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Abstract

University campuses present a unique opportunity for
decarbonisation through integration of intelligence for
smart-energy campuses. So far the evidence-base for
smart energy campuses focuses on building-level
demonstrations or archetypal approaches and the
university campus stock lacks a common assessment
framework to characterise and evaluate smart-energy
transition pathways.

This paper presents a methodological framework that
leverages automated computational methods (3DStock,
SimStock) to produce building-by-building dynamic
thermal models. The modelling method can benefit the
evaluation of smart-energy campus and decarbonisation
strategies and simulate the dynamics of complex HVAC
under demand-response where data availability is more
granular. Instead of using archetypal approaches to
represent the heterogeneity of building stocks, this work
developed an automated building-by-building stock
modellng approach based on a case study. HVAC systems
are also modelled based on information from Display
Energy Certificates. Model calibration is performed, at
stock level, against actual data from Building Monitoring
Systems and operational energy performance data
following the CIBSE TM63 protocol. Geometry checks
showed 63% of the models were sufficiently matching
actual geometry whereas energy use intensity was
overestimated by around 35% across the campus in the
baseline partially calibrated building models.For a
typology, initial comparisons with a fully calibrated
model signified lighting, cooling and heating setpoints as
potential factors. A major advantage of the method is that
it can be flexibly used depending on the data granularity
available and therefore eliminates a significant barrier that
Urban Energy Modelling presents in terms of data
availabilty.

Highlights

e Automated building-by-building campus stock model.
e Stock model calibration and geometry verification.

e University campus smart energy transition
framework.
Introduction

The UK's Higher and Further education sector has unique
potential for reducing carbon emissions and incorporating
intelligent systems. Firstly, national benchmarks suggest
university campus energy consumption to be double of

the energy that an open plan office consumes typically in
a year (CIBSE, 2020) with intensive university building
activities being the most influential electricity
consumption factor (Hawkins et al., 2012). The diversity
of activities, building types and ages aggregated under a
single owner presents opportunity for the integration of
multiple energy vectors like heat, power, electric vehicle
charging etc. under a smart-energy campus system. This
approach mirrors city-scale smart energy systems
integration. (Guerrieri et al., 2019). Implementing
intelligence to balance and optimise the system operation,
communicate with the grid, enhance user experience,
health and wellbeing (Kourgiozou et al., 2021). Smart
energy campus transition pathways can encompass
buildings, renewable energy systems (RES), distributed
energy resources (DER) for multiple energy vectors and
transport interventions in a systematic and holistic
approach.

For a holistic approach to smart energy integration,
university campus decision-makers would require a
robust framework to assess transition scenarios.
Characterisation and energy profiling are necessary to
establish the baseline conditions. Urban energy modelling
has been implemented to characterise stocks, evaluate
energy efficiency, and district energy network design. As
amethod it can rely on less detailed top-down approaches
using benchmarks, statistical archetype models or
mathematical modelling. On the other hand, bottom-up
simulation approaches are utilised for building energy
performance modelling, evaluation of smart building
interventions and renewable energy integration at the
building scale. These require an in-depth knowledge of
the building geometry, thermal envelope, zoning,
occupancy, and systems information. Microclimate
information and surrounding geospatial building context
are also needed for an accurate representation of the
building physics influencing the building’s energy
performance (Willmann et al., 2019).

The novelty of this research is that it aims to provide
stakeholders with a method to use an automatic method to
develop building models for stocks. Through the models
they can evaluate and quantify different scenarios by
integrating energy vectors, modelling scales and data
granularities. The proposed decision-making framework
is value-based and evidence-based as it encompasses
stakeholder participation in the framework’s decision
hierarchy. It also implements the smart-readiness
indicator (SRI) assessment method (European



Commission, 2022) by adapting it to the campus scale and
uses the stock model to evaluate the impact of the SRI’s
smart-ready interventions. As the research is in progress,
this paper focuses on this modelling approach and
specifically on the method of developing a campus
building stock model that can examine system
interactions and is adaptable to different levels of data
granularity for developing and verifying models. For that,
the below objectives were fulfilled:

e To develop automated building-by-building stock
models in EnergyPlus that are generated using an
automated modelling method.

e To calibrate the automatically developed models by
comparing against operational energy data and use
hourly calibrated building energy models to
understand modelling error and subsequently improve
performance.

e To wunderstand the potential opportunities and
limitations of the building-by-building campus model
for evaluating smart-energy transition pathways.

