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Artificial intelligence (AI)-based tools are widely employed, but their use for diagnosis and prognosis of neurological 
disorders is still evolving. Here we analyse a cross-sectional multicentre structural MRI dataset of 696 people with epi-
lepsy and 118 control subjects. We use an innovative machine-learning algorithm, Subtype and Stage Inference, to 
develop a novel data-driven disease taxonomy, whereby epilepsy subtypes correspond to distinct patterns of spatio-
temporal progression of brain atrophy. 
In a discovery cohort of 814 individuals, we identify two subtypes common to focal and idiopathic generalized epilep-
sies, characterized by progression of grey matter atrophy driven by the cortex or the basal ganglia. A third subtype, 
only detected in focal epilepsies, was characterized by hippocampal atrophy. We corroborate external validity via an 
independent cohort of 254 people and confirm that the basal ganglia subtype is associated with the most severe epi-
lepsy. 
Our findings suggest fundamental processes underlying the progression of epilepsy-related brain atrophy. We deliver 
a novel MRI- and AI-guided epilepsy taxonomy, which could be used for individualized prognostics and targeted 
therapeutics.  
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Introduction 
Epilepsy is a common neurological disorder, often chronic and dis-
abling.1 The current classification of epilepsy types and syndromes 
is based on seizure semiology,2-4 EEG, aetiology,5 imaging6,7 and 
other diagnostic data,8-10 which inform treatment and prognosis.11 

Structural MRI provides reproducible quantitative measures of 
brain morphology,12 which can be conceptualized as biomarkers 
of pathological processes.13,14 In focal epilepsy, cortical thinning 
encompasses large-scale cortico-subcortical networks.15 In idio-
pathic generalized epilepsy (IGE), structural abnormalities predom-
inantly involve thalamocortical circuitry,16 but also extend to 
fronto-temporo-parietal cortices.17 Recent evidence suggests that, 
in epilepsy, brain atrophy may progress over time.18 In cross- 
sectional studies, brain atrophy in focal epilepsy is related to dis-
ease duration, seizure frequency and occurrence of 
focal-to-bilateral tonic-clonic seizures (FBTCS).18 Longitudinal 
studies highlight widespread progressive grey matter atrophy, af-
fecting regions close to and distant from the key nodes of epileptic 
networks.14 In IGE, grey matter loss is more prominent with longer 
epilepsy duration and higher seizure frequency.16,19,20 

The underlying neural processes of progressive brain atrophy 
remain poorly understood. First, it is uncertain whether there is a 
consistent spatiotemporal sequence of atrophy progression over 
time. Second, it remains unclear whether trajectories may vary ac-
cording to epilepsy types, e.g. focal and generalized epilepsies.18 

Third, the magnitude and extent of interindividual differences in 
progression paths and their relationship with clinical characteris-
tics remain undetermined. 

Progress may be achieved by applying artificial intelligence 
(AI), particularly techniques in the machine learning subfield, 
that are increasingly used in biomedical research.21 In epilepsy, 
imaging-based machine learning has successfully lateralized tem-
poral lobe epilepsy (TLE),22 identified radiologically occult epilepto-
genic lesions,23,24 predicted epilepsy surgery outcomes,25 and 
typified individual-specific patterns of whole-brain structural re-
organization relating to disease severity.26 

Here we use an unsupervised and data-driven machine learning 
algorithm, Subtype and Stage Inference (SuStaIn),27 recently 
developed to capture patterns of disease progression in chronic 
conditions, particularly neurodegenerative disorders such as 
Alzheimer’s and Parkinson’s disease.27-31 SuStaIn reaches longitu-
dinal inference from cross-sectional data. Specifically, it automat-
ically identifies distinct spatiotemporal trajectories (patterns) of 
cumulative pathological alteration shown by measured biomar-
kers and quantifies their level of individual co-expression.27,31,32 

Our study employs SuStaIn to decode individualized signatures 
of progressive cortico-subcortical atrophy in large focal and 

generalized epilepsy cohorts. We introduce a novel, machine 
learning-guided and MRI-based epilepsy taxonomy that com-
bines categorical and dimensional perspectives by (i) quantifying 
main progression patterns of grey matter atrophy in each individ-
ual; and (ii) identifying subgroups based on the dominant pro-
gression pattern. We also replicate our findings in an external 
validation cohort and relate machine learning-identified sub-
types to clinical characteristics. 

Materials and methods 
Participants 

Our study assessed participants from two separate cohorts. The 
discovery cohort consisted of structural MRI data of a single-centre 
dataset involving long-term follow-up33 of individuals with focal 
epilepsy or IGE, investigated with 3 T high-resolution MRI (GE) at 
the Chalfont Centre for Epilepsy (UCL Queen Square Institute of 
Neurology/National Hospital of Neurology and Neurosurgery, 
London), UK, between January 2004 and March 2018. An external, 
independent validation cohort included individuals scanned with 
3 T high-resolution MRI at the Department of Neurology of West 
China Hospital, Sichuan University, Chengdu, China, between 
June 2013 and December 2020. Before MRI data preprocessing and 
quality control (Supplementary material), 894/211 people with epi-
lepsy (discovery/validation cohorts) and 121/73 control participants 
(discovery/validation cohorts), for a total of 1299 individuals, were 
considered for inclusion in this study. 

For both cohorts, diagnosis, lateralization and localization of focal 
epilepsy were confirmed by a multidisciplinary epilepsy team, based 
on clinical history, neurological examination, seizure semiology, am-
bulatory EEG monitoring, interictal and ictal EEG during long-term 
video-EEG telemetry, structural MRI, 18F-fluorodeoxyglucose PET (in 
a subset), and neuropsychological assessments. People with brain le-
sions other than hippocampal sclerosis, those with poor MRI data 
quality, and those without adequately detailed clinical data were 
not included in this study. People with IGE had a typical clinical his-
tory and a previous routine EEG with interictal generalized (poly-) 
spike-and-wave discharges at UCL (discovery cohort) or Sichuan 
University (validation cohort). All participants had a clinical structural 
MRI scan as part of diagnostic investigations. Clinical characteristics 
were collected through a review of the entry in medical notes closest 
in time to the date of the MRI scan. The number of life-time trialled 
anti-seizure medications (ASM) and the duration of epilepsy were re-
corded on the day of the MRI scan. Complete details are provided in  
Table 1. Control subjects from both sites were recruited from the local 
community and had no family history of epilepsy or neurological or 
psychiatric disorders.  
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Protocol approvals, registrations and participant 
consent 

This study was pursued under a protocol approved by the UCL and 
University College London Hospital Joint Research Ethics 
Committee (20/LO/0149). It involved an analysis of previously ac-
quired clinical data posing no risk to people requiring individual 
consent. The UCL and University College London Hospital Joint 
Research Ethics Committee approved recruiting healthy controls 
as part of previous studies. Written informed consent was obtained 
from healthy participants per the Declaration of Helsinki stan-
dards. The West China Hospital Clinical Trials and Biomedical 
Ethics Committee approved participant recruitment for the valid-
ation cohort. All participants provided written informed consent 
by the standards of the Declaration of Helsinki. 

