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Abstract

INTRODUCTION: A wide range of modifiable risk factors for dementia have been

identified. Considerable debate remains about these risk factors, possible interactions

between them or with genetic risk, and causality, and how they can help in clinical trial

recruitment and drug development. Artificial intelligence (AI) and machine learning

(ML) may refine understanding.

METHODS:ML approaches are being developed in dementia prevention. We discuss

exemplar uses and evaluate the current applications and limitations in the dementia

prevention field.
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RESULTS: Risk-profiling tools may help identify high-risk populations for clini-

cal trials; however, their performance needs improvement. New risk-profiling and

trial-recruitment tools underpinned by ML models may be effective in reducing costs

and improving future trials. ML can inform drug-repurposing efforts and prioritization

of disease-modifying therapeutics.

DISCUSSION: ML is not yet widely used but has considerable potential to enhance

precision in dementia prevention.
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Highlights

∙ Artificial intelligence (AI) is not widely used in the dementia prevention field.

∙ Risk-profiling tools are not used in clinical practice.

∙ Causal insights are needed to understand risk factors over the lifespan.

∙ AI will help personalize risk-management tools for dementia prevention.

∙ AI could target specific patient groups that will benefit most for clinical trials.

1 INTRODUCTION TO DEMENTIA PREVENTION,
ARTIFICIAL INTELLIGENCE, AND MACHINE
LEARNING

The incidence of dementia has been reported to be decreasing in some

high-income countries.1,2 However, the prevalence of dementia world-

wide is predicted to triple over the next 30 years due to increases in

life expectancy, particularly in low- and middle-income countries.3 It is

now recognized that pathological changes begin years before the onset

of clinical symptoms of Alzheimer’s disease (AD) and other dementia

subtypes.4,5 This creates a window of opportunity for early identifica-

tion and development of targeted interventions and treatments that

could ultimately prevent subsequent dementia. Estimates show that

delaying AD onset by 5 years would reduce prevalence by 40%, which

would have a huge public health impact.6 In the absence of an effec-

tive cure, the identificationofnewstrategies topreventdementia cases

is of critical importance. Thus dementia research has focused increas-

ingly on the treatment of preclinical stages and the identification of

modifiable risk factors.7

1.1 Dementia prevention research

Decades of primary prevention research have included the assess-

ment and identification of biological, behavioral, environmental, and

social factors that may increase or decrease the likelihood of develop-

ing dementia. Findings from epidemiological studies provide a growing

list of modifiable risk and protective factors across the life course

that can be targeted for prevention.8 Several interventional studies

have tested the efficacy of prevention strategies in cognitively healthy

individuals at risk of dementia (primary prevention) or to prevent fur-

ther cognitive decline or progression to dementia in people with mild

cognitive impairment (MCI) or other early symptoms (secondary pre-

vention).Dementiaprevention clinical trials targeting singleormultiple

risk factors have evaluated a range of pharmacological (cholinesterase

inhibitors) and non-pharmacological interventions (e.g., exercise pro-

grams, cognitive training, multidomain9). However, evidence that the

treatment of these risk factors reduces the risk or progression of

dementia remains weak.10–12 Factors hindering progress in this area

may include the difficulty in identifying the age and characteristics

of the ideal target population, a lack of understanding of the causal

pathways to be targeted, and the limitations of traditional statistical

methods in analyzing high-dimensional multimodal data (e.g., imaging,

biomarker, genetics, and medical records) and non-linear relationships

between variables. This is particularly important in dementia preven-

tion research, where hundreds, or even thousands, of genetic and

non-genetic features may predict disease risk and progression,13 and

most of the proposed risk factors do not have a linear relationship with

dementia risk throughout life.8

1.2 Artificial intelligence and machine learning

Artificial intelligence (AI) refers to the broader field of computer

science that focuses on creating machines or systems capable of

performing tasks that would typically require human intelligence.

Machine learning (ML) is a subset of AI that focuses on design-

ing algorithms and models that enable computers to learn from and

make predictions or decisions based on data without being explic-

itly programmed. The application of methodologies incorporating
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NEWBY ET AL. 3

AI and ML is gaining momentum in dementia prevention research

(Figure 1).

In this review, we focus mainly on the application of ML methods

in dementia prevention research, since this area of AI holds promise

for advancing the field. ML can be broadly split into unsupervised,

supervised, and semi-supervised methods. Unsupervised methods do

not distinguish between dependent and independent variables (i.e.,

there is not a specified dementia-related outcome being predicted);

rather, their goal is to discover patterns and associations between the

variables (i.e., risk factor and dementia) to potentially define possible

groups and clusters hidden in the data.14,15 Unsupervisedmethods are

applied under the assumption that similar outcomes (with similar vari-

ables) will be grouped together and reveal meaningful patterns not

seen in the raw data.

Clustering methods such as multi-layer clustering, k-means clus-

tering, hierarchical clustering, or Gaussian mixture models (GMMs)