The modelling method, within a smart energy transition

decision-making framework, will be transformational in

the way university campus stakeholders can holistically
evidence decision-making that is otherwise resource-
intensive and fragmented.

Methodology

The methodology for developing the campus model aims
to tap into data readily available and the DEC database so
that an understanding of campuses can be established with
minimal data requirements. Additionally, further data
layers can be inputted to the model to fine-tune based on
availability and the analysis requirements. For the model
development there are the major steps followed. Step 1:
Use a case-study method as a reference system for data
collection and analysis for the evidence-base
development; Step 2: Develop an automatic building-by-
building campus stock model creation process by building
on existing stock modelling methods; Step 3: Use campus
monthly in-use energy and calibrated building energy
models for the calibration and fine-tuning of the campus
simulation models.

Case study

The two main data sources for the reference university
campus were the university’s registry with the names,
addresses and floor areas and secondly DEC certificates.
The studied urban university campus comprises 216
buildings spread around a large area in London. 30 of
those buildings were excluded from the study as they
involved hospital and clinic activities. The building
construction typologies range from Victorian terrace
conversions to modern multi-tenant office buildings with
seven main use types matching university building
benchmarking typologies (CIBSE, 2020). These include

labs (engineering, medical and chemistry), libraries,
teaching, administration, and residential. 146 are
available on the university’s main monitoring platform
and hold main utility metered data. For comparison and
demonstration of the model’s limitations, a recently
retrofitted engineering building is presented. The building
has undergone post-occupancy evaluation and an hourly
calibrated dynamic thermal model is available.

Building 1 — Engineering workshop building (Lab
engineering typology): A recent major retrofit (2016) of
an existing building to upgrade the performance and add
floor space for a total of 8887m? gross floor area (GFA).
The building is connected to a central campus heating
network, has low-carbon design elements like a ground
heat exchanger, mixed-mode mechanical ventilation with
heat recovery, low energy lighting and occupancy
detection.

Automated campus building stock model

The model development builds upon established stock
modelling methods to create an automated workflow that
utilises mostly publicly available building data. This
ensures it is replicable at scale and can flexibly integrate
different data granularities. Additionally, different types
of campuses and stocks can be modelled using this
method.

Figure 1, describes how existing methods were adapted to
develop a building-by-building university campus stock
model. This is organised in three stages: a) the input, b)
the processes, and c¢) the output. References to these
stages are added in the corresponding methodology sub-
sections in parentheses. Starting with the list of buildings
to be modelled (a.1), energy modelling information is
retrieved from the 3DStock method (Steadman et al.,
2020) which provides a database for the UK non-domestic
building stock (b.1). 3DStock, mostly from public
sources, links premises to their Unique Property
Reference Number (UPRN), footprint, external
geometrical definition, building use, gas and electricity
meters with high levels of matching success (Steadman et
al., 2020). Importantly it also links to Energy Performance
Certificates (EPC) and Display Energy Certificates
(DEC) (c.1). In the case of qualifying higher education
buildings, it also includes operational energy and building
environmental system information.. The SimStock code
is called (b.5) for developing the building models using
the synthesised data from 3DStock (c.2). Among others,
3DStock has been used for the London Building Stock
Model (LBSM) (Steadman et al., 2020) and both 3DStock
and SimStock have been used for the Modelling Platform
for Schools (MPS) (Schwartz et al., 2022). The final
output of the method is the campus building stock model
that comprises all the building-by-building energy models

(c.3).
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Figure 1: Building-by-building stock model development: diagram demonstrating inputs, processes, and outputs in line with overall
framework. Note: Yellow arrows represent process steps for developing the campus model, grey represent processes relating to the

smart energy pathway modelling beyond the scope of the paper.

Figure 1 also demonstrates the implementation of the
stock model within the overall methodological framework
(smart energy transition pathways).

Input

Five main categories of inputs were used to build the
model: 1) building basic information, 2) premise /
hereditament (VOA classification) / self-contained unit
(SCU), 3) geometry, 4) activity, 5) metadata as in Table
1. The list of building names and addresses (a.1) was
downloaded from the university campus’s website for
developing the campus-specific database through
3DStock. The method also combines data from a range of
sources like the Ordnance Survey (OS), the Valuation
Office Agency (VOA) and LiDar measurements to match
geometry polygons to hereditaments (UARNs) and
therefore SCU as described by (Steadman et al., 2020).

Table 1: Main model inputs and sources.

Floor height, no.

