
Biassed statistical ensembles for developable ribbons

Dear Editor,

Yong et al. [1] use a numerical method [2] that has previously been shown to be flawed [3] and produce
statistical results for developable ribbons that contradict results in the literature [4].

The problem with their numerical method is that it is based on the Frenet frame of tangent, principal
normal and binormal of the discrete chains computed for submission to the ensemble averaging. The
Frenet frame is well-known to be an improper choice of frame for ribbon modelling [5]: it has the
property that it flips at inflection points of the ribbon centreline, i.e., the principal normal and binormal
change sign, becoming opposite to the continuous vectors of a material frame. The frame therefore
loses contact with the physical deformation of the ribbon. Yong et al. do not allow for these Frenet
frame flips (φ → φ−π); instead, they assume highly twisted segments (with large azimuthal angle φ),
which are then strongly penalised by the energy functional. They therefore ignore inflection points.

As explained in [3], the problem can be cured by working with different ranges of angles. Taking
advantage of the fact that for developable ribbons the Frenet and material frames are locked/coincident
everywhere except at inflection points, one can effectively work with a material frame by defining
−π ≤ θ < π, −π/2 ≤ φ < π/2 instead of the choice 0 ≤ θ < π, 0 ≤ φ < 2π taken in [1, 2]. This
eliminates jumps by π in the angle φi between binormals bi and allows for inflections by means of
a sign change of the polar angle θi between tangents ti. Doing this, one finds exponential decay of
the tangent-tangent correlation function < tn · t0 > [3], also found in [4] for developable ribbons, in
contrast to the oscillatory decay predicted by Yong et al.

Here we further strengthen our claim by performing Monte Carlo simulations to compare results
for the two different choices of angles at finite temperature. We take the same parameters as in
[1], i.e., n = 100, 106 sweeps (but 107 for 1/β = 0.01), half of which are used for equilibration.
1/β = akBT/(Bw) is the dimensionless temperature. No end loads are applied. Results are displayed
in Fig. 1.

Fig. 1(Left) confirms oscillatory decay of < tn · t0 > for the angles in [1] and exponential decay
for our angles. The results for 1/β = 0.01 (solid blue curve) give a normalised persistence length
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Figure 1: Results of Monte Carlo simulation. (Left) Tangent-tangent correlation function < tn · t0 >
for 1/β = 0.01 (blue), 0.1 (red) and 1.0 (green) for both Yong et al.’s angles (dashed) and our proposed
corrections (solid). (Right) Typical equilibrated ribbon shapes (blue for Yong et al.’s angles, yellow
for corrected angles, for the same 1/β values, increasing down), drawn with fictitious width. Pairs of
solutions are equally scaled, but the scaling varies between pairs.
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lp/a = 91.12, consistent with the exact asymptotic limit (32/35)β = 91.42 (as 1/β → 0) derived in
[3]. Binormal-binormal correlation functions (not shown) are identical for the two choices of angles.

Fig. 1(Right) shows typical equilibrated ribbon shapes for both types of angles. The (unphysical) blue
ribbons appear to collapse into a tight coil as temperature decreases but then uncoil and approach the
straight configuration in the zero-temperature limit. The blue solutions have no inflections, while the
yellow solutions on average have inflections at 50 (out of 100) segments, corresponding to sign changes
of the enclosed θi. The elastic energy of the ribbon is in both cases identically distributed, with, for
1/β = 0.1, average Ea/(Bw) = 15 and standard deviation 1.3.

Yong et al’s different results reflect the artificial helical bias built into their statistical ensemble by
rejecting inflected ribbon configurations. This bias is not particular to Sadowsky ribbons: use of the
Frenet frame similarly causes statistical bias in other ribbon/rod models (e.g., [6]) in which torsion is
penalised, i.e., in which the energy depends on φ.

[1] E.H. Yong, F. Dary, L. Giomi, L. Mahadevan, Statistics and topology of fluctuating ribbons,
PNAS 119, e2122907119 (2022).

[2] L. Giomi, L. Mahadevan, Statistical mechanics of developable ribbons, Phys. Rev. Lett. 104,
238104 (2010).

[3] E.L. Starostin, G.H.M. van der Heijden, Comment on “Statistical Mechanics of Developable
Ribbons”, Phys. Rev. Lett. 107, 239801 (2011).

[4] B. Mergell, M.R. Ejtehadi, R. Everaers, Statistical mechanics of triangulated ribbons,
Phys. Rev. E 66, 011903 (2002).

[5] S.M. Rappaport, Y. Rabin, Differential geometry of polymer models: worm-like chains, ribbons
and Fourier knots, J. Phys. A 40, 4455–4466 (2007).

[6] D. Marenduzzo, C. Micheletti, H. Seyed-allaei, A. Trovato, A. Maritan, Continuum model for
polymers with finite thickness, J. Phys. A: Math. Gen. 38, L277–L283 (2005).

Sincerely,

G.H.M. van der Heijden
E.L. Starostin
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