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Abstract 
University campuses present a unique opportunity for 
decarbonisation through integration of intelligence for 
smart-energy campuses. So far the evidence-base for 
smart energy campuses focuses on building-level 
demonstrations or archetypal approaches and the 
university campus stock lacks a common assessment 
framework to characterise and evaluate smart-energy 
transition pathways. 
This paper presents a methodological framework that 
leverages automated computational methods (3DStock, 
SimStock) to produce building-by-building dynamic 
thermal models. The modelling method can benefit the 
evaluation of smart-energy campus and decarbonisation 
strategies and simulate the dynamics of complex HVAC 
under demand-response where data availability is more 
granular. Instead of using archetypal approaches to 
represent the heterogeneity of building stocks, this work 
developed an automated building-by-building stock 
modellng approach based on a case study. HVAC systems 
are also modelled based on information from Display 
Energy Certificates. Model calibration is performed, at 
stock level, against actual data from Building Monitoring 
Systems and operational energy performance data 
following the CIBSE TM63 protocol. Geometry checks 
showed 63% of the models were sufficiently matching 
actual geometry whereas energy use intensity was 
overestimated by around 35% across the campus in the 
baseline partially calibrated building models.For a 
typology, initial comparisons with a fully calibrated 
model signified lighting, cooling and heating setpoints as 
potential factors. A major advantage of the method is that 
it can be flexibly used depending on the data granularity 
available and therefore eliminates a significant barrier that 
Urban Energy Modelling presents in terms of data 
availabilty.  
Highlights 
• Automated building-by-building campus stock model. 
• Stock model calibration and geometry verification. 
• University campus smart energy transition 

framework. 

Introduction 
The UK's Higher and Further education sector has unique 
potential for reducing carbon emissions and incorporating 
intelligent systems. Firstly, national benchmarks suggest 
university campus energy consumption to be double of 

the energy that an open plan office consumes typically in 
a year (CIBSE, 2020) with intensive university building 
activities being the most influential electricity 
consumption factor (Hawkins et al., 2012). The diversity 
of activities, building types and ages aggregated under a 
single owner presents opportunity for the integration of 
multiple energy vectors like heat, power, electric vehicle 
charging etc. under a smart-energy campus system. This 
approach mirrors city-scale smart energy systems 
integration. (Guerrieri et al., 2019). Implementing 
intelligence to balance and optimise the system operation, 
communicate with the grid, enhance user experience, 
health and wellbeing (Kourgiozou et al., 2021). Smart 
energy campus transition pathways can encompass 
buildings, renewable energy systems (RES), distributed 
energy resources (DER) for multiple energy vectors and 
transport interventions in a systematic and holistic 
approach.  
For a holistic approach to smart energy integration, 
university campus decision-makers would require a 
robust framework to assess transition scenarios. 
Characterisation and energy profiling are necessary to 
establish the baseline conditions. Urban energy modelling 
has been implemented to characterise stocks, evaluate 
energy efficiency, and district energy network design. As 
a method it can rely on less detailed top-down approaches 
using benchmarks, statistical archetype models or 
mathematical modelling. On the other hand, bottom-up 
simulation approaches are utilised for building energy 
performance modelling, evaluation of smart building 
interventions and renewable energy integration at the 
building scale. These require an in-depth knowledge of 
the building geometry, thermal envelope, zoning, 
occupancy, and systems information. Microclimate 
information and surrounding geospatial building context 
are also needed for an accurate representation of the 
building physics influencing the building’s energy 
performance (Willmann et al., 2019).  
The novelty of this research is that it aims to provide 
stakeholders with a method to use an automatic method to 
develop building models for stocks. Through the models 
they can evaluate and quantify different scenarios by 
integrating energy vectors, modelling scales and data 
granularities. The proposed decision-making framework 
is value-based and evidence-based as it encompasses 
stakeholder participation in the framework’s decision 
hierarchy. It also implements the smart-readiness 
indicator (SRI) assessment method (European 



Commission, 2022) by adapting it to the campus scale and 
uses the stock model to evaluate the impact of the SRI’s 
smart-ready interventions. As the research is in progress, 
this paper focuses on this modelling approach and 
specifically on the method of developing a campus 
building stock model that can examine system 
interactions and is adaptable to different levels of data 
granularity for developing and verifying models. For that, 
the below objectives were fulfilled: 
•  To develop automated building-by-building stock 

models in EnergyPlus that are generated using an 
automated modelling method.  