MRI data acquisition 

Participants from UCL were scanned between January 2004 and 
March 2018. For those scanned between January 2004 and March 
2013 (all people with IGE, 336 people with focal epilepsy and 50 con-
trol subjects) (Supplementary material, ‘Methods’ section), MRI 
data were acquired on a 3 T GE Signa HDx scanner with a coronal 
T1-weighted 3D inversion recovery fast spoiled gradient echo 
(IR-FSPGR) sequence, repetition time/echo time/inversion time: 
8.1/3.1/450 ms, voxel size: 0.9 × 0.9 × 1.1 mm. For those scanned 

between March 2013 and March 2018 (355 people with focal epilepsy 
and 71 healthy control subjects) (Supplementary material, 
‘Methods’ section), MRI data were acquired on a 3 T GE Discovery 
MR750 scanner using a 3D T1-weighted magnetization prepared ra-
pid acquisition gradient echo (MPRAGE) sequence with echo time/ 
repetition time/inversion time: 3.1/7.4/400 ms, voxel size: 1.0 ×  
1.0 × 1.0 mm. For participants in the external validation cohort, 
MRI data were acquired at the West China Hospital between June 
2013 and December 2020, using a 3 T Siemens Tim Trio MRI scanner 
with an eight-channel head coil. High-resolution T1-weighted MRI 
was acquired using a 3D MPRAGE sequence with repetition time/ 
echo time/inversion time: 1900/2.6/900 ms, voxel size: 1.0 × 1.0 ×  
1.0 mm. 

MRI data preprocessing 

To evaluate brain atrophy, we focused on cortical thickness as an 
established, surface-based marker of cortical morphology, that re-
flects cellular-level features including size, density and arrange-
ment of neurons, glia and nerve fibres.34,35 To this end, we 
employed the Computational Anatomy Toolbox (CAT12) running 
in Statistical Parametric Mapping 12 (SPM12) and MATLAB 2021a 
(Mathworks).36,37 Cortical thickness was estimated using the 
projection-based thickness method, previously validated using 
spherical and brain phantoms confirming accurate measurements 

Table 1 Demographic and clinical characteristics of discovery and validation cohorts   

Discovery cohort Validation cohort   

Focal epilepsy IGE Healthy controls Focal epilepsy IGE Healthy controls  

Participant number 503 193 118 122 61 71 
Sex, female/male 248/255 112/81 74/44 47/75 27/34 39/32 
Age, mean (SD) 35.0 (10.8) 33.7 (11.4) 36.3 (12.4) 25.1 (8.6) 20.6 (5.6) 26.1 (6.9) 
Handedness R (433) R (191) R (108) R (121) R (61) R (71) 

L (63) L (2) L (10) L (1) 
A (7) 

Age of onset, mean (SD) 15.6 (12.2) 13.9 (6.1)a N/A 15.2 (10.3) 14.0 (3.0) N/A 
Duration of epilepsy mean (SD) 19.9 (12.6) 20.5 (12.2)a N/A 9.9 (7.2) 5.0 (3.1) N/A 
Lateralization of seizure focus (n) L (225) N/A N/A L (83) N/A N/A 

R (193) R (32) 
B (44) B (4) 
U (41) U (3) 

Localization of seizure focus,  
or epilepsy type (n) 

TLE (328) JAE (43) N/A TLE (50) JME (61) N/A 
FLE (88) JME (46) FLE (50) 
PLE (27) GTCS-unc (104) PO (22) 
OLE (5) 
U (55) 

Localization of seizure focus of  
cases with proven lateralization (n) 

TLE (281) N/A N/A TLE (50) N/A N/A 
FLE (81) FLE (45) 
PLE (24) PO (20) 
OLE (4) 
U (28) 

Unilateral focal epilepsy (%) 418 (83.1) N/A N/A 115 (94.3) N/A N/A 
FBTCS (focal), GTCS (generalized),b % of patients 59.6 53.9 N/A 62.4 35.9 N/A 
HS, n 96 N/A N/A 34 N/A N/A 
Seizure frequency, median (range) 3 (0–4) 1 (0–4) N/A 2 (0–4) 2 (0–4) N/A 
ASM, median (range) 2 (0–6) 2 (0–4) N/A 2 (0–3) 1 (0–2) N/A 
Surgery, n (%) 108 (21.5%)     34 (27.9%)     

ASM = anti-seizure medication; B = bilateral;  FBTCS = focal to bilateral tonic-clonic seizure; FLE = frontal lobe epilepsy; GTCS = generalized tonic clonic seizure; GTCS-unc = IGE 

unclassified, with GTCS as primary seizure subtype; HS = hippocampal sclerosis; IGE = idiopathic generalized epilepsy; JAE = juvenile absence epilepsy; JME = juvenile 

myoclonic epilepsy; L = left; n = number; OLE = occipital lobe epilepsy; PLE = parietal lobe epilepsy; PO = posterior quadrant; R = right; SD = standard deviation; TLE = temporal 
lobe epilepsy; U = undetermined. 
aReliable data pertaining to age at seizure onset and duration of epilepsy were available in 129 individuals of the discovery cohort with IGE. 
bAt least one FBTCS (focal epilepsies) or GTCS (IGE) experienced in the year before the MRI.   
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under a comprehensive set of parameters for several thickness le-
vels.36 The CAT12 toolbox provided excellent test-retest reliability 
(R2 = 0.986) and was validated against other cortical surface recon-
struction methods, showing fewer measurement errors than simi-
lar software.37,38 We used an inverse-consistent longitudinal 
surface registration approach implemented in CAT12 to prevent 
an asymmetry bias from arising when data from multiple time 
points are analysed. All data were controlled for quality according 
to standardized CAT12 pipelines; scans that exhibited misalign-
ment, misregistration or inaccurate thickness estimation were ex-
cluded. Image quality ratings were estimated by scaling image 
noise, inhomogeneities and resolution to a single score within the 
CAT12 quality assurance framework. Following data quality checks 
(Supplementary material, ‘Methods’ section), 503/122 participants 
with focal epilepsy, 193/61 people with IGE and 118/71 healthy con-
trol participants in the discovery/validation cohorts, for a total of 
814 individuals, were retained for analysis. Detailed demographic 
and clinical characteristics of these individuals are provided in  
Table 1. 

To obtain measures of hippocampal volume, we employed 
Hipposeg (http://niftyweb.cs.ucl.ac.uk/program.php? p=HIPPOSEG), 
an open-source, multi-atlas-based, previously validated hippocam-
pal segmentation algorithm.39,40 Hipposeg delineates the hippocam-
pus with no more variability than seen between expert human raters, 
and is robust to hippocampal morphological alterations, including at-
rophy. It was built using 876 3 T and 202 1.5 T scans of people with epi-
lepsy. It has continuously improved and demonstrated superior 
delineation of diseased hippocampi compared to other automated 
segmentation methods.41,42 Volumes of other subcortical structures 
relevant in epilepsy, including the thalamus, amygdala, caudate, pu-
tamen and globus pallidus, and total intracranial volume, were ex-
tracted using a parcellation algorithm based on Geodesic 
Information Flows (GIF),43 freely available within NiftyWeb (http:// 
cmictig.cs.ucl.ac.uk/niftyweb, UCL Centre for Medical Image 
Computing, UK). Adjustment for total intracranial volume is de-
scribed later. Previous work showed excellent agreement between 
GIF-derived subcortical volumes and those obtained using 
FSL-FIRST,44 and between GIF-derived cortical volumes and those ob-
tained using SPM1245 as used previously in the study of neurodegen-
erative diseases44,46,47 and in previous SuStaIn studies for analysing 
neurodegenerative disorders.31,32,44 