3DStock (OS & LiDar),

Input Input sub- Source
category category
Building Building list, Campus website
basic address
information | Building areas 3DStock; Campus
monitoring platform
Building ages 3DStock (DEC)
Self- SCU 3DStock (VOA)
contained
unit (SCU)
Geometry Polygons (3D 3DStock (OS & LiDar)
points of
building areas)

floors visual check on Google
maps
Activity Main activity 3DStock (VOA &DEC)
Metadata Building Based on previous
envelope — research (Dong et al.,
window-to-wall 2020)
ratio (Wwr)
Model building 3DStock (DEC),
constructions rdSAP2012 (BRE, 2012)
(U-values)
Activity profiles 3DStock (DEC), NCM

(occupancy and
people metabolic
rates, equipment

loads,
illuminance
levels)

HVAC system 3DStock (DEC) & NCM

Additionally, several metadata sources were used to
assign further properties to the building energy models.
Firstly, for typical construction thermal properties (a.2.3),
the rdSAP methodology (BRE, 2012) was used as it
provides typical U-value assumptions for different age
bands, see Table 2. For the glazing ratio per facade a study
that surveyed London Schools has been used as the source
(Dong et al., 2020), see Table 3. Moreover, the National
Calculation Methodology provides standard assumptions
for activity (a.2.1) and HVAC profiles (a.2.2) for the
calculation of EPC certificates. These standard profiles
were used as input to the building models for each
building usage category, see Table 4. Typical HVAC
systems were selected including gas boilers, chillers and
air-handling units to represent those building



environments with standard system characteristics from

NCM.
Table 2: Campus stock model thermal building element properties using rdSAP 2012 grouped by DEC age data.
- Campus Wall Roof Floor Glazing
DEC bulldl.ng age rdSAP age bands stock model U-values U-values U-values U-values
categories agebands | (Wm’K) | (WmK) | (WmK) | (W/m’K)
Pre-world war I (Pre A. Before 1900, B. 1900- Pre 1914 1.7 2.3 1.5 4.8
1914) 1929
Inter war (1918-1939) B. 1900-1929, 1918-1939 1.7 23 1.5 4.8
C. 1930-1949
Post-war regeneration and C,D, E, F: 1930-1982 1945-1980 1.35 1.5 1.4 4.8
expansion (1945-1980)
Modern (Post-1980) G, H. [,J,K, L: 1983-2012 Post-1980 0.4 0.4 0.94 3.1

Table 3: Window-to-wall ratio per model age band
(Schwartz et al., 2022).

Campus stock model age Window-to-wall ratio
bands
Pre 1914 33%
1918-1939 35%
1945-1980 38%
Post-1980 30%
Table 4: DEC building environment and campus model
HVAC types.
DEC building HVAC type

environment categories

Heating and mechanical
ventilation (Air
conditioning)

HVAC 1: Heating, cooling,
and mechanical ventilation
system

Heating and natural
ventilation (Air

HVAC 2: Heating, cooling,
and natural ventilation

conditioning) system
Heating and mechanical HVAC 3: Heating and
ventilation mechanical ventilation

system

Heating and natural
ventilation

HVAC 4: Heating system
and natural ventilation

Processes & outputs

The process of developing the campus building models
starts with matching the campus addressees to the
3DStock SCU database. From 216 building names, 172
were automatically matched toa SCU _id (b.1). Further 10
buildings were matched manually using the full address
instead of just the postcode. In total 120 buildings were
modelled and included in the study, by streamlining
names referring to parts of buildings that for the purposes
of this modelling could be integrated to one and 30
buildings excluded from the study as hospitals and clinics
were beyond the research scope (b.2, b.3).

The matched campus buildings and the corresponding
3DStock SCU ids with the data associated to them are
extracted to a .csv file for input into SimStock (c.2). The
data includes the polygons corresponding to each
building, the mean object height that represents the mean
height per floor, the activity, age and building
environment. Additionally, SimStock requires a
definition of all the modelling parameters in .idf format
(b.4). The.csv and .idf template files are called in the
SimStock code to create the models (c.3). These include

thermal zones defined per floor and the surrounding
buildings acting as shading elements.