• To calibrate the automatically developed models by 
comparing against operational energy data and use 
hourly calibrated building energy models to 
understand modelling error and subsequently improve 
performance.  

• To understand the potential opportunities and 
limitations of the building-by-building campus model 
for evaluating smart-energy transition pathways.  

The modelling method, within a smart energy transition 
decision-making framework, will be transformational in 
the way university campus stakeholders can holistically 
evidence decision-making that is otherwise resource-
intensive and fragmented.  
Methodology 
The methodology for developing the campus model aims 
to tap into data readily available and the DEC database so 
that an understanding of campuses can be established with 
minimal data requirements. Additionally, further data 
layers can be inputted to the model to fine-tune based on 
availability and the analysis requirements. For the model 
development there are the major steps followed. Step 1: 
Use a case-study method as a reference system for data 
collection and analysis for the evidence-base 
development; Step 2: Develop an automatic building-by-
building campus stock model creation process by building 
on existing stock modelling methods; Step 3: Use campus 
monthly in-use energy and calibrated building energy 
models for the calibration and fine-tuning of the campus 
simulation models.  
Case study 
The two main data sources for the reference university 
campus were the university’s registry with the names, 
addresses and floor areas and secondly DEC certificates. 
The studied urban university campus comprises 216 
buildings spread around a large area in London. 30 of 
those buildings were excluded from the study as they 
involved hospital and clinic activities. The building 
construction typologies range from Victorian terrace 
conversions to modern multi-tenant office buildings with 
seven main use types matching university building 
benchmarking typologies (CIBSE, 2020). These include 

labs (engineering, medical and chemistry), libraries, 
teaching, administration, and residential. 146 are 
available on the university’s main monitoring platform 
and hold main utility metered data. For comparison and 
demonstration of the model’s limitations, a recently 
retrofitted engineering building is presented. The building 
has undergone post-occupancy evaluation and an hourly 
calibrated dynamic thermal model is available.  
Building 1 – Engineering workshop building (Lab 
engineering typology): A recent major retrofit (2016) of 
an existing building to upgrade the performance and add 
floor space for a total of 8887m2 gross floor area (GFA). 
The building is connected to a central campus heating 
network, has low-carbon design elements like a ground 
heat exchanger, mixed-mode mechanical ventilation with 
heat recovery, low energy lighting and occupancy 
detection.  
Automated campus building stock model  
The model development builds upon established stock 
modelling methods to create an automated workflow that 
utilises mostly publicly available building data. This 
ensures it is replicable at scale and can flexibly integrate 
different data granularities. Additionally, different types 
of campuses and stocks can be modelled using this 
method. 
Figure 1, describes how existing methods were adapted to 
develop a building-by-building university campus stock 
model. This is organised in three stages: a) the input, b) 
the processes, and c) the output. References to these 
stages are added in the corresponding methodology sub-
sections in parentheses. Starting with the list of buildings 
to be modelled (a.1), energy modelling information is 
retrieved from the 3DStock method (Steadman et al., 
2020) which provides a database for the UK non-domestic 
building stock (b.1). 3DStock, mostly from public 
sources, links premises to their Unique Property 
Reference Number (UPRN), footprint, external 
geometrical definition, building use, gas and electricity 
meters with high levels of matching success (Steadman et 
al., 2020). Importantly it also links to Energy Performance 
Certificates (EPC) and Display Energy Certificates 
(DEC) (c.1). In the case of qualifying higher education 
buildings, it also includes operational energy and building 
environmental system information.. The SimStock code 
is called (b.5) for developing the building models using 
the synthesised data from 3DStock (c.2). Among others, 
3DStock has been used for the London Building Stock 
Model (LBSM) (Steadman et al., 2020) and both 3DStock 
and SimStock have been used for the Modelling Platform 
for Schools (MPS) (Schwartz et al., 2022). The final 
output of the method is the campus building stock model 
that comprises all the building-by-building energy models 
(c.3).



