
UCL

Doctoral Thesis

Computer Network Optimisation with

Artificial Intelligence and Optics

Author:

Christopher W. F.

Parsonson

Supervisor:

Georgios Zervas

A thesis submitted for the degree of

Doctor of Philosophy

Optical Networks Group

Electronic and Electrical Engineering Department

2023

https://www.ucl.ac.uk/
http://www.johnsmith.com
http://www.johnsmith.com
http://www.jamessmith.com
https://www.ucl.ac.uk/electronic-electrical-engineering/research/optical-networks
http://department.university.com

ii

“Science is the belief in the ignorance of experts.”

Richard Feynman

iii

Abstract

Christopher W. F. Parsonson

Computer Network Optimisation with Artificial Intelligence and Optics

The last decade has seen a proliferation in data-intensive compute applications

such as artificial intelligence (AI), genome sequencing, and the internet-of-things.

The ever-growing throughput demand of these big-data jobs has coincided with

a slow down in the development of powerful computer chips. Consequently, there

has been a shift away from local computation with general-purpose CPUs towards

remote pooling of specialised high-bandwidth processors in cloud data centres

(DCs) and high-performance compute (HPC) clusters. Such computation relies

on a computer network to facilitate data querying and parallel processing. The

traditional Moore’s Law approach of evaluating compute power and cost purely

in terms of individual end points is therefore no longer appropriate. Instead,

compute must now be thought of as a system of interconnected resources which

can be orchestrated to perform a task.

However, there has been a lack of development in next-generation computer

networks, leading to the performance bottleneck of these systems moving away

from the end point processors themselves and into the network connecting

them. Optical networking is a technology which can offer orders-of-magnitude

improvement in computer network performance. For optical networks to be

widely used in DCs and HPCs, several obstacles related to physical optical device

characteristics and resource management must be overcome. In this thesis, we

develop and evaluate novel AI approaches for addressing these challenges.

iv

The first part of the thesis looks at optimising the physical plane’s devices

in an optical computer network. Concretely, three gradient-free AI signal

control approaches (ant colony optimisation, a genetic algorithm, and particle

swarm optimisation) are proposed to enable high-bandwidth, low-power optical

switching technologies to operate on the sub-nanosecond timescales required to

realise an optical circuit switched data centre network.

The second part of the thesis considers the problem of optimising the orches-

tration plane’s resource management methods used to control optical computer

networks. A novel algorithm, retro branching, is proposed to improve the solve

time performance of the canonical branch-and-bound exact solver using a graph

neural network (GNN) trained with reinforcement learning (RL). State-of-the-art

RL-for-branching results are achieved, opening the possibility for branch-and-

bound to be applied to large NP-hard discrete optimisation problems such as

those found in computer network resource management. We also propose another

algorithm, PAC-ML (partitioning for asynchronous computing with machine

learning), which trains a GNN with RL to automatically decide how much to

distribute deep learning jobs in an optical HPC architecture in order to meet

user-defined run time requirements, minimise the blocking rate, and maximise

system throughput under dynamic scenarios; the first of its kind to consider

such a problem setting.

So far we have have considered optimising the devices in the physical plane

and the resource managers in the orchestration plane of the computer network.

These areas have both received research attention in prior works. However, what

has not received much consideration is the underlying test bed in which physical

and orchestration plane research and optimisation is typically conducted. Real

DC and HPC environments are generally not available for research due to their

proprietary nature and expensive cost of deployment. Consequently, researchers

rely on simulated computer networks during novel system development. The

fidelity, reproducibility, and flexibility of these simulations is therefore at least as

v

important as the development and optimisation of the physical and orchestration

systems for which they are used. Poor simulations will lead to the misguided

development of network systems which do not perform as expected when deployed

in real production environments. With this motivation, the third part of this

thesis considers how to design and optimise the simulator used for computer

network system research and development. A novel open source traffic generation

framework and library, TrafPy, is presented, as well as a subsequent update

to the generation algorithm to make it scalable to computer networks with

thousands of nodes.

vii

Acknowledgements

I would like to thank my supervisor, Georgios Zervas, for taking me on as as a

Ph.D. student in his group. Georgios gave me the space to explore a variety of

topics across a broad range of research areas and provided invaluable guidance

both in relation to the Ph.D. and the additional extra-curricula experiences

I put myself forward for. I am also thankful to the wider Optical Networks

Group, headed by Polina Bayvel, for providing a light-hearted but focused and

academically rigorous environment in which I could develop as a researcher. In

addition, I am grateful to Lee Heagney, the Department’s IT & Systems Manager,

for providing critical technical help throughout my Ph.D., even outside of office

hours. I also thank EPSRC and the Cambridge-UCL Integrated Photonic and

Electronic Systems centre for doctoral training for funding both my M.Res. and

Ph.D. studies. Moreover, I thank the ConceptionX team for giving me the chance

to learn more about how to convert blue sky Ph.D. research into practical and

useful solutions, as well as for all of the amazing people and companies which the

programme connected me with. Furthermore, I’d like to thank Thomas Barrett

and Alexandre Laterre for giving me the opportunity to undertake an internship

at InstaDeep, for supervising my project, and for patiently teaching me an

enormous amount about how to methodically and persistently conduct novel

machine learning research. On that note, I also thank everyone at InstaDeep

for being so welcoming and for enabling me to experience how an exceptional

research and engineering team operates in industry. I am also grateful to The

Alan Turing Institute for admitting me as an Enrichment Student for a six-

month placement, during which I met many fantastic people from a variety of

viii

backgrounds and research topics and with whom I had numerous interesting

conversations and fun experiences.

I would also like to thank all of the researchers, commentators, and authors

whose work I cite throughout this thesis for being the source of many of my

ideas and projects. I am especially grateful to Hongzi Mao, David Silver, Jure

Leskovec, and Jakob Foerster, whose research I found particularly inspiring

and who had a significant influence on my work. I also thank Mark Oxborrow

and Julian Jones whose lectures sparked my interest in academic research, as

well as my undergraduate tutor Fionn Dunne who engaged with this interest

and guided me through my studies. I am also grateful to my early teachers at

Barnardiston, particularly Paul Whittles, Caroline Blake, and Keith Boulter,

whose never-ending patience, encouragement, and generosity was most helpful.

Finally, I would like to thank my friends and family for supporting me during

my academic studies, especially Yasmin who chose to put up with me all these

years. I am particularly thankful to my parents, Richard and Sharon Parsonson,

for having provided me with all of the opportunities I could hope for. I am also

enormously grateful to my grandparents, Stuart and Pamela Parsonson, whose

infectious passion for knowledge and maths in part motivated my decision to

pursue academic research, and whose many hours of teaching in the preceding

years enabled me to do so.

ix

Contents

Abstract iii

Acknowledgements vii

1 Introduction 1

1.1 The Information Revolution & Computer Networks 1

1.2 Artificial Intelligence for Optimisation 5

1.3 Structure of & Publications from this Thesis 8

1.3.1 Background . 8

1.3.2 Part I: Optimising the Physical Plane 9

1.3.3 Part II: Optimising the Orchestration Plane 10

1.3.4 Part III: Optimising the Simulator 11

2 Background 13

2.1 Computer Networks . 13

2.2 Packet vs. Circuit Switching . 14

2.3 Electronic vs. Optical Networking 16

2.4 Computational Complexity . 19

2.5 Discrete Optimisation . 22

2.6 Solving NP-Hard Problems . 24

2.7 Artificial Intelligence . 25

2.8 Machine Learning . 27

2.9 Function Approximation with Neural Networks 28

2.10 Graph Neural Networks . 31

x

2.11 Reinforcement Learning . 33

2.12 Deep Q-Learning . 38

I Optimising the Physical Plane 45

3 SOA Control for Sub-Nanosecond Optical Switching 47

3.1 Introduction . 49

3.2 Background . 50

3.2.1 Semiconductor Optical Amplifiers 50

3.2.2 Evolutionary & Swarm Algorithms 55

3.2.3 Genetic Algorithms . 57

3.2.4 Ant Colony Optimisation 60

3.2.5 Particle Swarm Optimisation 62

3.3 Related Work . 65

3.4 Method . 67

3.5 Simulation Setup . 70

3.6 Laboratory Setup . 77

3.7 Results & Discussion . 79

3.7.1 Hyperparameter Tuning & Generality Testing in Simulation 79

3.7.2 Optimising an SOA in the Laboratory 88

3.8 Conclusions, Limitations, & Further Work 93

II Optimising the Orchestration Plane 97

4 Solving NP-Hard Discrete Optimisation Problems 99

4.1 Introduction . 102

4.2 Background . 105

4.2.1 Mixed Integer Linear Programming 105

4.2.2 Branch-and-Bound . 105

4.3 Related Work . 107

xi

4.4 Retro Branching Methodology 109

4.5 Experimental Setup . 112

4.6 Results & Discussion . 113

4.6.1 Performance of Retro Branching 113

4.6.2 Analysis of Retro Branching 115

4.7 Conclusions, Limitations, & Further Work 117

5 Partitioning Distributed Compute Jobs 119

5.1 Introduction . 122

5.2 Background . 125

5.2.1 Parallelisation . 125

5.2.2 RAMP . 129

5.3 Related Work . 130

5.4 User-Defined Blocking Rate . 133

5.5 PAC-ML Partitioning Methodology 136

5.5.1 Markov Decision Process Formulation 136

5.5.2 PAC-ML Learning Setup 140

5.6 Experimental Setup . 140

5.7 Results & Discussion . 144

5.7.1 Performance of the PAC-ML Partitioner 144

5.7.2 Analysis of the PAC-ML Partitioner 145

5.8 Conclusions, Limitations, & Further Work 147

III Optimising the Simulator 149

6 A Framework for Generating Custom and Reproducible Network

Traffic 151

6.1 Introduction . 154

6.2 Background & Related Work . 157

6.3 Method . 160

xii

6.3.1 Design Objectives . 160

6.3.2 TrafPy Overview . 161

6.3.3 Distribution Accuracy and Reproducibility 163

6.3.4 Node Distributions . 164

6.3.5 Traffic Generation Methodology 166

6.3.6 Stipulating Traffic Generation Guidelines 170

6.4 Experimental Setup . 171

6.4.1 Network . 171

6.4.2 Traffic Traces . 172

6.4.3 Simulation Details . 174

6.5 Results & Discussion . 175

6.6 Conclusions, Limitations, & Further Work 177

7 Accelerating Traffic Matrix Generation at Scale 181

7.1 Introduction . 183

7.2 Custom Traffic Matrix Generation 184

7.3 Experimental Setup . 187

7.4 Results & Discussion . 188

7.5 Conclusions, Limitations, & Further Work 189

8 Afterword: Conclusions, Limitations, & Further Work 191

A Solving NP-Hard Discrete Optimisation Problems 193

A.1 RL Training . 193

A.1.1 Training Parameters . 193

A.1.2 Training Time and Convergence 193

A.2 Neural Network . 195

A.2.1 Architecture . 195

A.2.2 Inference & Solving Times 196

A.3 Data Set Size Analysis . 197

xiii

A.4 SCIP Parameters . 198

A.5 Observation Features . 198

A.6 FMSTS Implementation . 198

A.7 Pseudocode . 200

A.7.1 Retrospective Trajectory Construction 200

A.7.2 Maximum Leaf LP Gain 202

A.8 Cost of Strong Branching Labels 202

B A Framework for Generating Custom and Reproducible Syn-

thetic Traffic 205

B.1 Table of Notation . 205

B.2 TrafPy Distribution Parameters 205

B.3 TrafPy API Examples . 209

B.3.1 Custom Distribution Shaping 209

B.3.2 Benchmark Importing & Flow Generation 213

B.4 Pseudocode . 215

B.4.1 Scheduling . 215

B.4.2 TrafPy Benchmark Protocol 215

B.5 Traffic Skew Convergence . 217

B.6 Scheduler Performance Summary 221

B.6.1 Completion Time Performance Plots 221

B.6.2 Throughput and Flows Accepted Performance Plots . . . 222

B.6.3 Performance Metric Tables 223

DCN Benchmarks . 223

Skewed Nodes Distribution Benchmark 229

Rack Distribution Benchmark 232

B.6.4 Winner Tables . 235

B.7 A Note on the Flow- vs. Job-Centric Traffic Paradigms 238

xiv

C Partitioning Distributed Compute Jobs 241

C.1 Metric Definitions . 241

C.2 Experimental Hardware . 241

C.3 Additional Simulation Details 241

C.3.1 Code Structure . 241

C.3.2 Job Allocation Procedure 243

C.3.3 Job Allocation Methods 243

C.3.4 First-Fit Operation Placement in RAMP 244

C.3.5 Evaluating the job completion time 245

C.3.6 Possible Causes of a Job Being Blocked 246

C.4 Job Computation Graph Data Sets 246

C.5 Neural Network Architecture . 248

C.6 Reinforcement Learning Algorithm 251

C.6.1 Final Learning Curves 254

C.7 Additional Experimental Results 254

xv

List of Figures

1.1 Visualisation of the three current trends in computing. (a) The

number of hyper-scale cloud data centres world-wide almost dou-

bled in a five year period [Cisco, 2016]. (b) By 2025, the majority

of processors in data centres will no longer be general-purpose

CPUs, but rather specialised high-bandwidth processors such as

GPUs and FPGAs [McKinsey, 2019]. (c) The number of dis-

tributed A100 GPUs needed to train the state-of-the-art natural

language processing models released between 2018 − 2022 has

grown by over 1000× [Kharya and Alvi, 2021]. 2

1.2 (a) From 2010 to 2018, the average compute performance improve-

ment of the nodes in the top ten high-performance computing

(HPC) computer network systems far outstripped the improve-

ment in their communication bandwidth, leading to 92% fewer

bytes being communicated per floating point operation (FLOP)

[Bergman, 2018]. (b) How consequently the network overhead

- the fraction of the job completion time spent communicating

information between workers when no computation is taking place

- of distributed deep learning jobs increases with the number of

machines used in Meta’s GPU cluster, shifting the performance

bottleneck into the network [Wang et al., 2022]. 4

xvi

2.1 Visualisation of a computer network divided into the physical

plane made up of physical devices such as switches, end-point

processors, and communication links, and the orchestration plane

made up of resource management schemes such as job partitioning,

scheduling, and placement algorithms. 14

2.2 A visual comparison of the difference between packet and vanilla

circuit switching. (a) In vanilla circuit switching, once a physical

transmission line is established between source and destination,

the line cannot be interrupted or facilitate the transfer of any

other data. (b) In packet switching, the data of a single message is

split up into multiple ’packets’ labelled with the message’s source

and destination. This allows each packet to take a number of

routes along different transmission lines and to be time-interleaved

with other messages’ packets in order to get to its destination. . 15

2.3 Meta’s cloud data centre (a) packet size distribution and (b)

throughput as a function of latency assuming 100 gigabits per

second (Gbps) links [Clark et al., 2018]. 17

2.4 (a) Visualisation of how an electronic network with 64-port switches

is typically scaled; layers are added to the switch hierarchy in

order to accommodate more servers, leading to a larger oversub-

scription ratio. (b) Assuming 400-Gbps per port, how the total

power consumed by the electronic network per unit of information

communicated increases significantly as the number of switch

layers (shown in brackets on the x-axis) is increased [Ballani et al.,

2020]. 18

2.5 Visualisation of how common time complexities scale with problem

instance size. 20

2.6 Euler diagram for the P, NP, NP-complete, and NP-hard com-

plexity classes, assuming P ̸= NP 21

xvii

2.7 a) Diagram showing the whole solution space of two decision

variables, x1 and x2, for a linear convex optimisation problem. In

the continuous case, the equations bounding the feasible solution

space are known and the optimal solution is guaranteed to reside

on one of the boundary’s corners. In the discrete case where the

two variables must be integers, the equations of the feasibility

bounds are unknown and the optimal solution may not necessarily

be at corner points. (b) Illustration of how non-convex continuous

optimisation tasks can, although by no means trivially, be solved

with the use of gradient descent.. 23

2.8 Main AI branches and sub-categories, with the methods explored

and used in this thesis highlighted. This diagram is far from

comprehensive, but gives a rough overview of where the methods

used in this thesis fit in to the broader AI paradigm. 26

2.9 Visualisation of a typical layer in a fully connected feedforward NN.

Each layer is composed of units, which in turn are composed of a

linear transform on a set of weights and a bias value followed by

a non-linear ‘activation’ function. In the specific example drawn

here, a four-pixel image is flattened into a vector and passed

into a single NN layer with three units (‘dimensions’). Each unit

outputs a single scalar whose value depends on the values of the

units’ weights and biases. Each unit’s output corresponds to the

NN’s confidence that the image belongs to one of three possible

image classes (e.g. dog, cat, or horse). During training, the values

of the weights and biases are optimised until the NN successfully

maps images to the correct corresponding image class. 30

2.10 Visualisation comparing non-Euclidean graph structures, such as

networks and molecules, with Euclidean-structured data, such as

sentences and images. 32

xviii

2.11 The stages performed by each layer in a typical graph neural

network (GNN). Note that if the optional graph-level readout in

stage 4 is performed, it is only done in the final GNN layer. . . . 33

2.12 A reinforcement learning setting, showing the iterative environ-

ment interaction feedback loop used by the agent to learn strate-

gies which maximise the reward signal. 34

3.1 Schematic of an optical amplification device, such as a semiconduc-

tor optical amplifier (SOA). An optical input signal is amplified

in the gain region by the process of stimulated emission, thereby

outputting an optical signal with higher intensity. This is an

‘all-optical’ process. 51

3.2 Diagram of the stimulated emission process 51

3.3 Schematic of how SOAs can be used to create an all-optical switch.

Input light signals are split up and passed along all the possible

routing paths. The SOA along the routing path corresponding to

the desired output fibre that the input signal should be routed

to is switched on, and all other SOAs are switched off. The SOA

that is switched on re-amplifies the split signal by stimulated

emission and allows it through to the output port. The SOAs

that are switched off absorb the signal by stimulated absorption.

All the fibres and SOAs are held in a polymer casing. 53

3.4 Schematic of the process of stimulated absorption. An incident

photon passes its energy on to an electron in the valence band,

exciting an electron to the conduction band. 53

3.5 Visualisation of a typical SOA response when amplifying an optical

signal. The SOA’s optical output will overshoot the target settling

point, and then ring for some period of time before settling within

±5% of the steady state. 55

xix

3.6 Schematic of the process of spontaneous emission. An electron in

an excited state spontaneously recombines with a hole, emitting

a photon equal to the energy across which the electron relaxed. . 55

3.7 Visualisation of how PSO was applied to SOA optimisation. . . 71

3.8 Equivalent circuit diagrams of an SOA’s (a) microwave injection

current parasitics and (b) intrinsic parasitics, diffusion character-

istics and gain region. 73

3.9 Semi-logarithmic I-V plot for the SOA used to calculate η and Is. 73

3.10 Equivalent circuit diagram of the SOA gain region (a) below IT R

and (b) above IT R. 73

3.11 Diagram of the semiconductor optical amplifier (SOA) experimen-

tal setup used. 78

3.12 Frequency responses of the theoretical transfer function (TF) and

the experimental SOA (Exp). 79

xx

3.13 Simulated SOA optical response to (a) particle swarm optimisa-

tion (PSO), (b) ant colony optimisation (ACO), and (c) genetic

algorithm (GA) driving signals relative to a standard step input.

For reference, the target SPs used have also been plotted. Learn-

ing curves showing how both the cost spread and the optimum

solution improved as the (d) PSO, (e) ACO, and (f) GA algo-

rithms were tuned, showing 10 learning curves for each set of

hyperparameters. The curves for the optimum hyperparameters

have been plotted in green. For PSO in (d), some additional

information has been plotted: i) No dynamic PSO, pre-impulse

step injection current (PISIC) shell, or embedded step (red), ii)

no PISIC shell or embedded step (blue), iii) no embedded step

(orange), and iv) the final PSO algorithm (green, also plotted on

separate graph (inserted)). For GA, the i) default DEAP library

constants (red) and ii) optimised (green) hyperparameter learning

curves have been plotted. For ACO, the blue curve is for a run

with a larger pheromone exponent (0.5) value than the optimum,

and the red is for a larger dynamic range on the signal search

space (±50%). 85

3.14 Simulated SOA optical responses of 10 different SOAs (each with

a different transfer function) to (a) step, (c) PSO, (e) ACO, and

(g) GA, and the corresponding driving signals for (b) PSO, (d)

ACO, and (f) GA. All artificial intelligence (AI) optimisations

were done with the same hyperparameters and a common target SP. 87

3.15 Experimental SOA responses to the step, PISIC, multi-impulse

step injection current (MISIC)1, raised cosine and proportional-

integral-derivative (PID) driving signals. 88

3.16 Experimental results showing the optimised SOA optical outputs

for (a) PSO, (b) ACO, and (c) GA. 90

xxi

3.17 Experimental results showing the optimised SOA electrical driving

signal inputs for (a) PSO, (b) ACO, and (c) GA. 90

3.18 Scatter plot comparing the experimental rise times, settling times

and overshoots of all the driving signals tested. The outlined

target region highlights the performance required for truly sub-

nanosecond optical switching. 91

4.1 The proposed retro branching approach used during training.

Each node is labelled with: Top: The unique ID assigned when

it was added to the tree, and (where applicable); bottom: The

step number (preceded by a ‘#’) at which it was visited by the

brancher in the original Markov decision process (MDP). The

MILP is first solved with the brancher and the branch-and-bound

(B&B) tree stored as usual (forming the ‘original episode’). Then,

ignoring any nodes never visited by the agent, the nodes are added

to trajectories using some ‘construction heuristic’ (see Sections

4.4 and 4.6) until each eligible node has been added to one, and

only one, trajectory. Crucially, the order of the sequential states

within a given trajectory may differ from the state visitation order

of the original episode, but all states within the trajectory will

be within the same sub-tree. These trajectories are then used for

training. 102

xxii

4.2 Typical 4-stage procedure iteratively repeated by B&B to solve an

MILP. Each node represents an MILP derived from the original

MILP being solved, and each edge represents the constraint added

to derive a new child node (sub-MILP) from a given parent. Each

node is labelled with the decision variable values of the solved LP

relaxation on the right hand side, the corresponding dual bound

in the centre, and the established primal bound beneath. Each

edge is labelled with the introduced constraint to generate the

child node. Green dotted outlines are used to indicate which

node and variable were selected in stages (1) and (2) to lead to

stages (3) and (4). The global primal (P) and dual (D) bounds

are increasingly constrained by repeating stages 1-4 until P and

D are equal, at which point a provably optimal solution will

have been found. Note that for clarity we only show the detailed

information needed at each stage, but that this does not indicate

any change to the state of the tree. 108

4.3 Performances of the branching agents on the 500 × 1000 set

covering instances. (a) Validation curves for the reinforcement

learning (RL) agents evaluated in the same non-depth-first search

(DFS) setting. (b) CDF of the number of B&B steps taken by

the RL agents for each instance seen during training. (c) The

best validation performances of each branching agent. (d) The

instance-level validation performance of the retro branching agent

relative to the imitation learning (IL) agent, with RL matching

or beating IL on 42% of test instances. 112

xxiii

4.4 500× 1000 set covering performances. (a) Validation curves for

four retro branching agents each trained with a different trajectory

construction heuristic: Maximum LP gain (MLPG); random (R);

visitation order (VO); and deepest (D). (b) The performances

of the best retro branching agent deployed in three different

node selection environments (default SCIP, DFS, and breadth-

first search (BFS)) normalised relative to the performances of

pseudocost branching (PB) (measured by number of tree nodes). 116

5.1 Diagram showing a deep neural network (DNN) job DAG being

partitioned. Top: A forward pass DAG where each node has an

associated partition degree (how many times it will be divided

when partitioned). Bottom: A partitioned DAG with forward and

backward passes handled consecutively. Green edges in the graph

represent data flow (i.e. output to input) between consecutive

operations in the forward pass. Orange edges represent gradient

exchanges processed in the backward pass (backpropagation).

Blue edges represent full connectivity collective operations to

synchronise weight updates across partitioned components of an

operation. Note that, for brevity, the top unpartitioned DAG

only shows the forward pass (since, before partitioning, the graph

structure is identical to the backward pass), whereas the bottom

partitioned DAG shows both the forward and backwards passes

(since, after partitioning, the graph structures are different). . . 126

xxiv

5.2 The mean network overhead of the 6 distributed deep learning jobs

reported by [Wang et al., 2022] in Meta’s GPU cluster compared

to that of RAMP as reported by Ottino et al. [2022] on the 5 jobs

considered in our work. Note that this is an approximate com-

parison, and that the important takeaway is that RAMP retains

low network overheads as jobs become increasingly distributed. . 129

5.3 (a-b) Demonstration of how more partitioning can lead to a lower

job completion time (JCT) than no partitioning (i.e. sequentially

running the job on a single device), but this may be at the

cost of a higher blocking rate since more cluster resources are

occupied when subsequent jobs arrive. (c-d) Demonstration of

how optimising for the cluster throughput leads to an unfair bias

towards more partitioning, because more parallelism creates more

work for the cluster and therefore artificially increases cluster

throughput even though, from the perspective of the user, the

original offered throughput may be lower. 134

xxv

5.4 An overview of our PAC-ML approach transitioning from step

t → t + 1. At each time step t when there is a new job to

be placed on the cluster, we: (i) Use a GNN to generate an

embedded representation of the node and edge features in the

job’s computation graph, and a standard feedforward DNN to do

the same for the global job and cluster features; (ii) concatenate

the outputs of (i) and use another feedforward DNN to generate

a logit for each action ut ∈ U t; (iii) pass the chosen action ut

to the environment and partition the job accordingly; (iv) apply

any internal environment allocation heuristics (operation and

dependency placement and scheduling, etc.) to attempt to host

the job on the cluster; (v) if accepted onto the cluster, perform a

lookahead to evaluate the job’s completion time; (vi) fast-forward

the environment’s wall clock time twc to when the next job arrives,

and return the corresponding reward rt+1 and updated state st+1. 137

5.5 The four β distributions used in our experiments in order to

measure the capability of each partitioner to cater to different

user-defined maximum acceptable completion time requirement

settings. In each βX experiment setting, each new job generated

was assigned a β value sampled from βX in order to get the

maximum acceptable job completion time, β · JCTseq (see Section

5.4). 141

5.6 Validation performances (higher is better) of each partitioning

agent evaluated across three seeds normalised with respect to the

best-performing partitioner in each BX environment. 144

xxvi

5.7 Mean per-job blocking rates of the five job types considered for

each partitioning agent under each βX setting plotted against the

number of operations (ops.), number of dependencies (deps.), the

total job information size, and the sequential run time of the job

were it ran on a single device (JCTseq). 146

6.1 TrafPy API user experience for using custom or benchmark TrafPy

parameters D′ to make flow traffic trace D with maximum Jensen-

Shannon distance threshold
√

JSD and minimum flow arrival

duration tt,min for m loads {ρ1, ..., ρm}. The generated trace

D can then be used to benchmark a DCN system test object

(e.g. a scheduler) in a test bed (a simulation, emulation, or

experimentation environment) to measure the key performance

indicators PKP I . The user need only use TrafPy to generate the

traffic; all other tasks can be done externally to TrafPy in any

programming language. 161

6.2 How the Jensen-Shannon distances between the original (red)

and sampled (cyan) distributions and the sampled distributions’

characteristic parameters (target from original distribution plotted

as red dotted line) vary with the number of demands for (a) flow

size and (b) inter-arrival time. Note that the first sub-plots of

(a) and (b) are plotting the probability distribution of the flow

characteristic in question, whereas the other sub-plots are plotting

various metrics (
√

JSD, minimum value, maximum value, etc.)

of the generated traffic as a function of the number of demands

(flows) generated. 165

xxvii

6.3 Visualisation of the packed flow nodes converging on uniform

distributions as the total network load approaches 1.0 regardless

of how skewed the original target node distribution is. The plotted

distributions are for overall network loads (a) 0.1, (b) 0.3, (c)

0.5, (d) 0.7, and (e) 0.9, and (f) the final demonstrably uniform

endpoint loads on each server at 0.9 overall load. 169

6.4 2-layer spine-leaf topology used with 64 end point (server) nodes,

10 Gbps server-to-ToR links, and 80 Gbps ToR-to-core links (1:1

subscription ratio, 640 Gbps total network capacity). 171

6.5 TrafPy distribution plots for the DCN benchmark containing

the (a) University [Benson et al., 2010a], (b) Private Enterprise

[Benson et al., 2011], (c) Commercial Cloud [Kandula et al., 2009],

and (d) Social Media Cloud [Roy et al., 2015] data sets. Each

plot contains (i) the end point node load distribution matrix

and (ii) the flow size and inter-arrival time histogram and CDF

distributions. 173

6.6 TrafPy node distribution plots for the skewed nodes sensitivity

benchmark with (a) uniform, (b) 5%, (c) 10%, (d) 20%, and (e)

40% of nodes accounting for 55% of the overall traffic load, and

for the rack sensitivity benchmark with (f) uniform, (g) 20%, (h)

40%, (i) 60%, and (j) 80% traffic being intra-rack and the rest

inter-rack. 174

xxviii

7.1 i) (a) The time for stages one (shaping and sampling) and two

(packing) when generating flows with the original packing algo-

rithm. ii) The packing (b) time and (c) Jensen-Shannon distance

between the target and the generated node distributions for the

original and vectorised packing algorithms when generating traffic

for networks with different numbers of nodes. (a) shows that

the original packing algorithm is the major traffic generation

bottleneck of Chapter 6. (b) shows that as the number of network

nodes is increased, the vectorised packer’s speed-up factor over

the original algorithm increases. (c) shows that both algorithms

achieve the exact same resultant node distribution. Note that the

original algorithm’s time results for |N | = 1024 are extrapolations

since it would have taken ≈ 200 days to run the packer. 185

7.2 Custom traffic matrix distributions generated with 8, 16, 32, 64,

128, 256, 512, and 1024 nodes, where the colour of each source-

destination pair corresponds to the fraction of the overall network

load it requests. 188

A.1 Validation curve for the retro branching agent on the 500× 1000

set covering test instances. Although most performance gains

were made in the first ≈ 200k epochs, the agent did not stop

improving, with the last recorded checkpoint improvement at

485k epochs. 195

A.2 Neural network architecture used to parameterise the Q-value

function for our ML agents, taking in a bipartite graph represen-

tation of the MILP and outputting the predicted Q-values for

each variable in the MILP. 196

xxix

A.3 How the explore-then-strong-branch data labelling phase of the

strong branching imitation agent scales with set covering instance

size (rows × columns) using an Intel Xeon ES-2660 CPU and

assuming 120 000 samples are needed for each set. 203

B.1 Output of example code for interactively and visually shaping a

‘named’ distribution in a Jupyter Notebook. 209

B.2 Output for step 1 of example code for interactively and visually

shaping a ‘multimodal’ distribution in a Jupyter Notebook, where

you must first shape each mode individually. 211

B.3 Output for step 2 of example code for interactively and visually

shaping a ‘multimodal’ distribution in a Jupyter Notebook, where

you must combine your individually shaped modes into a single

distribution. 212

B.4 Output of example code for generating a benchmark. 214

B.5 Skew factor heat maps for 0-100% of network nodes requesting

0-100% of the overall network traffic across loads 0.1-0.9 plotted

at 0.1% resolution. For clarity, combinations with skew factors

≥ 2 have been assigned the same colour. 218

B.6 Labelled skew factor tables for 0-100% of network nodes requesting

0-100% of the overall network traffic across loads 0.1-0.9 plotted

at 5% resolution. 219

B.7 Skew factor as a function of load for 5%, 10%, 20%, and 40% of

the network nodes requesting 55% of the overall network traffic. 220

B.8 The schedulers’ (a) mean, (b) 99th percentile, and (c) maximum

flow completion time metrics for the DCN benchmark dis-

tributions across loads 0.1-0.9, and (d) a scatter plot of flow

completion time as a function of flow size for the same distribution

at load 0.9. 221

xxx

B.9 The schedulers’ (a) mean, (b) 99th percentile, and (c) maximum

flow completion time metrics for the uniform node distribution

across loads 0.1-0.9, and (d) a scatter plot of flow completion time

as a function of flow size for the same distribution at load 0.9. . 222

B.10 Sensitivity of the schedulers’ (a) mean, (b) 99th percentile, and

(c) maximum flow completion times to the changing intra-rack

distribution for loads 0.1, 0.5, and 0.9. The complementary

CDF plots include data for all 4 schedulers, whereas the scatter

plots contain the top 2 performing schedulers (SRPT and FS) for

clarity. 222

B.11 Sensitivity of the schedulers’ (a) mean, (b) 99th percentile, and (c)

maximum flow completion times to the changing skewed nodes

distribution for loads 0.1, 0.5, and 0.9. The complementary

CDF plots include data for all 4 schedulers, whereas the scatter

plots contain the top 2 performing schedulers (SRPT and FS) for

clarity. 223

B.12 The schedulers’ (a) absolute throughput (information units trans-

ported per unit time), (b) relative throughput (fraction of arrived

information successfully transported), (c) fraction of arrived flows

accepted, and (d) fraction of arrived information accepted metrics

for the DCN benchmark distributions across loads 0.1-0.9. . 225

B.13 The schedulers’ (a) absolute throughput (information units trans-

ported per unit time), (b) relative throughput (fraction of arrived

information successfully transported), (c) fraction of arrived flows

accepted, and (d) fraction of arrived information accepted metrics

for the uniform node distribution across loads 0.1-0.9. 226

xxxi

B.14 Sensitivity of the schedulers’ (a) relative throughput, (b) fraction

of arrived flows accepted, and (c) fraction of arrived information

accepted metrics to the changing intra-rack distribution for

loads 0.1, 0.5, and 0.9. The complementary CDF plots include

data for all 4 schedulers, whereas the scatter plots contain the

top 3 performing schedulers (SRPT, FS, and FF) for clarity. . . 226

B.15 Sensitivity of the schedulers’ (a) relative throughput, (b) fraction

of arrived flows accepted, and (c) fraction of arrived information

accepted metrics to the changing skewed nodes distribution

for loads 0.1, 0.5, and 0.9. The complementary CDF plots include

data for all 4 schedulers, whereas the scatter plots contain the

top 3 performing schedulers (SRPT, FS, and FF) for clarity. . . 227

C.1 Visualisation of the characteristics of the deep learning compu-

tation graphs used for our experiments before partitioning. The

bottom left sub-figure contains the model colour code scheme

for all other sub-figures. The statistics shown are for the opera-

tions and dependencies which need to be executed and satisfied

to conduct one training iteration. Therefore, to carry out Niter

training steps, the computation graph would need to be executed

Niter times. Computation time units are reported in seconds, and

memory units in bytes. 248

C.2 Deep learning computation graphs used for our experiments before

partitioning. Each computation graph represents the operations

and dependencies which need to be executed and satisfied to

conduct one forward and one backward pass through the neu-

ral network. Therefore, to carry out Niter training steps, the

computation graph would need to be executed Niter times. . . . 249

xxxii

C.3 Schematic of the DNN architecture with |L| GNN layers used to

parameterise the policy of PAC-ML. The GNN is similar to that

of GraphSAGE with mean pooling [Hamilton et al., 2018]. Each

GNN layer l ∈ L contains a node, edge, and reduce DNN module

and ultimately learns to create an embedded representation for

each node in a given job DAG. These per-node embeddings are

then passed, along with any global job, cluster, and action features,

to a readout module. The readout module ultimately generates

scores for each possible action, which enables an action to be

selected following a given exploration-exploitation policy being

followed. For clarity, this figure only shows the GNN embedding-

generation process for node 1. See accompanying text for a

detailed explanation of this architecture and the accompanying

figure. 250

C.4 Validation performance of the Ape-X DQN hyperparameter sweep.

Each agent was trained for 100 learner steps, and at each learner

step a validation was performed across 3 seeds - the mean metrics

with their min-max interval bands are plotted for each hyperpa-

rameter set. 254

C.5 Validation curves of the PAC-ML agent trained in four different

β distribution environments. At each learner step (update to

the GNN), the agent was evaluated across 3 seeds, with the

mean blocking rate, offered throughput, JCT, and JCT speed-up

(relative to the jobs’ sequential run time JCTseq) performance

metrics reported as well as their min-max confidence intervals. For

reference, the performances of the baseline heuristic partitioners

are also plotted. 255

xxxiii

C.6 Validation performances of each partitioning agent evaluated

across three seeds, with the mean blocking rate, offered through-

put, JCT, and JCT speed-up (relative to the jobs’ sequential run

time JCTseq) performance metrics reported. 255

xxxv

List of Tables

2.1 Summary of the typical characteristics of approximation algo-

rithms, heuristics, and exact algorithms when solving combinato-

rial optimisation problems. 25

3.1 Comparison of SOA Optimisation Techniques. (Best in bold). . 68

3.2 Internal parameters used to model the SOA as an equivalent circuit. 75

3.3 External parameters used to model the SOA’s chip and packaging

parasitics as an equivalent circuit. 75

3.4 Constants used in the equivalent circuit transfer function. 76

3.5 Performance summary for the techniques applied to the 10 dif-

ferent simulated SOAs, given in the format min | max | mean |

standard deviation (best in bold). 87

3.6 Factor(s) used on the EC transfer function coefficients to simulate

different SOAs (factor = 1 unless stated otherwise). 88

4.1 Test-time comparison of the best agents on the evaluation in-

stances of the four NP-hard small combinatorial optimisation

(CO) problems considered. 115

5.1 Blocking rate performance of the partitioning agents on the four

β distributions (best in bold). Results are given as the mean

across 3 seeds, and error bars denote the corresponding min-max

confidence intervals. 143

xxxvi

A.1 Training parameters used for training the RL agent. All parame-

ters were kept the same across CO instances except for the large

500× 1000 set covering instances, which we used a larger batch

size and actor steps per learner update (specified in brackets). . 194

A.2 Inferred mean solving times of the branching agents on the large

500× 1000 set covering instances under the assumption that they

were ran on the same hardware as Gasse et al. 2019. 197

A.3 Summary of the SCIP 2022 hyperparameters used for all non-DFS

branching agents (any parameters not specified were the default

SCIP 2022 values). 198

A.4 Descriptions of the 20 variable features we included in our obser-

vation in addition to the 19 features used by Gasse et al. 2019. . 199

A.5 Summary of the SCIP 2022 hyperparameters used the DFS fitting

for minimising the sub-tree size (FMSTS) branching agent of

Etheve et al. 2020 (any parameters not specified were the default

SCIP 2022 values). 200

B.2 Benchmark categories with their real traffic characteristics re-

ported in the literature (where appropriate) and the correspond-

ing TrafPy parameters D′ needed to reproduce the distributions.

DCN<i,ii,iii,iv> → <university, private_enterprise, commercial_cloud, social_media_-

cloud> Skewed<i,ii,iii,iv,v> → skewed_nodes_sensitivity_<uniform, 0.05, 0.1, 0.2, 0.4>

Rack<i,ii,iii,iv,v> → rack_sensitivity_<uniform, 0.2, 0.4, 0.6, 0.8> a Real traffic char-

acteristics reported in the literature. b Corresponding TrafPy parameters D′. c =

net.graph[‘rack_to_ep_dict’] → Network cluster (i.e. rack) configuration. d(u) = int(u

* len(net.graph[‘endpoints’])) → Number of nodes to skew. e(u, v) = [v/d(u) for _ in

range(d(u))] → Fraction of overall traffic load to distribute amongst the skewed nodes. r |

rd | p | ns | np = rack_prob_config | ‘racks_dict’ | ‘prob_inter_rack’ | num_skewed_nodes

| skewed_node_probs . 205

xxxvii

B.1 Table summarising the symbol notation used throughout the paper.208

B.3 Flow size, inter-arrival time, and node load distribution character-

istics for the University (U), Private Enterprise (PE), Commercial

Cloud (CC), and Social Media Cloud (SMC) data sets of the

DCN benchmark after generating the distributions from TrafPy

parameters D′. 208

B.4 Scheduler performance summary with 95% confidence intervals

for the University benchmark. 224

B.5 Scheduler performance summary with 95% confidence intervals

for the Private Enterprise benchmark. 224

B.6 Scheduler performance summary with 95% confidence intervals

for the Commercial Cloud benchmark. 227

B.7 Scheduler performance summary with 95% confidence intervals

for the Social Media Cloud benchmark. 228

B.8 Scheduler performance summary with 95% confidence intervals

for the skewed_nodes_sensitivity_uniform and rack_sen-

sitivity_uniform benchmarks. 229

B.9 Scheduler performance summary with 95% confidence intervals

for the skewed_nodes_sensitivity_0.05 benchmark. 230

B.10 Scheduler performance summary with 95% confidence intervals

for the skewed_nodes_sensitivity_0.1 benchmark. 230

B.11 Scheduler performance summary with 95% confidence intervals

for the skewed_nodes_sensitivity_0.2 benchmark. 231

B.12 Scheduler performance summary with 95% confidence intervals

for the skewed_nodes_sensitivity_0.4 benchmark. 231

B.13 Scheduler performance summary with 95% confidence intervals

for the rack_sensitivity_0.2 benchmark. 232

B.14 Scheduler performance summary with 95% confidence intervals

for the rack_sensitivity_0.4 benchmark. 233

xxxviii

B.15 Scheduler performance summary with 95% confidence intervals

for the rack_sensitivity_0.6 benchmark. 233

B.16 Scheduler performance summary with 95% confidence intervals

for the rack_sensitivity_0.8 benchmark. 234

B.17 The winning schedulers’ performances relative to the losing base-

lines for (from top to bottom) the 0 (uniform), 0.2, 0.4, 0.6, and

0.8 rack sensitivity traces. For brevity, ‘−’ indicates all schedulers’

performances were equal. 235

B.18 The winning schedulers’ performances relative to the losing base-

lines for (from top to bottom) the 0 (uniform), 0.05, 0.1, 0.2, and

0.4 skewed nodes sensitivity traces. For brevity, ‘−’ indicates all

schedulers’ performances were equal. 236

B.19 The winning schedulers’ performances relative to the losing base-

lines for (from top to bottom) the University, Private Enterprise,

Commercial Cloud, and Social Media Cloud DCN traces. For

brevity, ‘−’ indicates all schedulers’ performances were equal. . . 237

C.1 Descriptions of the various metrics referred to throughout the

main chapter. 242

C.2 Summary of the characteristics of the deep learning computa-

tion graphs used for our experiments before partitioning. The

statistics shown are for the operations (‘ops.’) and dependencies

(‘deps.’) which need to be executed and satisfied to conduct one

training iteration. Therefore, to carry out Niter training steps,

the computation graph would need to be executed Niter times.

Computation (‘comp.’) time units are reported in seconds, and

memory (‘mem.’) units in bytes. 247

xxxix

C.3 Hyperparamters used for the PAC-ML ApeX-DQN DNN policy

architecture shown in Fig. C.3. Note that the ‘message passing’

dimensions refer to the dimensions of the concatenated node and

edge modules’ embeddings, so the dimensions of these modules’

hidden and output embeddings will be half the corresponding

‘message passing’ dimension. Due to the RLlib implementation

of Ape-X DQN, we did not apply an action mask, but instead

included the action mask in the global features given to the model

and used the reward signal to train the agent to avoid selecting

invalid actions. 251

C.4 Ape-X DQN training parameter sweep search range, best value

found, and corresponding parameter importance. 253

xli

List of Abbreviations

ACO ant colony optimisation

AI artificial intelligence

BFS breadth-first search

B&B branch-and-bound

CO combinatorial optimisation

CPU central processing unit

DAG directed acyclic graph

DCN data centre network

DFS depth-first search

DNN deep neural network

DQN deep Q-network

FLOP floating point operation

FMSTS fitting for minimising the sub-tree size

FPGA field-programmable gate array

GA genetic algorithm

GCN graph convolutional network

GNN graph neural network

xlii

GPU graphics processing unit

HPC high-performance computing

IL imitation learning

ILP integer linear programming

JCT job completion time

JSD Jensen-Shannon distance

LP linear programme

MDP Markov decision process

MILP mixed integer linear programme

MISIC multi-impulse step injection current

ML machine learning

MPI message passing interface

MSE mean squared error

MT-NLG Megatron-Turing natural language generation

NN neural network

OBS optical burst switching

OCS optical circuit switching

OEO optical-electrical-optical

OPS optical packet switching

PB pseudocost branching

PID proportional-integral-derivative

xliii

PISIC pre-impulse step injection current

POMDP partially observable Markov decision process

PPO proximal policy optimisation

PSO particle swarm optimisation

RL reinforcement learning

SB strong branching

SOA semiconductor optical amplifier

SOTA state-of-the-art

SVM support vector machine

TPU tensor processing unit

xlv

List of Units

B bytes

bn billion

Gbps gigabits per second

m metre

ms millisecond

nm nanometre

ns nanosecond

ps picosecond

Tbps terabits per second

µs microsecond

xlvii

To my family

1

Chapter 1

Introduction

1.1 The Information Revolution & Computer

Networks

The information revolution began with the invention of the transistor in the mid-

20th century [Riordan, 2004]. Unlike the agricultural and industrial revolutions

whose effects took millennia and centuries to be felt across the globe, the

information revolution has transformed all facets of society within a single

generation [Davidson and Rees-Mogg, 1999]. The speed of its proliferation is

testament to its importance to the human condition; information technology is

now used everywhere, from the economy and politics to healthcare and education.

Due to this new-found dependence on information technology, society now

allocates a significant amount of capital and resources towards its advancement.

Consequently, as reflected by Moore’s Law, the 1965 observation that the

cost-per-FLOP of a central processing unit (CPU) halves every 18 months

[Thompson and Spanuth, 2018], we have enjoyed decades of exponentially more

powerful compute at ever-lower costs. This has facilitated a range of ubiquitous

technologies, from the internet and video streaming to personal computers and

smart phones. Twenty years ago when computers were 1000× less powerful,

none of these technologies in their present form would have been possible. It is

difficult to imagine what future innovations humanity might miss out on over

2 Chapter 1. Introduction

the next twenty years were advances in information technology to slow.

And yet, current trends do indeed suggest that things are slowing. From

1985 to 2005, compute performance increased by 52% per annum. Since 2005,

this rate has fallen to 22% [Hennessy and Patterson, 2017]. The fundamental

reason behind this slow down has been the difficulty of manufacturing transistors

on the nanometre (nm) scale, with the cost of building a chip fabrication plant

having increased 13% annually to reach $16 billion (bn) in 2022 [Rotman, 2020].

In order to circumvent this slow down in the cost-per-FLOP reduction of

CPUs, the last decade has seen three trends emerging (visualised in Fig. 1.11).

Figure 1.1: Visualisation of the three current trends in computing. (a) The
number of hyper-scale cloud data centres world-wide almost doubled in a five year
period [Cisco, 2016]. (b) By 2025, the majority of processors in data centres will no
longer be general-purpose CPUs, but rather specialised high-bandwidth processors
such as GPUs and FPGAs [McKinsey, 2019]. (c) The number of distributed A100
GPUs needed to train the state-of-the-art natural language processing models
released between 2018− 2022 has grown by over 1000× [Kharya and Alvi, 2021].

The first is the proliferation of cloud data centres. Rather than everyone

needing to possess their own compute resources, a host provides compute-as-a-

service to multiple users. In doing so, users avoid the need to directly pay for,

implement, and manage the latest hardware themselves in order to use state-of-

the-art compute. Pooling resources in this way can offset the increasing relative

cost of improving compute performance. Consequently, cloud computing has

become abundantly popular. Today, almost everyone, everywhere, everyday uses

the cloud, be it through video streaming and AI assistants or instant messaging
1Fig. 1.1c assumes it takes 4480 A100 GPUs to train the 530 bn parameter Megatron-Turing

natural language generation model [Wiggers, 2021], and that there is a linear relationship
between the number of model parameters and the number of A100 GPUs needed to train it.

1.1. The Information Revolution & Computer Networks 3

and data backups. Over 95% of global information traffic now exists in the

cloud [Cisco, 2016], and with the appeal of pooling resources to increase the

accessibility of powerful compute unlikely to wane, our dependence on data

centres is likely to persist.

The second trend is the shift away from general purpose CPUs towards

specialised processors such as graphics processing units (GPUs), tensor processing

units (TPUs), and field-programmable gate arrays (FPGAs) in order to facilitate

new big data computational jobs such as AI and genome processing [McKinsey,

2019]. These processors do fewer things than CPUs but can perform significantly

better at their designated task. While Moore’s Law appears to have ended for

CPUs, the processing power of GPUs increased by over 25× from 2012 to 2018

[Perry, 2018]. However, the rate of this performance improvement was largely

due to the low hanging fruit of tackling the parts of the compute ecosystem not

well served by CPUs (primarily data-parallel computation, which has become

critical to the neural network (NN) architectures widely used today). In the five

years since 2018, the cost-per-FLOP of state-of-the-art GPUs has only halved

every 3 years [Tamay, 2022]; 2× slower than Moore’s Law. As articulated by

Stoica [2020], this slow down is coinciding with a huge increase in computational

demand by applications such as AI whose resource requirements have been

doubling every 3.4 months since 2012; 50× faster than Moore’s Law [OpenAI,

2018].

Consequently, a third trend has emerged; distributed computing. Rather

than trying to fit a large computational job into the memory of a single device

and sequentially running it, the job is instead split up and ran in parallel across

multiple machines in a HPC system.

Both data centres and HPC systems require computers to communicate

with one another, be it to query databases, synchronise the results of a parallel

computation, and so on. This communication is done via a computer network,

which is a system of connected end point processing nodes. The traditional

4 Chapter 1. Introduction

Moore’s Law approach of evaluating compute power and cost purely in terms

of individual end points is therefore no longer appropriate. Instead, compute

must now be thought of as a system of interconnected resources which can be

orchestrated to perform a task.

Figure 1.2: (a) From 2010 to 2018, the average compute performance improvement
of the nodes in the top ten HPC computer network systems far outstripped the
improvement in their communication bandwidth, leading to 92% fewer bytes being
communicated per FLOP [Bergman, 2018]. (b) How consequently the network
overhead - the fraction of the job completion time spent communicating information
between workers when no computation is taking place - of distributed deep learning
jobs increases with the number of machines used in Meta’s GPU cluster, shifting

the performance bottleneck into the network [Wang et al., 2022].

However, the ability with which we can increase compute power by increasing

the number of machines we distribute across is also slowing. Fig. 1.2a visualises

the average end point compute power and communication bandwidth of the top

ten HPC systems from 2010 to 2018 [Bergman, 2018]. As shown, although end

point compute power increased by a factor of 65, the network bandwidth only

increased by 4.8×, leading to a 92% decrease in bytes communicated per FLOP

over the eight year period and the maximum performance of these systems being

less than 10% of what is theoretically possible. This has shifted the performance

bottleneck of computer networks away from the end point nodes and into the

network connecting them [Wang et al., 2022] (see Fig. 1.2b). Furthermore, the

trend of using specialised parallel processors for executing ever-larger jobs is

resulting in significantly more communication between machines being required.

Improving the networks of modern HPC and data centre systems is therefore

crucial if we are to continue to improve computational performance and cater to

1.2. Artificial Intelligence for Optimisation 5

next-generation applications such as AI, data science, and genome processing,

and thus forms the focus of this thesis.

1.2 Artificial Intelligence for Optimisation

AI is a broad umbrella term with several definitions. In this thesis, AI is assumed

to be the study and design of ‘intelligent agents’, where an intelligent agent is a

system which perceives its environment and takes actions such that its chances

of success are maximised [Poole et al., 1998].

The concept of AI has existed in the imaginations of humans for millennia.

The oldest records date back to 400 B.C. with the legend of a 30 metre (m)

tall brass robot, Talos, protecting Crete from pirates [Sparkes, 2013]. Its

establishment as a scientific discipline, however, is relatively recent. The Church-

Turing thesis [Turing, 1936, 1950] was the first to spark rigorous academic

interest in AI.

The first half-century of AI research focused on its application to games; a

domain which strikes a balance between complexity and ease of access. This

began with the first analysis of chess playing as a search task [Shannon, 1950]

and the study of AI for executing checkers strategies [Samuel, 1959]. Progress

stalled in the ‘AI winter’ of the 1970s when funding for projects was sparse. In

the late 1990s, interest in AI began to pick up again by leveraging increased

computational power, focusing on specific tasks, establishing scientific standards,

and forging links between AI and other fields such as mathematics, statistics,

and economics.

The last decade has seen an explosion in the rate of AI progress, the cause of

which can largely be attributed to AlexNet [Krizhevsky et al., 2012]; the winner

of the 2012 ImageNet competition [Deng et al., 2009] to classify a database of

1.4 million images with 1000 possible classes. AlexNet was the first to achieve a

step-change in performance at a widely applicable and important task through

6 Chapter 1. Introduction

the use of NNs. The realisation that NNs can be efficiently trained with GPUs

to solve immensely challenging tasks automatically has led to significant progress

in machine learning (ML), a particular branch of AI, and a virtuous cycle of

both algorithmic and hardware development.

With AI having now achieved super-human performance in complex games

such as Go [Silver et al., 2016], Poker [Brown and Sandholm, 2019], and Statego

[Perolat et al., 2022], recent years have seen a shift towards applying AI to

real-world optimisation problems in a range of fields, from biology [Jumper et al.,

2021] and physics [Wu and Tegmark, 2019] to recommendation algorithms [Afsar

et al., 2022] and system management [Degrave et al., 2022].

This thesis considers optimisation problems which arise in computer networks,

both at the device level and in terms of overall resource management. Classical

approaches to solving these problems typically adopt the following workflow: (1)

Construct a simplified model of the computer system; (2) deconstruct high-level

design objectives (e.g. ‘minimise end-user latency’) into low-level tasks (e.g.

‘minimise network packet queuing delay’); (3) manually handcraft a heuristic to

optimise a problem within the simplified system model; and (4) meticulously

test and tune the heuristic until acceptable real-world performance is achieved

[Mao et al., 2020].

AI is particularly well suited to replace the above workflow and solve computer

network optimisation problems for reasons here summarised into six key factors:

1. Automatic optimisation: Rather than requiring expert understanding

of a given problem domain and then handcrafting a specific solution for

it, AI optimisers can be applied often with little to no tuning and expert

knowledge to automatically discover novel solutions without the costly

overhead of human design.

2. High-quality optimisation: As shown by the super-human performance

attained in games such as Go [Silver et al., 2016] and in the management

1.2. Artificial Intelligence for Optimisation 7

of systems such as nuclear reactors [Degrave et al., 2022], the solutions

discovered by AI to complex optimisation problems often outperform

heuristics designed by human experts.

3. High-speed optimisation: Many state-of-the-art handcrafted algorithms

and heuristics (e.g. solvers based on branch-and-bound [Land and Doig,

1960]) require expensive computational steps to be performed, which can

be detrimental to applications where fast decision making is critical. By

contrast, many AI methods, particularly those which use NNs as function

approximators, can make decisions on O(ms) time scales or less [Shabka

et al., 2022].

4. High-fidelity optimisation: AI methods can continuously adapt to

handle real experiences when interacting with an environment, allowing

them to directly optimise the actual computer network’s workload and

operating conditions in dynamic scenarios rather than relying on inaccurate

system models.

5. Handling of large search spaces: Computers can search for solutions

much faster than a human can think of them, often with parallel computa-

tion and the use of powerful function approximators such as NNs. This

enables AI optimisers to be applied to problem domains with in excess

of O(10100) possible solutions without the need for exhaustive search or

impractical solve times.

6. Simple objectives: Classical approaches to system optimisation often

require the construction of low-level tasks in order to meet high-level

design objectives, which inherently biases the resultant solution towards

a potentially sub-optimal prior approach, and requires an expert-level

understanding of the entire system stack. By contrast, AI methods can be

8 Chapter 1. Introduction

given simple high-level objectives, such as ‘win a game of chess’, and dis-

cover low-level policies and value functions which sufficiently optimise this

objective. This further reduces the complexity of tackling the problem for

practitioners, removes prior biases towards approaches which are assumed

to be, but are not necessarily, performant, and allows designers to tackle

problems without the need for an expert-level understanding of the whole

system.

The above factors form the motivation for this thesis, which seeks to develop

AI methods for optimising various components of computer networks at both

the device and the resource management level. Furthermore, it is shown how

optimisation with AI can enable the transition from electronic to optical network-

ing with superior scalability, bandwidth, latency, and power consumption, and

thereby address the shortcomings of modern cloud and HPC systems outlined

in Section 1.1. It is therefore hoped that this thesis will aid in facilitating the

development of next-generation compute applications, such as large-scale genome

processing and ever-more complex AI systems, over the coming decades.

1.3 Structure of & Publications from this Thesis

This thesis is divided into a background section followed by three main parts,

each of which addresses a different challenge in developing next-generation

computer networks.

1.3.1 Background

Chapter 2 provides an introduction to optical networking and the algorithmic

and conceptual tools common to multiple parts of this thesis. To aid the reader

in digesting the necessary background information, concepts required only for a

specific chapter are introduced within the corresponding chapter.

1.3. Structure of & Publications from this Thesis 9

1.3.2 Part I: Optimising the Physical Plane

Computer communication networks are made up of physical devices such as fibre

links, network switches, and end point processors. We refer to these devices

collectively as the computer network’s physical plane. The performances of the

physical plane’s components jointly determine the overall performance of the

computer network in terms of key metrics such as throughput, cost, and energy

consumption, and are therefore of critical importance.

Part I looks at optimising the physical devices in a computer communication

network. Specifically, Chapter 3 proposes three gradient-free AI signal control

approaches which enable high-bandwidth, low-power optical switching technolo-

gies to operate on the sub-nanosecond (ns) timescales that would be required in

an optical data centre network.

The following papers have been published based on the work reported in

Part I of this thesis:

• Hadi Alkharsan, Christopher W. F. Parsonson, Zacharaya Shabka,

Xun Mu, Alessandro Ottino, and Georgios Zervas, ‘Optimal and Low

Complexity Control of SOA-Based Optical Switching with Particle Swarm

Optimisation’, ECOC’22: Proceedings of the Forty-Eighth European Con-

ference on Optical Communication, 2022

• Thomas Gerard, Christopher W. F. Parsonson, Zacharaya Shabka,

Benn Thomsen, Polina Bayvel, Domanic Lavery, and Georgios Zervas,

‘AI-Optimised Tuneable Sources for Bandwidth-Scalable, Sub-Nanosecond

Wavelength Switching’, Optics Express, 2021

• Christopher W. F. Parsonson, Zacharaya Shabka, W. Konrad Chlupka,

Bawang Goh, and Georgios Zervas, ‘Optimal Control of SOAs with Ar-

tificial Intelligence for Sub-Nanosecond Optical Switching’, Journal of

Lightwave Technology, 2020

10 Chapter 1. Introduction

• Thomas Gerard, Christopher W. F. Parsonson, Zacharaya Shabka,

Polina Bayvel, Domanic Lavery, and Georgios Zervas ‘SWIFT: Scalable

Ultra-Wideband Sub-Nanosecond Wavelength Switching for Data Centre

Networks’, arXiv, 2020

1.3.3 Part II: Optimising the Orchestration Plane

The physical devices in a computer network must all be orchestrated in order

to perform a computational task. Poor orchestration of the physical devices

can lead to under-utilised network resources and excessive operating costs and

energy consumption. We refer to the collective resource management methods

which perform physical device orchestration tasks as the computer network’s

orchestration plane.

Part II considers the resource management methods of the orchestration

plane used to control cloud and HPC networks. Chapter 4 proposes a new

algorithm which facilitates the integration of a GNN trained with RL to discover

novel variable selection policies into a freely-available exact branch-and-bound

solver which can be applied to generic NP-hard discrete optimisation problems

such as those found in computer network management. Chapter 5 proposes a

novel algorithm, also based on an RL-trained GNN, for automatically deciding

how much to distribute a deep learning job in an HPC in order to meet user-

defined run time requirements, minimise the blocking rate, and maximise system

throughput under dynamic scenarios; the first of its kind to consider such a

problem setting.

The following publications have come from Part II of this thesis:

• Christopher W. F. Parsonson, Zacharaya Shabka, Alessandro Ot-

tino, and Georgios Zervas, ‘Partitioning Distributed Compute Jobs with

Reinforcement Learning and Graph Neural Networks’, arXiv, 2023

1.3. Structure of & Publications from this Thesis 11

• Christopher W. F. Parsonson, Alexandre Laterre, and Thomas D.

Barrett, ‘Reinforcement Learning for Branch-and-Bound Optimisation

using Retrospective Trajectories’, AAAI’23: Proceedings of the Thirty-

Seventh AAAI Conference on Artificial Intelligence, 2023

• Thomas D. Barrett, Christopher W. F. Parsonson, and Alexandre

Laterre, ‘Learning to Solve Combinatorial Graph Partitioning Problems

via Efficient Exploration’, arXiv, 2022

1.3.4 Part III: Optimising the Simulator

So far we have considered optimising the devices in the physical plane and the

resource managers in the orchestration plane of computer networks. These are

both areas which have received significant attention from the research community.

However, what has not had much focus is the underlying test bed in which

physical and orchestration plane research and optimisation is typically conducted.

Real production computer network systems such as data centre networks

(DCNs) and HPCs are not generally available for researchers to build and test

novel system components due to their proprietary nature and expensive cost

of deployment. Consequently, many researchers resort to simulating computer

networks in order to develop novel computer network systems. The fidelity, repro-

ducibility, and flexibility of these simulations is therefore at least as important as

the development and optimisation of the physical and orchestration systems for

which they are used. Poor simulations will lead to the misguided development

of network systems which do not perform as expected when deployed in real

production environments.

With this motivation, Part III addresses a key problem faced by many

computer network researchers, which is the reliance on low-fidelity, difficult-

to-reproduce, and inflexible computer network simulations in the absence of

access to real production systems. A novel open source traffic generation

12 Chapter 1. Introduction

framework and library is presented in Chapter 6, and a subsequent update to

the generation algorithm to make it scalable to computer networks with O(103)

nodes is proposed in Chapter 7.

The following are publications which have come from Part III of this thesis:

• Joshua L. Benjamin, Christopher W. F. Parsonson, and Georgios Zer-

vas, ‘Data Scheduling Unit for Nanosecond Optical Data Center Networks’,

arXiv, 2023

• Yanwu Liu, Joshua L. Benjamin, Christopher W. F. Parsonson, and

Georgios Zervas, ‘A Hybrid Beam Steering Free-Space and Fiber Based

Optical Data Center Network’, arXiv, 2023

• Christopher W. F. Parsonson, Joshua L. Benjamin, and Georgios

Zervas, ‘A Vectorised Packing Algorithm for Efficient Generation of Custom

Traffic Matrices’, OFC’23: Optical Fiber Communications Conference and

Exhibition, 2023

• Christopher W. F. Parsonson, Joshua L. Benjamin, and Georgios

Zervas, ‘Traffic generation for benchmarking data centre networks’, Optical

Switching and Networking, 2022

• Joshua L. Benjamin, Alessandro Ottino, Christopher W. F. Parsonson,

and Georgios Zervas, ‘Traffic Tolerance of Nanosecond Scheduling on

Optical Circuit Switched Data Center Network’, OFC’22: Optical Fiber

Communications Conference and Exhibition, 2022

• Joshua L. Benjamin, Christopher W. F. Parsonson, and Georgios

Zervas, ‘Benchmarking Packet-Granular OCS Network Scheduling for

Data Center Traffic Traces’, Photonic Networks and Devices, 2021

13

Chapter 2

Background

2.1 Computer Networks

A computer network is a system of processors (a.k.a. ‘workers’ or ‘servers’), such

as CPUs, GPUs, and/or FPGAs, interconnected via a communication network.