Specification of regions of interest 

Based on the recent international multicentre ENIGMA-epilepsy 
structural MRI study,18 we selected the following bilateral regions 
of interest (ROI) from the Desikan-Killiany (DK40) atlas: (i) 28 cor-
tical ROIs: left and right superior frontal gyrus, caudal middle front-
al gyrus, inferior frontal gyrus—pars triangularis, precentral gyrus, 
paracentral lobule, superior temporal gyrus, transverse temporal 
gyrus, middle temporal gyrus, inferior temporal gyrus, supramargi-
nal gyrus, precuneus, posterior cingulate cortex, lingual gyrus, and 
cuneus; and (ii) 12 mesiotemporal and subcortical ROIs, including 
left and right hippocampus, amygdala, thalamus, and basal ganglia 
structures, including caudate, globus pallidus and putamen 
(Fig. 1A, Supplementary Table 1 and Supplementary Fig. 1). While 
the above parcellation scheme was constrained to a maximum of 
40 ROIs and did not allow for whole-brain inference, as in prior 
work with SuStaIn,27 the selection of ROIs for our study was at-
tained to maximize the trade-off between accuracy and computa-
tional tractability, and was motivated a priori by the findings of 
large-scale multicentre studies of the ENIGMA-epilepsy 

consortium,17,18 which provided a state-of-the-art characterization 
of the spatial distribution of grey matter alterations in focal epi-
lepsy and IGE. 

As in prior structural MRI investigations employing the SuStaIn 
algorithm,31,32 we adjusted ROI-wise cortical thickness within each 
cortical ROI for age at scan and (binary) sex, and adjusted mesio-
temporal and subcortical volumes for total intracranial volume, 
age at scan, and sex; specifically, we constructed a linear regression 
model for each region separately, entering the value of cortical 
thickness and subcortical volumes as the dependent variable and 
the variables mentioned above as predictors, and retained the un-
standardized residuals (of the fit) for each region for subsequent 
analyses. For each of the 40 MRI measures listed above, we com-
bined the two healthy control datasets to fit a Bayesian linear re-
gression model with total intracranial volume, sex, age and age 
squared as independent variables, and each MRI measure as the 
outcome.27,31,32 As previously reported,27,31,32 we computed the ex-
pected values using this model and subtracted the observed values 
to obtain residual values of each MRI variable. We refer to the re-
sidual values as adjusted values.27,31,32 To investigate the effects 
of seizure focus laterality in people with focal epilepsies, we con-
ducted a subgroup analysis by including only people with proven 
lateralization of the seizure focus and regrouping regions into ‘ipsi-
lateral’ or ‘contralateral’. 

SuStaIn 

As in previous neurological studies,27,29,32 we employed the SuStaIn 
algorithm27 to identify distinct patterns of spatiotemporal progres-
sion from cross-sectional imaging data, coded as a set of stages that 
are co-expressed to a different extent in each individual. SuStaIn 
clusters individuals into groups (progression subtypes), based on 
the predominant expression of a given progression pattern. 
SuStaIn combines clustering and disease progression modelling 
to identify subgroups of individuals with distinct progression pat-
terns. Disease progression modelling enables the reconstruction 
of disease progression patterns from cross-sectional data by mod-
elling the expected properties of cross-sectional datasets given a 
particular progression pattern. For example, if Biomarker A be-
comes abnormal before Biomarker B, it would be expected that a 
proportion of individuals in a cross-sectional dataset have abnor-
mal values for Biomarker A but normal values for Biomarker 
B. This property compares the relative likelihood of different candi-
date progression patterns. For detailed formalization and mathem-
atical modelling of SuStaIn see previous publications.27 In Fig. 1, we 
provide a conceptual overview of the application of the SuStaIn al-
gorithm in our study and dedicate the following paragraphs to 
briefly overview the methodology and outline parameter choices 
specific to our analyses. We used the SuStaIn algorithm separately 
for focal epilepsies and IGE. We also repeated the same analyses in 
the external validation cohort data. 

We used SuStaIn with the piecewise linear z-score model of dis-
ease progression to estimate the most likely sequence with which 
selected regions reach different atrophy levels over time (Fig. 1B), 
i.e. to identify spatiotemporal patterns of progression of atrophy 
(subtype). Each subtype is described as a series of stages, whereby 
each stage corresponds to a biomarker (cortical thickness or vol-
ume of a brain region) reaching a new z-score. As previously re-
ported, the optimal number of subtypes was determined using 
information criteria calculated through cross-validation48 to bal-
ance model complexity with internal model accuracy.27 Briefly, 
the piecewise linear z-score model requires z-scored data as input.  
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Thus, each regional volume measurement was expressed as a 
z-score relative to the control group by normalizing each dataset 
relative to its control population in each institution, so that the con-
trol population had a mean of 0 and standard deviation (SD) of 1.27 

As the UCL cohort consisted of participants acquired with two dif-
ferent scanners (3 T GE Signa, ‘old scanner’; and GE Discovery, ‘new 
scanner’; details above), people imaged with the old/new scanner 
were normalized to control subjects imaged with the old/new scan-
ner only. In the context of progressive, disease-associated atrophy, 
regional cortical thinning and subcortical volumes decrease over 
time; thus, regional z-scores also become negative as a disease pro-
gresses. The piecewise linear z-score model, however, requires that 
z-scores increase as a function of disease progression. Hence, we 
multiplied the above-obtained z-score by −1 to allow for model fit, 
as previously described.27 We then ran the SuStaIn algorithm 
with 25 start points and 1 000 000 Markov Chain Monte Carlo 
(MCMC) iterations, as previously described,27 and evaluated solu-
tions up to a maximum of n = 4 clusters (progression subtypes); 

the data-driven output of the SuStaIn algorithm, run separately in 
focal epilepsies and IGE, and the model fit and the choice of the 
number of clusters are discussed in the Supplementary material. 
We then performed 10-fold cross-validation (Fig. 1B) to evaluate 
the optimal number of clusters that best describe unseen data 
and assess the stability of progression subtypes across folds; the 
cross-validation similarity metric for the progression subtypes 
across validation folds ranges from 0 (no similarity) to 1 (maximum 
similarity).27 

Importantly, each of the SuStaIn-identified progression sub-
types is co-expressed to a different extent in each participant 
with epilepsy with values ranging from 0 to 1, so that their 
within-individual sum amounts to 1. For categorical classification 
purposes, we then assigned each individual with epilepsy to their 
primary progression subtype, based on the maximum likelihood 
of expression using a cut-off value of >50%, following prior 
work.27,29 Finally, we quantified the proportion of individuals clas-
sified into each (primary) subtype. SuStaIn also calculates the 