 
Figure 1: Building-by-building stock model development: diagram demonstrating inputs, processes, and outputs in line with overall 
framework. Note: Yellow arrows represent process steps for developing the campus model, grey represent processes relating to the 
smart energy pathway modelling beyond the scope of the paper. 

Figure 1 also demonstrates the implementation of the 
stock model within the overall methodological framework 
(smart energy transition pathways). 
Input 
Five main categories of inputs were used to build the 
model: 1) building basic information, 2) premise / 
hereditament (VOA classification) / self-contained unit 
(SCU), 3) geometry, 4) activity, 5) metadata as in Table 
1. The list of building names and addresses (a.1) was 
downloaded from the university campus’s website for 
developing the campus-specific database through 
3DStock. The method also combines data from a range of 
sources like the Ordnance Survey (OS), the Valuation 
Office Agency (VOA) and LiDar measurements to match 
geometry polygons to hereditaments (UARNs) and 
therefore SCU as described by (Steadman et al., 2020).  

Table 1: Main model inputs and sources. 
Input 

category 
Input sub-
category 

Source 

Building 
basic 

information 

Building list, 
address 

Campus website 

Building areas 3DStock; Campus 
monitoring platform 

Building ages 3DStock (DEC) 
Self-

contained 
unit (SCU) 

SCU 3DStock (VOA) 

Geometry Polygons (3D 
points of 

building areas) 

3DStock (OS & LiDar) 

Floor height, no. 
floors 

3DStock (OS & LiDar), 
visual check on Google 

maps 
Activity Main activity 3DStock (VOA &DEC) 
Metadata Building 

envelope – 
window-to-wall 

ratio (wwr) 

Based on previous 
research (Dong et al., 

2020) 

Model building 
constructions  

(U-values) 

3DStock (DEC), 
rdSAP2012 (BRE, 2012) 

Activity profiles 
(occupancy and 

people metabolic 
rates, equipment 

loads, 
illuminance 

levels) 

3DStock (DEC), NCM  

HVAC system  3DStock (DEC) & NCM 
Additionally, several metadata sources were used to 
assign further properties to the building energy models. 
Firstly, for typical construction thermal properties (a.2.3), 
the rdSAP methodology (BRE, 2012) was used as it 
provides  typical U-value assumptions for different age 
bands, see Table 2. For the glazing ratio per façade a study 
that surveyed London Schools has been used as the source 
(Dong et al., 2020), see Table 3. Moreover, the National 
Calculation Methodology provides standard assumptions 
for activity (a.2.1) and HVAC profiles (a.2.2) for the 
calculation of EPC certificates. These standard profiles 
were used as input to the building models for each 
building usage category, see Table 4. Typical HVAC 
systems were selected including gas boilers, chillers and 
air-handling units to represent those building 



environments with standard system characteristics from 
NCM.

Table 2: Campus stock model thermal building element properties using rdSAP 2012 grouped by DEC age data. 

DEC building age 
categories rdSAP age bands 

Campus 
stock model 
age bands 

Wall  
U-values 
(W/m2K) 

Roof  
U-values 
(W/m2K)  

Floor  
U-values 
(W/m2K) 

Glazing  
U-values 
(W/m2K) 

Pre-world war I (Pre 
1914) 

A. Before 1900, B. 1900-
1929 

Pre 1914 1.7 2.3 1.5 4.8 

Inter war (1918-1939) B. 1900-1929, 
C. 1930-1949 

1918-1939 1.7 2.3 1.5 4.8 

Post-war regeneration and 
expansion (1945-1980) 

C, D, E, F: 1930-1982 1945-1980 1.35 1.5 1.4 4.8 

Modern (Post-1980) G, H. I, J, K, L: 1983-2012 Post-1980 0.4 0.4 0.94 3.1 

Table 3: Window-to-wall ratio per model age band 
(Schwartz et al., 2022). 

Campus stock model age 
bands  

Window-to-wall ratio 

Pre 1914 33% 
1918-1939 35% 
1945-1980 38% 
Post-1980 30% 

Table 4: DEC building environment and campus model 
HVAC types. 