Computer networks are typically represented as graphs. The nodes in a computer

network are either end point processors, which perform computational jobs, or

intermediary network switches, which forward data being communicated between

end points around the network. The edges of the graph are communication links

along which data can be passed between nodes. The computer network types

considered in this thesis include data centres, such as commercial, university,

and social media data centres, and HPCs, such as compute systems dedicated

to performing large deep learning tasks.

Computer networks have two facets; the physical plane and the orchestration

plane (see Figure 2.1). The physical plane encompasses any physical device in the

computer network, such as the end point processors, the intermediary switches,

and the communication links. The orchestration plane refers to the resource

orchestration schemes which determine how the physical plane’s resources are

utilised. These schemes include tasks such as placement (which devices to

use) and scheduling (in which order to use the devices). Both the physical and

orchestration planes are critical to determining the network’s overall performance

14 Chapter 2. Background

in terms of throughput, latency, power consumption, and cost, and both are

studied in this thesis.

Figure 2.1: Visualisation of a computer network divided into the physical plane
made up of physical devices such as switches, end-point processors, and communi-
cation links, and the orchestration plane made up of resource management schemes

such as job partitioning, scheduling, and placement algorithms.

2.2 Packet vs. Circuit Switching

To communicate information, modern computer networks typically encode data

into light by modulating the light’s phase or amplitude and transmitting it

along a glass fibre. In a single glass fibre, no two messages with the same

wavelength and polarisation can be transmitted at the same time. There are

two predominant paradigms for addressing this constraint; circuit switching and

packet switching.

Circuit switching. In the vanilla circuit switching paradigm, a direct

transmission line is established between source and destination. This line cannot

be interrupted, broken, or changed for the duration of the transmission. The

data are then streamed as one large block until all data have arrived at the

destination. Consequently, as shown in Fig. 2.2a, no other end points can

communicate along the same physical transmission line already in use; their

2.2. Packet vs. Circuit Switching 15

messages must instead be queued until the line is free. Circuit switched networks

have the advantage that they can guarantee throughput and latency quality

once communication begins, but have the disadvantage that there may be long

queuing delays whilst waiting for a suitable transmission line to be free.

Packet switching. In the packet switching paradigm, rather than sending

a message as one large block of data, the message is instead split up into smaller

‘packets’, usually around 500 to 1500 bytes (B) in size. Each packet is labelled

with a ‘header’ indicating its source and destination, and can then be sent via

any path through the network to arrive at its destination. A single message’s

packets do not necessarily need to arrive at their destination via the same route

or as a constant stream; as shown in Fig. 2.2b, each packet can be adaptively

routed to avoid conflicts. Packet switched networks have the advantage that

they can provide low queue times before transmission begins, but have the

disadvantages that they cannot provide service guarantees, since buffering may

be required at the intermediary switches where the links are fully occupied, and

that they may be forced to take inefficient routes around the network.

Figure 2.2: A visual comparison of the difference between packet and vanilla
circuit switching. (a) In vanilla circuit switching, once a physical transmission line
is established between source and destination, the line cannot be interrupted or
facilitate the transfer of any other data. (b) In packet switching, the data of a
single message is split up into multiple ’packets’ labelled with the message’s source
and destination. This allows each packet to take a number of routes along different
transmission lines and to be time-interleaved with other messages’ packets in order

to get to its destination.

Ultra-fast circuit switching. To combine the low latency and high ser-

vice guarantee benefits of both packet and circuit switching, recent work has

16 Chapter 2. Background

considered ultra-fast circuit switching [Benjamin, 2020]. As with vanilla circuit

switching, a communication line is established between source and destination.

However, the data are split up into packets and interleaved on short timescales

with other transmission requests to enable multiple messages to be transmit-

ted along the same link via time-division multiplexing [Ralph, 1959]. This

interleaving is done by rapidly reconfiguring the circuit each time a packet

is communicated. The key remaining difference between packet and circuit

switching is the decision process of where and when to send messages. In packet

switching, this is done on a per-hop basis at each intermediary switch, whereas

in circuit switching these decisions are made in advance. Ultra-fast circuit

switching therefore retains the benefit of guaranteeing network performance by

reserving communication resources for the duration of data transmission whilst

also achieving low queuing delays by interleaving data from multiple different

sources and destinations along the same physical communication line.

However, a key challenge in realising ultra-fast circuit switching is reconfig-

uring the logical circuits each time a new packet is to be communicated. For

example, as shown in Fig. 2.3, large-scale cloud data centres typically have

91% of packets being ≤ 576 B in size (see Fig. 2.3a), which takes ≤ 43 ns to

transmit along a 100 Gbps link (see Fig. 2.3b). The reconfiguration process must

therefore occur on ns timescales in order to achieve acceptable network latency

overhead; far lower than the millisecond (ms) scale speeds of classical electronic

network switches and software-based schedulers [Benjamin, 2020]. This problem

is further addressed in Chapter 3.

2.3 Electronic vs. Optical Networking

Most current computer networks use optic fibre communication links, but the

switch devices which interconnect the network are usually electronic. Such

networks are hereby referred to as electronic networks, as opposed to optical

2.3. Electronic vs. Optical Networking 17

Figure 2.3: Meta’s cloud data centre (a) packet size distribution and (b) through-
put as a function of latency assuming 100 Gbps links [Clark et al., 2018].

networks which are interconnected by optical switches. For further details on

how one form of optical switch works, see Chapter 3.

The limitations of electronic networking. Electronic networks have

poor scalability, bandwidth, latency, and power consumption. Concretely, the

‘Moore’s law for networking’, that electrical switches double their bandwidth

every two years for a fixed power and cost [Ballani et al., 2018], lags behind

the annual doubling of cloud traffic bandwidth demands [Shi et al., 2019].

Consequently, rather than upgrading to higher bandwidth switches, electronic

networks are typically scaled by adding more switches to build a hierarchy of

switch layers (see Fig. 2.4a). This increases the ‘oversubscription ratio’, which

is the ratio of the bandwidth of all servers connected to a switch port to the

bandwidth of the port itself. Since the per-port bandwidth of an electronic

switch is limited and the power consumption required to cool active electronic

devices is expensive, the amount of oversubscription achievable in an electronic

network is restricted, thus hampering the network’s overall scalability. As shown

in Fig. 2.4b, electronic networks have a ‘scale tax’ where the power, cost, and

latency of the network worsens as the network scales [Ballani et al., 2020].

Compounding these current limitations, things are expected to get worse for

electronic networks. The ‘Moore’s law for networking’ is expected to undergo a

significant slow down beyond 2024 [Ballani et al., 2018]. Furthermore, with the

growing requirements of large computational jobs such as training deep learning

18 Chapter 2. Background

Figure 2.4: (a) Visualisation of how an electronic network with 64-port switches is
typically scaled; layers are added to the switch hierarchy in order to accommodate
more servers, leading to a larger oversubscription ratio. (b) Assuming 400-Gbps
per port, how the total power consumed by the electronic network per unit of
information communicated increases significantly as the number of switch layers

(shown in brackets on the x-axis) is increased [Ballani et al., 2020].

models and processing biological genomes, cloud data centre and HPC demands

are not only becoming more distributed and therefore more communication

intensive, but are also moving away from being low bandwidth, software-driven

CPU workloads towards becoming high bandwidth, hardware-driven GPU, TPU,

and FPGA tasks with ultra-low latency requirements [Andreades et al., 2019].

For example, while CPUs rarely saturate 100 Gbps links, GPUs today can

process in excess of 2.4 terabits per second (Tbps) of network traffic; a number

which is increasing year-on-year [Ballani et al., 2020]. By 2025, the proportion

of cloud requests being serviced by CPUs will have decreased by 75% in 2019

to < 50% in 2025 [McKinsey, 2019]. These factors are creating a perfect storm

where the ever-worsening latency, power, cost, and scalability performance of

electronic switching is coinciding with an abrupt increase in demand for low

latency, high bandwidth computer networks.

The benefits of optical networking. Computer networks with optical

switches have the potential to offer significant performance improvements over

electronic networks. With a circuit switching implementation, since links are

2.4. Computational Complexity 19

reserved and unchanged for the duration of a message being communicated from

source to destination (see Section 2.2), there is no need for packet inspection,

optical buffering, optical-electrical-optical (OEO) conversion for in-switch pro-

cessing, or mid-transmission contention and blocking, leading to significantly

lower latency and power consumption than their electronic and packet switched

counterparts [Liu et al., 2015]. Unlike optical packet switching (OPS), optical

circuit switching (OCS) networks do not require optical buffering, queuing,

or addressing, and are therefore more simple to implement [Benjamin, 2020].

Furthermore, the lack of OEO conversion overhead, the transparency to signal

modulation format, and the lower heat generation reduces the number of ex-

pensive transceiver components needed, the hardware changes required when

new transmission protocols are adopted, and the overall network power con-

sumption compared to electronic networks, making OCS networks lower cost

and more energy efficient to operate and upgrade. Additionally, optical switches

have significantly higher bandwidth, enabling optical networks to retain low

oversubscription ratios and thereby allow more servers to be connected to the

same switch without increasing queue times as more switches and switch layers

are added to scale the network. Moreover, optical switches are much more

physically compact than their electronic counterparts. Having a small ‘footprint’

is a key design criterion in data centres and HPCs, where it is beneficial to

have components close together at high density for the lowest latency. For these

reasons, a core theme throughout this thesis is the development of AI-driven

optimisation methods to help realise OCS computer networks.

2.4 Computational Complexity

Computational complexity is a key concept in computer science. It describes

how much of a given resource is required to run a given algorithm. A problem

instance Π has size n, where n might be, for example, the number of binary

20 Chapter 2. Background

digits needed to encode the instance. An algorithm used to solve the problem

has a ‘worst-cast’ time complexity function O(·) which maps the instance size

n to the maximum time needed for the algorithm to find a solution to the

problem. Common O(·) complexity functions include O(1) (constant time),

O(log2(n)) (logarithmic time), O(n) (linear time), O(nk) (polynomial time),

O(kn) (exponential time), and O(n!) (factorial time), where k is a constant

k > 1. Fig. 2.5 visualises how these common complexity functions scale with n.

Figure 2.5: Visualisation of how common time complexities scale with problem
instance size.

A problem for which there exists no known solution algorithm with a poly-

nomial complexity function may take a prohibitively long time to solve. If

only brute force solutions exist where every possible solution is explored, the

problem is said to be intractable. Although most problems can be theoretically

solved by brute force algorithms, if the search is not bound by polynomial time,

such problems cannot be ‘exactly’ (provably optimally) solved in practical time

frames when scaled to larger instance sizes. How such problems can be solved

in practice is explored in Section 2.6.

Building on the notion of computational complexity, decision problems (those

with a ‘yes’ or ‘no’ answer) can be categorised by complexity class, as visualised

in Fig. 2.6. A complexity class is a set of problems that a machine can solve

2.4. Computational Complexity 21

given sufficient time resources. There are many complexity classes, with the four

main ones being:

1. P-problems: the set of decision problems which can be solved in polyno-

mial time;

2. NP-problems: the set of decision problems where the solution’s validity

can be verified in polynomial time, but where the solution itself cannot be

guaranteed to be found in polynomial time;

3. NP-complete problems: the set of decision problems X in NP for which

there is a polynomial time algorithm to reduce any other NP problem Y

to X in polynomial time (therefore if you can solve Y quickly, then you

can also solve X quickly); and

4. NP-hard problems: the set of decision problems which are at least as

hard as NP-complete problems, but which are not necessarily in NP and

therefore may not be verifiable in polynomial time.

Figure 2.6: Euler diagram for the P, NP, NP-complete, and NP-hard complexity
classes, assuming P ̸= NP .

Goldreich [2008] provides a comprehensive overview of computational com-

plexity. NP-complete and NP-hard problems constitute the most difficult to

solve problems in computer science, since it is widely thought that P ≠ NP

[Goldreich, 2010]. Many real-world discrete optimisation problems, such as the

computer network optimisation problems considered in this thesis, turn out to

be NP-complete or NP-hard.

22 Chapter 2. Background

2.5 Discrete Optimisation

Overview. Optimisation problems are a form of search where an optimal

solution is being sought amongst some finite or infinite search space. There are

two families of optimisation problem; continuous variable problems searching

for an optimal set of real numbers or a function, and discrete variable problems

searching for an optimal object (such as an integer, a set, a graph, and so on)

from a finite (or countably infinite) set of possible objects. The latter category

is colloquially referred to as CO, which is any optimisation problem with at

least one decision variable which is subject to the integrality constraint (i.e.

that its value must be an integer). There are many real-world examples of

CO problems such as the travelling salesman problem [Laporte, 1992], finding

the shortest path between two nodes in a graph [Johnson, 1973], routing data

packets optimally in the internet [Johnson and Maltz, 1996], allocating flight

crews to planes [Graf et al., 2020], and many more. All of the computer network

optimisation problems addressed in this thesis fall under the category of CO,

which also encompasses problems where some of the variables are continuous

and some are discrete, and will be mathematically formulated as such.

Problem formulation. An instance of a CO problem Π is a triple (S, f, Ω),

where S is a set of candidate solutions to Π, f is the objective function which

assigns an objective function value f(s) to each candidate solution s ∈ S, and Ω

is a set of problem-specific constraints. Each solution s ∈ S is made up of a series

of m components (variables) C = {c1, c2, ..., cm}. S̃ is the sub-set of feasible

solutions which satisfy Ω, where S̃ ⊆ S. CO problems are either maximisation

or minimisation problems where the goal is to find the optimal solution s∗ ∈ S̃

which either maximises (f(s∗) ≥ f(s)∀s ∈ S̃) or minimises (f(s∗) ≤ f(s)∀s ∈ S̃)

the solution’s objective function value f(s). For a comprehensive introduction

to CO, refer to Papadimitriou and Steiglitz [1982].

Why discrete optimisation problems are difficult. Optimising an

2.5. Discrete Optimisation 23

objective function with variables subject to the integrality constraint often turns

out to be significantly more difficult than the same problem with the integrality

constraints relaxed.

Linear and convex continuous functions are easy to optimise efficiently with

algorithms such as simplex [Horen, 1985]. This is because the optimal solution

will always reside on the corner points of the boundary of the feasible region

(see Fig. 2.7a), and the equations for the feasible boundary are known.

Figure 2.7: a) Diagram showing the whole solution space of two decision variables,
x1 and x2, for a linear convex optimisation problem. In the continuous case, the
equations bounding the feasible solution space are known and the optimal solution
is guaranteed to reside on one of the boundary’s corners. In the discrete case
where the two variables must be integers, the equations of the feasibility bounds
are unknown and the optimal solution may not necessarily be at corner points. (b)
Illustration of how non-convex continuous optimisation tasks can, although by no

means trivially, be solved with the use of gradient descent..

As soon as the integrality constraint is introduced, the optimal solution can

instead reside anywhere within the feasible region, making methods such as

simplex, which only navigate the feasibility region’s corner points, inadequate.

Non-linear and non-convex continuous problems can also be inherently easier

to solve than the same problem with integrality constraints added (see Fig. 2.7b).

This is because the discrete version is non-differentiable, meaning that there is

no easy way to know that a step in a given direction of the solution space is (1)

feasible and (2) more optimal. Consequently, many combinatorial optimisation

problems fall into the NP-complete and NP-hard complexity classes; the most

difficult-to-solve problems in computer science. Such problems have no known

24 Chapter 2. Background

algorithm which can deterministically find an optimal solution in polynomial

time.

2.6 Solving NP-Hard Problems

There are three classes of algorithms for solving NP-hard problems; heuristic

algorithms, approximation algorithms, and exact algorithms (see Table 2.1 for a

summary of their characteristics).

Heuristic algorithms. Heuristics are ‘rules of thumb’. They generate

solutions to combinatorial problems based on principles which are thought to be

performant a priori. Typically, although not necessarily, heuristics can be scaled

to large optimisation problems and can generate solutions quickly. Historically,

heuristics have been handcrafted by human experts, but recent years have seen

a surge of interest in the application of ML to learn heuristics automatically,

as done in Chapters 4 and 5. General-purpose heuristic frameworks, termed

metaheuristics, can be applied to many different problems with little to no

tuning or problem-specific adaptations. Examples of metaheuristics include

the AI evolutionary and swarm intelligence algorithms developed in Chapter

3. However, heuristics and metaheuristics provide no guarantee on how far the

generated solution is from the optimal solution, which can be detrimental in

applications where high solution quality is important.

Approximation algorithms. Approximation algorithms apply domain-

specific mathematical tricks to certain problems in order to approximate the

original complex problem into a simpler version which can be solved exactly.

Approximation algorithms are able to provide an optimality bound guarantee

on the worst-case distance of the generated solution from the optimal one, such

as ‘this solution is within at least 92% of the optimal solution’, even when the

optimal solution itself is not known. Although this guarantee is useful, these

approximations are only applicable to certain problem settings and are therefore

2.7. Artificial Intelligence 25

not generalisable, and approximation algorithms are typically not scalable to

large instances.

Exact algorithms. Exact algorithms are algorithms which, if left to run

for long enough, are guaranteed to eventually find the provably optimal solution

to a combinatorial problem. Although they generate optimal solutions and are

generalisable to many different problems, exact algorithms typically scale poorly

and are therefore unable to cope with large instances. As explored in Chapter 4,

ML approaches can be integrated into exact solvers in order to improve their

scalability whilst retaining their optimality guarantee and generality.

Approximation Algorithms Heuristics Exact Algorithms
Quality guarantee Yes No Yes
Generalisable No Yes Yes
Scalable No Yes No

Table 2.1: Summary of the typical characteristics of approximation algorithms,
heuristics, and exact algorithms when solving combinatorial optimisation problems.

2.7 Artificial Intelligence

AI is the study and design of ‘intelligent agents’, where an intelligent agent is a

system which perceives its environment and takes actions such that its chances

of success are maximised [Poole et al., 1998]. Fig. 2.8 provides a visualisation of

some of the branches of AI which are most popular at the time of writing [Mata

et al., 2018], with the methods used in this thesis highlighted.

AI can be applied to solving NP-hard discrete optimisation problems via

integration into the heuristic, approximation, or exact algorithmic paradigms

outlined in Section 2.6. The power of AI techniques stems from the general

principle of machine-powered automated problem solving. They are useful for

complex problems which cannot be solved either analytically or in a practical

time frame, and can often be applied without an expert knowledge of the specific

problem domain.

26 Chapter 2. Background

F
igure

2.8:
M

ain
A

Ibranchesand
sub-categories,with

the
m

ethodsexplored
and

used
in

this
thesis

highlighted.
T

his
diagram

is
far

from
com

prehensive,but
gives

a
rough

overview
ofw

here
the

m
ethods

used
in

this
thesis

fit
in

to
the

broader
A

I
paradigm

.

2.8. Machine Learning 27

There are no hard rules specifying which problems are most suited to which

AI techniques. The designer must therefore combine their high-level knowledge

and intuition about both the problem being solved and the AI techniques

available. They must then explore the efficacy and possible adaptation of the

narrowed-down techniques for the problem being solved to determine which is

best.

This thesis considers optimisation problems in computer networks. The most

simple networking environments are those which are deterministic, observable,

static, and completely known. Such scenarios are well-suited to search algorithms

and classical optimisation theory methods such as breadth-first search and

integer linear programming (ILP), which have been applied to simple small-scale

network routing and planning problems [Simmons, 2008]. However, when these

ideal conditions are relaxed or when the network is scaled to larger sizes, such

techniques become inapplicable. Instead, they can be complemented or replaced

by more flexible and scalable AI local search algorithms and metaheuristics as

shown in Chapter 3. For highly dynamic environments, learning agents which

can adapt to new conditions and unforeseen scenarios that could not have been

anticipated at the design stage become powerful alternative or complementary

problem solving tools. Such learning techniques have been applied to a range

of networking problems, including quality of transmission estimation [Jiménez

et al., 2012], modulation format recognition [Gonzalez et al., 2010], and task

scheduling [Mao et al., 2019a], and are used in Chapters 4 and 5.

2.8 Machine Learning

ML is a sub-field of AI. A machine is said to have ‘learned‘ from experience E

to execute a set of tasks T if its performance, as measured by P , improves with

experience E [Mitchell, 1997]. The motivation for ML stems from the desire to

28 Chapter 2. Background

have systems which can solve dynamic problems without the need for human

intervention or explicit instruction.

There are three broad learning paradigms. (1) Supervised learning:

‘Labelled’ data sets containing the inputs and the corresponding desired outputs

are fed into the model, enabling the model to learn to map unseen inputs to seen

labels (e.g. classification, regression, and so on). (2) Unsupervised learning:

‘Unlabelled’ data sets containing only inputs are fed into the model, enabling

the model to learn underlying structures, patterns, or features of the data

and thereby reduce unseen data into these learned structures (e.g. clustering,

association, and so on). (3) Reinforcement learning: Input data is in the

form of an observation from a dynamic sequential decision making environment

which returns a reward signal to the model based on the actions it chooses to

perform, enabling the model to learn how to take actions which maximise its

expected long-term reward (e.g. playing chess, controlling complex systems, and

so on).

This thesis focuses on the reinforcement learning paradigm in Chapters 4

and 5, although Chapter 4 also implements a supervised learning algorithm as a

baseline. For a detailed overview of ML, refer to Russell and Norvig [2009].

2.9 Function Approximation with Neural Networks

In many cases, such as the RL setting where a value and/or policy function

is being learned (see Section 2.11), tabular approaches which map inputs (e.g.

states) to their exact outputs (e.g. optimal actions) are infeasible because they

would require excessive amounts of memory. Instead, the true function mapping

inputs to outputs can be approximated with a NN, and this has now become

common practice in many applications of ML.

Layers. NNs are a composition of linear transforms and non-linear (acti-

vation) functions connected in a chain to form a directed acyclic computation

2.9. Function Approximation with Neural Networks 29

graph. Each function in the chain is a layer in the NN, although sometimes

linear and non-linear function pairs are referred to as a single layer.

Parameterisation. Each NN layer is parameterised by a set of weights and

biases. The weights of a layer form a matrix, and the bias values form a vector.

Each vector dimension of the weight matrix and each scalar element of the bias

vector operate on either all (‘fully connected’) or some of (‘sparsely connected’)

the input’s dimensions being passed to the layer, thus transforming the input

into some output (see Fig. 2.9). The weights and bias value operating on a

particular (set of) input dimension(s) are collectively termed a ‘unit’ or ‘neuron’

in the NN layer. The exact values of the weights and biases of each unit are

what determine how the input is mapped to an output.

Learning. Training a NN constitutes learning (i.e. optimising) the set of

weights and bias values of each layer to take an input and produce a desired

output. For example, a simple learning task might be to find the values of the

weights and biases in a NN which accurately map house characteristics (number

of bedrooms, surface area, year built, and so on) to the house’s price. This

learning process is done by defining a loss function, such as the mean squared

error between the predicted price and the actual price, and minimising the

loss by adjusting the model’s parameters using an appropriate optimisation

algorithm during training. The optimisation algorithm used is typically gradient-

based, such as the Adam optimiser [Kingma and Ba, 2015], but may also be

gradient-free, such as the AI optimisation methods considered in Chapter 3.

Hidden layers. During training, only the target outputs of the final output

layer are given; all intermediary layers between the input and output layers have

‘hidden’ targets determined by the learning framework being used. Hence, layers

between the input and output layers are referred to as ‘hidden layers’.

Deep neural networks. NNs with multiple hidden layers are referred to

as DNNs. It has been shown that, given enough hidden units (parameters), a

NN with only one hidden layer can approximate any continuous function with

30 Chapter 2. Background

Figure 2.9: Visualisation of a typical layer in a fully connected feedforward NN.
Each layer is composed of units, which in turn are composed of a linear transform
on a set of weights and a bias value followed by a non-linear ‘activation’ function.
In the specific example drawn here, a four-pixel image is flattened into a vector and
passed into a single NN layer with three units (‘dimensions’). Each unit outputs a
single scalar whose value depends on the values of the units’ weights and biases.
Each unit’s output corresponds to the NN’s confidence that the image belongs
to one of three possible image classes (e.g. dog, cat, or horse). During training,
the values of the weights and biases are optimised until the NN successfully maps

images to the correct corresponding image class.

a finite number of hidden units [Hornik et al., 1989], therefore making NNs

universal function approximators. However, to approximate high-dimensional

functions, one hidden layer would require exponentially more units as the number

of dimensions in the function increases. The power of DNNs lies in their ability

to assign feature labels by transforming high dimensional features into linearly

separable regions [Osindero, 2018]; indeed, Montufar et al. [2014] showed that as

the number of hidden layers is increased, the number of linearly separable regions

of the DNNs increases exponentially, whereas increasing the number of hidden

2.10. Graph Neural Networks 31

units only increases the assignable feature label count polynomially. Therefore,

much more powerful representations are attained with deep and narrow NNs as

opposed to shallow and wide models.

The state of neural networks today. The last decade has seen the

successful application of the function approximation power of DNNs to solve a

variety of problems, from natural language processing [Goldberg and Hirst, 2017]

to image recognition [Deng et al., 2009]. In this thesis, DNNs trained within

the reinforcement learning paradigm are used to solve difficult combinatorial

optimisation problems. For a detailed introduction to deep learning, refer to

Goodfellow et al. [2016].

2.10 Graph Neural Networks

This thesis focuses on graph-based combinatorial optimisation problems and

computer networks. However, traditional NN architectures cannot easily handle

graph-structured data because graphs have no fixed node ordering or reference

point, an arbitrarily varying size, a complex topological structure (i.e. no regular

spatial locality, as vectors and grids do), and data points (nodes) with multiple

features intricately related to other nodes via relationships (edges). Whereas

standard NNs are restricted to handling only vector- and grid-structured inputs,

such as sentences and images, GNNs are generalised NN architectures which can

handle graph-structured data, such as networks and molecular structures (see

Fig. 2.10). This thesis therefore uses GNNs for the graph-based ML problems

considered in Chapters 4 and 5.

Most current GNNs use the message passing paradigm to map each node and

edge onto a vector embedding space which captures neighbourhood relationships

before performing additional graph-level embeddings and readouts if desired.

Concretely, each GNN layer usually performs four stages (see Fig. 2.11): (1)

Message passing: On each edge in the input graph, use a message function

32 Chapter 2. Background

Figure 2.10: Visualisation comparing non-Euclidean graph structures, such as
networks and molecules, with Euclidean-structured data, such as sentences and

images.

to generate a message (representation) to pass from a source node to a set

of destination nodes, where each node stores the message(s) it receives in its

mailbox. (2) Message aggregation: On each node in the input graph, apply

an aggregate function (a vanilla reduce operation such as mean, sum, max, min,

and so on, or a trainable function) to the messages in its mailbox to generate

an intermediate aggregate representation of its neighbourhood. (3) Node-

level embedding: Pass the intermediate aggregate representation through a

trainable function to produce a final vector embedding for each node, which is an

aggregated representation of the node and its neighbourhood. (4) Graph-level

embedding (optional): If desired, at the end of the final GNN layer, pass

the node embeddings through a trainable function to produce a graph-level

representation.

To include information from k hops away in a given node’s embedding and

therefore capture k-distance dependencies between nodes across the graph in

the final GNN representation, k of these GNN layers can be used. Crucially, the

parameters of all message, aggregation, and forward pass functions are shared

across nodes, enabling GNNs to be inductive in that they can generalise to

unseen nodes and graphs.

2.11. Reinforcement Learning 33

Figure 2.11: The stages performed by each layer in a typical GNN. Note that if
the optional graph-level readout in stage 4 is performed, it is only done in the final

GNN layer.

2.11 Reinforcement Learning

RL is an ML learning paradigm. It is the study of optimal decision making in

natural and artificial systems [Silver, 2009]. In the general RL setting shown in

Fig. 2.12, an agent interacts with an environment at each sequential time step t.

The environment can be described by tuple ⟨T, R⟩, where T is a state transition

probability matrix defining the transition probabilities from all states s to all

successor states s′ taking action u where T u
ss′ = P(St+1 = s′|St = s, U t = u), and

R is a scalar reward function giving the expected immediate (next state) reward

34 Chapter 2. Background

given current state s and chosen action u where Ru
s = E(Rt+1|St = s, U t = u).

Figure 2.12: A reinforcement learning setting, showing the iterative environment
interaction feedback loop used by the agent to learn strategies which maximise the

reward signal.

Markov decision process. The environment is usually assumed to have

the Markov property whereby P(st+1|st) = P(st+1|ht); that is to say that the

probability of the next state being st+1 given the current state st is the same as

the equivalent probability given all previous states in history ht = {s1, ..., st}.

As such, this RL setting is usually assumed to be a MDP described by tuple

⟨S, U, T, R, γ⟩ where S is a finite set of possible environment states, U is either

a discrete (finite) or continuous (infinite) set of possible actions, and γ ∈ [0, 1]

is a discount factor specifying the factor by which to multiply future expected

rewards to discount their present value. Since Markov states are stochastic, future

rewards are never fully certain and are therefore expressed as an expectation.

Agent goal. The agent’s goal is to learn to maximise its expected total

discounted future reward, termed the ‘value’ or ‘return’ Gt = ∑∞
k=0 γkRt+k+1,

over the course of an episode (a sequence of decision steps which may or may not

terminate at some point). To do so, the agent can use model-free RL to avoid

explicitly modelling the environment by only using its policy function and/or

its value function to make decisions. The policy function π maps an observed

state st to a corresponding action ut such that some estimated score objective

is maximised. The value function estimates the expected return Gt from being

in state st and following policy π (the state value function v) or from being in

state st, taking action ut, and following policy π (the action value function q).

2.11. Reinforcement Learning 35

Crucially, value and policy functions can be approximated and learned with

NNs, enabling RL to be scaled to large problem instances (see Section 2.9 for

background information on NNs).

Prediction and control. There are two aspects to maximising Gt; prediction

and control. The prediction task is to, given a policy π and an MDP, find

the value function vπ which correctly evaluates how well the agent would do

by following π in the MDP. The control task is to, given an MDP, find the

optimum value function v∗ which maximises the value function over all policies,

v∗(s) = maxπ vπ(s), and the corresponding optimal policy π∗ which achieves the

optimum value function, π∗ ≥ π,∀π. Note that in order to solve the control

problem (finding the optimum value function and optimal policy), the agent must

first solve the prediction problem (finding the value function which correctly

evaluates a given policy). There are three classes of model-free RL algorithms

for addressing the prediction and control tasks; value-based, policy-based, and

actor-critic RL.

Value-based RL. Value-based methods involve learning a value function

which implicitly defines a policy by following a policy, such as ϵ-greedy [Tokic

and Palm, 2011], which is based on the expected returns predicted by the

value function. Examples of common value-based algorithms include SARSA

[Rummery and Niranjan, 1994] (on-policy learning), Q-learning [Watkins and

Dayan, 1992] (off-policy learning), and DQN [Mnih et al., 2015] (Q-learning

with experience replay), and are explored in Chapters 4 and 5. Value-based

methods can be advantageous in environments with small action spaces since

value function updates tend to be large and therefore achieve rapid convergence.

However, since a value function must be defined, the maximum value of all

possible state-action pairs must be found. This is often inefficient, since usually

the agent would only want the best action rather than knowing the value of all

state-action pairs, and cannot be used for large or continuous (infinite) action

spaces. Furthermore, the policy typically sampled deterministically at test time

36 Chapter 2. Background

with the action with the highest value being preferred, which is disadvantageous

for certain scenarios such as rock-paper-scissors where a random policy beats any

deterministic policy [Bowling and Veloso, 2001] or in some partially observable

Markov decision process (POMDP) problems such as the aliased grid-world

problem [Crook and Hayes, 2003] which benefit from having stochastic elements

in the policy.

Policy-based RL. Policy-based methods such as REINFORCE [Williams,

1992] do not consider a value function. Instead, they explicitly define a policy and

directly learn the policy which maximises their expected return. Policy updates

are often small and therefore converge more smoothly on an optimum policy.

Furthermore, since there is no value function, the agent does not need to consider

the value of every possible state-action pair, therefore policy-based algorithms

can be scaled to very large or continuous action spaces; this is the most common

motivation for researchers to use policy-based methods. Additionally, they can

learn stochastic policies, which can be good for certain POMDPS. On the other

hand, due to the small policy updates at each iteration, policy-gradient methods

are vulnerable to long convergence times and stagnation at local minima rather

than finding the global optimum policy. Furthermore, policy-based algorithms

typically use Monte-Carlo methods without bootstrapping and therefore the

agent does not get a reward until the end of an episode, thereby potentially

introducing high variance and making learning difficult.

Actor-critic RL. Actor-critic methods are a new class of RL algorithms

which are becoming increasingly popular. They explicitly define both a policy

function (the actor) and a value function (the critic) and learn to optimise them

both in order to try to get the advantages of both value- and policy-based meth-

ods. Common actor-critic algorithms include natural policy gradient [Kakade,

2001], A2C, A3C and Q-actor-critic [Mnih et al., 2016], deep deterministic

policy gradient [Lillicrap et al., 2016], and proximal policy optimisation (PPO)

[Schulman et al., 2017], and are considered in Chapters 4 and 5.

2.11. Reinforcement Learning 37

Advantages of RL. Using traditional RL has several advantages over

heuristics and other ML paradigms such as supervised learning. First, no

external data from human-designed or computationally expensive heuristics is

required, enabling an agent to learn super-human policies without potentially

sub-optimal initial biases towards a certain strategy or a costly expert example

collection-and-labelling phase [Silver et al., 2016]. Second, a DNN with a

finite number of layers and neurons will have its expressivity constrained [Dong

et al., 2020], restricting the complexity of the set of functions it is capable

of approximating. Because the objective of an RL agent is to maximise its

expected future return which, under the assumption that a suitable reward

function has been crafted, is equivalent to maximising performance on a given

task, RL agents are able to maximise task performance given DNN expressivity

constraints. Third, since RL agents maximise the future return, they are capable

of learning sophisticated non-myopic policies which sacrifice short-term reward

in exchange for higher long-term return [Sutton and Barto, 2018].

The state of reinforcement learning today. RL has been an established

field for a long time. However, recent breakthroughs over the last decade in

the development of large DNN models have yielded impressive results when

trained in the RL paradigm. Mnih et al. [2015] showed that a DNN trained to

approximate the value function via Q-learning can be used to play Atari games

with super-human performance, and many ‘deep RL’ algorithms have since

been developed. AlphaGo represented a significant milestone, being the first

Go computer programme to beat professional human players on a full 19× 19

board [Silver et al., 2016], combining deep reinforcement learning with Monte

Carlo tree search [Browne et al., 2012]. Recently, RL has surpassed humans at

complex real-time partially observable strategy games such as StarCraft [Vinyals

et al., 2019], Dota [OpenAI et al., 2019], and Poker [Brown and Sandholm,

2019]. There have also been several breakthroughs in real-world applications,

with OpenAI training a robot to solve a physical rubik’s cube [Agostinelli et al.,

38 Chapter 2. Background

2019a] and Kiran et al. [2022] demonstrating a self-driving learning agent. This

progress in RL presents a ripe opportunity for its application in discrete problem

solving and computer network optimisation, as explored in Chapters 4 and 5.

For a detailed introduction to RL, refer to Sutton and Barto [2018].

2.12 Deep Q-Learning

Deep Q-network (DQN) (also known as ‘deep Q-learning’) is a state-of-the-art

value-based RL algorithm [Mnih et al., 2013, 2015], and some of its variants

are used in Chapers 4 and 5. This section breaks down the components of this

popular RL method.

Q-learning. Q-learning [Watkins, 1989] is the canonical value-based al-

gorithm which can be applied to a sequential decision making process for-

malised as an MDP (see Section 2.11). It is an off-policy temporal differ-

ence algorithm whose goal is to learn the action value function mapping state-

action pairs to their expected discounted future return when following a policy

π; Qπ(s, u) = Eπ

[∑∞
t′=t+1 γt′−1r(st′)|st=s, ut=u

]
. By definition, an optimal

policy π∗ will select an action which maximises the true Q-value Q∗(s, u),

π∗(s) = arg maxu′ Q∗(s, u′).

Concretely, the classical Q-learning algorithm maintains an action value

look-up table Q(s, u) mapping all possible state-action pairs to their predicted

discounted return. The return is the sum of future rewards over the remainder

of the episode. During training, Q-learning follows an exploration-exploitation

policy. The simplest such policy is ϵ-greedy, where a random action is sampled

with probability ϵ ∈ [0, 1] and the best action, according to the current Q table,

is sampled with probably 1 − ϵ. At each time step t, the agent in state st

uses this policy to select an action ut which it performs in the environment

to transition to the next state st+1 and receive a reward rt+1. Q(s, u) is then

updated according to:

2.12. Deep Q-Learning 39

Q(st, ut)← Q(st, ut) + α ·
(

rt + γ ·max
u′

Q(st+1, u′)−Q(st, ut)
)

. (2.1)

On the right-hand side of Eq. 2.1, Q(st, ut) is the agent’s estimate of the

discounted return of taking action ut in state st, α is the learning rate, γ is

the factor by which to discount future rewards to their present value, and

maxu′ Q(st+1, u′) is an estimate of the future value of being in state st+1 and

taking an ‘optimal’ action according to Q. The rt + γ ·maxu′ Q(st+1, u′) term is

called the temporal difference target, and the collective rt +γ ·maxu′ Q(st+1, u′)−

Q(st, at) term the temporal difference error. As such, the maxu′ Q(st+1, u′) term

treats Q as an oracle from which optimal actions can be sampled. Although Q

is usually randomly initialised and changes at each update step, the general idea

is that, with stable learning and sufficient exploration, Q will converge on the

true Q∗ function.

As a side note, Q-learning is a temporal difference algorithm because, rather

than using the actual returns to update Q in Eq. 2.1 as done by Monte Carlo

methods, it uses a bootstrapped estimate of the future returns maxu′ Q(st+1, u′).

Furthermore, it is an off-policy algorithm because the policy used to select the

action ut at the current time step, such as ϵ-greedy sampling of Q, is different to

the policy used to select the next-state action u′ when evaluating the temporal

difference target, such as greedy sampling of Q. This is as opposed to on-policy

temporal difference algorithms, such as SARSA, which use the same action

selection policy for both the current time step and for future time steps when

bootstrapping.

Deep Q-learning. Many practical problems have an extremely large number

of possible state-action combinations. For example, the game of Go has over

10700 possible sequences; far more than the number of atoms in the universe

[Silver et al., 2016]. As such, modelling the action value function with a tabular

40 Chapter 2. Background

approach is intractable given practical memory constraints. To enable Q-learning

to be scaled to complex problems, DQN [Mnih et al., 2013] approximates the

true Q-function with a DNN parameterised by θ such that Qθ(s, u) ≈ Q∗(s, u).

Concretely, during training at each time step t, Qθ(s, u) is used with an

exploration strategy such as ϵ-greedy to select an action and add the observed

transition T = (st, ut, rt+1, γt+1, st+1) to a replay memory buffer [Lin, 1992]. The

network’s parameters θ are then optimised with stochastic gradient descent to

minimise the mean squared error loss between the online network’s predictions

and a bootstrapped estimate of the Q-value,

JDQN(Q) =
[
rt+1 + γt+1 max

u′
Qθ̄(st+1, u′)−Qθ(st, ut)

]2
, (2.2)

where t is a time step uniform randomly sampled from the buffer and Qθ̄

a target network with parameters θ̄ which are periodically copied from the

acting online network. The target network is not directly optimised, but is

used to provide the bootstrapped Q-value estimates for the loss function. Only

periodically updating the target network rather than at each learning step leads

to lower variance in the bootstrapped targets at each step. This helps helps to

stabilise learning and leads to better convergence [Mnih et al., 2013].

Double DQN. In the traditional Q-learning update rule of Eq. 2.1 and the

DQN loss of Eq. 2.2, the Q-function used to select and evaluate an action for

the temporal difference target is the same; maxu′ Q(st+1, u′) for Eq. 2.1, and

maxu′ Qθ̄(st+1, u′) for Eq. 2.2. However, this can lead to an overestimation bias

where the chosen action u′ is incorrectly over-valued because the same function

which perceives u′ as being best is also being asked to evaluate it. This can lead

to high variance updates, unstable learning, and convergence on local minima.

Double DQN [van Hasselt et al., 2015] reduces overestimation by decomposing

the max operation in the temporal difference target into action selection and

action evaluation and performing these two tasks with two separate networks.

2.12. Deep Q-Learning 41

Concretely, action u′ is greedily selected according to the online network Qθ

and evaluated with the separate target network Qθ̄. The loss term from Eq. 2.2

then becomes:

JDDQN(Q) =
[
rt+1 + γt+1Qθ̄(st+1, max

u′
Qθ(st+1, u′))−Qθ(st, ut)

]2
. (2.3)

Prioritised experience replay. Vanilla DQN replay buffers are sampled

uniformly to obtain transitions for network updates. A preferable approach

is to more frequently sample transitions from which there is much to learn.

Prioritised experience replay [Schaul et al., 2016] deploys this intuition by

sampling transitions with probability pt proportional to the last encountered

absolute temporal difference error,

pt ∝ |rt+1 + γt+1 max
u′

Qθ̄(st+1, u′)−Qθ(st, ut)|ω, (2.4)

where ω is a tuneable hyperparameter for shaping the probability distribution.

New transitions are added to the replay buffer with maximum priority to ensure

all experiences will be sampled at least once to have their errors evaluated.

n-step Q-learning. Traditional Q-learning uses the target network’s greedy

action at the next step to bootstrap a Q-value estimate for the temporal difference

target. Alternatively, to improve learning speeds and help with convergence

[Sutton and Barto, 2018, Hessel et al., 2017], forward-view multi-step targets

can be used [Sutton and Barto, 2018], where the n-step discounted return from

state s is

r
(n)
t =

n−1∑
k=0

γ
(k)
t rt+k+1, (2.5)

resulting in an n-step DQN loss of

42 Chapter 2. Background

JDQNn(Q) =
[
r

(n)
t + γ

(n)
t max

u′
Qθ̄(st+n, u′)−Qθ(st, ut)

]2
. (2.6)

Dueling DQN. Traditional DQN approaches use a DNN architecture which

is not specific to RL. Consequently, when learning the Q-function, the entire DNN

architecture must learn to estimate the state value and the action advantage for

each action in order to learn the state-action function Qπ(s, u) of being in state

s, taking action u, and following policy π. However, in many problems where

bootstrapped Q-learning is applied, the most important objective is to learn to

estimate the value of each state rather than the effect of each action for each

state. This is especially true in environments and individual states where future

transitions are mainly influenced by factors other than the agent’s actions.

Leveraging the insight that in many states it is unnecessary to estimate the

value of each action choice, Wang et al. [2015] developed a new DNN architecture,

termed ‘dueling DQN’, which is better suited to the Q-learning task. Concretely,

the dueling architecture uses the same core DNN as standard DQN. However,

rather than following the initial encoding with a single sequence of fully connected

layers to get a Q-value for each possible action in the current state, dueling DQN

uses two separate streams of fully connected layers. One stream, parameterised

by β, estimates the state value function Vθ,β(s) (the estimated future discounted

return of the current state regardless of future actions taken), and the other

stream, parameterised by α, estimates the relative action advantage function

Aθ,α(s, u) (the relative difference in the future discounted return of each action).

The outputs of the two streams are then combined via a special aggregation

function to recover the state-action value function Q. Crucially, V (s) and

A(s, u) must be combined into Q(s, u) in such a way that they are independently

identifiable from the output Q values alone in order for backpropagation to be

able to calculate the appropriate loss and weight updates for the separate V (s)

and A(s, u) streams. As such, a simple Q(s, u) = V (s) + A(s, u) aggregation

2.12. Deep Q-Learning 43

function to get the Q-values from the two streams does not suffice. Instead, the

authors tried two different aggregation schemes.

The first aggregation method subtracted the advantage of the maximum

advantage action from all advantages to make the argmax action’s advantage 0

and the rest < 0,

Qθ,α,β = Vθ,β(s) +
(

Aθ,α(s, u)−max
u′

Aθ,α(s, u′)
)

, (2.7)

thus enabling V (s) to be recovered at the argmax action’s Q-value.

The second aggregation method subtracted the mean advantage from all

action advantages to centre the advantage values around 0 (i.e. to have a mean

of 0),

Qθ,α,β = Vθ,β(s) +
(

Aθ,α(s, u)− 1
|A|

∑
u′

Aθ,α(s, u′)
)

. (2.8)

This makes V (s) recoverable from Q(s, u) by estimating the V (s) value

which, when subtracted from each A(s, u) value, leads to a set of A(s, u) values

which have a mean of 0. In practice, this second approach of using the mean was

found to lead to more stable learning since using a mean operation resulted in

lower variance targets between learning steps compared to when a max operation

was used.

As with standard Q-learning, the output of the dueling network is a set of

Q-values (one for each action), therefore no change to the underlying algorithm

other than a slight adjustment of the network architecture was required. By

decomposing the Q-function approximator in this way, dueling DQN is able

to attain superior policy evaluation in the presence of many similar-value ac-

tions, and the authors demonstrated their architecture achieving state-of-the-art

performance on the Atari 2600 games.

Ape-X DQN. Noting that state-of-the-art ML performance is often achieved

with more computation, more powerful models, and larger training data sets,

44 Chapter 2. Background

Horgan et al. [2018] proposed Ape-X; a parallelisation approach to off-policy

experience replay RL. Concretely, rather than using a single actor-learner setup,

Ape-X decouples acting from learning. It distributes many actors across a set

of CPU cores each with their own instance of the environment. Each actor

retains a copy of a DNN shared across actors which it uses for action selection to

accumulate experiences in parallel with other actors. These experiences are then

communicated to a central shared replay buffer, where a single learner mounted

on a GPU uses prioritised experience replay to sample the most important

experiences for learning. Learner sampling, gradient computation, and network

updates are done asynchronously with one another on separate threads, as are

the periodic updates made to the actors’ networks with the latest shared learner

network. By using multiple actors in parallel, not only can orders of magnitude

more transition data be attained for learning, but also a broader diversity of

experiences can be collected by allocating a different exploration strategy to

each actor and thereby avoid local optima in difficult exploration and large

state-action space settings. For Nactors distributed actors, Horgan et al. [2018]

used a per-actor ϵ-greedy exploration strategy whereby each actor i had a fixed

exploration probability ϵi = ϵ
1+ i

Nactors−1 ·α where ϵ = 0.4 and α = 0.7. The

authors demonstrated their approach achieving new state-of-the-art results on

Atari in a fraction of the training time of prior works.

45

Part I

Optimising the Physical Plane

47

Chapter 3

SOA Control for Sub-Nanosecond

Optical Switching

Abstract

Novel approaches to switching ultra-fast semiconductor optical amplifiers us-

ing artificial intelligence algorithms (particle swarm optimisation, ant colony

optimisation, and a genetic algorithm) are developed and applied both in sim-

ulation and experiment. Effective off-on switching (settling) times of 542 ps

are demonstrated with just 4.8% overshoot, achieving an order of magnitude

improvement over previous attempts described in the literature and standard

dampening techniques from control theory.

48 Chapter 3. SOA Control for Sub-Nanosecond Optical Switching

Publications related to this work (contributions indented):

• Hadi Alkharsan, Christopher W. F. Parsonson, Zacharaya Shabka,

Xun Mu, Alessandro Ottino, and Georgios Zervas, ‘Optimal and Low

Complexity Control of SOA-Based Optical Switching with Particle Swarm

Optimisation’, ECOC’22: Proceedings of the Forty-Eighth European Con-

ference on Optical Communication, 2022

– PSO code

• Thomas Gerard, Christopher W. F. Parsonson, Zacharaya Shabka,

Benn Thomsen, Polina Bayvel, Domanic Lavery, and Georgios Zervas,

‘AI-Optimised Tuneable Sources for Bandwidth-Scalable, Sub-Nanosecond

Wavelength Switching’, Optics Express, 2021

– PSO code, simulation & lab experiments, plots

• Christopher W. F. Parsonson, Zacharaya Shabka, W. Konrad Chlupka,

Bawang Goh, and Georgios Zervas, ‘Optimal Control of SOAs with Ar-

tificial Intelligence for Sub-Nanosecond Optical Switching’, Journal of

Lightwave Technology, 2020

– ACO/PSO/GA algorithm selection, PSO code, simulation & lab

experiments, paper writing, plots

• Thomas Gerard, Christopher W. F. Parsonson, Zacharaya Shabka,

Polina Bayvel, Domanic Lavery, and Georgios Zervas ‘SWIFT: Scalable

Ultra-Wideband Sub-Nanosecond Wavelength Switching for Data Centre

Networks’, arXiv, 2020

– PSO code, simulation & lab experiments, paper writing, plots

3.1. Introduction 49

3.1 Introduction

The challenge of all-optical switching in DCNs stems from the short bursty nature

of DCN traffic and the lack of an all-optical memory alternative to traditional

storage techniques during buffering and contention resolution. The small packets

which dominate DCN traffic (90% < 576 bytes [Clark et al., 2018]) take only

O(microsecond (µs)) to transfer. Therefore, to avoid an inefficient network with

a switching time that is comparable to or greater than the forwarding time, OCS

networks must be switched at O(ns) packet timescales [Benjamin et al., 2020].

However, current state-of-the-art commercial optical switches have O(> 100µs)

switching times [Farrington et al., 2010, Hamedazimi et al., 2014, Gray et al.,

2015, Mellette et al., 2017, Webster, 2022].

A promising technology for high-speed all-optical switching is the SOA.

SOAs have high and relatively flat optical gain bandwidths and can therefore

be used for both space and wavelength switching [Assadihaghi et al., 2010].

They also have inherently fast switching times (theoretically limited only by

their 100 picosecond (ps) carrier recombination lifetimes [Connelly, 2003]), a

high extinction/optical contrast ratio, and a relatively compact design. These

characteristics make SOAs an ideal candidate for low latency-, scalability-, and

footprint-constrained DCN switching.

However, SOAs have an intrinsic optical overshoot and oscillatory response

to electronic drive currents due to exciton density variations and spontaneous

emission in the gain region [Paradisi, 2019]. This results in the key advantage of

SOA DCN switching (rapid switching times) being negated, preventing sub-ns

switching. Prior attempts to fix these faults have failed to achieve sub-ns switch

times and cannot be scaled (see Section 3.3).

In this chapter, we propose a novel and scalable approach to optimising the

SOA driving signal in an automated fashion with three AI techniques; GA, ACO,

and PSO. These algorithms were chosen on the basis that they had previously

50 Chapter 3. SOA Control for Sub-Nanosecond Optical Switching

been applied to PID tuning in control theory [Kusuma et al., 2016]. Moreover,

AI techniques propose the benefit of not requiring prior knowledge of the SOA

and therefore provide a means of developing an optimisation method that is

generalisable to any SOA-based switch. All algorithms were shown to reduce the

settling and rise times to the O(100 ps) scale, and we experimentally demonstrate

an order of magnitude improvement over the previous switching speed world

record. The algorithms’ hyperparameters were tuned in an SOA equivalent circuit

simulation environment and their efficacy was demonstrated in an experimental

setup. AI performance was compared to that of both standard and state-of-the-

art literature approaches to optimising oscillating and overshooting systems, all

of which the AI algorithms outperformed. Of the AI algorithms, PSO was found

to have both the best performance and generalisability due to the additional

hyperparameters and search space restrictions that were required for GA and

ACO. All code and plotted data are freely available at Parsonson et al. [2020a]

and Parsonson et al. [2020b] respectively.

3.2 Background

3.2.1 Semiconductor Optical Amplifiers

SOA physics. The basic principle of an SOA’s operation is shown in Fig. 3.1. A

gain (or active) region is sandwiched between an n-type material, which has many

electrons in its conduction band, and a p-type material, which has many holes

in its valence band. A driving pump current is applied via metal electrodes to

supply excesses of electrons and holes to the n- and p-type materials respectively.

The excess holes and electrons pass into the gain region’s valence and conduction

bands respectively, forming electron-hole pairs called excitons. An optical input

signal is pumped into the gain region, stimulating electrons to recombine with

holes by stimulated emission (see Fig. 3.2). This relaxation causes a photon

3.2. Background 51

of energy equal to the gain region’s band gap to be released. This band gap is

chosen to be equal to the input optical signal’s wavelength, therefore the SOA’s

stimulated emission process increases the intensity of the optical signal, thus

creating an amplified optical output signal. Refer to Connelly [2003] for more

details on SOAs.

Figure 3.1: Schematic of an optical amplification device, such as a semiconductor
optical amplifier (SOA). An optical input signal is amplified in the gain region by
the process of stimulated emission, thereby outputting an optical signal with higher

intensity. This is an ‘all-optical’ process.

Figure 3.2: Schematic of the process of stimulated emission; the key phenomenon
behind optical amplification. An incident ‘inducing’ photon stimulates the relax-
ation and recombination of an electron and a hole, thus stimulating the emission of

a photon of energy equal to the bandgap across which the electron relaxed.

Optical switching with SOAs. SOAs have great potential as an ultra-fast

all-optical switch technology [Connelly, 2003, Assadihaghi et al., 2010]. Consider

52 Chapter 3. SOA Control for Sub-Nanosecond Optical Switching

a simple n× n = 2× 2 switch module, as shown in Fig. 3.3. In this case, there

are n = 2 input fibres and n = 2 output fibres, therefore a switch is needed

that can switch either of the two input fibres to either of the two output fibres.

To create such a switch, n2 = 4 SOAs are needed, with n2 = 4 optic fibres

connecting n = 2 input fibres to n = 2 output fibres having one SOA each. The

light from each input fibre is split into 1
n

= 1
2 intensity beams using a decoupler

(in this case, a 50:50 decoupler). Each SOA is either ‘on’ (an electrical pump

current is applied) or ‘off’ (no electrical pump current applied). In the ‘on’ state,

there is a sufficient density of excited states in the active region for stimulated

emission to be the dominant phenomenon occurring in the SOA. The light passes

through the SOA, and the gain region amplifies the light signal by n times,

thus re-amplifying the signal to its original intensity and compensating for the

intensity loss incurred by splitting the signal upon entry to the switch. In the

‘off’ state, there are not enough excited states in the active region for stimulated

emission to dominate. As such, the SOA has a high extinction ratio (the ratio

of photons absorbed to photons emitted), and the majority of the photons are

absorbed by the process of stimulated absorption (see Fig. 3.4). The end result

is an all-optical switch that can route light to any output port from any input

port by turning on the corresponding SOA.

Advantages of SOA switching. There are three primary advantages

of using SOAs for optical switching. (1) Ultra-fast switching: In theory, the

switching speed of an SOA is limited only by the carrier recombination lifetime

(how long, on average, it takes a hole and an electron to recombine), which

is O(ps). As such, SOA switches open up the possibility of ultra-fast sub-ns

switching, thereby reducing network latency and enabling OCS architectures.

(2) Scalability: The loss in signal intensity across each line in the switch with its

corresponding SOA is constant across all lines/SOAs, and does not increase as

the number of input/output ports is increased, thus enabling significant port

3.2. Background 53

Figure 3.3: Schematic of how SOAs can be used to create an all-optical switch.
Input light signals are split up and passed along all the possible routing paths. The
SOA along the routing path corresponding to the desired output fibre that the
input signal should be routed to is switched on, and all other SOAs are switched off.
The SOA that is switched on re-amplifies the split signal by stimulated emission
and allows it through to the output port. The SOAs that are switched off absorb
the signal by stimulated absorption. All the fibres and SOAs are held in a polymer

casing.

Figure 3.4: Schematic of the process of stimulated absorption. An incident
photon passes its energy on to an electron in the valence band, exciting an electron

to the conduction band.

scalability. (3) Low power consumption: Since SOA switching is a a passive all-

optical process which generates little to no heat, therefore the amount of power

needed to cool the switches is reduced. This significantly reduces the power

consumption and running cost of the network relative to electronic switches and

other optical switching technologies.

54 Chapter 3. SOA Control for Sub-Nanosecond Optical Switching

Challenges of SOA switching. Despite these advantages, SOAs present

two key challenges preventing their application to switching; power overshoot

and power ringing (see Fig. 3.5 for a visualisation of these phenomena). (1)

Power overshoot: An intrinsic SOA response to an injection of current is to

rapidly create excitons. The density of these excited states is initially high before

falling to a more constant level. Therefore, there is an initial ‘power overshoot’ in

the optical output power of an SOA switch; rather than a signal being a perfect

off-on step function, it will initially overshoot the ‘on’ power state. This can

lead to non-linearity problems related to the optical power in the transmission

fibre. (2) Power ringing: When the SOA is turned ‘on’ by applying a pulse

of electrical current, after the initial power overshoot, some excited carriers in

the gain region begin to relax by spontaneous emission (see Fig. 3.6). This

lowers the carrier density, therefore lowering the level of stimulated emission and

causing a reduction in SOA gain, thus reducing the power output of the SOA.

The carriers are then re-excited by the present current pulse, therefore increasing

the gain again, but with the aforementioned power overshoot. Eventually after

oscillations/ringing in the power output, the SOA gain settles on a constant

level, but this initial ringing (which occurs for a period of time known as the

settling time) leads to distortions in the signal being transmitted, and therefore

cannot be used. As a result, although the on-off time of an SOA is quick (on

the order of picoseconds), the effective on-off time (which must account for the

settling time) is much slower (on the order of nanoseconds).

In this chapter, we address these two challenges by applying AI techniques

to optimising the driving signal to the SOA such that the negative effects of

power overshoot and ringing are minimised.

3.2. Background 55

Figure 3.5: Visualisation of a typical SOA response when amplifying an optical
signal. The SOA’s optical output will overshoot the target settling point, and then

ring for some period of time before settling within ±5% of the steady state.

Figure 3.6: Schematic of the process of spontaneous emission. An electron in an
excited state spontaneously recombines with a hole, emitting a photon equal to the

energy across which the electron relaxed.

3.2.2 Evolutionary & Swarm Algorithms

Swarm and evolutionary algorithms are similar in that the methods in both

categories are inspired by natural biological phenomena, and both are composed

of a population of agents searching for near-optimal solutions. In fact, prior

56 Chapter 3. SOA Control for Sub-Nanosecond Optical Switching

to the mid-1990s, swarm algorithms were categorised as evolutionary methods

[Bansal, 2019]. Their modern distinction is due to their differing philosophies;

swarm algorithms utilise the emergent collective behaviour of their population,

retaining the individual identity of the agents over time, whereas evolutionary

algorithms rely on the concepts of natural selection and genetics, replacing

individual identities with new generations of agents over time.

Swarm algorithms. Swarm intelligence algorithms are composed of simple

agents which cooperate in a self-organised and decentralised manner such that a

so-called ‘intelligent’ collective search strategy emerges [Bonabeau et al., 1999,

Bansal, 2019]. Each agent constitutes a possible solution to the problem being

solved. At every iteration, each solution is stochastically updated according to

the ‘fitness’ (efficacy) of both the individual solution and the collective population

of solutions following various update rules and communication strategies. Unlike

many subsequent nature-inspired swarm methods, the first swarm algorithm,

stochastic diffusion search [Bishop, 1989], was built entirely from a comprehensive

mathematical framework. Later swarm algorithms such as ACO [Dorigo, 1992]

and PSO [Kennedy et al., 1995], which today are among the most widely used

[Bansal, 2019], were inspired by the natural social phenomena exhibited by ant

colonies, flocks of birds, and schools of fish.

Evolutionary algorithms. Evolutionary computation algorithms are also

composed of simple agents but, rather than cooperating, these agents typically

compete and get replaced by new generations of agents with advantageous

characteristic updates following the ‘survival of the fittest’ principle [De Jong

et al., 1997]. Evolutionary algorithms have been around for several decades,

with the first use of evolutionary programming thought to be in by Fraser [1958].

They generally work by randomly initialising a population of possible solutions,

iteratively modifying them to generate a new set of solutions via a series of

selection, crossover and mutation operations, and stochastically discarding poor

solutions while evolving fit solutions into the next generation. The evolved

3.2. Background 57

solutions should therefore improve generation-by-generation until a near-optimal

solution is converged on.

Swarm & evolutionary algorithms for optimisation. There are several

drawbacks evolutionary and swarm algorithms. Their efficacy often heavily

depends on the hyperparameters used to control their behaviour and exploration-

exploitation trade-offs, hence computationally costly tuning is often required.

Furthermore, their fundamental reliance on stochastic behaviour creates problems

with reproducibility and guaranteed global optimum convergence. As such,

quadratic optimisation problems with linear constraints or linear programming

problems of a reasonable size are best solved by classical methods with rigorous

mathematical frameworks and good convergence properties. However, many

real-world problems are unstructured, have complex, non-differentiable and

non-convex objective functions and, at scale, have too many variables to be

solved by classical techniques. Such problems are where the use of evolutionary

and swarm intelligence algorithms can become advantageous.

3.2.3 Genetic Algorithms

GAs are a family of evolutionary algorithms. They mimic the mechanism

of Darwinian evolution. In nature, each physical property (phenotype) of a

living organism, such as eye and hair colour, is determined by a set of rules

or instructions called genes. The genes are strung together into structures

called chromosomes. As such, it is the genes within the chromosomes which

determine the decoded phenotypic traits of the organism. These core concepts

and terminologies are used by GAs. GAs are local search metaheuristics which,

in the discrete case, can find near-optimal solutions to NP-hard CO problems.

Problem formulation. Given a problem Π described by triple (S, f, Ω),

a chromosome is a candidate solution s to Π. The string of genes making up

the chromosome are the solution’s variables. Each gene is usually encoded by

58 Chapter 3. SOA Control for Sub-Nanosecond Optical Switching

a binary (0s and 1s) string representation (for example, a variable with 256

possible values can be encoded by an 8-bit string), although for problems with

continuous variables, real-valued genes can also be used. The string of genes

(variables) making up the chromosome (solution) have a real phenotypic value

(solution output). The fitness of the resultant phenotype is determined by a

fitness (objective) function f (for example, the difference between the actual and

the target solution outputs, such as network latency vs. 0 latency). The task

is therefore to find the optimum set of gene values s∗ which result in the most

favourable performance as determined by the fitness function f(s). The fitness

function used is always problem-dependent. In nature, this function corresponds

to the organism’s ability to operate and survive in a given environment, and the

probability of selecting a given gene to pass on to future chromosomes during

reproduction is proportional to the chromosome’s fitness.

Optimisation process. As described by Kiranyaz [2014], the general pro-

cess for GA optimisation via Darwinian evolution is as follows. (1) Initialisation:

Generate a population of chromosomes whose gene strings are randomly ini-

tialised to yield a comprehensive range of possible solutions across the search

space (set of possible solutions) S. (2) Selection: For each successive generation,

first stochastically select chromosomes to use to breed into the next generation,

granting higher selection probabilities to chromosomes with greater fitness val-

ues. (3) Reproduction: Second, use genetic operators (such as ‘crossover’ and

‘mutation’) to breed children of the chosen chromosomes whose genes differ but

are similar to the original parent chromosomes. (4) Evaluation: Evaluate the

fitness of the child chromosomes and substitute them for any chromosomes in

the previous generation’s population with poorer fitness values so as to keep the

population size constant generation-to-generation. (5) Termination: If a target

fitness is achieved, if the maximum number of generations has been reached, or

if incremental fitness improvements have converged across multiple generations,

terminate the GA process. Otherwise, repeat steps 2-4.

3.2. Background 59

Algorithm 1 formulates this GA procedure for a population C of n chromo-

somes where each chromosome c occupies a phenotype state s in a search space

(set of possible solutions) S with fitness function f .