are unsupervised methods that have been applied in dementia pre-

vention research, for example, to identify subgroups of individuals

with MCI with markedly different prognostic cognitive trajectories16

The results from such studies can be used to identify subgroups of

individuals that are at high risk of dementia to better understand

different disease trajectories and tailor interventions or prevention

strategies accordingly.17 Unsupervised anomaly detection algorithms,

including one-class support vector machines (SVMs), autoencoders

(AEs), or isolation forests, have been utilized to identify unusual or

atypical patterns in data.18,19 In the context of dementia prevention,

these methods could help detect outliers or abnormal biomarker pat-

terns that may be indicative of underlying pathology or increased

risk.18 Other unsupervised methods include unsupervised latent vari-

able models, such as latent Dirichlet allocation (LDA) or GMMs, which

have been employed to identify latent structures or hidden variables

in data, which can reveal hidden patterns or subgroup data sets that

may be relevant for understanding dementia risk factors or disease

progression.20,21

With supervised methods the dependent variable is known (i.e.,

dementia is specified to be the outcome), and it is this informa-

tion plus the input from the independent variables (i.e., the risk

factors) that guide the supervised ML method to predict the depen-

dent variable.22 These methods can be further split into regression

or classification methods, where the dependent variable to be pre-

dicted is either numerical (continuous) or categorical.23 SupervisedML

methods such as logistic regression, random forest, SVMs, gradient

boosting, deep learning, and decision trees can be utilized for clini-

cal risk prediction24—for example, where dementia diagnostic status

is known in combination with features such as demographics, imag-

ing, biomarkers, genetics, comorbidities, symptoms, medication use,

and other health indicators are used to build models useful for pri-

mary and secondary prevention.13,25–27 Supervisedmethods have also

been developed to classify biomarker data associatedwith dementia,28

and these models can also be trained on neuroimaging data such

as magnetic resonance imaging (MRI) or positron emission tomog-

raphy (PET) scans to classify brain images as healthy or indicative

of dementia-related abnormalities.29 Similarly, classification models

RESEARCH INCONTEXT

1. Systematic review: The authors reviewed the literature

on dementia prevention and describe the state of the

science related to identification of modifiable risk fac-

tors, risk-prediction modeling, interventions, and drug

repurposing. Major challenges to progress the demen-

tia prevention field, with examples, and opportunities for

artificial intelligence (AI) andmachine learning (ML) appli-

cations to enhance prevention efforts are highlighted.

2. Interpretation: Although not yet widely used, AI and

ML have considerable potential to enhance precision in

dementia prevention. The flexibility and scalability of

ML methods can facilitate the use of multimodal data

to: (i) enhance understanding of potential interactions

and causal status of risk factors, (ii) improve selection

of important variables and performance of risk profil-

ing, which in turn can: (a) assist clinical trial recruitment,

reduce costs, and increaseefficiencyof trials, and (b) iden-

tify drug-repurposing candidates to accelerate discovery

of disease-modifying treatments.

3. Future directions: Multidisciplinary collaboration is

required to harness the potential ofML, maximize utiliza-

tion of available resources and data access, and enhance

traditional approaches to advance dementia prevention

research.

can be developed using genetic markers or biomarkers obtained from

cerebrospinal fluid to distinguish between individuals with or without

dementia-related pathology.30 Supervisedmethods can also be used to

predict cognitive decline in individuals using longitudinal data. These

models learn patterns in the data and can predict the future cognitive

decline trajectory of individuals based on their baseline assessments

and other risk factors.31

Finally, semi-supervised methods fall in-between supervised and

unsupervised ML and use both labeled (e.g., information on demen-

tia/MCI diagnosis) and unlabeled data.32 Semi-supervised methods

suchas active learning33 use a labeleddata set to train amodel,which is

then used to select themost informative or uncertain samples from the

unlabeled data set. These selected samples are then labeled manually

by experts, and the model is retrained using the newly labeled data.34

Active learning could be applied to various tasks in dementia preven-

tion, such as identifying relevant risk factors or biomarkers, or targeted

samples for clinical trials recruitment. Other methods include self-

training where amodel is initially trained on a small, labeled data set.35

The model is then used to make predictions on the unlabeled data,

and the most confident predictions are added to the labeled data set.

This process is repeated iteratively, gradually expanding the labeled

data set and improving the model’s performance.33 Self-training can

be applied to tasks such as dementia-risk prediction, where a limited
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4 NEWBY ET AL.

F IGURE 1 Growth in citations related toML/AI in dementia prevention (1990–2022). Source: PubMed citations using the search term
(Alzheimer*[Title/Abstract] OR dement*[Title/Abstract]) AND (Prevent*[Title/Abstract] OR risk factor*[Title/Abstract] OR
determinant*[Title/Abstract]) AND (AI[Title/Abstract] OR artificial intelligence[Title/Abstract] ORmachine learning[Title/Abstract]).

number of labeled instances are available, but a large amount of unla-

beled data exists. Finally, co-training is a semi-supervised technique

that utilizes multiple views or feature sets of the data to improve the

model’s performance.36 The model is trained on different sets of fea-

tures or representations, eachwith its own labeled and unlabeled data.

The model is then iteratively trained on each view and shares informa-

tion between the views during training.36 Co-training could be applied

in dementia prevention by utilizingmultiplemodalities, such as genetic

data, neuroimaging, and cognitive assessments, to improve the accu-

racy and robustness of predictive models. Semi-supervised methods

use information from unlabeled data to improve the performance of

models trained on labeled data.37,38 Amore in-depth description ofML

methodologies and applications to the broader dementia field can be

found in the methods optimization paper also included in this special

issue.39

Traditional statistical approaches rely on using domain knowledge

to create and fit mathematical models to represent the relationships

between variables and provide a quantitative measure of confidence

that describe associations.40–43 In contrast, ML techniques do not

make a priori assumptions about the distribution from which the

modeling sample is drawn, and hence they can be effective even in

the presence of complex non-linear relationships and when the data

are collected without a controlled experimental design.44 ML models

are more flexible and scalable compared with conventional statisti-

cal approaches, as they can explore the structure of high-dimensional

multimodal data, detect patterns, and generate insights with minimal

human intervention.45 In this review, we provide a critical summary

of the current state of the science, challenges, implications, and major

opportunities for the application ofML to dementia prevention.

