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 21 

In many scientific disciplines, features of interest cannot be observed directly, so must instead 22 

be inferred from observed behaviour. In the study of the damaged brain, those ‘features of 23 

interest’ might be the function or disruption of dissociable cognitive sub-systems, and the 24 

‘observed behaviour’ might be accuracies and / or reaction times recorded in standardised, 25 

behavioural tasks. This inverse inference from observed data to features of interest  is 26 

increasingly approached using latent variable analyses1–4. One of the simplest and most popular 27 
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of these methods, is Principal Components Analysis (PCA). During the last decade, stroke 1 

outcomes research, using PCA, has yielded a surprising result: latent spaces appear lower-2 

dimensional than expected. These analyses typically find no more than 5 latent variables, and 3 

sometimes just 11–4, even when applied to scores from wide-ranging batteries of tasks, which 4 

could potentially capture impairments to many more dissociable sensory, motor and cognitive 5 

sub-systems.  6 

Recently, this apparent ‘dimensionality under-estimation problem’ has been explained as 7 

potentially arising from spatial correlations in natural stroke lesion distributions5. The authors 8 

used simulated data derived from real stroke induced lesions, in which impairment severity 9 

scores were assigned based on the extent of damage to non-overlapping brain regions. Since 10 

the regions were independent, the impairments should have been independent: i.e., the latent-11 

space dimensionality should have been the same as the number of simulated scores. But 12 

instead, the authors observed that PCA typically found lower-dimensional latent spaces, 13 

because natural stroke-induced lesions tend to damage neighbouring (non-overlapping) brain 14 

regions together, causing the impairments to be correlated in practice even though they need 15 

not have been correlated in theory5. The implication is that PCA-based analyses of stroke 16 

outcomes data might tell us as much about lesion distributions as they ever can about the 17 

fundamental organisation of cognition. 18 

Here, we show that dimensionality under-estimation can occur entirely regardless of lesion 19 

distributions – even when post-stroke impairments are independent by construction. We show 20 

that this effect is partly a function of task impurity, the extent to which behavioural performance 21 

in individual tasks is thought to emerge from the interaction of many different cognitive skills. 22 

And we show that dimensionality under-estimation can be ameliorated by employing more 23 

multivariate behavioural data (i.e., more tasks).  24 

 25 

Materials and methods  26 

We use PCA to analyse synthetic, multivariate behavioural data, which are linear mixtures of 27 

known latent variable values. No lesion data were included. Following the approach employed 28 

by Sperber and colleagues, we count the components derived by PCA as those whose 29 

eigenvalues surpass a threshold and employ two different thresholds: the Kaiser criterion 30 

(threshold eigenvalue = 1)6, and the Jolliffe criterion (threshold eigenvalue = 0.7)7. The more 31 

conservative Kaiser criterion is more popular, in our experience, but the more permissive 32 
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Jolliffe criterion might be more appropriate when we expect to observe dimensionality under-1 

estimation. Both latent variable values and latent-to-behaviour weights are defined as random 2 

uniform numbers in the range 0-1 (e.g., imagining both numbers to represent percentages of 3 

maximum function / influence). We did consider other types of random distribution, but none 4 

made any substantive difference to our results. And following the prior report, we employ a 5 

sample size of 300. Our simulations vary the number of latent variables in the range 1-22, and 6 

the number of behavioural scores in the range 22-100. We ran 1,000 simulations per parameter 7 

configuration, randomly re-specifying latent variable values and latent-to-behavioural weights 8 

each time, and report summary results. 9 

 10 

Results 11 

Analysis 1: Under-estimation with uncorrelated impairments 12 

Figure 1A illustrates how the derived dimensionality of the system varies with its real 13 

dimensionality, for a fixed number of (22) behavioural scores. Estimated dimensionality is 14 

mostly accurate for systems with just 1 or 2 latent variables, but then grows less quickly than 15 

real dimensionality – and indeed begins to fall again for higher-dimensional systems. Naturally, 16 

the effect is more pronounced when using the more conservative, Kaiser criterion to count 17 

derived components. Figure 1B illustrates dimensionality estimation in identical circumstances 18 

to those considered in Figure 1A, with one exception: 95% of the latent-to-behavioural weights 19 

are set to 10-6. This change effectively ensures that most behavioural variables are mediated by 20 

fewer latent variables than before: i.e., task impurity is reduced. In this case, the relationship 21 

between derived and real latent system dimensionality is more intuitive, in that both grow 22 

together. However, derived dimensionality still only grows about half as quickly as real 23 

dimensionality, so dimensionality under-estimation still occurs.  24 

 25 

Analysis 2: Under-estimation is avoided if we use many more 26 

behavioural tasks 27 

Figure 2 illustrates how dimensionality estimation changes as the number of behavioural tasks 28 

grows. With ~6 times as many behavioural tasks as real latent variables, PCA can enumerate 29 