Algorithm 1 Genetic Algorithm
Require: n > 0,∀s ∈ S

Repeat (for each generation):
Select a set of parent chromosomes Cp ∈ C
Apply genetic operator(s) to reproduce a set of child chromosomes Cc

for cc in Cc do
cfitness

c = f(cc)
if cfitness

c > min(Cfitness) then
C[min(Cfitness)]← cc

end if
end for

until termination

Crossover & mutation. Given a pair of chromosomes from which to breed,

the key genetic operators in the above GA process are crossover and mutation.

Crossover is applied with probability PX , and is where the genetic information

of each chromosome is swapped about some string position L to create two new

chromosomes. For example, given two 16-bit chromosomes each made up of two

8-bit genes, [01001001 10001010] and [10100101 00001111], and given that L

has been sampled at L = 10, the crossover operator would produce the child

chromosomes [01001001 10001111] and [10100101 00001010]. Crossover allows

for accelerated search early on in the GA process and enables exploration of

sub-solution combinations for different chromosomes. However, as always with

AI techniques, there is a trade-off. Set PX too high and risk unstable fitness

values oscillating about the global optimum; set PX too low and suffer long

convergence times and stagnation at local optima. Similarly, mutation is applied

to the child chromosomes with probability PM , and is where a single randomly

chosen bit in the chromosome is flipped (0⇒ 1 or 1⇒ 0). Mutation increases

the ergodicity of GAs, compromising short-term fitness in exchange for greater

exploration and therefore improved long-term performance. As with PX , PM

60 Chapter 3. SOA Control for Sub-Nanosecond Optical Switching

must also be carefully tuned. Too low and non-ergodic genetic drift without

sufficient exploration will occur, resulting in convergence on local optima; too

high and the volatile stochastic nature of the mutations will prevent convergence

on the global optimum.

There are many different flavours of GA which generally differ according to

the exact operator(s) and problem formulation used, but all fundamentally work

as described above. For a comprehensive overview of GAs, refer to Kiranyaz

[2014].

3.2.4 Ant Colony Optimisation

ACO is a swarm intelligence metaheuristic. It mimics the process by which

ants forage for food. In nature, ants coordinate their activities via stigmergy; a

form of indirect communication via modification of the surrounding environment

by the deposition of pheromone chemicals. The trail pheromone is a specific

type of pheromone used to mark paths on the ground, such as from a nest to

a food source. When walking along a path, an ant deposits trail pheromones.

Other ants can smell these pheromones and tend to choose, stochastically, paths

with strong pheromone concentrations. When foraging begins, there are initially

no pheromone trails, hence the path chosen by each ant is uniformly random.

However, because pheromones have an evaporation rate, the first ant to find

food and return to the nest will leave the strongest pheromone trail, thereby

marking the shortest path. This in turn will bias the stochastic path choice of

other ants, increasing the pheromone concentration on the shortest path via

an autocatalytic process until most ants converge on the optimum path, with

a few random fluctuations in path choice retaining some level of exploration.

Hence, ants have a built-in optimisation capability; by using stochastic rules

based on local information, they can collectively find the shortest path between

two points.

3.2. Background 61

These core concepts form the basis of ACO. They can be abstracted beyond

shortest path identification to a variety of discrete optimisation problems via

a mapping. ACO is a constructive metaheuristic which can be used to find

near-optimal solutions to NP-hard CO problems.

Problem formulation. Consider a CO minimisation problem Π described

by the triple (S, f, Ω). The search space constitutes a finite set of discrete compo-

nents (variable values) C = {c1, c2, ..., cm}, where m is the number of components

in the search space. Each solution s is a finite sequence s = ⟨ci, cj, ..., ch, ...⟩ over

the elements in C. To solve (S, f, Ω), artificial ants iteratively build a solution

by constructing a path on the construction graph G = (C, L) whose edges L

fully connect the nodes C. Components ci ∈ C and connections li,j ∈ L have an

associated pheromone trail τ , which is the long-term memory of the ant search

process and which is updated by the ants themselves. They also have a heuristic

value η, which captures a priori or run-time information about the problem and

which is from a source other than the ants, such as the estimated cost of adding

a new component or connection to the partial solution under construction.

Optimisation process. Each ant k uses G = (C, L) to search for the

optimal solution s∗ ∈ S for (S, f, Ω). It has a memory Mk in which to store

information about the path followed (i.e. the partial solution built) so far. When

initialised at its start node, the ant selects a node j amongst its neighbourhood

of nodes Nk to move to. This selection is made by applying a stochastic decision

rule. The decision rule is a function of the available local τ and η values

associated with each possible action, the ant’s private memory Mk storing its

current partial solution, and the problem constraints Ω which prevent invalid

selections. Once the ant has iteratively added its selected component actions cj

to Mk until ≥ 1 termination conditions ek are met, the ant re-traces its path in

reverse and updates the pheromone trail values τ at each component.

The above ACO process can be deconstructed as follows [Dorigo and Stützle,

2004]. (1) Construct solutions: Move each ant through G by applying a stochastic

62 Chapter 3. SOA Control for Sub-Nanosecond Optical Switching

local decision process to incrementally build a solution to the optimisation

problem being solved until a termination condition is reached. (2) Update

pheromones: Update the pheromone values τ in G based on which components

were in each ant’s solution and on the evaporation rate (which forms a useful

‘forgetting’ mechanism by which rapid convergence on local optima can be

avoided). (3) Daemon actions: Implement custom centralised actions which

cannot be performed by single ants (e.g. collect global information to decide

which particular paths found by the ants were especially good and therefore

warrant additional pheromone deposits on their respective components).

Algorithm 2 formulates this ACO process for a colony K of n ants. Dorigo

and Stützle [2004] provide a more comprehensive overview of ACO.

Algorithm 2 Ant Colony Optimisation
Require: n > 0,∀s ∈ S

Repeat (for each iteration):
for k in K do

Repeat (for each step):
Stochastically choose an action j from neighbourhood Nk

Mk ←Mk, j
until termination

end for
Update τ values in G using ants’ solutions and any daemon actions

until convergence on near-optimal solution

3.2.5 Particle Swarm Optimisation

PSO is a swarm intelligence algorithm. It mimics the way in which bird flocks

and fish schools exhibit self-organised decentralised collective adaption to their

surrounding environment. PSO is a local search metaheuristic which can be

used to find near-optimal solutions to NP-hard CO problems.

Problem formulation. To solve a problem Π described by triple (S, f, Ω),

a swarm of n particles are initialised at random positions. Each particle position

represents a potential solution s ∈ S to Π and has m components (dimensions).

At iteration i, the position (solution) represented by particle j is denoted sj(i).

3.2. Background 63

The goal is for the swarm of particles to collectively navigate through the search

space S to find the optimal solution s∗ according to the fitness function f .

Optimisation process. At each sequential iteration in the PSO process,

the particle positions are updated by adding a velocity term vj(i), as in Eq. 3.1.

This velocity term is what drives the PSO process. It contains the personal

knowledge of the particle (the ‘cognitive component’, which is proportional to the

distance between sj(i) and the particle’s historic ‘personal best’ position pbestj
)

and the socially exchanged information of the particle’s neighbours (the ‘social

component’, which is proportional to the distance between sj(i) and the whole

swarm’s historic ‘global best’ position gbest). At each iteration i, the velocity

of particle j at the tth dimension in position sj(i) is updated according to Eq.

3.2, where C = {c1, c2, ..., cm}, conf1j and conf2j are the personal and social

‘confidence acceleration constants’ of particle j used to scale the contributions

of the cognitive and social components respectively, r1j and r2j are random

values in range [0, 1] sampled from a uniform distribution in order to introduce

stochastic exploration, and wj is the ‘momentum’ of particle j used to control

the exploration-exploitation inclinations of the particle.

sj(i + 1) = sj(i) + vj(i + 1) (3.1)

vjc(i+1) = wj ·vjc(i)+conf1j ·r1j(t)·
[
pbestjc

(i)− sjc(i)
]
+conf2j ·r2j(i)·[gbestc − sjc]

(3.2)

A higher conf1 encourages the particle to be more confident in itself and

explore more positions, but possibly take longer to converge on the optimum gbest.

On the other hand, a higher conf2 encourages the particle to trust the social

knowledge of its neighbours and converge faster on gbest, but be less inclined to

explore new positions. As such, conf1 and conf2 are critical in controlling the

64 Chapter 3. SOA Control for Sub-Nanosecond Optical Switching

exploration-exploitation trade-off of PSO. It has been shown that so long as

these variables satisfy Eq. 3.3, PSO is guaranteed to converge on some solution

rather than unstably oscillate around objective function minima [Van Den Bergh

and Engelbrecht, 2001].

0 ≤ 1
2 (conf1 + conf2)− 1 < w < 1 (3.3)

In a common variant of PSO, known as dynamic PSO [Clerc, 1999], w, conf1

and conf2 can be dynamically updated at the start of each iteration according to

Eqs. 3.4, 3.5 and 3.6 respectively, thereby avoiding being either too exploitative

or too exploratory at local iterations in the PSO process. w(0) is an ‘initial

inertia weight’ constant (0 ≤ w(0) < 1), w(ni) is the ‘final inertia weight’

constant (w(0) > w(ni)), hj(i) is the relative fitness improvement of particle j

at iteration i, and confmax and confmin are the maximum and minimum values

for the acceleration constants respectively.

wj(i + 1) = w(0) +
[
(w(ni)− w(0)) ·

(
ehj(i) − 1
ehj(i) + 1

)]
(3.4)

hj(i) =
pbestj

(i)− sj(i)
pbestj

(i) + sj(i)
(3.5)

conf1,2(i) = confmin + confmax

2 + confmax − confmin

2 + e−hj(i) − 1
e−hj(i) + 1 (3.6)

f is used to evaluate a given particle position sj, and in the case of a

minimisation problem instance, can be used to update pbestj
and gbest at each

iteration according to Eqs. 3.7 and 3.8 respectively.

pbestj
(i + 1) =


pbestj

(i), if f(sj(i + 1)) ≥ f(pbestj
(i))

sj(i + 1), otherwise
(3.7)

3.3. Related Work 65

gbest(i + 1) =


gbest(i), if f(sj(i + 1)) ≥ f(gbest(i))

sj(i + 1), otherwise
(3.8)

Kiranyaz [2014] gives a more in-depth overview of the PSO metaheuristic.

3.3 Related Work

Various alternatives to OCS solutions have been proposed as a means to enable

all-optical DCNs. These include optical loop memory [Srivastava et al., 2009],

optical burst switching (OBS) [Chen, 2005], and OPS [Benjamin et al., 2017,

Wang et al., 2018]. However, such techniques require more complex, expensive

and unscalable architectures than provided by OCS [Benjamin, 2020]. The

drawback of OCS is the aforementioned lack of a viable ultra-fast all-optical

switch.

PISIC techniques. There have been a range of previous attempts to bring

SOA switching speeds closer to their theoretical 100 ps optimum. A previous

study looking to optimise SOA output applied a PISIC driving signal to the

SOA [Gallep and Conforti, 2002]. This PISIC signal pre-excited carriers in the

SOA’s gain region, increasing the charge carrier density and the initial rate of

stimulated emission to reduce the 10% to 90% rise time from 2 ns to 500 ps.

However, this technique only considered rise time when evaluating SOA off-on

switching times. A more accurate off-on time is given by the settling time, which

is the time taken for the signal to settle within ±5% of the ‘on’ steady state.

Before settling, bits experience a variable signal to noise ratio, which impacts

the bit error rate (BER) and makes the signal unusable until settled, therefore

the switch is effectively ‘off’ during this period.

MISIC techniques. Later attempts looked at applying a MISIC driving

signal to remedy the SOA oscillatory and overshoot behaviour [Conforti and

66 Chapter 3. SOA Control for Sub-Nanosecond Optical Switching

Gallep, 2006, Ribeiro et al., 2009, Figueiredo et al., 2015]. As well as a pre-

impulse, the MISIC signal included a series of subsequent impulses to balance

the oscillations, reducing the rise time to 115 ps and the overshoot by 50%

[Figueiredo et al., 2015]. However, the method for generating an appropriate

pulse format was trial-and-error. Since each SOA has slightly different properties

and parasitic elements, the same MISIC format cannot be applied to different

SOAs, therefore a different format must be generated through this inefficient

manual process for each SOA, of which there will be thousands in a real DCN.

As such, MISIC is not scalable. Furthermore, the MISIC technique did not

consider the settling time, therefore the effective off-on switching time was still

several ns.

Surrounding component optimisation. More recent works used the

MISIC technique, but focused on closer integration between SOA microwave

elements to decrease rise time, instability, and non-linear behaviour [Figueiredo

et al., 2017]. Taglietti et al. [2018] adopted this principle but also applied a

Wiener filter. The filter was determined by the steady state value of the SOA

response. The mean squared error (MSE) between the output and the filter is

minimised by finding the optimal set of weight coefficients for the filter. The

work accomplished a 60% reduction in guard time, with the goal of reducing

guard time as much as possible such that the BER of the output did not exceed

a particular level. However, the study did not consider the settling time, which

is crucial for optimising the practical switching speed. Similarly, Sutili et al.

[2019] explored the optimisation of an SOA by means of both modification of the

driving signal and optimisation of the SOA’s microwave mounting. A best case

of 33% reduction in guard time was accomplished with an improved microwave

mounting architecture and a step driving signal, where various MISIC and

PISIC driving signals were also tested. This work demonstrated that significant

improvements in guard time could be derived exclusively from improvements

made to the microwave mounting of the SOA and that the improvement of

3.4. Method 67

the SOA’s output by optimisation of the driving signal did not preclude the

simultaneous improvement by optimisation of the microwave mounting. It is

therefore complementary to the results we present in this chapter, since we

do not consider microwave component optimisation, but rather only focus on

optimising the SOA drive signal.

The previous solutions discussed so far have had a design flow of first manually

coming up with a heuristic for a simplified model of an SOA, followed by

meticulous testing and tuning of the heuristic until good real world performance

is achieved. If some aspect of the problem is changed such as the SOA type used

or the desired shape of the output signal, this process must be repeated. In this

chapter we present AI as a fully automated optimisation technique for any SOA,

and experimentally demonstrate an order of magnitude improvement in switch

speed over the previous world record. A comparison of our work and that of the

literature is presented in Table 3.1.

3.4 Method

Problem formulation. Finding a near-optimal driving signal for an SOA

can be formulated using the CO framework presented in Section 2.5. Π can

be described by triple (S, f, Ω). Here, the set of candidate solutions S to Π

is the set of possible electrical signals (which are voltage vs. time functions)

available to drive the SOA with, where the constraints Ω are defined by the

equipment used (which determines signal resolution, frequency response, and

so on). Each solution s ∈ S is therefore made up of a series of m components

C = {c1, c2, ..., cm} where each component ct corresponds to a point in the

driving signal at time t. Each component can take one of 2u possible voltage

values, where u is the bit resolution of the driving signal generator. f is the

the objective function which takes the optical signal output by the SOA (an

intensity vs. time function with p points, here termed the ‘process variable’)

68 Chapter 3. SOA Control for Sub-Nanosecond Optical Switching

Table 3.1: Comparison of SOA Optimisation Techniques. (Best in bold).

• a Though exact value not reported in Sutili et al. [2019], it is referred to as being ‘below 500 ps’.

• b Comparison of the ASM mounting against the commercial STF mounting.

• c Exact value not reported in Sutili et al. [2019] so percentage improvement is (approximately) inferred
from a graph presented in Sutili et al. [2019]. Comparison made at bias current value corresponding to
the best case performance of the best performing ASM mount + drive combination and is compared
against the STF mount + drive at the same bias and for the same drive (step was best performing in
the reported metrics).

• d Comparison is made between the best and worst cases presented in Taglietti et al. [2018].

• e Several variants of the ‘MISIC’ format were tested in Figueiredo et al. [2015] and the best is used
here for comparison.

• f Comparison made with respect to the performance of the STEP driving signal presented in Figueiredo
et al. [2015].

Method
(Technique)

Reference Rise Time, ps
(Reduction,

%)

Settling Time,
ps

(Reduction,
%)

Overshoot, %
(Reduction,

%)

Guard Time,
ps

(Reduction,
%)

PSO
(Signal

Optimisation)

This work 454 ps
(35%)

547 ps
(85%)

5%
-

-
-

ACO
(Signal

Optimisation)

This work 413 ps
(41%)

560 ps
(85%)

4.8%
-

-
-

GA
(Signal

Optimisation)

This work 340 ps
(51%)

825 ps
(78%)

10.3%
-

-
-

PISIC
(Signal

Optimisation)

This work 502 ps
(28%)

4350 ps
(-17%)

40.5%
-

-
-

MISIC1
(Signal

Optimisation)

This work 502 ps
(28%)

4020 ps
(-8%)

undershot
-

-
-

Raised Cosine
(Signal

Optimisation)

This work 921 ps
(-32%)

4690 ps
(-26%)

undershot
-

-
-

PID Control
(Signal

Optimisation)

This work 501 ps
(28%)

4020 ps
(-8%)

2.3%
-

-
-

ASM Mounting +
STEP Drive
(Microwave

Mounting
Optimisation)

Sutili et al. [2019] -
-

-
-

≈ 5% [c]

(≈ 75% [b,c])
≈ 500 ps [a]

(≈ 33% [b,c])

STEP Drive +
Wiener Filtering

(Signal
Optimisation +

Filtering)

Taglietti et al. [2018] -
-

-
-

-
-

286 ps
(60% [d])

PISIC Drive
(Signal

Optimisation)

Figueiredo et al. [2015] 115 ps
(34% [f])

-
-

25%
(-56% [f])

-
-

MISIC-6 Drive [e]

(Signal
Optimisation)

Figueiredo et al. [2015] 115 ps
(34% [f])

-
-

12.5%
(22% [f])

-
-

3.4. Method 69

when driven with the electrical signal s ∈ S (the ‘input control signal’ with

m points, here termed OP) and evaluates the driving signal’s performance by

assigning it a scalar objective function value. We define f (Eq. 3.9) as the

MSE between the PV and a target ‘set point’ (SP), where SP is an ideal optical

output with 0 rise time, settling time and overshoot. Thus, this CO problem is a

minimisation problem where the goal is to find the optimal driving signal s∗ ∈ S̃

which minimises the objective function value f(s) such that f(s∗) ≤ f(s)∀s ∈ S̃.

f(PV) = 1
p

p∑
i=1

(PVi − SPi)2 (3.9)

Using the above CO formulation, GA, ACO and PSO can all be applied to

the CO problem of finding a near-optimal driving signal for a given SOA, as

will now be described. The hyperparameter tuning process and settings used for

each AI technique are given in Section 3.7.1.

Genetic algorithm. A chromosome represented a driving signal and a

gene represented the voltage value for a given point in the driving signal. For

a u-bit driving signal, each gene was encoded with a u-bit binary string. The

phenotype resulting from the string of genes making up the chromosome was the

corresponding SOA optical output whose fitness was evaluated by the objective

function in Eq. 3.9. At each generation, ntournsize individuals were stochastically

selected to breed into the next generation from a population of n chromosomes

using the mutation and crossover genetic operators. Mutation was implemented

using Gaussian mutation [Hinterding, 1995] where normally distributed noise

of mean µ and standard deviation σ was applied to change a gene’s value with

mutation probability PM . Crossover between two individuals in ntournsize was

applied with probability PX . Through the process of evolution, the population

of n chromosomes would eventually converge on a near-optimal driving signal s∗

for the SOA.

Ant colony optimisation. A graph G with m clusters (one cluster for

70 Chapter 3. SOA Control for Sub-Nanosecond Optical Switching

each component) where each cluster had 2u nodes (one node for each possible

component value) was initialised. A population of n ants started at the first

cluster (point in the signal), chose a node (signal voltage value) in the cluster,

and then moved to the next cluster. In this way, each ant could travel through G

and iteratively build a driving signal solution s by choosing nodes in G. Defining

the strength of the pheromone trail using the objective function in Eq. 3.9, an

associated evaporation rate, and a probability of random path selection, the

ants could iteratively converge on a near-optimal driving signal s∗ for the SOA.

Particle swarm optimisation. A visualisation of how PSO was applied to

SOA optimisation is given in Fig. 3.7. A population of n particles were initialised

at random positions, where each position was an m-component driving signal.

Since experimental results showed spurious overshoots after the rising edge and

therefore an increase in the settling time, the PSO search space was bounded by

a PISIC-shaped ‘shell’ beyond which the particle dimensions could not assume

values. An added benefit of the shell was a reduction in the complexity of the

problem and therefore also the convergence time. The shell area was a PISIC

signal with a leading edge whose width was defined as some fraction of the ‘on’

period of the signal. The particles could then be flown through the search space,

updating pbest for each particle and gbest for the population at each ith iteration

according to Eq. 3.9 until the particles converged on a near-optimal driving

signal s∗ for the SOA.

3.5 Simulation Setup

To enable rapid hyperparameter tuning, rather than relying on laboratory

experiments, it was useful to first simulate an SOA and use this simulation

environment to tune the AI hyperparameters and to test novel ideas such as the

PISIC shell.

3.5. Simulation Setup 71

Figure 3.7: Visualisation of how PSO was applied to SOA optimisation.

The shortcomings of rate equations. SOAs are typically modelled

using simple rate equations. However, as shown by Ghafouri-Shiraz [2004], the

electrical parasitics of an SOA and its surrounding packaging degrade optical

signals by broadening the output optical pulse width, reducing the peak optical

72 Chapter 3. SOA Control for Sub-Nanosecond Optical Switching

power (thereby reducing optical contrast), and causing a slight time delay in

the emitted optical pulse. Additionally, they alter the relaxation frequency of

the SOA output oscillations. As such, modelling the electrical parasitics was

crucial to building a simulation environment in which to optimise switching. As

described by Ghafouri-Shiraz [2004], Figueiredo et al. [2011], and Tucker et al.

[1984], assuming a small circuit model, microwave equivalent circuits can be

used to more accurately simulate semiconductor diodes by accounting for these

electrical parasitics. Therefore, equivalent circuits were the chosen approach to

SOA modelling for this chapter.

Equivalent circuit modelling. The electrical parasitics were split into

two categories; the parasitics from the microwave injection current components

(the 50Ω resistor of the source, the metallic plate, and the SOA sub-mount

plate and wire parasitics) and the SOA’s intrinsic parasitics [Figueiredo et al.,

2015]. Fig. 3.8a shows the microwave injection current parasitics modelled as an

equivalent circuit, and Fig. 3.8b shows the SOA’s intrinsic parasitics, diffusion

characteristics, and gain region. These two equivalent circuits were connected to

form a single SOA model that accounted for all the electrical parasitics. Since at

low voltages (< 0.8V) the current (I) - voltage (V) relationship can be described

by Equation 3.10, the ideality factor η and the saturation current Is could be

calculated using the semi-logarithmic I-V curve of the SOA in Fig. 3.9. Defining

the threshold current (IT R) as the bias current needed for stimulated emission

to become more dominant than spontaneous emission, the SOA small signal

model was split into two parts; below IT R (2-50 mA) and above IT R (75-110

mA). The equivalent circuits used to model the gain region of these two parts

are shown in Fig. 3.10.

ln
(
I
)

= ln
(
Is

)
+
(

1
η

)(
qV

KbT

)
(3.10)

Simulating below and above the threshold current. For the below

3.5. Simulation Setup 73

(a) (b)

Figure 3.8: Equivalent circuit diagrams of an SOA’s (a) microwave injection
current parasitics and (b) intrinsic parasitics, diffusion characteristics and gain

region.

Figure 3.9: Semi-logarithmic I-V plot for the SOA used to calculate η and Is.

(a) (b)

Figure 3.10: Equivalent circuit diagram of the SOA gain region (a) below IT R

and (b) above IT R.

IT R simulation, Equations 3.11 - 3.13 were used to calculate the space-charge

capacitance Csc, the diffusion capacitance Cd, and the Schockley diode resistance

Rd (where Vdc = applied voltage). Taking these values and extrapolating them

to higher bias currents, the SOA was modelled for above IT R. Equations 3.14

- 3.16 were used to calculate the space-charge capacitance (Csc), the diffusion

capacitance (Cd), the resistances R1, Rs1 and Rs2 which together modelled the

SOA optical output oscillation dampening due to spontaneous and stimulated

74 Chapter 3. SOA Control for Sub-Nanosecond Optical Switching

emission, and the inductance (Ls). The SOA oscillations that arise from the

dynamic exchange of energy between photons and SOA active region carriers

were modelled by the charge-discharge effect between the capacitance Csc + Cd

and the inductance Ls. The internal and external constants for these equations

were taken from the literature values for a typical silicon laser diode [Ghafouri-

Shiraz, 2004, Figueiredo et al., 2011, Tucker et al., 1984]. All constant values

used are summarised in Tables 3.2 and 3.3.

Rd = ηKbT

qIs

1

e
qVdc

ηKbT

(3.11)

Cd = τn

Rd

(3.12)

Csc = Csc0

(
1− Vdc

VD

)− 1
2

(3.13)

R1 = Rd

1 + γτnS0
(3.14)

Rs1 = ϵRd

γτn

(3.15)

Rs2 = βΓRdτpItA

αγτnS2
0

(3.16)

Ls = Rdτp

γτnS0
(3.17)

Obtaining an input-output model. It was found that the SOA in the

experimental setup had the optimum trade-off between gain and signal noise at

a bias current of 75 mA, therefore the simulated SOA was biased at this current.

Using MATLAB’s Simulink tool, a transfer function (TF) for the SOA equivalent

circuit was obtained and simplified as shown in Eq. 3.18 with the constants

3.5. Simulation Setup 75

Table 3.2: Internal parameters used to model the SOA as an equivalent circuit.

Name Symbol Value Units

Ideality factor η 1.59 −
Saturation current Is 3.48e−11 A

Threshold current IT R 70 mA

Boltzmann constant Kb 1.381e−23 JK−1

Temperature T 298.15 K

Electron charge q 1.602e−19 C

Charge carrier lifetime τn 3 ns
Zero-bias space-charge capacitance Csc0 1 pF

Built-in potential VD 1.3 V

Gain compression factor ϵ 4.5e−12 m3

Boltzmann constant Kb 1.381e−12 JK−1

Gain coefficient × group velocity γ 2.4e−12 m3s−1

Spontaneous emission factor β e−4 −
Optical confinement factor Γ 0.4 −
Photon lifetime τp 1 ps

Active region volume V 4e−16 m3

Charge × active region volume α 6.41e−25 Cm3

Active region carrier density NT R e24 m−3

SOA leakage current IF 15 mA

Table 3.3: External parameters used to model the SOA’s chip and packaging
parasitics as an equivalent circuit.

Origin Symbol Value Units

Source Ca 0.25 pF

Source La 0.34 nH

Source Ra 50 Ω
Metallic plate Cb 81 pF

Metallic plate Lb 1.38 nH

Sub-mount Cc 1.2 pF

Sub-mount Lc 2.5 nH

Sub-mount Rc 0.9 Ω
Sub-mount Cc1 30 pF

76 Chapter 3. SOA Control for Sub-Nanosecond Optical Switching

Table 3.4: Constants used in the equivalent circuit transfer function.

a9 1.65 a4 1.37× 1052

a8 4.56× 1010 a3 2.82× 1062

a7 3.05× 1021 a2 9.20× 1071

a6 4.76× 1031 a1 1.69× 1081

a5 1.70× 1042 a0 2.40× 1090

defined in Table 3.4. This allowed for custom drive signals to be generated, sent

to the biased SOA equivalent circuit, and an optical output measured. We note

that the exponents in the TF of Table 3.4 are unusually high. To verify that

the TF accurately modelled the SOA, Section 3.7.1 shows that the theoretical

and experimental optical response frequency of the modelled and the real SOA

closely matched oneanother. One possible reason for the high exponents could be

overfitting to the complex relationships of the simulation. Another explanation

could be that the setup of the MATLAB simulation was not conducive to easy

interpretation by a TF model. However, given that the obtained TF accurately

modelled the optical response of the experimental device, the TF model’s fidelity

was deemed sufficient for the purposes of this chapter. A full investigation of

the high exponents and the TF model is left for further work.

TF = 2.01× 1085∑9
i=0 aisi

(3.18)

Analytically optimising SOAs is difficult. As illustrated by the sim-

ulation methodology outlined above, the difficulty with SOA modelling, and

subsequently also SOA switching, is that there are many variables whose values

are difficult to experimentally measure, and which vary significantly even for

same-specification SOAs due to parasitics introduced during manufacturing and

packaging. Re-measuring these constants for a new SOA would be cumbersome,

difficult, and unfruitful since broad assumptions would still need to be made.

Furthermore, scaling this bespoke-modelling to 1,000s of SOAs in a single DCN

3.6. Laboratory Setup 77

would be unrealistic. As such, analytical solutions to SOA switching are not

beneficial. Additionally, different driving circuit setups with different amplifiers,

bias tees, cabling, and so on influence the shape of the driving signal that arrives

at the SOA, thereby requiring more manual tuning every time the equipment

surrounding the SOA is changed. This highlights the need for the partially

‘model-free’ AI approaches proposed in this chapter, which neither make or

require any assumptions about the SOA or the surrounding driving circuit they

are optimising, resulting in their optimised driving signals being superior both

in terms of performance and scalability relative to traditional analytical and/or

manual methods. Here, we borrow the term ‘model-free’ from the field of rein-

forcement learning, meaning an algorithm that does not initially know anything

about the environment in which it must perform its optimisation [Sutton and

Barto, 2018]. In Section 3.7.1, we justify the claim that tuning AI algorithms

in a single simulation environment enables the same AI hyperparameters to be

transferred to unseen SOAs.

3.6 Laboratory Setup

The experimental setup is shown in Fig. 3.11. An INPhenix-IPSAD1513C-5113

SOA with a 3 dB bandwidth of 69 nm, a small signal gain of 20.8 dB, a 0-140 mA

bias current range, a saturation output power of 10 dBm, a response frequency

of 0.6 GHz, and a noise figure of 7.0 dB was used. An SHF 100 BP RF amplifier

was selected by calculating the amplified MSE relative to the direct signal for

different amplifiers, enabling a full dynamic range peak-to-peak voltage of 7V.

A 50Ω resistor was placed before the SOA, allowing for the maximum allowed

dynamic current range of 140 mA to be applied across the SOA.

The 70 mA optimum SOA bias current was found by measuring how MSE,

optical signal-to-noise ratio (OSNR), rise time, overshoot, and optical gain varied

with current. A 70 mA bias using a -2.5 dBm SOA input laser power produced

78 Chapter 3. SOA Control for Sub-Nanosecond Optical Switching

the lowest rise time and MSE. The SOA was therefore driven between 0 and

140 mA centred at 70 mA. The other equipment used included a Lightwave

7900b lasing system, an Agilent 8156A optical attenuator, an LDX-3200 Series

bias current source, a Tektronix 7122B AWG with 12 GSPS sampling frequency,

an Anritsu M59740A optical spectrum analyser (OSA), and an Agilent 86100C

oscilloscope (OSC) with an embedded photodiode. The RF signal going into the

SOA had a rise time of 180 ps, therefore this was the best possible rise time (and

settling time) that the SOA could have achieved. Throughout the experiments,

a wavelength of 1,545 nm was used.

Figure 3.11: Diagram of the SOA experimental setup used.

3.7. Results & Discussion 79

3.7 Results & Discussion

3.7.1 Hyperparameter Tuning & Generality Testing in

Simulation

Verifying simulation fidelity. To verify that the equivalent circuit was

accurately simulating the SOA, Fig. 3.12 compares the frequency response of

the theoretical TF with the experimental SOA. The TF had a -3dB bandwidth

of 0.5 GHz (around 700 ps rise time) compared to the experimental SOA’s

0.6 GHz (around 550 ps rise time). These values were similar to one another

and consistent with both the theoretical and experimental optical responses.

The differences between the responses were due to the use of equivalent circuit

parameters from the literature which did not exactly match those of our SOA.

Figure 3.12: Frequency responses of the theoretical transfer function (TF) and
the experimental SOA (Exp).

PSO hyperparameter tuning. The simulation environment enabled the

PSO hyperparameters to be rapidly tuned by plotting the PSO learning curve

(MSE vs. number of iterations). Since the same PSO algorithm ran multiple

times may converge on different minima, each PSO version with its unique

hyperparameters was ran 10 times and the 10 corresponding learning curves

plotted on the same graph to get a ‘cost spread’ (i.e. how much the converged

solution’s MSE varied between PSO runs). A lower cost spread gave greater

80 Chapter 3. SOA Control for Sub-Nanosecond Optical Switching

reliability that PSO had converged on the best solution that it could find rather

than getting stuck in a local minimum.

To help with convergence time and performance, some additional hyperpa-

rameters were defined:

• itermax = Maximum number of iterations that PSO could evolve through

before termination. Higher gives more time for convergence but longer

total optimisation time.

• max_v_f = Factor controlling the maximum velocity a particle could

move with at each iteration. Higher can improve convergence time but, if

too high, particles may oscillate around the optimum and never converge.

• on_s_f and off_s_f = ‘On’ and ‘off’ suppression factors used to set the

minimum and maximum driving signal amplitudes the particle positions

could take when the step signal was ‘on’ and ‘off’ respectively. Lower will

restrict the particle search space to make the problem tractable for the

algorithm, but too low will impact the generalisability of the algorithm to

any SOA.

• shell_w_f = Factor by which to multiply the ‘on’ time of the signal to get

the width of the leading edge of the PISIC shell. Higher (wider) value will

give the algorithm more freedom to rise over a longer period at the leading

edge of the signal and improve generalisability, but will also increase the

size of the search space and impact convergence.

To begin with, it was found that using dynamic PSO whereby w, c1 and c2

were adapted at the beginning of each generation led to multiple advantages.

First, the solution found by 10 dynamic particles had the same MSE as that

found by 2,560 static particles, reducing the computation time by a factor of

256. Second, the final driving signal found by adaptive PSO was significantly

less noisy since it was less prone to local minima. Third, the final MSE found

3.7. Results & Discussion 81

was 63% lower. Fourth, although the relative cost spread of dynamic PSO was

72% compared to 50% due to the lower MSE, the absolute cost spread was just

8.7× 10−13 compared to 140× 10−13.

Pursuing with dynamic PSO, it was found that placing a ‘PISIC shell’ on

the search space (with shell_w_f = 0.1) beyond which the particles could not

travel led to an absolute cost spread of 6.9× 10−13 and a further 14% reduction

in the final cost (despite initial costs being higher due to the fact that PISIC

signals lead to greater overshoot and subsequently also greater oscillations). It

was also found that initialising one of the n particle positions as a step driving

signal improved the convergence time by a factor of two.

Using dynamic PSO, a PISIC shell and an embedded step, the following

hyperparameter values were found to give the best spread, final cost and conver-

gence time: itermax = 150, n = 160, max_v_f = 0.05, w(0) = 0.9, w(nt) = 0.5,

cmin = 0.1, cmax = 2.5, on_s_f = 2.0, and off_s_f = 0.2. This final tuning

resulted in a cost spread of just 1.8%. The evolution of this PSO tuning process

is summarised in Fig. 3.13, where the learning curves for the above sets of

hyperparameters have been plotted in red, orange, blue and green respectively.

The final PSO SOA output, shown in Fig. 3.13, had a rise time, settling

time and overshoot of 669 ps, 669 ps and 3.7% respectively. Fig. 3.13 also shows

the optical response to a step driving signal, showing a rise time, settling time

and overshoot of 669 ps, 4.85 ns and 31.1% respectively. Thus, the simulations

indicated that the settling time (and therefore the effective off-on switching time)

could be reduced by a factor of 7.2 and the overshoot by a factor of 8.4 compared

to a step. Although rise time remained unimproved, the laboratory results in

Section 3.7.2 show that, for a real SOA with optical drift, PSO improves all

three parameters.

ACO hyperparameter tuning. The important hyperparameters with

respect to ACO (specifically the Ant Colony System algorithm used here) were

the pheromone exponent (where higher values encourage more exploitation

82 Chapter 3. SOA Control for Sub-Nanosecond Optical Switching

of previously found paths), the evaporation exponent (where higher values

discourage exploitation of previously found paths), the probability of an ant

travelling along a randomly selected path, and the number of ants n.

Parameters were tuned by means of running optimisation routines with one

hyperparameter varying across a range of values and the rest kept constant. For

each MSE value, the learning curve from 10 different runs were plotted against

each other. Just as with PSO, parameter values were selected to prioritise the

minimisation of cost spread to ensure that the optimisation technique could

give consistent results when used on different occasions. Firstly, it was found

that beyond 200 ants, the cost spread did not improve significantly. Similarly,

regardless of the spread, the ACO routine was typically converging after between

60 and 75 generations, so a generation cap of 100 was imposed since this was

sufficient to guarantee convergence. The values for the other parameters were

the pheromone constant α = 0.25, the evaporation constant ρ = 0.5 and the

exploration probability p = 0.1. It was also found that minimising the search

space by reducing the dynamic range of the signal to ±25% centred at 50% of the

maximum shortened convergence time without degradation of the final signal,

which had the advantage of making matrices memory sizes manageable. No

further hyperparameters, such as the PISIC shell applied with the PSO method,

were utilised, which is more desirable since fewer hyperparameters simplify the

tuning process.

As seen in Fig. 3.13, the spread of the ACO routine was reduced from 23%

to 14.9% through tuning, but was still less consistent than the 1.8% spread of

the PSO algorithm. Fig. 3.13 shows the convergence of the Ant Colony System

algorithm for various hyperparameter combinations (described in the figure’s

caption). While the spread in the early iterations of the routine is explained by

the embedding of a square signal in the PSO routine described above (since it is

extremely unlikely to randomly initialise a signal better than a square and the

ACO does not use any sort of initial signal embedding), the spread in the later

3.7. Results & Discussion 83

stages is thought to be due to some practical limitations of the ACO optimisation

method. For N parameters with M values each, the ACO routine requires 2

(N2 ×M2) matrices (point-wise multiplied to make a third). A 100 point signal

with 100 possible values per point gives a matrix with 100, 000, 000 elements.

Implemented with the popular NumPy Python library, a minimum of 8 bytes

per floating point means such a matrix is on the order of gigabytes. Given the

relatively low power PC used in the experiment, restrictions on the state space

had to be imposed due to memory limitations. This meant that rather than

optimising each point on the signal (240) with the maximum resolution allowed

by the AWG (8 bit = 256 points), only 180 points (those in the HIGH state

of the initial driving step signal) were optimised with a resolution of 50 points.

This meant that the state space viewed by the ACO routine was more strongly

discretised than that viewed by a method (such as PSO) with lower memory

requirements, limiting how optimum the generated signal can be and how well

ACO could generalise to other SOAs. Nevertheless, as will be seen, ACO still

produced driving signals that improved upon previous methods. The final ACO

tuning output, shown in Fig. 3.13, had a rise time, settling time and overshoot

of 753 ps, 1.58 ns and 9.1% respectively.

GA hyperparameter tuning. GA often uses a range of different hyperpa-

rameters (e.g. tournsize for Tournament Selection; or µ, σ, and PM for Gaussian

Mutation). This results in an overall high number of hyperparameters which

might significantly impact the probability of the GA getting stuck in a local

minimum as well as the speed of convergence. The high number of hyperparam-

eters also meant that there were more values to fine-tune, which made tuning

both more complex and time consuming, thereby reducing its generalisability.

Since the high number of hyperparameters already impacted generalisability, we

refrained from restricting the search space (as done with ACO and with the PSO

PISIC shell) to try to still allow for as much generalisability as possible, but this

would have the knock-on effect of poorer convergence and a lesser settled signal.

84 Chapter 3. SOA Control for Sub-Nanosecond Optical Switching

However, as demonstrated in Fig. 3.14, GA was still able to generalise fairly

well to 10 different SOAs.

The DEAP Python library was used to implement GA, and came with a

set of suggested default hyperparameter values. These were varied using grid

search over 61 optimisations. A limit on the number of generations was set to

500, which was found to be sufficient for convergence.

Mutation was implemented using Gaussian Mutation, which has a probability

PM of changing each of an individual’s points by applying normally distributed

noise of mean µ and standard deviation σ. Using a negative µ led to a solution

with lower values, while a positive µ did the opposite - each leading to a lower

overall performance, so µ was set to 0. Decreasing PM or σ slowed down the

process as it reduced the overall mutation speed, but increasing either one too

much led to the GA getting stuck at local minima. By performing grid search

on the hyperparameters, the optimal values were found to be 0.06 and 0.15

respectively. A population size of 60 led to the fastest initial convergence speed

(per number of fitness function evaluations), however, the higher number of 100

individuals in a population led to a better overall solution after many generations.

Additionally, both PX and PM were increased significantly from 0.6 to 0.9 and

from 0.05 to 0.3 respectively. Increasing ntournsize above 4 did not have an impact

on the convergence, whereas using the values of 2 and 3 significantly slowed

down the process. Most hyperparameters did not change by much from the

DEAP library’s default values since the initial values were almost optimal and

changing them led to a slower convergence.

Fig. 3.13 shows the 10 learning curves for the default hyper parameters (red)

and the optimised parameters (green), where the cost spread was reduced from

58.6% to 10.8%. Fig. 3.13 also shows the simulated SOA output of the tuned

GA algorithm with a rise time, settling time and overshoot of 799 ps, 2.55 ns,

and 9.0% respectively.

Generalising to Unseen SOAs. The hyperparameters of the AI algorithms

3.7. Results & Discussion 85

(a) (b) (c)

(d) (e) (f)

Figure 3.13: Simulated SOA optical response to (a) PSO, (b) ACO, and (c) GA
driving signals relative to a standard step input. For reference, the target SPs used
have also been plotted. Learning curves showing how both the cost spread and the
optimum solution improved as the (d) PSO, (e) ACO, and (f) GA algorithms were
tuned, showing 10 learning curves for each set of hyperparameters. The curves
for the optimum hyperparameters have been plotted in green. For PSO in (d),
some additional information has been plotted: i) No dynamic PSO, PISIC shell, or
embedded step (red), ii) no PISIC shell or embedded step (blue), iii) no embedded
step (orange), and iv) the final PSO algorithm (green, also plotted on separate
graph (inserted)). For GA, the i) default DEAP library constants (red) and ii)
optimised (green) hyperparameter learning curves have been plotted. For ACO,
the blue curve is for a run with a larger pheromone exponent (0.5) value than the
optimum, and the red is for a larger dynamic range on the signal search space

(±50%).

86 Chapter 3. SOA Control for Sub-Nanosecond Optical Switching

can be used to address the general problem of ‘SOA optimisation’. This is because

the hyperparameters are only for restricting the search space to reduce the size

of the problem, and restricting how much the algorithm can change its solution

between iterations; they are specific to the general SOA optimisation problem,

but not to a specific SOA. The equivalent circuit simulation environment provided

a useful test bed in which to tune the algorithm hyperparameters and allow

optimisation of any SOA (even though drive signal solutions derived from

simulations are not directly transferable to experiment).

To test the above claim that these algorithms can in theory be generalised to

any SOA, we generated 10 different TFs each modelling a different SOA. These

were generated by multiplying the coefficients in Table 3.4 by various factors

(summarised in Table 3.6 so as to be reproducible), thereby simulating SOAs

with different characteristics. The optical outputs of these different SOAs in

response to the same step driving signal are shown in Fig. 3.14. Using the

PSO and GA algorithms with the same hyperparameters, all 10 of these SOAs

were able to be optimised with no changes to the algorithms, as shown in Fig.

3.14 (where the AI electrical drive signals have been included for reference).

Due to search space restrictions, ACO could not generalise. For all 10 SOAs, a

common target set point was chosen. The set point was defined as a perfect 0

overshoot, rise time and settling time step response based on the steady states

of the initial step response of one of the simulated SOA’s. However, the target

can be arbitrarily defined by the user if a different optical response is required,

demonstrating the flexibility of the AI algorithms to optimise optical outputs

with respect to specific problem requirements. Relative to this target set point,

the performances are summarised in Table 3.5. Signals that did not settle have

been marked as ‘-’ and excluded from performance summary metrics. PSO

had the greatest generalisability to optimising the settling times of different

SOAs. Researchers in our field should therefore be able to black box our PSO AI

approach and optimise their SOAs even though they will have different equivalent

3.7. Results & Discussion 87

Table 3.5: Performance summary for the techniques applied to the 10 different
simulated SOAs, given in the format min | max | mean | standard deviation (best

in bold).

• Signals marked ‘-’ never settled.

Technique Rise Time (ps) Settling Time (ns) Overshoot (%)
Step 502, 753, 653, 86.4 3.1, -, 5.8, 3.0 16.5, 70.4, 39.2, 14.1
PSO 669, 837, 703, 58.5 0.67, 1.3, 0.87, 0.20 2.51, 6.01, 4.46, 1.22
ACO 502, 753, 644, 79.4 1.6, -, 2.6, 0.82 11.1, 70.4, 32.6, 17.0
GA 760, 930, 793, 58.5 1.0, 1.5, 1.3, 1.5 4.31, 9.36, 7.04, 1.54

circuit components from the specific device(s) optimised in this chapter.

(a)

(b) (c)

(d) (e)

(f) (g)

Figure 3.14: Simulated SOA optical responses of 10 different SOAs (each with
a different transfer function) to (a) step, (c) PSO, (e) ACO, and (g) GA, and
the corresponding driving signals for (b) PSO, (d) ACO, and (f) GA. All AI
optimisations were done with the same hyperparameters and a common target SP.

88 Chapter 3. SOA Control for Sub-Nanosecond Optical Switching

Table 3.6: Factor(s) used on the EC transfer function coefficients to simulate
different SOAs (factor = 1 unless stated otherwise).

TF Component: Numerator a0 a1 a2
Factor(s): 1.0, 1.2, 1.4 0.8 0.7, 0.8, 1.2 1.05, 1.1, 1.2

3.7.2 Optimising an SOA in the Laboratory

Figure 3.15: Experimental SOA responses to the step, PISIC, MISIC1, raised
cosine and PID driving signals.

In this section the experimental results for the SOA responses to step,

PISIC, MISIC, raised cosine, PID and AI driving signals have been compared.

The objective was to reduce the off-on switching time and power oscillations

(measured by the settling time and overshoot metrics).

Step. A step driving signal was the simplest format used to drive the SOA.

Fig. 3.15 (which has been normalised with respect to the steady state value as

done by Figueiredo et al. [2015] for easy comparison) shows the SOA optical

response to a step driving signal, resulting in a rise time, settling time and

overshoot of 697 ps, 3.72 ns and 0.0% (since it undershot the steady state)

respectively.

PISIC. The PISIC format proposed by Gallep and Conforti [2002] was

applied to the SOA with 2.95V step + 4.05V impulse, and the response is shown

in Fig. 3.15 with a rise time, settling time and overshoot of 502 ps, 4.35 ns

and 40.5% respectively. The form of the PISIC pulse used was optimised for

the SOA in use, where different step-impulse voltage combinations (as done by

3.7. Results & Discussion 89

Figueiredo et al. [2015]) were tested, as well as varying widths of the pre-impulse

section of the PISIC signal as a percentage of the total signal length centered at

the percentage used by Figueiredo et al. [2015]. It was found that a 500ps pulse

width gave the best results.

MISIC. The MISIC 1-6 bit-sequences proposed by Figueiredo et al. [2015]

were applied with 2.95V step + 4.05V impulse, where the same step-impulse

voltage combinations were tested as for PISIC. The format with the best per-

formance was MISIC1, whose response is shown in Fig. 3.15 with a rise time,

settling time and overshoot of 502 ps, 4.02 ns and 0.0% (undershot) respectively.

Raised cosine. A popular approach to optimising oscillating systems in

control theory is the raised cosine approach, whereby the rising step for a signal of

period T is adapted to a rising cosine defined by the frequency-domain piecewise

function in (3.19). As β increases (0 ≤ β ≤ 1), the rate of signal rise decreases.

The best performing raised cosine was β = 0.5, whose response is shown in Fig.

3.15 and whose rise time, settling time and overshoot were 921 ps, 4.69 ns and

0.0% (undershot) respectively.

H(f) =



1, if f ≤ 1−β
2T

1
2

[
1 + cos

(
πT
β

[
f − 1−β

2T

])]
, if 1−β

2T < f ≤ 1+β
2T

0, otherwise

(3.19)

PID control. Another popular approach in control theory is the PID con-

troller. The optical response of the PID control signal is shown in Fig. 3.15, with

a rise time, settling time and overshoot of 501 ps, 4.02 ns and 2.3% respectively.

In order to quickly obtain values for the 3 PID parameters, Kc, Ki and Kd, a

First Order Plus Dead Time (FOPDT) model was applied to the SOA, where

the key parameters for this model (Kp, τp and θp) can be measured directly from

the step response of the device. The PID tuning parameter, τc, which is inversely

proportional to the magnitude of the response to offset, was tested with values

between that of an ‘aggressive’ tuning regime (τc ≈ 0.1) and a ‘conservative’ one

90 Chapter 3. SOA Control for Sub-Nanosecond Optical Switching

(a) (b) (c)

Figure 3.16: Experimental results showing the optimised SOA optical outputs
for (a) PSO, (b) ACO, and (c) GA.

(a) (b) (c)

Figure 3.17: Experimental results showing the optimised SOA electrical driving
signal inputs for (a) PSO, (b) ACO, and (c) GA.

(τc ≈ 10.0). The results shown in Fig. 3.15 are with τc = 5.0 which was found

to be the best performing value.

PSO. The PSO algorithm used in the simulation environment was applied

to the real SOA. The SP and the PSO response are shown in Fig. 3.16, with a

rise time, settling time and overshoot of 454 ps, 547 ps and 5.0% respectively.

ACO. An ACO run with 200 ants accomplished a rise time, settling time

and overshoot of 413 ps, 560 ps and 4.8% respectively, performing similarly well

to the PSO algorithm. The ACO result is shown in Fig. 3.16

GA. Similarly, the GA result shown in Fig. 3.16 had a rise time, settling

time, and overshoot of 340 ps, 825 ps, and 10.3% respectively. The rise times

of the AI algorithms were an order of magnitude improvement on the step’s,

and the settling times (and therefore the effective off-on switching time) were

several factors faster than the previous MISIC1 optimum from the literature,

bringing SOA switching times truly down to the hundred ps scale. A scatter

plot comparing these data is shown in Fig. 3.18.

Switching comparison of AI methods. By comparison, PSO had the

3.7. Results & Discussion 91

lowest settling time and therefore the lowest overall switch time. We hypothesise

that this was due to the fact that PSO, being less memory-hungry than ACO

and having superior convergence properties compared to GA as a result of

having fewer hyperparameters to fine-tune and a smaller search space with the

PISIC shell, was able to be given a better search space-hyperparameter tuning

trade-off, and therefore was able to find a more optimum driving signal. This

larger search space also enabled PSO to explore a wider variety of drive signal

solutions without needing a large number of hyperparameters tuned (which adds

complexity), allowing PSO to generalise to a more diverse set of SOAs than

either ACO or GA were able to. Therefore, although in theory all AI algorithms

used were powerful and generalisable, due to the number of hyperparameters

and search space restrictions that were required in practice, PSO had both the

best performance and generalisability, although GA came close to matching

PSO.

Figure 3.18: Scatter plot comparing the experimental rise times, settling times
and overshoots of all the driving signals tested. The outlined target region highlights

the performance required for truly sub-nanosecond optical switching.

Switching comparison of all methods. Table 3.1 shows results (both

absolute and relative improvement for cross comparison) of the rise time, settling

time, overshoot and guard time for all methods implemented in this work, as

well as a variety from the literature. The rows associated with Figueiredo et al.

[2015] are the results for the optimised PISIC and MISIC-6 signals defined and

implemented in this work.

92 Chapter 3. SOA Control for Sub-Nanosecond Optical Switching

Optimised drive signal analysis. Finally, Fig. 3.17 shows the electrical

drive signals found by each algorithm. Whilst we stress that the main focus of

this chapter is the method rather than the specific drive signal, the drive signal

is important for real-World implementation and general understanding of the

search space restrictions used. As Fig. 3.17 shows, the derived driving signals

are noisy despite a smooth resultant optical output. This is likely because the

AWG (arbitrary waveform generator using an 8-bit digital to analogue converter)

drive signal frequency was 6 GHz offering 12 GSa/s whereas the SOA used had a

-3dB frequency response of 0.6 GHz, therefore we over-sampled the drive signal

by approximately 10×. In a real DCN scenario, to implement our algorithms’

driving signals in practice, we would likely use an FPGA or ASIC with an

embedded on-chip DAC for multilevel signal generation, and there are already

existing FPGAs (a.k.a. RF System on Chip (RFSoC)) that support multiple

DACs at 6 GSa/s. Therefore in practice the search space would be lower (fewer

dimensions/number of points to optimise) than assumed in this chapter, and

we would expect this to improve the AI convergence characteristics. Further

experiments using fewer points in the drive signal/a slower AWG are necessary

to see what the true effects are on the AI algorithms. This is beyond the scope

of this chapter, and we intend to further investigate it in our future work.

Signal noise analysis. Within the context of a DCN implementation of the

presented methods, some considerations were made with respect to the effect

that the algorithms have on the signal to noise ratio (SNR). Namely, it should

be considered if the oscillations caused by the algorithms (all of which are of

the order of 5%) have a negative effect on the SNR of the ‘on’ period of the

output, particularly in comparison to the output of a step driving signal, where

the ‘on’ period considered is defined as starting when the signal enters the ±5%

(with respect to the steady state) region for a 20 ns pulse length. Following from

the model of amplifier noise given by Agrawal [2002] and accounting for Shot

noise, intrinsic amplifier noise (the noise figure of the SOA) and the additional

3.8. Conclusions, Limitations, & Further Work 93

noise due to the fluctuations in the output, we consider the penalty on the noise

figure (as defined by Agrawal [2002]) due to the deviations of the output from

its steady state value throughout the duration of its ‘on’ period. Assuming

(based on intrinsic and Shot noise contributions) a base noise figure (i.e. if the

driving method caused no deviations at all) of 7.1dB, the measured noise figure

penalties for ACO, PSO, GA and step were 1.05 dB, 0.65 dB, 1.12 dB and 0.53

dB with SNR values of 28.52 dB, 28.90 dB, 28.54 dB and 29.06 dB respectively,

showing that the additional noise figure penalty due to the AI methods ranges

between 0.08 dB (PSO) and 0.59 dB (GA) compared to a step in the case of the

best performing algorithm (PSO).

3.8 Conclusions, Limitations, & Further Work

In this chapter, simulation and experimental results of SOA off-on switching

were presented for various driving signal formats. The chapter outlined a novel

approach to SOA driving signal generation with AI algorithms which made no

assumptions about the SOA and therefore were general, required no historic

data collection, and could be scaled to any SOA-based switch, opening up

the possibility of rapid all-optical switching in real data centres. World-record

settling times (and therefore effective off-on times) of 547 ps were achieved using

PSO, offering an order of magnitude performance improvement with respect

to settling time over our implementation of the PISIC and MISIC techniques

from the literature and thereby establishing a new state-of-the-art. Additionally,

the standard PID control and raised cosine techniques from control theory were

shown to be inadequate for the problem of ultra-fast SOA switching. Although

ACO and GA demonstrated slightly faster rise times than PSO, PSO had a

faster settling time and also a significantly lower 1.8% cost spread, giving greater

reliability that any given PSO run had found the optimum solution. Furthermore,

due to the fewer restrictions placed on the search space and the lower number

94 Chapter 3. SOA Control for Sub-Nanosecond Optical Switching

of fine-tuned hyperparameters compared to ACO and GA, PSO was found to

be more easy to generalise to unseen SOAs.

While this is good progress, there is much further work needed to make this

technology viable for production DCNs.

Robustness to external noise. In DCN systems operating over long peri-

ods of time, environmental factors external to the SOA such as the temperature

and the driving current may fluctuate. An interesting area of further work would

be to test the optimised driving signal’s robustness to these external fluctuations.

To mitigate their impact, new methods could be developed which stochastically

sample different temperatures and bias currents during the optimisation process

to see whether the AI algorithms can account for these varying inputs in their

final optimised driving signal. Alternatively, a lookup table could be created

mapping external conditions such as temperature and bias current to the corre-

sponding optimal driving signal found by the AI algorithm under those specific

conditions.

Lower resolution drive signal. As previously discussed, the frequency of

the signal driving the SOA was 6 GHz whereas the SOA’s frequency response

was around 0.6 GHz, leading to 10× unnecessary oversampling. Future works

might therefore consider reducing the sampling rate of the drive signal to (1)

reduce the optimisation search space and thus improve AI convergence, and (2)

reduce the complexity of the hardware needed to drive the SOAs in a production

environment. On this latter point, it might be useful to develop approaches which

undersample the SOA drive signal to enable the use of cheap and low-complexity

hardware such as FPGAs and specialised ASICs.

Real data transmission. Although Gerard et al. [2021] took the work

developed in this chapter and built an end-to-end tuneable light source, the

system has not yet been used to transmit real data from source to destination.

This would be a necessary step to measure the true BER and usefulness of an

OCS communication network using the SOA switching method proposed here.

3.8. Conclusions, Limitations, & Further Work 95

Cascaded SOAs. In this chapter we considered the simple setting of either

blocking or amplifying a single light source with a single SOA. Gerard et al.

[2021] extended this to a setting with two SOAs, however in practice a single

switch device might contain many SOAs which might be cascaded in order to

facilitate more complex network routing. Interesting research questions include

whether or not the same optimised signal could be applied to each SOA in a

cascade, or if the optimisation algorithm could collectively optimise the whole

cascade simultaneously and how this might make the optimisation problem more

difficult with a larger search space with more complex inter-SOA dependencies.

97

Part II

Optimising the Orchestration

Plane

99

Chapter 4

Solving NP-Hard Discrete

Optimisation Problems

Abstract

Combinatorial optimisation problems framed as mixed integer linear programmes

(MILPs) are ubiquitous across a range of real-world applications. The canonical

branch-and-bound algorithm seeks to exactly solve MILPs by constructing a

search tree of increasingly constrained sub-problems. In practice, its solving time

performance is dependent on heuristics, such as the choice of the next variable

to constrain (‘branching’). Recently, machine learning (ML) has emerged as a

promising paradigm for branching. However, prior works have struggled to apply

reinforcement learning (RL), citing sparse rewards, difficult exploration, and

partial observability as significant challenges. Instead, leading ML methodologies

resort to approximating high quality handcrafted heuristics with imitation

learning (IL), which precludes the discovery of novel policies and requires

expensive data labelling. This chapter proposes retro branching; a simple yet

effective approach to RL for branching. By retrospectively deconstructing the

search tree into multiple paths each contained within a sub-tree, we enable

the agent to learn from shorter trajectories with more predictable next states.

In experiments on four combinatorial tasks, our approach enables learning-to-

branch without any expert guidance or pre-training. We outperform the current

100 Chapter 4. Solving NP-Hard Discrete Optimisation Problems

state-of-the-art RL branching algorithm by 3-5× and come within 20% of the

best IL method’s performance on MILPs with 500 constraints and 1000 variables,

with ablations verifying that our retrospectively constructed trajectories are

essential to achieving these results.

Chapter 4. Solving NP-Hard Discrete Optimisation Problems 101

Publications related to this work (contributions indented):

• Christopher W. F. Parsonson, Alexandre Laterre, and Thomas D.

Barrett, ‘Reinforcement Learning for Branch-and-Bound Optimisation

using Retrospective Trajectories’, AAAI’23: Proceedings of the Thirty-

Seventh AAAI Conference on Artificial Intelligence, 2023

– Algorithm, code, experiments, paper writing, plots

• Thomas D. Barrett, Christopher W. F. Parsonson, and Alexandre

Laterre, ‘Learning to Solve Combinatorial Graph Partitioning Problems

via Efficient Exploration’, arXiv, 2022

– Baseline comparison experiments, abstract/introduction/related work/back-

ground paper writing, plots

102 Chapter 4. Solving NP-Hard Discrete Optimisation Problems

4.1 Introduction

A plethora of real-world problems fall under the broad category of CO (vehicle

routing and scheduling [Korte and Vygen, 2012]; protein folding [Perdomo-Ortiz

et al., 2012]; fundamental science [Barahona, 1982]). Many CO problems can be

formulated as MILPs whose task is to assign discrete values to a set of decision

variables, subject to a mix of linear and integrality constraints, such that some

objective function is maximised or minimised. The most popular method for

finding exact solutions to MILPs is B&B [Land and Doig, 1960]; a collection of

heuristics which increasingly tighten the bounds in which an optimal solution can

reside (see Section 4.2). Among the most important of these heuristics is variable

selection or branching (which variable to use to partition the chosen node’s

search space), which is key to determining B&B solve efficiency [Achterberg and

Wunderling, 2013].

Figure 4.1: The proposed retro branching approach used during training. Each
node is labelled with: Top: The unique ID assigned when it was added to the tree,
and (where applicable); bottom: The step number (preceded by a ‘#’) at which it
was visited by the brancher in the original MDP. The MILP is first solved with the
brancher and the B&B tree stored as usual (forming the ‘original episode’). Then,
ignoring any nodes never visited by the agent, the nodes are added to trajectories
using some ‘construction heuristic’ (see Sections 4.4 and 4.6) until each eligible
node has been added to one, and only one, trajectory. Crucially, the order of the
sequential states within a given trajectory may differ from the state visitation order
of the original episode, but all states within the trajectory will be within the same

sub-tree. These trajectories are then used for training.

State-of-the-art (SOTA) learning-to-branch approaches typically use the IL

paradigm to predict the action of a high quality but computationally expensive

4.1. Introduction 103

human-designed branching expert [Gasse et al., 2019]. Since branching can be

formulated as a MDP [He et al., 2014], RL seems a natural approach. The

long-term motivations of RL include the promise of learning novel policies from

scratch without the need for expensive expert data, the potential to exceed

expert performance without human design, and the capability to maximise the

performance of a policy parameterised by an expressivity-constrained DNN.

However, branching has thus far proved largely intractable for RL for reasons

we summarise into three key challenges. (1) Long episodes: Whilst even random

branching policies are theoretically guaranteed to eventually find the optimal

solution, poor decisions can result in episodes of tens of thousands of steps for

the 500 constraint 1000 variable MILPs considered by Gasse et al. 2019. This

raises the familiar RL challenges of reward sparsity [Trott et al., 2019], credit

assignment [Harutyunyan et al., 2019], and high variance returns [Mao et al.,

2019b]. (2) Large state-action spaces: Each branching step might have hundreds

or thousands of potential branching candidates with a huge number of unique

possible sub-MILP states. Efficient exploration to discover improved trajectories

in such large state-action spaces is a well-known difficulty for RL [Agostinelli

et al., 2019b, Ecoffet et al., 2021]. (3) Partial observability: When a branching

decision is made, the next state given to the brancher is determined by the next

sub-MILP visited by the node selection policy. Jumping around the B&B tree

without the brancher’s control whilst having only partial observability of the full

tree makes the future states seen by the agent difficult to predict. Etheve et al.

2020 therefore postulated the benefit of keeping the MDP within a sub-tree to

improve observability and introduced the SOTA FMSTS RL branching algorithm.

However, in order to achieve this, FMSTS had to use a DFS node selection

policy which, as we demonstrate in Section 4.6, is highly sub-optimal and limits

scalability.