This review is one of a series of eight articles in a Special Issue

on “Artificial Intelligence for Alzheimer’s Disease and Related Demen-

tias” published in Alzheimer’s & Dementia. Together, this series pro-

vides a comprehensive overview of current applications of AI and

ML to dementia, and future opportunities for innovation to acceler-

ate research. Each review focuses on a different area of dementia

research, including experimental models,46 drug discovery and trials

optimization,47 genetics and omics,48 biomarkers,49 imaging,50 pre-

vention (this article), applied models and digital health,51 and methods

optimization.39

2 USE OF ML TO UNDERSTAND MODIFIABLE
RISK FACTORS FOR DEMENTIA PREVENTION

In this section we describe the current state of the science relating

to the identification of risk factors for dementia and risk-prediction

modeling. We then describe the major challenges that are hindering

 15525279, 0, D
ow

nloaded from
 https://alz-journals.onlinelibrary.w

iley.com
/doi/10.1002/alz.13463 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [17/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



NEWBY ET AL. 5

progress and provide examples of ML applications to these prob-

lems. Finally, we discuss the opportunities of how ML methods could

enhance and improve our understanding of risk factors by using dif-

ferent data types (multimodal data) and application of ML approaches

from other disciplines.

2.1 State of the science

2.1.1 Identification of risk factors

Several lifestyle, psychosocial, and cardiometabolic risk factors play an

important role in the development of dementia.52 The Lancet Commis-

sion onDementia Prevention, Intervention, and Care, first published in

2017, proposeda life courseperspective tobetterunderstandhow, and

at which time point over the course of the human lifespan, nine poten-

tially modifiable risk factors increase dementia risk. Fewer years of

educationduringearly lifewere found to increase risk,whereas chronic

hypertension, obesity, and age-related hearing loss were considered to

increase risk during mid-life. The remaining five factors (current smok-

ing, depression, physical inactivity, social isolation, and type 2 diabetes)

were shown to exert their effect in later life.53 In the Lancet Commis-

sion’s updated 2020 report, three new risk factors were added, two

mid-life risk factors (alcohol consumption and traumatic brain injury)

and one late-life risk factor (air pollution).8

Several additional systematic reviews54–58 have been conducted

within the last 10 years that aimed to comprehensively summarize

the emerging evidence relating to dementia risk factors (Figure 2).

The main risk factors highlighted by these reviews include those cov-

ered by the Lancet Commission as well as the dementia prevention

guidelines from The World Health Organization (WHO). Evidence for

other risk factors such as hyperlipidemia, coronary heart disease, renal

dysfunction, poor diet, and cognitive inactivity were less consistent

across reviews. More recent systematic reviews, which focus upon

individual risk factors, also suggest the importance of additional risk

factors, such as stroke59 and delirium,60 and it is likely that the num-

ber of “established” risk factors will grow as this body of evidence

consolidates.

However, when considering the relationship between a proposed

risk or protective factor with dementia, it is vital to consider a lifespan

perspective, owing to the changing importance of potentially modi-

fiable risk factors across the life course and the fact that dementia

pathology is believed to begin up decades before it is detectable by

current diagnostic methods (known as the prodromal phase).61–63 For

example, hypertension and obesity are both associated with increased

future dementia risk during mid-life, but weight and blood pressure

have been shown to decrease in later life in those with or develop-

ing dementia, indicating that in later life, changes in these risk factors

are consequences of disease progression.64,65 ML methods that con-

sider the changing importance of risk factors using longitudinal data

could be used to understand different disease trajectories and disease

heterogeneity66

F IGURE 2 Modifiable risk factors for dementia identified in prior
systematic reviews and guidelines. Visualization of risk factors
identified in (A) five prior systematic reviews and (B) the recentWHO
guidelines (2019) and Lancet Commission (2020). Risk factors (circles)
were divided into health risk, lifestyle, and environmental categories.
The number of reviews that identified each risk factor is reflected by
the relative size of each circle (shaded indicates comparatively
stronger evidence, * denotes a protective factor, whereas “E” and “M”
represent early andmid-life risk factors, respectively. Anticoag,
anticoagulant; BDZ, benzodiazepines; Cerebral SVD, cerebral small
vessel disease; post-op delirium, post-operative delirium.

2.1.2 Risk-prediction modeling

The purpose of risk-prediction models is to identify individuals who

are at greatest risk of developing a disease to inform appropriate

risk-reduction interventions. Numerous risk-prediction models for

dementia have been developed, some of which have been externally
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6 NEWBY ET AL.

validated.67 However, further work is required to assess their

generalizability, cost-effectiveness, and predictive value before they

can be recommended for use in clinical practice.68 These models tend

to use a combination of demographic, cognitive, health, lifestyle, and

genetic factors to estimate an individual’s risk of developing dementia

using straightforward regression-based approaches. The Cardiovascu-

lar Risk Factors, Ageing and Dementia (CAIDE) model is one example,

which uses age, education, and sex alongside the mid-life risk factors

of body mass index, blood pressure, cholesterol, smoking history, and

physical activity. The CAIDE was developed using logistic regression

to predict dementia risk in 20 years with moderate levels of accu-

racy (area under the curve [AUC] 0.77; 95% confidence interval [CI]

0.71–0.83).69 A recent study using a variety of differentML algorithms

(logistic regression, SVMs, random forest, and gradient-boosted trees)

was used to predict 2-year dementia risk and had superior accuracy

compared to common dementia risk models including the CAIDE.13

However, due to the long prodromal phase of dementia, the value

of a prediction model that is optimized for prediction only 2 years

prior to diagnosis is unlikely to be of primary preventative value, since

high levels of neurodegeneration will already have occurred,61,62 but

it could help clinicians to identify patients who might be in the ear-

lier stages of disease. The optimal period for dementia risk prediction

will, therefore, require different risk-prediction tools targeting differ-

ent stages of pathology and dementia progression. For example, for

primary prevention, long-term risk profiling is useful because risk fac-

tors can potentially be modified,70 whereas for secondary prevention,

shorter-term risk profiling is more appropriate to identify those at

higher risk of disease progression.13

A systematic review highlighted that many ML techniques (pre-

dominantly SVMs) used in prediction modeling can accurately predict

the conversion from MCI to AD, with most studies using neuroimag-

ing data.71 However, more recently, methods such as ensemble-based

approaches72 and deep learning73 are being used to predict future

risk decades in advance. In addition, ML can be used to assess the

relative importance of multiple risk factors in determining future

cognitive impairment and dementia.74 ML methods are also being

developed that improve understanding72 for the non-ML expert and,

therefore, have the potential to improve clinical detection and timely

intervention.