DEC building 
environment categories 

HVAC type 

Heating and mechanical 
ventilation (Air 
conditioning) 

HVAC 1: Heating, cooling, 
and mechanical ventilation 

system 
 Heating and natural 

ventilation (Air 
conditioning) 

HVAC 2: Heating, cooling, 
and natural ventilation 

system 
Heating and mechanical 

ventilation 
HVAC 3: Heating and 
mechanical ventilation 

system 
Heating and natural 

ventilation 
HVAC 4: Heating system 

and natural ventilation 
Processes & outputs 
The process of developing the campus building models 
starts with matching the campus addressees to the 
3DStock SCU database. From 216 building names, 172 
were automatically matched to a SCU_id (b.1). Further 10 
buildings were matched manually using the full address 
instead of just the postcode. In total 120 buildings were 
modelled and included in the study, by streamlining 
names referring to parts of buildings that for the purposes 
of this modelling could be integrated to one and 30 
buildings excluded from the study as hospitals and clinics 
were beyond the research scope (b.2, b.3). 
The matched campus buildings and the corresponding 
3DStock SCU_ids with the data associated to them are 
extracted to a .csv file for input into SimStock (c.2). The 
data includes the polygons corresponding to each 
building, the mean object height that represents the mean 
height per floor, the activity, age and building 
environment. Additionally, SimStock requires a 
definition of all the modelling parameters in .idf format 
(b.4). The.csv and .idf template files are called in the 
SimStock code to create the models (c.3). These include 

thermal zones defined per floor and the surrounding 
buildings acting as shading elements.  
Stock model calibration 
For the calibration of the models, the guidelines from 
CIBSE TM63 Operational performance: Building 
Performance modelling (Jain et al., 2020) have been used. 
The guide addresses single-building measurement and 
verification practices; however, it was considered that the 
method can be tailored for the purposes of the stock model 
as outlined in Figure 2. The first calibration step is to 
replace the Typical Meteorological Year (TMY) weather 
file with a weather file that is specific to the location and 
the calibration year. Monthly operational energy data 
were used to calibrate the baseline. For that, the guidance 
suggests that the NMBE (normalised mean bias error) 
which represents the average error between the measured 
and simulated values normalised by the mean of the 
measured values should be within ±5% and the 
Cv(RMSE) (coefficient of variation of the root square 
mean error) which is derived by normalising the root 
mean square error by the mean of measured values should 
be below 15%. Monthly main utility usage was used as 
the calibration interval. Monthly totals are considered to 
provide sufficient resolution for establishing the campus’s 
energy demands and evaluate energy efficiency 
interventions. Importantly, seasonal usage and generation 
patterns can be derived to balance demand and supply 
under smart energy scenarios including energy storage 
and EV capacity planning. A limitation of the model is 
that it can require hourly calibration where hourly or half-
hourly resolution is required, for example for flexibility 
scenarios, forecasting and technical system operation that 
respond to grid signals 
The model can be used to demonstrate the comparative 
impact of different interventions based on the assumed 
building specifications and the subsequent baseline 
conditions estimated for the campus. In the next steps of 
the research, typical hourly end-use consumption profiles 
will be developed to further fine-tune each typology for 
the experience-based part of the method and compare 
with actual building performance. Finally, model energy 
predictions and the “Building 1” actual performance data 
arecompared to benchmarks to assess the potential 
discrepancies that could be attributed to the performance 
gap instead of modelling error.  



 
Figure 2: Calibration workflow adapted from CIBSE TM63 
(Jain et al., 2020). In grey, TM63 processes that were considered 
impractical at scale and altered.  