Figure 1 Visual schematic of the SuStaIn event-based model. We applied the SuStaIn algorithm to derive spatiotemporal patterns of progression of 
atrophy in large samples of people with focal epilepsy and IGE (n = 1299). The three main steps of the algorithm consist of: (A) Model input: selection 
of regions of interest, adjustment for nuisance variables, and conversion of regional grey matter metrics into z-scores relative to healthy control data; 
(B) Model fitting: computation of the best-fit probability distributions for normal and atrophic brain regions, identification of the most likely progression 
sequence, and quantification of uncertainty with cross-validation. An illustrative positional variance diagram, displayed on the left-hand side, shows 
an example of an atrophy progression sequence with the highest likelihood on the y-axis, and the number of model stages (i.e. sequence positions) on 
the x-axis; the intensity of each entry corresponds to the proportion of Markov Chain Monte Carlo samples for which a certain region of the y-axis ap-
pears at the respective stage of the x-axis. An exemplary ternary plot shows the probability with which each individual is assigned to a given subtype, 
whereby each vertex represents the point at which membership of a given subtype is maximal (100%). The dots correspond to individual data and are 
labelled by final subtype classification: subtype 1, subtype 2 or subtype 3. (C) External validation: repetition of procedures detailed in passages A and B 
for the external validation cohort, to address generalizability.   
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probability (maximum likelihood) with which each individual falls 
into a stage of each progression subtype. We staged individuals by 
computing their average SuStaIn stage, weighted by the probability 
that they belonged to each stage of each subtype.27 SuStaIn classi-
fies individuals with no abnormalities in thickness or volume in any 
region as ‘weighted stage 0’ and they are not assigned to a progres-
sion subtype. In our study, there were no individuals assigned to 
weighted stage 0. 

Statistical analysis 

Data were analysed using IBM SPSS version 26 and R 4.2.1. For 
demographic and clinical data, we used ANOVA, Kruskal-Wallis 
and chi-squared tests for continuous parametric, non-parametric 
and categorical data, respectively. To assess the relationship be-
tween SuStaIn stages and clinical characteristics, we employed 
two-tailed, non-parametric Spearman’s rank correlations with 
95% confidence intervals (CI). These correlations were computed 
using 5000 bootstrapped random samples. In the discovery cohort, 
we also applied principal component analysis (PCA) to further our 
understanding of the clinical relevance of the identified progres-
sion subtypes. In detail, we entered FBTCS occurring in the year be-
fore MRI,49,50 seizure frequency, ASMs trialled over life, and 
epilepsy duration in a PCA for people with focal epilepsy. 
Generalized tonic-clonic seizure (GTCS) in the year before MRI, 
ASMs trialled over life, and epilepsy duration were entered in a 
PCA for people with IGE. Across all individuals, we then probed as-
sociations between expression of a progression subtype and weight 
of the extracted principal components, which represent super-
ordinate markers of disease severity, using two-tailed non- 
parametric correlation analyses. 

Results 
Our discovery cohort included 814 participants after data quality 
checks: (i) 503 with focal epilepsy [TLE: 328; frontal lobe epilepsy 
(FLE): 88; parietal lobe epilepsy (PLE): 27; occipital lobe epilepsy 
(OLE): 5; unclassified focal epilepsy: 55], of whom 418 with a latera-
lised seizure focus; (ii) 193 with IGE [juvenile myoclonic epilepsy 
(JME): 46; juvenile absence epilepsy (JAE): 43; IGE unclassified with 
GTCS, as primary seizure type: 104]; and (iii) 118 healthy control 
subjects. After quality checks, the external validation cohort in-
cluded 254 participants: (i) 122 with focal epilepsy (TLE/FLE/poster-
ior quadrant: 50/50/22; 115 with a lateralized seizure focus); (ii) 61 
with JME; and (iii) 71 healthy control subjects. Demographic and 
clinical characteristics are provided in Table 1. There were no sig-
nificant differences in age at seizure onset between people with fo-
cal epilepsy and those with IGE in the discovery and validation 
cohorts (two-tailed, two-sample t-tests, discovery/validation) 
[t(181/630) = −1.19/1.62, P = 0.236/0.106]. 

SuStaIn identifies three focal epilepsy progression 
subtypes 

We identified three progression subtypes in focal epilepsy (Fig. 2A 
and B), each characterized by a sequence of stages (Fig. 2C): (i) a cor-
tical progression subtype, dominant in 49.1% of cases (cross- 
validation folds: 0.85, 95% CI: 0.80–0.89) (Fig. 2A), characterized by 
atrophy initially encompassing the superior and transverse tem-
poral gyri and parietal operculum, followed by the superior frontal, 
middle frontal and precentral cortices, then by the precuneus and 
posterior cingulate cortex, and by subcortical areas only in late 

stages; (ii) a basal ganglia subtype, dominant in 18.1% of cases 
(cross-validation folds: 0.78, 95% CI: 0.73–0.83) (Fig. 2A), with initial 
involvement of the globus pallidus, followed by other basal ganglia 
regions, thalamus and fronto-temporo-parietal cortices at later 
stages; and (iii) a hippocampal subtype, dominant in 32.8% of cases 
(cross-validation folds: 0.88, 95% CI: 0.83–0.92) (Fig. 2A), with a 
sequence first involving the hippocampus, followed by the thal-
amus, superior and middle temporal gyri, and then by other cortical 
areas. 

In the external validation cohort, we also identified three sub-
types (Fig. 3A–C) with comparable progression patterns and propor-
tion of people counted under each subtype: cortical: 41% 
(cross-validation folds: 0.82, 95% CI: 0.73–0.91) (Fig. 3A); basal gan-
glia: 21.3% (cross-validation folds: 0.90, 95% CI: 0.87–0.93) (Fig. 3A); 
and hippocampal: 37.7% (cross-validation folds: 0.81, 95% CI: 0.71– 
0.91) (Fig. 3A). There were no significant differences in subtype 
prevalence between discovery and validation cohorts (χ2

2 = 3.779, 
P = 0.151), which corroborates the generalizability of our findings. 
Cross-validation analyses showed high reproducibility, with 
average similarity among cross-validation folds >78/>81% for 
each subtype in the discovery/validation cohorts. There were slight 
differences between discovery and validation cohorts: in the 
cortical subtype, the initial stages of the progression sequence 
were reversed, with temporal involvement following fronto-central 
involvement. For the basal ganglia subtype, the caudate was af-
fected first, followed by the globus pallidus and the thalamus. 

Clinical characterization of the focal epilepsy 
subtypes 

We next characterized each subtype from a clinical stand point 
(Supplementary Table 2). The hippocampal subtype mainly in-
cluded people with TLE (78.2%) and had the highest proportion of 
mesial TLE with hippocampal sclerosis (TLE-HS; 31.7%) compared 
to the cortical (13.4%) and basal ganglia (14.3%) subtypes (χ2

2 =  
20.92, P < 0.0001) (Supplementary Table 2). Most people included 
in the hippocampal subtype (75.8%) had at least weekly seizures 
compared to 50.2% and 50.5% in the cortical and basal ganglia sub-
types, respectively (χ2

2 = 45.99, P < 0.0001). More people assigned to 
the basal ganglia subtype had FBTCS in the year before MRI 
(83.5%, versus 32.4% and 35.8% of cortical and hippocampal sub-
types; χ2

2 = 75.93, P < 0.0001). These findings were virtually identical 
in the validation cohort (χ2