2.2 Major current challenges

2.2.1 Understanding risk-factor mechanisms and
interactions that contribute to dementia risk

Improvedunderstanding of the causal biological pathways that link risk

factors to dementia is required to support the design of preventative

interventions and the identification of treatment targets for preserv-

ing brain health during early disease stages. Risk factors are likely

to exert their effects through a range of distinct biological pathways

including those related to protein production and clearance, vascu-

lar health, inflammation, and cognitive and neural reserve.8 However,

the complex etiology of these risk factors coupled with high levels

of comorbidity75 make it hard to pinpoint what the most efficacious

mechanistic targets might be, and increase the likelihood that the key

targetwill change between individuals, thereby increasing the need for

reliable precisionmedicine for dementia prevention.

Although the main risk factors for dementia are common and

frequently coexist, studies76 typically focus on a single risk factor

or a small group of phenotypically similar factors, leaving networks

of interactions and synergistic effects unquantified.8 However, the

direct relationships between large numbers of observed traits can

be achieved using network analysis. For example, one study used

weighted gene correlation network analysis to identify modules of

metabolites that are associated with cognition in late life, some of

which seemed to be influenced by risk factors such as education.77

This highlights the potential value of network-based approaches to

identify complex biological pathways that act as mediators between

modifiable risk factors and dementia, which could represent realistic

therapeutic targets onwhich to intervene in a clinical trial setting. Inte-

gration of deep learning into network analysis, such as DeepPPI, has

been shown to outperform traditional methods in predicting interac-

tions within complex networks.78,79 A study that used unsupervised

ML methods applied across multimodal health data successfully iden-

tified novel cardiometabolic markers linked to hypertension and poor

metabolic health.80 Use of similar network-based methods for other

dementia risk factors could, therefore, help to identify themechanisms

that underlie known epidemiologic associations.

Furthermore, we currently have a poor understanding of the shared

biologybetweendementia risk factors and their impact onbrain health,

even though shared pathways across risk factors represent promis-

ing targets for intervention. However, a study that applied genomic

structural equation modeling to AD and 12 modifiable risk factors

found high levels of genetic overlap between most dementia risk fac-

tors, suggesting that there are overarching shared biological pathways

that might increase AD risk.81 These findings demonstrate the poten-

tial merits of using latent variable modeling (LVM) to reduce data

complexity and identify common mechanistic patterns between risk

factors, but traditional LVMmethods perform poorly with highly com-

plex and nonlinear data.82 In contrast, LVM methods that are based

on deep learning approaches, such as autoencoders (AEs), deep neu-

ral networks (DNNs), or generative adversarial networks (GANs), are

better suited to these kind of data and represent a promising avenue

formore accurately defining the shared biology between dementia risk

factors.82,83

2.2.2 Understanding risk-factor causality and
trajectories of dementia risk

Preventing dementia through targeting modifiable risk factors is pred-

icated on the risk factors causally influencing the development of

dementia. Therefore, to prevent dementia most effectively we need to

determine if these risk factors are causal. The issue is that observa-

tional associationsbetween risk factors anddementia could alsobedue
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NEWBY ET AL. 7

to shared causality, confounding, or reverse causality.84,85 Examples

of this include possible confounding between education and socioeco-

nomic status, which make it unclear which might be more important as

a causal influence on dementia risk,86 and preclinical effects of AD on

hearing and depression, which could indicate reverse causality.87,88

A method that is used increasingly to assess the causality of risk

factors is Mendelian randomization (MR), which uses genetic vari-

ants that are associated with an exposure as instrumental variables

to assess the causal influence of the exposure on an outcome. A sys-

tematic review85 of dementia-related MR studies highlighted causal

evidence for smoking quantity, vitaminD, homocysteine, systolic blood

pressure, fasting glucose, insulin sensitivity, and high-density lipopro-

tein cholesterol with AD. Other MR studies have also shown causal

relationships between cognitive ability, education, and dementia.89

However, recent MR evidence has provided limited and inconclusive

evidence of causal relationships of the modifiable risk factors pre-

sented by the Lancet Commission with dementia.90,91 This may be in

part due to effects of survival bias, particularly for risk factors that are

significantly associated with earlier mortality, as well as loss of power

due to heterogeneity in both the dementia outcomemeasure and risk-

factor exposures. A description of these issues relating to MR and the

potential for ML to help alleviate some of these problems in demen-

tia prevention research is discussed in detail in the genetics and omics

article also included in this special issue.48

However, these shortcomings necessitate the application and tri-

angulation of other causal modeling methods to help us make more

confident conclusions about whether a risk factor is causal for demen-

tia, which we focus on in this review. Other methods for causal

inference include pathway or mediation analysis. This type of anal-

ysis has been used to show a causal role for a range of health and

lifestyle factors in mediating the link between socioeconomic sta-

tus and dementia risk.92 Mediation analysis is demanding in terms of

power and large sample sizes,93 but ML methods have the potential

to help make this type of inference more feasible in dementia pre-

vention research. For example, deep learning assisted methods have

been developed recently to identify mediators in high-dimensional

data, such as functional imaging or complex population survey data.