Results analysis & discussion 
The paper results and discussion are organised in the 
categories presented in the Figure 2 workflow diagram.  
Metering and operational data results 
In total the campus’s central monitoring platform holds 
146 separate building entities that amounts to 454,642m2 
GFA. The campus has three categories of consumption 
meters: fuel and heat, electricity, and water. 35 buildings 
are missing space heating, and 18 buildings are missing 
electricity data for the selected year 2019. The non-empty 
meters are mostly manually updated, although automated 
meter readings (AMR) are available for some buildings. 
The distribution of meters per building was compared 
against the modelled number of floors per building in-lieu 
of other data. Figure 3, Figure 4 demonstrate a low-level 
of disaggregation available in the main monitoring 
platform. More than 50% of buildings have less than three 
utility meters connected to the monitoring platform, even 
though more than 50% of buildings have five to six floors. 
This suggests that utility level meters are mostly available 
at main incomer level and that disaggregation per floor is 
widely unavailable on the platform. Gap analysis was 
performed to the operational measured data using 
statistically valid techniques as described in (EVO, 2022). 
Table 5 demonstrates the yearly normalised energy 
consumption for the measured operational energy per 

fuel.

 
Figure 3: Number of total electrical and fuel and heat meters 
per building and cumulative frequency curve. 

 
Figure 4: Number of modelled floors per building and 
cumulative frequency of floor numbers. 

Simple linear regression analysis was performed using the 
2019 monthly heating degree-days to estimate monthly, 
area normalised space heating consumption. For 
electricity, hot water and the ‘gas other’ category, 
normalised monthly averages were calculated instead to 
fill in the data gaps. The estimated missing data were 
filled via interpolation and are labelled as ‘interpolated’ 
in Table 5.  
Table 5:Campus energy use intensity: Measured energy 
use presented for raw consumption data and estimated 
consumption to account for missing data and simulated 

energy 
 Measured– 

raw 
(kWh/m2) 

 Measured– 
interpolated 
(kWh/m2) 

Simulated 
(kWh/m2) 
2019 actual 
weather file 

Fuel and 
heat (Gas) 

118.5 126.1 110.5 

Electricity 187.4 204.3 123.9 
Initial model development 
The 120 models were simulated in EnergyPlusTM using 
the TMY and 2019 actual weather data from the closest to 
the campus weather station (DesignBuilder, 2022). 
Monthly total energy results were obtained for the two 
main utility sources: electricity and gas facility. The 
comparison of results is illustrated in Table 5 in the 
columns labelled as ‘simulated’ and in Figure 5. 
Campus model calibration 
For the baseline model monthly data statistical checks, the 
following results were calculated as shown in Table 6. 



The calculations for the campus’s aggregated statistical 
checks were performed by aggregating the monthly 
energy consumption for all buildings. 
Both criteria are not met for electricity at campus level, 
which showed higher error levels compared to heating 
energy (gas). The heating energy criterion for the 
Cv(RMSE) exceed the limit of 15% by 27.2% and 
complies with the NMBE criterion at -0.51%. This 
signifies that the campus’s space heating energy 
consumption is better represented via the automated 
model development method and subsequently the inputs 
relating to space heating like the building fabric 
specification and heating system appear to be more 
typical of the actual conditions compared to the electricity 
consumption modelling prediction that is based on the 
NCM inputs and is largely dependent on the building floor 
area. Furthermore, the guideline addresses single building 
measurement and verification methods and therefore the 
building level calculations are also presented in Figure 5 
for comparison. 
Table 6: Initial campus aggregated building-by-building 
model statistical compliance checks using the (Jain et al., 
2020) compliance targets for whole-building calibrated 

simulations. 
 All buildings  Category A 

  

Fuel 
and 
heat 
(gas) 

Electricity 

Fuel 
and 
heat 
(gas) 

Electricity 

Cv(RMSE 
campus, % 42.2 35.1 23.0 36.8 

NMBE 
campus, % 

-0.1 0.6 19.6 55.3 

Percentage 
error, 
campus 
monthly 
average 

37.9 38.3 25.5 35.5 

Percentage 
error, 
campus 
annual 

-6.9 50.3 16.4 35.6 

On average, the Cv(RMSE) coefficient for heating energy 
was calculated at around 94% across all buildings and for 
electricity at 80%. The NMBE value for heating energy 
was on average around -24% and -21% for electricity. 
Figure 6, demonstrates the percentage error between the 
actual and simulated consumption totals per month. For 
electricity it is observed that there is on average a 39% 
underestimation of electricity usage in the model that 
needs to be rectified. For space heating, it is observed 
however that the discrepancy is mostly happening in the 
non-winter months (March-October) with the highest 
discrepancy observed in the summer months. A reason for 
this can be attributed to the performance gap as heating 
systems by design are expected to operate less during the 
summer months. In the model this is reflected by the 
NCM HVAC operation profiles and heating setpoint and 
setback temperatures that will be investigated in the next 
research steps. Additionally, the current model assumes 

that all technical systems follow the occupancy profiles to 
operate. Higher operational energy use can potentially be 
attributed to longer system operation times. Further 
testing, as part of the smart energy scenario modelling 
will investigate extended usage profiles. 

