OC_RES

OC_RES

A1_RES

A1_RES



Table 1: Total number and proportions of entity and relation annotations in the gold corpus. 

 
Entity labels  Relation labels  

INTV MEAS OC  A1_RES A2_RES OC_RES  
Count 990 1096 1455  717 630 1835  
Proportion 0.28 0.31 0.41  0.23 0.20 0.58  

 

  



Table 2: System performance results of the five IE tasks for each BERT-based language 
representation trained on the all-domains test set. We report mean and SD values from 10 
runs.  

EMBEDDING 
MODEL 

 NER  RE (GOLD 
ENTITES)  JOINT  

NER + RE  TABULATION  
(STRICT)  TABULATION 

(RELAXED)  
 P R F1  P R F1  P R F1  P R F1  P R F1  

BioBERT  0.86  
±0.01 

0.87 
±0.01 

0.86 
±0.01 

 
 

0.78 
±0.04 

0.83 
±0.04 

0.80 
±0.01  

0.70 
±0.03 

0.78 
±0.03 

0.73 
±0.01  

0.56 
±0.02 

0.82 
±0.02 

0.67 
±0.02  

0.76 
±0.02 

0.86 
±0.02 

0.81 
±0.02  

SciBERT  0.85 
±0.01 

0.86 
±0.01 

0.85 
±0.01  

0.78 
±0.02 

0.80 
±0.03 

0.79 
±0.01  

0.69 
±0.02 

0.75 
±0.02 

0.72 
±0.01  

0.53 
±0.02 

0.79 
±0.03 

0.63 
±0.02  

0.72 
±0.03 

0.84 
±0.02 

0.78 
±0.02  

RoBERTa  0.86  
±0.01 

0.85 
±0.01 

0.86 
±0.01 

 
 

0.77 
±0.03 

0.80 
±0.04 

0.79 
±0.01  

0.70 
±0.04 

0.76 
±0.03 

0.73 
±0.01  

0.52 
±0.03 

0.80 
±0.02 

0.63 
±0.02  

0.72 
±0.04 

0.85 
±0.02 

0.78 
±0.02  

Values in bold indicate the language model that scored the highest on a task-specific metric. 
 
 

 

  



Table 3: Performance of the NER component for individual entity labels on the all-domains 
test set. We report mean and SD values from 10 runs. 

EMBEDDING 
MODEL 

 OC   INTV  MEAS  
 P R F1  P R F1  P R F1  

BioBERT  0.76  
±0.02 

0.75 
±0.02 

0.76 
±0.02  

0.93 
±0.01 

0.92 
±0.01 

0.93 
±0.01  

0.88 
±0.02 

0.90 
±0.02 

0.89 
±0.02  

SciBERT  0.72 
±0.02 

0.73 
±0.03 

0.72 
±0.02  

0.92 
±0.02 

0.91 
±0.02 

0.92 
±0.01  

0.88 
±0.02 

0.90 
±0.01 

0.89 
±0.01  

RoBERTa  0.75 
±0.03 

0.73 
±0.03 

0.74 
±0.02  

0.94 
±0.01 

0.91 
±0.02 

0.92 
±0.01  

0.87 
±0.02 

0.89 
±0.02 

0.88 
±0.02  

Values in bold indicate the language model that scored the highest on a  
task-specific metric. 

  



Table 4: Performance of the RE component for individual relation labels on the all-domains 
test set. We report mean and SD values from 10 runs. 

EMBEDDING 
MODEL 

A1_RES   A2_RES  OC_RES  
P R F1  P R F1  P R F1  

BioBERT 0.87 
±0.02 

0.92 
±0.03 

0.90 
±0.02  

0.86 
±0.04 

0.96 
±0.02 

0.90 
±0.02  

0.72 
±0.06 

0.75 
±0.07 

0.73 
±0.01  

SciBERT 0.86 
±0.04 

0.87 
±0.03 

0.86 
±0.02  

0.84 
±0.05 

0.91 
±0.03 

0.87 
±0.02  

0.73 
±0.03 

0.72 
±0.05 

0.72 
±0.02  

RoBERTa 0.88 
±0.04 

0.86 
±0.03 

0.87 
±0.01  

0.86 
±0.03 

0.91 
±0.03 

0.88 
±0.01  

0.70 
±0.05 

0.75 
±0.06 

0.72 
±0.01  

Values in bold indicate the language model that scored the highest on a  
task-specific metric. 
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