These have been shown to be successful in identifying brain connectiv-

ity networks that mediate the relationship between cognitive traits94

and in assessing the causal link between health insurance coverage and

general health in the United States, even in the presence of multiple

confounders.95

An alternative approach to inferring causality involves analyzing

the timing and trajectory of risk factors: those with a causal effect

are likely to show increasing levels of dementia risk with greater

duration and intensity of exposure. This approach has been used to

demonstrate that depression may be a dementia prodrome rather

than a causal risk factor, as it is most associated with dementia risk

when occurring for the first time in the period immediately prior to

dementia diagnosis.96 Analysis of the timing and trajectories of risk

factors requires either large longitudinal cohorts, such as in recent

work showing the most important age range for a deleterious effect of

hypertension97 or improved ability to analyze routinely collected elec-

tronic health records,which is likely tobe facilitatedbyadvances in text

mining98 and ML.99,100 Recent examples of text mining of notes from

health records using natural language processing101 allow for neural

network ML architectures to be developed to extract clinical, lifestyle,

and pharmacological data. These methods could be applied to ana-

lyze the trajectories of how risk factors influence dementia risk over

time to support the design of preventative interventions that could be

implemented across the life-course of an individual.

2.3 Opportunities and future directions for ML to
understand modifiable risk-factor research for
dementia prevention

2.3.1 Utilizing multimodal data to understand
dementia

The variety of existing data modalities acquired in research and health

care can help to provide a more complete picture about a com-

plex disease, such as dementia, than any one type of data on its

own. Dementia pathogenesis and clinical progression is hugely het-

erogeneous between individuals, so the collection of rich and deeply

phenotyped, high-dimensional multimodal data is crucial for success-

ful dementia prevention. By integrating and analyzing multimodal data

such as omics, histology, imaging, clinical, and digital data, this can

unveil novel mechanistic insights that could be used to understand

the condition and predict risk across the whole population or specific

subgroups.102,103 This could then lead to a patient-specific approach

leading to personalized preventative interventions and specific risk-

management strategies for dementia prevention.104

ML approaches are well suited to dealing with the high-dimensional

nature of multimodal data.105,106 Multimodal patient data better

reflect clinical practice, in which medical histories, fluid biomark-

ers, genetics, neuropsychology, and structural and functional imaging

may all be collected during diagnostic assessments in secondary care.

Indeed, several dementia risk scores, such as the CAIDE risk score69

described in Section 2.1.2, use this sort of information to identify

modifiable risk factors that can be managed in mid-life to prevent

or delay dementia in later life. Whether ML methods can improve

dementia risk prediction has not yet been well studied. One study

found a supervised ML model (Disease State Index) to achieve sim-

ilar sensitivity and specificity to CAIDE in predicting dementia 10

years later.107 By using data already routinely collected in clini-

cal settings, risk scores and ML algorithms could easily be clinically

translatable. On the other hand, the integration of many different

data modalities, for example, genetic, multiomic, and advanced neu-

roimaging features,108 may improve sensitivity and specificity, but this

may be at the expense of clinical translatability and would require

a higher level of resources, which are often not available to many

populations.

Furthermore, although the use of ML approaches may enhance

the analysis of high-dimensional multimodal data, this often leads to

increasingly complex models becoming uninterpretable.109 A good
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8 NEWBY ET AL.

example of this is DNNs, which are powerful and flexible in prac-

tice, although incorporate hidden layers, which have led them to be

described as a “black box” technique. These limitations should be

thoughtfully considered during the development of any ML model

aimed at assisting clinical decision-making. Explainable ML is a

burgeoning field that aims to promote easy interpretation of ML

models.110 For example, a recent study created a deep learning frame-

work using multimodal data (magnetic resonance imaging [MRI] and

clinical variables). The deep learning framework linked a fully convo-

lutional network to a traditional multilayer perceptron to intuitively

visualize and predict AD risk.111 Themodel was validated across three

independent data sets and could be easily used by practicing neurol-

ogists, providing a clinically translatable and interpretable tool using

widely collectedmultimodal data.

In any case, the optimal use of multimodal data for dementia pre-

vention requires triangulation of heterogeneous data all bringing their

own unique issues in terms of noise, missingness, and quality.112 Data

labeling becomes challenging in multimodal data sets, with the degree

of accuracy or objectivity varying between modalities. For exam-

ple, some risk factors based on genetics or blood biomarkers may

be deemed more objective than features that typically require man-

ual labeling, such as intricate lesions, or that incorporate subjective

decision-making, such as behavioral ratings.

Additional challenges, such as data linkage across several data

sources, can pose a common barrier to ML because different data

modalities vary widely in their availability, accessibility, and gener-

alizability. There have been some recent initiatives to help facilitate

cross-cohort access, such as the creation of Dementia Platforms UK

Data Portal,113 however, to promote the application of ML method-

ologies creating a suitable research infrastructure that makes this

feasible is key. Multimodal data also increase the likelihood of being

able to identify an individual, as specific combinations of data may

be truly unique, which raises ethical issues especially in relation to

future dementia risk.114 Therefore, as ML becomes more routinely

applied within dementia prevention research, it will become necessary

to create relevant policy and legal regulations that seek to protect indi-

viduals while enabling research. Although the use of ML approaches

may enhance the analysis of high-dimensional multimodal data, this

often comes at a cost with increasingly complex models becoming

uninterpretable.109 A good example of this are DNNs, which are pow-

erful and flexible in practice, although incorporate hidden layers, which

have led it them be described as a “black box” technique. Explainable

ML is a burgeoning field, aiming to allow interpretation of ML models

and is further discussed in Section 4.110 For example, a recent study

created a deep learning framework using multimodal data (MRI and

clinical variables). The deep learning framework linked a fully convo-

lutional network to a traditional multilayer perceptron to intuitively

visualize and predict AD risk.111 Themodel was validated across three

independent data sets and could be used easily by practicing neurol-

ogists, providing a clinically translatable and interpretable tool using

widely collected multimodal data. Despite these challenges, multi-

modal data combinedwithML approaches have considerable potential

toprovide further insights into thenatural progressionof dementia and

its risk factors.