 
Figure 5: Box and whisker plot of the statistical checks 
Cv(RMSE) and NMBE calculated per building for the initial 
model. The outliers were excluded from the plot.  

 
Figure 6: Monthly percentage error between actual and 
modelled electricity and fuel consumption. Total electricity 
represents the aggregated electrical consumption at utility level. 

Further to the statistical tests, a traffic-light evaluation 
system was developed to assess the geometry generation 
quality of the method. This involved assessing the match 
of the model footprint to the actual footprint per building 
mathematically and visually on Google maps and via the 
DesignBuilder Software.. For the scale of the model, the 
total of the modelled buildings was visually checked to 
verify the match of geometry and areas. For larger stocks, 
a sample of buildings could be used instead. The campus 
models were split into five categories based on the 
matching between the actual and automatically generated 
model floor areas as in Table 7. For this campus, 63% of 
the buildings modelled were considered a good match to 
the actual buildings and can be used as the baseline for 
further fine-tuning and analysis. For 9% of them, pro-
rating energy consumption by the number of floors is 
considered an appropriate measure to adjust to actual 
conditions. For 28% of the buildings further checks could 
potentially demonstrate address and SCU_id mismatches 
as university building naming does not always match the 
building address naming. Table 6 shows that the statistical 
calibration checks for the category A subset marked an 
improvement in accuracy with regards to space heating as 
all checks (with the exception of NBME that increased by 
19.7%) were closer to the limiting values. For electricity, 

-20%
-10%
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

(1,000)

0

1,000

2,000

3,000

4,000

5,000

A
bs

ol
ut

e 
er

ro
r (

M
W

h/
yr

) a
nd

 
pe

rc
en

ta
ge

 e
rro

r %
 

Electricity Fuel and heat (gas) Electricity (%) Fuel and heat (gas)  (%)



however, the checks remained similar to the campus 
aggregated calculations. A potential reason could be the 
underestimation of electricity in the model, as described 
earlier. Better geometry representation, however, can 
result in more accurate space heating predictions that is 
inherently linked to the building form.  
Table 7: Stock model automatically generated geometry 

evaluation represented via traffic light system 

Category  Geometry match 
A 

(52%) 
Good, good total floor area match. Likely to 

represent actual geometry to a sufficient 
level.  

B 
(11%) 

Acceptable, acceptable floor area 
discrepancy but likely to have a good 

footprint match. Small geometry irregularity 
is possible across floors.  

C 
(9%) 

Medium, actual floor area matches the 
model footprint. Include in further analysis, 
adjustment to the final energy consumption 

required.  

D 
(28%) 

Low, big discrepancy in floor areas with 
smaller discrepancy in footprints. Unlikely 
that the automatic match is representative. 

Possibly error  in SCU_id and polygon 
match. Campus building naming mismatch 

to address names that can be verified 
manually. 

E 
(11%) 

Poor, Missing data (e.g. SCU_id not found) 
or large area discrepancy. 

Model comparisons – post-occupancy and modelled 
performance 
Finally, model comparisons were undertaken between the 
automated building-by-building method and the actual 
performance for Building 1. It was observed that the 
modelled energy performance largely exceeded that of the 
actual building as derived from a post-occupancy 
evaluation study. However, the building has recently 
undergone building energy retrofit which was not 
captured by the earlier version of the DEC database used 
for the model development and classed the building under 
the 1945-1980 age category. Based on the pre-
refurbishment DEC, the building consumed 179 
kWh/m2/h which was verified with metered data and more 
than 600 kWh/m2/h for heat that could not be verified. 
However, based on the CIBSE benchmarking tool, typical 
practice fossil fuel consumption per year is 131 
kWh/m2/year for engineering type buildings while CIBSE 
TM46 states 240 kWh/m2/year. Utility totals and end-use 
disaggregation is illustrated in Figure 7. The simulated, 
the metered and the Building Energy Efficiency Survey 
(BEES) energy intensities are compared for major end-
uses like space heating and hot water, lighting, cooling 
and small power and auxiliary energy. The largest 
discrepancy is shown for lighting and cooling energy, 
followed by space heating where the automated method 
has over predicted consumption. The building selected for 
comparison demonstrates the importance of the building 
age as a parameter in the model development.  