2 > 20.56, all P < 0.0001). Across progres-
sion subtypes, SuStaIn stages were correlated with the duration 
of epilepsy in the discovery (Spearman’s ρ = 0.166, CI = 0.079– 
0.253, P < 0.0001; Fig. 2D) and external validation cohort (ρ = 0.268, 
P = 0.008, CI = 0.120–0.405; Fig. 3D), with an increasing weighted 
stage relating to longer disease duration. We found no evidence 
for putative merging events between the three subtypes 
(Supplementary Fig. 2). Correlations of SuStaIn stages with age at 
onset (ρ = 0.036, P = 0.418) and seizure frequency (ρ = −0.013, P =  
0.766) were not statistically significant; the association between 
SuStaIn stages and the occurrence of FBTCS in the discovery/valid-
ation cohorts was also not significant (Kruskal-Wallis H = 2.81/1.03, 
P = 0.094/0.311). Lastly, in people with a proven lateralized epileptic 
focus (n = 418/122, discovery/validation cohort), ipsilateral cortico- 
subcortical regions atrophied earlier than contralateral counter-
parts, irrespective of progression subtype (Supplementary Fig. 3). 
We performed additional analysis on the discovery focal epilepsy 
cohort, dividing it into two separate groups: individuals with TLE 
(n = 328) and those with extratemporal lobe epilepsy (n = 175). 
Three similar subtypes (cortical, basal ganglia, and hippocampal)  
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were identified. We found significant differences between these co-
horts in the origin of brain regions in the cortex-led subtype. 
Specifically, the TLE-only group showed earliest atrophy in tem-
poral regions, while the extratemporal lobe epilepsy group dis-
played an origin of frontal regions (Supplementary Fig. 4). 

In the discovery cohort, PCA on clinical characteristics (seizure 
frequency, disease duration, occurrence of FBTCS, and ASMs 
trialled over life) yielded two PCs with eigenvalues >1 
(Supplementary material, ‘Results’ section): (i) PC1 (32.2% explained 
variance), with positive loadings of life-time trialled ASMs and 

Figure 2 MRI-based progression subtypes in focal epilepsy: discovery cohort. The figure shows the spatiotemporal patterns of progression of grey mat-
ter atrophy (A: subtypes: cortical; basal ganglia; hippocampal) identified via SuStaIn in the focal epilepsy discovery cohort. Each of the three progression 
patterns in A consists of a sequence of stages with which cortical thickness and subcortical volumes reach different z-scores in people with epilepsy 
relative to healthy control subjects. The shading of each region indicates the severity of grey matter loss; white represents unaffected areas; light 
shading represents mildly affected areas (z-score = 1–2); medium shading represents moderately affected areas (z-score = 2–3); and dark shading re-
presents severely affected areas (z-score >3). CVS = cross-validation similarity; f = proportion of participants assigned to each subtype. (B) The assig-
nability of the disease subtype, operationalized as the distance from each vertex of the triangle, whereby each vertex represents the point at which 
membership of a given subtype is maximal (100%). Each participant was assigned to one subtype (cortical, basal ganglia or hippocampal) based on 
the maximum likelihood of subtype expression (cut-off value: > 50%). (C) The probability with which each participant from the focal epilepsy discovery 
cohort was assigned a specific SuStaIn stage (stage ranges: 0.002–62.424). (D) The correlation between duration of epilepsy and weighted stage. (E) A 
negative correlation is shown between within-individual expression of hippocampal subtype and a marker of well controlled epilepsy [principal com-
ponent (PC2); see main text]. (F and G) Panels show the correlations between within-individual expression of cortical and basal ganglia subtypes and a 
marker of poorly controlled epilepsy (PC1). Correlation analyses were conducted with Spearman’s ρ; the associated panels show ranked data; Sigma 
(standard deviation), a measure of the spread of a dataset, is used to represent the variability of the data. SuStaIn = subtype and stage inference.   
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seizure frequency, which we used as a surrogate marker for poorly 
controlled epilepsy; and (ii) PC2 (26.0% explained variance), with 
positive loading of epilepsy duration and negative loadings of 
FBTCS and seizure frequency, which we used as a marker of (chron-
ic) well controlled epilepsy. 

In the validation cohort, PCA with the same clinical characteris-
tics yielded two PCs with eigenvalues >1 (Supplementary material, 

‘Results’ section): (i) PC1 (38.0% explained variance), with positive 
loadings of illness duration, lifetime trialled ASMs and seizure fre-
quency, which we used as a surrogate marker for poorly controlled 
epilepsy; and (ii) PC2 (25.9% explained variance), with negative 
loadings of life-time trialled ASMs and seizure frequency, which 
we used as a marker of well controlled epilepsy but none of these 
are correlated with the expression of three subtypes (P > 0.25). 

Figure 3 MRI-based progression subtypes in focal epilepsy: validation cohort. The figure shows the spatiotemporal patterns of progression of grey 
matter atrophy (A: subtypes: cortical; basal ganglia; hippocampal) identified via SuStaIn in the focal epilepsy validation cohort. Each of the three pro-
gression patterns in A consists of a sequence of stages with which cortical thickness and subcortical volumes reach different z-scores in patients rela-
tive to healthy control subjects. The shading of each region indicates the severity of grey matter loss; white represents unaffected areas; light shading 
represents mildly affected areas (z-score = 1–2); shading represents moderately affected areas (z-score = 2–3); and dark shading represents severely af-
fected areas (z-score >3). CVS = cross-validation similarity; f = proportion of participants assigned to each subtype. (B) The assignability of the disease 
subtype, operationalized as the distance from each vertex of the triangle, whereby each vertex represents the point at which membership of a given 
subtype is maximal (100%). Each participant was assigned to one subtype (cortical, basal ganglia or hippocampal) based on the maximum likelihood 
of subtype expression (cut-off value: >50%). (C) The probability with which each participant from the focal epilepsy discovery cohort was assigned 
a specific SuStaIn stage (stage ranges: 0.006–54.008). (D) The correlation between duration of epilepsy and weighted stage (Spearman’s ρ = 0.268, 
P = 0.008), with an increasing weighted stage relating to longer disease duration; the associated panels show ranked data. (E–G) The not significantly 
important correlation is shown between a marker of poorly controlled epilepsy (PC1) with within-individual expression of hippocampal, cortical and 
basal ganglia subtypes. Correlation analyses were conducted with Spearman’s ρ; the associated panels show ranked data; Sigma (standard deviation), a 
measure of the spread of a dataset, is used to represent the variability of the data. SuStaIn = subtype and stage inference.   
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Within-individual expression of the hippocampal subtype 
was associated with less expression of the well controlled epilepsy 
marker (ρ = −0.134, P = 0.003, CI = −0.216, −0.050; Fig. 2E). Expression 
of the cortical subtype was associated with less expression of 
the poorly controlled epilepsy marker (ρ = −0.320, P < 0.0001, 
CI = −0.397, −0.240; Fig. 2F), while the opposite relationship held 
true for the expression of the basal ganglia subtype (ρ = 0.204, P <  
0.0001, CI = 0.120–0.285; Fig. 2G). 

In the discovery cohort, 21.4% had epilepsy surgery, and in the 
validation cohort, 27.9%, with no significant differences among 
subtypes regarding the proportion of those having surgery 
(Supplementary Table 2). In the discovery cohort, people in the ba-
sal ganglia subtype had lower chances of a good postsurgical seiz-
ure outcome (50% Engel classes I–II) compared with those in the 
cortical (81.3%) and hippocampal (73.7%) subtypes (χ2

2 = 7.41, P =  
0.026); within-individual expression of the basal ganglia subtype 
was also negatively correlated with surgical outcome class 
(Spearman’s ρ = −0.238, P = 0.013). Findings in the validation cohort 
were qualitatively similar (good outcome: 83.3%, 82.3%, and 40% in 
cortical, hippocampal, and basal ganglia subtypes), but group 
differences (χ2

2 = 4.337, P = 0.114) and correlation between 
within-individual basal ganglia subtype expression and surgical 
outcome class (Spearman’s ρ = −0.210, P = 0.303) were not statistic-
ally significant, likely owing to the small surgical sample (n = 34). 