2.3.2 Applying multidisciplinary approaches from
other research fields

Applying multidisciplinary approaches from other fields can signifi-

cantly enhance the use of ML for dementia prevention research by

providing fresh perspectives, innovative methodologies, and a broader

range of expertise.

For example, to improve our ability to recruit participants at risk

of developing dementia, it is important to identify individuals at risk

with high accuracy over different timescales (months, 2 years, and

so on). ML methods have been shown to be effective in predicting

short-term risk in other disciplines, such as the prediction of hypox-

emia during surgery,115 and identifying optimal timing to refer patients

with terminal respiratory failure for lung transplantation.116 Much

longer timescales are required to utilize theseMLmethods for primary

dementia prevention, and this could be a challenge. However, studies

have shown ML to improve the prediction of risk of other long-term

conditions and related outcomes such as cardiovascular disease117,118

and suicide,119 highlighting the ML potential. ML approaches to iden-

tify riskmarkers or factors are already used successfully for analyses of

dementia-related neuroimaging data.71,120 However, approaches that

identify new riskmarkers/factors temporally preceding the health out-

comes would be advantageous, due to the long prodromal period of

dementia. Such methods have been used previously to detect early

metabolite markers as risk factors for type 2 diabetes.121 Already

known or new risk factors can then be evaluated with ML for causal

inference,122 and there are examples of its use in prenatal andperinatal

care.123 Identifying causal risk factors will allow for targeted risk-

reduction interventions for primary dementia prevention, and there

are examples ofMLbeing used to target high-risk individuals for cancer

screening124 and suicide prevention.125

A shift in focus is required to embed causal applications of ML and

other methods in dementia research, by combining domain knowledge

to apply ML for causal inference applied in health care, development

economics, and other fields.122 To understand how to prevent demen-

tia, causalMLmethodology embeddingmultidisciplinary approaches is

needed, which, can lead to more robust estimates compared to tradi-

tional inferential statistics.122 A major issue is that many studies use

predictiveMLwhen researchers are really interested in understanding

the underlying pathological andmechanistic processes.

The use of ML could also be used to directly evaluate and compare

interventions, which would be beneficial for interventions for risk-

factor management in dementia. The application ofMLmethods in this

way has been used to compare therapies for depression using elastic

net regularization,126 and methods such as Bayesian Additive Regres-

sion Trees (BART) and regression adjustment on multivariate spline

of generalized propensity scores (RAMS), have been used evaluate

different surgery types for treatment of non-small cell lung cancer.127
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NEWBY ET AL. 9

3 USE OF ML TO ENHANCE PREVENTION
INTERVENTIONS AND TRIALS

In this section we describe what pharmacological or non-

pharmacological interventions are available currently to prevent

or delay dementia. Second, we state the main challenges in the

field such as targeted clinical trial recruitment and testing suitable

interventions. Finally, we use examples to highlight how ML can

improve personalized medicine in terms of risk-factor management

and predicting treatment response, as well as the identification

of potential drug candidates for drug repurposing for dementia

prevention.

3.1 State of the science

3.1.1 Pharmacological and non-pharmacological
interventions for dementia

Pharmacological and non-pharmacological interventions will both be

key to preventing dementia. However, problems with a lack of under-

standing of disease complexity, disease heterogeneity, and timing of

interventions have resulted in limited progress. Recently, there has

been some hope with the approvals of aducanumab and lecanemab

by the US Food and Drug Administration (FDA) for treatment of AD

in the United States, but there has been much criticism over their

effectiveness and severe side effects.128–132

Most pharmacological interventions that are being tested currently

in dementia clinical trials are disease-modifying therapies, which aim

to slow or stop disease progression in early stages. As of January 2023,

there are 141 drug candidates being tested in 187 ongoing AD trials.

Of these candidates, 28% represent agents that are being repurposed

from use for other diseases, aimed at various biological targets with

diverse mechanisms of action. There are currently five primary pre-

vention trials in Phase 3 and four prevention trials in Phase 2 enrolling

participants with preclinical AD or patients with varying levels of MCI

and AD severity.133

Regarding non-pharmacological interventions, multiple studies

have reported physical activity, cognitive reserve,134 Mediterranean

diet,135 antioxidants,136,137 and some vitamins (e.g., vitamin D138,139)

as protective factors for the development of dementia. This evi-

dence paved the way for randomized clinical trials to determine

whether these non-pharmacological interventions may prevent cog-

nitive decline in healthy older people,140 or those with MCI.141 The

FINGER study reported that a multidomain intervention encompass-

ing diet, exercise, cognition, and vascular risk management improved

cognition regardless of participants’ characteristics in comparison to

regular health advice.142 Therefore, combining non-pharmacological

treatments may be more effective for primary prevention trials.

The extension of the FINGER model over 25 countries world-

wide will offer important information on the role of multidomain

lifestyle interventions as effective preventative strategies for cognitive

decline.143

3.2 Remaining challenges of prevention
interventions and trials

3.2.1 Difficulties with representative targeted
recruitment for clinical trials

The lack of representation of minority groups in clinical research

remains a significant obstacle in medical research144 and is not iso-

lated to the dementia field,which affects the usefulness ofMLmethods

to generalize to different sub populations to be used for targeted

recruitment to clinical trials. The lack of representation is due in part

to the ethical challenges of recruiting people with dementia for sec-

ondary prevention clinical trials, with a tendency to paternalistically

protect them from harms of participating in research.145 However,

this has been addressed by embedding research in clinical care and

streamlining proxy and advanced consent procedures.138 In addition,

the continued lackof representative real-worlddatahasmeantdemen-

tia risk scores that could be used to identify those at risk of dementia

for potential primary prevention trials in those with preclinical demen-

tia are not robustly validated146 again leading to clinical trials that

are unrepresentative,147 and based upon skewed biomarker data that

hinder dementia prevention drug development.148 The lack of repre-

sentation of minority groups often leads to bias in ML models, which

are then unable to generalize to other populations to identify those

who could be targeted and recruited for clinical trials. Further discus-

sion of bias in ML can be found in Section 4 (Limitations of ML for

dementia prevention).