 
Figure 7: Comparison of annual energy (kWh/m2/yr) between 
actual (post-refurbishment), detailed model with TM63 
calibration and automatic model calibration. Total electricity 
represents the aggregated electrical consumption at utility level. 

Limitations and further work 
To make the most of the building-by-building models 
developed as part of this research it is necessary to 
understand that its main capabilities lie in diagnosing 
energy demand and evaluating the comparative impact of 
different energy efficiency and smart-ready interventions 
for decarbonisation and smart energy integration 
pathways. The SRI offers different levels of functionality 
that are progressively more responsive to short-term 
system variation. Through ongoing work the limitations 
of the campus model will be established. This includes the 
level of smart-ready functionality improvements that can 
be addressed via the automatically calibrated models and 
where more detailed hourly calibration is required for 
accurate modelling of such interventions. Even so, the 
building-by-building model can evaluate smart-energy 
interventions based on the assumed characteristics 
assigned to the model. Therefore, it provides comparative 
conclusions for the effectiveness of decarbonisation and 
smart-ready services and the overall impact on the SRI 
calculations for the campus. As part of the wider research 
aims, the models developed will be utilised for:  
• Scenario modelling for decarbonisation and smart-

energy integration. Scenarios are based on the EPBD 
SRI assessment carried out and stakeholder multi-
criteria decision-analysis. The method of this research 
also aims to apply advanced simulation methods 
(Energy Management Systems (EMS)) to introduce 
further smart energy system nodes and services to the 
stock model.  

• Finally, a user-interface for spatial representation and 
pathway visulisation could be developed as part of the 
stakeholder engagement of the research and 
contribution to the industry. 

Conclusion 
This paper presents the approach towards developing a 
modelling framework for a university campus stock 
building-by-building model. The aim is to overcome the 
barriers of developing detailed dynamic thermal models 
at scale or the oversimplification that can be associated 
with archetype-based approaches. The proposed 
framework aims to leverage the untapped decarbonisation 



potential of higher education campuses by integrating the 
three largest carbon-emitting sectors – buildings, 
transport, and the power sector into a multi-vector energy 
approach. 
The paper discusses the steps taken to build the university 
campus’s building-by-building energy models. 
Additionally, the calibration and model geometry 
evaluation results are presented. Calibration was based on 
monthly metered energy data derived from the campuses 
main monitoring platform. Statistical checks appropriate 
for whole-building energy model calibration were used. 
The calculation was used to assess campus compliance by 
aggregating the monthly consumption for all buildings 
and also looked at the per building calculations on an 
average basis which was considered less conclusive. To 
evaluate geometry,building and model floor areas and 
footprints were used. Verification was undertaken 
through visual inspection on Google Earth. Although the 
campus statistical checks were in exceedance of the 
building level targets, it is considered that an accurate 
geometrical representation of the buildings is a more 
appropriate measure of accuracy at scale. Uncertainty in 
the inputs can therefore be addressed by scenario 
modelling and comparisons between the model 
predictions and more granular actual data per typology. 
For the geometry match categories A and B, the models 
can be considered partially already. The case study 
campus,based on main utility meters and heating degree 
day linear regression, in 2019 the campus’s energy use 
intensity for space heating was 125 kWh/m2/year 
compated to the 112-219 kWh/m2 CIBSE benchmark 
range for different types of higher education buildings 
(CIBSE, 2020). Electricity was estimated at 187 
kWh/m2/year that was on average 38% higher that the 
actual electricity usage. To conclude, 63% of the 
automatically developed models were considered a good 
match to the actual buildings in terms of geometry and can 
be used as the baseline for further analysis. 
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