Stock model calibration

For the calibration of the models, the guidelines from
CIBSE TM63 Operational performance: Building
Performance modelling (Jain et al., 2020) have been used.
The guide addresses single-building measurement and
verification practices; however, it was considered that the
method can be tailored for the purposes of the stock model
as outlined in Figure 2. The first calibration step is to
replace the Typical Meteorological Year (TMY) weather
file with a weather file that is specific to the location and
the calibration year. Monthly operational energy data
were used to calibrate the baseline. For that, the guidance
suggests that the NMBE (normalised mean bias error)
which represents the average error between the measured
and simulated values normalised by the mean of the
measured values should be within +£5% and the
Cv(RMSE) (coefficient of variation of the root square
mean error) which is derived by normalising the root
mean square error by the mean of measured values should
be below 15%. Monthly main utility usage was used as
the calibration interval. Monthly totals are considered to
provide sufficient resolution for establishing the campus’s
energy demands and evaluate energy efficiency
interventions. Importantly, seasonal usage and generation
patterns can be derived to balance demand and supply
under smart energy scenarios including energy storage
and EV capacity planning. A limitation of the model is
that it can require hourly calibration where hourly or half-
hourly resolution is required, for example for flexibility
scenarios, forecasting and technical system operation that
respond to grid signals

The model can be used to demonstrate the comparative
impact of different interventions based on the assumed
building specifications and the subsequent baseline
conditions estimated for the campus. In the next steps of
the research, typical hourly end-use consumption profiles
will be developed to further fine-tune each typology for
the experience-based part of the method and compare
with actual building performance. Finally, model energy
predictions and the “Building 17 actual performance data
arecompared to benchmarks to assess the potential
discrepancies that could be attributed to the performance
gap instead of modelling error.
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Figure 2: Calibration workflow adapted from CIBSE TM63
(Jain et al., 2020). In grey, TM63 processes that were considered
impractical at scale and altered.

Results analysis & discussion

The paper results and discussion are organised in the
categories presented in the Figure 2 workflow diagram.

Metering and operational data results

In total the campus’s central monitoring platform holds
146 separate building entities that amounts to 454,642m?
GFA. The campus has three categories of consumption
meters: fuel and heat, electricity, and water. 35 buildings
are missing space heating, and 18 buildings are missing
electricity data for the selected year 2019. The non-empty
meters are mostly manually updated, although automated
meter readings (AMR) are available for some buildings.
The distribution of meters per building was compared
against the modelled number of floors per building in-lieu
of other data. Figure 3, Figure 4 demonstrate a low-level
of disaggregation available in the main monitoring
platform. More than 50% of buildings have less than three
utility meters connected to the monitoring platform, even
though more than 50% of buildings have five to six floors.
This suggests that utility level meters are mostly available
at main incomer level and that disaggregation per floor is
widely unavailable on the platform. Gap analysis was
performed to the operational measured data using
statistically valid techniques as described in (EVO, 2022).
Table 5 demonstrates the yearly normalised energy
consumption for the measured operational energy per

fuel.

0]

Figure 3: Number of total electrical and fuel and heat meters
per building and cumulative frequency curve.

Figure 4: Number of modelled floors per building and
cumulative frequency of floor numbers.

Simple linear regression analysis was performed using the
2019 monthly heating degree-days to estimate monthly,
area normalised space heating consumption. For
electricity, hot water and the ‘gas other’ category,
normalised monthly averages were calculated instead to
fill in the data gaps. The estimated missing data were
filled via interpolation and are labelled as ‘interpolated’
in Table 5.

Table 5:Campus energy use intensity: Measured energy
use presented for raw consumption data and estimated
consumption to account for missing data and simulated

energy
Measured— Measured— Simulated
raw interpolated | (kWh/m2)
(kWh/m2) (kWh/m2) 2019 actual
weather file
Fuel and | 118.5 126.1 110.5
heat (Gas)
Electricity | 187.4 204.3 123.9

Initial model development

The 120 models were simulated in EnergyPlus™ using
the TMY and 2019 actual weather data from the closest to
the campus weather station (DesignBuilder, 2022).
Monthly total energy results were obtained for the two
main utility sources: electricity and gas facility. The
comparison of results is illustrated in Table 5 in the
columns labelled as ‘simulated’ and in Figure 5.

Campus model calibration

For the baseline model monthly data statistical checks, the
following results were calculated as shown in Table 6.



The calculations for the campus’s aggregated statistical
checks were performed by aggregating the monthly
energy consumption for all buildings.