In this chapter, we present retro branching; a simple yet effective method to

overcome the above challenges and learn to branch via reinforcement. We follow

104 Chapter 4. Solving NP-Hard Discrete Optimisation Problems

the intuition of Etheve et al. [2020] that constraining each sequential MDP state

to be within the same sub-tree will lead to improved observability. However,

we posit that a branching policy taking the ‘best’ actions with respect to only

the sub-tree in focus can still provide strong overall performance regardless of

the node selection policy used. This is aligned with the observation that leading

heuristics such as SB and PB also do not explicitly account for the node selection

policy or predict how the global bound may change as a result of activity in

other sub-trees. Assuming the validity of this hypothesis, we can discard the

DFS node selection requirement of FMSTS whilst retaining the condition that

sequential states seen during training must be within the same sub-tree.

Concretely, our retro branching approach (shown in Fig. 4.1 and elaborated

on in Section 4.4) is to, during training, take the search tree after the B&B

instance has been solved and retrospectively select each subsequent state (node)

to construct multiple trajectories. Each trajectory consists of sequential nodes

within a single sub-tree, allowing the brancher to learn from shorter trajectories

with lower return variance and more predictable future states. This approach

directly addresses challenges (1) and (3) and, whilst the state-action space is

still large, the shorter trajectories implicitly define more immediate auxiliary

objectives relative to the tree. This reduces the difficulty of exploration since

shorter trajectory returns will have a higher probability of being improved upon

via stochastic action sampling than when a single long MDP is considered,

thereby addressing (2). Furthermore, retro branching relieves the FMSTS

requirement that the agent must be trained in a DFS node selection setting,

enabling more sophisticated strategies to be used which are better suited for

solving larger, more complex MILPs.

We evaluate our approach on MILPs with up to 500 constraints and 1000

variables, achieving a 3-5× improvement over FMSTS and coming within ≈ 20%

of the performance of the SOTA IL agent of Gasse et al. [2019]. Furthermore,

we demonstrate that, for small instances, retro branching can uncover policies

4.2. Background 105

superior to IL; a key motivation of using RL. Our results open the door to

the discovery of new branching policies which can scale without the need for

labelled data and which could, in principle, exceed the performance of SOTA

handcrafted branching heuristics.

4.2 Background

4.2.1 Mixed Integer Linear Programming

An MILP is an optimisation task where values must be assigned to a set of n

decision variables subject to a set of m linear constraints such that some linear

objective function is minimised. MILPs can be written in the standard form

arg min
x

{
c⊤x|Ax ≤ b, l ≤ x ≤ u, x ∈ Zp × Rn−p

}
, (4.1)

where c ∈ Rn is a vector of the objective function’s coefficients for each

decision variable in x such that c⊤x is the objective value, A ∈ Rm×n is a matrix

of the m constraints’ coefficients (rows) applied to n variables (columns), b ∈ Rm

is the vector of variable constraint right-hand side bound values which must

be adhered to, and l, u ∈ Rn are the respective lower and upper variable value

bounds. MILPs are hard to solve owing to their integrality constraint(s) whereby

p ≤ n decision variables must be an integer. If these integrality constraints

are relaxed, the MILP becomes a linear programme (LP), which can be solved

efficiently using algorithms such as simplex [Nelder and Mead, 1965]. The most

popular approach for solving MILPs exactly is B&B.

4.2.2 Branch-and-Bound

B&B is an algorithm composed of multiple heuristics for solving MILPs. It uses

a search tree where nodes are MILPs and edges are partition conditions (added

constraints) between them. Using a divide and conquer strategy, the MILP

106 Chapter 4. Solving NP-Hard Discrete Optimisation Problems

is iteratively partitioned into sub-MILPs with smaller solution spaces until an

optimal solution (or, if terminated early, a solution with a worst-case optimality

gap guarantee) is found. The task of B&B is to evolve the search tree until the

provably optimal node is found.

Concretely, as summarised in Fig. 4.2, at each step in the algorithm, B&B:

(1) Selects an open (unfathomed leaf) node in the tree whose sub-tree seems

promising to evolve; (2) selects (‘branches on’) a variable to tighten the bounds on

the sub-MILP’s solution space by adding constraints either side of the variable’s

LP solution value, generating two child nodes (sub-MILPs) beneath the focus

node; (3) for each child, i) solve the relaxed LP (the dual problem) to get the

dual bound (a bound on the best possible objective value in the node’s sub-tree)

and, where appropriate, ii) solve the primal problem and find a feasible (but not

necessarily optimal) solution satisfying the node’s constraints, thus giving the

primal bound (the worst-case feasible objective value in the sub-tree); and (4)

fathom any children (i.e. consider the sub-tree rooted at the child ‘fully known’

and therefore excluded from any further exploration) whose relaxed LP solution

is integer-feasible, is worse than the incumbent (the globally best feasible node

found so far), or which cannot meet the non-integrality constraints of the MILP.

This process is repeated until the primal-dual gap (global primal-dual bound

difference) is 0, at which point a provably optimal solution to the original MILP

will have been found.

Note that the heuristics (i.e. primal, branching, and node selection) at each

stage jointly determine the performance of B&B. More advanced procedures

such as cutting planes [Mitchell, 2009] and column generation [Barnhart et al.,

1998] are available for enhancement, but are beyond the scope of this work.

Note also that solvers such as SCIP 2022 only store ‘visitable’ nodes in memory,

therefore in practice fathoming occurs at a feasible node where a branching

decision led to the node’s two children being outside the established optimality

bounds, being infeasible, or having an integer-feasible dual solution, thereby

4.3. Related Work 107

closing the said node’s sub-tree.

4.3 Related Work

Classical branching heuristics. PB [Benichou et al., 1971] and strong

branching (SB) [Applegate et al., 1995, 2007] are two canonical branching

algorithms. PB selects variables based on their historic branching success

according to metrics such as bound improvement. Although the per-step decisions

of PB are computationally fast, it must initialise the variable pseudocosts in some

way which, if done poorly, can be particularly damaging to overall performance

since early B&B decisions tend to be the most influential. SB, on the other

hand, conducts a one-step lookahead for all branching candidates by computing

their potential local dual bound gains before selecting the most favourable

variable, and thus is able to make high quality decisions during the critical early

stages of the search tree’s evolution. Despite its simplicity, SB is still today the

best known policy for minimising the overall number of B&B nodes needed to

solve the problem instance (a popular B&B quality indicator). However, its

computational cost renders SB infeasible in practice.

Learning-to-branch. Recent advances in deep learning have led ML re-

searchers to contribute to exact CO (surveys provided by Lodi and Zarpellon

2017, Bengio et al. 2021, and Cappart et al. 2021). Khalil et al. 2016 pioneered

the community’s interest by using IL to train a support vector machine (SVM)

to imitate the variable rankings of SB after the first 500 B&B node visits and

thereafter use the SVM. Alvarez et al. 2017 similarly imitated SB, but learned

to predict the SB scores directly using Extremely Randomized Trees [Geurts

et al., 2006]. These approaches performed promisingly, but their per-instance

training and use of SB at test time limited their scalability.

These issues were overcome by Gasse et al. 2019, who took as input a bipartite

graph representation capturing the current B&B node state and predicted the

108 Chapter 4. Solving NP-Hard Discrete Optimisation Problems

Figure 4.2: Typical 4-stage procedure iteratively repeated by B&B to solve
an MILP. Each node represents an MILP derived from the original MILP being
solved, and each edge represents the constraint added to derive a new child node
(sub-MILP) from a given parent. Each node is labelled with the decision variable
values of the solved LP relaxation on the right hand side, the corresponding dual
bound in the centre, and the established primal bound beneath. Each edge is
labelled with the introduced constraint to generate the child node. Green dotted
outlines are used to indicate which node and variable were selected in stages (1)
and (2) to lead to stages (3) and (4). The global primal (P) and dual (D) bounds
are increasingly constrained by repeating stages 1-4 until P and D are equal, at
which point a provably optimal solution will have been found. Note that for clarity
we only show the detailed information needed at each stage, but that this does not

indicate any change to the state of the tree.

corresponding action chosen by SB using a graph convolutional network (GCN).

This alleviated the reliance on extensive feature engineering, avoided the use

of SB at inference time, and demonstrated generalisation to larger instances

than seen in training. Works since have sought to extend this method by

introducing new observation features to generalise across heterogeneous CO

instances [Zarpellon et al., 2021] and designing SB-on-a-GPU expert labelling

methods for scalability [Nair et al., 2021].

Etheve et al. 2020 proposed FMSTS which, to the best of our knowledge, is

the only published work to apply RL to branching and is therefore the SOTA

RL branching algorithm. By using a DFS node selection strategy, they used

the DQN approach [Mnih et al., 2013] to approximate the Q-function of the

B&B sub-tree size rooted at the current node; a local Q-function which, in

their setting, was equivalent to the number of global tree nodes. Although

FMSTS alleviated issues with credit assignment and partial observability, it

relied on using the DFS node selection policy (which can be far from optimal),

was fundamentally limited by exponential sub-tree sizes produced by larger

4.4. Retro Branching Methodology 109

instances, and its associated models and data sets were not open-accessed.

4.4 Retro Branching Methodology

We now describe our retro branching approach for learning-to-branch with RL.

States. At each time step t the B&B solver state is comprised of the search

tree with past branching decisions, per-node LP solutions, the global incumbent,

the currently focused leaf node, and any other solver statistics which might be

tracked. To convert this information into a suitable input for the branching

agent, we represent the MILP of the focus node chosen by the node selector as

a bipartite graph. Concretely, the n variables and m constraints are connected

by edges denoting which variables each constraint applies to. This formulation

closely follows the approach of Gasse et al. 2019, with a full list of input features

at each node detailed in Appendix A.5.

Actions. Given the MILP state st of the current focus node, the branching

agent uses a policy π(ut|st) to select a variable ut from among the p branching

candidates.

Original full episode transitions. In the original full B&B episode, the

next node visited is chosen by the node selection policy from amongst any of

the open nodes in the tree. This is done independently of the brancher, which

observes state information related only to the current focus node and the status

of the global bounds. As such, the transitions of the ‘full episode’ are partially

observable to the brancher, and it will therefore have the challenging task of

needing to aggregate over unobservable states in external sub-trees to predict

the long-term values of states and actions.

Retrospectively constructed trajectory transitions (retro branch-

ing). To address the partial observability of the full episode, we retrospectively

construct multiple trajectories where all sequential states in a given trajectory

are within the same sub-tree, and where the trajectory’s terminal state is chosen

110 Chapter 4. Solving NP-Hard Discrete Optimisation Problems

from amongst the as yet unchosen fathomed sub-tree leaves. A visualisation of

our approach is shown in Fig. 4.1. Concretely, during training, we first solve

the instance as usual with the RL brancher and any node selection heuristic

to form the ‘original episode’. When the instance is solved, rather than simply

adding the originally observed MDP’s transitions to the DQN replay buffer, we

retrospectively construct multiple trajectory paths through the search tree. This

construction process is done by starting at the highest level node not yet added

to a trajectory, selecting an as yet unselected fathomed leaf in the sub-tree

rooted at said node using some ‘construction heuristic’ (see Section 4.6), and

using this root-leaf pair as a source-destination with which to construct a path

(a ‘retrospective trajectory’). This process is iteratively repeated until each

eligible node in the original search tree has been added to one, and only one,

retrospective trajectory. The transitions of each trajectory are then added to

the experience replay buffer for learning. Note that retrospective trajectories are

only used during training, therefore retro branching agents have no additional

inference-time overhead.

Crucially, retro branching determines the sequence of states in each trajectory

(i.e. the transition function of the MDP) such that the next state(s) observed

in a given trajectory will always be within the same sub-tree (see Fig. 4.1)

regardless of the node selection policy used in the original B&B episode. Our

reasoning behind this idea is that the state(s) beneath the current focus node

within its sub-tree will have characteristics (bounds, introduced constraints, etc.)

which are strongly related with those of the current node, making them more

observable than were the next states to be chosen from elsewhere in the search

tree, as can occur in the ‘original B&B’ episode. Moreover, by correlating the

agent’s maximum trajectory length with the depth of the tree rather than the

total number of nodes, reconstructed trajectories have orders of magnitude fewer

steps and lower return variance than the original full episode, making learning

tractable on large MILPs. Furthermore, because the sequential nodes visited

4.4. Retro Branching Methodology 111

are chosen retrospectively in each trajectory, unlike with FMSTS, any node

selection policy can be used during training. As we show in Section 4.6, this is a

significant help when solving large and complex MILPs.

Rewards. As demonstrated in Section 4.6, the use of reconstructed trajec-

tories enables a simple distance-to-goal reward function to be used; a r = −1

punishment is issued to the agent at each step except when the agent’s action

fathomed the sub-tree, where the agent receives r = 0. This reward was chosen

because it provides an incentive for the the branching agent to reach the terminal

state as quickly as possible. This auxiliary objective is desirable because, when

aggregated over all trajectories in a given sub-tree, it corresponds to fathoming

the whole sub-tree (and, by extension, solving the MILP) in as few steps as

possible. This is because the only nodes which are stored by SCIP 2022 and

which the brancher will be presented with will be feasible nodes which potentially

contain the optimal solution beneath them. As such, any action chosen by the

brancher which provably shows either the optimal solution to not be beneath

the current node or which finds an integer feasible dual solution (i.e. an action

which fathoms the sub-tree beneath the node) will be beneficial, because it will

prevent SCIP from being able to further needlessly explore the node’s sub-tree.

A note on partial observability. In the above retrospective formulation of

the branching MDP, the primal, branching, and node selection heuristics active

in other sub-trees will still influence the future states and fathoming conditions

of a given retrospective trajectory. We posit that there are two extremes; DFS

node selection where future states are fully observable to the brancher, and

non-DFS node selection where they are heavily obscured. As shown in Section

4.6, our retrospective node selection setting strikes a balance between these two

extremes, attaining sufficient observability to facilitate learning while enabling

the benefits of short, low variance trajectories with sophisticated node selection

strategies which make handling larger MILPs tractable.

112 Chapter 4. Solving NP-Hard Discrete Optimisation Problems

Figure 4.3: Performances of the branching agents on the 500× 1000 set covering
instances. (a) Validation curves for the RL agents evaluated in the same non-
DFS setting. (b) CDF of the number of B&B steps taken by the RL agents
for each instance seen during training. (c) The best validation performances of
each branching agent. (d) The instance-level validation performance of the retro
branching agent relative to the IL agent, with RL matching or beating IL on 42%

of test instances.

4.5 Experimental Setup

All code for reproducing the experiments and links to the generated data sets

are provided at https://github.com/cwfparsonson/retro_branching.

Network architecture and learning algorithm. We used the GCN

architecture of Gasse et al. 2019 to parameterise the DQN value function with

some minor modifications which we found to be helpful (see Appendix A.2.1).

We trained our network with n-step DQN [Sutton, 1988, Mnih et al., 2013]

using prioritised experience replay [Schaul et al., 2016], soft target network

updates [Lillicrap et al., 2019], and an epsilon-stochastic exploration policy

(see Appendix A.1.1 for a detailed description of our RL approach and the

corresponding algorithms and hyperparameters used).

B&B environment. We used the open-source Ecole [Prouvost et al., 2020]

and PySCIPOpt [Maher et al., 2016] libraries with SCIP 7.0.1 [SCIP, 2022] as

the backend solver to do instance generation and testing. Where possible, we

used the training and testing protocols of Gasse et al. [2019].

https://github.com/cwfparsonson/retro_branching

4.6. Results & Discussion 113

MILP Problem classes. In total, we considered four NP-hard problem

benchmarks: set covering [Balas et al., 2018], combinatorial auction [Leyton-

Brown et al., 2000], capacitated facility location [Litvinchev and Ozuna Espinosa,

2012], and maximum independent set [Bergman et al., 2016].

Baselines. We compared retro branching against the SOTA FMSTS RL

algorithm of Etheve et al. [2020] (see Appendix A.6 for implementation details)

and the SOTA IL approach of Gasse et al. [2019] trained and validated with

100 000 and 20 000 strong branching samples respectively. For completeness, we

also compared against the SB heuristic imitated by the IL agent, the canonical

PB heuristic, and a random brancher (equivalent in performance to most infea-

sible branching [Achterberg et al., 2004]). Note that we have ommited direct

comparison to the SOTA tuned commercial solvers, which we do not claim to be

competitive with at this stage. To evaluate the quality of the agents’ branching

decisions, we used 100 validation instances which were unseen during training,

reporting the total number of tree nodes and LP iterations as key metrics to

be minimised. As shown in Appendix A.3, 100 instances was a sample size

with sufficient statistical significance to confidently draw conclusions about the

relative performance between the algorithms being evaluated.

4.6 Results & Discussion

4.6.1 Performance of Retro Branching

Comparison to the SOTA RL branching heuristics. We considered set

covering instances with 500 rows and 1000 columns. To demonstrate the benefit

of the proposed retro branching method, we trained a baseline ‘Original’ agent

on the original full episode, receiving the same reward as our retro branching

agent (−1 at each non-terminal step and 0 for a terminal action which ended

the episode - see Section 4.4 for details). We also trained the SOTA RL FMSTS

114 Chapter 4. Solving NP-Hard Discrete Optimisation Problems

branching agent in a DFS setting and, at test time, validated the agent in both

a DFS (‘FMSTS-DFS’) and non-DFS (‘FMSTS’) environment to fairly compare

the policies. Note that the FMSTS agent serves as an ablation to analyse the

influence of training on retrospective trajectories, since it uses our auxiliary

objective but without retrospective trajectories, and that the Original agent

further ablates the auxiliary objective since its ‘terminal step’ is defined as ending

the B&B episode (where it receives rt = 0 rather than rt = −1). As shown in

Fig. 4.3a, the Original agent was unable to learn on these large instances, with

retro branching achieving 14× fewer nodes at test time. FMSTS also performed

poorly, with highly unstable learning and a final performance 5× and 3× poorer

than retro branching in the DFS and non-DFS settings respectively (see Fig.

4.3c). We posit that the cause of the poor FMSTS performance is due to its use

of the sub-optimal DFS node selection policy, which is ill-suited for handling

large MILPs and results in ≈ 10% of episodes seen during training being on the

order of 10-100k steps long (see Fig. 4.3b), which makes learning significantly

harder for RL.

Comparison to non-RL branching heuristics. Having demonstrated

that the proposed retro branching method makes learning-to-branch at scale

tractable for RL, we now compare retro branching with the baseline branchers to

understand the efficacy of RL in the context of the current literature. Fig. 4.3c

shows how retro branching compares to other policies on large 500× 1000 set

covering instances. While the agent outperforms PB, it only matches or beats

IL on 42% of the test instances (see Fig. 4.3d) and, on average, has a ≈ 20%

larger B&B tree size. Therefore although our RL agent was still improving

and was limited by compute (see Appendix A.1.2), and in spite of our method

outperforming the current SOTA FMSTS RL brancher, RL has not yet been

able to match or surpass the SOTA IL agent at scale. This will be an interesting

area of future work, as discussed in Section 4.7.

4.6. Results & Discussion 115

4.6.2 Analysis of Retro Branching

Verifying that RL can outperform IL. In addition to not needing labelled

data, a key motivation for using RL over IL for learning-to-branch is the potential

to discover superior policies. While Fig. 4.3 showed that, at test-time, retro

branching matched or outperformed IL on 42% of instances, IL still had a

lower average tree size. As shown in Table 4.1, we found that, on small set

covering instances with 165 constraints and 230 variables, RL could outperform

IL by ≈ 20%. While improvement on problems of this scale is not the primary

challenge facing ML-B&B solvers, we are encouraged by this demonstration

that it is possible for an RL agent to learn a policy better able to maximise the

performance of an expressivity-constrained network than imitating an expert such

as SB without the need for pre-training or expensive data labelling procedures

(see Appendix A.8).

For completeness, Table 4.1 also compares the retro branching agent to the

IL, PB, and SB branching policies evaluated on 100 unseen instances of four

NP-hard CO benchmarks. We considered instances with 10 items and 50 bids for

combinatorial auction, 5 customers and facilities for capacitated facility location,

and 25 nodes for maximum independent set. RL achieved a lower number of

tree nodes than PB and IL on all problems except combinatorial auction. This

highlights the potential for RL to learn improved branching policies to solve a

variety of MILPs.

Table 4.1: Test-time comparison of the best agents on the evaluation instances of
the four NP-hard small CO problems considered.

Set Covering Combinatorial Auction Capacitated Facility Location Maximum Independent Set

Method # LPs # Nodes # LPs # Nodes # LPs # Nodes # LPs # Nodes

SB 184 6.76 13.2 4.64 28.2 10.2 19.2 3.80
PB 258 12.8 22.0 7.80 28.0 10.2 25.4 5.77
IL 244 10.5 16.0 5.29 28.0 10.2 20.1 4.08

Retro 206 8.68 18.1 5.73 28.4 10.1 19.1 4.01

116 Chapter 4. Solving NP-Hard Discrete Optimisation Problems

Figure 4.4: 500× 1000 set covering performances. (a) Validation curves for four
retro branching agents each trained with a different trajectory construction heuristic:
Maximum LP gain (MLPG); random (R); visitation order (VO); and deepest (D).
(b) The performances of the best retro branching agent deployed in three different
node selection environments (default SCIP, DFS, and BFS) normalised relative to

the performances of PB (measured by number of tree nodes).

Demonstrating the independence of retro branching to future state

selection. As described in Section 4.4, in order to retrospectively construct a

path through the search tree, a fathomed leaf node must be selected. We refer

to the method for selecting the leaf node as the construction heuristic. The

future states seen by the agent are therefore determined by the construction

heurisitc (used in training) and the node selection heuristic (used in training

and inference).

During our experiments, we found that the specific construction heuristic

used had little impact on the performance of our agent. Fig. 4.4a shows the

validation curves for four agents trained on 500× 1000 set covering instances

each using one of the following construction heuristics: Maximum LP gain

(‘MLPG’: Select the leaf with the largest LP gain); random (‘R’: Randomly

select a leaf); visitation order (‘VO’: Select the leaf which was visited first in the

original episode); and deepest (‘D’: Select the leaf which results in the longest

trajectory). As shown, all construction heuristics resulted in roughly the same

performance (with MLPG performing only slightly better). This suggests that

the agent learns to reduce the trajectory length regardless of the path chosen by

the construction heuristic. Since the specific path chosen is independent of node

selection, we posit that the relative strength of an RL agent trained with retro

branching will also be independent of the node selection policy used.

4.7. Conclusions, Limitations, & Further Work 117

To test this, we took our best retro branching agent trained with the default

SCIP node selection heuristic and tested it on the 500×1000 validation instances

in the default, DFS, and BFS SCIP node selection settings. To make the

performances of the brancher comparable across these settings, we normalised

the mean tree sizes with those of PB (a branching heuristic independent of the

node selector) to get the performance relative to PB in each environment. As

shown in Fig. 4.4b, our agent achieved consistent relative performance regardless

of the node selection policy used, indicating its indifference to the node selector.

4.7 Conclusions, Limitations, & Further Work

We have introduced retro branching; a retrospective approach to constructing

B&B trajectories in order to aid learning-to-branch with RL. We posited that

retrospective trajectories address the challenges of long episodes, large state-

action spaces, and partially observable future states which otherwise make

branching an acutely difficult task for RL. We empirically demonstrated that

retro branching outperforms the current SOTA RL method by 3-5× and comes

within 20% of the performance of IL whilst matching or beating it on 42% of

test instances. Moreover, we showed that RL can surpass the performance of IL

on small instances, exemplifying a key advantage of RL in being able to discover

novel performance-maximising policies for expressivity-constrained networks

without the need for pre-training or expert examples. However, retro branching

was not able to exceed the IL agent at scale. In this section we outline the

limitations of this chapter and areas of further work.

Partial observability. A limitation of our proposed approach is the re-

maining partial observability of the MDP, with activity external to the current

sub-tree and branching decision influencing future bounds, states, and rewards.

In this and other studies, variable and node selection have been considered

118 Chapter 4. Solving NP-Hard Discrete Optimisation Problems

in isolation. An interesting approach would be to combine node and variable

selection, giving the agent full control over how the B&B tree is evolved.

Reward function. The proposed trajectory reconstruction approach can

facilitate a simple RL reward function which would otherwise fail were the

original ‘full’ tree episode used. However, assigning a −1 reward at each step

in a given trajectory ignores the fact that certain actions, particularly early on

in the B&B process, can have significant influence over the length of multiple

trajectories. This could be accounted for in the reward signal, perhaps by using

a retrospective backpropagation method (similar to value backpropagation in

Monte Carlo tree search [Silver et al., 2016, 2017]).

Exploration. The large state-action space and the complexity of making

thousands of sequential decisions which together influence final performance

in complex ways makes exploration in B&B an acute challenge for RL. One

reason for RL struggling to close the 20% performance gap with IL at scale

could be that, at some point, stochastic action sampling to explore new policies

is highly unlikely to find trajectories with improved performance. As such,

more sophisticated exploration strategies could be promising, such as novel

experience intrinsic reward signals [Burda et al., 2018, Zhang et al., 2021b],

reverse backtracking through the episode to improve trajectory quality [Salimans

and Chen, 2018, Agostinelli et al., 2019b, Ecoffet et al., 2021], and avoiding

local optima using auxiliary distance-to-goal rewards [Trott et al., 2019] or

evolutionary strategies [Conti et al., 2018].

119

Chapter 5

Partitioning Distributed

Compute Jobs

Abstract

From natural language processing to genome sequencing, large-scale machine

learning models are bringing advances to a broad range of fields. Many of these

models are too large to be trained on a single machine, and instead must be

distributed across multiple devices. This has motivated the research of new

compute and network systems capable of handling such tasks. In particular,

recent work has focused on developing management schemes which decide

how to allocate distributed resources such that some overall objective, such

as minimising the job completion time (JCT), is optimised. However, such

studies omit explicit consideration of how much a job should be distributed,

usually assuming that maximum distribution is desirable. In this work, we show

that maximum parallelisation is sub-optimal in relation to user-critical metrics

such as throughput and blocking rate. To address this, we propose PAC-ML

(partitioning for asynchronous computing with machine learning). PAC-ML

leverages a graph neural network and reinforcement learning to learn how much

to partition computation graphs such that the number of jobs which meet

arbitrary user-defined JCT requirements is maximised. In experiments with five

real deep learning computation graphs on a recently proposed optical architecture

120 Chapter 5. Partitioning Distributed Compute Jobs

across four user-defined JCT requirement distributions, we demonstrate PAC-ML

achieving up to 56.2% lower blocking rates in dynamic job arrival settings than

the canonical maximum parallelisation strategy used by most prior works.

Chapter 5. Partitioning Distributed Compute Jobs 121

Publications related to this work (contributions indentend):

• Christopher W. F. Parsonson, Zacharaya Shabka, Alessandro Ot-

tino, and Georgios Zervas, ‘Partitioning Distributed Compute Jobs with

Reinforcement Learning and Graph Neural Networks’, arXiv, 2023

– Algorithm, code, experiments, paper writing, plots

122 Chapter 5. Partitioning Distributed Compute Jobs

5.1 Introduction

The last decade has seen an exponential increase in the amount of compute

demanded by big data jobs such as AI and genome processing, with resource

requirements doubling every 3.4 months since 2012; 50× faster than Moore’s Law

[OpenAI, 2018]. This trend is showing no sign of slowing down. The fundamental

relationship between neural network accuracy and scale [Kaplan et al., 2020]

provides a strong incentive for practitioners seeking performance improvement

to further increase their resource requirements. Moreover, brain-scale AI will

require at least as many parameters as the ≈1 000 trillion synapses present in

the human brain [Furber, 2016]; several orders of magnitude more than the

largest models used today.

The compute time and memory requirements of state-of-the-art big data

applications already far outstrip the capabilities of any single hardware device.

For example, one of the current largest DNNs, Megatron-Turing natural language

generation (MT-NLG) [Smith et al., 2022], contains 530 billion parameters. These

parameters alone occupy ≈1 000 GB, exceeding the capacity of the largest A100

GPU by over an order of magnitude, and the parameter loss gradients tracked

during training occupy several times more. Even if the model could be fitted

onto a single device, the training time would be ≈900 years1. To address these

compute time and memory demands, rather than using a single device, big

data jobs must be distributed and parallelised across a cluster of machines. For

example, the Selene supercomputing cluster [NVIDIA, 2020] consists of 358 400

A100 GPU tensor cores, bringing the MT-NLG training time from 900 years

down to the order of days2.

However, parallelising jobs across ever-more machines brings its own chal-

lenges. With any parallelisation strategy, at some point the output of each
1Assuming it takes 8 V100 GPUs 36 years to train a 175 billion parameter model [NVIDIA,

2022] and extrapolating.
2Assuming a linear parallelisation speedup and 0 communication overhead.

5.1. Introduction 123

‘worker’ (a single device processing at least part of a job) must be collected

and synchronised to get the overall result of the parallelised computation. This

synchronisation requires communication between the workers. As discussed in

Chapter 1, as the number of workers used to execute a job is increased, the per-

worker computation demands decrease, but the overall communication overhead

between workers grows (see Fig. 1.2b). This shifts the performance bottleneck

away from the workers themselves and into the network connecting them, and

brings additional challenges with managing varying traffic characteristics for

different job types and parallelisation strategies [Wang et al., 2022, Parsonson et

al., 2022, Benjamin et al., 2021, 2022].

To address the communication bottleneck in distributed computing, recent

works have sought to develop optical clusters [Benjamin et al., 2020, Ballani

et al., 2020, Khani et al., 2021, Wang et al., 2022, Ottino et al., 2022]; machines

interconnected by optical switches [Parsonson et al., 2020, Gerard et al., 2020b,

2021]. Compared to their electronic counterparts, optically switched networks

offer orders of magnitude improvements in scalability, bandwidth, latency, and

power consumption [Ballani et al., 2020, Zervas et al., 2018, Mishra et al., 2021]

(see Section 5.2).

Optical clusters are typically operated under the OCS paradigm due to its

non-blocking circuit configurations with high capacity and scalability [Raja et al.,

2021]. OCS networks are fundamentally different from the electronic packet

switched architectures used by most current clusters, resulting in entirely new

communication patterns and resource demand characteristics. Consequently,

new compute and network resource management schemes are needed in order to

optimally allocate jobs and maximise performance.

Of the many resource management tasks which must be performed in a

compute cluster, job partitioning (how to split a job up across how many devices)

is key to overall performance. More partitioning can lead to lower compute

times. However, it may also increase network overhead and occupancy of

124 Chapter 5. Partitioning Distributed Compute Jobs

cluster resources, possibly leading to future jobs being blocked upon arrival

and consequently lower overall cluster throughput. Prior works such as SiP-ML

[Khani et al., 2021] have introduced simple partitioning heuristics for optical

networks which have notably improved cluster performance. However, they have

not been designed under the more realistic setting of dynamic and stochastic

job arrivals, have not considered the state of the cluster in a ‘network-aware’

manner when making partitioning decisions, and have been crafted to optimise

for the sub-optimal objective of minimising JCT.

In this work, we first argue that simply minimising the JCT is a naive objective

because it brazenly encourages more parallelisation of a job request without

considering the effect this has on the ability of a cluster to service subsequent

jobs. We then introduce a new more subtle formulation of the optimisation

metric, the user-defined blocking rate, which more aptly encompasses the desires

of cluster users. Next, we propose a simple modification of the quantised SiP-

ML partitioner which, rather than maximally parallelising all jobs, minimally

parallelises them such that they meet the user-defined maximum acceptable

completion time. Then, we propose a novel network-aware partitioning strategy

(see Fig. 5.4 and Section 5.5) called PAC-ML (partitioning for asynchronous

computing with machine learning) which utilises RL and a GNN to flexibly

meet the demands of the user in an arbitrary manner given the current state

of the cluster network. Finally, we demonstrate our method in simulation on

the recently propsed RAMP optical architecture [Ottino et al., 2022], achieving

up to 56.2% lower blocking rates than the best heuristic baseline. We show

that different user-defined demand environments require different partitioning

strategies for optimal results, and that a key advantage of PAC-ML is that it

is able to discover performant strategies automatically without the need for

handcrafted heuristics or environment-specific tuning.

5.2. Background 125

5.2 Background

5.2.1 Parallelisation

Types of parallelism. Parallelisation is the process of distributing a compu-

tational job across multiple devices. This is done in order to reduce the time

and/or physical memory needed to complete the job. There are three main types

of deep learning parallelism; data parallelism, model parallelism, and hybrid

parallelism (see below). Although today the most common method for DNN

training parallelisation is data parallelism for its simplicity and limited network

overhead, we focus on the less common but more desirable model parallelism

paradigm for its strong scaling capabilities [Khani et al., 2021]. Our proposed

partitioning methods are applicable to hybrid and pipeline parallelism, but these

require additional simulation complexity and are therefore beyond the scope of

this chapter.

Data parallelism. Data parallelism [Slotnick et al., 1962] is where an

identical copy of the DNN model is sent to each worker. The input training data

is parallelised by sampling a training batch, splitting it into non-overlapping

micro-batches, training each worker on its own micro-batch, and updating the

workers’ local model parameters using some method to synchronise the gradients

of the parameters with respect to the training loss after each training iteration.

This synchronisation step is commonly referred to as AllReduce, and can be

performed using various techniques. Data parallelism can be applied to any

DNN model regardless of its architecture, enables the use of large data sets

(which are crucial for scaling model performance [Hoffmann et al., 2022]), and

facilitates the use of large training batch sizes which can lead to smoother and

faster convergence. This is a form of weak scaling, where the JCT is decreased by

reducing the total number of training iterations needed via increasing the amount

of data processed per iteration as the number of workers is increased [Khani et

126 Chapter 5. Partitioning Distributed Compute Jobs

Figure 5.1: Diagram showing a DNN job DAG being partitioned. Top: A forward
pass DAG where each node has an associated partition degree (how many times
it will be divided when partitioned). Bottom: A partitioned DAG with forward
and backward passes handled consecutively. Green edges in the graph represent
data flow (i.e. output to input) between consecutive operations in the forward
pass. Orange edges represent gradient exchanges processed in the backward pass
(backpropagation). Blue edges represent full connectivity collective operations to
synchronise weight updates across partitioned components of an operation. Note
that, for brevity, the top unpartitioned DAG only shows the forward pass (since,
before partitioning, the graph structure is identical to the backward pass), whereas
the bottom partitioned DAG shows both the forward and backwards passes (since,

after partitioning, the graph structures are different).

5.2. Background 127

al., 2021]. However, it scales poorly for large models with many parameters

since all parameters must fit onto a single worker and then be synchronised at

the end of each training step, and has the constraint that the training data must

be i.i.d. in order for parameter updates to be computed and summed across

workers to attain the updated model parameters.

Model parallelism. Model parallelism [Karakus et al., 2021] is where the

DNN model is partitioned (split) and a part of the model is sent to each worker.

In the DNN forward pass, a training batch is sampled, copied, and sent to each

worker which holds layer-1 of the DNN. The layer-1 worker(s) then compute

the layer-1 output(s) and forward them to the worker(s) which hold layer-2,

and so on. In the backward pass, the gradients of the model parameters with

respect to the training loss are computed by starting at the worker(s) which

hold the final layer and propagating these gradients back to the layer-1 workers,

after which the partitioned model will be globally synchronised. Layer outputs,

gradients, and activations are exchanged during the training iteration using a

synchronisation step commonly referred to as AllGather. Model parallelism

facilitates the use of very large models which otherwise would not fit onto a single

worker and caters for time-efficient parallelisation of computational operations

where possible. This is a form of strong scaling, where the JCT and per-worker

memory utilisation are decreased via increasingly partitioning different parts

the job across more workers as the number of workers is increased [Khani et al.,

2021]. However, passing gradients between workers during training can create a

large communication overhead [Mirhoseini et al., 2017, 2018], and expert domain

knowledge of the specific model architecture is needed to know how to split the

model across multiple workers.

Hybrid parallelism. Hybrid parallelism [Dean et al., 2012] is where a

combination of data and model parallelism is used to strive for the benefits

of both. This can be extended to include pipeline parallelism [Huang et al.,

2019, Narayanan et al., 2019], where intra-batch parallelism (data and model

128 Chapter 5. Partitioning Distributed Compute Jobs

parallelism) are combined with inter-batch parallelism (pipelining) where multiple

micro-batches are processed simultaneously where possible. Hybrid parallelism

can result in higher worker utilisation and the advantages of both model and

data parallelism, but requires complex bidirectional pipelining across different

inputs, careful model parameter versioning to ensure correct computations of

the gradients during the backward pass, and each stage allocated across workers

must be load-balanced to ensure roughly equivalent computational times between

workers in order to maximise peak pipeline throughput.

Computational jobs. A computational job is a directed acyclic graph

(DAG) whose nodes are operations and edges are dependencies. Operations are

computational tasks (e.g. some mathematical reduction, a database query, etc.).

Dependencies are either control dependencies, where the child operation can

only begin once the parent operation has been completed, or data dependencies,

where at least one tensor is output from the parent operation and required as

input to the child operation. In the context of DNNs, a job DAG is a sequence

of forward pass, backward pass, and parameter update operations which need to

be performed on data exchanged between operations. Whether or not this data

passes through a communication network is determined by how the operations

are partitioned, placed across a cluster of workers, and parallelised.

Job partitioning. Job partitioning refers to the process of splitting the

operations of a job DAG into u (the partition degree) smaller sub-operations

which can in turn be placed across u workers, thus reducing their run time and

memory requirements. Partitioning is used in the model, hybrid, and pipeline

parallelisim paradigms. More partitioning can decrease compute time and

memory requirements, but requires more inter-worker communication, complex

intra-worker operation scheduling, and greater resource utilisation, therefore

potentially increasing overall completion time, cluster complexity, and subsequent

job blocking rates. Fig. 5.1 visualises how an initial DAG for some arbitrary

neural network architecture, where each operation has a partitioning degree, can

5.2. Background 129

be re-represented in terms of its partitioned form. Both forward and backward

passes are explicitly represented since inter-operation information dependencies

(i.e. the edges in the graph) are not the same in each pass.

Figure 5.2: The mean network overhead of the 6 distributed deep learning jobs
reported by [Wang et al., 2022] in Meta’s GPU cluster compared to that of RAMP
as reported by Ottino et al. [2022] on the 5 jobs considered in our work. Note
that this is an approximate comparison, and that the important takeaway is that

RAMP retains low network overheads as jobs become increasingly distributed.

5.2.2 RAMP

Overview. RAMP is a state-of-the-art OCS architecture designed specifically

for cloud data centres and distributed deep learning systems [Ottino et al.,

2022]. RAMP networks are parameterised by NC communication groups, NR

racks per communication group, and NS servers per rack, resulting in a NW =

NC ×NR ×NS worker cluster with a colloquially termed ‘RAMP shape’ defined

by tuple ⟨NC , NR, NS⟩. At its core, RAMP proposes a novel set of message

passing interfaces (MPIs) for performing the synchronisation steps (AllReduce,

AllGather, etc.) required by distributed DNN training jobs. These will be

referred to as collective operations. These MPIs are designed to take full

advantage of the high bandwidth provided by optical network architectures.

Consequently, as shown in Fig. 5.2, the network overhead of RAMP remains

remarkably low as the number of workers used to execute a job increase (see

Section 5.6 for experimental details). The RAMP authors showed that this low

130 Chapter 5. Partitioning Distributed Compute Jobs

network overhead enables unprecedented scalability with up to 65 536 worker

nodes capable of training O(trillion) parameter DNN models.

RAMP placement rules. As detailed in Ottino et al. [2022], a group of

workers in a RAMP shape can only undergo collective operations if they are

selected with respect to certain rules, loosely termed here ‘symmetry’ rules. For

shape ⟨NC , NR, NS⟩, these rules are as follows: (1) NS workers per rack spread

over NR racks requires that the set of workers on each rack span NR distinct

communication groups. These NR distinct communication groups do not have

to be the same set across racks. (2) NS workers on NR = 1 rack must span NS

communication groups. (3) NS workers spread over NR racks (NS = 1 worker

per rack) must span NS distinct communication groups.

In our simulations, we use a simple first-fit operation placement heuristic

which conforms to these rules (refer to Appendix C.3.4 for further details).

5.3 Related Work

Recent years have seen a surge of interest in developing methods to distribute ML

tasks across multiple devices [Ben-Nun and Hoefler, 2019, Mayer and Jacobsen,

2020]. One approach has been to optimise the physical plane of the distributed

cluster such as its compute and network devices and architectures [Parsonson

et al., 2020, Khani et al., 2021, Wang et al., 2022, Ottino et al., 2022]. In this

work, we instead focus on optimising the orchestration plane, which determines

how physical layer resources are allocated to execute a job. We divide the

orchestration plane into three sub-components: Job (1) partitioning (how many

devices to use); (2) placement (which devices to use); and (3) scheduling (in

which order to use the devices). Many prior orchestration plane works have

considered (2) and (3) (how to distribute), whereas we focus on (1) (how much

to distribute). However, in this section we comment on recent progress across

all these fields, since we leverage this progress throughout our work.

5.3. Related Work 131

ML for discrete optimisation. Many CO problems turn out to be NP-

hard, rendering exhaustive search techniques intractable for practical application

[Bengio et al., 2021]. Consequently, practitioners rely on either approximate

algorithms, which give restricted performance guarantees and poor scalability

[Williamson and Shmoys, 2011], or heuristics, which have limited solution efficacy

[Halim and Ismail, 2019]. Since the first application of neural networks to CO by

Hopfield and Tank [1985], the last decade has seen a resurgence in ML-for-CO

[Bello et al., 2016, Dai et al., 2017, Barrett et al., 2019, Gasse et al., 2019,

Barrett et al., 2022, Parsonson et al., 2022]. The advantages of ML-for-CO over

approximation algorithms and heuristics include handling complex problems

at scale, learning either without external input and achieving super-human

performance or imitating strong but computationally expensive solvers, and

(after training) leveraging the fast inference time of a DNN forward pass to rapidly

generate solutions. Since almost all cluster resource management tasks can be

reduced to canonical CO problems [Bengio et al., 2021], many state-of-the-art

resource management methods utilise recent advances in ML-for-CO.

Job placement. Mirhoseini et al. [2017] were the first to apply ML to the

task of deciding which operations in a computation graph to place on which

devices in a cluster. They used a sequence-to-sequence model consisting of an

LSTM DNN with an attention mechanism trained with the simple REINFORCE

policy gradient RL algorithm [Williams, 1992] such that the JCT of a deep

learning job was minimised, outperforming handcrafted heuristics when training

the Inception-V3 computer vision and LSTM natural language processing models.

Gao et al. [2018] furthered this work by replacing REINFORCE with the more

advanced PPO RL algorithm [Schulman et al., 2017] with lower variance and

reduced training hardware demands. They demonstrated their method beating

Mirhoseini et al. [2017] on the CIFAR-10 image recognition benchmark in

terms of JCT. Mirhoseini et al. [2018] proposed a novel hierarchical model

which decomposed the job placement task into a joint group-and-place problem,

132 Chapter 5. Partitioning Distributed Compute Jobs

reducing the JCT of Inception-V3, ResNet, LSTM, and NMT models by up to

60% relative to the state-of-the-art.

All works up to this point used DNN architectures restricted to Euclidean-

structured input data. Consequently, in order to handle non-Euclidean graph-

structured data such as computation graphs and cluster networks, they had to

be re-trained each time a new graph structure was considered. Addanki et al.

[2019] were the first to instead leverage a GNN, as well as the grouping scheme

of Mirhoseini et al. [2018], to learn to generalise across different job types with

varying computation graph structures, demonstrating device placement schemes

which were on par with or better than prior approaches on Inception-V4, NASNet,

and NMT after 6.1× fewer training steps. Khadka et al. [2021] furthered the

use of GNNs for job placement by combining GNNs, RL, and population-based

evolutionary search with the hierarchical group-and-place scheme of Mirhoseini

et al. [2018]. Concretely, they replaced the manually-designed operation grouping

heuristic with a learned policy capable of superior scaling and JCT performance.

Job scheduling. Bao et al. [2018] addressed the job scheduling problem

(the order in which to execute operations placed across a set of devices) using a

primal-dual framework for online job scheduling. They represented the problem

as an ILP which their proposed algorithm could solve in polynomial time in

an online fashion such that the cluster resources were maximally utilised and

the JCT minimised. Li et al. [2021] proposed a placement-aware scheme which

leveraged the pre-determined device placement allocation to decide on a job

schedule which could reduce the average JCT by up to 25% relative to other

scheduling methods. Paliwal et al. [2020] went further by utilising an RL-

trained GNN and a genetic algorithm to jointly optimise both job placement and

scheduling, demonstrating both lower JCT and peak memory usage than other

strategies when distributing TensorFlow computation graphs across a cluster.

Job partitioning. To the best of our knowledge, Khani et al. [2021] are the

only ones to have explicitly considered the question of how much to distribute a

5.4. User-Defined Blocking Rate 133

computation graph in the context of an optical network. Like other works, they

assumed that a maximum parallelisation strategy (i.e. partition the job across

as many workers as possible) is a desirable objective, and then focused on how

best to design the physical layer such that the JCT could be minimised.

All works discussed in this section have assumed that the JCT is the key

objective to minimise. Consequently, where the question of partitioning is

considered, prior works have assumed that more parallelisation is desirable.

However, we posit that user-critical metrics such as throughput and blocking

rate are compromised by prioritising optimisation of the JCT in a cluster setting

with dynamic job arrivals. To address this shortcoming, we propose a new ML-

based resource management scheme which explicitly addresses the partitioning

question. Concretely, our work leverages the emergent trend from these other

orchestration plane fields, namely utilising an RL-trained GNN, to decide how

much to partition different jobs in a dynamic setting with arbitrary user-defined

completion time requirements.

5.4 User-Defined Blocking Rate

To motivate our work, we first explore the key metrics to consider when evaluating

a job partitioning strategy with the help of an experiment on 32 GPU workers,

and then introduce a new formulation of the user-defined blocking rate. All

experimental details are given in Section 5.6.

The inadequacy of optimising the job completion time. As discussed

in Section 5.3, most prior works researching management schemes for distributed

computing aim to minimise JCT; the time taken to complete a given job. If a job

j begins running at wall clock time tstart
wc,j and is completed at time tend

wc,j , researchers

usually record the completion time as JCTj = tend
wc,j − tstart

wc,j . Consequently, most

systems maximise the degree to which they parallelise jobs in order to minimise

JCT. While it is true that end users undoubtedly want this JCT metric to be

134 Chapter 5. Partitioning Distributed Compute Jobs

Figure 5.3: (a-b) Demonstration of how more partitioning can lead to a lower
JCT than no partitioning (i.e. sequentially running the job on a single device), but
this may be at the cost of a higher blocking rate since more cluster resources are
occupied when subsequent jobs arrive. (c-d) Demonstration of how optimising for
the cluster throughput leads to an unfair bias towards more partitioning, because
more parallelism creates more work for the cluster and therefore artificially increases
cluster throughput even though, from the perspective of the user, the original offered

throughput may be lower.

minimised, it fails to quantify when a job was blocked, which occurs when no

cluster resources were available to service it. While more parallelism will often

lead to a lower JCT for a given job, it will also use up more of the cluster’s

compute and network resources, potentially blocking future job arrivals (see

Fig. 5.3). Therefore in practice, end-users wish to minimise both the JCT and

the overall blocking rate (the fraction of jobs blocked over a given time period).

While maximum parallelisation will lead to a minimised JCT, we posit that

a balance between these two extreme parallelisation strategies can more aptly

optimise for both the JCT and blocking rate.

Alternative optimisation objectives. One metric which encapsulates

both the JCT and blocking rate is throughput; the information processed per

unit time. There are two issues with using throughput as an optimisation

objective. (1) Operators must be careful how they measure the throughput to be

optimised. If they measure the cluster throughput (the total cluster information

processed per unit time), they will be biased towards more parallelisation,

5.4. User-Defined Blocking Rate 135

because when a job is partitioned and parallelised, the edge dependencies coming

in to and out of the partitioned operation node(s) must be replicated (see Fig.

5.1). This artificially creates more information for the cluster to process even

though, from the end users’ perspective, the total information processed of

their original demand is the same. Therefore, the offered throughput (the total

original demand information (i.e. before partitioning was applied) processed

per unit time) is a more suitable throughput metric to optimise. Figure 5.3

shows an example of how a ‘maximum partitioning’ strategy, such as that used

by SiP-ML [Khani et al., 2021], can have superior cluster throughput when

compared to a ‘no partitioning’ strategy (sequentially running the job on a single

device) despite having lower offered throughput. However, offered throughput is

still an inadequate optimisation metric, because (2) in practice, different jobs

being serviced by the cluster originating from different client users have different

priorities and job completion time requirements. For example, two identical

machine learning training jobs might be submitted to the cluster, but one from

a user who intends to deploy the model commercially and requires it to be

completed overnight, and the other from a user who is employing the model for

research and has less stringent completion time requirements. Ideally, operators

would direct their clusters to meet flexible user-defined per-job completion time

requirements.

The user-defined blocking rate. To enable users to dynamically determine

the completion time on a per-job basis whilst also maximising the number of job

demands satisfied, we introduce a new formulation of the user-defined blocking

rate objective for the partitioning algorithm to optimise. Given a job which, if

executed sequentially on one device, would be completed in JCTseq
j , we define the

maximum acceptable JCT as JCTacc
j = β · JCTseq

j , where {β ∈ R : 0 < β ≤ 1}.

Here, β is a parameter chosen by the user which determines how quickly the

job must be completed. If JCTj > β · JCTseq
j , then the cluster will have failed

to complete the job within the required time and the job will be recorded as

136 Chapter 5. Partitioning Distributed Compute Jobs

having been blocked. The user-defined blocking rate is therefore the fraction

of jobs which failed to meet the JCTj ≤ β · JCTseq
j requirement over a given

period of time. Note that rather than brazenly optimising for either the JCT or

the blocking rate, the user-defined blocking rate enables the cluster operator to

instead dynamically specify their desired completion time on a per-job basis, and

the performance of the cluster is evaluated according to how well it was able to

meet the requirements of the user. Furthermore, the β parameter corresponds to

the speed-up factor being requested by the user and, since {β ∈ R : 0 < β ≤ 1},

can be given directly as input to a DNN.

5.5 PAC-ML Partitioning Methodology

RL agents can learn general policies without the need for human guidance. An

RL job partitioner therefore has the potential to take an arbitrary maximum

acceptable JCT provided by the user and automatically decide how much to

distribute the job such that, over a period of time, the number of jobs which

meet the JCT requirements specified by the user is maximised. Such an agent

would therefore be able to minimise the blocking rate whilst also accounting for

the flexible and dynamic JCT specifications of the user. Following this logic,

we now describe our PAC-ML (partitioning for asynchronous computing with

machine learning) approach for learning to partition computation jobs with RL

and a GNN.

5.5.1 Markov Decision Process Formulation

Since allocating cluster resources for jobs arriving dynamically in time is a

sequential decision making process, formulating problems such as job partition-

ing as an MDP is a natural approach and facilitates the application of many

traditional and state-of-the-art RL algorithms [Mao et al., 2016, Addanki et al.,

2019, Paliwal et al., 2020].

5.5. PAC-ML Partitioning Methodology 137

Figure 5.4: An overview of our PAC-ML approach transitioning from step
t→ t + 1. At each time step t when there is a new job to be placed on the cluster,
we: (i) Use a GNN to generate an embedded representation of the node and edge
features in the job’s computation graph, and a standard feedforward DNN to do
the same for the global job and cluster features; (ii) concatenate the outputs of (i)
and use another feedforward DNN to generate a logit for each action ut ∈ U t; (iii)
pass the chosen action ut to the environment and partition the job accordingly; (iv)
apply any internal environment allocation heuristics (operation and dependency
placement and scheduling, etc.) to attempt to host the job on the cluster; (v) if
accepted onto the cluster, perform a lookahead to evaluate the job’s completion
time; (vi) fast-forward the environment’s wall clock time twc to when the next job

arrives, and return the corresponding reward rt+1 and updated state st+1.

States. A new job j arriving at time step t is comprised of a DAG G(O, D, gj)

with node operations O, edge dependencies D, and any other job statistics which

might be recorded gj. Similarly, the state of the cluster at time t is made up of

the number of workers available, the jobs currently running on the cluster, and

so on. To compress the state of the cluster and the job requesting to be placed

into a representation suitable as input for a neural network at time step t, we

encode this information into five feature vectors:

1. Per-operation features oi∀i ∈ {1, ..., |O|} (5 features): (i) The compute

cost (run time in seconds on an A100 GPU); (ii) a binary variable indicating

whether the operation has the greatest compute cost in the job; (iii) the

138 Chapter 5. Partitioning Distributed Compute Jobs

memory cost (byte occupancy); (iv) a binary variable indicating whether

the operation has the greatest memory cost in the job; and (v) the node

depth with respect to the source node. The compute and memory costs

are normalised by the highest compute and memory cost operations in the

job, and the node depth is normalised by the depth of the deepest node.

2. Per-dependency features di∀i ∈ {1, ..., |D|} (2 features): (i) The size

(in bytes) of the edge dependency normalised by the largest dependency

in the job; and (ii) a binary indicator of whether the dependency is the

largest in the job.

3. Global job features gj (15 features): (i) The number of operations; (ii)

the number of dependencies; (iii) the sequential job completion time; (iv)

the maximum acceptable job completion time; the maximum acceptable

job completion time fraction β both (v) raw and (vi) normalised; (vii)

the total memory cost of all of the operations; (viii) the total size of

all of the dependencies; (ix) the number of training steps which need to

be performed; the (x) mean and (xi) median of the operation compute

costs; the (xii) mean and (xiii) median of the operation memory costs; and

(xiv) the mean and (xv) median of the dependency sizes. Each feature

is normalised by the highest respective value of the feature across all job

types.

4. Global cluster features gt
C (2 features): (i) The number of occupied

workers; and (ii) the number of jobs running. Both features are normalised

by the total number of workers in the cluster NW .

5. Global action features gt
U (NW

2 features): A binary vector indicating

the validity of each possible partitioning decision given the state of the

cluster and the RAMP rules defined by [Ottino et al., 2022].

5.5. PAC-ML Partitioning Methodology 139

Actions. Given the state st encapsulating both the job requesting to be

placed and the current state of the cluster, the partitioning agent uses a policy

π(st) to select a number of times ut up to which to partition each operation in the

job’s computation graph (using a similar minimum operation run time quantum

discretisation scheme to Khani et al. [2021]), where ut
i∀i ∈ {0, 1, ..., NW

2 } (i.e.

there are
(

NW

2 +1
)

possible discrete actions). Note that ut = 0 enables the agent

to reject a job without placing it, ut = 1 places the job onto one worker and runs

it sequentially, and 1 < ut ≤ NW

2 attempts to distribute the job’s operations

across up to ut workers. In our setting and given the RAMP rules of Ottino

et al. [2022], an invalid partitioning action is one which is at least one of: (i) An

odd number (except ut = 1), or either (ii) greater than the number of workers

available or (iii) has no valid RAMP placement shape given the current state of

the cluster (see Section 5.2).

Rewards. As a consequence of the RAMP rules defined by Ottino et al.

[2022], which require that the worker and network resources allocated to a

given job are reserved exclusively for that job for the duration of its run time,

we are able to perform a deterministic lookahead to evaluate what the overall

completion time, JCTj, of the job will be as soon as it is placed. Subsequently,

when a job j arrives at time step t, we can immediately determine whether or

not the cluster met the JCTacc
j specified by the user. This enables the use of a

simple per-step +1/−1 reward scheme,

rt+1 =


1, if JCTj ≤ β · JCTseq

j

−1, otherwise
, (5.1)

which when aggregated and maximised over the course of an episode corre-

sponds to maximally meeting the specified per-job completion time requirements

and therefore minimising the user-defined blocking rate.

Transitions. In our hybrid time- and event-drive simulation, when the agent

140 Chapter 5. Partitioning Distributed Compute Jobs

makes a partitioning decision at time step t, the environment transitions to the

next step t + 1 by fast-forwarding its internal simulated wall clock time, twc,

to when the next job arrives and requests to be placed, updating the states of

any running and completed jobs and their corresponding compute and network

resources as necessary. The episode terminates when twc = T max
wc .

5.5.2 PAC-ML Learning Setup

Reinforcement learning algorithm. To find a policy which maximises the

expected return when partitioning jobs, we used the state-of-the-art Ape-X DQN

[Horgan et al., 2018] RL algorithm; a distributed and highly scalable value-based

method (see Appendix C.6 for algorithm details and hyperparameters).

Neural network architecture. To make the learning of value and policy

functions tractable in large state-action spaces, we approximated them with a

custom-built message passing GNN implemented using the open-source PyTorch

[Paszke et al., 2019] and DGL [Wang et al., 2019] libraries. Refer to Appendix

C.5 for further architectural details.

5.6 Experimental Setup

All code for reproducing the experiments and links to the generated data sets

are provided at https://github.com/cwfparsonson/ddls.

Simulation environment. We built an open-source Gym environment

[Brockman et al., 2016] to simulate the RAMP OCS system of Ottino et al.

[2022] in an RL-compatible manner. We used a hybrid time- and event- driven

simulation approach where we kept track of the internal simulation wall clock

time twc, enabling the measurement of time-based metrics, but only took a

partitioning decision when needed (i.e. when a new job demand arrived at the

cluster), aiding efficiency since no discrete steps were needlessly simulated. All

our experiments used similar cluster parameters to Ottino et al. [2022]. We used

https://github.com/cwfparsonson/ddls

5.6. Experimental Setup 141

Figure 5.5: The four β distributions used in our experiments in order to measure
the capability of each partitioner to cater to different user-defined maximum
acceptable completion time requirement settings. In each βX experiment setting,
each new job generated was assigned a β value sampled from βX in order to get

the maximum acceptable job completion time, β · JCTseq (see Section 5.4).

NW = 32 (NC = 4, NR = 4, NS = 2) A100 GPUs with 80 GB memory capacity,

2 THz memory frequency, and a peak computational power of 130 Tflop/s. We

assumed an intra-GPU propagation latency of 50 ns, a negligible OCS circuit

reconfiguration latency of 1 ns, a worker input-output latency of 100 ns, and a

total worker communication capacity of 1.6 TB/s (resulting in a per-transceiver

bandwidth of 1.6×1012

NC
B/s). All experiments were run up to a simulated wall

clock time of T max
wc = 106 s (around 12 days) of continuous cluster operation

with dynamic job arrivals and were repeated across 3 random seeds, with the

subsequent min-max confidence intervals for each measurement metric reported.

More details of the simulation environment are provided in Appendix C.3.

Compute jobs. We used the computation graph time and memory profiles

of five real deep learning job types open-accessed with Microsoft’s PipeDream

research [Narayanan et al., 2019, 2021] (see Appendix C.4 for details). These jobs

encompassed image classification (AlexNet [Krizhevsky et al., 2012], ResNet-18

[He et al., 2016], SqueezeNet-10 [Iandola et al., 2016], and VGG-16 [Simonyan

and Zisserman, 2014]) and natural language processing (GNMT [Wu et al.,

2016]) tasks, thereby testing the generality of the approaches we considered.

142 Chapter 5. Partitioning Distributed Compute Jobs

All jobs arrived to the cluster dynamically and stochastically throughout the

simulation period, with the inter-arrival time fixed at 1000 s to control the load

rate. Each job was ran for Niter = 50 training iterations, where one training

iteration consists of one forward and backward pass through the neural network.

Partitioning. When partitioning the operations in a job’s computation

graph, we allowed the partitioning agents to split each operation up to NW

2

times (the environment’s ‘maximum partitioning degree’). We followed Khani et

al. [2021] by (1) assuming a linear dependency between the total number of

operation splits and each split’s compute time; and (2) choosing a minimum

quantum of computation time, τ , and splitting operations up to a number of

times which would result in sub-operations with a compute time no smaller

than τ in order to maximise GPU utilisation. We set τ = 10 ms. As such, a

given partitioning action ut set the maximum partitioning degree of the job,

but individual operations within the job could be split fewer times depending

on their initial compute time and τ . Note that although this restricts each

operation to be distributed across a maximum of ut servers, the total number of

workers used by all operations in the job can still be greater than ut depending

on the operation placement heuristic’s choices.

Maximum acceptable job completion times. In our setting, a partitioner

would ideally be able to take an arbitrary job with an arbitrary maximum

acceptable job completion time, β · JCTseq, and partition the job such that

the completion time requirement is satisfied for as many dynamically arriving

jobs as possible (thereby minimising the user-defined blocking rate; see Section

5.4). To test each partitioner’s ability to do this, we ran experiments using

four β distributions (βA, βB, βC , and βD; see Fig. 5.5). For each βX experiment,

when one of the five possible jobs was randomly generated to arrive at the

cluster, a β value, discretised to two decimal places, was randomly sampled

from the experiment’s βX distribution and assigned to the job. By sampling a

broad range of β values from a selection of βX distributions, we ensured that

5.6. Experimental Setup 143

we could analyse the performance of each partitioning agent under different

completion time requirement settings and subsequently measure the capability

of each method to cater for different user-defined requirements.

Heuristics RL
Random Paramax Paramin PAC-ML

βA 0.517+0.015
−0.015 0.262+0.002

−0.003 0.309+0.014
−0.015 0.203+0.007

−0.009
βB 0.601+0.007

−0.008 0.263+0.006
−0.004 0.396+0.006

−0.003 0.258+0.007
−0.003

βC 0.505+0.016
−0.012 0.267+0.004

−0.006 0.307+0.015
−0.012 0.117+0.003

−0.003
βD 0.465+0.004

−0.006 0.263+0.006
−0.004 0.142+0.027

−0.046 0.099+0.008
−0.007

Table 5.1: Blocking rate performance of the partitioning agents on the four β
distributions (best in bold). Results are given as the mean across 3 seeds, and

error bars denote the corresponding min-max confidence intervals.

Partitioner baselines. We considered three heuristic baseline partitioning

strategies. (1) Most prior works partition a given job across as many workers

as are available up to a pre-defined environment maximum partition degree

[Khani et al., 2021, Wang et al., 2022]. We refer to this strategy as ‘Paramax’.

(2) Given the low network overhead (see Fig. 5.2) and contentionless nature

of RAMP, and given the operations’ linear split-compute time dependency of

our environment, a reasonable estimate for the completion time of a job with

sequential run time JCTseq distributed across ut workers would be JCT ≈ JCTseq

ut .

Therefore, in light of our objective to minimise the user-defined blocking rate,

we introduce a new partitioning strategy, ‘Paramin’, which partitions the job

up to the estimated minimum amount of parallelisation needed to satisfy the

job’s completion time requirements, ut = ⌈ 1
β
⌉ (i.e. the estimated speed-up

factor needed). (3) For completeness, we also ran a ‘Random’ partitioning

baseline, which selects a partitioning degree randomly from amongst the number

of available workers.

Metrics recorded. To measure the performance of our partitioning agents,

we recorded the following key metrics. (1) User-defined blocking rate (which

we abbreviate to ‘blocking rate’): The fraction of arrived jobs which had their

completion time requirements met by the cluster. (2) Offered throughput: The

144 Chapter 5. Partitioning Distributed Compute Jobs

total ‘information size’ of the original jobs (i.e. before partitioning was applied)

processed per unit time. Since the open-access PipeDream job profiles used

in our experiments did not contain per-operation flop/s (computational load)

information, we summed the jobs’ operation and dependency sizes (measured in

bytes (B)) to get the total ‘information size’ of each job. The load rate could

then be defined as the rate of job information arriving at the cluster per unit

time, and the corresponding offered throughput as the rate at which this total

job information was processed by the cluster. For a full list of metric definitions,

refer to Appendix C.1.

5.7 Results & Discussion

Figure 5.6: Validation performances (higher is better) of each partitioning
agent evaluated across three seeds normalised with respect to the best-performing

partitioner in each BX environment.