SuStaIn identifies two idiopathic generalized 
epilepsy progression subtypes 

In IGE, SuStaIn yielded two progression subtypes, with largely over-
lapping findings in both cohorts (Fig. 4A, discovery cohort; Fig. 5A, val-
idation cohort): (i) a cortical subtype, with 40.4% and 68.9% of people in 
the discovery and validation cohorts (cross-validation folds = 0.90, 
95% CI = 0.82–0.90, discovery cohort, Fig. 4A; 0.79, 95% CI = 0.74–0.82, 
validation cohort, Fig. 5A); and (ii) a basal ganglia subtype, including 
59.6% and 31.1% of people in the discovery and validation cohorts 
(cross-validation folds = 0.87, 95% CI = 0.80–0.88, discovery cohort,  
Fig. 4A; 0.62, 95% CI = 0.60–0.67, validation cohort, Fig. 5A). There 
were no differences in subtype distribution between the two cohorts 
(χ2

1 = 1.37, P = 0.504). Spatiotemporal sequences of atrophy in both IGE 
subtypes were similar to those in focal epilepsy, with temporoparietal 
regions and the globus pallidus affected first in the cortical and basal 
ganglia IGE subtypes. To test the stability of two subtypes in IGE, we 
performed an additional analysis by combining people with focal epi-
lepsy and IGE in the discovery cohort, which revealed that those with 
IGE are predominantly represented in the cortex-led and basal 
ganglia-led subtypes (Supplementary Fig. 5). 

Clinical characterization of the idiopathic 
generalized epilepsy subtypes 

In the IGE discovery group, 66.7% of people assigned to the cortical 
subtype had absence or JME, while 67.8% of those assigned to the 
basal ganglia subtype had unclassified IGE with GTCS as primary 
seizure type (χ2

1 = 26.19, P < 0.0001) (Supplementary Table 3). There 
were similar findings in the validation cohort: 73.7% of people 
with JME in the basal ganglia subtype had GTCS in the year before 
MRI, compared to 16.7% of those in the cortical subtype (χ2

1 = 29.06, 
P < 0.0001) (Supplementary Table 3). In IGE, SuStaIn stages were 
not significantly associated with epilepsy duration (ρ = 0.028/0.08, 
P = 0.68/0.18; discovery/validation cohort) (Figs 4D and 5D) nor 
with age of onset (ρ = 0.036/−0.091, P = 0.684/0.486, discovery/valid-
ation cohort). In the discovery cohort, PCA on clinical 

characteristics (GTCS in the year before the scan, epilepsy duration, 
and ASMs trialled over life) generated two PCs with eigenvalues >1 
(Supplementary material, ‘Results’ section): (i) PC1 (42.0% explained 
variance), with positive loadings of the number of life-time trialled 
ASMs and GTCS in the year before MRI, which we operationalized as 
a marker of poorly controlled IGE; and (ii) PC2 (34.2% explained vari-
ance), with positive and negative loading of the duration of epilepsy 
and GTCS, which we operationalized as a marker of well controlled 
IGE. There were no significant correlations between individual- 
level cortex or basal ganglia subtype expression and PC1 or PC2 
(all P > 0.35) (Fig. 4E–H). 

PCA with the same clinical characteristics in the validation co-
hort generated one PC eigenvalue >1: PC1 (40.8% explained vari-
ance), with positive loadings of illness duration and lifetime 
trialled ASMs, which we used as a surrogate marker for poorly con-
trolled epilepsy, which are not correlated with expression of either 
subtype (P > 0.11). 

Discussion 
We assessed 1105 people with epilepsy who underwent high reso-
lution structural MRI in two specialist epilepsy centres. We used 
SuStaIn, an established machine learning algorithm that infers 
longitudinal sequences of progression of grey matter atrophy 
from cross-sectional data. Our findings indicate that focal epi-
lepsy and IGE present with latent spatiotemporal patterns of pro-
gression, characterized by cortical or basal ganglia drivers of 
atrophy, that are differentially co-expressed in each individual. 
A subtype exclusive to focal epilepsy captured the progression 
of grey matter damage starting from the hippocampus. 
Analyses in the external validation cohort corroborated result 
generalizability. We also identified associations between progres-
sion subtypes and markers of disease severity and chronicity, 
supporting our findings’ clinical relevance. Our study provides di-
mensional evidence in a categorical framework. It delivers an in-
novative, imaging and AI-guided epilepsy taxonomy that may be 
leveraged for future advancements in individualized prognostics 
and targeted therapeutics. 

Prior research into cumulative grey matter changes in epilepsy fo-
cused on proving its occurrence but did not address the temporal sig-
natures of its unfolding. Our work conveys instead a comprehensive 
overview of spatiotemporal trajectories of progression. It establishes 
that these (i) imply a complex cortico-subcortical interplay; (ii) are 
simultaneously co-expressed to a different extent in each individual; 
and (iii) vary systematically among them. As the set of coordinated 
changes that underlie progression trajectories is individual-specific, 
it can thus be viewed as a spectrum e.g. as a dimensional entity. 
Identifying discrete progression subtypes, however, allows us to parse 
interindividual variability into categories, providing a compact classi-
fication framework that highlights the main patterns of vulnerability 
to atrophy. We classify patients by assigning them to categories to 
help us understand and have homogenous groups to study. 
However, it is important to acknowledge that in reality, there exists 
a biological continuum, such as the spectrum between focal and gen-
eralized seizures or the continuum between JAE and JME. 

In addition, we note that previous work primarily assessed cu-
mulative grey matter loss in people with focal epilepsy.13,14,18 

Here we show that reorganization of brain structure over time 
also affects IGE. Our findings thus challenge prior views of IGEs as 
static disorders,51 and advocate for future research into strategies 
to mitigate progression other than surgery. More broadly, our appli-
cation of SuStaIn favours a reconceptualization of the epilepsies as  
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dynamic disorders associated with a deterioration of brain struc-
ture, indicating shared features with classical neurodegenerative 
disorders.27,29,30,32 These findings incentivize prompt diagnosis 
and treatment, and the search for disease-modifying therapy.52 

Progression trajectories involving the cortex or the basal ganglia 
had broadly similar spatiotemporal characteristics in both focal 
and generalized epilepsies. Thus, despite their distinct clinical pro-
files, the substrates of neural vulnerability may be construed as 
trans-syndromic, and prompt a reassessment of the long-standing 
dichotomization between focal and generalized syndromes.3 In this 
context, we echo prior multicentre, cross-sectional evidence for 
common neuroanatomical signatures of epilepsy,17,18 and innovate 
by proving that these are also dynamic. The overlap in sequences of 
structural reorganization may suggest shared pathophysiology. As 
the epilepsies are increasingly conceptualized as network phenom-
ena,53 it is plausible that the progression of structural damage may 
unfold across common large-scale, distributed neural networks, as 
observed in classical neurodegenerative disorders.54 Our work en-
courages a spectrum-based, dimensional conceptualization of the 

epilepsies that should complement a purely categorical view, echo-
ing recent endeavours in modern psychiatry.55,56 