Both criteria are not met for electricity at campus level,
which showed higher error levels compared to heating
energy (gas). The heating energy criterion for the
Cv(RMSE) exceed the limit of 15% by 27.2% and
complies with the NMBE criterion at -0.51%. This
signifies that the campus’s space heating energy
consumption is better represented via the automated
model development method and subsequently the inputs
relating to space heating like the building fabric
specification and heating system appear to be more
typical of the actual conditions compared to the electricity
consumption modelling prediction that is based on the
NCM inputs and is largely dependent on the building floor
area. Furthermore, the guideline addresses single building
measurement and verification methods and therefore the
building level calculations are also presented in Figure 5
for comparison.

Table 6: Initial campus aggregated building-by-building
model statistical compliance checks using the (Jain et al.,
2020) compliance targets for whole-building calibrated

simulations.
All buildings Category A
Fuel Fuel
and Electricit and Electricit
heat y heat y
(gas) (gas)
CVRMSE 1) 5 35.1 23.0 36.8
campus, %
NMBE 0.1 0.6 19.6 553
campus, %
Percentage
error,
campus 379 38.3 25.5 35.5
monthly
average
Percentage
error, 6.9 50.3 16.4 35.6
campus
annual

On average, the Cv(RMSE) coefficient for heating energy
was calculated at around 94% across all buildings and for
electricity at 80%. The NMBE value for heating energy
was on average around -24% and -21% for electricity.

Figure 6, demonstrates the percentage error between the
actual and simulated consumption totals per month. For
electricity it is observed that there is on average a 39%
underestimation of electricity usage in the model that
needs to be rectified. For space heating, it is observed
however that the discrepancy is mostly happening in the
non-winter months (March-October) with the highest
discrepancy observed in the summer months. A reason for
this can be attributed to the performance gap as heating
systems by design are expected to operate less during the
summer months. In the model this is reflected by the
NCM HVAC operation profiles and heating setpoint and
setback temperatures that will be investigated in the next
research steps. Additionally, the current model assumes

that all technical systems follow the occupancy profiles to
operate. Higher operational energy use can potentially be
attributed to longer system operation times. Further
testing, as part of the smart energy scenario modelling
will investigate extended usage profiles.
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Figure 5: Box and whisker plot of the statistical checks
Cv(RMSE) and NMBE calculated per building for the initial
model. The outliers were excluded from the plot.
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Figure 6: Monthly percentage error between actual and
modelled electricity and fuel consumption. Total electricity
represents the aggregated electrical consumption at utility level.

Further to the statistical tests, a traffic-light evaluation
system was developed to assess the geometry generation
quality of the method. This involved assessing the match
of the model footprint to the actual footprint per building
mathematically and visually on Google maps and via the
DesignBuilder Software.. For the scale of the model, the
total of the modelled buildings was visually checked to
verify the match of geometry and areas. For larger stocks,
a sample of buildings could be used instead. The campus
models were split into five categories based on the
matching between the actual and automatically generated
model floor areas as in Table 7. For this campus, 63% of
the buildings modelled were considered a good match to
the actual buildings and can be used as the baseline for
further fine-tuning and analysis. For 9% of them, pro-
rating energy consumption by the number of floors is
considered an appropriate measure to adjust to actual
conditions. For 28% of the buildings further checks could
potentially demonstrate address and SCU_id mismatches
as university building naming does not always match the
building address naming. Table 6 shows that the statistical
calibration checks for the category A subset marked an
improvement in accuracy with regards to space heating as
all checks (with the exception of NBME that increased by
19.7%) were closer to the limiting values. For electricity,



however, the checks remained similar to the campus
aggregated calculations. A potential reason could be the
underestimation of electricity in the model, as described
earlier. Better geometry representation, however, can
result in more accurate space heating predictions that is
inherently linked to the building form.

Table 7: Stock model automatically generated geometry
evaluation represented via traffic light system

Category Geometry match
A Good, good total floor area match. Likely to
represent actual geometry to a sufficient
(52%) level.
Acceptable, acceptable floor area
B discrepancy but likely to have a good
(11%) footprint match. Small geometry irregularity
is possible across floors.
Medium, actual floor area matches the
C model footprint. Include in further analysis,
(9%) adjustment to the final energy consumption

required.

Low, big discrepancy in floor areas with

smaller discrepancy in footprints. Unlikely

D that the automatic match is representative.
Possibly error in SCU_id and polygon

(28%) match. Campus building naming mismatch
to address names that can be verified
manually.
E Poor, Missing data (e.g. SCU_id not found)
(11%) or large area discrepancy.

