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The perception of soundscape is complex and difficult to be described accurately. Although the use of 

physiological measurement in soundscape research is gradually increasing, most of them focused on 

proving the existence of the physiological effect, rather than construct the linear relationship between 

physiological indicators and soundscape perception. In this study, physiological indicators were used to 

classify sound source types, in order to provide physiological basis for sound source classification, and 

then the feasibility of using physiological indicators to evaluate soundscape quality was discussed. 20 

scenarios of typical sound sources in urban public open spaces were presented in the form of audio-

visual interaction in the laboratory, and 9 physiological indicators of 62 participants in these scenarios 

were measured. The dimensions of physiological indicators were reduced by categorical principal com-

ponents analysis in order to study the distribution of different types of sound sources in physiological 

indicators. The results show that when using two dimensions to construct the physiological evaluation 

system, dimension 1 could well distinguish the difference between natural sound and human noise, how-

ever the meaning of dimension 2 was not clear, which means that the types of physiological indicators 

still need to be tested and adjusted, and also suggest that physiological indicators may be used to evaluate 

dimensions that are subjectively difficult to evaluate. 
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1. Introduction 

Since Schafer put forward the concept of "soundscape", researchers have been trying to understand 

how the sound environment affects people's perception of the city, and how to apply soundscape to urban 

planning and design [1]. The existing methods for evaluating and predicting soundscape are mainly to 

study people's subjective evaluation in the environment in the form of questionnaires and interviews, and 

less to obtain people's perceptions through objective physiological measurement. Unlike traditional noise 

control, soundscape studies pay more attention to the positive effects of sound, such as triggering pleasant 

memories of previous experiences or prompting people to relax and recover more quickly [2-4]. For this 

reason, the research on soundscape not only explores the physical attributes of sound, but also considers 

the meaning behind sound, which requires the classification of sound sources. When asked to evaluate 

the urban sound environment, people usually describe the audible sound and its source, and associate the 
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environmental quality with the meaning given by these sounds [5]. The physiological signal may be the 

medium between physical attributes of sound and subjective perception, so it is necessary to study the 

sound source classification of urban public open spaces from the perspective of physiological response.  

Considering the importance of soundscape perception, a variety of methods for urban sound source 

classification have been proposed [6,7], and some studies have analysed the correlation between sound 

source types and their physical parameters. However, we still need to explore whether there is a correla-

tion between the type of sound source and physiological response. Therefore, in this study, the sound 

sources were classified according to the physiological indicators, and the feasibility of using physiolog-

ical indicators to evaluate the soundscape quality was discussed by comparing the difference between 

the physiological data and the traditional classification method. 

2. Method 

2.1 Participants 

A total of 62 unpaid participants were recruited with an average age of 23.29 (SD=5.223; min=16; 

max=40), including 33 males and 29 females. All the participants had normal hearing and did not take 

psychotropic drugs, and there was no strenuous exercise and no obvious fatigue in the two hours before 

the experiment. 

2.2 Stimuli 

The soundscapes were recorded by the combination of video and audio. According to the previous 

studies, the typical sound sources and scenarios in 20 urban public open spaces were selected as the 

stimuli of the experiment. The soundscapes were divided into four main categories: biological sound, 

geophysical sound, human sound and mechanical sound. The scenarios and the main sound sources are 

shown in Table 1. 

Table 1: Evaluation structure of soundscape 

sound category scenario sound source code 

biological 

sound (Bio) 

grove 1 birdsong BS 

grove 2 cicadas chirping CC 

empty street birdsong and insects sound ES 

geophysical 

sound (Geo) 

ocean wave wave sound OW 

fountain water sound and conversation sound FT 

grove 3 leaves rustling LR 

small waterfall water sound SW 

rain rain sound RN 

traditional architecture wind chimes sound WC 

human sound 

(Hum) 

noisy street conversation sound and advertising sound NS 

chorus chorus and music CH 

square dance loud music and exercising sound SD 

basketball court exercising sound and conversation sound BC 

playground children shouting PC 

food market peddling and conversation sound FM 

mechanical 

sound (Mech) 

road cleaning mechanical noise RC 

highway vehicle noise HW 

crossroad vehicle noise and honk CR 

road maintenance pile driver sound RM 

ventilation fan sound VL 
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2.3 Physiological measurements 

Physiological signals were collected by BIOPAC MP160 system, and the physiological indicators 

included ECG, EEG, EOG, respiratory wave and skin resistance. Through the calculation of the collected 

physiological signals, 9 physiological indicators including heart rate (HR), R wave amplitude (ΔR), heart 

rate variability (HRV), low frequency band in HRV power spectrum (LF), α-EEG, β-EEG, respiratory 

rate (RR), respiratory depth (RD) and skin conductivity level (SCL) were obtained. 