As for the underlying circuitry, atrophy in the cortical subtypes 
first encompasses frontotemporal regions, then progresses to in-
volve parieto-occipital areas, whose structural alterations were 
previously shown in cross-sectional work,18,57 and affects the 
hippocampus or subcortical regions only at late stages. The se-
quence of lateral temporal and frontocentral involvement differed 
between discovery and validation cohorts in focal epilepsies. 
Diagnostic characteristics may partly explain this finding: the dis-
covery cohort had a predominance of people with TLE (∼60%) and 
a temporo-frontal sequence; in contrast, the validation cohort 
had people with TLE and FLE in equal proportion and a frontotem-
poral sequence. One possibility is that cortical areas near the epi-
leptogenic networks may be affected first. This is supported by 
the finding that people with focal epilepsy had an earlier involve-
ment of ipsilateral regions, irrespective of diagnostic group. In add-
ition, such interpretation reiterates our previous findings in a 
longitudinal study14 and evidence of graded severity of diffusion 

Figure 4 MRI-based progression subtypes in IGE: discovery cohort. The figure shows the spatiotemporal patterns of progression of grey matter atrophy 
(A: subtypes; cortical; basal ganglia) identified via SuStaIn in the IGE discovery cohort. (A) The colour of each region indicates the severity of grey matter 
loss; white represents unaffected areas; light shading represents mildly affected areas (z-score = 1–2); medium shading represents moderately affected 
areas (z-score = 2–3); and dark shading represents severely affected areas (z-score >3). CVS = cross-validation similarity; f = proportion of participants 
assigned to each subtype. (B) The assignability of the disease subtype, operationalized as the distance from each side of the bar, whereby each vertex 
represents the point at which membership of a given subtype is maximal (100%). (C) The probability with which each participant from the IGE discovery 
cohort was assigned a specific SuStaIn stage (stage ranges: 0.005–39.384). (D) The correlation between duration of epilepsy and weighted stage, which 
was not significant. (E and F) The correlations between within-individual expression of cortical and basal ganglia subtypes and a marker of poorly con-
trolled IGE (PC1), which were not significant. (G and H) The correlations between within-individual expression of cortical and basal ganglia subtypes and 
a marker of well controlled IGE (PC2). Correlation analyses were conducted with Spearman’s ρ; the associated panels show ranked data; Sigma (standard 
deviation), a measure of the spread of a dataset, is used to represent the variability of the data. SuStaIn = subtype and stage inference.   
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abnormalities in TLE as a function of the Euclidean distance from 
the seizure focus.58 Future work may benefit from larger samples 
of people with extratemporal epilepsies and people with well estab-
lished seizure focus lateralization and localization to disentangle 
their influence on progression. In IGE, progression trajectories in 
the cortical subtype broadly recapitulated those of focal epilepsies, 
with minor differences between the discovery and validation co-
horts that may relate to heterogeneity in clinical characteristics. 
Half of the people in the discovery cohort were diagnosed with un-
classified IGE, while people in the validation cohort had JME. Our 
findings in IGE implicate areas previously identified as atypical in 
cross-sectional imaging studies.59-62 Longitudinal studies investi-
gating trajectories of structural reorganization in IGE are rare. In 
JME, altered development of association cortices occurs in the first 
2 years after diagnosis, with an attenuated age-related decline in 
thickness and surface area compared to typical neurodevelop-
ment.63 Such evidence was obtained in a paediatric cohort, while 
our IGE samples had an average age of >20 years. Future research 
is thus needed to characterize lifelong patterns of cortico- 

subcortical reorganization in IGE and compare trajectories in child-
hood and adolescence to those in adulthood. 

We identified a basal ganglia progression subtype in focal and 
generalized epilepsies, which showed similar patterns of spatio-
temporal evolution, first involving the globus pallidus, then the 
caudate and thalamus, followed by cortical areas. People with focal 
epilepsy and predominance of this subtype were more likely to have 
FBTCS, while those with IGE were more likely to be unclassified IGE 
with GTCS. Multimodal evidence from animal models and humans 
implicates thalamocortical and basal ganglia circuitry in generating 
or modulating tonic-clonic seizures.16,49,64-68 In IGE, imaging studies 
have documented subcortical grey matter volume loss, particularly 
in the thalamus,16,69 and reorganization of structural and functional 
thalamocortical connectivity.19 EEG-functional MRI studies also im-
plicated the thalamus in generating generalized spike-wave dis-
charges and absence of seizures, and showed hyperconnectivity 
among basal ganglia.70 In TLE, multimodal evidence points to thal-
amic atrophy and reorganization of thalamic and basal ganglia con-
nectivity,17,18,71-73 which appears more marked in TLE with 

Figure 5 MRI-based progression subtypes in IGE: validation cohort. The figure shows the spatiotemporal patterns of progression of grey matter atro-
phy (A: subtypes; cortical; basal ganglia) identified via SuStaIn in the IGE validation cohort. (A) The shading of each region indicates the severity of grey 
matter loss; white represents unaffected areas; light shading represents mildly affected areas (z-score = 1–2); medium shading represents moderately 
affected areas (z-score = 2–3); and dark shading represents severely affected areas (z-score >3). CVS = cross-validation similarity. f = proportion of par-
ticipants assigned to each subtype. (B) The assignability of the disease subtype, operationalized as the distance from each side of the bar, whereby each 
vertex represents the point at which membership of a given subtype is maximal (100%). (C) The probability with which each participant from the IGE 
discovery cohort was assigned a specific SuStaIn stage (stage ranges: 0.004–53.981). (D) The correlation between duration of epilepsy and weighted 
stage (Spearman’s ρ), which was not statistically significant; the associated panels show ranked data. (E and F) The (not significant) correlation between 
a marker of poorly controlled epilepsy (PC) with within-individual expression of cortical and basal ganglia subtypes. Correlation analyses were con-
ducted with Spearman’s ρ; the associated panels show ranked data; Sigma (standard deviation), a measure of the spread of a dataset, is used to re-
present the variability of the data. IGE = idiopathic generalized epilepsy; SuStaIn = subtype and stage inference.   
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FBTCS.49,50,64,74 Collectively, our findings link with prior evidence on 
the role of the thalamus and basal ganglia in tonic-clonic seizures, 
pointing to substantial similarities in the pathophysiology of focal 
and generalized epilepsy. We postulate that the circuitry involved 
in tonic-clonic ictogenesis undergoes structural damage more 
precociously. 