3.2.2 Problems with interventions targeting
individual risk factors

Population-level interventions shift the distribution of health risk

by addressing the underlying social, economic, and environmental

conditions.149 The high prevalence of modifiable factors for dementia

raises the question of whether population-based prevention strate-

gies could reduce the prevalence of dementia. Studies have shown

that population level interventions such as those focused on single risk

factors, such as maintaining cardiovascular health, have been thought

to have contributed to a modest reduction of dementia incidence in

some countries.11 However, dementia risk factors vary among indi-

viduals due to genetic, lifestyle, and environmental factors, making it

difficult to design a one-size-fits-all population intervention. Further-

more, there are complex interactions between risk factors, and many

cluster together8,53; therefore, interventions that target more than

one risk factor and studies that investigate additive or even synergis-

tic effects of risk factors are likely to be more appropriate than single
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10 NEWBY ET AL.

interventions for dementia prevention.150 The challenge of how to

develop personalized risk profile management and interventions to

address individual variation remains.

3.3 Opportunities and future directions for ML to
enhance prevention interventions and trials

3.3.1 Personalizing preventative interventions

Prevention strategies should begin early and continue throughout life,

with public health programs, individually tailored interventions, and

the need to tackle inequality given that many risk factors are linked to

socioeconomic inequalities.8 ML could be valuable in gathering infor-

mation and learning from broad data sets, including from existing

medical records,which could beused tomodel trajectories anddevelop

algorithms for personalized risk planning and management.151–156

Dementia prevention needs to be able to answer a range of questions,

both in individuals with no cognitive impairment (preclinical cases),

those with mild memory problems, those who convert from MCI to

dementia, and those diagnosed with dementia. There would also be

a benefit for ML approaches that can support the integration of bio-

logical, psychological, and social factors when approaching diagnosis,

classification, prognosis, and tracking of disease progression and its

management.

A recent example used transfer learning with ensemble learning

algorithms todevelop apersonalizedpredictionmodel that allowed the

early detection and prediction of dementia risk. It is important to note

that this approach had the ability to visualize the interaction of the risk

factors thatdrove theprediction,whichwill bevital for risk-factorman-

agement and therefore has promising clinical utility.72 Understanding

how aging impacts these ML models is vital, given that diseases that

underpin dementia often start in mid-life, and, therefore, how modi-

fiable risk factors interact with their progression may also vary with

age.157

Some dementia studies are already collecting large and phenotyp-

ically deep data sets involving multimodal, cognitive data, language,

novel and validated biomarkers, genomics, medical comorbidities,

wearable technologies, and imaging.158 The collection of diverse data

such as gait and speech allow for the applications of methods such

as SVMs, random forest, and k-nearest neighbors (KNN) algorithms

to predict different types of MCI159 and to differentiate between

cognitively normal, MCI, and AD patients.160

3.3.2 Drug repurposing

Drug repurposing encompasses the identificationof newuses for drugs

beyond the scope of their original indication and can enhance tra-

ditional drug development efforts.161 Identification of repurposing

candidates could accelerate the identification of new treatments to

modify or slow the onset of dementia as has been the case for can-

cer, Parkinson’s disease, HIV, and other conditions.162 For dementia

prevention, there are numerous examples of drugs used to treat condi-

tions such as hypertension, diabetes, and rheumatoid arthritis that are

associated with a reduced dementia risk.163–165

Drug repurposing has been largely opportunistic. However, with

the large number of drugs currently on the market or under inves-

tigation, and the increasing wealth of data available, ML methods

could be a powerful tool in drug repurposing.166 For example, one

study identified drug candidates using ML methods such as logistic

regression, SVMs, boosted random forest models, and neural net-

works applied to gene expression data sets from neuronal cells and

postmortem brains of individuals with different stages of AD. From

this they identified drug candidates that target Janus kinases, which

play a role in immune response, as potential repurposing candidates

for AD.167

Other methods such as deep learning168 and network-based

approaches169,170 will be vital to identify and test new potential drug-

repurposing candidates for dementia prevention. There is potential for

MLmethods such as neural networks to identify combinations of drugs

that target multiple risk factors simultaneously. It is notable that deep

learning could also help elucidate why certain drugs reduce risk mech-

anistically, which will help with understanding the causes of dementia

and identify potential new drug targets.167,171

3.3.3 Predicting treatment response

Prediction of treatment response for an individual patient remains

an important goal. With no specific biomarkers being used in routine

clinical practice, selecting medications for dementia or other diseases

would remain a largely trial-and-error process. ML algorithms that

suggest appropriate treatments based on individual patient charac-

teristics are useful, particularly when several treatment options of

generally equivalent efficacy are available. Successful examples from

other disease areas include the ongoing PETRUSHKA study,172 which

builds on network meta-analytic approaches to estimate individual

efficacy of antidepressants through aggregate and individual patient

data. The aimof the project is to generate a clinical support system that

incorporates patient-level data and patient preferences (i.e., relative

importance of efficacy and adverse event risk) to generate a ranking

list of treatment recommendations.