Model comparisons — post-occupancy and modelled
performance

Finally, model comparisons were undertaken between the
automated building-by-building method and the actual
performance for Building 1. It was observed that the
modelled energy performance largely exceeded that of the
actual building as derived from a post-occupancy
evaluation study. However, the building has recently
undergone building energy retrofit which was not
captured by the earlier version of the DEC database used
for the model development and classed the building under
the 1945-1980 age category. Based on the pre-
refurbishment DEC, the building consumed 179
kWh/m?/h which was verified with metered data and more
than 600 kWh/m?/h for heat that could not be verified.
However, based on the CIBSE benchmarking tool, typical
practice fossil fuel consumption per year is 131
kWh/m?/year for engineering type buildings while CIBSE
TM46 states 240 kWh/m?/year. Utility totals and end-use
disaggregation is illustrated in Figure 7. The simulated,
the metered and the Building Energy Efficiency Survey
(BEES) energy intensities are compared for major end-
uses like space heating and hot water, lighting, cooling
and small power and auxiliary energy. The largest
discrepancy is shown for lighting and cooling energy,
followed by space heating where the automated method
has over predicted consumption. The building selected for
comparison demonstrates the importance of the building
age as a parameter in the model development.
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Figure 7: Comparison of annual energy (kWh/m2/yr) between
actual (post-refurbishment), detailed model with TM63
calibration and automatic model calibration. Total electricity
represents the aggregated electrical consumption at utility level.

Limitations and further work

To make the most of the building-by-building models
developed as part of this research it is necessary to
understand that its main capabilities lie in diagnosing
energy demand and evaluating the comparative impact of
different energy efficiency and smart-ready interventions
for decarbonisation and smart energy integration
pathways. The SRI offers different levels of functionality
that are progressively more responsive to short-term
system variation. Through ongoing work the limitations
of the campus model will be established. This includes the
level of smart-ready functionality improvements that can
be addressed via the automatically calibrated models and
where more detailed hourly calibration is required for
accurate modelling of such interventions. Even so, the
building-by-building model can evaluate smart-energy
interventions based on the assumed characteristics
assigned to the model. Therefore, it provides comparative
conclusions for the effectiveness of decarbonisation and
smart-ready services and the overall impact on the SRI
calculations for the campus. As part of the wider research
aims, the models developed will be utilised for:

e Scenario modelling for decarbonisation and smart-
energy integration. Scenarios are based on the EPBD
SRI assessment carried out and stakeholder multi-
criteria decision-analysis. The method of this research
also aims to apply advanced simulation methods
(Energy Management Systems (EMS)) to introduce
further smart energy system nodes and services to the
stock model.

e Finally, a user-interface for spatial representation and
pathway visulisation could be developed as part of the
stakeholder engagement of the research and
contribution to the industry.

Conclusion

This paper presents the approach towards developing a
modelling framework for a university campus stock
building-by-building model. The aim is to overcome the
barriers of developing detailed dynamic thermal models
at scale or the oversimplification that can be associated
with  archetype-based approaches. The proposed
framework aims to leverage the untapped decarbonisation



potential of higher education campuses by integrating the
three largest carbon-emitting sectors — buildings,
transport, and the power sector into a multi-vector energy
approach.

The paper discusses the steps taken to build the university
campus’s  building-by-building  energy = models.
Additionally, the calibration and model geometry
evaluation results are presented. Calibration was based on
monthly metered energy data derived from the campuses
main monitoring platform. Statistical checks appropriate
for whole-building energy model calibration were used.
The calculation was used to assess campus compliance by
aggregating the monthly consumption for all buildings
and also looked at the per building calculations on an
average basis which was considered less conclusive. To
evaluate geometry,building and model floor areas and
footprints were used. Verification was undertaken
through visual inspection on Google Earth. Although the
campus statistical checks were in exceedance of the
building level targets, it is considered that an accurate
geometrical representation of the buildings is a more
appropriate measure of accuracy at scale. Uncertainty in
the inputs can therefore be addressed by scenario
modelling and comparisons between the model
predictions and more granular actual data per typology.
For the geometry match categories A and B, the models
can be considered partially already. The case study
campus,based on main utility meters and heating degree
day linear regression, in 2019 the campus’s energy use
intensity for space heating was 125 kWh/m¥/year
compated to the 112-219 kWh/m? CIBSE benchmark
range for different types of higher education buildings
(CIBSE, 2020). Electricity was estimated at 187
kWh/m?/year that was on average 38% higher that the
actual electricity usage. To conclude, 63% of the
automatically developed models were considered a good
match to the actual buildings in terms of geometry and can
be used as the baseline for further analysis.
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