In focal epilepsies, we also identified a progression subtype 
characterized by initial involvement of the hippocampus, followed 
by the thalamus and temporal neocortex, and subsequently by 
other cortical areas. The spatial distribution of this progression pat-
tern resembles that of areas exhibiting grey matter alterations and 
implicated in ictogenesis in TLE, particularly TLE-HS.17,18 Our find-
ings mirror the results of single-centre longitudinal imaging stud-
ies14,75,76 and our meta-analysis,13 showing progressive thalamic 
and hippocampal atrophy and demonstrated that areas affected 
by the progression of atrophy14 were structurally connected to 
the hippocampus. We thus reiterate that seizure onset, propaga-
tion and progressive brain damage may be closely linked, with re-
gions preferentially implicated in seizures deteriorating first. 
Notably, not all people with the predominant hippocampal progres-
sion subtype had TLE. The hippocampus may exhibit heightened 
vulnerability to developmental, hormonal and environmental fac-
tors, which is corroborated by its involvement in a broad spectrum 
of brain disorders.77-79 Studies in healthy adults identified the 
hippocampus as a component of a late-developing brain network 
with significant vulnerability to the effects of ageing and disease,54 

and prior investigations of extratemporal epilepsy documented 
subtle structural hippocampal alterations, such as hippocampal 
malrotation.80,81 It is thus possible that repeated seizures, even 
if not mesiotemporal, may ultimately lead to pathological mesio-
temporal reorganization, which could then propagate to other 
regions following the main axes of hippocampal structural 
connectivity. 

Despite clear unilateral hippocampal sclerosis, only 50% of long- 
term study participants remained seizure-free after anterior mesial 
temporal lobe resection.33 Basal ganglia subtype in focal epilepsy 
had worse surgical outcomes than the hippocampal subtype, high-
lighting the clinical utility of SuStaIn for outcome prediction. 
Secondary mesial temporal sclerosis can occur in epilepsy syn-
dromes other than TLE due to frequent and prolonged seizures.82 

Our focal epilepsy cohort consists mainly of people with refractory 
epilepsy, suggesting a relatively common occurrence of secondary 
mesial temporal sclerosis. Consequently, disease progression in 
these individuals may deviate from the expected clinical syn-
drome, emphasizing the data-driven approach of SuStaIn to recon-
cile clinical syndromes with atrophy and disease progression 
patterns influenced by regions affected secondarily by epilepsy or 
seizures rather than initial seizure onset zones. 

Correlation analyses contextualized the identified epilepsy pro-
gression subtypes from a clinical viewpoint. In focal epilepsies, the 
duration of disease, but not age at onset, was associated with sub-
type staging. While replicating prior cross-sectional evidence,13,18 

our findings indicate that the progression of grey matter damage 
along the topographical axes captured by each subtype is time- 
dependent but may not be substantially influenced by the develop-
mental stage at diagnosis. Seizure frequency was higher in those 
with predominant hippocampal progression. It is tempting to 
speculate that a higher seizure burden may more severely affect 
the hippocampus and lead to a progression cascade involving inter-
connected areas, per our prior considerations on hippocampal and 
network-level vulnerability to disease. Correlation analyses cannot 
establish causality, which need validation in future longitudinal 

studies. PCAs showed associations between epilepsy severity and 
progression subtypes, suggesting more aggressive disease in the 
cortical and basal ganglia subtypes. These findings show how 
SuStaIn may be used for clinical stratification, with pertinent impli-
cations. As subtype expression and their combination are quantifi-
able within individuals, higher cortical and basal ganglia loading 
findings have prognostic implications and may prompt accelerated 
treatment pathways. Similarly, people with focal epilepsy and pre-
dominant basal ganglia-led progression benefited less from epi-
lepsy surgery, which may stem from a higher burden of 
secondary generalization, an established predictor of unfavourable 
post-surgical outcome83-85; the latter finding can also be translated 
to clinical decision-making. In IGE, people with uncontrolled GTCS 
were preferentially assigned to the basal ganglia subtype. Still, we 
did not otherwise identify significant correlations between clinical 
characteristics and subtypes and their stages. The underlying de-
terminants of progression in IGE and focal epilepsies may differ, 
despite the considerable overlap in neuroanatomical signatures. 
IGE is characterized by a complex polygenic aetiology,86,87 which 
may be an essential driver of interindividual differences in the ex-
pression of progression subtypes and their associations with clinic-
al phenotypes. These hypotheses will require validation in future 
imaging-genetics investigations. 

A recent study using MRI utilized the SuStaIn method to inves-
tigate TLE.88 In contrast to the z-score SuStaIn method we used,27 

they utilized the event-based SuStaIn approach.30 They exclusively 
focused on TLE-HS and confirmed a sequence of MRI changes that 
aligns with prior longitudinal findings.13,14,76 Interestingly, they 
also observed a correlation between the stage of their modelling 
and the duration of illness, which is similar to our findings in focal 
epilepsy. 

Several lines of research, including neuroimaging, neuropathol-
ogy, neuropsychology and network neuroscience, have contributed 
to proposing various taxonomies of epilepsy, particularly addres-
sing neurobehavioral comorbidities.89 Our current study used 
structural imaging data to explore multiple brain atrophy trajector-
ies. The SuStaIn method presents a unique opportunity to integrate 
various data sources, such as imaging, cognition and genetics, and 
our future work seeks to incorporate these diverse data sources to 
examine further aspects of disease progression patterns, such as 
the influence of genetic factors and implications on cognition. 

A strength of our work is the inclusion of an external validation 
cohort, which strongly supports generalizability. SuStaIn is an 
open-source algorithm widely applied to multicentre cohorts of 
people with neurodegenerative disorders, it only requires cross- 
sectional datasets to detect multiple spatiotemporal trajectories 
and provides probabilistic and quantitative data information for in-
dividualized inference.27,29,32 Thus, we employed state-of-the-art, 
previously validated methods to maximize reproducibility and rep-
licability. Cortical thickness, hippocampal and subcortical volumes 
can be reliably and non-invasively quantified using structural MRI 
and are validated morphometric markers of neuronal loss.17,18 

One limitation is using a parcellation scheme that does not cover 
the whole brain. We note that selecting the regions we used was 
to maximize the trade-off between accuracy and computational 
complexity and was motivated by the findings of large-scale multi-
centre studies of the ENIGMA-Epilepsy consortium.17,18 The valid-
ation cohort size, especially in individuals with IGE, is relatively 
small. Longitudinal data on IGE are limited, particularly among 
the adult population. Notably, our analysis indicates a lack of cor-
relation between the SuStaIn stages and epilepsy duration in indi-
viduals with IGE. Further longitudinal studies in the IGE cohort  
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will be necessary to address this issue. A subset of individuals with 
focal epilepsy in our study underwent presurgical assessments. 
Unfortunately, only a relatively small proportion had undergone 
surgery at the time of the study. Thus, we seek to develop a predict-
ive model for post-surgical outcomes based on SuStaIn outputs in 
larger post-surgical populations in the future. 

In conclusion, we evaluated over a thousand people with epilep-
sies using an unsupervised machine learning algorithm and rou-
tinely acquired structural MRI scans. We describe patterns of 
spatiotemporal progression of grey matter atrophy. Progression 
subtypes principally implicate neocortical and basal ganglia drivers 
both in focal and generalized epilepsies, and limbic circuitry in 
focal epilepsy only. They are differentially co-expressed in each 
individual, and relate to clinical indicators of disease severity. 
Classification of people with epilepsy capitalizes on the maximally 
expressed progression subtype at the personal level, conveys a di-
mensional perspective into a categorical framework, and conceptu-
ally advances the extant categorical classification approaches. By 
providing an individual-level characterization of the underlying 
biology, we offer deliverables that can be used prospectively to en-
hance individualized prognostic and therapeutic considerations. It 
may aid clinical stratification for future clinical trials of disease- 
modifying agents. 

Data availability 
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available from the corresponding author upon reasonable request 
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