Further elaboration of this method173 used anonymized secondary

care patient data obtained through UK-CRIS (https://crisnetwork.co)

to train a recurrent neural network algorithm topredict themost effec-

tive treatment for cognitive impairment (i.e., cholinesterase inhibitor

or memantine) in patients with dementia. Although in current clini-

cal practice there is little to distinguish between available treatments,

the results showed that patients who were prescribed medications

according to what was predicted in the ML model had better cogni-

tive performance after 2 years. The promise of these ML approaches

and others in other disease areas such as cancer,174–176 epilepsy,177

and other mental health conditions178 make them a primary oppor-

tunity to optimize symptomatic and disease-modifying treatments for

dementia.
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NEWBY ET AL. 11

4 LIMITATIONS OF ML FOR DEMENTIA
PREVENTION

Although this review highlights the ways in which ML has the poten-

tial to enhance our understanding of dementia prevention, there are

also several limitations that are important to consider. First, many

standard ML methods do not model causality and are purely asso-

ciative. They are unable to account for reverse causation and are

designed to maximize predictive power, and lack the interpretability

that would allow for casual modeling, which is preferable for demen-

tia prevention.179,180 ML models, like any statistical models, rely on

the data and assumptions made during their development. ML models

are trained on available data, and the relationships between vari-

ables in the data can reflect both direct causal relationships and

correlations.179 If reverse causation is present in the data, ML mod-

els can potentially learn and capture those relationships as well as

identify appropriate features and consider temporal relationships to

minimize the potential influence of reverse causation.181 Broadly

speaking, althoughMLmodels can assist in identifying potential causal

relationships by revealing associations between variables and pro-

viding insights into their predictive power, establishing true causality

often requires experimental design, domain expertise, and rigorous

causal inference methods beyond the scope of ML techniques.179

There are specific methods within the field of ML that can assist with

causal inference.182,183 Structural causal models, also known as causal

graphical models, aim to represent causal relationships among vari-

ables explicitly.184 These models can be learned from data or expert

knowledge and can help elucidate the causal pathways in demen-

tia prevention research. Techniques such as Bayesian networks and

directed acyclic graphs185 have been adapted to consider counterfac-

tual reasoning to represent and analyze causal relationships, and a

recent study has shown causal Bayesian networks outperform associa-

tive algorithms to diagnose disease, particularly for rarer diseases.186

Other ML methods include causal forests, which combine elements of

random forests with causal inference to estimate treatment effects

and identify causal relationships.187 These methods aim to model

heterogeneous treatment effects and provide insights into causal rela-

tionships while controlling for confounding variables. They can be

useful in identifying factors or interventions that may have a causal

impact on dementia outcomes.188,189 However, a limitation of causal

ML for dementia is that the risk factors consist of intricate causal rela-

tionships involving different interactive processes, which change over

time. Capturing such complexity within a causal model will be a chal-

lenge for dementia, and simplified models may not fully capture the

underlying causal mechanisms. Furthermore, the lack of interpretabil-

ity is a common issue and amajor limitation for someMLmethods such

as deep learning, which may also limit clinical acceptability even with

causal adaptations.190–192

Second, another important limitation is biased ML models (algo-

rithmic bias), which can arise when the ML models are trained on

data that are of poor quality or unrepresentative, which can lead

to further disadvantages in already under-represented and marginal-

ized groups, thereby worsening existing inequity in health care.193

This is particularly poignant for dementia prevention, as evidence sug-

gests that dementia is more prevalent in minority groups who have

a younger age of disease onset.194,195 However, most ML models are

based on data from studies incorporating people of European ancestry;

therefore, ML models can have poor predictability and generalizabil-

ity to different subgroups in the population.196,197 However, with

appropriate data-preprocessing techniques and hyperparameter tun-

ing for ML methods such as deep learning, biases can be reduced,

resulting in better predictive accuracy achieved for subgroups of the

population.197

Third, overfitting and underfitting are major issues for all ML mod-

els. Overfitting occurs when a model is overtrained to the training

data, so it does not generalize to new data sets. Various methods can

be implemented to avoid overfitting such as penalties for increasing

model complexity and cross validation.198 Underfitting is the oppo-

site of overfitting andwhereMLmodels cannot capture the underlying

trends and variability of the data and lack predictive power.199 There-

fore, the training and development of ML models often require a large

data set, model optimization, and suitable model validation200

Finally, due to the black-box nature of many ML models, there

can be difficulty in the understanding and interpretation and there-

fore lack of acceptance and usage.201,202 Consequently, there is a

need to provide understandable and transparent explanations for ML

model decisions.203 ML methods and tools such as Shapley,204 Local

Interpretable Model agnostic Explanations (LIME),205 and glass box

methods such as Explainable Boosting Machine206 can begin to over-

come challenges of lack of interpretability of ML models to help

provide transparency, trust, and insights into the risk factors and indi-

cators contributing to the development and progression of dementia

as well as assisting in early detection, personalized interventions, and

informed decision-making for individuals at risk.

5 CONCLUSIONS

A wide range of potentially modifiable risk factors for dementia have

been identified across the lifespan. However, the optimal combina-

tion of risk factors, possible interactions between them and with

genetic risk, and their causal status remain largely unknown. Better

risk-prediction tools are needed if personalized dementia prevention

interventions are to be delivered in the future. Interpretable and

causal ML models may refine our understanding of risk factors and

could be used to reduce costs and improve the efficiency and power

of future clinical trials. ML frameworks are also being developed to

inform AD drug-repurposing efforts and the prioritization of poten-

tially disease-modifying therapeutics. With the increasing complex

multimodal becoming available, it is more important to combine differ-

ent data to not only identify drug repurposing opportunities but also

to understand the mechanisms of disease. It is vitally important that

challenges relating to infrastructure, data accessibility, and ML accep-

tance are overcome. If we can overcome these challenges then the true

potential of ML for dementia prevention will be realized, leading to

precision dementia prevention.
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