5.7.1 Performance of the PAC-ML Partitioner

Comparison to the baseline partitioners. To test the performance of

each partitioning agent under different completion time requirement settings,

we ran our experiments across four different β distributions (see Section 5.6).

We visualise the relative blocking rate and throughput performance differences

between the agents in Fig. 5.6, where an agent’s ‘score’ is its normalised

performance relative to the best-performing agent with respect to a given

5.7. Results & Discussion 145

metric. We evaluate these scores as scoreblocking =
(

best_blocking_rate
blocking_rate

)
, and

scorethroughput =
(

throughput
best_throughput

)
for each agent (refer to Appendix C.7 for all

raw metric values). As shown in Table 5.1 and Fig. 5.6, our PAC-ML agent

achieved the best blocking rate across all four β distributions, beating its nearest

rival by 22.5%, 1.90%, 56.2%, and 30.3% for βA,B,C,D respectively.

Comparison amongst the baseline partitioners. Fig. 5.6 visualises

the performance of the best PAC-ML agents on each of the four β distribution

environments compared to the baseline heuristic performances. Interestingly, the

best baseline in terms of blocking rate for βA,B,C is Paramax, but this switches

to Paramin for βD. On βB, PAC-ML achieved roughly equivalent performance

to Paramax by learning that, on this β demand distribution, maximum paralleli-

sation led to the lowest blocking rates. This shows that different partitioning

strategies have varying relative performances under different cluster settings. A

key advantage of PAC-ML is therefore that the question of which partitioning

strategy is best for a given environment need not be addressed by sub-optimal

hand-crafted heuristics or environment-specific hyperparameter tuning. Instead,

we have demonstrated in Table 5.1 and Fig. 5.6 that PAC-ML can automatically

learn performant partitioning strategies in arbitrary environment settings.

5.7.2 Analysis of the PAC-ML Partitioner

Offered throughput analysis. One risk of optimising only for the blocking

rate when training the PAC-ML agent is that it maximises the number of jobs

accepted by prioritising small low-information jobs at the cost of a sub-optimal

offered throughput; a key metric when measuring a cluster’s quality of service

to users. Fig. 5.6 shows that the offered throughput improves with the blocking

rate, with the PAC-ML agent ultimately achieving the best throughput across

all four β distributions.

Bias analysis. An important question is whether there is any bias in the

146 Chapter 5. Partitioning Distributed Compute Jobs

Figure 5.7: Mean per-job blocking rates of the five job types considered for each
partitioning agent under each βX setting plotted against the number of operations
(ops.), number of dependencies (deps.), the total job information size, and the

sequential run time of the job were it ran on a single device (JCTseq).

kinds of jobs the PAC-ML agent learns to prioritise in order to minimise the

blocking rate. To investigate this, Fig. 5.7 shows the blocking rate vs. the

original characteristics for each of the five jobs considered (see Appendix C.4

for a summary of these characteristics) for each βX distribution environment.

The PAC-ML agent had little to no bias across the jobs relative to the other

partitioners, with all jobs attaining approximately the same blocking rate. There

was a slight bias towards the larger jobs with greater sequential completion times

and more information to process, which is likely due to the fact that larger jobs

occupy more resources and therefore inherently become favoured over smaller

jobs.

5.8. Conclusions, Limitations, & Further Work 147

5.8 Conclusions, Limitations, & Further Work

In conclusion, we have introduced a new partitioning strategy called PAC-ML.

Leveraging RL and a GNN, PAC-ML learns to partition computation jobs dy-

namically arriving at a cluster of machines such that the number of jobs which

meet arbitrary user-defined completion time requirements is maximised without

the need for hand-crafted heuristics or environment-dependent hyperparameter

tuning. We tested our partitioner on the recently proposed RAMP optical archi-

tecture [Ottino et al., 2022] across four distributions of user-defined completion

time requirements, demonstrating up to 56.2% lower blocking rates relative to

the canonical maximum parallelisation strategies used by most prior works when

partitioning five real deep learning jobs. We hope that our work will spur a

new avenue of research into developing partitioning strategies for distributed

computing. In this section, we outline some limitations of the work done in this

chapter and potentially interesting areas of further work.

Exceeding completion time expectations. In this work, we rewarded

PAC-ML with +1 for completing a job within the user-defined maximum ac-

ceptable completion time and −1 for failing to do so. Although minimising the

blocking rate is crucial for users, it would also be desirable to minimise the

JCT as much as possible. An interesting area of further study would therefore

be to incorporate this objective into the reward function, perhaps by combin-

ing the JCT speed-up factor or offered throughput with the blocking rate via

multi-objective RL [Hayes et al., 2022].

Real-world experiments. Our work has considered real open-access deep

learning computation graph profiles but on a simulated optical architecture.

A natural but significant next step would be to implement PAC-ML in a real

distributed cluster. An important question would be whether an agent trained

in a simulated environment would be capable of inferring in a real cluster at test

time, or if real-world training would be needed.

148 Chapter 5. Partitioning Distributed Compute Jobs

Generalisation to unseen environments. This study ran PAC-ML in

an environment which had the same load rate, β distribution, cluster network

size, and job computation graphs at train and test time. An interesting research

question would be whether PAC-ML would be able to learn on one set (or a

distribution) of these parameters and then generalise to a new set at test time,

or if it would need to leverage existing or new state-of-the-art methods in GNN

[Knyazev et al., 2019, Garg et al., 2020, Fan et al., 2021] and RL [Cobbe et al.,

2019, Wang et al., 2020, Kirk et al., 2021] generalisation.

Robustness to stochastic inter-arrival times. In our experiments, we

fixed the inter-arrival rate in order to fix the load rate. However, real clusters have

variable inter-arrival times [Parsonson et al., 2022]. Handling highly stochastic

environments is a known challenge for RL [Mao et al., 2019b], and therefore

presents an interesting future research avenue for PAC-ML.

Combining the orchestration plane. In our work, we have considered

the job partitioning task in isolation of the job placement and scheduling tasks.

However, prior works have found the merging of the latter sub-tasks into a

single resource management problem beneficial to performance [Paliwal et al.,

2020]. An interesting area of further work would be to combine PAC-ML into a

a single algorithm which handled job partitioning, placement, and scheduling

via methods such hierarchical RL [Barto and Mahadevan, 2003, Vezhnevets

et al., 2017, Mirhoseini et al., 2018, Paliwal et al., 2020, Zhang et al., 2021a] or

multi-agent RL [Foerster, 2018].

149

Part III

Optimising the Simulator

151

Chapter 6

A Framework for Generating

Custom and Reproducible

Network Traffic

Abstract

Benchmarking is commonly used in research fields, such as computer architecture

design and machine learning, as a powerful paradigm for rigorously assessing,

comparing, and developing novel technologies. However, the data centre network

(DCN) community lacks a standard open-access and reproducible traffic genera-

tion framework for benchmark workload generation. Driving factors behind this

include the proprietary nature of traffic traces, the limited detail and quantity of

open-access network-level data sets, the high cost of real world experimentation,

and the poor reproducibility and fidelity of synthetically generated traffic. This is

curtailing the community’s understanding of existing systems and hindering the

ability with which novel technologies, such as optical DCNs, can be developed,

compared, and tested.

This chapter presents TrafPy; an open-access framework for generating

both realistic and custom DCN traffic traces. TrafPy is compatible with any

simulation, emulation, or experimentation environment, and can be used for

152
Chapter 6. A Framework for Generating Custom and Reproducible Network

Traffic

standardised benchmarking and for investigating the properties and limitations

of network systems such as schedulers, switches, routers, and resource managers.

We give an overview of the TrafPy traffic generation framework, and provide a

brief demonstration of its efficacy through an investigation into the sensitivity of

some canonical scheduling algorithms to varying traffic trace characteristics in

the context of optical DCNs. TrafPy is open-sourced via GitHub [Parsonson and

Zervas, 2021a] and all data associated with this manuscript via RDR [Parsonson

and Zervas, 2021b].

Chapter 6. A Framework for Generating Custom and Reproducible Network

Traffic
153

Publications related to this work (contributions indented):

• Christopher W. F. Parsonson, Joshua L. Benjamin, and Georgios

Zervas, ‘Traffic generation for benchmarking data centre networks’, Optical

Switching and Networking, 2022

– Algorithms, code, experiments, paper writing, plots

• Joshua L. Benjamin, Alessandro Ottino, Christopher W. F. Parsonson,

and Georgios Zervas, ‘Traffic Tolerance of Nanosecond Scheduling on

Optical Circuit Switched Data Center Network’, OFC’22: Optical Fiber

Communications Conference and Exhibition, 2022

– Code, traffic generation

• Joshua L. Benjamin, Christopher W. F. Parsonson, and Georgios

Zervas, ‘Benchmarking Packet-Granular OCS Network Scheduling for

Data Center Traffic Traces’, Photonic Networks and Devices, 2021

– Code, traffic generation

154
Chapter 6. A Framework for Generating Custom and Reproducible Network

Traffic

6.1 Introduction

A benchmark is a series of experiments performed within some standard frame-

work to measure the performance of an object. Researching data centre network

(DCN) systems and objects such as networks, resource managers, and topologies

involves understanding which types of mechanisms, principles or architectures

are generalisable, scalable and performant when deployed in real-world environ-

ments. Benchmarking is a powerful paradigm for investigating such questions,

and has proved to be a strong driving force behind innovation in a variety of

fields [Weber et al., 2019]. A famous example of a successful benchmark is the

ImageNet project [Deng et al., 2009], which has facilitated a range of significant

discoveries in the field of deep learning over the last decade.

In order to benchmark a DCN system, a traffic trace with which to load

the network is required. This presents several challenges. (1) Data related

to DCNs are often considered privacy-sensitive and proprietary to the owner,

therefore few DCN traffic traces are openly available. (2) When a real DCN

trace is made available, it is often specific to a particular DCN and possibly

not representative of current and future systems, too limited for cutting-edge

data-hungry applications such as reinforcement learning, and not sufficient for

stress-testing different loads in networks with arbitrary capacities to understand

system limitations and vulnerabilities to future workloads. (3) Even if an attempt

is made to make a real DCN available for live testing, deploying experimental

systems in such large-scale production environments is often too expensive and

time consuming. (4) Reducing or approximating DCN traffic down to small-scale

experiments is often unfruitful since many DCN application traffic patterns only

emerge at large scales.

For these reasons, most DCN researchers revert to simulating DCN traffic in

order to conduct their experiments. However, synthetic DCN traffic generation is

often plagued by numerous inadequacies. A common simplification approach is

6.1. Introduction 155

to assume uniform or ‘named’ (Gaussian, Pareto, log-normal, etc.) distributions

from which to sample DCN traffic characteristics. However, such distributions

often ignore fluctuations caused by the short bursty nature of real DCN traffic,

rendering the simulation unrealistically simple. Sometimes researchers will try

to implement their own unique distributions to better describe real DCN traffic,

however this brings difficulties with trying to reproduce and benchmark against

literature reports since there is no standard framework for doing so. Another

common approach is to only focus on the temporal (arrival time) dependence

of DCN traffic characteristics and assume uniform spatial (server-to-server)

dependencies. However, this fails to capture the spatial variations in server-

to-server communication which are needed to accurately mimic real traffic.

Works by Alizadeh et al. [2012, 2013] and Bai et al. [2016] introduced important

DCN systems, but the traffic generators released with their papers fall short of

addressing the issues of fidelity, reproducibility, and compatibility with generic

network architectures (see Section 6.2).

These difficulties with simulating DCN traffic have meant that no traffic

generation framework, and subsequently no universal DCN system benchmark,

has emerged as the networking research field’s tool-of-choice. The lack of a

rigorous benchmarking framework has been a major issue in DCN literature

since individual researchers have often used their own tests without adhering

to the aforementioned requirements. This has limited reproducibility, stifled

network object prototype benchmarking, and hindered training data supply

for novel machine learning systems. Without benchmarking, it is difficult to

systematically and consistently test and validate new heuristics for specific tasks

such as flow scheduling. Furthermore, without sufficient training data, state-of-

the-art machine learning models are less able to replace existing heuristics.

To address the lack of openly available traffic data sets, the aforementioned

problems with simulation, and the absence of a system benchmark, a common

156
Chapter 6. A Framework for Generating Custom and Reproducible Network

Traffic

DCN traffic generation framework is needed. We introduce TrafPy: An open-

source Python API for realistic and custom DCN traffic generation for any

network under arbitrary loads, which can in turn be used for investigating

a variety of network objects such as networks, schedulers, buffer managers,

switch/route architectures, and topologies. TrafPy contributes two key novel

ideas to traffic generation, which we detail throughout this chapter:

1. Reproducibility guarantee A novel method for providing a distribution

reproducibility guarantee when generating traffic based on the Jensen-

Shannon distance metric (see Section 6.3.3).

2. Traffic generation algorithm: A novel method for efficiently creating

reproducible flow-level traffic with granular control over both spatial and

temporal characteristics (see Section 6.3.5).

In addition to the above, TrafPy also contains the following features which,

when combined with these novel aspects, make TrafPy a useful tool for benchmark

workload generation:

• Interactivity: A distribution shaping tool for rapid creation of complex

distributions which accurately mimic realistic workloads given only high-

level characteristic descriptions (see Appendix B.3).

• Compatibility: Compatibility with any simulation, emulation, or experi-

mentation environment by exporting traffic into universally compatible

file formats.

• Accessibility: Open-source code and documentation with a low barrier

to entry.

6.2. Background & Related Work 157

6.2 Background & Related Work

While there is limited literature on DCN traffic generation, data sets, and

benchmarking for the reasons outlined in Section 6.1, there have been notable

works striving towards their creation.

Real workloads. There are a collection of publicly available DCN workload

traces and job computation graph data sets [Yahoo, 2015, Google, 2015, Facebook,

2014, OpenCloud, 2012, Ren et al., 2012, Eucalyptus, 2015, Pucher et al., 2015,

Wolski and Brevik, 2017, Delft, 2015, Shen et al., 2015, JSSPP, 2017, Klusáček

and Parák, 2017, Azure, 2017, Cortez et al., 2017, Alibaba, 2017, Lu et al.,

2017, LANL and TwoSigma, 2018, Amvrosiadis, 2018, Amvrosiadis et al., 2018,

NCSA, 2018, Jha et al., 2019, Jha et al., 2020]. However, almost all of these

stem from Hadoop clusters and are limited to data mining applications [Pucher

et al., 2015], therefore their use is primarily suited to application-specific testing

and evaluation rather than as a generic tool for generating arbitrary loads and

testing and designing DCN systems as TrafPy is proposed for. Additionally,

many of them lack flow-level data, which is needed to accurately benchmark

network systems.

Real workload characteristics. There is a limited body of work, primarily

from private corporations, aiming to characterise real DCN workloads without

open-accessing the underlying proprietary raw data. Benson et al. [2010a] built on

work done by Kandula et al. [2009] and Benson et al. [2010b] by characterising

DCN traffic into one of three categories; university, private enterprise, and

commercial cloud DCNs. They identified that each of these categories serviced

different applications and therefore had different traffic patterns. University

DCNs serviced applications such as database backups, distributed file system

hosting (e.g. email servers, web services for faculty portals, etc.), and multicast

video streams. Private enterprise hosted the same applications as university

DCNs but additionally serviced a significant number of custom applications and

158
Chapter 6. A Framework for Generating Custom and Reproducible Network

Traffic

development test beds. Commercial cloud DCNs focused more on internet-facing

applications (e.g. search indexing, webmail, video, etc.), and intensive data

mining and MapReduce-style jobs. They also went further than prior works by

quantifying the number of hot spots and characterising the flow-level properties

of DCN traffic.

The above cloud DCN studies came almost exclusively from Microsoft, who

primarily service MapReduce-style applications. Roy et al. [2015] broke this

homogeneous view of cloud traffic by reporting the traffic characteristics of

Facebook’s DCNs, thereby introducing a fourth DCN category; social media

cloud DCNs. Social media cloud applications include generating responses

to web requests (email, messenger, etc.), MySQL database storage and cache

querying, and newsfeed assembly. This results in network traffic being more

uniform and, in contrast to Microsoft’s commercial cloud DCNs, having a much

lower proportion (12.9%) of traffic being intra-rack.

Note that the above examples did not open-access the full data sets, but rather

provided quantitative characterisations of their nature for other researchers to

inform their own traffic generators.

Traffic generators. In their seminal pFabric work, Alizadeh et al. [2013]

provided open-access traffic generation code which loosely replicated web search

and data mining DCN workloads by following a Poisson flow inter-arrival time

distribution whose arrival rate was adjusted to meet a required target load

and with a mix of small and large characteristically heavy-tailed flow sizes.

Additionally, the same authors [Alizadeh et al., 2012] released a simple generator

which used a server application to create many-to-one flow requests from 9

servers, again following a load-adjustable Poisson arrival time distribution with

80% of flows having a size of 1 kB (a single packet) and 20% being 10 MB.

As the authors noted themselves, these workloads were not intended to be

realistic, but rather were designed to demonstrate clear impact comparisons

between different DCN design schemes and the small latency-sensitive and large

6.2. Background & Related Work 159

bandwidth-sensitive flows. TrafPy, on the other hand, can facilitate the shaping

of complex inter-arrival and flow size distributions with one-to-one, many-to-one,

and one-to-many non-uniform server-server distributions with ease. Furthermore,

TrafPy enables the generation of traffic with the same characteristics as Alizadeh

et al. [2013, 2012], but for any network topology with an arbitrary number of

servers and link capacities, allowing for the straightforward comparison of novel

DCN fabrics with pre-established benchmark workloads.

Similarly, Bai et al. [2016] conducted an extensive experiment into the trade-

off between throughput, latency, and weighted fair sharing in scenarios where

each switch port had multiple queues. Alongside their study they released

an open-access traffic generator which could take a configuration file as input

and generate both uniform and non-uniform server-server flow requests from

pre-defined discrete probability distributions. However, to produce traffic, users

had to manually enter numbers into a configuration file, which made the code

difficult to use. Furthermore, the generator of Bai et al. [2016] had no mechanism

for ensuring distribution reproducibility when sampling from a pre-defined

probability distribution; a feat achieved by TrafPy via the Jensen-Shannon

distance method (see Section 6.3.3).

The key objective of TrafPy is to augment DCN research projects such as

those cited above [Alizadeh et al., 2013, 2012, Bai et al., 2016]. Unlike our

work, the primary focus of such projects was not on the traffic generator itself,

but rather on using traffic generation as a means of benchmarking innovative

ideas. We posit that the fidelity, generality, reproducibility, and compatibility of

TrafPy, achieved by generating custom server-level flow traffic, would make such

works easier to conduct and to compare against as baselines in future projects.

160
Chapter 6. A Framework for Generating Custom and Reproducible Network

Traffic

6.3 Method

6.3.1 Design Objectives

Designing successful network object benchmarks requires a flexible, modular,

and reproducible traffic generation framework. The framework should enable

fair comparisons between different systems whilst maintaining a rigorous experi-

mental setting. In light of the issues highlighted in Section 6.1, the following

criteria are required of such a framework:

1. Fidelity: Generate demands which represent realistic DCN traffic.

2. Generality: Generate traffic for arbitrary DCN applications and topologies.

3. Scalability: Efficiently scale to large networks.

4. Reproducibility: Reliably reproduce traffic traces to run multiple test

repeats or to reproduce other researchers’ traffic conditions.

5. Repeatability: Summarise traffic distributions such that, given just a few

parameters, other researchers can repeat the demand data set for cross-

validation and comparison.

6. Replicability: Interactively shape characteristic distributions visually to

replicate realistic data given only a plot or written description (i.e. in the

absence of raw data).

7. Compatibility: Export generated demands into universally compatible data

formats such that they can be imported into any simulation, emulation, or

experimentation test bed.

8. Comparability: Compare a set of standardised performance metrics across

different studies.

6.3. Method 161

6.3.2 TrafPy Overview

An overview of the TrafPy API user experience is given in Fig. 6.1 and further

elaborated on throughout this chapter, with Table B.1 summarising the notation

used and some API examples given in Appendix B.3. The core component of

TrafPy is the Generator, which can be used for generating custom, literature, or

standard benchmark network traffic traces. These traces can be saved in standard

formats (e.g. JSON, CSV, pickle, etc.) and imported into any script or network

simulator. Researchers can therefore design their systems and experiments

independently of TrafPy and use their own programming languages, making

TrafPy compatible with already-developed research projects and future network

objects. This also means that TrafPy can be used with any simulation, emulation,

or experimentation test bed. The Generator has an optional interactive visual

tool for shaping and reproducing distributions, therefore little to no programming

experience is required to use it to generate and save traffic data in standard

formats. As the nature of DCN traffic changes, new traffic distributions can be

generated with TrafPy and state-of-the-art benchmarks established.

Figure 6.1: TrafPy API user experience for using custom or benchmark TrafPy
parameters D′ to make flow traffic trace D with maximum Jensen-Shannon distance
threshold

√
JSD and minimum flow arrival duration tt,min for m loads {ρ1, ..., ρm}.

The generated trace D can then be used to benchmark a DCN system test object
(e.g. a scheduler) in a test bed (a simulation, emulation, or experimentation
environment) to measure the key performance indicators PKP I . The user need only
use TrafPy to generate the traffic; all other tasks can be done externally to TrafPy

in any programming language.

162
Chapter 6. A Framework for Generating Custom and Reproducible Network

Traffic

Flow traffic. The flow-centric paradigm considers a single demand as a

flow, which is a task demanding some information be sent from a source node

to a destination node in the network. Flow characteristics include size (how

much information to send), arrival time (the time the flow arrives ready to be

transported through the network, as derived from the network-level inter-arrival

time which is the time between a flow’s time of arrival and its predecessor’s), and

source-destination node pair (which machine the flow is queued at and where it

is requesting to be sent). Together, these characteristics form a network-level

source-destination node pair distribution (‘how much’ (as measured by either

probability or load) each machine tends to be requested by arriving flows). When

a new flow arrives at a source and requests to be sent to a destination, it can be

stored in a buffer until completed (all information fully transferred) or, if the

buffer is full, dropped. Once dropped or completed, the flow is not re-used.

TrafPy distributions. At the heart of TrafPy are two key notions; that no

raw data should be required to produce network traffic, and that every aspect

of the API should be parameterised for reproducibility. To achieve the first,

rather than using clustering and autoregressive models to fit distributions to

data [Li, 2010, Feitelson, 2003], TrafPy provides an interactive tool for visually

shaping distributions. This way, researchers need only have either a written

(e.g. ‘the data followed a Pareto distribution with 90% of the values less than

1’) or visual description of a traffic trace’s characteristics in order to produce

it. To achieve the second, all distributions are parameterised by a handful of

parameters (termed D′; see Appendix B.2 for an example of the parameters

used in this chapter), and a third party need only see D′ in order to reproduce

the original distribution. As such, TrafPy traces are discrete distributions in the

form of hash tables, which can be sampled at run-time to generate flows. These

tables map each possible value taken by all flow characteristics to fractional

values which represent either the ‘probability of occurring’ for size and time

distributions, or the ‘fraction of the overall traffic load requested‘ for node

6.3. Method 163

distributions. This enables traffic traces to be generated from common TrafPy

benchmarks for custom network systems in a reproducible manner without

needing to reformat the original data in order to make it compatible with new

systems and topologies, as would be needed if the benchmarks were hard-coded

request data sets instead of distributions.

6.3.3 Distribution Accuracy and Reproducibility

All TrafPy distributions are summarised by a set of parameters D′. Once D′ has

been established (by e.g. the community as a benchmark or a researcher as a

custom stress-test or future workload trace), TrafPy must be able to reliably and

accurately reproduce (via sampling) the ‘original’ distribution parameterised

by D′ each time a new set of traffic data is generated. Therefore, a guarantee

that the sampled distribution will be close to the original is required to ensure

reproducibility. TrafPy utilises the Jensen-Shannon Divergence (JSD) [Rao,

1982, Lin, 1991] to quantify how distinguishable discrete probability distributions

are from one another. Given a set of n probability distributions {P1, ...,Pn}, a

corresponding set of weights {π1, ..., πn} to quantify the contribution of each

distribution’s entropy to the overall similarity metric, and the entropy H(Pi) of a

discrete distribution with m random variables Xi = {xi
1, ..., xi

m} which occur with

probability Pi = {Pi(xi
1), ...,Pi(xi

m)} where H(Xi) = −∑m
j=1 Pi(xi

j)logPi(xi
j), the

JSD between the distributions can be calculated as in Eq. 6.1. In the context of

TrafPy, the Pi distributions are the hash tables of variable value-fraction pairs

and the weights are simply set to 1.

JSDπ1,...,πn(P1, ...,Pn) = H
(n∑

i=1
πiPi

)
−

n∑
i=1

πiH(Pi) (6.1)

The square root of the Jensen-Shannon Divergence gives the Jensen-Shannon

distance [Lin, 1991], which is a metric between 0 and 1 used to describe the

similarity between distributions (0 being exactly the same, 1 being completely

164
Chapter 6. A Framework for Generating Custom and Reproducible Network

Traffic

different). The TrafPy API enables users to specify their own maximum
√

JSD

threshold,
√

JSDthreshold, when sampling data from a set of original distributions

to create their own data set(s). A lower distance requires that the sampled

distributions be more similar to the original distributions. TrafPy will automati-

cally sample more demands until, by the law of large numbers, the user-specified
√

JSD threshold is met.

Fig. 6.2 shows how, for an example benchmark’s flow size and inter-arrival

time distribution, the
√

JSD between the original and the sampled distributions

changes with the number of samples (number of demands). As shown, most

characteristic parameters (mean, minimum, maximum, and standard deviation)

of the sampled distributions converge at
√

JSD ≈ 0.1; a threshold reached after

137,435 demands for the flow size distribution and 27,194 for the inter-arrival

times. The greater the number of possible random variable values and complexity

in the original distribution, the more demands which will be needed to lower

the
√

JSD. The distribution which requires the most demands to meet the
√

JSD threshold will determine the minimum number of demands needed for

the generated flow data set to accurately reproduce the original set from which

it is sampled.

6.3.4 Node Distributions

‘Node distributions’ are a mapping of how much each machine (network node)

pair tends to be requested by arriving flows, as measured by the pair’s load (flow

information arriving per unit time), to form a source-destination pair matrix.

These distributions can be defined explicitly on a per-node basis. However,

explicit mappings would result in D′ being defined for a specific topology (since

each topology might have a different number of machines and/or a different

machine labeling convention). Therefore, TrafPy node distributions can also be

implicitly defined by high-level parameters. These parameters are the fraction

6.3. Method 165

Figure 6.2: How the Jensen-Shannon distances between the original (red) and
sampled (cyan) distributions and the sampled distributions’ characteristic param-
eters (target from original distribution plotted as red dotted line) vary with the
number of demands for (a) flow size and (b) inter-arrival time. Note that the
first sub-plots of (a) and (b) are plotting the probability distribution of the flow
characteristic in question, whereas the other sub-plots are plotting various metrics
(
√

JSD, minimum value, maximum value, etc.) of the generated traffic as a function
of the number of demands (flows) generated.

of the nodes and/or node pairs which account for some proportion of the overall

traffic load and, optionally, the fraction of the traffic which is intra- vs. inter-

cluster (where ‘clusters’ are usually considered as ‘racks’ in the context of DCNs).

In this way, node distributions can be defined independently of the network

topology, enabling greater generality and the use of custom topologies with traffic

traces and benchmarks parameterised by D′, even if D′ was originally defined

for a different topology. Furthermore, this allows individual or groups of network

nodes to be set as ‘hot’, ‘cold’, or any combination of hot and cold as desired

166
Chapter 6. A Framework for Generating Custom and Reproducible Network

Traffic

by the user. Note that this formalism also enables both in-cast (many-to-one)

and out-cast (one-to-many) traffic patterns, since any node(s) can have multiple

out-cast and in-cast flow demands generated at a given point in time when

sampling from the node distribution.

6.3.5 Traffic Generation Methodology

Algorithm 3 TrafPy traffic generation process.
Input: P(Bs), P(Bt), P(Bn),

√
JSDthreshold ρtarget, ⟨nn, nc, Cc⟩, tt,min

Output: {bs, ba, bp}
Initialise: nf , {bs, bt} empty arrays

Step 1: Partially initialise nf flows {bs, ba}

while
√

JSD(P(Bs), P(bs)) ≤
√

JSDthreshold do
bs ← Sample bs from P(Bs) nf times
nf := ⌈1.1× nf ⌉

end while
while

√
JSD(P(Bt), P(bt)) ≤

√
JSDthreshold do

bt ← Sample bt from P(Bt) nf times
nf := ⌈1.1× nf ⌉

end while
nf = max({length(bs), length(bt)})
Resample so that length(bs) = length(bt) = nf

Initialise ba zero array of length nf
for i in [2, ..., nf] do

ba
i := ba

i−1 + bt
i−1

end for

ϱ =

∑nf

i=1
bs

i

ba
nf

−ba
0
→ ρ = ϱ

nn·Cc·nc
2

→ αt = ρ
ρtarget

for i in [1, ..., nf] do
ba

i := αt × ba
i

end for

ϱ :=

∑nf

i=1
bs

i

ba
nf

−ba
0
→ ρ := ϱ

nn·Cc·nc
2

Step 2: ‘Pack the flows’ → fully initialise nf flows {bs, ba, bp}
Initialise bp and bn from P(Bn) with n2

n − nn elements
d = ϱ · bn · (ba

nf
− ba

0)
for i in [1, ..., nf] do

Sort pairs in descending dp order and randomly self-shuffle equal dp pairs
First pass: Attempt dp ≈ 0∀p ∈ [1, ..., n2

n − nn]
for p in [1, ..., n2

n − nn] do
if dp − bs

i ≥ 0 then
b

p
i

= p

dp := dp − bs
i

break
end if

end for
if first pass unsuccessful then

Second pass: Ensure no link capacity exceeds Cc
2

for p in [1, ..., n2
n − nn] do

if capacity not exceeded then
b

p
i

= p

dp := dp − bs
i

break
end if

end for
end if

end for

Step 3: Ensure ba
nf
− ba

0 ≥ tt,min

if ba
nf
− ba

0 < tt,min then

β =
⌈

ba
nf

−ba
0

tt,min

⌉
{bs, ba, bp} := double({bs, ba, bp}) β times

end if

6.3. Method 167

Given the distributions of flow sizes, inter-arrival times, and node pairs

P(Bs), P(Bt), and P(Bn) of a benchmark B, TrafPy can generate traffic at a

(optionally) specified target load fraction (fraction of overall network capacity

being requested for a given time period) ρtarget ∈ [0, 1] with maximum Jensen-

Shannon distance threshold
√

JSDthreshold for an arbitrary topology T with nn

server nodes, nc channels (light paths) per communication link, and Cc capacity

per server node link channel (divided equally between the source and destination

ports such that each machine may simultaneously transmit and receive data),

forming tuple ⟨nn, nc, Cc⟩ with total network capacity per direction (maximum

information units transported per unit time) Ct = nn·Cc·nc

2 . Since load rate is

defined as information arriving per unit time, in order to generate traffic at

arbitrary loads, either the amount of information (flow sizes) or the rate of arrival

(flow inter-arrival times) must be adjusted in order to change the load rate. Since

DCNs tend to handle particular types of applications and jobs which result in

particular flow sizes, we posit that a reasonable assumption is that changing

loads are the result of changing rates of demand arrivals rather than changing

flow sizes (which remain fixed for a given application type). Therefore, if a target

load is specified, TrafPy automatically adjusts the scale of the inter-arrival time

distribution values in P(Bt) by a constant factor to meet the target load whilst

keeping the same general shape of the P(Bt) distribution that was initially input

to the generator. The following 3-step traffic generation process (summarised in

Algorithm 3) is used to achieve the above:

Step 1 (generate nf flows with size and arrival time characteristics {bs, ba}):

First, nbs flow sizes and nbt inter-arrival times are independently sampled from

P(Bs) and P(Bt) to form vectors bs and bt respectively, where nbs and nbt

are incrementally increased by a constant factor until
√

JSD(P(Bs),P(bs)) ≤
√

JSDthreshold and
√

JSD(P(Bt),P(bt)) ≤
√

JSDthreshold by the law of large

numbers. Whichever distribution needed fewer samples to meet
√

JSD ≤
√

JSDthreshold is then continually sampled such that there are nf flow sizes

168
Chapter 6. A Framework for Generating Custom and Reproducible Network

Traffic

and inter-arrival times, where nf = max({nbs , nbt}). Then, bt (whose order is

arbitrary from the previous random sampling process) can be converted to an

equivalent arrival time vector ba by initialising a zero array of length nf and

setting ba
i := ba

i−1 + bt
i−1∀i ∈ [2, ..., nf], resulting in a total time duration of

tt = ba
nf
− ba

0 over which the flows arrive. Next, the load rate ϱ is evaluated with

ϱ =
∑nf

i=1 bs
i

tt
, converted to a load fraction ρ = ϱ

Ct
, and adjusted to meet ρtarget by

multiplying the elements of bt by a constant factor αt = ρ
ρtarget

. Then, ba can be

re-initialised with the updated bt as before, and a set {bs, ba} of nf flows can

be partially initialised each with size bs and arrival time ba and an overall load

ρ = ρtarget on network T .

Step 2 (‘pack the flows’ → generate nf flows with size, arrival time, and

source-destination node pair characteristics {bs, ba, bp}): Next, to meet the

source-destination node pair load fractions specified by P(Bn), the flows are

packed into node pairs with a simple packing algorithm. First, a vector of n2
n−nn

node pairs bp (which do not include self-similar pairs) and their corresponding

load pair fractions bn are extracted from P(Bn). Next, these ‘target’ load

pair fractions bn are converted into a hash table mapping each pair p of the

[1, ..., n2
n − nn] pairs to their current ‘distance’ from their respective target total

information request magnitudes d = ϱ · bn · tt. In other words, we take the load

fractions (fraction of overall information requested) of each node pair bn and

multiply them by the total simulation load rate (information units arriving per

unit time) ϱ and the total simulation time tt to create a vector d which, when

first initialised, represents the total amount of information which is requested

by each source-destination pair across the whole simulation. The task of the

packer is therefore to assign source-destination pairs to each flow such that

dp ≈ 0∀p ∈ [1, ..., n2
n − nn]. For each sequential ith flow ∀i ∈ [1, ..., nf], after

sorting the pairs in descending dp order (with any pairs with equal dp randomly

shuffled amongst one-another), the packer will try to ‘pack the flow’ (given its

size bs
i) into a source-destination pair in two passes. For the first pass the packer

6.3. Method 169

loops through each sorted pth pair ∀p ∈ [1, ..., n2
n−nn] and checks that assigning

the flow to this pair would not result in dp < 0. If this condition is met, the

packer sets bp
i = p and dp := dp−bs

i before moving to the next flow. However, if

the condition is violated for all pairs, the packer moves to the second pass, where

it again loops through each sorted pair p but now, rather than ensuring dp ≥ 0,

only ensures that assigning the pair would not exceed the maximum server link’s

source/destination port capacity Cc

2 before setting bp
i = p and dp := dp − bs

i . In

other words, the first pass attempts to achieve dp ≈ 0∀p ∈ [1, ..., n2
n − nn] to try

to match P(Bn) but, failing that, the second pass ensures that no server link

load exceeds 1.0 of the link capacity. Consequently, as ρtarget approaches 1.0, so

too will the resultant packed node distribution’s server links, thereby converging

on a uniform distribution no matter what the original skewness was of P(Bn) as

shown in Fig. 6.3 and further elaborated on in Appendix B.5. Once this packing

process is complete, a set {bs, ba, bp} of nf flows each with size bs, arrival time

ba, and source-destination node pair bp, an overall load ρtarget on network T , and

a flow size, inter-arrival time, and node distribution of approximately P(Bs),

P(Bt), and P(Bn) will have been fully initialised.

Figure 6.3: Visualisation of the packed flow nodes converging on uniform distribu-
tions as the total network load approaches 1.0 regardless of how skewed the original
target node distribution is. The plotted distributions are for overall network loads
(a) 0.1, (b) 0.3, (c) 0.5, (d) 0.7, and (e) 0.9, and (f) the final demonstrably uniform

endpoint loads on each server at 0.9 overall load.

170
Chapter 6. A Framework for Generating Custom and Reproducible Network

Traffic

Step 3 (ensure ba
nf
− ba

0 ≥ tt,min): The final stage of the flow generation

process is then to ensure that the flow arrival duration tt is greater than or

equal to some minimum duration tt,min (a parameter often required for test bed

measurement reliability) specified by either the user. This is done by simply

doubling the set {bs, ba, bp} of flows β = ⌈ tt

tt,min
⌉ times to make an updated set

of nf := β ·nf flows with tt ≥ tt,min and the same distribution and load statistics

as before.

6.3.6 Stipulating Traffic Generation Guidelines

Given a user- or benchmark-specified set of distribution parameters D′, TrafPy

generates traffic trace D. As such, whenever using TrafPy to generate D, D′

should always be reported to help others reproduce the same trace (as done in

Table B.2 of Appendix B.2 for this chapter). For the same reason, all traffic

traces D generated from D′ should have a maximum
√

JSDthreshold of 0.1 as

outlined in Section 6.3.3. Enough demands should be generated so as to have a

last demand arrival time tt larger than the time needed to complete the largest

demands in the user-defined network T under the test conditions used; not doing

so would result in all large flows being dropped regardless of what decisions

were made. This would unfairly punish systems optimised for large demands,

since such systems would allocate network resources to requests which ultimately

could never be completed during the experiment. TrafPy conveniently generates

and saves traffic data sets in a range of formats including JSON, CSV, and

pickle. Therefore if desired, users may generate traffic in TrafPy and then use

their own custom test bed and analysis scripts written in any programming

language thereafter by simply importing the TrafPy-generated traffic. For result

reliability, each trace D should be generated R times from D′ and used to test

the network object, where R should be sufficiently large enough so as to have a

satisfactory confidence interval (which might vary between projects but should

6.4. Experimental Setup 171

be reported regardless).

6.4 Experimental Setup

Here we conduct a brief experiment into the sensitivity of four schedulers to

different traffic traces. Specifically, we look at shortest remaining processing

time (SRPT) [Cai et al., 2016, Alizadeh et al., 2013, Hong et al., 2012], fair share

(FS) [Cai et al., 2016], first fit (FF) [Al-Fares et al., 2010], and random DCN

flow scheduling. We note that while TrafPy can be used to rigorously investigate

and understand different scheduling systems and topologies, the purpose of the

experiments ran here is to illustrate how TrafPy can be used to benchmark

systems. A deep analysis and investigation of the scheduling algorithms, topolo-

gies, and other state-of-the-art systems beyond those considered here is left for

further work.

Figure 6.4: 2-layer spine-leaf topology used with 64 end point (server) nodes, 10
Gbps server-to-ToR links, and 80 Gbps ToR-to-core links (1:1 subscription ratio,

640 Gbps total network capacity).

6.4.1 Network

All experiments assume an optical TDM-based circuit switched network architec-

ture with a 64-server folded clos (spine-leaf) topology made up of 2 core switches,

172
Chapter 6. A Framework for Generating Custom and Reproducible Network

Traffic

4 top-of-the-rack (ToR) switches, and 64 servers (16 servers per rack) with bidi-

rectional links, as shown in Fig. 6.4. The server-to-rack and ToR-to-core links

each have one channel with 10 Gbps and 80 Gbps capacity respectively, leading

to a 1:1 subscription ratio and a total network capacity of 640 Gbps (320 Gbps

bisection bandwidth). Flows are mapped to TDM circuits, and we assume ideal

server-level time multiplexing of the flows’ packets such that the bandwidth of

each channel can be fully utilised. The core switch performs link/fiber switching.

There are various ways to perform packet/TDM aggregation of flows at the

server and to realise such networks, but neither are the focus of this work.

6.4.2 Traffic Traces

We use TrafPy to generate two categories of traffic with which to investigate our

schedulers; DCN traces based on real-world application data, and custom skewed

node and rack data for testing system performance under extreme conditions.

We use a maximum
√

JSDthreshold of 0.1, setting tt,min =3.2e5 µs (≈10 times

larger than the time taken to complete the largest ≈20e6 B flow amongst our

benchmarks), and generating traffic of loads 0.1-0.9 for each data set. We

generate each set R = 5 times to run five repeats of our experiments and

therefore ensure reliability. All TrafPy parameters D′ used to generate the traffic

are reported in Table B.2 of Appendix B.2 for reproducibility.

‘Realistic’ DCN traces. Four types of Data Centers and their network flow

demand distributions are explored; University [Benson et al., 2010a], Private

Enterprise [Benson et al., 2011], Commercial Cloud [Kandula et al., 2009],

and Social Media Cloud [Roy et al., 2015]. Each DCN type services different

applications and therefore has a different traffic pattern. Using TrafPy, flow

distributions for each of these categories were generated to established a set of

open-source traffic traces for the DCN benchmark. The tuned TrafPy parameters

D′ of each flow characteristic have been summarised in Table B.2. The resultant

6.4. Experimental Setup 173

distributions are shown in Fig. 6.5, and the subsequent quantitative summary

of each distribution’s characteristics is given in Table B.3 of Appendix B.2.

Figure 6.5: TrafPy distribution plots for the DCN benchmark containing the (a)
University [Benson et al., 2010a], (b) Private Enterprise [Benson et al., 2011], (c)
Commercial Cloud [Kandula et al., 2009], and (d) Social Media Cloud [Roy et al.,
2015] data sets. Each plot contains (i) the end point node load distribution matrix

and (ii) the flow size and inter-arrival time histogram and CDF distributions.

‘Extreme’ skewed node and rack sensitivity traces. We generated two

additional traces; the skewed nodes sensitivity benchmark and the rack sensitivity

benchmark. These were not based on realistic data, but rather designed to

test and better understand our systems under extreme conditions. Both use

the same flow size and inter-arrival time distributions as the commercial cloud

data set in Fig. 6.5, however the node distribution is adjusted. Specifically, the

skewed nodes benchmark is made up of five sets with uniform, 5%, 10%, 20%,

and 40% of the server nodes being ‘skewed’ by accounting for 55% of the total

overall traffic load, named skewed_nodes_sensitivity_uniform, 0.05, 0.1, 0.2,

and 0.4 respectively (see Appendix B.5 for further justification and analysis

of these values). Similarly, the rack distribution benchmark is made up of 5

sets with uniform, 20%, 40% , 60%, and 80% of the traffic being intra-rack

(and the rest inter-rack) named rack_sensitivity_uniform, 0.2, 0.4, 0.6, and 0.8

respectively. Therefore, these distributions allow for investigations into DCN

174
Chapter 6. A Framework for Generating Custom and Reproducible Network

Traffic

system sensitivity to i) the number of skewed nodes and ii) the ratio of intra- vs.

inter-rack traffic. They have been plotted in Fig. 6.6.

Figure 6.6: TrafPy node distribution plots for the skewed nodes sensitivity
benchmark with (a) uniform, (b) 5%, (c) 10%, (d) 20%, and (e) 40% of nodes
accounting for 55% of the overall traffic load, and for the rack sensitivity benchmark
with (f) uniform, (g) 20%, (h) 40%, (i) 60%, and (j) 80% traffic being intra-rack

and the rest inter-rack.

6.4.3 Simulation Details

We use a time-driven simulator where scheduling decisions are made at fixed

intervals. The time between decisions is the ‘slot size’; smaller slot sizes result

in greater scheduling decision and measurement metric granularity, but at the

cost of longer simulation times and the need for scheduler and switch hardware

optimisation [Benjamin, 2020, Parsonson et al., 2020, Gerard et al., 2020a, 2021,

Benjamin et al., 2021]. We use a slot size of 1 ms. We assume perfect packet

time-multiplexing whereby the scheduler is allowed to schedule as many flow

packets for the next time slot as the channel bandwidth of its rate-limiting link

in its chosen path will allow. We run 9 simulations (loads 0.1-0.9) for each

benchmark data set, terminating the simulation when the last demand arrives

at t = tt (which is ≥ tt,min =3.2e5 µs). We set the warm-up time as being

10% of the simulation time tt before which no collected data contribute to the

final performance metrics. Similarly, since the simulation is terminated at tt,

we exclude any cool-down period from measurement. For each experiment, we

then record: (1) mean flow completion time (FCT); (2) 99th percentile (p99)

6.5. Results & Discussion 175

FCT; (3) maximum (max) FCT; (4) absolute throughput (total number of

information units transported per unit time); (5) relative throughput (fraction

of arrived information successfully transported); and (6) fraction of arrived flows

accepted. We report each of these metrics’ mean across the R = 5 runs and

their corresponding 95% confidence intervals.

6.5 Results & Discussion

To begin the investigation into the sensitivity of different schedulers, we first

input TrafPy-generated traffic with heavily skewed nodes and racks (see Section

6.4.2) into our simulator to understand how the four schedulers considered behave

at the extremes. We then test the same schedulers under traces for different

DCN types to see how the results from the ‘extreme’ condition investigation

translate into more realistic scenarios. For brevity, we provide the full results in

Appendix B.6 and a summary in this section.

Extreme rack conditions. As shown in Table B.17, as the rack distribution

becomes heavily skewed to intra-rack, the completion time metrics of FS become

increasingly superior to SRPT. This suggests that real DCNs which have heavy

intra-rack traffic (e.g. social media cloud DCNs) would benefit from deploying

pure FS scheduling policies, at least at higher loads, whereas DCNs with heavy

inter-rack traffic (e.g. university DCNs) would benefit from deploying FS at

medium loads and SRPT at low and high loads.

In terms of throughput and demands accepted, FF is competitive with SRPT

and FS at low intra-rack traffic levels, but as the DCN becomes more heavily

intra-rack (e.g. social media cloud DCNs), SRPT and FS are preferable, with

FS achieving the best performances at higher loads. Again, a preferable strategy

would likely be to utilise SRPT strategies at low loads before switching to FS at

loads about 0.3 to 0.5 (depending on the level of intra-rack traffic).

176
Chapter 6. A Framework for Generating Custom and Reproducible Network

Traffic

Extreme node conditions. As shown in Table B.18, at the two extremes

of heavily skewed and uniform traffic, scheduler completion time performances

are similar in that SRPT outperforms FS at low and high loads, but FS performs

well at medium loads. However, in between these two extremes (around 40% of

nodes requesting 55% of overall traffic), there is a point where FS becomes the

dominant scheduler in terms of completion time.

In terms of throughput and demands accepted, under heavily skewed condi-

tions (5% nodes requesting 55% of traffic), FF and/or Rand beat SRPT and

FS across all 0.1-0.9 loads in terms of throughput and fraction of information

accepted. This suggests that FF and SRPT are strained under high skews with

respect to these two metrics. However, as observed with the uniform distribution,

this comes at the cost of the fraction of arrived flows accepted, where SRPT

and FS outperform FF and Rand across all loads. As the proportion of nodes

requesting 55% of traffic is increased to 10%, 20%, and 40%, relative scheduler

performances converge to those seen with the uniform distribution, with FS and

SRPT being mostly dominant except at high 0.8 and 0.9 loads, where FF often

has the better throughput and fraction of information accepted.

Realistic conditions. Table B.19 summarises the results for the four

schedulers on each of the four ‘realistic’ DCN benchmarks considered. As shown,

the SRPT scheduler tends to achieve the best completion time metrics when

loads are low (≤ 0.7) and where traffic is primarily inter-rack (the University

and Private Enterprise DCNs). This is to be expected, since a policy which

prioritises completion of the smallest flows as soon as possible will keep its

completion time averages low. However, as traffic reaches higher loads (> 0.7),

the fair share policy achieves the best completion time metrics. This indicates

that networks would benefit from scheduling policies which can dynamically

adapt to changing traffic loads. Moreover, for networks with characteristically

intra-rack traffic (the Commercial Cloud and Social Media Cloud DCNs), the

fair share policy attains the best completion time and throughput metrics. These

6.6. Conclusions, Limitations, & Further Work 177

results therefore validate the predictions made by the rack distribution sensitivity

analysis study; namely that completion time metrics in real DCN traces with

heavily intra-rack (e.g. Commercial Cloud and Social Media Cloud) traffic

benefit from FS scheduling strategies. On the other hand, at least for low loads,

low intra-rack DCN traces (e.g. University and Private Enterprise) benefit from

SRPT scheduling strategies.

These results suggest that not only should scheduling policies be adapted

to changing traffic loads, but also to changing characteristics such as the level

of inter- vs. intra-rack communication. Note that, as expected, the fair share

policy provides the best worst-case completion time (max FCT), the greatest

network utilisation (throughput), and the strongest service guarantee (number

of flow requests satisfied) across most loads and DCN types.

6.6 Conclusions, Limitations, & Further Work

In conclusion, we have introduced TrafPy; an API for generating custom and

realistic DCN traffic and a standardised protocol for benchmarking DCN systems

which is compatible with any simulation, emulation, or experimentation test bed.

These systems can be any combination of networked devices or methods such as

schedulers, switches, routers, admission control policies, management protocols,

topologies, buffering methods, and so on. TrafPy has been developed with a

focus on having a high level of fidelity, generality, scalability, reproducability,

repeatability, replicability, compatbility, and comparability in the context of DCN

research, which in turn will aid in accelerating innovation.

We have demonstrated the efficacy of TrafPy by briefly investigating the

sensitivity of four canonical schedulers to varying traffic loads and characteristics.

The scheduler performances were heavily dependent on the level of intra-rack

traffic and overall network load. We found that SRPT was generally the dominant

scheduler for low intra-rack traffic (particularly at low loads), but that FS became

178
Chapter 6. A Framework for Generating Custom and Reproducible Network

Traffic

superior across all loads at high intra-rack levels. These insights were then found

to translate into realistic DCN traces, with low intra-rack users such as University

and Private Enterprise DCNs benefiting from SRPT policies at low and medium

loads and high intra-rack traces such as Commercial Cloud and Social Media

Cloud being more suited to FS strategies. This shows that there is no ‘one size

fits all’ strategy for scheduling different types of DCNs, and that there would be

great value in the development of traffic-informed and dynamic DCN systems.

With its standardised traffic generation and benchmark protocol, TrafPy is an

ideal tool for developing such systems via the benchmark paradigm described

throughout this chapter.

The space of potential research areas from this work is vast. We hope presently

unforeseeable avenues will be pursued with the support of TrafPy’s standardised

traffic generation and rigorous benchmarking framework. For example, based on

the preliminary results of scheduler sensitivity to varying load conditions and

traffic trace characteristics, we expect new scheduling heuristics and learning

algorithms to be developed which can dynamically adapt to network traffic states

and outperform literature baselines in open-source TrafPy benchmarks. The 2.5

TB of open-access simulation data from this chapter enable some interesting

offline reinforcement learning opportunities.

With regards to how future research might enhance TrafPy itself, here we

outline some of the limitations of this chapter and interesting avenues of further

work.

More benchmark traffic traces. TrafPy has been built to enable users to

easily establish and share new benchmark traffic traces. Therefore, in addition to

the initial benchmark traffic distributions introduced in this chapter, future works

could develop new benchmarks. These might consider modelling proprietary

traffic traces which cannot be open sourced directly but which can be legally

synthetically mimicked. Alternatively, they could be presently unrealistic traces

designed to test systems under extreme conditions or to model systems in

6.6. Conclusions, Limitations, & Further Work 179

environments which are expected to exist in the future.

Automatic characterisation & imitation of real data. Although

TrafPy can generate traces without any raw data given whatever characteristic

distributions the user provides, it would be useful to be able to input real data

(e.g. [Bai et al., 2016]) and have TrafPy automatically characterise the traffic in

order to generate realistic data. An interesting extension to this would be to

build a tool that learns to generate synthetic data from a limited sample of real

data, possibly with the use of generative ML.

Expansion to the job-centric traffic paradigm. In this chapter, we

have considered the flow-centric traffic paradigms where DCN demands are

considered as network flows. However, as discussed in Appendix B.7, in practice

network flows arise from jobs being submitted to the DCN. A useful project

would therefore be to extend TrafPy’s functionality to generate DCN jobs from

which flow traffic would arise. This would not only more accurately mimic

real DCN job tasks, but also bridge the gap between the computer science

and networking communities, which usually consider the job- and flow-centric

paradigms in isolation.

Establishing TrafPy-powered leaderboards. The flourishing of AI over

the last decade can be attributed to the winner of the 2012 ImageNet competition.

Without ImageNet, it would have been difficult to demonstrate the primary of

neural networks trained on GPUs at real world tasks such as image classification.

Benchmarking with leaderboards which compare and evaluate systems on the

same task under strict constraints can lead to the highly effective research and

development of novel systems. Therefore, a useful project would be to use TrafPy

to establish open-access and rigorous benchmarking leaderboards, similar to

ImageNet, which evaluate systems such as flow schedulers on particular tasks.

Beyond data centre traffic. The version of TrafPy propsed here has been

specifically designed for generating DCN traffic. However, there is no reason

why TrafPy should be restricted in this way. Fundamentally, all traffic in any

180
Chapter 6. A Framework for Generating Custom and Reproducible Network

Traffic

network, from long-haul core networks to road transportation networks, can be

modelled by flows which have a source, destination, arrival time, and some ‘cost’

of transport (size, time, fuel, and so on). Future works might therefore work on

generalising the language and front-end interface of TrafPy to be generic to any

form of network traffic generation.

181

Chapter 7

Accelerating Traffic Matrix

Generation at Scale

Abstract

This chapter proposes a new algorithm for generating custom network traffic

matrices which achieves 13×, 38×, and 70× faster generation times than the

algorithm originally proposed for TrafPy traffic generation on networks with 64,

256, and 1024 nodes respectively.

182 Chapter 7. Accelerating Traffic Matrix Generation at Scale

Publications related to this work (contributions indented):

• Christopher W. F. Parsonson, Joshua L. Benjamin, and Georgios

Zervas, ‘A Vectorised Packing Algorithm for Efficient Generation of Custom

Traffic Matrices’, OFC’23: Optical Fiber Communications Conference and

Exhibition, 2023

– Algorithm, code, experiments, paper writing, plots

7.1. Introduction 183

7.1 Introduction

Data centres have become critical tools for modern computational tasks. To

meet the ever-increasing demands of data centres, recent years have seen a

growth in the research and development of next-generation data centre optical

systems [Khani et al., 2021]. However, most researchers rely on simulations,

which require the generation of synthetic traffic. In doing so, they often make

overly simplistic assumptions about the characteristics of their generated traffic

and develop systems which, in practice, perform poorly under real-world condi-

tions [Parsonson et al., 2022]. Furthermore, many works omit open-accessing

their synthetic traffic or even the methodology used to generate it, bringing

problems with reproducibility, benchmarking, and cross-validation. The lack

of a reproducible and high-fidelity synthetic traffic generation tool has been a

long-standing problem in the data centre research community.

Prior works [Alizadeh et al., 2013, Bai et al., 2016] have released traffic

generators, but these were either intended to be unrealistic, were for specific

network topologies, required the cumbersome use of inflexible configuration files,

or lacked a reproducibility guarantee. To address this, Chapter 6 presented

TrafPy; an open source tool for generating reproducible data centre traffic

with custom distributions and characteristics [Parsonson et al., 2022]. However,

Chapter 6 only demonstrated traffic generation for 64 network nodes; far smaller

than the O(1000) node data centres which are becoming increasingly common

place.

In this chapter, we first show that the original flow source-destination assign-

ment algorithm (‘packing’, see Section 7.2) presented in Chapter 6 is a major

bottleneck when generating traffic with TrafPy because its time complexity

scales poorly with the number of data centre nodes |N | for which |F | flows are

being generated. This prevents the generation of traffic for large networks. Next,

we propose a novel vectorised packing algorithm which fits in with the rest of the

184 Chapter 7. Accelerating Traffic Matrix Generation at Scale

TrafPy traffic generation framework. Finally, we demonstrate the new vectorised

packer achieving 13×, 38×, and 70× faster generation times than originally

reported in Chapter 6 on networks with 64, 256, and 1024 nodes respectively

with up to ≈ 5M traffic flows, with the speed-up factor increasing with the

network size. We expect this work to unlock a new realm of data centre research

at scale and to further facilitate the development of next-generation systems

and common platforms for benchmarking networks. We note that while here we

focus on generating traffic for optical data centres, the same traffic generation

scheme and vectorised packing algorithm could be re-purposed and applied to

any network system.

7.2 Custom Traffic Matrix Generation

Problem statement. Data centre traffic is made up of flows. A flow f is fully

described by its size f s (how much information to send), arrival time fa (when

the flow requests to be transported through the data centre, thus giving rise to

the inter-arrival time in a dynamic multi-flow setting), and source-destination

pair fp (which machines in the data centre the flow is requesting to be sent

between). In the framework presented in Chapter 6, traffic generation is split

into two stages. In the first stage (‘shaping and sampling’), custom flow size and

inter-arrival time distributions are generated and sampled to attain a set of sizes

bs and arrival times ba for f ∈ F flows which match the target distributions

within some Jensen-Shannon distance (JSD) threshold1. In the second stage

(‘packing’), given bs and ba, the task is to assign each flow f ∈ F to a source-

destination pair such that some target node distribution (a.k.a. traffic matrix

heat map) PN with nodes n ∈ N and corresponding source-destination node

pairs p ∈ P is realised as closely as possible without exceeding the load capacity
1The JSD ∈ [0, 1] is a measure of how similar two distributions are to one another (lower is

more similar), and the JSD ‘threshold’ as defined in Chapter 6 is a constraint on how similar
the generated traffic characteristics must be to the target distributions.

7.2. Custom Traffic Matrix Generation 185

limitations of any node. Chapter 6 formulates this task by extracting the fraction

of the overall load requested by each pair p ∈ P into an array, multiplying each

element by the overall data centre’s target load rate to get the per-pair target

load rate, and then again multiplying each element by the simulation duration

(the time between the first and last flows’ arrivals) to get the total amount of

information to load onto each pair, bp,I
target, needed in order to achieve the desired

target node distribution PN . The packing task is therefore reduced to finding

the source-destination node pair assignments for each flow f ∈ F such that the

difference between the actual and the target per-pair total information loads,

bp,I
target − bp,I

actual, is 0 or, where this is not possible given any incompatibility

between the target node distribution PN and the overall data centre load rate,

to match PN as closely as possible (see Chapter 6 for further details).

As shown in Fig. 7.1a, as |N | is increased, stage two (packing) becomes a

major bottleneck, taking ≈1 000 000 times longer than stage one for |N | =1024.

Therefore, in this chapter we focus on optimising stage two.

Figure 7.1: i) (a) The time for stages one (shaping and sampling) and two
(packing) when generating flows with the original packing algorithm. ii) The
packing (b) time and (c) Jensen-Shannon distance between the target and the
generated node distributions for the original and vectorised packing algorithms
when generating traffic for networks with different numbers of nodes. (a) shows that
the original packing algorithm is the major traffic generation bottleneck of Chapter
6. (b) shows that as the number of network nodes is increased, the vectorised
packer’s speed-up factor over the original algorithm increases. (c) shows that both
algorithms achieve the exact same resultant node distribution. Note that the
original algorithm’s time results for |N | = 1024 are extrapolations since it would

have taken ≈ 200 days to run the packer.

Original packing algorithm. The original packing algorithm presented

in Chapter 6 works by sequentially iterating through the set of flows and, for

186 Chapter 7. Accelerating Traffic Matrix Generation at Scale

each flow, conducting two passes through the candidate source-destination pairs.

In the first pass, the packer attempts to match the target node distribution

by looping through all pairs, sorted in descending order of the total size of

flow information previously assigned, to find a pair which has not yet met its

target information load given the target node distribution and total flow arrival

duration provided. Failing to find such a node pair, the packer moves to the

second pass, whereby it again loops through each sorted pair but now in search

of a source-destination combination which, if allocated the flow in question,

would not exceed either the source’s or the destination’s maximum load capacity

given any prior flow allocations.

Algorithm 4 Vectorised packing algorithm pseudocode.
Input: F , P , bp,I

target

Output: bp,I
actual

Initialise: bp,I
actual

= 0(|P |), bp,c = node capacity
2 (|P |)

for f in F do

bp,m =where(bp,c − fs < 0, 0, 1) // Generate boolean mask

bp,I,m
target = bp,I

target[bp,m], bp,I,m
actual

= bp,I
actual

[bp,m] // Mask invalid pairs

pmax = argmax(2 · bp,I,m
target − bp.I,m

actual
) // Get furthest pairs

pchosen = random_choice(pmax) // Randomly choose pair

update_trackers(f, pchosen) // Assign flow to pair

end for

Vectorised packing algorithm. We negate the need for separate first and

second passes and for nested pair for loops by using vector array operations.

We begin by initialising the per-pair remaining capacity vector as the maximum

port capacity (half the per-node capacity, since it is split between the source

and destination ports) bp,c. We then sequentially iterate through f ∈ F and,

for each flow f , we generate a boolean vector pairs mask bp,m which masks out

any pair indices i ∈ [0, ..., |P |] which would exceed their load capacity were they

to be allocated the flow in question:

7.3. Experimental Setup 187

bp,m
i =


0 if bp,c

i − f s < 0

1, otherwise
(7.1)

We then apply this pairs mask to filter out any invalid pairs, thus ensuring

that any pair chosen from here on would meet the requirements of the second

pass of the generation methodology in Chapter 6 and also reducing the time

complexity of the argmax operation below in Eq. 7.2 (since the number of

candidate pairs is now reduced). Next, we take the masked candidate pairs’

current distances from the target information loads, bp,I,m
target − bp,I,m

actual, shift them

by bp,I,m
target in order to retain any skewness in PN for as long as possible given the

overall data centre load specified, and find the pairs in this masked subset which

are furthest from their target information loads, pmax:

pmax = argmax
(

2 · bp,I,m
target − bp,I,m

actual

)
(7.2)

In order to avoid any bias towards smaller pair indices and create the fade

phenomenon in the resultant traffic heat map (see Section 6.3.5), we randomly

choose a pair pchosen ∈ pmax to which to allocate the flow f , thus meeting the

requirements of the first pass of Chapter 6. Finally, we update the current total

information vector’s element for the chosen pair, bpchosen,I
actual , and the remaining

capacity vector elements bp,c for any pairs p ∈ P which share either a source

or a destination with pchosen. The pseudocode for this vectorised packer is

summarised in Algorithm 4.

7.3 Experimental Setup

TrafPy enables the production of custom traffic distributions through the control

of a handful of parameters. These include the flow size and inter-arrival time

distribution parameters, the node distribution’s inter- vs. intra-rack and skew

188 Chapter 7. Accelerating Traffic Matrix Generation at Scale

Figure 7.2: Custom traffic matrix distributions generated with 8, 16, 32, 64,
128, 256, 512, and 1024 nodes, where the colour of each source-destination pair

corresponds to the fraction of the overall network load it requests.

node fractions, and the overall network load. To measure the packing times

for the original and vectorised packing algorithms, we generated an assortment

of custom traffic patterns typical for a ‘university’ data centre2 as detailed in

Chapter 6 for networks with 4 racks and |N | = {8, 16, 32, 64, 128, 256, 512, 1024}

nodes (see Fig. 7.2). We assumed an optical data centre network with with

an overall network load rate of 50%. For each traffic matrix, we generated

|F | = 5 · |N |2 flows to ensure non-sparse packing. Each packing algorithm was

ran on a shared cluster with an Intel Xeon ES-2660 CPU across 4 seeds to ensure

reliable packing times given the variance in use of the shared cluster, with the

95% confidence interval bands plotted for any metrics recorded.