the real latent system accurately, when using the Joliffe criterion (~10 times for the Kaiser 30 
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criterion). The under-estimation problem returns as the number of latent variables increases 1 

further. 2 

 3 

Discussion 4 

Our results suggest that dimensionality under-estimation might occur, in stroke research and 5 

beyond, as a simple artefact of task impurity – or more generally, the notion that important 6 

relationships between latent and observed variables might be many-to-many – even when the 7 

latent variables themselves are uncorrelated. This problem appears to worsen as real latent 8 

system dimensionality increases. In data derived from three or more latent variables, PCA was 9 

an unreliable way to enumerate those latent variables unless: (a) task impurity was low (i.e., 10 

latent-to-behavioural weight matrices were sparse); or (b) there were many more behavioural 11 

tasks than real latent variables in the system.  12 

Quite how these results apply in practice, is hard to judge. First, if the latent system is 13 

‘cognition’, then we should probably allow that it might be higher-dimensional than any latent 14 

system considered here. But at the same time, the effective dimensionality of post-stroke 15 

impairments, as represented in any given sample of stroke patients, might be much lower than 16 

this theoretical maximum. For example, if all of the patients in a sample have the same, 17 

selective impairment, then the sample is one-dimensional. Moreover, the absolute range of 18 

impairment severity might appear smaller in stroke patient samples than in the wider patient 19 

population, either because standardised measures of that severity lack sensitivity, or because 20 

the most severely impaired patients might struggle to travel to study sites, or tolerate the testing 21 

process itself8. These factors make lower-dimensional estimates plausible. But since we might 22 

observe lower-dimensional estimates even when they are wrong (Analysis 1), our only rational 23 

choice is to treat the results of all analyses like this with caution. And further caution is called 24 

for because task impurity is likely to be the norm rather than the exception in these studies9.  25 

Our results also point to a practical solution for reducing dimensionality under-estimation: 26 

using many more tasks than there are latent variables to find (Analysis 2).  In practice, the 27 

required ratio of tasks to variables might well vary from that observed here. From the 28 

perspective of latent-space dimensionality estimation, real latent-to-behavioural weights might 29 

be less efficient than those used here, so that more tasks are needed to count latent dimensions 30 

accurately. On the other hand, latent-to-behaviour weights might be more informative than 31 

those considered here, because batteries of tasks used in stroke research are often expressly 32 
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designed to vary the engagement of cognitive functions systematically and informatively. Since 1 

our simulations only very rarely over-estimated real system dimensionality, one might navigate 2 

this issue by adding tasks incrementally to PCA, until further additions no longer yield more 3 

principal components. But of course, this approach is the opposite of what many researchers 4 

might prefer, given the costs and effort required to employ extra tasks8.  5 

Notably, our results are also at least potentially consistent with Sperber and colleagues’ account 6 

of latent space dimensionality under-estimation, at least in stroke outcomes research. They 7 

highlighted spatial correlations in natural stroke-induced lesion distributions. This factor might 8 

operate in tandem with the task impurity on which our analyses are focused. We hope that our 9 

results will encourage caution in the interpretation of results, derived from post-stroke 10 

impairment severity score batteries, via PCA. 11 

 12 
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Figure legends 1 

Figure 1 Dimensionality under-estimation. Both panels illustrate the mean and standard 2 

deviation of derived dimensionality when analysing 22 behavioural scores, derived from latent 3 

systems including 1-22 latent variables. Accurate dimensionality estimation occurs when the 4 

lines intersect the diagonal of either panel, where estimated dimensionality equals real system 5 

dimensionality. In panel A, latent-to-behaviour weights are random uniform numbers in the 6 

range 0-1. In this case, dimensionality estimation is mostly accurate for systems with 1-3 latent 7 

variables, but then becomes less accurate as real dimensionality increases. In panel B, 95% of 8 

the weights are set to 10-6, reducing task impurity, so that estimated dimensionality grows as 9 

real dimensionality grows (albeit that the former only grows about half as quickly as the latter). 10 

 11 

Figure 2 Latent space dimensionality estimation as the numbers of tasks increases from 12 

40 to 100. As in Figure 1, derived dimensionality equals the real dimensionality of the system 13 

along the dotted diagonal line. The number of systems that can be accurately estimated 14 

increases with the number of task scores. Once the real dimensionality increases beyond ~1/6 15 

of the number of task scores (~1/10 for Kaiser criterion), derived dimensionality again under-16 

estimates the true the dimensionality of the system: i.e., the estimation problem returns. Panels 17 

A and B illustrate the effect when using the Joliffe and Kaiser criteria, respectively: for a given 18 

real system dimensionality, more tasks are required for accurate dimensionality estimation 19 

when using the more conservative (Kaiser) criterion to count those estimated dimensions. 20 

 21 
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 1 

Figure 1 2 
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Figure 2 2 
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