2.4 Research procedure 

The experiment was conducted in the audiometry room, and the participants were first asked to sit 

comfortably 1.5 meters in front of the screen. After they understood the experimental procedure, the 

researcher calibrated the instrument and left the room. The participants were required to fully relax in 

the first 5 minutes and the resting state of each physiological data was recorded, then the experiment was 

carried out automatically. Twenty scenarios were presented randomly, and the physiological data of the 

participants were recorded at the same time. After the end of each scenario, the participants were 

prompted to relax for 90 seconds. After 10 scenarios were randomly presented, the system prompted that 

the experiment was over, and the researcher re-entered the audiometry room, removed the headphones 

and electrodes, and ended the experiment. 

3. Results 

First of all, the physiological data was normalized according to the resting state of each participant in 

order to get the relative value of the physiological responses. The dimension of the physiological indica-

tors was reduced, and the distribution of different sound sources in the physiological indicators was an-

alysed by categorical principal components analysis (CATPCA). This was not only possible to under-

stand the degree of relationship between different sound sources when using physiological indicators as 

a means of observation, but also showed the relationship between the various physiological indicators. 

Fig. 1 shows the weight of each physiological indicators in two dimensions after reducing the dimension 

of physiological indicator, and Fig. 2 shows the distribution of the average value of 20 scenario of sound 

sources in two physiological dimensions. Among them, mechanical sounds are red, human sounds are 

yellow, geophysical sounds are blue, and biological sounds are green. 

 

 
Figure 1: Spatial distribution of 9 physiological 

indicators. 

 
Figure 2: Projection of typical sound source 

types in principal components.
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As can be seen from Fig. 1, the physiological indicators in dimension 1 were mainly composed of α-

EEG, HRV, SCL, RR, HR and ΔR, and the main components in dimension 2 were LF and RD. As can 

be seen from Fig. 2, in dimension 1, biological sounds and geophysical sounds were mainly distributed 

on the negative axis, while mechanical sounds and human sounds were mainly distributed on the positive 

axis, which showed that the difference between natural sound and noise can be roughly distinguished by 

dimension 1. The rain sound was the exception, although it belonged to the geophysical sound, its phys-

iological indictors were closer to the mechanical noise. In dimension 2, the meaning represented was 

relatively vague, in which noisy street and road maintenance were the lowest, ocean waves and chorus 

were the highest. This suggested that dimension 2 might be related to the regularity or predictability of 

the soundscape. Because on the negative axis of dimension 2, the sounds gradually became more chaotic 

and unpredictable, while on the positive axis, the sounds were more regular and could predict the rhythm 

of the whole sound environment. In addition, the value of biological sounds were lower than that of 

geophysical sounds in dimension 2, which also implied that biological sounds were relatively irregular. 

4. Conclusions 

In this study, the categorical principal components analysis was used to reduce the dimension of phys-

iological indicators, and the distribution of different types of sound sources in physiological indicators 

was analysed. The results showed that when using the two dimensions to construct the quantitative stand-

ard of physiological indicators, dimension 1 could well distinguish the difference between natural sounds 

and noises, but the meaning of dimension 2 was not clear, which might be the regularity or predictability 

of sounds. This suggests that physiological indicators may be used to evaluate dimensions that are diffi-

cult to explain by subjective data. 

5. Acknowledgement 

This paper is supported by Scientific Research and Creation Project of Zhejiang Provincial Depart-

ment of Culture and Tourism (2022KYY037), and A Project Supported by Scientific Research Fund of 

Zhejiang Provincial Education Department (Y202248909), and Zhejiang Provincial Natural Science 

Foundation of China under Grant No.LQ23E080010.  

 

REFERENCES 

1 Aletta, F., Kang, J., & Axelsson, Ö. (2016). Soundscape descriptors and a conceptual framework for devel-

oping predictive soundscape models. Landscape and Urban Planning, 149, 65-74.  

2 Liu, F., & Kang, J. (2016). A grounded theory approach to the subjective understanding of urban soundscape 

in Sheffield. Cities, 50, 28-39. 

3 Payne, S. R. (2013). The production of a perceived restorativeness soundscape scale. Applied acoustics, 74(2), 

255-263.  

4 Krzywicka, P., & Byrka, K. (2017). Restorative qualities of and preference for natural and urban soundscapes. 

Frontiers in psychology, 8, 1705.  

5 Dubois, D., Guastavino, C., & Raimbault, M. (2006). A cognitive approach to urban soundscapes: Using 

verbal data to access everyday life auditory categories. Acta acustica united with acustica, 92(6), 865-874. 

6 Brown, A. L., Kang, J., & Gjestland, T. (2011). Towards standardization in soundscape preference assessment. 

Applied acoustics, 72(6), 387-392. 

7 Verma, D., Jana, A., & Ramamritham, K. (2019). Classification and mapping of sound sources in local urban 

streets through AudioSet data and Bayesian optimized Neural Networks. Noise Mapping, 6(1), 52-71. 