7.4 Results & Discussion

Fig. 7.1b shows the packing times taken by the original and the vectorised

packers when generating the distributions shown in Fig. 7.2. The vectorised

packer achieved a ≈ 38× speed-up over the original packer on the |N | = 264
2University data centres service applications such as database backups, distributed file

system hosting, and multicast video streaming, with ≈ 70% of traffic being inter-rack and
≈ 20% of nodes requesting ≈ 55% of the traffic load.

7.5. Conclusions, Limitations, & Further Work 189

traffic matrix and ≈ 70× on the |N | =1024 matrix. Although the vectorised

algorithm was slightly slower than the original packer on the smallest |N | = 8

network due to performing a where vector operation on all pairs, the absolute

generation time was still O(s) and this additional overhead quickly becomes

negligible across |N | > 8 networks.

To verify that our proposed vectorised packing algorithm was generating the

same node distributions as the original packer used in Chapter 6, we measured

the JSD between the target and the generated node distributions for each

algorithm (see Fig. 7.1c). As expected, both packers deterministically reach the

same solution, but the Jensen-Shannon distance will not be exactly 0 for either

due to the incompatibility between the 50% network load and the skewed target

distribution (see Chapter 6 for more details).

7.5 Conclusions, Limitations, & Further Work

In conclusion, we have proposed a flow source-destination pair assignment

algorithm which makes novel use of vector array operations to achieve orders

of magnitude faster traffic generation times than the original algorithm used

in Chapter 6 when generating custom traffic matrices. This work significantly

improves the utility of an open source traffic generation framework in order

to aid the production of high-fidelity traffic patterns and to test and develop

network systems at scale. Here we outline the limitations of this chapter and

areas of further work.

GPU implementation. The fundamental insight of this chapter is that

the traffic generation task can be framed as a series of tensor operations. GPUs

are particularly good at parallelising tensor operations, therefore implementing

the algorithm proposed in this chapter on a GPU would likely improve the

traffic generation speed by several factors and enable additional scalability. This

190 Chapter 7. Accelerating Traffic Matrix Generation at Scale

might enable traffic generation for networks with > O(104) nodes without any

adjustment needed to the generation algorithm.

Analysing network system scalability. With the ability to generate traf-

fic for O(103) node networks, an interesting project would be to take previously

proposed network systems, such as the scheduler of Benjamin et al. [2021], and

see whether the reported performance can be retained at scale.

191

Chapter 8

Afterword: Conclusions,

Limitations, & Further Work

This thesis has motivated, proposed, and investigated a number of challenges

facing the realisation of next-generation computer networks, with a particular

focus on AI-driven optical solutions. These included AI methods to switch

all-optical SOA switches on the sub-ns timescales required for a practical optical

data centre, establishing a new switch speed record in Chapter 3. The thesis

also proposed how key optical cluster resource management challenges, such

as how much to partition computational jobs in Chapter 5, can be addressed

automatically by AI methods which learn to optimise key user-defined perfor-

mance criteria. Moreover, consideration was given as to how to solve generic

NP-hard discrete optimisation problems such as those found in all manner of

orchestration and physical layer computer network components by proposing a

new RL-based branching algorithm which achieved state-of-the-art results in

Chapter 4. Chapters 6 and 7 are the first to propose a general traffic generation

framework for standardising DCN system testing and benchmarking, which will

help future researchers to output reproducible, cross-validated, and performant

novel ideas.

While this is good progress, there are many outstanding challenges which

remain, and specific areas for further work have been outlined at the end of each

chapter. An overarching theme of further work is to implement the ideas proposed

192 Chapter 8. Afterword: Conclusions, Limitations, & Further Work

in this thesis in a practical laboratory setting. With a real implementation of

an OCS network using the AI-driven SOA switching methodology of Chapter

3 and the resource management schemes proposed in Chapters 4 and 5, the

practical efficacy with which the network could process information could be

evaluated using the TrafPy-generated traffic of Chapters 6 and 7. Once verified

with TrafPy, a small optical HPC architecture, such as RAMP [Ottino et al.,

2022] from Chapter 5, could be implemented and augmented with the methods

proposed in this thesis, and a real DNN model could be trained to demonstrate

the practical benefits of an AI-driven OCS computer network.

Furthermore, this thesis has not comprehensively evaluated the robustness

and resilience of the proposed AI methods to different scenarios in the real world.

Methods which formally verify neural network performance [Tjeng et al., 2017,

Albarghouthi, 2021] would be an interesting research direction.

Moreover, computer network practitioners may be reluctant to adopt new

AI methods whose policies they do not fully understand. Further model inter-

pretability research [Rudin et al., 2021] may be crucial for adoption.

These additional investigations will undoubtedly present formidable chal-

lenges. However, they will also offer the potential to realise computer network

systems with dramatically improved processing power and, ultimately, unleash

the next generation of big data jobs, from AI and genome sequencing to the

internet of things and large-scale data science.

193

Appendix A

Solving NP-Hard Discrete

Optimisation Problems

A.1 RL Training

A.1.1 Training Parameters

The RL training hyperparameters are summarised in Table A.1. We used n-step

DQN [Sutton, 1988, Mnih et al., 2013] with prioritised experience replay [Schaul

et al., 2016], with overviews of each of these approaches provided in Section

2.12. For exploration, we followed an ϵ-stochastic policy (ϵ ∈ [0, 1]) whereby the

probabilities for action selection were ϵ for a random action and 1 − ϵ for an

action sampled from the softmax probability distribution over the Q-values of

the branching candidates. We also found it helpful for learning stability to clip

the gradients of our network before applying parameter updates.

A.1.2 Training Time and Convergence

To train our RL agent, we had a compute budget limited to one A100 GPU

which was shared by other researchers from different groups. This resulted in

highly variable training times. On average, one epoch on the large 500×1000 set

covering instances took roughly 0.42 seconds (which includes the time to act in

the B&B environment to collect and save the experience transitions, sample from

194 Appendix A. Solving NP-Hard Discrete Optimisation Problems

Training Parameter Value
Batch size 64 (128)
Actor steps per learner update 5 (10)
Learning rate 5e−5
Discount factor 0.99
Optimiser Adam
Buffer size |M|init 20e3
Buffer size |M|capacity 100e3
Prioritised experience replay βinit 0.4
Prioritised experience replay βfinal 1.0
βinit −→ βfinal learner steps 5e3
Prioritised experience replay α 0.6
Minimum experience priority 1e−3
Soft target network update τsoft 1e−4
Gradient clip value 10
n-step DQN n 3
Exploration probability ϵ 2.5e−2

Table A.1: Training parameters used for training the RL agent. All parameters
were kept the same across CO instances except for the large 500× 1000 set covering
instances, which we used a larger batch size and actor steps per learner update

(specified in brackets).

the buffer, make online vs. target network predictions, update the network, etc.).

Therefore training for 200k epochs (roughly the amount needed to converge on

a strong policy within ≈ 20% of the imitation agent) took 5-6 days.

As shown in Fig. A.1, when we left our retro branching agent to train for

≈ 13 days (≈ 500k epochs), although most performance gains had been made in

the first ≈ 200k epochs, the agent never stopped improving (the last improved

checkpoint was at 485k epochs). A potentially promising next step might

therefore be to increase the compute budget of our experiments by distributing

retro branching across multiple GPUs and CPUs and see whether or not the

agent does eventually match or exceed the 500× 1000 set covering performance

of the IL agent after enough epochs.

A.2. Neural Network 195

Figure A.1: Validation curve for the retro branching agent on the 500× 1000 set
covering test instances. Although most performance gains were made in the first
≈ 200k epochs, the agent did not stop improving, with the last recorded checkpoint

improvement at 485k epochs.

A.2 Neural Network

A.2.1 Architecture

We used the same GCN architecture as Gasse et al. 2019 to parameterise our

DQN value function with some minor modifications which we found to be

helpful. Firstly, we replaced the ReLU activations with Leaky ReLUs which

we inverted in the final readout layer in order to predict the negative Q-values

of our MDP. Secondly, we initialised our linear layer weights and biases with

a normal distribution (µ = 0, σ = 0.01) and all-zeros respectively, and our

layer normalisation weights and biases with all-ones and all-zeros respectively.

Thirdly, we removed a network forward pass in the bipartite graph convolution

message passing operation which we found to be unhelpfully computationally

expensive. For clarity, Fig. A.2 shows the high-level overview of the neural

network architecture. For a full analysis of the benefit of using GCNs for learning

to branch, refer to Gasse et al. 2019.

196 Appendix A. Solving NP-Hard Discrete Optimisation Problems

Figure A.2: Neural network architecture used to parameterise the Q-value function
for our ML agents, taking in a bipartite graph representation of the MILP and

outputting the predicted Q-values for each variable in the MILP.

A.2.2 Inference & Solving Times

The key performance criterion to optimise for any branching method is the

reduction of the overall B&B solving time. However, accurate and precise solving

time and primal-dual integral over time comparisons are difficult because they

are hardware-dependent. This is particularly problematic in research settings

where CPU/GPU resources are often shared between multiple researchers and

therefore hardware performance (and consequently solving time) significantly

varies. Consequently, as in other works Khalil et al. [2016], ?], Etheve et al.

[2020], we presented and optimised for the number of B&B tree nodes as this is

hardware-independent and, in the context of prior work, can be used to infer

the solving time.

Specifically, we use the same GCN-based architecture of Gasse et al. 2019

for all ML branchers, thus all ML approaches have the same per-step inference

cost. Therefore the relative difference in the number of tree nodes is exactly

the relative wall-clock times on equal hardware. When the per-step inference

process is different (as for our non-ML baselines, such as SB), the number of

tree nodes is not an adequate proxy for solving time. However, Gasse et al.

2019 have already demonstrated that the GCN-based branching policies of IL

outperform the solving time of other branchers such as SB. As this ML speed-

up has already been established, in this chapter we focus on improving the

per-step ML decision quality using RL rather than further optimising network

A.3. Data Set Size Analysis 197

architecture, or otherwise, for speed, which we leave to further work.

However, empirical solving times are of interest to the broader optimisation

community. Therefore, Table A.2 provides a summary of the solving times of

the branching agents on the large 500× 1000 set covering instances under the

assumption that they were ran on the same hardware as Gasse et al. 2019.

Method Solving time (s)
SB 33.5
IL 2.1
Retro 2.5
FMSTS-DFS 12.2
FMSTS 7.6
Original 35.8

Table A.2: Inferred mean solving times of the branching agents on the large
500× 1000 set covering instances under the assumption that they were ran on the

same hardware as Gasse et al. 2019.

A.3 Data Set Size Analysis

As described in Section 4.5, we used 100 MILP instances unseen during training

to evaluate the performance of each branching agent. This is in line with prior

works such as Khalil et al. 2016 who used 84 instances and Gasse et al. 2019 who

used 20. To ensure that 100 instances are a large enough data set to reliably

compare branching agents, we also ran the agents on 1000 large 500 × 1000

set covering instances. The relative performance of each branching agent was

approximately the same as when evaluated on 100 instances, with Retro scoring

65.3 nodes, FMSTS 250 (3.8× worse than Retro), IL 55.4 (17.8% better than

Retro), and SB 43.3. In the interest of saving evaluation time and hardware

demands and to make the development of and comparison to our work by future

research projects more accessible, as well as for clarity in the per-instance Retro-

IL comparison of Fig. 4.3d, we report the results for 100 evaluation instances in

198 Appendix A. Solving NP-Hard Discrete Optimisation Problems

the main chapter in the knowledge that the relative performances are unchanged

as we scale the data set to a larger size.

A.4 SCIP Parameters

For all non-DFS branching agents we used the same SCIP 2022 B&B parameters

as Gasse et al. 2019, as summarised in Table A.3.

SCIP Parameter Value
separating/maxrounds 0
separating/maxroundsroot 0
limits/time 3600

Table A.3: Summary of the SCIP 2022 hyperparameters used for all non-DFS
branching agents (any parameters not specified were the default SCIP 2022 values).

A.5 Observation Features

We found it useful to add 20 features to the variable nodes in the bipartite

graph in addition to the 19 features used by Gasse et al. 2019. These additional

features are given in Table A.4; their purpose was to help the agent to learn

to aggregate over the uncertainty in the future primal-dual bound evolution

caused by the partially observable activity occurring in sub-trees external to its

retrospectively constructed trajectory.

A.6 FMSTS Implementation

Etheve et al. [2020] did not open-source any code, used the paid commercial

CPLEX [2009] solver, and experimented with proprietary data sets. Furthermore,

they omitted comparisons to any other ML baseline such as Gasse et al. [2019],

further limiting their comparability. However, we have done a ‘best effort’

implementation of the relatively simple FMSTS algorithm, whose core idea is to

A.6. FMSTS Implementation 199

Variable Feature Description
db_frac_change Fractional dual bound change
pb_frac_change Fractional primal bound change
max_db_frac_change Maximum possible fractional dual change
max_pb_frac_change Maximum possible fractional primal change
gap_frac Fraction primal-dual gap
num_leaves_frac # leaves divided by # nodes
num_feasible_leaves_frac # feasible leaves divided by # nodes
num_infeasible_leaves_frac # infeasible leaves divided by # nodes
num_lp_iterations_frac # nodes divded by # LP iterations
num_siblings_frac Focus node’s # siblings divided by # nodes
is_curr_node_best If focus node is incumbent
is_curr_node_parent_best If focus node’s parent is incumbent
curr_node_depth Focus node depth
curr_node_db_rel_init_db Initial dual divided by focus’ dual
curr_node_db_rel_global_db Global dual divided by focus’ dual
is_best_sibling_none If focus node has a sibling
is_best_sibling_best_node If focus node’s sibling is incumbent
best_sibling_db_rel_init_db Initial dual divided by sibling’s dual
best_sibling_db_rel_global_db Global dual divided by sibling’s dual
best_sibling_db_rel_curr_node_db Sibling’s dual divided by focus’ dual

Table A.4: Descriptions of the 20 variable features we included in our observation
in addition to the 19 features used by Gasse et al. 2019.

200 Appendix A. Solving NP-Hard Discrete Optimisation Problems

set the Q-function of a DQN agent as minimising the sub-tree size rooted at the

current node and to use a DFS node selection heuristic. To replicate the DFS

setting of Etheve et al. [2020] in SCIP [2022], we used the parameters shown in

Table A.5. We will release the full re-implementation to the community along

with our own code.

SCIP Parameter Value
separating/maxrounds 0
separating/maxroundsroot 0
limits/time 3600
nodeselection/dfs/stdpriority 1 073 741 823
nodeselection/dfs/memsavepriority 536 870 911
nodeselection/restartdfs/stdpriority −536 870 912
nodeselection/restartdfs/memsavepriority −536 870 912
nodeselection/restartdfs/selectbestfreq 0
nodeselection/bfs/stdpriority −536 870 912
nodeselection/bfs/memsavepriority −536 870 912
nodeselection/breadthfirst/stdpriority −536 870 912
nodeselection/breadthfirst/memsavepriority −536 870 912
nodeselection/estimate/stdpriority −536 870 912
nodeselection/estimate/memsavepriority −536 870 912
nodeselection/hybridestim/stdpriority −536 870 912
nodeselection/hybridestim/memsavepriority −536 870 912
nodeselection/uct/stdpriority −536 870 912
nodeselection/uct/memsavepriority −536 870 912

Table A.5: Summary of the SCIP 2022 hyperparameters used the DFS FMSTS
branching agent of Etheve et al. 2020 (any parameters not specified were the default

SCIP 2022 values).

A.7 Pseudocode

A.7.1 Retrospective Trajectory Construction

Algorithm 5 shows the proposed ‘retrospective trajectory construction’ method,

whereby fathomed leaf nodes not yet added to a trajectory are selected as the

brancher’s terminal states and paths to them are iteratively established using

some construction method.

A.7. Pseudocode 201

Algorithm 5 Retrospectively construct trajectories.
Input: B&B tree T from solving MILP
Output: Retrospectively constructed trajectories
Initialise: nodes_added, subtree_episodes = [Troot−1], []
// Construct trajectories until all valid node(s) in T added
while True do

// Root trajectories at highest level unselected node(s)
subtrees = []
for node in nodes_added do

for child_node in Tnode.children do
if child_node not in nodes_added then

// Use depth-first-search to get sub-tree
subtrees.append(dfs(T , root=child_node))

end if
end for

end for
// Construct trajectory episode(s) from sub-tree(s)
if len(subtrees) > 0 then

for subtree in subtrees do
subtree_episode = construct_path(subtree) (6)
subtree_episode[−1].done = True
subtree_episodes.append(subtree_episode)
for node in subtree_episode do

nodes_added.append(node)
end for

end for
else

// All valid nodes in T added to a trajectory
break

end if
end while

202 Appendix A. Solving NP-Hard Discrete Optimisation Problems

A.7.2 Maximum Leaf LP Gain

Algorithm 6 shows the proposed ‘maximum leaf LP gain’ trajectory construction

method, whereby the fathomed leaf node with the greatest change in the dual

bound (‘LP gain’) is used as the terminal state of the trajectory.

Algorithm 6 Maximum leaf LP gain trajectory construction.
Input: Sub-tree S
Output: Trajectory SE

Initialise: gains = {}
for leaf in S.leaves do

if leaf closed by brancher then
gains.leaf = |Sroot.dual_bound− Sleaf.dual_bound|

end if
end for
terminal_node = max(gains)
SE = shortest_path(source=Sroot, target=terminal_node)

A.8 Cost of Strong Branching Labels

As well as performance being limited to that of the expert imitated, IL methods

have the additional drawback of requiring an expensive data labelling phase.

Fig. A.3 shows how the explore-then-strong-branch labelling scheme of Gasse

et al. 2019 scales with set covering instance size (rows× columns) and how this

becomes a hindrance for larger instances. Although an elaborate infrastructure

can be developed to try to label large instances at scale [Nair et al., 2021], ideally

the need for this should be avoided; a key motivator for using RL to branch.

A.8. Cost of Strong Branching Labels 203

Figure A.3: How the explore-then-strong-branch data labelling phase of the strong
branching imitation agent scales with set covering instance size (rows× columns)
using an Intel Xeon ES-2660 CPU and assuming 120 000 samples are needed for

each set.

205

Appendix B

A Framework for Generating

Custom and Reproducible

Synthetic Traffic

B.1 Table of Notation

B.2 TrafPy Distribution Parameters

Table B.2: Benchmark categories with their real traffic characteristics reported
in the literature (where appropriate) and the corresponding TrafPy parameters D′

needed to reproduce the distributions.
DCN<i,ii,iii,iv> → <university, private_enterprise, commercial_cloud, social_media_cloud>

Skewed<i,ii,iii,iv,v> → skewed_nodes_sensitivity_<uniform, 0.05, 0.1, 0.2, 0.4>
Rack<i,ii,iii,iv,v> → rack_sensitivity_<uniform, 0.2, 0.4, 0.6, 0.8>

a Real traffic characteristics reported in the literature.
b Corresponding TrafPy parameters D′.

c = net.graph[‘rack_to_ep_dict’] → Network cluster (i.e. rack) configuration.
d(u) = int(u * len(net.graph[‘endpoints’])) → Number of nodes to skew.

e(u, v) = [v/d(u) for _ in range(d(u))] → Fraction of overall traffic load to distribute amongst the skewed
nodes.

r | rd | p | ns | np = rack_prob_config | ‘racks_dict’ | ‘prob_inter_rack’ | num_skewed_nodes |
skewed_node_probs

Benchmark

Category

Applications Size, Bytes Inter-arrival

Time, µs

Inter- |

Intra-Rack

Traffic, %

Hot Nodes |

Load

Requested, %

DCNi

Benson

et al.

[2010a],

Benson

et al. [2011]

Database backups, hosting

distributed file systems

(email, servers, web

services for faculty portals

etc.), multi-cast video

streams

a 80% < 10, 000
b ‘lognormal’,

{µ: 7, σ: 2.5},

min_val=1,

max_val=2e7,

round=25

a 10% < 400,

80% < 10, 000
b ‘weibull’,

{α: 0.9, λ:

6,000},

min_val=1,

round=25

a 70 | 30
b r={rd: c, p:

0.7 }

a20|55b‘multimodal’,

ns=d(0.2),

np=e(0.2, 0.55)

206
Appendix B. A Framework for Generating Custom and Reproducible Synthetic

Traffic

DCNii

Benson

et al.

[2010a]

University + ‘custom’

applications and

development test beds

a 80% < 10, 000
b ‘lognormal’,

{µ: 7, σ: 2.5},

min_val=1,

max_val=2e7,

round=25

a 80% < 1, 000
b ‘multimodal’,

min_val=1,

max_-

val=100,000,

locations=[40,1],

skews=[-1,4],

scales=[60,1000],

num_skew_-

samples

=[10]e3,

round=25,

bg_factor=0.05

a 50 | 50
b r={rd: c, p:

0.5}

a20|55b‘multimodal’,

ns=d(0.2),

np=e(0.2, 0.55)

DCNiii

Benson

et al.

[2010a],

Kandula

et al. [2009]

Internet-facing

applications (search

indexing, webmail, video,

etc.), data mining and

MapReduce-style

applications

a 80% < 10, 000
b ‘lognormal’,

{µ: 7, σ: 2.5},

min_val=1,

max_val=2e7,

round=25

a Median 10
b ‘multimodal’,

min_val=1,

max_-

val=100,000,

locations

=[10,20,100,1],

skews=[0,0,0,100],

scales=[1,3,4,50],

num_skew_-

samples

=[10,7,5,20]e3,

round=25,

bg_factor=0.01

a 20 | 80
b r={rd: c, p:

0.2}

a20|55b‘multimodal’,

ns=d(0.2),

np=e(0.2, 0.55)

DCNiv Roy

et al. [2015]

Web request response

generation (mail,

messenger, etc.), MySQL

database storage & cache

querying, newsfeed

assembly

a 10% < 300,

90% < 100, 000
b ‘weibull’,

{α: 0.5, λ:

21,000},

min_val=1,

max_val=2e6,

round=25

a 10% < 20,

90% < 10, 000
b ‘lognormal’,

{µ: 6, σ: 2.3},

min_val=1,

round=25

a 12.9 | 87.1
b r={rd: c, p:

0.129}

a20|55b‘multimodal’,

ns=d(0.2),

np=e(0.2, 0.55)

Skewedi,

Racki

- bDCNiii
bDCNiii

b‘uniform’,

r = None

b‘uniform’

ns = np =

None

Skewedii - bDCNiii
bDCNiii

b‘uniform’,

r = None

5|55b‘uniform’

ns = d(0.05)

np =

e(0.05, 0.55)

Skewediii - bDCNiii
bDCNiii

b‘uniform’,

r = None

5|55b‘uniform’

ns = d(0.1)

np =

e(0.1, 0.55)

Skewediv - bDCNiii
bDCNiii

b‘uniform’,

r = None

5|55b‘uniform’

ns = d(0.2)

np =

e(0.2, 0.55)

Skewedv - bDCNiii
bDCNiii

b‘uniform’,

r = None

5|55b‘uniform’

ns = d(0.4)

np =

e(0.4, 0.55)

Rackii - bDCNiii
bDCNiii 80|20b‘uniform’,

r = {rd : c, p :

0.8}

b‘uniform’

ns = np =

None

B.2. TrafPy Distribution Parameters 207

Rackiii - bDCNiii
bDCNiii 60|40b‘uniform’,

r = {rd : c, p :

0.6}

b‘uniform’

ns = np =

None

Rackiv - bDCNiii
bDCNiii 40|60b‘uniform’,

r = {rd : c, p :

0.4}

b‘uniform’

ns = np =

None

Rackv - bDCNiii
bDCNiii 20|80b‘uniform’,

r = {rd : c, p :

0.2}

b‘uniform’

ns = np =

None

208
Appendix B. A Framework for Generating Custom and Reproducible Synthetic

Traffic

Symbol Definition

D′ Set of parameters defining the TrafPy distributions
D Traffic trace generated using the D′ TrafPy parameters
P Probability distribution
X Discrete random variables
H Entropy
JSD Jensen-Shannon divergence√

JSD Jensen-Shannon distance
{π1, ..., πn} Weightings for the JSD of n distributions
Bs, Bt, Bn Flow size, inter-arrival time, and node pair random variables for benchmark workload B
bs, bt, bn Flow sizes, inter-arrival times, and node pairs sampled from benchmark workload B
ba Flow arrival times derived from inter-arrival times bt

T DCN network topology
ρ Load fraction (fraction of overall network capacity requested)
nn Number of server nodes
nc Number of channels per communication link
Cc Capacity per server node link channel
Ct Total network capacity per direction
nf Number of flows generated
tt Total time duration of simulation
ϱ Load rate (information arriving per unit time)
αt Inter-arrival time adjustment factor
dp Difference between a node pair’s current and target information request magnitude
β Number of flows adjustment factor
R Number of traffic traces to generate and simulate for a suitable confidence interval

Table B.1: Table summarising the symbol notation used throughout the paper.

Table B.3: Flow size, inter-arrival time, and node load distribution characteristics
for the University (U), Private Enterprise (PE), Commercial Cloud (CC), and
Social Media Cloud (SMC) data sets of the DCN benchmark after generating the

distributions from TrafPy parameters D′.

Variable DCN # Modes Min. Max. Mean Variance Skewness Kurtosis

Size (B)

U 1 1 19.8e6 22.9e3 42e9 39.4 2.41e3
PE 1 1 19e6 23.3e3 53.5e9 44.1 2.79e3
CC 1 1 19.2e6 22.3e3 38.4e9 36.9 2.08e3

SMC 1 1 3.17e6 42e3 8.87e9 6.20 66.4

Inter-arrival
time (µs)

U 1 1 126e3 6.3e3 49.9e6 2.44 9.92
PE 2 1 100e3 2.83e3 154e6 5.7 33.1
CC 4 1 10e3 84.5 0.32e6 13 179

SMC 1 1 54.6e5 5.51e3 2.11e9 47.8 3.75e3
Variable DCN % Hot Nodes % Hot Node Traffic % Inter-Rack

Node load
distribution (%)

U 20 55 70
PE 20 55 50
CC 20 55 20

SMC 20 55 12.9

B.3. TrafPy API Examples 209

Figure B.1: Output of example code for interactively and visually shaping a
‘named’ distribution in a Jupyter Notebook.

B.3 TrafPy API Examples

B.3.1 Custom Distribution Shaping

Interactively & Visually Shaping a Custom ‘Named’ Distribution in a

Jupyter Notebook. Example of interactively and visually shaping a weibull

distribution’s parameters to achieve a target distribution for some random

variable in Jupyter Notebook (output in Fig. B.1):

1

2 import trafpy.generator as tpg

3

4 dist = tpg.gen_named_val_dist(dist='weibull',

5 interactive_plot=True,

6 min_val=1,

7 max_val=None,

8 size=15e4)

9

10

This same distibution can then be reproduced by using the same parameters:

1

2 dist = tpg.gen_named_val_dist(dist='weibull',

3 params={'_alpha': 0.9, '_lambda': 6000}

4 min_val=1,

5 max_val=None)

6

210
Appendix B. A Framework for Generating Custom and Reproducible Synthetic

Traffic

Interactively & Visually Shaping a Custom ‘Multimodal’ Distribu-

tion in a Jupyter Notebook. To generate a multimodal distribution, first

shape each mode individually (output in Fig. B.2):

1

2 import trafpy.generator as tpg

3

4 data_dict = tpg.gen_skew_dists(min_val=1,

5 max_val=1e5,

6 num_modes=2)

7

Then combine the distributions, filling the distribution with a tuneable

amount of ‘background noise’ (output in Fig. B.3):

1

2 multimodal_dist = tpg.combine_multiple_mode_dists(data_dict,

3 min_val=1,

4 max_val=1e5)

5

This same distribution can be reproduced using the same parameters:

1

2 multimodal_dist = tpg.gen_multimodal_val_dist(min_val=1,

3 max_val=1e5,

4 locations=[40, 1],

5 skews=[-1, 4],

6 scales=[60, 1000],

7 num_skew_samples=[1e4, 1e4],

8 bg_factor=0.05)

9

N.B. An equivalent function can be used for generating custom skew distri-

butions with a single mode which also do not fall under one of the canonical

‘named’ distributions.

B.3. TrafPy API Examples 211

Figure B.2: Output for step 1 of example code for interactively and visually
shaping a ‘multimodal’ distribution in a Jupyter Notebook, where you must first

shape each mode individually.

212
Appendix B. A Framework for Generating Custom and Reproducible Synthetic

Traffic

Figure B.3: Output for step 2 of example code for interactively and visually
shaping a ‘multimodal’ distribution in a Jupyter Notebook, where you must combine

your individually shaped modes into a single distribution.

B.3. TrafPy API Examples 213

B.3.2 Benchmark Importing & Flow Generation

Example code for generating and visualising a load 0.1 University benchmark

data set of flows for a custom topology (output in Fig. B.4):

1

2 import trafpy.generator as tpg

3 from trafpy.benchmarker import BenchmarkImporter

4 from trafpy.generator import Demand, DemandsAnalyser, DemandPlotter

5

6 # set variables

7 min_duration = 1000

8 jsd_threshold = 0.1

9

10 # initialise network

11 net = tpg.gen_arbitrary_network(num_eps=64, ep_channel_capacity=1250)

12

13 # initialise benchmark distributions

14 importer = BenchmarkImporter(benchmark_version='0.01')

15 dists = importer.get_benchmark_dists(benchmark='university', eps=net.graph['endpoints'])

16

17 # generate flow-centric demand data set

18 network_load_config = {'network_rate_capacity': net.graph['max_nw_capacity'],

19 'ep_channel_capacity': net.graph['ep_channel_capacity'],

20 'target_load_fraction': 0.1}

21 flow_centric_demand_data = tpg.create_demand_data(eps=net.graph['endpoints'],

22 node_dist=dists['node_dist'],

23 flow_size_dist=dists['flow_size_dist'],

24 interarrival_time_dist=dists['interarrival_time_dist'],

25 network_load_config=network_load_config,

26 jsd_threshold=jsd_threshold,

27 min_duration=min_duration)

28

29 # print summary table

30 demand = Demand(flow_centric_demand_data, net.graph['endpoints'])

31 DemandsAnalyser([demand], net).compute_metrics(print_summary=True)

32

33 # visualise distributions

34 plotter = DemandPlotter(demand)

35 plotter.plot_flow_size_dist()

36 plotter.plot_interarrival_time_dist()

37 plotter.plot_node_dist()

38

214
Appendix B. A Framework for Generating Custom and Reproducible Synthetic

Traffic

Figure B.4: Output of example code for generating a benchmark.

B.4. Pseudocode 215

B.4 Pseudocode

B.4.1 Scheduling

The flow scheduling pseudocode is shown in Algorithm 7. First, information

about the queued flows such as their characteristics (packets left, time of arrival,

flow queue, destination node, etc.), the network links requested in the source-

destination path, and the bandwidth requested, is collected. If the scheduler

uses cost-based scheduling (e.g. SRPT uses flow completion time cost), a cost is

also assigned to each flow. Next, for each link being requested by the flows, while

the link in question has some available bandwidth left to allocate for the current

time slot, the scheduler chooses flows until either there is no bandwidth left or

there are no flows demanding the link which have not been chosen. Finally, for

each flow in the set of these provisionally chosen flows, the smallest number of

packets scheduled for the flow in question across all links is chosen as the flow’s

number of packets to schedule. Note that this simulation methodology considers

bandwidth bottlenecks throughout all layers of the network. The pseudocode in

Algorithm 8 is used to resolve any contentions and attempt to set up the flow,

thus adding the flow to the ultimate set of flows chosen by the scheduler for the

given time slot. The parts which are scheduler-specific have been marked in

bold.

B.4.2 TrafPy Benchmark Protocol

216
Appendix B. A Framework for Generating Custom and Reproducible Synthetic

Traffic

Algorithm 7 Flow scheduling process.
Collect flow information
link_allocations = []
for link in links do

while link bandwidth ̸= 0 do
link_allocations.append(scheduler choose flow)

end while
end for
chosen_flows = []
for flow in flows do

if flow in link_allocations then
flow_packets = min(packets allocated for flow in link_allocations)
establish, removed_flows = scheduler resolve_contentions(flow, chosen_flows)
if establish then

chosen_flows.append(flow)
chosen_flows.remove(removed_flows)

end if
end if

end for

Algorithm 8 Flow contention resolution process.
Require: flow, chosen_flows

removed_flows = []
while True do

if no_contention(flow) then
establish = True
return establish, removed_flows

else
contending_flow = find_contending_flow()
establish = scheduler resolve_contention(flow, contending_flow)
if not establish then

chosen_flows.append(removed_flows)
return establish

else
chosen_flows.remove(contending_flow)
continue

end if
end if

end while

Algorithm 9 TrafPy benchmark protocol.
for r in range(R) do

for d in D do
for ρ ← 0.1 to 0.9 step 0.1 do

PKPI = Υ(χ, d, ρ)
end for

end for
end for

B.5. Traffic Skew Convergence 217

B.5 Traffic Skew Convergence

A constraint of any traffic matrix is that the load on each end point (the fraction

of the end point’s capacity being requested) cannot exceed 1.0. Consequently,

certain traffic skews become infeasible at higher loads (for example, it is impos-

sible for an n > 1 network to have 1 node requesting 100% of the traffic if the

overall network is under a 1.0 load). As shown in Fig. 6.3, this results in all

traffic matrices tending towards uniform (i.e. having no skew) as the overall

network load tends to 1.0.

A question traffic trace generators may ask is: for a given load, what

combination of i) number of skewed nodes, ii) corresponding fraction of the

arriving network traffic the skewed nodes request, and iii) overall network load

results in the traffic matrix being skewed or not skewed? To answer this question,

we make the following assumptions:

• All network end points have equal bandwidth capacities.

• All end points are either ‘skewed’ or ‘not skewed’ by the same amount.

• ‘Skew’ is defined by a skew factor, which is the fractional difference between

the load rate per skewed node and the load rate per non-skewed node (the

highest being the numerator, and the lowest being the denominator).

• For a given combination of skewed nodes and the load rate they request of

some overall network load, any excess load (exceeding 1.0) on a given end

point is distributed equally amongst all other end points whose loads are

< 1.0.

With the above assumptions, we can calculate the skew factor for each

combination of skewed nodes, corresponding traffic requested, and overall network

load. Doing this for 0-100% of the network nodes being skewed and requesting

0-100% of the overall network load under network loads 0.1-0.9, we can construct

218
Appendix B. A Framework for Generating Custom and Reproducible Synthetic

Traffic

Figure B.5: Skew factor heat maps for 0-100% of network nodes requesting
0-100% of the overall network traffic across loads 0.1-0.9 plotted at 0.1% resolution.
For clarity, combinations with skew factors ≥ 2 have been assigned the same colour.

a look-up table of skew factors for each of these combinations before generating

any actual traffic. Fig. B.5 shows a high resolution (0.1%) heat map of these

combinations, with any skew factors ≥ 2.0 set to the same colour for visual

clarity. Fig. B.6 shows the corresponding plots with lower resolution (5%) but

with the skew factors labelled. As expected, above 0.6 network loads, certain

combinations of number of skewed nodes and traffic requested become restricted

as to how much skew there can be in the matrix, with many combinations

tending towards uniform (skew factor 1.0) at 0.9 loads.

Using the skew factor data from Figs. B.5 and B.6, we can be confident at

5%, 10%, 20%, and 40% of the network nodes requesting 55% of the overall

network traffic that the skew factor will be > 1.0 across loads 0.1-0.9. Fig. B.7

shows the skew factor as a function of load for these combinations. Therefore,

B.5. Traffic Skew Convergence 219

Figure B.6: Labelled skew factor tables for 0-100% of network nodes requesting
0-100% of the overall network traffic across loads 0.1-0.9 plotted at 5% resolution.

220
Appendix B. A Framework for Generating Custom and Reproducible Synthetic

Traffic

Figure B.7: Skew factor as a function of load for 5%, 10%, 20%, and 40% of the
network nodes requesting 55% of the overall network traffic.

these were the combinations chosen for the skewed nodes sensitivity benchmark

defined in Section 6.4 of this manuscript.

B.6. Scheduler Performance Summary 221

B.6 Scheduler Performance Summary

B.6.1 Completion Time Performance Plots

Plots showing the schedulers’ completion performances are provided for the

realistic DCN (Fig. B.8) uniform (Fig. B.9, extreme rack (Fig. B.10), and

extreme nodes (Fig. B.11 traffic traces.

Figure B.8: The schedulers’ (a) mean, (b) 99th percentile, and (c) maximum flow
completion time metrics for the DCN benchmark distributions across loads
0.1-0.9, and (d) a scatter plot of flow completion time as a function of flow size for

the same distribution at load 0.9.

222
Appendix B. A Framework for Generating Custom and Reproducible Synthetic

Traffic

Figure B.9: The schedulers’ (a) mean, (b) 99th percentile, and (c) maximum flow
completion time metrics for the uniform node distribution across loads 0.1-0.9,
and (d) a scatter plot of flow completion time as a function of flow size for the

same distribution at load 0.9.

Figure B.10: Sensitivity of the schedulers’ (a) mean, (b) 99th percentile, and
(c) maximum flow completion times to the changing intra-rack distribution
for loads 0.1, 0.5, and 0.9. The complementary CDF plots include data for all
4 schedulers, whereas the scatter plots contain the top 2 performing schedulers

(SRPT and FS) for clarity.

B.6.2 Throughput and Flows Accepted Performance Plots

Plots showing the schedulers’ throughput and accepted flow performances are

provided for the realistic DCN (Fig. B.12, uniform (Fig. B.13), extreme rack

(Fig. B.14), and extreme nodes (B.15) traffic traces.

B.6. Scheduler Performance Summary 223

Figure B.11: Sensitivity of the schedulers’ (a) mean, (b) 99th percentile, and (c)
maximum flow completion times to the changing skewed nodes distribution
for loads 0.1, 0.5, and 0.9. The complementary CDF plots include data for all
4 schedulers, whereas the scatter plots contain the top 2 performing schedulers

(SRPT and FS) for clarity.

B.6.3 Performance Metric Tables

The below performance tables summarise the schedulers’ mean performances

(averaged across 5 runs, 95% confidence intervals reported) for each PKP I , each

load, and each benchmark.

DCN Benchmarks

224
Appendix B. A Framework for Generating Custom and Reproducible Synthetic

Traffic

Load Subject Mean FCT (µs) p99 FCT (µs) Max FCT (µs) Throughput (Frac) Flows Accepted (Frac) Info Accepted (Frac)

0.10 FF 1557.2±0.19% 2903.2±0.77% 44249.8±8.9% 0.994±0.2% 1.0±0.0012% 0.994±0.2%
0.10 FS 1521.5±0.028% 1997.2±0.0059% 45984.4±11.0% 0.993±0.24% 1.0±0.00082% 0.993±0.24%
0.10 Rand 1543.5±0.051% 2708.2±0.38% 72316.3±9.1% 0.991±0.2% 1.0±0.00078% 0.991±0.2%
0.10 SRPT 1518.8±0.021% 1996.9±0.0039% 50036.6±11.0% 0.995±0.2% 1.0±0.00025% 0.995±0.2%
0.20 FF 1677.7±1.0% 5629.1±8.4% 77986.8±8.3% 0.985±0.39% 1.0±0.01% 0.985±0.39%
0.20 FS 1537.6±0.11% 1999.4±0.0039% 72962.6±5.9% 0.983±0.4% 1.0±0.0019% 0.983±0.4%
0.20 Rand 1600.8±0.18% 3050.2±1.3% 182454.6±11.0% 0.962±0.34% 1.0±0.0025% 0.962±0.34%
0.20 SRPT 1529.5±0.079% 2014.7±0.56% 102306.4±12.0% 0.985±0.32% 1.0±0.0019% 0.985±0.32%
0.30 FF 1887.8±0.78% 10474.4±4.9% 174541.8±16.0% 0.975±0.17% 0.999±0.0073% 0.975±0.17%
0.30 FS 1575.3±0.19% 2630.4±2.8% 134195.3±3.0% 0.97±0.12% 1.0±0.0013% 0.97±0.12%
0.30 Rand 1682.3±0.2% 3937.4±0.35% 381073.0±4.0% 0.857±0.87% 0.999±0.0063% 0.857±0.87%
0.30 SRPT 1551.2±0.099% 2500.5±0.29% 235811.0±5.7% 0.956±0.29% 1.0±0.00062% 0.956±0.29%
0.40 FF 2124.1±2.2% 15235.4±11.0% 247350.9±7.0% 0.939±0.38% 0.998±0.02% 0.939±0.38%
0.40 FS 1643.5±0.12% 3562.8±4.5% 230440.4±6.6% 0.926±0.58% 0.999±0.0025% 0.926±0.58%
0.40 Rand 1762.5±0.23% 5081.8±0.67% 295319.0±1.8% 0.816±0.75% 0.999±0.0092% 0.816±0.75%
0.40 SRPT 1561.9±0.08% 2771.3±0.31% 221163.5±5.0% 0.902±0.41% 1.0±0.0014% 0.902±0.41%
0.50 FF 1902.1±1.1% 6389.1±2.7% 391005.8±7.6% 0.909±0.94% 0.999±0.0067% 0.909±0.94%
0.50 FS 1740.5±1.2% 4533.5±12.0% 344343.1±7.9% 0.9±1.1% 0.999±0.0055% 0.9±1.1%
0.50 Rand 1947.7±1.8% 6365.3±4.5% 443976.4±11.0% 0.818±1.2% 0.998±0.0037% 0.818±1.2%
0.50 SRPT 1582.2±0.16% 2904.8±0.36% 363481.8±7.4% 0.875±0.76% 1.0±0.0012% 0.875±0.76%
0.60 FF 1989.3±1.0% 7602.7±4.6% 335234.2±5.2% 0.917±0.39% 0.999±0.0057% 0.917±0.39%
0.60 FS 1677.7±0.53% 3701.9±1.1% 314020.0±4.8% 0.912±0.31% 0.999±0.0036% 0.912±0.31%
0.60 Rand 2322.4±2.7% 9921.0±8.2% 398738.8±2.5% 0.805±0.48% 0.997±0.027% 0.805±0.48%
0.60 SRPT 1630.0±0.084% 3630.4±0.48% 322416.8±5.0% 0.879±0.47% 1.0±0.0022% 0.879±0.47%
0.70 FF 2434.1±1.8% 12649.6±5.0% 305610.1±2.9% 0.912±0.35% 0.998±0.033% 0.912±0.35%
0.70 FS 1672.2±0.4% 4415.8±1.9% 246486.9±2.9% 0.914±0.3% 0.999±0.0033% 0.914±0.3%
0.70 Rand 3083.8±1.4% 19421.0±4.0% 377667.2±2.1% 0.755±1.1% 0.993±0.048% 0.755±1.1%
0.70 SRPT 1712.6±0.28% 4502.1±1.8% 280418.9±5.9% 0.878±0.46% 0.999±0.008% 0.878±0.46%
0.79 FF 3394.1±2.1% 23179.1±3.5% 265525.7±5.5% 0.9±0.23% 0.995±0.033% 0.9±0.23%
0.79 FS 1724.5±0.31% 6302.9±1.9% 236377.1±3.3% 0.913±0.28% 0.999±0.004% 0.913±0.28%
0.79 Rand 3861.5±1.8% 25389.9±1.9% 317002.4±2.3% 0.731±0.83% 0.988±0.033% 0.731±0.83%
0.79 SRPT 1950.3±1.3% 7574.3±6.7% 271794.0±1.7% 0.848±0.36% 0.999±0.017% 0.848±0.36%
0.89 FF 5550.1±1.9% 44869.3±2.5% 333023.3±11.0% 0.87±0.62% 0.987±0.041% 0.87±0.62%
0.89 FS 2015.9±0.54% 12793.3±1.7% 254036.6±10.0% 0.873±0.9% 0.998±0.013% 0.873±0.9%
0.89 Rand 5718.1±7.5% 38174.0±8.7% 346773.2±12.0% 0.692±0.71% 0.979±0.045% 0.692±0.71%
0.89 SRPT 2645.0±5.0% 19839.5±12.0% 319581.9±11.0% 0.755±0.43% 0.993±0.12% 0.755±0.43%

Table B.4: Scheduler performance summary with 95% confidence intervals for
the University benchmark.

Load Subject Mean FCT (µs) p99 FCT (µs) Max FCT (µs) Throughput (Frac) Flows Accepted (Frac) Info Accepted (Frac)

0.10 FF 1576.7±0.34% 3207.9±3.5% 50143.5±5.5% 0.998±0.085% 1.0±0.00094% 0.998±0.085%
0.10 FS 1522.1±0.021% 1997.1±0.0079% 46335.0±4.4% 0.997±0.095% 1.0±0.0006% 0.997±0.095%
0.10 Rand 1550.9±0.053% 2765.2±0.49% 82610.5±7.8% 0.994±0.19% 1.0±0.00074% 0.994±0.19%
0.10 SRPT 1520.3±0.01% 1997.3±0.0079% 48062.1±5.8% 0.997±0.13% 1.0±0.00047% 0.997±0.13%
0.20 FF 1726.6±1.6% 6794.6±11.0% 70833.7±3.0% 0.983±0.29% 0.999±0.01% 0.983±0.29%
0.20 FS 1532.2±0.13% 2048.4±0.76% 66026.7±2.0% 0.983±0.22% 1.0±0.00072% 0.983±0.22%
0.20 Rand 1598.9±0.16% 3199.8±2.0% 166233.2±8.3% 0.946±0.6% 1.0±0.0044% 0.946±0.6%
0.20 SRPT 1529.5±0.11% 2214.8±1.6% 87532.1±7.1% 0.984±0.22% 1.0±0.00048% 0.984±0.22%
0.30 FF 2058.9±3.1% 16033.0±12.0% 149462.6±8.8% 0.98±0.19% 0.999±0.016% 0.98±0.19%
0.30 FS 1549.9±0.13% 2528.8±1.1% 121311.0±7.3% 0.981±0.24% 1.0±0.001% 0.981±0.24%
0.30 Rand 1684.2±0.39% 4149.8±1.9% 285851.7±4.8% 0.899±0.73% 0.999±0.0088% 0.899±0.73%
0.30 SRPT 1543.2±0.056% 2616.2±0.41% 196424.2±9.0% 0.978±0.22% 1.0±0.00089% 0.978±0.22%
0.40 FF 2638.3±4.1% 30026.6±9.2% 205182.9±8.2% 0.942±0.6% 0.997±0.036% 0.942±0.6%
0.40 FS 1599.4±0.25% 3333.2±1.9% 211188.7±4.4% 0.943±0.21% 1.0±0.002% 0.943±0.21%
0.40 Rand 1799.1±0.54% 5653.6±2.3% 280714.7±3.0% 0.84±1.1% 0.999±0.015% 0.84±1.1%
0.40 SRPT 1564.1±0.085% 2802.8±0.32% 210192.4±7.6% 0.937±0.46% 1.0±0.0017% 0.937±0.46%
0.50 FF 2824.6±5.9% 34301.5±14.0% 365468.3±13.0% 0.907±1.0% 0.994±0.11% 0.907±1.0%
0.50 FS 1682.6±0.72% 5048.5±3.6% 311288.1±9.1% 0.902±1.2% 0.999±0.0061% 0.902±1.2%
0.50 Rand 1993.9±1.9% 7870.4±4.9% 381296.9±10.0% 0.811±1.1% 0.998±0.019% 0.811±1.1%
0.50 SRPT 1582.9±0.26% 2938.1±0.38% 332134.3±13.0% 0.903±0.65% 1.0±0.0026% 0.903±0.65%
0.60 FF 2230.4±1.3% 11218.7±5.3% 339021.9±2.3% 0.915±0.44% 0.997±0.065% 0.915±0.44%
0.60 FS 1705.0±0.53% 5843.2±3.2% 326252.1±3.6% 0.907±0.43% 0.999±0.0044% 0.907±0.43%
0.60 Rand 2282.4±1.6% 12522.1±6.0% 412445.3±4.4% 0.782±1.4% 0.997±0.029% 0.782±1.4%
0.60 SRPT 1624.0±0.21% 3425.1±1.3% 375244.9±5.9% 0.898±0.38% 1.0±0.0028% 0.898±0.38%
0.70 FF 2449.3±0.71% 13110.2±2.3% 297091.8±4.2% 0.921±0.26% 0.998±0.02% 0.921±0.26%
0.70 FS 1696.4±0.49% 5751.0±4.4% 283512.5±4.4% 0.907±0.17% 0.999±0.003% 0.907±0.17%
0.70 Rand 2636.5±0.7% 18278.2±2.0% 363011.5±2.3% 0.74±1.0% 0.995±0.029% 0.74±1.0%
0.70 SRPT 1691.0±0.23% 4085.2±1.5% 315470.7±7.2% 0.892±0.36% 1.0±0.0026% 0.892±0.36%
0.79 FF 3400.0±0.81% 24127.3±1.5% 275964.6±3.9% 0.897±0.37% 0.994±0.03% 0.897±0.37%
0.79 FS 1732.4±0.24% 6508.5±1.6% 258779.8±3.2% 0.893±0.45% 0.999±0.0034% 0.893±0.45%
0.79 Rand 3264.4±1.7% 27586.4±3.0% 325223.7±2.3% 0.675±0.73% 0.989±0.04% 0.675±0.73%
0.79 SRPT 1841.9±0.58% 5834.0±2.5% 292946.1±3.7% 0.853±0.25% 0.999±0.011% 0.853±0.25%
0.90 FF 5851.8±1.9% 48861.6±2.7% 274329.9±2.0% 0.866±0.64% 0.983±0.08% 0.866±0.64%
0.90 FS 1940.3±0.35% 11084.7±2.1% 268340.1±3.0% 0.842±0.52% 0.998±0.0064% 0.842±0.52%
0.90 Rand 4124.7±1.4% 36647.1±2.2% 294642.1±0.58% 0.625±1.5% 0.983±0.055% 0.625±1.5%
0.90 SRPT 2492.0±5.5% 16474.5±15.0% 267699.8±2.0% 0.711±0.41% 0.994±0.2% 0.711±0.41%

Table B.5: Scheduler performance summary with 95% confidence intervals for
the Private Enterprise benchmark.

B.6. Scheduler Performance Summary 225

Figure B.12: The schedulers’ (a) absolute throughput (information units trans-
ported per unit time), (b) relative throughput (fraction of arrived information
successfully transported), (c) fraction of arrived flows accepted, and (d) fraction of
arrived information accepted metrics for the DCN benchmark distributions

across loads 0.1-0.9.

226
Appendix B. A Framework for Generating Custom and Reproducible Synthetic

Traffic

Figure B.13: The schedulers’ (a) absolute throughput (information units trans-
ported per unit time), (b) relative throughput (fraction of arrived information
successfully transported), (c) fraction of arrived flows accepted, and (d) fraction of
arrived information accepted metrics for the uniform node distribution across

loads 0.1-0.9.

Figure B.14: Sensitivity of the schedulers’ (a) relative throughput, (b) fraction of
arrived flows accepted, and (c) fraction of arrived information accepted metrics to
the changing intra-rack distribution for loads 0.1, 0.5, and 0.9. The complemen-
tary CDF plots include data for all 4 schedulers, whereas the scatter plots contain

the top 3 performing schedulers (SRPT, FS, and FF) for clarity.

B.6. Scheduler Performance Summary 227

Figure B.15: Sensitivity of the schedulers’ (a) relative throughput, (b) fraction
of arrived flows accepted, and (c) fraction of arrived information accepted metrics
to the changing skewed nodes distribution for loads 0.1, 0.5, and 0.9. The
complementary CDF plots include data for all 4 schedulers, whereas the scatter

plots contain the top 3 performing schedulers (SRPT, FS, and FF) for clarity.

Load Subject Mean FCT (µs) p99 FCT (µs) Max FCT (µs) Throughput (Frac) Flows Accepted (Frac) Info Accepted (Frac)

0.10 FF 1588.2±0.46% 3604.1±2.4% 49490.3±6.8% 0.996±0.052% 1.0±0.0019% 0.996±0.052%
0.10 FS 1520.1±0.083% 1997.1±0.0039% 42361.1±4.6% 0.994±0.16% 1.0±0.00059% 0.994±0.16%
0.10 Rand 1551.4±0.12% 2816.9±0.47% 75051.0±13.0% 0.99±0.2% 1.0±0.0023% 0.99±0.2%
0.10 SRPT 1519.3±0.077% 1997.7±0.0059% 42911.8±5.8% 0.996±0.08% 1.0±0.00037% 0.996±0.08%
0.20 FF 1747.8±1.2% 7437.1±6.9% 67090.9±3.3% 0.99±0.29% 0.999±0.018% 0.99±0.29%
0.20 FS 1524.9±0.14% 1998.8±0.0059% 59363.5±6.5% 0.991±0.3% 1.0±0.0013% 0.991±0.3%
0.20 Rand 1602.1±0.24% 3372.3±1.2% 171058.6±6.9% 0.97±0.64% 1.0±0.0033% 0.97±0.64%
0.20 SRPT 1525.8±0.13% 2276.5±0.57% 71962.2±7.8% 0.991±0.26% 1.0±0.0013% 0.991±0.26%
0.30 FF 2274.3±2.6% 21086.7±9.0% 116200.4±8.8% 0.987±0.06% 0.999±0.012% 0.987±0.06%
0.30 FS 1538.4±0.061% 2149.4±0.9% 85571.7±5.5% 0.99±0.066% 1.0±0.00071% 0.99±0.066%
0.30 Rand 1707.2±0.29% 4544.2±1.7% 249283.9±9.6% 0.933±0.58% 1.0±0.003% 0.933±0.58%
0.30 SRPT 1540.7±0.023% 2620.5±0.31% 119981.5±12.0% 0.989±0.092% 1.0±0.00056% 0.989±0.092%
0.40 FF 3203.2±3.6% 39373.6±7.1% 153040.1±4.9% 0.964±0.31% 0.994±0.11% 0.964±0.31%
0.40 FS 1557.2±0.17% 2559.2±0.57% 129399.8±9.6% 0.968±0.36% 1.0±0.00083% 0.968±0.36%
0.40 Rand 1889.3±0.56% 6600.9±3.0% 259317.4±3.9% 0.87±0.65% 0.999±0.012% 0.87±0.65%
0.40 SRPT 1564.1±0.13% 2830.9±0.38% 190613.2±10.0% 0.97±0.25% 1.0±0.00072% 0.97±0.25%
0.50 FF 4495.2±3.4% 60948.4±4.3% 255736.7±14.0% 0.939±0.64% 0.989±0.18% 0.939±0.64%
0.50 FS 1584.6±0.13% 2963.7±0.38% 196875.6±7.7% 0.947±0.84% 1.0±0.0039% 0.947±0.84%
0.50 Rand 2324.1±3.3% 12139.1±11.0% 353111.3±13.0% 0.797±0.74% 0.996±0.027% 0.797±0.74%
0.50 SRPT 1585.3±0.082% 2962.4±0.21% 254463.8±8.2% 0.942±0.56% 1.0±0.0022% 0.942±0.56%
0.60 FF 4837.1±5.1% 68328.0±3.3% 387525.7±2.3% 0.924±0.23% 0.978±0.2% 0.924±0.23%
0.60 FS 1639.9±0.14% 3835.1±0.83% 268943.4±3.6% 0.941±0.14% 1.0±0.0018% 0.941±0.14%
0.60 Rand 3236.8±0.65% 22198.9±0.66% 439374.7±1.1% 0.744±0.42% 0.993±0.015% 0.744±0.42%
0.60 SRPT 1628.1±0.15% 3565.0±0.8% 308435.8±4.8% 0.922±0.26% 1.0±0.0026% 0.922±0.26%
0.70 FF 3173.6±0.7% 22472.4±2.9% 327840.2±2.7% 0.905±0.31% 0.992±0.044% 0.905±0.31%
0.70 FS 1686.9±0.23% 4915.5±1.0% 254484.7±1.8% 0.921±0.44% 0.999±0.0024% 0.921±0.44%
0.70 Rand 3760.3±0.94% 31788.5±2.2% 365861.9±2.2% 0.675±0.25% 0.989±0.027% 0.675±0.25%
0.70 SRPT 1715.2±0.24% 4404.1±1.2% 264969.5±5.5% 0.903±0.33% 1.0±0.004% 0.903±0.33%
0.79 FF 4144.2±2.0% 30541.3±4.0% 301349.2±2.6% 0.902±0.18% 0.993±0.025% 0.902±0.18%
0.79 FS 1743.5±0.24% 6572.0±1.6% 259058.4±2.9% 0.905±0.18% 0.999±0.0026% 0.905±0.18%
0.79 Rand 4740.4±0.98% 46094.7±2.0% 344636.1±0.65% 0.6±0.65% 0.98±0.032% 0.6±0.65%
0.79 SRPT 1889.5±0.74% 6169.9±3.9% 292500.7±4.5% 0.868±0.038% 0.999±0.0052% 0.868±0.038%
0.89 FF 6856.2±0.89% 54158.7±2.0% 272757.7±1.4% 0.853±0.25% 0.976±0.14% 0.853±0.25%
0.89 FS 1940.3±0.16% 10891.2±0.75% 253250.9±1.6% 0.844±0.37% 0.998±0.0061% 0.844±0.37%
0.89 Rand 5320.7±1.0% 55646.5±1.6% 300652.9±0.86% 0.541±0.4% 0.972±0.051% 0.541±0.4%
0.89 SRPT 2234.9±1.5% 10623.8±4.9% 267587.5±2.8% 0.719±0.62% 0.996±0.025% 0.719±0.62%

Table B.6: Scheduler performance summary with 95% confidence intervals for
the Commercial Cloud benchmark.

228
Appendix B. A Framework for Generating Custom and Reproducible Synthetic

Traffic

Load Subject Mean FCT (µs) p99 FCT (µs) Max FCT (µs) Throughput (Frac) Flows Accepted (Frac) Info Accepted (Frac)

0.10 FF 1536.7±0.074% 2766.2±0.3% 7153.9±2.0% 1.0±0.0064% 1.0±0.00041% 1.0±0.0064%
0.10 FS 1513.9±0.062% 2053.4±0.84% 6892.3±3.1% 1.0±0.0062% 1.0±0.00024% 1.0±0.0062%
0.10 Rand 1536.5±0.054% 2762.4±0.35% 13551.4±11.0% 1.0±0.0079% 1.0±0.00056% 1.0±0.0079%
0.10 SRPT 1515.2±0.062% 2189.1±0.38% 6820.5±3.6% 1.0±0.0063% 1.0±0.00032% 1.0±0.0063%
0.20 FF 1591.6±0.11% 3410.3±1.2% 12773.2±12.0% 1.0±0.0045% 1.0±0.00091% 1.0±0.0045%
0.20 FS 1523.7±0.033% 2560.6±0.61% 11206.1±11.0% 1.0±0.0056% 1.0±0.00047% 1.0±0.0056%
0.20 Rand 1581.4±0.097% 3237.3±1.2% 29019.5±19.0% 1.0±0.0099% 1.0±0.0015% 1.0±0.0099%
0.20 SRPT 1532.6±0.054% 2720.7±0.49% 11620.8±11.0% 1.0±0.0052% 1.0±0.0005% 1.0±0.0052%
0.30 FF 1707.8±0.42% 4849.3±2.3% 24735.7±10.0% 1.0±0.011% 1.0±0.0032% 1.0±0.011%
0.30 FS 1539.5±0.056% 2859.5±0.27% 15729.0±8.7% 1.0±0.0089% 1.0±0.0006% 1.0±0.0089%
0.30 Rand 1660.7±0.13% 4184.2±1.1% 47524.1±19.0% 0.999±0.025% 1.0±0.0033% 0.999±0.025%
0.30 SRPT 1565.8±0.095% 2972.7±0.14% 18417.1±12.0% 1.0±0.0073% 1.0±0.00098% 1.0±0.0073%
0.40 FF 1924.6±0.8% 7639.7±3.0% 39600.9±9.7% 0.998±0.021% 0.999±0.0098% 0.998±0.021%
0.40 FS 1563.9±0.11% 3266.6±1.1% 17450.8±3.5% 0.999±0.019% 1.0±0.0023% 0.999±0.019%
0.40 Rand 1808.3±0.31% 5802.5±0.92% 92643.3±23.0% 0.996±0.042% 0.999±0.0058% 0.996±0.042%
0.40 SRPT 1622.6±0.19% 3731.7±0.93% 23635.4±7.2% 0.999±0.01% 1.0±0.0038% 0.999±0.01%
0.50 FF 2646.7±2.9% 20076.0±7.9% 117682.7±9.7% 0.996±0.066% 0.997±0.052% 0.996±0.066%
0.50 FS 1624.4±0.21% 4201.7±1.4% 31567.8±3.4% 0.997±0.058% 1.0±0.0047% 0.997±0.058%
0.50 Rand 2218.8±0.77% 10570.1±3.4% 207351.1±11.0% 0.987±0.15% 0.998±0.019% 0.987±0.15%
0.50 SRPT 1737.3±0.53% 4829.9±1.8% 49492.8±6.5% 0.997±0.045% 0.999±0.013% 0.997±0.045%
0.60 FF 4495.9±4.4% 55356.7±7.6% 237610.0±7.3% 0.988±0.16% 0.989±0.053% 0.988±0.16%
0.60 FS 1755.8±0.41% 6110.1±1.8% 47599.2±5.6% 0.992±0.15% 0.999±0.024% 0.992±0.15%
0.60 Rand 3262.0±1.6% 24348.0±2.2% 269243.0±2.0% 0.951±0.31% 0.991±0.049% 0.951±0.31%
0.60 SRPT 2034.5±2.0% 8447.1±8.2% 193698.4±8.9% 0.992±0.12% 0.998±0.071% 0.992±0.12%
0.69 FF 8175.5±2.7% 121246.2±3.5% 468538.0±5.4% 0.964±0.22% 0.934±0.82% 0.964±0.22%
0.69 FS 2384.6±1.7% 14253.5±3.9% 138806.7±6.4% 0.986±0.14% 0.998±0.026% 0.986±0.14%
0.69 Rand 6394.4±1.4% 72096.8±3.3% 507914.9±2.5% 0.901±0.29% 0.98±0.049% 0.901±0.29%
0.69 SRPT 4937.4±9.9% 64798.0±18.0% 500125.6±2.8% 0.939±0.81% 0.981±0.55% 0.939±0.81%
0.80 FF 7182.3±1.7% 77566.2±3.8% 443785.0±2.9% 0.938±0.13% 0.951±0.19% 0.938±0.13%
0.80 FS 4026.1±2.1% 32187.7±2.7% 243834.5±3.5% 0.947±0.19% 0.992±0.034% 0.947±0.19%
0.80 Rand 8489.0±2.2% 89488.4±1.5% 446095.0±1.4% 0.846±0.23% 0.966±0.06% 0.846±0.23%
0.80 SRPT 11412.4±4.1% 154590.0±3.9% 443708.3±1.7% 0.748±0.42% 0.854±0.88% 0.748±0.42%
0.90 FF 8731.6±1.5% 76236.3±1.8% 380339.7±2.7% 0.946±0.13% 0.97±0.2% 0.946±0.13%
0.90 FS 4809.9±1.4% 40007.0±2.0% 228118.7±2.1% 0.931±0.14% 0.989±0.038% 0.931±0.14%
0.90 Rand 10800.9±0.96% 110549.1±0.69% 407971.9±1.1% 0.788±0.41% 0.949±0.15% 0.788±0.41%
0.90 SRPT 18401.3±2.4% 204251.6±2.0% 416090.4±0.56% 0.61±0.78% 0.751±0.98% 0.61±0.78%

Table B.7: Scheduler performance summary with 95% confidence intervals for
the Social Media Cloud benchmark.

B.6. Scheduler Performance Summary 229

Skewed Nodes Distribution Benchmark

Load Subject Mean FCT (µs) p99 FCT (µs) Max FCT (µs) Throughput (Frac) Flows Accepted (Frac) Info Accepted (Frac)

0.1 FF 1554.5±0.15% 2977.0±0.79% 38288.3±6.7% 0.995±0.11% 1.0±0.024% 0.995±0.11%
0.1 FS 1518.8±0.12% 1997.5±0.0039% 39693.2±4.6% 0.995±0.11% 1.0±0.024% 0.995±0.11%
0.1 Rand 1544.1±0.11% 2750.1±0.34% 60170.8±9.4% 0.991±0.15% 1.0±0.024% 0.991±0.15%
0.1 SRPT 1518.3±0.12% 1998.0±0.0039% 41190.0±5.2% 0.995±0.11% 1.0±0.024% 0.995±0.11%
0.2 FF 1620.8±0.34% 4398.3±4.0% 43732.0±4.4% 0.98±0.3% 0.999±0.054% 0.98±0.3%
0.2 FS 1524.3±0.1% 1999.6±0.016% 42196.8±4.5% 0.982±0.32% 0.999±0.055% 0.982±0.32%
0.2 Rand 1579.3±0.18% 3049.8±1.1% 79304.0±9.3% 0.974±0.25% 0.999±0.057% 0.974±0.25%
0.2 SRPT 1524.9±0.087% 2234.7±1.0% 44396.8±4.8% 0.983±0.28% 0.999±0.055% 0.983±0.28%
0.3 FF 1744.2±0.55% 6564.0±2.3% 80217.5±5.9% 0.988±0.18% 0.999±0.069% 0.988±0.18%
0.3 FS 1532.9±0.1% 2255.9±0.46% 71447.0±7.3% 0.989±0.16% 0.999±0.064% 0.989±0.16%
0.3 Rand 1643.6±0.22% 3856.5±0.36% 180283.0±6.6% 0.973±0.27% 0.999±0.066% 0.973±0.27%
0.3 SRPT 1537.1±0.071% 2612.7±0.59% 84911.1±7.0% 0.99±0.15% 0.999±0.064% 0.99±0.15%
0.4 FF 1917.3±0.82% 9481.8±2.8% 89676.1±6.4% 0.981±0.29% 0.998±0.057% 0.981±0.29%
0.4 FS 1544.5±0.079% 2602.7±0.7% 85476.6±5.7% 0.98±0.3% 0.999±0.049% 0.98±0.3%
0.4 Rand 1776.3±0.22% 5093.5±0.91% 239854.0±7.3% 0.946±0.38% 0.999±0.05% 0.946±0.38%
0.4 SRPT 1554.7±0.058% 2819.0±0.48% 109885.3±8.2% 0.98±0.25% 0.999±0.05% 0.98±0.25%
0.5 FF 2254.6±0.82% 14792.9±1.9% 100669.6±4.8% 0.978±0.24% 0.998±0.046% 0.978±0.24%
0.5 FS 1563.8±0.16% 2927.5±0.58% 101281.5±7.7% 0.981±0.23% 0.999±0.042% 0.981±0.23%
0.5 Rand 2259.1±1.4% 9368.2±3.4% 403534.7±12.0% 0.883±0.74% 0.997±0.041% 0.883±0.74%
0.5 SRPT 1580.4±0.069% 2948.5±0.13% 148065.0±4.9% 0.977±0.25% 0.999±0.04% 0.977±0.25%
0.6 FF 2696.5±1.4% 19574.0±3.3% 242541.4±13.0% 0.971±0.36% 0.997±0.051% 0.971±0.36%
0.6 FS 1595.6±0.15% 3652.1±0.98% 161242.9±14.0% 0.973±0.24% 0.999±0.051% 0.973±0.24%
0.6 Rand 3309.7±1.1% 17326.4±1.6% 401082.8±4.4% 0.82±0.87% 0.993±0.066% 0.82±0.87%
0.6 SRPT 1620.9±0.077% 3373.6±0.78% 294496.9±6.8% 0.962±0.35% 0.999±0.051% 0.962±0.35%
0.7 FF 3436.8±1.0% 27933.1±2.3% 297748.1±3.1% 0.935±0.51% 0.994±0.077% 0.935±0.51%
0.7 FS 1660.9±0.21% 4953.9±1.2% 255268.4±4.4% 0.942±0.36% 0.999±0.078% 0.942±0.36%
0.7 Rand 4393.5±1.1% 24778.6±1.8% 354839.4±2.2% 0.738±1.1% 0.986±0.082% 0.738±1.1%
0.7 SRPT 1668.4±0.15% 3827.3±0.71% 320957.0±4.4% 0.914±0.47% 0.998±0.077% 0.914±0.47%
0.8 FF 4361.4±2.1% 34817.0±2.7% 287276.9±3.8% 0.907±0.59% 0.99±0.15% 0.907±0.59%
0.8 FS 1758.1±0.5% 7135.0±1.9% 283104.7±1.3% 0.899±0.8% 0.998±0.1% 0.899±0.8%
0.8 Rand 5762.2±1.5% 32239.6±1.4% 329015.7±2.0% 0.693±1.1% 0.977±0.15% 0.693±1.1%
0.8 SRPT 1758.1±0.41% 4842.1±2.4% 309165.9±3.6% 0.858±0.63% 0.998±0.11% 0.858±0.63%
0.9 FF 5520.3±1.7% 43104.1±2.4% 278164.1±2.2% 0.846±0.61% 0.983±0.061% 0.846±0.61%
0.9 FS 1890.9±0.47% 9974.2±1.9% 287700.1±3.1% 0.823±0.74% 0.998±0.038% 0.823±0.74%
0.9 Rand 7095.9±1.3% 39006.4±1.4% 306075.6±1.6% 0.627±0.93% 0.968±0.041% 0.627±0.93%
0.9 SRPT 1890.8±0.89% 6584.6±4.1% 287161.6±2.9% 0.771±0.54% 0.998±0.036% 0.771±0.54%

Table B.8: Scheduler performance summary with 95% confidence intervals for
the skewed_nodes_sensitivity_uniform and rack_sensitivity_uniform

benchmarks.

230
Appendix B. A Framework for Generating Custom and Reproducible Synthetic

Traffic

Load Subject Mean FCT (µs) p99 FCT (µs) Max FCT (µs) Throughput (Frac) Flows Accepted (Frac) Info Accepted (Frac)

0.10 FF 1676.3±1.3% 4965.6±5.9% 115613.1±12.0% 0.994±0.17% 0.999±0.042% 0.994±0.17%
0.10 FS 1545.9±0.21% 2137.2±1.5% 111455.6±11.0% 0.993±0.15% 0.999±0.04% 0.993±0.15%
0.10 Rand 1586.2±0.22% 3071.9±1.5% 204371.5±6.6% 0.986±0.18% 0.999±0.04% 0.986±0.18%
0.10 SRPT 1529.5±0.14% 1998.7±0.0078% 144042.5±11.0% 0.993±0.16% 0.999±0.041% 0.993±0.16%
0.20 FF 1769.9±2.2% 4943.9±12.0% 281567.2±4.5% 0.922±0.66% 0.997±0.086% 0.922±0.66%
0.20 FS 1653.3±0.56% 3724.2±11.0% 264636.5±5.0% 0.896±0.51% 0.998±0.092% 0.896±0.51%
0.20 Rand 1691.1±0.83% 4168.9±5.4% 185373.4±3.9% 0.901±0.24% 0.998±0.091% 0.901±0.24%
0.20 SRPT 1547.1±0.16% 2306.6±1.5% 165611.6±5.4% 0.933±0.29% 0.999±0.093% 0.933±0.29%
0.30 FF 1697.5±0.24% 4419.9±2.0% 289568.9±7.6% 0.949±0.49% 0.999±0.037% 0.949±0.49%
0.30 FS 1612.6±0.46% 2501.7±1.3% 297525.1±2.3% 0.927±0.69% 0.999±0.035% 0.927±0.69%
0.30 Rand 1686.6±0.47% 3854.9±0.88% 210069.0±5.6% 0.911±0.71% 0.999±0.036% 0.911±0.71%
0.30 SRPT 1551.1±0.14% 2604.4±0.24% 228406.2±12.0% 0.943±0.35% 0.999±0.038% 0.943±0.35%
0.40 FF 1789.6±0.58% 6066.7±3.7% 257805.2±5.8% 0.955±0.24% 0.998±0.096% 0.955±0.24%
0.40 FS 1584.6±0.29% 2728.7±0.95% 201816.6±2.3% 0.938±0.16% 0.999±0.088% 0.938±0.16%
0.40 Rand 1783.5±0.32% 4928.8±0.76% 275464.8±7.1% 0.905±0.21% 0.998±0.092% 0.905±0.21%
0.40 SRPT 1561.7±0.11% 2830.3±0.32% 266258.6±11.0% 0.945±0.21% 0.999±0.09% 0.945±0.21%
0.50 FF 2040.0±1.8% 9688.9±8.6% 287779.7±19.0% 0.953±0.52% 0.997±0.15% 0.953±0.52%
0.50 FS 1589.9±0.25% 2981.8±0.49% 177708.6±6.5% 0.95±0.48% 0.998±0.13% 0.95±0.48%
0.50 Rand 2120.0±1.7% 7781.7±3.5% 314269.3±12.0% 0.866±0.72% 0.996±0.14% 0.866±0.72%
0.50 SRPT 1589.3±0.16% 2963.8±0.28% 306084.3±13.0% 0.94±0.52% 0.998±0.14% 0.94±0.52%
0.60 FF 2468.3±1.2% 14704.2±3.3% 311801.5±8.9% 0.956±0.3% 0.998±0.042% 0.956±0.3%
0.60 FS 1620.5±0.097% 3756.5±0.77% 197184.5±4.0% 0.954±0.23% 0.999±0.038% 0.954±0.23%
0.60 Rand 3082.2±1.8% 15591.2±3.3% 430919.2±2.4% 0.815±0.9% 0.995±0.056% 0.815±0.9%
0.60 SRPT 1633.7±0.19% 3493.7±1.2% 337388.2±4.1% 0.94±0.21% 0.999±0.038% 0.94±0.21%
0.70 FF 3267.8±2.8% 23735.1±7.2% 301004.1±4.5% 0.939±0.27% 0.995±0.062% 0.939±0.27%
0.70 FS 1659.3±0.14% 4784.4±0.97% 251399.3±4.4% 0.937±0.32% 0.999±0.052% 0.937±0.32%
0.70 Rand 4312.8±1.8% 23854.6±2.8% 362330.2±2.8% 0.751±1.2% 0.988±0.088% 0.751±1.2%
0.70 SRPT 1695.4±0.39% 4072.7±2.1% 320406.5±3.1% 0.918±0.35% 0.999±0.054% 0.918±0.35%
0.79 FF 4478.6±1.1% 36615.6±3.5% 307393.6±1.8% 0.905±0.4% 0.989±0.085% 0.905±0.4%
0.79 FS 1763.6±0.15% 7054.1±1.4% 269808.6±5.0% 0.896±0.29% 0.998±0.067% 0.896±0.29%
0.79 Rand 5939.0±1.5% 33275.3±2.1% 332125.7±1.8% 0.679±1.2% 0.977±0.087% 0.679±1.2%
0.79 SRPT 1792.6±0.76% 5219.3±3.7% 303203.6±3.1% 0.842±0.32% 0.998±0.071% 0.842±0.32%
0.90 FF 6062.3±2.5% 48771.8±3.1% 278389.8±2.2% 0.852±0.38% 0.979±0.075% 0.852±0.38%
0.90 FS 1924.4±0.59% 10517.0±2.1% 284887.0±4.4% 0.819±0.73% 0.997±0.1% 0.819±0.73%
0.90 Rand 7280.9±2.0% 40622.7±2.7% 304640.3±2.2% 0.621±0.53% 0.965±0.071% 0.621±0.53%
0.90 SRPT 1905.5±0.72% 6722.4±2.8% 288426.4±2.8% 0.751±0.27% 0.997±0.095% 0.751±0.27%

Table B.9: Scheduler performance summary with 95% confidence intervals for
the skewed_nodes_sensitivity_0.05 benchmark.

Load Subject Mean FCT (µs) p99 FCT (µs) Max FCT (µs) Throughput (Frac) Flows Accepted (Frac) Info Accepted (Frac)

0.10 FF 1589.7±0.2% 3580.9±0.61% 72990.8±4.8% 0.995±0.13% 0.999±0.044% 0.995±0.13%
0.10 FS 1526.7±0.14% 1998.8±0.016% 70198.0±4.2% 0.995±0.14% 0.999±0.045% 0.995±0.14%
0.10 Rand 1554.9±0.18% 2849.2±0.33% 91598.0±5.9% 0.995±0.14% 0.999±0.045% 0.995±0.14%
0.10 SRPT 1520.9±0.11% 1998.2±0.0098% 81555.4±5.0% 0.995±0.13% 0.999±0.045% 0.995±0.13%
0.20 FF 1904.3±1.3% 11165.2±7.4% 170783.1±17.0% 0.966±0.67% 0.998±0.044% 0.966±0.67%
0.20 FS 1575.6±0.12% 2708.5±4.0% 172624.9±5.3% 0.957±0.77% 0.999±0.045% 0.957±0.77%
0.20 Rand 1641.1±0.21% 3799.1±0.95% 258243.8±8.6% 0.901±0.8% 0.999±0.047% 0.901±0.8%
0.20 SRPT 1542.8±0.11% 2384.0±1.5% 237546.1±11.0% 0.951±0.71% 0.999±0.046% 0.951±0.71%
0.30 FF 2110.4±5.3% 13637.6±22.0% 364074.5±7.9% 0.922±0.62% 0.997±0.057% 0.922±0.62%
0.30 FS 1695.1±0.62% 6015.8±11.0% 348982.1±3.3% 0.908±0.47% 0.999±0.031% 0.908±0.47%
0.30 Rand 1734.6±1.1% 5030.5±5.8% 329509.4±5.2% 0.871±0.9% 0.999±0.036% 0.871±0.9%
0.30 SRPT 1551.9±0.15% 2671.0±0.84% 347195.5±7.9% 0.911±0.58% 0.999±0.031% 0.911±0.58%
0.40 FF 1757.4±0.3% 5007.6±1.5% 232866.4±6.1% 0.933±0.32% 0.998±0.086% 0.933±0.32%
0.40 FS 1640.0±0.54% 2879.0±1.3% 290705.3±4.7% 0.903±0.38% 0.998±0.086% 0.903±0.38%
0.40 Rand 1738.4±0.63% 4569.2±1.4% 253293.4±7.2% 0.869±0.54% 0.998±0.093% 0.869±0.54%
0.40 SRPT 1564.4±0.083% 2821.2±0.2% 236239.4±6.3% 0.909±0.35% 0.999±0.087% 0.909±0.35%
0.50 FF 1890.3±0.82% 6780.9±4.0% 309771.9±13.0% 0.936±0.71% 0.999±0.036% 0.936±0.71%
0.50 FS 1624.6±0.76% 3202.1±3.5% 263314.3±5.5% 0.924±0.54% 0.999±0.03% 0.924±0.54%
0.50 Rand 1921.4±0.49% 6121.4±1.8% 344062.4±11.0% 0.865±0.87% 0.998±0.036% 0.865±0.87%
0.50 SRPT 1590.1±0.1% 3024.8±0.66% 345835.9±12.0% 0.912±0.45% 0.999±0.031% 0.912±0.45%
0.60 FF 2228.0±1.3% 11127.2±4.4% 325509.6±4.4% 0.941±0.43% 0.998±0.063% 0.941±0.43%
0.60 FS 1619.8±0.32% 3642.9±1.6% 278038.2±4.2% 0.935±0.29% 0.999±0.041% 0.935±0.29%
0.60 Rand 2611.0±3.2% 11568.8±5.7% 414642.6±4.4% 0.839±0.76% 0.996±0.064% 0.839±0.76%
0.60 SRPT 1634.8±0.17% 3676.2±1.4% 310853.9±6.2% 0.915±0.3% 0.999±0.044% 0.915±0.3%
0.70 FF 2875.4±1.1% 18523.2±3.0% 278140.2±6.7% 0.932±0.48% 0.996±0.055% 0.932±0.48%
0.70 FS 1653.5±0.21% 4697.6±0.6% 230876.0±2.8% 0.935±0.28% 0.999±0.042% 0.935±0.28%
0.70 Rand 4114.6±1.3% 22245.1±2.0% 368369.0±2.3% 0.784±0.92% 0.99±0.13% 0.784±0.92%
0.70 SRPT 1719.6±0.24% 4455.5±1.8% 254458.0±2.9% 0.904±0.36% 0.999±0.044% 0.904±0.36%
0.80 FF 4161.5±3.0% 32209.9±5.0% 290395.7±3.7% 0.908±0.36% 0.989±0.055% 0.908±0.36%
0.80 FS 1754.4±0.31% 7051.4±1.7% 270181.8±3.0% 0.9±0.21% 0.998±0.081% 0.9±0.21%
0.80 Rand 5293.0±2.7% 29396.4±3.3% 306156.3±1.7% 0.719±1.1% 0.978±0.095% 0.719±1.1%
0.80 SRPT 1862.6±0.57% 6197.4±2.1% 296322.5±3.7% 0.858±0.27% 0.997±0.088% 0.858±0.27%
0.89 FF 6157.7±1.4% 49317.2±1.9% 281000.4±3.5% 0.862±0.28% 0.979±0.12% 0.862±0.28%
0.89 FS 1936.4±0.45% 11082.2±2.2% 272673.6±2.7% 0.831±0.44% 0.997±0.071% 0.831±0.44%
0.89 Rand 7365.4±0.86% 41371.3±1.0% 297468.5±1.7% 0.639±0.88% 0.964±0.12% 0.639±0.88%
0.89 SRPT 2185.8±3.7% 11390.2±12.0% 265498.8±1.9% 0.726±0.49% 0.996±0.086% 0.726±0.49%

Table B.10: Scheduler performance summary with 95% confidence intervals for
the skewed_nodes_sensitivity_0.1 benchmark.

B.6. Scheduler Performance Summary 231

Load Subject Mean FCT (µs) p99 FCT (µs) Max FCT (µs) Throughput (Frac) Flows Accepted (Frac) Info Accepted (Frac)

0.10 FF 1555.2±0.21% 2960.3±0.45% 63958.8±7.2% 0.995±0.078% 1.0±0.026% 0.995±0.078%
0.10 FS 1518.9±0.18% 1997.5±0.0059% 53307.4±6.3% 0.995±0.11% 1.0±0.025% 0.995±0.11%
0.10 Rand 1544.8±0.22% 2746.4±0.76% 80003.7±8.1% 0.993±0.11% 1.0±0.025% 0.993±0.11%
0.10 SRPT 1515.5±0.18% 1997.1±0.0039% 55035.6±6.0% 0.996±0.068% 1.0±0.025% 0.996±0.068%
0.20 FF 1653.6±0.43% 4948.5±3.1% 100796.4±7.0% 0.98±0.39% 0.999±0.063% 0.98±0.39%
0.20 FS 1538.1±0.21% 2078.9±1.6% 86478.5±8.6% 0.978±0.44% 0.999±0.059% 0.978±0.44%
0.20 Rand 1604.6±0.33% 3121.7±1.8% 210697.6±5.6% 0.937±0.7% 0.999±0.06% 0.937±0.7%
0.20 SRPT 1529.4±0.1% 2199.9±0.86% 107139.2±10.0% 0.979±0.48% 0.999±0.058% 0.979±0.48%
0.30 FF 1879.0±1.4% 9864.3±5.0% 219455.7±9.2% 0.968±0.39% 0.998±0.059% 0.968±0.39%
0.30 FS 1587.8±0.47% 2934.7±2.7% 165814.7±9.3% 0.965±0.38% 0.999±0.06% 0.965±0.38%
0.30 Rand 1688.9±0.27% 4259.1±1.6% 388493.8±6.6% 0.811±1.2% 0.998±0.063% 0.811±1.2%
0.30 SRPT 1555.3±0.14% 2580.5±0.5% 318733.6±8.1% 0.947±0.66% 0.999±0.061% 0.947±0.66%
0.40 FF 2047.8±1.9% 12996.0±8.4% 253351.7±3.1% 0.901±0.99% 0.997±0.077% 0.901±0.99%
0.40 FS 1656.3±0.3% 4469.8±0.9% 237826.1±6.6% 0.901±0.88% 0.999±0.058% 0.901±0.88%
0.40 Rand 1750.5±0.46% 5216.2±1.9% 272425.1±5.7% 0.774±0.66% 0.997±0.059% 0.774±0.66%
0.40 SRPT 1565.6±0.083% 2783.8±0.28% 235162.6±6.6% 0.88±0.78% 0.999±0.058% 0.88±0.78%
0.50 FF 1893.6±1.5% 6355.4±4.8% 440695.9±8.9% 0.887±0.41% 0.998±0.073% 0.887±0.41%
0.50 FS 1752.4±1.1% 5396.1±12.0% 331678.2±8.6% 0.888±1.2% 0.999±0.052% 0.888±1.2%
0.50 Rand 1941.6±1.1% 6437.1±3.0% 458290.7±9.6% 0.795±0.49% 0.998±0.056% 0.795±0.49%
0.50 SRPT 1588.2±0.059% 2940.4±0.42% 415335.3±7.7% 0.856±0.52% 0.999±0.056% 0.856±0.52%
0.61 FF 1981.7±0.88% 7326.2±3.0% 372958.5±3.3% 0.901±0.21% 0.998±0.043% 0.901±0.21%
0.61 FS 1692.9±0.47% 3992.5±2.3% 297476.6±4.3% 0.898±0.22% 0.999±0.037% 0.898±0.22%
0.61 Rand 2203.6±1.2% 8062.8±2.4% 407016.8±2.1% 0.801±0.43% 0.997±0.043% 0.801±0.43%
0.61 SRPT 1638.4±0.15% 3706.4±0.78% 327127.1±6.4% 0.863±0.25% 0.999±0.039% 0.863±0.25%
0.70 FF 2412.4±0.75% 12132.2±2.0% 307320.4±1.3% 0.897±0.33% 0.997±0.054% 0.897±0.33%
0.70 FS 1671.6±0.3% 4565.0±1.8% 292849.3±3.5% 0.906±0.18% 0.999±0.051% 0.906±0.18%
0.70 Rand 3156.7±0.98% 15098.8±1.5% 369120.8±2.5% 0.782±0.31% 0.993±0.057% 0.782±0.31%
0.70 SRPT 1756.4±0.26% 5157.5±1.5% 326751.6±4.6% 0.862±0.16% 0.999±0.053% 0.862±0.16%
0.80 FF 3541.7±0.85% 24415.3±1.9% 304075.1±3.6% 0.892±0.17% 0.993±0.075% 0.892±0.17%
0.80 FS 1731.9±0.23% 6430.1±1.5% 234881.5±4.1% 0.901±0.21% 0.999±0.061% 0.901±0.21%
0.80 Rand 5311.2±3.2% 30099.0±3.7% 329220.0±1.8% 0.728±1.2% 0.98±0.12% 0.728±1.2%
0.80 SRPT 2006.7±0.79% 8444.4±3.0% 291953.9±5.8% 0.833±0.37% 0.998±0.059% 0.833±0.37%
0.90 FF 6282.4±3.1% 51863.0±4.5% 361626.4±12.0% 0.876±0.5% 0.982±0.17% 0.876±0.5%
0.90 FS 2051.1±0.77% 13365.0±2.2% 340927.7±9.7% 0.869±1.1% 0.997±0.092% 0.869±1.1%
0.90 Rand 9434.3±8.7% 55751.7±9.7% 394053.6±12.0% 0.677±0.61% 0.962±0.14% 0.677±0.61%
0.90 SRPT 2864.2±4.1% 23077.6±10.0% 394099.5±12.0% 0.731±1.4% 0.987±0.23% 0.731±1.4%

Table B.11: Scheduler performance summary with 95% confidence intervals for
the skewed_nodes_sensitivity_0.2 benchmark.

Load Subject Mean FCT (µs) p99 FCT (µs) Max FCT (µs) Throughput (Frac) Flows Accepted (Frac) Info Accepted (Frac)

0.10 FF 1550.7±0.14% 2940.7±0.61% 41390.8±6.7% 0.997±0.072% 1.0±0.018% 0.997±0.072%
0.10 FS 1516.9±0.13% 1997.5±0.0078% 40765.3±4.2% 0.997±0.07% 1.0±0.018% 0.997±0.07%
0.10 Rand 1542.2±0.16% 2746.4±0.23% 62404.4±12.0% 0.997±0.082% 1.0±0.017% 0.997±0.082%
0.10 SRPT 1516.3±0.13% 1997.9±0.0098% 41765.3±4.4% 0.997±0.07% 1.0±0.018% 0.997±0.07%
0.20 FF 1626.3±0.32% 4422.1±2.7% 55331.8±5.9% 0.98±0.11% 0.999±0.044% 0.98±0.11%
0.20 FS 1527.7±0.11% 2008.0±0.33% 46606.0±7.2% 0.981±0.11% 0.999±0.045% 0.981±0.11%
0.20 Rand 1582.2±0.082% 2999.5±0.33% 98692.2±7.2% 0.961±0.22% 0.999±0.044% 0.961±0.22%
0.20 SRPT 1528.6±0.12% 2280.1±0.98% 53343.4±7.0% 0.983±0.22% 0.999±0.045% 0.983±0.22%
0.30 FF 1748.0±0.97% 6884.9±6.0% 70468.9±9.3% 0.99±0.19% 0.999±0.084% 0.99±0.19%
0.30 FS 1534.4±0.1% 2385.5±0.78% 68968.2±8.7% 0.991±0.2% 0.999±0.084% 0.991±0.2%
0.30 Rand 1662.0±0.58% 3976.1±1.9% 232725.1±11.0% 0.972±0.47% 0.999±0.085% 0.972±0.47%
0.30 SRPT 1538.9±0.064% 2658.7±0.41% 85328.2±9.3% 0.991±0.18% 0.999±0.084% 0.991±0.18%
0.40 FF 1940.0±0.89% 9772.0±3.0% 88904.4±3.9% 0.981±0.23% 0.998±0.086% 0.981±0.23%
0.40 FS 1552.0±0.17% 2718.8±0.66% 81504.4±5.4% 0.983±0.25% 0.999±0.082% 0.983±0.25%
0.40 Rand 1836.8±0.6% 5756.4±1.2% 274773.4±3.7% 0.908±0.39% 0.998±0.085% 0.908±0.39%
0.40 SRPT 1561.4±0.11% 2844.9±0.29% 111871.6±4.0% 0.981±0.24% 0.999±0.082% 0.981±0.24%
0.51 FF 2329.1±1.4% 16228.3±6.2% 218249.3±18.0% 0.97±0.62% 0.997±0.1% 0.97±0.62%
0.51 FS 1576.2±0.19% 3237.0±1.5% 120960.8±6.1% 0.972±0.6% 0.999±0.078% 0.972±0.6%
0.51 Rand 2429.3±3.3% 11991.0±7.5% 422835.2±8.8% 0.826±0.52% 0.995±0.089% 0.826±0.52%
0.51 SRPT 1592.1±0.16% 2987.7±0.52% 263110.8±12.0% 0.967±0.66% 0.999±0.078% 0.967±0.66%
0.60 FF 2939.0±2.1% 23736.5±4.0% 343896.8±6.1% 0.948±0.36% 0.996±0.045% 0.948±0.36%
0.60 FS 1633.6±0.4% 4389.9±2.1% 258643.0±5.9% 0.959±0.32% 0.999±0.043% 0.959±0.32%
0.60 Rand 3201.2±2.1% 19085.7±4.6% 436718.7±1.5% 0.766±1.7% 0.993±0.055% 0.766±1.7%
0.60 SRPT 1632.6±0.094% 3514.9±1.3% 323235.8±4.6% 0.934±0.47% 0.999±0.044% 0.934±0.47%
0.71 FF 3837.7±1.9% 34431.1±4.0% 322903.8±2.5% 0.911±0.37% 0.992±0.084% 0.911±0.37%
0.71 FS 1730.6±0.38% 6601.9±1.2% 274442.8±2.9% 0.922±0.39% 0.999±0.05% 0.922±0.39%
0.71 Rand 3911.6±1.4% 24538.5±3.2% 381889.7±2.0% 0.731±1.2% 0.989±0.076% 0.731±1.2%
0.71 SRPT 1706.2±0.21% 4321.1±1.7% 365187.1±2.6% 0.886±0.35% 0.999±0.054% 0.886±0.35%
0.80 FF 4505.2±3.5% 40048.5±6.2% 297883.9±2.8% 0.854±0.38% 0.985±0.18% 0.854±0.38%
0.80 FS 1843.6±0.83% 9336.0±3.2% 284147.5±4.5% 0.856±0.62% 0.997±0.095% 0.856±0.62%
0.80 Rand 4761.7±2.7% 28060.7±2.3% 315479.6±2.5% 0.694±0.71% 0.982±0.12% 0.694±0.71%
0.80 SRPT 1807.6±0.51% 5691.1±2.9% 275652.6±5.5% 0.819±0.61% 0.998±0.1% 0.819±0.61%
0.89 FF 5277.0±2.7% 49286.4±4.5% 301906.9±1.8% 0.814±0.44% 0.97±0.43% 0.814±0.44%
0.89 FS 2042.1±0.48% 14036.0±2.1% 273754.2±3.0% 0.79±0.55% 0.996±0.11% 0.79±0.55%
0.89 Rand 7441.6±3.5% 41471.0±2.8% 294162.8±1.2% 0.633±1.2% 0.964±0.2% 0.633±1.2%
0.89 SRPT 2271.4±3.0% 14379.1±11.0% 294316.1±2.1% 0.746±0.67% 0.992±0.29% 0.746±0.67%

Table B.12: Scheduler performance summary with 95% confidence intervals for
the skewed_nodes_sensitivity_0.4 benchmark.

232
Appendix B. A Framework for Generating Custom and Reproducible Synthetic

Traffic

Rack Distribution Benchmark

Load Subject Mean FCT (µs) p99 FCT (µs) Max FCT (µs) Throughput (Frac) Flows Accepted (Frac) Info Accepted (Frac)

0.1 FF 1547.1±0.2% 2905.6±0.53% 36420.2±3.8% 0.993±0.23% 0.999±0.047% 0.993±0.23%
0.1 FS 1514.8±0.14% 1997.1±0.0059% 35026.4±2.6% 0.994±0.23% 0.999±0.046% 0.994±0.23%
0.1 Rand 1538.9±0.15% 2708.2±0.35% 53118.6±2.9% 0.991±0.21% 0.999±0.046% 0.991±0.21%
0.1 SRPT 1514.5±0.14% 1997.6±0.0078% 35426.4±2.6% 0.994±0.22% 0.999±0.046% 0.994±0.22%
0.2 FF 1613.3±0.16% 4210.8±1.1% 43491.3±3.3% 0.985±0.34% 0.999±0.032% 0.985±0.34%
0.2 FS 1522.9±0.14% 1998.9±0.012% 38988.6±1.6% 0.986±0.37% 1.0±0.029% 0.986±0.37%
0.2 Rand 1575.6±0.2% 3009.0±0.77% 70182.4±2.6% 0.978±0.45% 0.999±0.029% 0.978±0.45%
0.2 SRPT 1524.5±0.14% 2252.2±1.0% 41095.6±1.6% 0.987±0.31% 1.0±0.028% 0.987±0.31%
0.3 FF 1751.4±0.79% 6744.9±3.8% 67480.0±9.5% 0.989±0.17% 0.999±0.042% 0.989±0.17%
0.3 FS 1534.7±0.13% 2247.8±0.56% 63424.2±7.2% 0.99±0.17% 0.999±0.042% 0.99±0.17%
0.3 Rand 1649.2±0.34% 3891.9±0.76% 148433.8±8.6% 0.977±0.19% 0.999±0.041% 0.977±0.19%
0.3 SRPT 1539.5±0.12% 2626.4±0.49% 83252.7±9.4% 0.989±0.2% 0.999±0.041% 0.989±0.2%
0.4 FF 1924.1±1.5% 9755.3±7.2% 88414.1±9.8% 0.977±0.23% 0.998±0.086% 0.977±0.23%
0.4 FS 1541.5±0.092% 2542.4±0.5% 74926.1±11.0% 0.98±0.19% 0.999±0.085% 0.98±0.19%
0.4 Rand 1795.0±0.49% 5339.0±1.4% 216058.0±7.5% 0.941±0.46% 0.998±0.089% 0.941±0.46%
0.4 SRPT 1552.2±0.035% 2802.5±0.34% 99179.4±14.0% 0.979±0.2% 0.999±0.085% 0.979±0.2%
0.5 FF 2239.7±2.0% 14440.3±7.6% 120877.0±5.2% 0.979±0.27% 0.998±0.048% 0.979±0.27%
0.5 FS 1564.2±0.13% 2914.5±0.6% 97264.9±6.6% 0.98±0.21% 0.999±0.05% 0.98±0.21%
0.5 Rand 2330.3±1.7% 9746.8±4.0% 408828.1±10.0% 0.892±1.0% 0.997±0.055% 0.892±1.0%
0.5 SRPT 1580.9±0.082% 2940.4±0.36% 153416.6±10.0% 0.978±0.3% 0.999±0.051% 0.978±0.3%
0.6 FF 2842.5±2.5% 22991.2±7.0% 308474.4±6.6% 0.967±0.28% 0.996±0.067% 0.967±0.28%
0.6 FS 1595.6±0.19% 3658.7±0.66% 137386.1±5.7% 0.972±0.28% 0.999±0.048% 0.972±0.28%
0.6 Rand 3265.3±0.75% 16613.3±1.2% 420951.4±3.7% 0.825±0.81% 0.994±0.065% 0.825±0.81%
0.6 SRPT 1619.1±0.097% 3390.5±1.8% 336922.0±5.1% 0.961±0.37% 0.999±0.049% 0.961±0.37%
0.7 FF 3465.2±0.49% 27554.1±1.9% 287240.4±6.0% 0.95±0.29% 0.994±0.066% 0.95±0.29%
0.7 FS 1648.7±0.15% 4775.0±1.0% 210756.3±2.1% 0.95±0.28% 0.999±0.063% 0.95±0.28%
0.7 Rand 4658.5±2.2% 25482.9±2.8% 345529.5±3.4% 0.755±0.84% 0.985±0.055% 0.755±0.84%
0.7 SRPT 1678.0±0.25% 3916.3±1.2% 307069.7±3.6% 0.927±0.29% 0.999±0.063% 0.927±0.29%
0.8 FF 4604.8±1.5% 37588.2±2.3% 287174.0±1.8% 0.904±0.52% 0.988±0.11% 0.904±0.52%
0.8 FS 1759.3±0.18% 7189.5±1.6% 278549.2±2.2% 0.886±0.5% 0.998±0.071% 0.886±0.5%
0.8 Rand 5891.2±0.77% 32310.3±1.1% 323761.6±2.1% 0.694±1.3% 0.977±0.11% 0.694±1.3%
0.8 SRPT 1757.8±0.7% 4908.0±3.1% 307367.1±4.4% 0.853±0.39% 0.998±0.073% 0.853±0.39%
0.9 FF 6385.1±2.0% 52863.8±3.2% 320436.3±9.5% 0.871±0.69% 0.98±0.041% 0.871±0.69%
0.9 FS 1956.4±1.1% 11288.2±3.1% 313425.0±11.0% 0.845±0.79% 0.998±0.034% 0.845±0.79%
0.9 Rand 8399.6±6.6% 46907.3±7.9% 336830.9±12.0% 0.65±0.81% 0.964±0.082% 0.65±0.81%
0.9 SRPT 1963.3±1.2% 7596.5±5.1% 320009.5±13.0% 0.786±0.3% 0.998±0.042% 0.786±0.3%

Table B.13: Scheduler performance summary with 95% confidence intervals for
the rack_sensitivity_0.2 benchmark.

B.6. Scheduler Performance Summary 233

Load Subject Mean FCT (µs) p99 FCT (µs) Max FCT (µs) Throughput (Frac) Flows Accepted (Frac) Info Accepted (Frac)

0.1 FF 1553.9±0.15% 3023.9±1.1% 38020.6±5.6% 0.997±0.15% 1.0±0.029% 0.997±0.15%
0.1 FS 1515.8±0.057% 1997.5±0.0039% 37020.6±5.8% 0.997±0.15% 1.0±0.026% 0.997±0.15%
0.1 Rand 1541.3±0.058% 2739.1±0.31% 61994.1±11.0% 0.996±0.16% 1.0±0.026% 0.996±0.16%
0.1 SRPT 1515.5±0.052% 1998.0±0.0078% 37373.3±6.5% 0.997±0.15% 1.0±0.026% 0.997±0.15%
0.2 FF 1643.8±0.34% 4775.7±2.4% 52879.5±3.8% 0.986±0.2% 0.999±0.04% 0.986±0.2%
0.2 FS 1525.7±0.11% 1999.3±0.0059% 48949.2±3.9% 0.987±0.18% 0.999±0.043% 0.987±0.18%
0.2 Rand 1587.8±0.18% 3035.9±0.46% 126408.0±8.0% 0.976±0.14% 0.999±0.044% 0.976±0.14%
0.2 SRPT 1526.4±0.12% 2225.3±1.5% 51165.4±4.0% 0.988±0.17% 0.999±0.044% 0.988±0.17%
0.3 FF 1787.0±0.46% 7619.8±3.9% 66882.6±8.2% 0.988±0.16% 0.999±0.016% 0.988±0.16%
0.3 FS 1532.2±0.15% 2231.4±0.81% 57004.1±7.0% 0.989±0.21% 1.0±0.015% 0.989±0.21%
0.3 Rand 1671.2±0.57% 4113.2±2.9% 256001.0±7.5% 0.956±0.31% 0.999±0.015% 0.956±0.31%
0.3 SRPT 1536.4±0.17% 2610.9±0.51% 65648.0±10.0% 0.989±0.16% 1.0±0.016% 0.989±0.16%
0.4 FF 1997.7±0.57% 11546.2±2.4% 78798.6±6.6% 0.973±0.27% 0.998±0.054% 0.973±0.27%
0.4 FS 1542.8±0.11% 2588.6±0.51% 66608.7±3.7% 0.976±0.23% 0.999±0.065% 0.976±0.23%
0.4 Rand 1805.3±0.55% 6476.5±3.3% 287594.6±1.8% 0.882±0.51% 0.998±0.074% 0.882±0.51%
0.4 SRPT 1553.2±0.061% 2820.2±0.21% 85975.8±3.3% 0.977±0.22% 0.999±0.066% 0.977±0.22%
0.5 FF 2476.5±1.5% 20978.2±5.7% 115951.9±3.9% 0.976±0.45% 0.997±0.053% 0.976±0.45%
0.5 FS 1562.6±0.05% 2906.2±0.44% 104707.6±4.4% 0.978±0.38% 0.999±0.046% 0.978±0.38%
0.5 Rand 2104.8±2.3% 11901.7±9.0% 411058.5±11.0% 0.822±0.74% 0.996±0.041% 0.822±0.74%
0.5 SRPT 1578.2±0.12% 2936.4±0.35% 128711.3±3.1% 0.976±0.36% 0.999±0.044% 0.976±0.36%
0.6 FF 2880.0±1.5% 24414.7±5.0% 242585.7±3.1% 0.971±0.31% 0.997±0.044% 0.971±0.31%
0.6 FS 1592.5±0.094% 3616.1±0.56% 131921.2±7.3% 0.972±0.22% 0.999±0.031% 0.972±0.22%
0.6 Rand 2420.9±0.64% 17877.9±2.6% 417817.1±1.5% 0.778±1.0% 0.995±0.043% 0.778±1.0%
0.6 SRPT 1619.6±0.11% 3401.4±1.4% 235066.7±3.8% 0.966±0.35% 0.999±0.033% 0.966±0.35%
0.7 FF 3534.3±1.3% 33314.7±4.1% 311692.8±3.6% 0.935±0.27% 0.994±0.052% 0.935±0.27%
0.7 FS 1642.8±0.05% 4665.5±1.2% 245550.4±4.2% 0.937±0.3% 0.999±0.057% 0.937±0.3%
0.7 Rand 2652.7±1.1% 21768.7±1.6% 375157.8±2.3% 0.71±0.89% 0.993±0.071% 0.71±0.89%
0.7 SRPT 1660.0±0.2% 3780.8±1.1% 327831.0±2.0% 0.915±0.3% 0.999±0.059% 0.915±0.3%
0.8 FF 4311.5±0.84% 39028.2±2.3% 294072.3±2.3% 0.911±0.39% 0.99±0.056% 0.911±0.39%
0.8 FS 1731.1±0.25% 6579.1±1.4% 238819.8±2.4% 0.904±0.33% 0.999±0.047% 0.904±0.33%
0.8 Rand 2906.5±0.56% 24944.4±1.5% 320552.6±1.3% 0.665±1.4% 0.99±0.063% 0.665±1.4%
0.8 SRPT 1747.3±0.58% 4642.0±2.8% 280469.5±6.0% 0.865±0.3% 0.999±0.05% 0.865±0.3%
0.9 FF 5497.1±2.4% 46230.6±2.7% 280463.7±3.8% 0.851±0.43% 0.983±0.086% 0.851±0.43%
0.9 FS 1872.4±0.26% 9593.3±1.6% 290850.1±1.7% 0.827±0.43% 0.997±0.094% 0.827±0.43%
0.9 Rand 3347.1±1.2% 29914.9±0.63% 306219.5±1.8% 0.608±1.4% 0.987±0.095% 0.608±1.4%
0.9 SRPT 1861.4±0.99% 5931.5±4.3% 286319.1±1.6% 0.781±0.33% 0.997±0.095% 0.781±0.33%

Table B.14: Scheduler performance summary with 95% confidence intervals for
the rack_sensitivity_0.4 benchmark.

Load Subject Mean FCT (µs) p99 FCT (µs) Max FCT (µs) Throughput (Frac) Flows Accepted (Frac) Info Accepted (Frac)

0.1 FF 1557.4±0.18% 2992.3±1.3% 41866.0±3.4% 0.995±0.1% 0.999±0.045% 0.995±0.1%
0.1 FS 1519.1±0.041% 1997.0±0.012% 41866.0±2.5% 0.995±0.1% 0.999±0.044% 0.995±0.1%
0.1 Rand 1544.3±0.069% 2738.7±0.46% 63511.4±5.0% 0.992±0.23% 0.999±0.044% 0.992±0.23%
0.1 SRPT 1518.9±0.044% 1997.6±0.0098% 42866.0±3.2% 0.995±0.1% 0.999±0.044% 0.995±0.1%
0.2 FF 1639.1±0.39% 4710.0±2.0% 48916.2±3.7% 0.989±0.26% 0.999±0.039% 0.989±0.26%
0.2 FS 1522.8±0.17% 1998.9±0.0039% 47869.5±2.2% 0.989±0.27% 0.999±0.043% 0.989±0.27%
0.2 Rand 1582.2±0.16% 3046.6±0.46% 105951.9±8.2% 0.981±0.28% 0.999±0.043% 0.981±0.28%
0.2 SRPT 1525.6±0.18% 2338.1±0.83% 46897.0±4.4% 0.99±0.23% 0.999±0.043% 0.99±0.23%
0.3 FF 1786.7±0.96% 7425.5±4.7% 64656.1±7.6% 0.986±0.29% 0.999±0.047% 0.986±0.29%
0.3 FS 1531.2±0.19% 2225.5±1.8% 57743.4±4.0% 0.987±0.32% 0.999±0.046% 0.987±0.32%
0.3 Rand 1663.9±0.3% 4087.7±1.3% 233890.5±4.2% 0.967±0.37% 0.999±0.046% 0.967±0.37%
0.3 SRPT 1538.9±0.17% 2680.8±0.29% 64343.4±5.0% 0.988±0.32% 0.999±0.046% 0.988±0.32%
0.4 FF 2070.3±1.5% 11972.7±4.4% 89212.8±6.2% 0.98±0.34% 0.997±0.09% 0.98±0.34%
0.4 FS 1543.2±0.094% 2555.3±1.1% 84834.8±6.3% 0.981±0.34% 0.999±0.085% 0.981±0.34%
0.4 Rand 1804.3±0.48% 6112.3±1.9% 210247.2±7.1% 0.917±0.59% 0.998±0.088% 0.917±0.59%
0.4 SRPT 1558.0±0.083% 2842.9±0.21% 108634.8±9.3% 0.981±0.28% 0.999±0.085% 0.981±0.28%
0.5 FF 2462.2±0.96% 18251.1±3.1% 121295.6±5.9% 0.98±0.15% 0.997±0.062% 0.98±0.15%
0.5 FS 1560.7±0.05% 2885.8±0.48% 89431.3±4.1% 0.98±0.18% 0.999±0.048% 0.98±0.18%
0.5 Rand 2236.8±1.9% 13576.8±6.8% 390033.5±9.3% 0.843±0.62% 0.997±0.048% 0.843±0.62%
0.5 SRPT 1585.1±0.042% 2970.9±0.11% 136545.8±11.0% 0.98±0.17% 0.999±0.05% 0.98±0.17%
0.6 FF 2956.1±1.6% 24090.4±4.4% 242220.9±13.0% 0.975±0.13% 0.996±0.065% 0.975±0.13%
0.6 FS 1586.0±0.16% 3517.5±0.65% 138093.6±7.7% 0.979±0.1% 0.999±0.063% 0.979±0.1%
0.6 Rand 2728.2±0.78% 22105.7±1.7% 432399.7±2.9% 0.771±0.97% 0.994±0.081% 0.771±0.97%
0.6 SRPT 1624.4±0.043% 3519.2±0.73% 284839.9±4.3% 0.97±0.16% 0.999±0.064% 0.97±0.16%
0.7 FF 3858.3±1.5% 35582.9±3.2% 272734.1±8.6% 0.951±0.16% 0.993±0.051% 0.951±0.16%
0.7 FS 1630.8±0.12% 4456.6±1.0% 225655.3±3.9% 0.953±0.13% 0.999±0.058% 0.953±0.13%
0.7 Rand 3035.8±0.58% 26654.0±1.4% 356900.5±1.4% 0.708±0.38% 0.991±0.072% 0.708±0.38%
0.7 SRPT 1680.3±0.17% 3938.0±0.64% 291331.3±5.2% 0.931±0.27% 0.999±0.058% 0.931±0.27%
0.8 FF 4501.2±1.5% 38457.9±2.2% 277274.4±2.6% 0.915±0.42% 0.988±0.16% 0.915±0.42%
0.8 FS 1713.2±0.17% 6223.9±1.2% 259604.2±3.1% 0.908±0.33% 0.998±0.095% 0.908±0.33%
0.8 Rand 3484.0±2.5% 32752.7±3.8% 321488.9±4.3% 0.644±1.1% 0.986±0.087% 0.644±1.1%
0.8 SRPT 1752.6±0.43% 4662.8±1.9% 279493.1±6.2% 0.869±0.31% 0.998±0.098% 0.869±0.31%
0.9 FF 5773.6±0.51% 46545.8±0.72% 263361.6±3.2% 0.867±0.22% 0.978±0.14% 0.867±0.22%
0.9 FS 1872.7±0.3% 9645.7±1.2% 274889.1±1.4% 0.844±0.17% 0.997±0.07% 0.844±0.17%
0.9 Rand 3943.0±1.1% 39082.1±1.2% 293317.7±1.1% 0.595±0.58% 0.981±0.062% 0.595±0.58%
0.9 SRPT 1900.9±0.69% 6304.4±3.1% 264047.5±2.1% 0.793±0.19% 0.997±0.066% 0.793±0.19%

Table B.15: Scheduler performance summary with 95% confidence intervals for
the rack_sensitivity_0.6 benchmark.

234
Appendix B. A Framework for Generating Custom and Reproducible Synthetic

Traffic

Load Subject Mean FCT (µs) p99 FCT (µs) Max FCT (µs) Throughput (Frac) Flows Accepted (Frac) Info Accepted (Frac)

0.1 FF 1564.4±0.17% 3075.8±0.78% 38130.3±3.3% 0.998±0.055% 1.0±0.032% 0.998±0.055%
0.1 FS 1523.4±0.13% 1997.4±0.002% 34026.7±2.1% 0.998±0.055% 1.0±0.031% 0.998±0.055%
0.1 Rand 1549.9±0.14% 2779.9±0.22% 60347.0±7.3% 0.996±0.08% 1.0±0.032% 0.996±0.08%
0.1 SRPT 1523.7±0.13% 1998.4±0.0039% 34147.9±2.8% 0.998±0.055% 1.0±0.032% 0.998±0.055%
0.2 FF 1655.6±0.53% 4886.6±3.3% 48187.1±7.1% 0.991±0.17% 0.998±0.1% 0.991±0.17%
0.2 FS 1525.7±0.11% 1998.9±0.0078% 41674.6±5.2% 0.991±0.16% 0.999±0.099% 0.991±0.16%
0.2 Rand 1589.2±0.13% 3175.5±1.1% 91618.8±7.3% 0.983±0.13% 0.999±0.099% 0.983±0.13%
0.2 SRPT 1528.4±0.11% 2350.2±0.88% 43538.3±5.8% 0.992±0.16% 0.999±0.098% 0.992±0.16%
0.3 FF 1812.5±0.4% 7816.8±1.9% 68547.0±5.1% 0.986±0.17% 0.999±0.049% 0.986±0.17%
0.3 FS 1532.3±0.1% 2202.5±0.51% 64297.6±5.1% 0.987±0.2% 0.999±0.053% 0.987±0.2%
0.3 Rand 1657.7±0.13% 4051.6±0.72% 227634.8±3.2% 0.972±0.33% 0.999±0.051% 0.972±0.33%
0.3 SRPT 1541.1±0.11% 2701.4±0.27% 73297.6±7.1% 0.989±0.14% 0.999±0.053% 0.989±0.14%
0.4 FF 2211.4±1.3% 15442.4±5.6% 107060.7±14.0% 0.976±0.26% 0.997±0.065% 0.976±0.26%
0.4 FS 1546.2±0.12% 2605.9±0.68% 76600.8±12.0% 0.98±0.3% 0.999±0.046% 0.98±0.3%
0.4 Rand 1823.3±0.45% 6253.9±1.4% 256431.0±7.3% 0.918±0.43% 0.998±0.047% 0.918±0.43%
0.4 SRPT 1560.4±0.088% 2854.5±0.31% 86910.4±10.0% 0.98±0.22% 0.999±0.047% 0.98±0.22%
0.5 FF 2670.2±1.5% 20930.8±5.2% 142824.2±12.0% 0.963±0.51% 0.995±0.094% 0.963±0.51%
0.5 FS 1561.9±0.088% 2883.4±0.46% 87631.8±5.5% 0.968±0.45% 0.999±0.086% 0.968±0.45%
0.5 Rand 2097.1±1.6% 10368.7±5.3% 266946.9±14.0% 0.846±0.85% 0.996±0.093% 0.846±0.85%
0.5 SRPT 1586.5±0.14% 2988.9±0.73% 108035.3±3.4% 0.968±0.46% 0.999±0.087% 0.968±0.46%
0.6 FF 3437.5±0.59% 30455.8±3.2% 221359.1±14.0% 0.971±0.22% 0.995±0.097% 0.971±0.22%
0.6 FS 1589.9±0.079% 3541.0±0.89% 121075.9±9.3% 0.978±0.15% 0.999±0.066% 0.978±0.15%
0.6 Rand 3021.9±1.6% 24451.3±2.3% 412148.6±1.0% 0.771±0.67% 0.993±0.083% 0.771±0.67%
0.6 SRPT 1632.0±0.072% 3575.4±0.19% 219688.9±7.6% 0.97±0.28% 0.999±0.069% 0.97±0.28%
0.7 FF 4226.4±1.0% 37246.2±1.9% 250830.8±3.5% 0.955±0.43% 0.992±0.1% 0.955±0.43%
0.7 FS 1630.6±0.12% 4431.6±0.92% 200199.1±3.6% 0.961±0.23% 0.999±0.077% 0.961±0.23%
0.7 Rand 3899.6±1.9% 35618.2±3.2% 367726.5±1.9% 0.684±0.88% 0.988±0.14% 0.684±0.88%
0.7 SRPT 1694.3±0.1% 4009.5±0.56% 299390.8±5.7% 0.936±0.3% 0.999±0.079% 0.936±0.3%
0.8 FF 5264.1±1.5% 44602.4±1.7% 284358.6±6.4% 0.905±0.58% 0.985±0.066% 0.905±0.58%
0.8 FS 1721.5±0.35% 6287.8±2.1% 249298.1±4.5% 0.907±0.49% 0.998±0.076% 0.907±0.49%
0.8 Rand 4485.1±1.8% 44277.7±2.8% 331280.5±2.2% 0.59±0.66% 0.98±0.1% 0.59±0.66%
0.8 SRPT 1772.7±0.17% 4871.1±0.47% 308528.4±3.4% 0.871±0.35% 0.998±0.073% 0.871±0.35%
0.9 FF 6797.9±2.0% 53200.8±2.1% 312515.9±11.0% 0.866±0.59% 0.977±0.08% 0.866±0.59%
0.9 FS 1891.3±1.2% 10007.9±4.7% 324448.5±7.9% 0.856±0.93% 0.998±0.036% 0.856±0.93%
0.9 Rand 5968.6±7.1% 63779.3±11.0% 351222.1±11.0% 0.54±0.64% 0.971±0.097% 0.54±0.64%
0.9 SRPT 1935.1±0.79% 6647.8±2.6% 315660.8±11.0% 0.792±0.17% 0.998±0.049% 0.792±0.17%

Table B.16: Scheduler performance summary with 95% confidence intervals for
the rack_sensitivity_0.8 benchmark.

B.6. Scheduler Performance Summary 235

B.6.4 Winner Tables

The below ‘winner tables’ summarise the winning schedulers for each load and

benchmark with their performance improvement relative to the worst performing

baseline for each PKP I averaged across 5 runs. These tables are useful for gaining

an overarching view of the multi-faceted performance results which are often

difficult to interpret through graphical means alone.

Load Mean FCT p99 FCT Max FCT Throughput Flows Accepted

0.1 SRPT, -2.3% FS, -33% FF, -36% FF+FS+SRPT, 0.40% −
0.2 FS, -6.0% FS, -55% FS, -47% SRPT, 0.92% −
0.3 FS, -12% FS, -66% FS, -60% SRPT, 1.7% −
0.4 FS, -19% FS, -73% FS, -64% FF, 3.7% FS+Rand+SRPT, 0.10%
0.5 FS, -31% FS, -80% FF, -75% FS, 11% FS+SRPT, 0.21%
0.6 FS, -52% SRPT, -83% FS, -60% FS, 19% FS+SRPT, 0.60%
0.7 FS, -62% SRPT, -86% FS, -28% FS, 28% FS, 1.3%
0.8 FS+SRPT, -69% SRPT, -86% FS, -14% FF, 31% FS+SRPT, 2.1%
0.9 SRPT, -73% SRPT, -85% FF, -9.1% FF, 35% FS+SRPT, 3.1%

0.1 SRPT, -2.107% FS, -31.27% FS, -34.06% FS+SRPT, 0.3027% −
0.2 FS, -5.603% FS, -52.53% FS, -44.45% SRPT, 0.9202% FS+SRPT, 0.1001%
0.3 FS, -12.37% FS, -66.67% FS, -57.27% FS, 1.331% −
0.4 FS, -19.88% FS, -73.94% FS, -65.32% FS, 4.145% FS+SRPT, 0.1002%
0.5 FS, -32.88% FS, -79.82% FS, -76.21% FS, 9.865% FS+SRPT, 0.2006%
0.6 FS, -51.13% SRPT, -85.25% FS, -67.36% FS, 17.82% FS+SRPT, 0.503%
0.7 FS, -64.61% SRPT, -85.79% FS, -39.0% FF+FS, 25.83% FS+SRPT, 1.421%
0.8 SRPT, -70.16% SRPT, -86.94% FS, -13.96% FF, 30.26% FS+SRPT, 2.149%
0.9 FS, -76.71% SRPT, -85.63% FS, -6.949% FF, 34.0% FS+SRPT, 3.527%

0.1 SRPT, -2.471% FS, -33.94% FS, -40.28% FF+FS+SRPT, 0.1004% −
0.2 FS, -7.185% FS, -58.14% FS, -61.28% SRPT, 1.23% −
0.3 FS, -14.26% FS, -70.72% FS, -77.73% FS+SRPT, 3.452% FS+SRPT, 0.1001%
0.4 FS, -22.77% FS, -77.58% FS, -76.84% SRPT, 10.77% FS+SRPT, 0.1002%
0.5 FS, -36.9% FS, -86.15% FS, -74.53% FS, 18.98% FS+SRPT, 0.3012%
0.6 FS, -44.7% SRPT, -86.07% FS, -68.43% FS, 24.94% FS+SRPT, 0.402%
0.7 FS, -53.52% SRPT, -88.65% FS, -34.55% FS, 31.97% FS+SRPT, 0.6042%
0.8 FS, -59.85% SRPT, -88.11% FS, -25.5% FF, 36.99% FS+SRPT, 0.9091%
0.9 SRPT, -66.14% SRPT, -87.17% FF, -8.411% FF, 39.97% FS+SRPT, 1.424%

0.1 SRPT, -2.472% FS, -33.26% FF+FS, -34.08% FF+FS+SRPT, 0.3024% −
0.2 FS, -7.095% FS, -57.56% SRPT, -55.74% SRPT, 0.9174% −
0.3 FS, -14.3% FS, -70.03% FS, -75.31% SRPT, 2.172% −
0.4 FS, -25.46% FS, -78.66% FS, -59.65% FS+SRPT, 6.979% FS+SRPT, 0.2006%
0.5 FS, -36.61% FS, -84.19% FS, -77.07% FF+FS+SRPT, 16.25% FS+SRPT, 0.2006%
0.6 FS, -46.35% FS, -85.4% FS, -68.06% FS, 26.98% FS+SRPT, 0.503%
0.7 FS, -57.73% SRPT, -88.93% FS, -36.77% FS, 34.6% FS+SRPT, 0.8073%
0.8 FS, -61.94% SRPT, -87.88% FS, -19.25% FF, 42.08% FS+SRPT, 1.217%
0.9 FS, -67.56% SRPT, -86.46% FF, -10.21% FF, 45.71% FS+SRPT, 1.943%

0.1 FS, -2.621% FS, -35.06% FS, -43.61% FF+FS+SRPT, 0.2008% −
0.2 FS, -7.846% FS, -59.09% FS, -54.51% SRPT, 0.9156% FS+Rand+SRPT, 0.1002%
0.3 FS, -15.46% FS, -71.82% FS, -71.75% SRPT, 1.749% −
0.4 FS, -30.08% FS, -83.13% FS, -70.13% FS+SRPT, 6.754% FS+SRPT, 0.2006%
0.5 FS, -41.51% FS, -86.22% FS, -67.17% FS+SRPT, 14.42% FS+SRPT, 0.402%
0.6 FS, -53.75% FS, -88.37% FS, -70.62% FS, 26.85% FS+SRPT, 0.6042%
0.7 FS, -61.42% SRPT, -89.24% FS, -45.56% FS, 40.5% FS+SRPT, 1.113%
0.8 FS, -67.3% SRPT, -89.08% FS, -24.75% FS, 53.73% FS+SRPT, 1.837%
0.9 FS, -72.18% SRPT, -89.58% FF, -11.02% FF, 60.37% FS+SRPT, 2.781%

Table B.17: The winning schedulers’ performances relative to the losing baselines
for (from top to bottom) the 0 (uniform), 0.2, 0.4, 0.6, and 0.8 rack sensitivity

traces. For brevity, ‘−’ indicates all schedulers’ performances were equal.

236
Appendix B. A Framework for Generating Custom and Reproducible Synthetic

Traffic

Load Mean FCT p99 FCT Max FCT Throughput Flows Accepted

0.1 SRPT, -2.329% FS, -32.9% FF, -36.37% FF+FS+SRPT, 0.4036% −
0.2 FS, -5.954% FS, -54.54% FS, -46.79% SRPT, 0.924% −
0.3 FS, -12.11% FS, -65.63% FS, -60.37% SRPT, 1.747% −
0.4 FS, -19.44% FS, -72.55% FS, -64.36% FF, 3.7% FS+Rand+SRPT, 0.1002%
0.5 FS, -30.78% FS, -80.21% FF, -75.05% FS, 11.1% FS+SRPT, 0.2006%
0.6 FS, -51.79% SRPT, -82.76% FS, -59.8% FS, 18.66% FS+SRPT, 0.6042%
0.7 FS, -62.2% SRPT, -86.3% FS, -28.06% FS, 27.64% FS, 1.318%
0.8 FS+SRPT, -69.49% SRPT, -86.09% FS, -13.95% FF, 30.88% FS+SRPT, 2.149%
0.9 SRPT, -73.35% SRPT, -84.72% FF, -9.119% FF, 34.93% FS+SRPT, 3.099%

0.10 SRPT, -8.757% SRPT, -59.75% FS, -45.46% FF, 0.8114% −
0.20 SRPT, -12.59% SRPT, -53.34% SRPT, -41.18% SRPT, 4.129% SRPT, 0.2006%
0.30 SRPT, -8.624% FS, -43.4% Rand, -29.39% FF, 4.171% −
0.40 SRPT, -12.73% FS, -55.02% FS, -26.74% FF, 5.525% FS+SRPT, 0.1002%
0.50 SRPT, -25.03% SRPT, -69.41% FS, -43.45% FF, 10.05% FS+SRPT, 0.2008%
0.60 FS, -47.42% SRPT, -77.59% FS, -54.24% FF, 17.3% FS+SRPT, 0.402%
0.70 FS, -61.53% SRPT, -82.93% FS, -30.62% FF, 25.03% FS+SRPT, 1.113%
0.79 FS, -70.3% SRPT, -85.75% FS, -18.76% FF, 33.28% FS+SRPT, 2.149%
0.90 SRPT, -73.83% SRPT, -86.22% FF, -8.617% FF, 37.2% FS+SRPT, 3.316%

0.10 SRPT, -4.328% SRPT, -44.2% FS, -23.36% − −
0.20 SRPT, -18.98% SRPT, -78.65% FF, -33.87% FF, 7.214% FS+Rand+SRPT, 0.1002%
0.30 SRPT, -26.46% SRPT, -80.41% Rand, -9.494% FF, 5.855% FS+Rand+SRPT, 0.2006%
0.40 SRPT, -10.98% SRPT, -43.66% FF, -19.9% FF, 7.365% SRPT, 0.1002%
0.50 SRPT, -17.24% SRPT, -55.39% FS, -23.86% FF, 8.208% FF+FS+SRPT, 0.1002%
0.60 FS, -37.96% FS, -68.51% FS, -32.95% FF, 12.16% FS+SRPT, 0.3012%
0.70 FS, -59.81% SRPT, -79.97% FS, -37.32% FS, 19.26% FS+SRPT, 0.9091%
0.80 FS, -66.85% SRPT, -80.76% FS, -11.75% FF, 26.29% FS, 2.045%
0.89 FS, -73.71% FS, -77.53% SRPT, -10.75% FF, 34.9% FS, 3.423%

0.10 SRPT, -2.553% SRPT, -32.54% FS, -33.37% SRPT, 0.3021% −
0.20 SRPT, -7.511% FS, -57.99% FS, -58.96% FF, 4.589% −
0.30 SRPT, -17.23% SRPT, -73.84% FS, -57.32% FF, 19.36% FS+SRPT, 0.1002%
0.40 SRPT, -23.55% SRPT, -78.58% SRPT, -13.68% FF+FS, 16.41% FS+SRPT, 0.2006%
0.50 SRPT, -18.2% SRPT, -54.32% FS, -27.63% FS, 11.7% FS+SRPT, 0.1002%
0.61 SRPT, -25.65% SRPT, -54.03% FS, -26.91% FF, 12.48% FS+SRPT, 0.2006%
0.70 FS, -47.05% FS, -69.77% FS, -20.66% FS, 15.86% FS+SRPT, 0.6042%
0.80 FS, -67.39% FS, -78.64% FS, -28.66% FS, 23.76% FS, 1.939%
0.90 FS, -78.26% FS, -76.03% FS, -13.49% FF, 29.39% FS, 3.638%

0.10 SRPT, -2.218% FS, -32.07% FS, -34.68% − −
0.20 FS, -6.063% FS, -54.59% FS, -52.78% SRPT, 2.289% −
0.30 FS, -12.22% FS, -65.35% FS, -70.36% FS+SRPT, 1.955% −
0.40 FS, -20.0% FS, -72.18% FS, -70.34% FS, 8.26% FS+SRPT, 0.1002%
0.51 FS, -35.12% SRPT, -81.59% FS, -71.39% FS, 17.68% FS+SRPT, 0.402%
0.60 SRPT, -49.0% SRPT, -85.19% FS, -40.78% FS, 25.2% FS+SRPT, 0.6042%
0.71 SRPT, -56.38% SRPT, -87.45% FS, -28.14% FS, 26.13% FS+SRPT, 1.011%
0.80 SRPT, -62.04% SRPT, -85.79% SRPT, -12.62% FS, 23.34% SRPT, 1.629%
0.89 FS, -72.56% FS, -71.52% FS, -9.325% FF, 28.59% FS, 3.32%

Table B.18: The winning schedulers’ performances relative to the losing baselines
for (from top to bottom) the 0 (uniform), 0.05, 0.1, 0.2, and 0.4 skewed nodes
sensitivity traces. For brevity, ‘−’ indicates all schedulers’ performances were equal.

B.6. Scheduler Performance Summary 237

Load Mean FCT p99 FCT Max FCT Throughput Flows

0.10 SRPT, -2.466% SRPT, -31.22% FF, -38.81% SRPT, 0.4036% −
0.20 SRPT, -8.834% FS, -64.48% FS, -60.01% FF+SRPT, 2.391% −
0.30 SRPT, -17.83% SRPT, -76.13% FS, -64.78% FF, 13.77% FS+SRPT, 0.1001%
0.40 SRPT, -26.47% SRPT, -81.81% SRPT, -25.11% FF, 15.07% SRPT, 0.2004%
0.50 SRPT, -18.77% SRPT, -54.54% FS, -22.44% FF, 11.12% SRPT, 0.2004%
0.60 SRPT, -29.81% SRPT, -63.41% FS, -21.25% FF, 13.91% SRPT, 0.3009%
0.70 FS, -45.77% FS, -77.26% FS, -34.73% FS, 21.06% FS+SRPT, 0.6042%
0.79 FS, -55.34% FS, -75.18% FS, -25.43% FS, 24.9% FS+SRPT, 1.113%
0.89 FS, -64.75% FS, -71.49% FS, -26.74% FS, 26.16% FS, 1.941%

0.10 SRPT, -3.577% FS, -37.74% FS, -43.91% FF, 0.4024% −
0.20 SRPT, -11.42% FS, -69.85% FS, -60.28% SRPT, 4.017% FS+Rand+SRPT, 0.1001%
0.30 SRPT, -25.05% FS, -84.23% FS, -57.56% FS, 9.121% FS+SRPT, 0.1001%
0.40 SRPT, -40.72% SRPT, -90.67% FF, -26.91% FS, 12.26% FS+SRPT, 0.3009%
0.50 SRPT, -43.96% SRPT, -91.43% FS, -18.36% FF, 11.84% SRPT, 0.6036%
0.60 SRPT, -28.85% SRPT, -72.65% FS, -20.9% FF, 17.01% SRPT, 0.3009%
0.70 SRPT, -35.86% SRPT, -77.65% FS, -21.9% FF, 24.46% SRPT, 0.5025%
0.79 FS, -49.05% SRPT, -78.85% FS, -20.43% FF, 32.89% FS+SRPT, 1.011%
0.90 FS, -66.84% FS, -77.31% SRPT, -9.144% FF, 38.56% FS, 1.526%

0.10 SRPT, -4.338% FS, -44.59% FS, -43.56% FF+SRPT, 0.6061% −
0.20 FS, -12.75% FS, -73.12% FS, -65.3% FS+SRPT, 2.165% FS+Rand+SRPT, 0.1001%
0.30 FS, -32.36% FS, -89.81% FS, -65.67% FS, 6.109% FS+Rand+SRPT, 0.1001%
0.40 FS, -51.39% FS, -93.5% FS, -50.1% SRPT, 11.49% FS+SRPT, 0.6036%
0.50 FS, -64.75% SRPT, -95.14% FS, -44.25% FS, 18.82% FS+SRPT, 1.112%
0.60 SRPT, -66.34% SRPT, -94.78% FS, -38.79% FS, 26.48% FS+SRPT, 2.249%
0.70 FS, -55.14% SRPT, -86.15% FS, -30.44% FS, 36.44% SRPT, 1.112%
0.79 FS, -63.22% SRPT, -86.61% FS, -24.83% FS, 50.83% FS+SRPT, 1.939%
0.89 FS, -71.7% SRPT, -80.91% FS, -15.77% FF, 57.67% FS, 2.675%

0.10 FS, -1.484% FS, -25.77% SRPT, -49.67% − −
0.20 FS, -4.266% FS, -24.92% FS, -61.38% − −
0.30 FS, -9.855% FS, -41.03% FS, -66.9% FF+FS+SRPT, 0.1001% −
0.40 FS, -18.74% FS, -57.24% FS, -81.16% FS+SRPT, 0.3012% FS+SRPT, 0.1001%
0.50 FS, -38.63% FS, -79.07% FS, -84.78% FS+SRPT, 1.013% FS, 0.3009%
0.60 FS, -60.95% FS, -88.96% FS, -82.32% FS+SRPT, 4.311% FS, 1.011%
0.69 FS, -70.83% FS, -88.24% FS, -72.67% FS, 9.434% FS, 6.852%
0.80 FS, -64.72% FS, -79.18% FS, -45.34% FS, 26.6% FS, 16.16%
0.90 FS, -73.86% FS, -80.41% FS, -45.18% FF, 55.08% FS, 31.69%

Table B.19: The winning schedulers’ performances relative to the losing baselines
for (from top to bottom) the University, Private Enterprise, Commercial Cloud,
and Social Media Cloud DCN traces. For brevity, ‘−’ indicates all schedulers’

performances were equal.

238
Appendix B. A Framework for Generating Custom and Reproducible Synthetic

Traffic

B.7 A Note on the Flow- vs. Job-Centric Traffic

Paradigms

Common DCN jobs include search queries, generating social media feeds, and

performing machine learning tasks such as inference and backpropagation. These

jobs are directed acyclic graphs composed of operations (nodes) and dependencies

(edges) [Paliwal et al., 2019]. The dependencies are either control dependencies

(where the child operation can only begin once the parent operation has been

completed) or data dependencies (where ≥ 1 tensors are output from the parent

operation as required input for the child operation). In the context of DCNs,

when a job arrives, each operation in the job is placed onto some machine to

execute it. These operations might all be placed onto one machine or, as is

often the case, distributed across different machines in the network [Shabka

and Zervas, 2021]. The DCN is then used to pass the tensors around between

machines executing the operations. Job data dependencies whose parent and

child operations are placed onto different machines have their tensors become

DCN flows.

There are therefore two paradigms when considering traffic demand gen-

eration in DCNs; the flow-centric paradigm, which is agnostic to the overall

computation graph being executed in the DCN when servicing an application,

and the job-centric paradigm, which does consider the computation graph when

generating network flows. For this manuscript, we considered the flow-centric

paradigm, where a single demand is a flow; a task demanding some information

be sent from a source node to a destination node in the network. Flow charac-

teristics include size (how much information to send), arrival time (the time

the flow arrives ready to be transported through the network, as derived from

the network-level inter-arrival time which is the time between a flow’s time of

arrival and its predecessor’s), and source-destination node pair (which machine

B.7. A Note on the Flow- vs. Job-Centric Traffic Paradigms 239

the flow is queued at and where it is requesting to be sent). Together, these

charactisterics form a network-level source-destination node pair distribution

(‘how much’ (as measured by either probability or load) each machine tends to

be requested by arriving flows).

In real DCNs, traffic flows can be correlated with one another since they may

be part of the same job and therefore share similar characteristics. An interesting

area of future work will be to develop TrafPy to support the job-centric paradigm

and have this type of inter-flow correlation. However, this is beyond the scope

of this manuscript.

241

Appendix C

Partitioning Distributed

Compute Jobs

C.1 Metric Definitions

Table C.1 summarises the metric jargon used throughout the main chapter.

C.2 Experimental Hardware

All environment simulations were ran on Intel Xeon ES-2660 CPUs, and all

learner network training and inference was done on either a V100 or an A100

GPU.

C.3 Additional Simulation Details

C.3.1 Code Structure

We built a core RAMP simulation environment which followed a Gym-like

interface [Brockman et al., 2016] but without inheriting from a Gym environment

object to allow additional flexibility. We then built a wrapper ‘job partitioning’

environment which did conform to the Gym interface but used our core RAMP

simulation environment to perform the internal RAMP simulation logic. Our

242 Appendix C. Partitioning Distributed Compute Jobs

Metric Description

Job completion time Time between job arriving and being
completed.

Sequential job completion time Time it would take to complete a job
were its operations ran sequentially
on a single device.

Maximum acceptable job completion time Maximum time allowed to complete
a job.

Speed-up factor Factor difference between sequential
job completion time and actual job
completion time.

Network overhead Fraction of the job completion time
spent communicating information
between workers when no computa-
tion was taking place.

Blocking rate Fraction of the arrived jobs which
were successfully serviced across a
given period of time.

Job information size Summed sizes (in bytes) of a job’s
operations and dependencies.

Cluster throughput Total partitioned job information
processed per unit time by the clus-
ter.

Offered throughput Total original job information pro-
cessed per unit time by the cluster.

Load rate Amount of job information arriving
at the cluster per unit time.

Job inter-arrival time Time between when two jobs arrived
at the cluster.

Table C.1: Descriptions of the various metrics referred to throughout the main
chapter.

C.3. Additional Simulation Details 243

code base is publicly available at https://github.com/cwfparsonson/ddls

for further practical implementation details.

C.3.2 Job Allocation Procedure

When a job arrives at the cluster, our environment uses the following ordered

sequence of task executions to allocate the job:

1. Op. partitioning: Partition the job DAG’s operations to attain a

‘partitioned’ job DAG.

2. Op. placement: Place the operations in the partitioned job DAG onto a

sub-set of cluster workers.

3. Op. scheduling: For each worker, schedule the priority of its placed

operations to resolve conflicts where ≥ 2 operations are ready to be

executed at the same time.

4. Dep. placement: Given the placed operations and the data dependencies

which must be exchanged between operations, place the dependencies onto

cluster communication links.

5. Dep. scheduling: For each communication link, schedule the priority of

its placed dependencies to resolve conflicts where ≥ 2 dependencies are

ready to be communicated at the same time.

C.3.3 Job Allocation Methods

Each of the above allocation procedure tasks can be performed by any algorithm,

heuristic, or learning agent. In our work, we use the following methods:

1. Op. partitioning: PAC-ML, Paramax, Paramin, or Random. See the

main chapter for details.

https://github.com/cwfparsonson/ddls

244 Appendix C. Partitioning Distributed Compute Jobs

2. Op. placement: A first-fit heuristic customised for the requirements of

RAMP. See Section C.3.4 below for details.

3. Op. scheduling: Shortest remaining processing time [Cai et al., 2016,

Alizadeh et al., 2013, Hong et al., 2012]. Given a set of operations placed

on a worker, the operation with the shortest remaining run time will have

the highest priority and therefore be executed first wherever two operations

on the same worker request to be executed at the same time.

4. Dep. placement: Shortest path & first-fit. Given a set of operation

placements, for any dependencies which need to be transferred through the

network (i.e. for dependencies with size > 0 and whose parent operation

is placed on a separate worker from the child operation), (1) first-fit select

a path from the k−shortest path with available light channel(s), and (2)

first-fit select an available channel.

5. Dep. scheduling: Shortest remaining processing time. Given a set of

dependencies placed on a communication link channel, the dependency

with the shortest remaining processing time (i.e. the lowest amount of

information left to be transferred) will have the highest priority and

therefore be communicated first wherever two dependencies on the same

link channel request to be transported at the same time.

C.3.4 First-Fit Operation Placement in RAMP

The original RAMP paper of Ottino et al. [2022] did not specify an operation

placement heuristic which conformed to the RAMP placement rules (see Section

5.2). Here, we propose a simple first-fit heuristic which conforms to these rules

whilst making the placement problem tractable for large cluster networks.

The basic idea behind partitioning and placement in the scenario described in

this work is to exploit the network efficiencies of RAMP as much as possible. In

C.3. Additional Simulation Details 245

particular, this means maximising the use of RAMP’s highly efficient collective

operations. For a generic partitioned DAG, in the backward pass, collectives

happen for each operation when weights/gradients are shared between sub-

operations. If both a parent and child operation are placed on the same set

of (RAMP symmetry adherent) workers, then when the parent communicates

its output to the child’s input in the forward pass this will also constitute a

collective operation. As such the placement heuristic implemented here seeks

to primarily maximise the amount that these two conditions are encountered.

Given some operation, o, that has been partitioned into N equal sub-operations,

oi and needs to be placed, the placement is handled as:

1. If a parent of o has been partitioned and placed across N servers which

adhere to the RAMP symmetry conditions, and if these servers each have

enough memory to store oi, then place o across this set of N servers. This

ensures collective operations can happen in both the forward and backward

pass.

2. Otherwise, check if a set of N workers can be found in the network that

adheres to the RAMP symmetry requirements. This is achieved by sliding

the various possible symmetric shapes over the topology until a suitable

one (or none) is found. This ensures collective operations in the backward

pass only.

Allocating in this way ensures that every partitioned operation can exploit

RAMP’s efficient collective operation process on the backward pass, and where

possible can also exploit it on the forward pass when receiving information from

(one of) its parents.

C.3.5 Evaluating the job completion time

The time to complete each operation was taken from the real computation

job profiles of the DNN jobs considered (see Section C.4). To calculate the

246 Appendix C. Partitioning Distributed Compute Jobs

communication time of point-to-point information transfers and of the MPI

collectives, we used the equations and code of Ottino et al. [2022].

C.3.6 Possible Causes of a Job Being Blocked

A job is blocked when either JCT > β · JCTseq (i.e. failing to meet user’s chosen

JCT requirement) or when the cluster does not have enough available resources

to service the job. The possible causes of this latter form of blocking are:

• Prior jobs using up too many cluster resources when later jobs arrive;

• the minimum operation run time quantum not being low enough to parti-

tion the operations enough times to lead to the desired JCT;

• mounted worker operation scheduling conflicts for partitioned operations

mounted on the same worker leading to longer run times, since one worker

can only execute one operation at a time; and

• excessive communication overheads incurring from over-partitioning of the

job.

C.4 Job Computation Graph Data Sets

All computation graphs used in our experiments were taken from the open-access

PipeDream computation graph data set [Narayanan et al., 2019]. Fig. C.1 shows

a visualisation of the key computation graph characteristics for each neural

network model considered, where the numbers reported are for one training

iteration (i.e. one forward and backward pass through the model). Table C.2

reports the same characteristics but in tabular form. Finally, for completeness,

Fig. C.2 shows the actual job DAGs of the models used.

C.4. Job Computation Graph Data Sets 247

M
od

el
#

op
s.

JC
T

se
q

M
ax

.
op

.
co

m
p.

tim
e

Σ
op

.
m

em
.

M
ax

.
op

.
m

em
.

D
ep

th
#

de
ps

.
Σ

de
p.

si
ze

M
ax

.
de

p.
si

ze

R
es

N
et

-1
8

14
2

36
66

8.
35

47
3.

62
5

17
.2

58
66

e9
0.

82
21

21
2e

9
60

15
9

18
.7

33
29

e9
0.

82
20

83
6e

9
V

G
G

-1
6

82
34

52
5.

35
11

3.
33

0
30

.6
25

30
e9

1.
64

43
15

e9
80

83
29

.4
67

06
e9

1.
64

41
67

e9
G

N
M

T
96

44
70

.8
0

15
.8

8
2.

36
84

47
e9

3.
26

94
91

e8
30

11
7

1.
02

78
01

e9
0.

19
44

37
1e

9
Sq

ue
ez

eN
et

-1
0

13
6

38
00

0.
15

47
4.

63
7

24
.9

62
62

e9
1.

16
80

07
e9

10
2

15
3

27
.9

10
09

e9
1.

16
79

50
e9

A
le

xN
et

46
36

06
1.

15
63

5.
90

2
3.

04
62

34
e9

0.
19

83
39

6e
9

44
47

2.
42

21
61

e9
0.

19
82

46
4e

9

T
ab

le
C

.2
:

Su
m

m
ar

y
of

th
e

ch
ar

ac
te

ris
tic

s
of

th
e

de
ep

le
ar

ni
ng

co
m

pu
ta

tio
n

gr
ap

hs
us

ed
fo

r
ou

r
ex

pe
rim

en
ts

be
fo

re
pa

rt
iti

on
in

g.
T

he
st

at
ist

ic
s

sh
ow

n
ar

e
fo

r
th

e
op

er
at

io
ns

(‘o
ps

.’)
an

d
de

pe
nd

en
ci

es
(‘d

ep
s.’

)
w

hi
ch

ne
ed

to
be

ex
ec

ut
ed

an
d

sa
tis

fie
d

to
co

nd
uc

t
on

e
tr

ai
ni

ng
ite

ra
tio

n.
T

he
re

fo
re

,t
o

ca
rr

y
ou

t
N

it
er

tr
ai

ni
ng

st
ep

s,
th

e
co

m
pu

ta
tio

n
gr

ap
h

wo
ul

d
ne

ed
to

be
ex

ec
ut

ed
N

it
er

tim
es

.
Co

m
pu

ta
tio

n
(‘c

om
p.’

)
tim

e
un

its
ar

e
re

po
rt

ed
in

se
co

nd
s,

an
d

m
em

or
y

(‘m
em

.’)
un

its
in

by
te

s.

248 Appendix C. Partitioning Distributed Compute Jobs

Figure C.1: Visualisation of the characteristics of the deep learning computation
graphs used for our experiments before partitioning. The bottom left sub-figure
contains the model colour code scheme for all other sub-figures. The statistics
shown are for the operations and dependencies which need to be executed and
satisfied to conduct one training iteration. Therefore, to carry out Niter training
steps, the computation graph would need to be executed Niter times. Computation

time units are reported in seconds, and memory units in bytes.

C.5 Neural Network Architecture

As shown in Fig. C.3, we used a message passing GNN similar to GraphSAGE

with mean pooling [Hamilton et al., 2018] to parameterise the PAC-ML policy.

Table C.3 summarises the hyperparameters used for the components of this

DNN. We note that we did not perform extensive hyperparamter tuning on the

GNN architecture. Below is a detailed explanation of this architecture.

GNN. First, the GNN layer takes in the DAG’s node and edge features and

generates an embedding for each node and edge in the graph. Then, each local

node’s nearest neighbour (1-hop away) sends the local node a message (‘message

passing’) which is the neighbouring nodes’ embeddings concatenated with their

connected edges’ embeddings. These messages are stored in the local node’s

‘mailbox’, which now contains information about the node’s neighbourhood.

To ensure consistent dimensioning with the received messages, a dummy zero-

padded edge embedding is concatenated with the local node’s embedding. Next,

C.5. Neural Network Architecture 249

Figure C.2: Deep learning computation graphs used for our experiments before
partitioning. Each computation graph represents the operations and dependencies
which need to be executed and satisfied to conduct one forward and one backward
pass through the neural network. Therefore, to carry out Niter training steps, the

computation graph would need to be executed Niter times.

the reduce module takes the local and message embeddings and generates a

reduced representation for each. Finally, to generate a layer-l output embedding

for the local node, the element-wise mean of the reduced embeddings is taken

250 Appendix C. Partitioning Distributed Compute Jobs

Figure C.3: Schematic of the DNN architecture with |L| GNN layers used to
parameterise the policy of PAC-ML. The GNN is similar to that of GraphSAGE
with mean pooling [Hamilton et al., 2018]. Each GNN layer l ∈ L contains a
node, edge, and reduce DNN module and ultimately learns to create an embedded
representation for each node in a given job DAG. These per-node embeddings are
then passed, along with any global job, cluster, and action features, to a readout
module. The readout module ultimately generates scores for each possible action,
which enables an action to be selected following a given exploration-exploitation
policy being followed. For clarity, this figure only shows the GNN embedding-
generation process for node 1. See accompanying text for a detailed explanation of

this architecture and the accompanying figure.

(‘mean pooling’). Note that this embedding process is done for each node in the

DAG, but for clarity Fig. C.3 only follows node 1.

If l < L (i.e. if this is not the last GNN layer), these final node embeddings

are used as new features for the original DAG’s nodes and are passed to the

next GNN layer. If l ≡ L, then the node embeddings are passed to the readout

module. Note that (1) the node, edge, and reduce modules are shared across

the aforementioned operations within a given GNN layer when generating node

embeddings, but not across different GNN layers, and (2) the lth-layer’s output

C.6. Reinforcement Learning Algorithm 251

node embeddings will contain information about the node’s neighbourhood from

up to l hops away.

Readout. The readout module takes the GNN’s node embeddings and the

job’s and cluster’s global features as input. To convert the node-level embeddings

of the GNN into a representation of the overall job DAG, their element-wise

mean is taken. To generate an embedding capturing the global job, cluster,

and action information, a global DNN module is used. The DAG and global

embeddings are then concatenated and passed to a logit module, which in turn

generates a vector of (optionally masked) scores for each possible action in the

environment. Finally, based on these scores and the exploration-exploitation

policy being followed, an action is selected.

Parameter Value

Message passing # hidden dimensions 64
Message passing # output dimensions 32
Reduce module # hidden dimensions 64
Reduce module # output dimensions 64 if l < L, else 16
Global module # hidden dimensions 8
Global module # output dimensions 8
Logit module RLlib FC net # layers 1
Logit module RLlib FC net # hidden dimensions 256
All modules’ activation ReLU
GNN # layers L 2
Apply action mask False

Table C.3: Hyperparamters used for the PAC-ML ApeX-DQN DNN policy
architecture shown in Fig. C.3. Note that the ‘message passing’ dimensions refer
to the dimensions of the concatenated node and edge modules’ embeddings, so
the dimensions of these modules’ hidden and output embeddings will be half the
corresponding ‘message passing’ dimension. Due to the RLlib implementation of
Ape-X DQN, we did not apply an action mask, but instead included the action
mask in the global features given to the model and used the reward signal to train

the agent to avoid selecting invalid actions.

C.6 Reinforcement Learning Algorithm

Approach. Given the stochastic nature of our dynamic cluster environment

setting, we hypothesised that a value-based RL method would be best suited

252 Appendix C. Partitioning Distributed Compute Jobs

to our setting [Mao et al., 2019b]. We did try the PPO [Schulman et al., 2017]

actor-critic method but found performance to be worse, although we leave a full

analysis of alternative RL algorithms to future work.

As stated in the main chapter, we used the state-of-the-art value-based

Ape-X DQN RL algorithm [Horgan et al., 2018] to attain the PAC-ML policy.

Concretely, we used the Ape-X parallelisation approach with double Q-learning

action selection-evaluation [van Hasselt et al., 2015] and multi-step bootstrapped

learning targets [Sutton and Barto, 2018, Hessel et al., 2017], prioritised experi-

ence replay [Schaul et al., 2016], a dueling DQN network architecture [Wang

et al., 2015], and a per-actor ϵ-greedy exploration algorithm. For a breakdown

of each of these components, refer to Appendix 2.12.

Hyperparameters. To select the algorithm hyperparameters, we conducted

a Bayesian search across the search space summarised in Table C.4, with simu-

lations conducted in a light 32-worker RAMP environment with a maximum

simulation run time of 2e5 seconds to speed up the search. We adopted simi-

lar search ranges to those used by Kurach et al. [2019], Hoffman et al. [2020],

Parsonson et al. [2022]. For each set of hyperparameters, we ran the algorithm

for 100 learner steps (a.k.a. training epochs), and performed a validation across

3 seeds at each learner step (see Fig. C.4). We selected the parameter set

with the highest episode return across the 3 seeds (see Table C.4). We also

report the importance of each parameter with respect to the total episode return.

The importance is calculated by training a random forest with all algorithm

hyperparameters as inputs and the episode return as the target output, with

the per-feature (hyperparameter) importance values predicted by random forest

reported accordingly [Fabros, 2018, Howard, 2018]. All our experiments used

the same per-actor ϵ-greedy exploration as Horgan et al. [2018].

We note that our RL algorithms were implemented using the open-source

RLlib library [Liang et al., 2018] and hyperparameter tuning was done using

Weights & Biases [Biewald, 2020].

C.6. Reinforcement Learning Algorithm 253

Pa
ra

m
et

er
Se

ar
ch

R
an

ge
Be

st
Va

lu
e

Im
po

rt
an

ce

D
isc

ou
nt

fa
ct

or
γ

{0
.9

9,
0.

99
3,

0.
99

7,
0.

99
9,

0.
99

99
}

0.
99

9
0.

00
4

Le
ar

ni
ng

ra
te

Lo
g-

un
ifo

rm
va

lu
es

(
1e
−

7,
1e
−

3
)

4.
12

1e
−

7
0.

04
5

v m
in

{−
1,
−

10
,−

10
0,
−

20
0,
−

10
00
}

−
10

00
0.

01
v m

a
x

{1
,1

0,
10

0,
20

0,
10

00
}

10
00

0.
00

4
Ta

rg
et

ne
tw

or
k

up
da

te
fre

qu
en

cy
{

1e
3,

1e
4,

1e
5
}

1e
5

0.
00

1
Pr

io
rit

ise
d

re
pl

ay
α

{0
.1

,0
.4

,0
.5

,0
.6

,0
.7

,0
.8

,0
.9
}

0.
9

0.
04

Pr
io

rit
ise

d
re

pl
ay

β
{0

.1
,0

.4
,0

.5
,0

.6
,0

.7
,0

.8
,0

.9
}

0.
1

0.
04

7
n

-s
te

p
{1

,3
,5

,1
0}

3
0.

22
7

#
C

PU
wo

rk
er

s
32

32
−

#
G

PU
wo

rk
er

s
1

1
−

Ba
tc

h
m

od
e

Tr
un

ca
te

d
ep

iso
de

s
Tr

un
ca

te
d

ep
iso

de
s

−
R

ol
lo

ut
le

ng
th

50
50

−
Tr

ai
n

ba
tc

h
siz

e
51

2
51

2
−

O
pt

im
ise

r
A

da
m

A
da

m
−

D
ue

lin
g

Tr
ue

Tr
ue

−
#

at
om

s
1

1
−

N
oi

sy
Fa

lse
Fa

lse
−

D
ou

bl
e

Q
Tr

ue
Tr

ue
−

R
ep

la
y

bu
ffe

r
ca

pa
ci

ty
10

00
00

10
00

00
−

Le
ar

ni
ng

st
ar

ts
10

00
0

10
00

0
−

Pr
io

rit
ise

d
re

pl
ay

T
D

-e
rr

or
ϵ

1e
−

6
1e
−

6
−

Ta
bl

e
C

.4
:

A
pe

-X
D

Q
N

tr
ai

ni
ng

pa
ra

m
et

er
sw

ee
p

se
ar

ch
ra

ng
e,

be
st

va
lu

e
fo

un
d,

an
d

co
rr

es
po

nd
in

g
pa

ra
m

et
er

im
po

rt
an

ce
.

254 Appendix C. Partitioning Distributed Compute Jobs

Figure C.4: Validation performance of the Ape-X DQN hyperparameter sweep.
Each agent was trained for 100 learner steps, and at each learner step a validation
was performed across 3 seeds - the mean metrics with their min-max interval bands

are plotted for each hyperparameter set.

C.6.1 Final Learning Curves

For completeness, Fig. C.5 shows the learning curves of the tuned PAC-ML agents

in each βX environment superimposed on the baseline agents’ performances. At

each learner step, the PAC-ML agent was evaluated across three seeds in the

validation environment.

C.7 Additional Experimental Results

Fig. C.6 shows the performance of the agents in terms of raw blocking rate,

throughput, JCT, and JCT speed-up.

C.7. Additional Experimental Results 255

Figure C.5: Validation curves of the PAC-ML agent trained in four different β
distribution environments. At each learner step (update to the GNN), the agent
was evaluated across 3 seeds, with the mean blocking rate, offered throughput, JCT,
and JCT speed-up (relative to the jobs’ sequential run time JCTseq) performance
metrics reported as well as their min-max confidence intervals. For reference, the

performances of the baseline heuristic partitioners are also plotted.

Figure C.6: Validation performances of each partitioning agent evaluated across
three seeds, with the mean blocking rate, offered throughput, JCT, and JCT
speed-up (relative to the jobs’ sequential run time JCTseq) performance metrics

reported.

257

Bibliography

T Achterberg and R Wunderling. Mixed Integer Programming: Analyzing

12 Years of Progress. Facets of Combinatorial Optimization, 2013. doi:

10.1007/978-3-642-38189-818.

Tobias Achterberg, Thorsten Koch, and Alexander Martin. Branching rules

revisited. Technical Report 04-13, ZIB, Takustr. 7, 14195 Berlin, 2004.

Ravichandra Addanki, Shaileshh Bojja Venkatakrishnan, Shreyan Gupta, Hongzi

Mao, and Mohammad Alizadeh. Placeto: Learning Generalizable Device

Placement Algorithms for Distributed Machine Learning. Curran Associates

Inc., Red Hook, NY, USA, 2019.

M. Mehdi Afsar, Trafford Crump, and Behrouz Far. Reinforcement learning

based recommender systems: A survey. ACM Comput. Surv., jun 2022. ISSN

0360-0300. doi: 10.1145/3543846. URL https://doi.org/10.1145/3543846.

Just Accepted.

F. Agostinelli, S. McAleer, and A. Shmakov. Solving the Rubik’s cube with deep

reinforcement learning and search. Nature, 2019a.

Forest Agostinelli, Stephen McAleer, Alexander Shmakov, and Pierre Baldi.

Solving the rubik’s cube with deep reinforcement learning and search. Nature

Machine Intelligence, 1(8):356–363, Aug 2019b. ISSN 2522-5839. doi: 10.1038/

s42256-019-0070-z. URL https://doi.org/10.1038/s42256-019-0070-z.

Gowind P. Agrawal. Fiber-Optic Communication Systems. John Wiley & Sons,

3rd edition, 2002.

https://doi.org/10.1145/3543846
https://doi.org/10.1038/s42256-019-0070-z

258 BIBLIOGRAPHY

Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson

Huang, and Amin Vahdat. Hedera: Dynamic flow scheduling for data cen-

ter networks. In Proceedings of the 7th USENIX Conference on Networked

Systems Design and Implementation, NSDI’10, page 19, USA, 2010. USENIX

Association.

Aws Albarghouthi. Introduction to neural network verification. arXiv, 2021.

Alibaba. Alibaba Cluster Trace. Technical report, 2017. URL https://github.

com/alibaba/clusterdata.

Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar, Amin

Vahdat, and Masato Yasuda. Less is more: Trading a little band-

width for Ultra-Low latency in the data center. In 9th USENIX Sym-

posium on Networked Systems Design and Implementation (NSDI 12),

pages 253–266, San Jose, CA, April 2012. USENIX Association. ISBN

978-931971-92-8. URL https://www.usenix.org/conference/nsdi12/

technical-sessions/presentation/alizadeh.

Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick McKe-

own, Balaji Prabhakar, and Scott Shenker. Pfabric: Minimal near-optimal

datacenter transport. SIGCOMM Comput. Commun. Rev., 43(4):435–446,

August 2013. ISSN 0146-4833. doi: 10.1145/2534169.2486031. URL

https://doi.org/10.1145/2534169.2486031.

M Alizadeh et al. pfabric: Minimal near-optimal datacenter transport. SIG-

COMM, 2013.

Alejandro Marcos Alvarez, Quentin Louveaux, and Louis Wehenkel. A machine

learning-based approximation of strong branching. INFORMS J. Comput.,

29:185–195, 2017.

George Amvrosiadis. The Atlas Cluster Trace Repository. USENIX, 43(4), 2018.

https://github.com/alibaba/clusterdata
https://github.com/alibaba/clusterdata
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/alizadeh
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/alizadeh
https://doi.org/10.1145/2534169.2486031

BIBLIOGRAPHY 259

George Amvrosiadis, Jun Woo Park, Gregory R. Ganger, Garth A. Gibson,

Elisabeth Baseman, and Nathan DeBardeleben. On the diversity of cluster

workloads and its impact on research results. In 2018 USENIX Annual

Technical Conference (USENIX ATC 18), pages 533–546, Boston, MA, July

2018. USENIX Association. ISBN 978-1-939133-01-4. URL https://www.

usenix.org/conference/atc18/presentation/amvrosiadis.

Paris Andreades, Kari Clark, Philip M. Watts, and Georgios Zervas. Ex-

perimental demonstration of an ultra-low latency control plane for optical

packet switching in data center networks. Optical Switching and Network-

ing, 32:51–60, 2019. ISSN 1573-4277. doi: https://doi.org/10.1016/j.osn.

2018.11.005. URL https://www.sciencedirect.com/science/article/

pii/S1573427718301577.

D. L. Applegate, R. E. Bixpy, V. Chvatal, and W. J. Cook. Finding cuts in the

TSP (A preliminary report). Technical report, DIMACS, 1995.

D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook. The Traveling

Salesman Problem: A Computational Study. Princeton University Press, 2007.

A Assadihaghi, H Teimoori, and T J Hall. SOA-Based Optical Switches. Optical

Switches - Materials and Design, pages 158–180, 2010.

Azure. Azure Public Dataset. Technical report, 2017. URL https://github.

com/Azure/AzurePublicDataset.

Wei Bai, Li Chen, Kai Chen, and Haitao Wu. Enabling ecn in multi-service multi-

queue data centers. In 13th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 16), pages 537–549, Santa Clara, CA, March 2016.

USENIX Association. ISBN 978-1-931971-29-4. URL https://www.usenix.

org/conference/nsdi16/technical-sessions/presentation/bai.

https://www.usenix.org/conference/atc18/presentation/amvrosiadis
https://www.usenix.org/conference/atc18/presentation/amvrosiadis
https://www.sciencedirect.com/science/article/pii/S1573427718301577
https://www.sciencedirect.com/science/article/pii/S1573427718301577
https://github.com/Azure/AzurePublicDataset
https://github.com/Azure/AzurePublicDataset
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/bai
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/bai

260 BIBLIOGRAPHY

Wei Bai et al. Enabling ecn in multi-service multi-queue data centers. NSDI,

2016.

Egon Balas, Andrew Ho, and Carnegie Mellon UniversityDesign Re-

search Center. Set covering algorithms using cutting planes, heuristics,

and subgradient optimization : a computational study, Jun 2018.

URL https://kilthub.cmu.edu/articles/journal_contribution/

Set_covering_algorithms_using_cutting_planes_heuristics_and_

subgradient_optimization_a_computational_study/6707945/1.

Hitesh Ballani, Paolo Costa, Istvan Haller, Krzysztof Jozwik, Kai Shi, Benn

Thomsen, and Hugh Williams. Bridging the last mile for optical switching

in data centers. In Optical Fiber Communication Conference, page W1C.3.

Optica Publishing Group, 2018. doi: 10.1364/OFC.2018.W1C.3. URL https:

//opg.optica.org/abstract.cfm?URI=OFC-2018-W1C.3.

Hitesh Ballani, Paolo Costa, Raphael Behrendt, Daniel Cletheroe, Istvan

Haller, Krzysztof Jozwik, Fotini Karinou, Sophie Lange, Benn Thomsen,

Kai Shi, and Hugh Williams. Sirius: A flat datacenter network with

nanosecond optical switching. In SIGCOMM, SIGCOMM ’20, page

782–797, New York, NY, USA, August 2020. ACM, Association for Com-

puting Machinery. ISBN 9781450379557. doi: 10.1145/3387514.3406221.

URL https://www.microsoft.com/en-us/research/publication/

sirius-a-flat-datacenter-network-with-nanosecond-optical-switching/.

Jagdish Chand Bansal. Evolutionary and Swarm Intelligence Algorithms, volume

779. 2019. ISBN 978-3-319-91339-1. URL http://link.springer.com/10.

1007/978-3-319-91341-4.

Yixin Bao, Yanghua Peng, Chuan Wu, and Zongpeng Li. Online job scheduling

in distributed machine learning clusters. In IEEE INFOCOM 2018 - IEEE

Conference on Computer Communications, page 495–503. IEEE Press, 2018.

https://kilthub.cmu.edu/articles/journal_contribution/Set_covering_algorithms_using_cutting_planes_heuristics_and_subgradient_optimization_a_computational_study/6707945/1
https://kilthub.cmu.edu/articles/journal_contribution/Set_covering_algorithms_using_cutting_planes_heuristics_and_subgradient_optimization_a_computational_study/6707945/1
https://kilthub.cmu.edu/articles/journal_contribution/Set_covering_algorithms_using_cutting_planes_heuristics_and_subgradient_optimization_a_computational_study/6707945/1
https://opg.optica.org/abstract.cfm?URI=OFC-2018-W1C.3
https://opg.optica.org/abstract.cfm?URI=OFC-2018-W1C.3
https://www.microsoft.com/en-us/research/publication/sirius-a-flat-datacenter-network-with-nanosecond-optical-switching/
https://www.microsoft.com/en-us/research/publication/sirius-a-flat-datacenter-network-with-nanosecond-optical-switching/
http://link.springer.com/10.1007/978-3-319-91341-4
http://link.springer.com/10.1007/978-3-319-91341-4

BIBLIOGRAPHY 261

doi: 10.1109/INFOCOM.2018.8486422. URL https://doi.org/10.1109/

INFOCOM.2018.8486422.

Francisco Barahona. On the computational complexity of Ising spin glass models.

Journal of Physics A: Mathematical and General, 15(10):3241, 1982.

Cynthia Barnhart, Ellis L. Johnson, George L. Nemhauser, Martin W. P. Savels-

bergh, and Pamela H. Vance. Branch-and-price: Column generation for

solving huge integer programs. Oper. Res., 46(3):316–329, mar 1998. ISSN

0030-364X. doi: 10.1287/opre.46.3.316. URL https://doi.org/10.1287/

opre.46.3.316.

Thomas D Barrett, William R Clements, Jakob N Foerster, and AI Lvovsky. Ex-

ploratory combinatorial optimization with reinforcement learning. Association

for the Advancement of Artificial Intelligence, 2019.

Thomas D. Barrett, Christopher W. F. Parsonson, and Alexandre Laterre.

Learning to solve combinatorial graph partitioning problems via efficient

exploration. arXiv preprint arXiv:2205.14105, 2022. doi: 10.48550/ARXIV.

2205.14105. URL https://arxiv.org/abs/2205.14105.

Andrew G. Barto and Sridhar Mahadevan. Recent advances in hierarchical

reinforcement learning. Discrete Event Dynamic Systems, 13:341–379, 2003.

Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Ben-

gio. Neural combinatorial optimization with reinforcement learning. CoRR,

abs/1611.09940, 2016. URL http://arxiv.org/abs/1611.09940.

Tal Ben-Nun and Torsten Hoefler. Demystifying parallel and distributed deep

learning: An in-depth concurrency analysis. ACM Comput. Surv., 52(4), aug

2019. ISSN 0360-0300. doi: 10.1145/3320060. URL https://doi.org/10.

1145/3320060.

https://doi.org/10.1109/INFOCOM.2018.8486422
https://doi.org/10.1109/INFOCOM.2018.8486422
https://doi.org/10.1287/opre.46.3.316
https://doi.org/10.1287/opre.46.3.316
https://arxiv.org/abs/2205.14105
http://arxiv.org/abs/1611.09940
https://doi.org/10.1145/3320060
https://doi.org/10.1145/3320060

262 BIBLIOGRAPHY

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning

for combinatorial optimization: A methodological tour d’horizon. Euro-

pean Journal of Operational Research, 290(2):405–421, 2021. ISSN 0377-

2217. doi: https://doi.org/10.1016/j.ejor.2020.07.063. URL http://www.

sciencedirect.com/science/article/pii/S0377221720306895.

M Benichou, J M Gauthier, P Girodet, G Hentges, G Ribiere, and O Vincent.

Experiments in mixed-integer linear programming. Mathematical Programming,

1(1):76–94, 1971. ISSN 1436-4646. doi: 10.1007/BF01584074. URL https:

//doi.org/10.1007/BF01584074.

Joshua Benjamin. Towards Sub-Microsecond Optical Circuit Switched Networks

for Future Data Centres. PhD thesis, UCL, 2020.

Joshua L Benjamin, Thomas Gerard, Domaniç Lavery, Polina Bayvel, and

Georgios Zervas. PULSE: Optical Circuit Switched Data Center Architecture

Operating at Nanosecond Timescales. J. Lightwave Technol., 38(18):4906–4921,

sep 2020. URL http://jlt.osa.org/abstract.cfm?URI=jlt-38-18-4906.

Joshua L Benjamin, Christopher W F Parsonson, and Georgios Zervas. Bench-

marking Packet-Granular OCS Network Scheduling for Data Center Traffic

Traces. In OSA Advanced Photonics Congress 2021, page NeW3B.3. Optica

Publishing Group, 2021. doi: 10.1364/NETWORKS.2021.NeW3B.3. URL

http://opg.optica.org/abstract.cfm?URI=Networks-2021-NeW3B.3.

Joshua L. Benjamin, Alessandro Ottino, Christopher W. F. Parsonson, and

Georgios Zervas. Traffic tolerance of nanosecond scheduling on optical cir-

cuit switched data center network. In 2022 Optical Fiber Communications

Conference and Exhibition (OFC), pages 1–3, 2022.

Joshua Lawrence Benjamin, Adam Funnell, Philip Michael Watts, and Benn

Thomsen. A high speed hardware scheduler for 1000-port optical packet

switches to enable scalable data centers. Proceedings - 2017 IEEE 25th Annual

http://www.sciencedirect.com/science/article/pii/S0377221720306895
http://www.sciencedirect.com/science/article/pii/S0377221720306895
https://doi.org/10.1007/BF01584074
https://doi.org/10.1007/BF01584074
http://jlt.osa.org/abstract.cfm?URI=jlt-38-18-4906
http://opg.optica.org/abstract.cfm?URI=Networks-2021-NeW3B.3

BIBLIOGRAPHY 263

Symposium on High-Performance Interconnects, HOTI 2017, pages 41–48,

2017. doi: 10.1109/HOTI.2017.22.

Theophilus Benson, Aditya Akella, and David A. Maltz. Network traffic

characteristics of data centers in the wild. Proceedings of the ACM SIG-

COMM Internet Measurement Conference, IMC, pages 267–280, 2010a. doi:

10.1145/1879141.1879175.

Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. Understand-

ing data center traffic characteristics. SIGCOMM Comput. Commun. Rev.,

40(1):92–99, January 2010b. ISSN 0146-4833. doi: 10.1145/1672308.1672325.

URL https://doi.org/10.1145/1672308.1672325.

Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. Microte:

Fine grained traffic engineering for data centers. In Proceedings of the Seventh

COnference on Emerging Networking EXperiments and Technologies, CoNEXT

’11, New York, NY, USA, 2011. Association for Computing Machinery. ISBN

9781450310413. doi: 10.1145/2079296.2079304. URL https://doi.org/10.

1145/2079296.2079304.

David Bergman, Andre A. Cire, Willem-Jan van Hoeve, and John Hooker. Deci-

sion Diagrams for Optimization. Springer Publishing Company, Incorporated,

1st edition, 2016. ISBN 3319428470.

Keren Bergman. Empowering Flexible and Scalable High Performance Architec-

tures with Embedded Photonics. IPDPS, 2018.

Lukas Biewald. Experiment tracking with weights and biases, 2020. URL

https://www.wandb.com/. Software available from wandb.com.

J. M. Bishop. Stochastic searching networks. IEE Conference Publication, (313):

329–331, 1989. ISSN 05379989.

https://doi.org/10.1145/1672308.1672325
https://doi.org/10.1145/2079296.2079304
https://doi.org/10.1145/2079296.2079304
https://www.wandb.com/

264 BIBLIOGRAPHY

E Bonabeau, M Dorigo, and G Theraulaz. Swarm Intelligence: From Natural to

Artificial Systems. Oxford University Press, 1999.

Michael Bowling and Manuela Veloso. Rational and convergent learning in

stochastic games. In Proceedings of the 17th International Joint Conference on

Artificial Intelligence - Volume 2, IJCAI’01, page 1021–1026, San Francisco,

CA, USA, 2001. Morgan Kaufmann Publishers Inc. ISBN 1558608125.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John

Schulman, Jie Tang, and Wojciech Zaremba. Openai gym, 2016.

Noam Brown and Tuomas Sandholm. Superhuman ai for multiplayer poker.

Science, 365(6456):885–890, 2019. doi: 10.1126/science.aay2400. URL https:

//www.science.org/doi/abs/10.1126/science.aay2400.

C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfsha-

gen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton. A survey of monte

carlo tree search methods. IEEE Transactions on Computational Intelligence

and AI in Games, 4(1):1–43, 2012. doi: 10.1109/TCIAIG.2012.2186810.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration

by random network distillation. 2018.

C. X. Cai, S. Saeed, I. Gupta, R. H. Campbell, and F. Le. Phurti: Application

and network-aware flow scheduling for multi-tenant mapreduce clusters. In

2016 IEEE International Conference on Cloud Engineering (IC2E), pages

161–170, 2016. doi: 10.1109/IC2E.2016.21.

Quentin Cappart, Didier Chételat, Elias Khalil, Andrea Lodi, Christopher Morris,

and Petar Veličković. Combinatorial optimization and reasoning with graph

neural networks. 2021.

Y. Chen. Optical Burst Switching: A New Area in Optical Networking Research.

IEEE, pages 16–23, 2005.

https://www.science.org/doi/abs/10.1126/science.aay2400
https://www.science.org/doi/abs/10.1126/science.aay2400

BIBLIOGRAPHY 265

Cisco. Cisco global cloud index: Forecast and methodology. Technical report,

Cisco, 2016.

Kari Clark, Hitesh Ballani, Polina Bayvel, Daniel Cletheroe, Thomas Gerard,

Istvan Haller, Krzysztof Jozwik, Kai Shi, Benn Thomsen, Philip Watts, Hugh

Williams, Georgios Zervas, Paolo Costa, and Zhixin Liu. Sub-nanosecond

clock and data recovery in an optically-switched data centre network. In 2018

European Conference on Optical Communication (ECOC), pages 1–3, 2018.

doi: 10.1109/ECOC.2018.8535333.

Maurice Clerc. The swarm and the queen: Towards a deterministic and adaptive

particle swarm optimization. Proceedings of the 1999 Congress on Evolutionary

Computation, CEC 1999, 3:1951–1957, 1999. doi: 10.1109/CEC.1999.785513.

Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John Schulman.

Quantifying generalization in reinforcement learning. In Kamalika Chaud-

huri and Ruslan Salakhutdinov, editors, Proceedings of the 36th Interna-

tional Conference on Machine Learning, volume 97 of Proceedings of Ma-

chine Learning Research, pages 1282–1289. PMLR, 09–15 Jun 2019. URL

https://proceedings.mlr.press/v97/cobbe19a.html.

E. Conforti and C. M. Gallep. A fast electro-optical amplified switch us-

ing a resistive combiner for multi-pulse injection. In 2006 IEEE MTT-S

International Microwave Symposium Digest, pages 1935–1938, 2006. doi:

10.1109/MWSYM.2006.249812.

Michael Connelly. Semiconductor Optical Amplifiers and their Applications.

Applications of Photonic Technology 5, 4833(August 2003):974, 2003. doi:

10.1117/12.478235.

Edoardo Conti, Vashisht Madhavan, Felipe Petroski Such, Joel Lehman, Ken-

neth O. Stanley, and Jeff Clune. Improving exploration in evolution strategies

for deep reinforcement learning via a population of novelty-seeking agents.

https://proceedings.mlr.press/v97/cobbe19a.html

266 BIBLIOGRAPHY

In Proceedings of the 32nd International Conference on Neural Information

Processing Systems, NIPS’18, page 5032–5043, Red Hook, NY, USA, 2018.

Curran Associates Inc.

Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fontoura,

and Ricardo Bianchini. Resource central: Understanding and predicting

workloads for improved resource management in large cloud platforms. In

Proceedings of the 26th Symposium on Operating Systems Principles, SOSP

’17, page 153–167, New York, NY, USA, 2017. Association for Computing

Machinery. ISBN 9781450350853. doi: 10.1145/3132747.3132772. URL

https://doi.org/10.1145/3132747.3132772.

IBM CPLEX. V12. 1: User’s manual for cplex. International Business Machines

Corporation, 46(53):157, 2009.

Paul A. Crook and Gillian Hayes. Learning in a state of confusion: Perceptual

aliasing in grid world navigation. In IN TOWARDS INTELLIGENT MO-

BILE ROBOTS 2003 (TIMR 2003), 4 TH BRITISH CONFERENCE ON

(MOBILE) ROBOTICS, 2003.

Hanjun Dai, Elias B. Khalil, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning

combinatorial optimization algorithms over graphs. In Proceedings of the 31st

International Conference on Neural Information Processing Systems, NIPS’17,

page 6351–6361, Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN

9781510860964.

James Dale Davidson and William Rees-Mogg. The Sovereign Individual; Mas-

tering the Transition to the Information Age. Simon & Schuster, Inc., USA,

1999. ISBN 0684832720.

K. De Jong, D. Fogel, and H.-P Schwefel. Handbook of Evolutionary Computation.

CRC Press, 1997.

https://doi.org/10.1145/3132747.3132772

BIBLIOGRAPHY 267

Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen, Matthieu Devin,

Quoc V. Le, Mark Z. Mao, Marc’Aurelio Ranzato, Andrew Senior, Paul

Tucker, Ke Yang, and Andrew Y. Ng. Large scale distributed deep networks.

In Proceedings of the 25th International Conference on Neural Information

Processing Systems - Volume 1, NIPS’12, page 1223–1231, Red Hook, NY,

USA, 2012. Curran Associates Inc.

Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey,

Francesco Carpanese, Timo Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego

de las Casas, Craig Donner, Leslie Fritz, Cristian Galperti, Andrea Huber,

James Keeling, Maria Tsimpoukelli, Jackie Kay, Antoine Merle, Jean-Marc

Moret, Seb Noury, Federico Pesamosca, David Pfau, Olivier Sauter, Cristian

Sommariva, Stefano Coda, Basil Duval, Ambrogio Fasoli, Pushmeet Kohli, Ko-

ray Kavukcuoglu, Demis Hassabis, and Martin Riedmiller. Magnetic control of

tokamak plasmas through deep reinforcement learning. NatureTY - JOUR, 602

(7897):414–419, Feb 2022. ISSN 1476-4687. doi: 10.1038/s41586-021-04301-9.

URL https://doi.org/10.1038/s41586-021-04301-9.

Delft. GWA-T-12 Bitbrains Trace. Technical report, 2015. URL http://gwa.

ewi.tudelft.nl/datasets/gwa-t-12-bitbrains.

J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei. Imagenet: A large-

scale hierarchical image database. In 2009 IEEE Conference on Computer

Vision and Pattern Recognition, pages 248–255, 2009. doi: 10.1109/CVPR.

2009.5206848.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:

A large-scale hierarchical image database. In 2009 IEEE conference on

computer vision and pattern recognition, pages 248–255. Ieee, 2009.

https://doi.org/10.1038/s41586-021-04301-9
http://gwa.ewi.tudelft.nl/datasets/gwa-t-12-bitbrains
http://gwa.ewi.tudelft.nl/datasets/gwa-t-12-bitbrains

268 BIBLIOGRAPHY

Kefan Dong, Yuping Luo, Tianhe Yu, Chelsea Finn, and Tengyu Ma. On the

expressivity of neural networks for deep reinforcement learning. In Proceed-

ings of the 37th International Conference on Machine Learning, ICML’20.

JMLR.org, 2020.

M Dorigo. Optimization, Learning and Natural Algorithms. PhD thesis, Politec-

nicodi Milano, 1992.

Marco Dorigo and Thomas Stützle. Ant colony optimization. The MIT Press,

2004. ISBN 9781439802847. doi: 10.4249/scholarpedia.1461.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O. Stanley, and Jeff

Clune. First return, then explore. Nature, 590(7847):580–586, Feb 2021. ISSN

1476-4687. doi: 10.1038/s41586-020-03157-9. URL http://dx.doi.org/10.

1038/s41586-020-03157-9.

Marc Etheve, Zacharie Alès, Côme Bissuel, Olivier Juan, and Safia Kedad-

Sidhoum. Reinforcement learning for variable selection in a branch and bound

algorithm. Lecture Notes in Computer Science, page 176–185, 2020. ISSN

1611-3349. doi: 10.1007/978-3-030-58942-4_12. URL http://dx.doi.org/

10.1007/978-3-030-58942-4_12.

Eucalyptus. Eucalyptus IaaS Cloud Workload. Technical report, 2015. URL

https://sites.cs.ucsb.edu/{~}rich/workload/.

Melissa Fabros. Introduction to hyperparameters, Sept 2018. URL https:

//forums.fast.ai/t/wiki-lesson-thread-lesson-4/7540.

Facebook. Facebook Workload Repository. Technical report, 2014. URL https:

//github.com/SWIMProjectUCB/SWIM/wiki/Workloads-repository.

Shaohua Fan, Xiao Wang, Chuan Shi, Peng Cui, and Bai Wang. Generalizing

graph neural networks on out-of-distribution graphs, 2021. URL https:

//arxiv.org/abs/2111.10657.

http://dx.doi.org/10.1038/s41586-020-03157-9
http://dx.doi.org/10.1038/s41586-020-03157-9
http://dx.doi.org/10.1007/978-3-030-58942-4_12
http://dx.doi.org/10.1007/978-3-030-58942-4_12
https://sites.cs.ucsb.edu/{~}rich/workload/
https://forums.fast.ai/t/wiki-lesson-thread-lesson-4/7540
https://forums.fast.ai/t/wiki-lesson-thread-lesson-4/7540
https://github.com/SWIMProjectUCB/SWIM/wiki/Workloads-repository
https://github.com/SWIMProjectUCB/SWIM/wiki/Workloads-repository
https://arxiv.org/abs/2111.10657
https://arxiv.org/abs/2111.10657

BIBLIOGRAPHY 269

Nathan Farrington, George Porter, Sivasankar Radhakrishnan, Hamid Hajab-

dolali Bazzaz, Vikram Subramanya, Yeshaiahu Fainman, George Papen,

and Amin Vahdat. Helios: A hybrid electrical/optical switch architec-

ture for modular data centers. SIGCOMM Comput. Commun. Rev., 40

(4):339–350, August 2010. ISSN 0146-4833. doi: 10.1145/1851275.1851223.

URL https://doi.org/10.1145/1851275.1851223.

D. G. Feitelson. Metric and workload effects on computer systems evaluation.

Computer, 36(9):18–25, 2003. doi: 10.1109/MC.2003.1231190.

R. C. Figueiredo, T. Sutili, N. S. Ribeiro, C. M. Gallep, and E. Conforti.

Semiconductor optical amplifier space switch with symmetrical thin-film

resistive current injection. Journal of Lightwave Technology, 35(2):280–287,

2017. doi: 10.1109/JLT.2016.2635202.

Rafael C. Figueiredo, Eduardo C. Magalhães, Napoleao S. Ribeiro, Cristiano M.

Gallep, and Evandro Conforti. Equivalent circuit of a semiconductor optical

amplifier chip with the bias current influence. SBMO/IEEE MTT-S Interna-

tional Microwave and Optoelectronics Conference Proceedings, pages 852–856,

2011. doi: 10.1109/IMOC.2011.6169263.

Rafael C. Figueiredo, Napoleao S. Ribeiro, Antonio Marcelo Oliveira Ribeiro,

Cristiano M. Gallep, and Evandro Conforti. Hundred-Picoseconds Electro-

Optical Switching With Semiconductor Optical Amplifiers Using Multi-

Impulse Step Injection Current. Journal of Lightwave Technology, 33(1):

69–77, jan 2015. ISSN 0733-8724. doi: 10.1109/JLT.2014.2372893. URL

http://ieeexplore.ieee.org/document/6963258/.

J Foerster. Deep multi-agent reinforcement learning. PhD thesis, University of

Oxford, 2018.

https://doi.org/10.1145/1851275.1851223
http://ieeexplore.ieee.org/document/6963258/

270 BIBLIOGRAPHY

A Fraser. Simulation of Genetic Systems by Automatic Digital Computers.

Australian Journal of Biological Sciences, (2):87–94, 1958. doi: 10.1109/

9780470544600.ch3.

Steve Furber. Large-scale neuromorphic computing systems. Journal of Neural

Engineering, 13(5):051001, aug 2016. doi: 10.1088/1741-2560/13/5/051001.

URL https://doi.org/10.1088/1741-2560/13/5/051001.

C.M. Gallep and E. Conforti. Reduction of semiconductor optical amplifier

switching times by preimpulse step-injected current technique. IEEE Pho-

tonics Technology Letters, 14(7):902–904, jul 2002. ISSN 1041-1135. doi:

10.1109/LPT.2002.1012379. URL http://ieeexplore.ieee.org/document/

1012379/.

Yuanxiang Gao, Li Chen, and Baochun Li. Spotlight: Optimizing device

placement for training deep neural networks. In Jennifer Dy and Andreas

Krause, editors, Proceedings of the 35th International Conference on Machine

Learning, volume 80 of Proceedings of Machine Learning Research, pages

1676–1684. PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.press/

v80/gao18a.html.

Vikas Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and rep-

resentational limits of graph neural networks. In Hal Daumé III and Aarti

Singh, editors, Proceedings of the 37th International Conference on Machine

Learning, volume 119 of Proceedings of Machine Learning Research, pages

3419–3430. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/

v119/garg20c.html.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea

Lodi. Exact Combinatorial Optimization with Graph Convolutional Neural

Networks. Curran Associates Inc., Red Hook, NY, USA, 2019.

https://doi.org/10.1088/1741-2560/13/5/051001
http://ieeexplore.ieee.org/document/1012379/
http://ieeexplore.ieee.org/document/1012379/
https://proceedings.mlr.press/v80/gao18a.html
https://proceedings.mlr.press/v80/gao18a.html
https://proceedings.mlr.press/v119/garg20c.html
https://proceedings.mlr.press/v119/garg20c.html

BIBLIOGRAPHY 271

Thomas Gerard, Christopher Parsonson, Zacharaya Shabka, Polina Bayvel,

Domaniç Lavery, and Georgios Zervas. Swift: Scalable ultra-wideband sub-

nanosecond wavelength switching for data centre networks. 2020a. doi:

10.48550/ARXIV.2003.05489. URL https://arxiv.org/abs/2003.05489.

Thomas Gerard, Christopher Parsonson, Zacharaya Shabka, Polina Bayvel,

Domaniç Lavery, and Georgios Zervas. Swift: Scalable ultra-wideband sub-

nanosecond wavelength switching for data centre networks, 2020b.

Thomas Gerard, Christopher Parsonson, Zacharaya Shabka, Benn Thomsen,

Polina Bayvel, Domaniç Lavery, and Georgios Zervas. AI-optimised tuneable

sources for bandwidth-scalable, sub-nanosecond wavelength switching. Opt.

Express, 29(7):11221–11242, mar 2021. doi: 10.1364/OE.417272. URL http:

//opg.optica.org/oe/abstract.cfm?URI=oe-29-7-11221.

Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized

trees. Machine Learning, 63(1):3–42, 2006. ISSN 1573-0565. doi: 10.1007/

s10994-006-6226-1. URL https://doi.org/10.1007/s10994-006-6226-1.

H. Ghafouri-Shiraz. The principles of semiconductor laser diodes and amplifiers:

Analysis and transmission line laser modeling. Imperial College Press,

2004. ISBN 186094339X. URL https://books.google.co.uk/books/

about/The{_}Principles{_}of{_}Semiconductor{_}Laser{_}Di.html?

id=zYvZwgiPlKUC{&}redir{_}esc=y.

Yoav Goldberg and Graeme Hirst. Neural Network Methods in Natural Language

Processing. Morgan & Claypool Publishers, 2017. ISBN 1627052984.

Oded Goldreich. Computational Complexity: A Conceptual Perspective. Cam-

bridge University Press, USA, 1 edition, 2008. ISBN 052188473X.

https://arxiv.org/abs/2003.05489
http://opg.optica.org/oe/abstract.cfm?URI=oe-29-7-11221
http://opg.optica.org/oe/abstract.cfm?URI=oe-29-7-11221
https://doi.org/10.1007/s10994-006-6226-1
https://books.google.co.uk/books/about/The{_}Principles{_}of{_}Semiconductor{_}Laser{_}Di.html?id=zYvZwgiPlKUC{&}redir{_}esc=y
https://books.google.co.uk/books/about/The{_}Principles{_}of{_}Semiconductor{_}Laser{_}Di.html?id=zYvZwgiPlKUC{&}redir{_}esc=y
https://books.google.co.uk/books/about/The{_}Principles{_}of{_}Semiconductor{_}Laser{_}Di.html?id=zYvZwgiPlKUC{&}redir{_}esc=y

272 BIBLIOGRAPHY

Oded Goldreich. P, NP, and NP-Completeness: The Basics of Computational

Complexity. Cambridge University Press, USA, 1st edition, 2010. ISBN

0521122546.

N. G. Gonzalez, D. Zibar, and I. T. Monroy. Cognitive digital receiver for burst

mode phase modulated radio over fiber links. In 36th European Conference

and Exhibition on Optical Communication, pages 1–3, 2010. doi: 10.1109/

ECOC.2010.5621525.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. The MIT

Press, 2016. ISBN 0262035618.

Google. Google Cluster Workload. Technical report, 2015. URL https://

github.com/google/cluster-data.

Vojtech Graf, Dusan Teichmann, Jiri Horinka, and Michal Dorda. Dynamic

Model for Scheduling Crew Shifts. Mathematical Problems in Engineering,

2020. doi: https://doi.org/10.1155/2020/5372567.

C. Gray, R. Ayre, K. Hinton, and R. S. Tucker. Power consumption of iot

access network technologies. In 2015 IEEE International Conference on

Communication Workshop (ICCW), pages 2818–2823, 2015. doi: 10.1109/

ICCW.2015.7247606.

A. Hanif Halim and Idris Ismail. Combinatorial optimization: Comparison of

heuristic algorithms in travelling salesman problem. Archives of Computational

Methods in Engineering, 26:367–380, 2019.

Navid Hamedazimi, Zafar Qazi, Himanshu Gupta, Vyas Sekar, Samir R. Das,

Jon P. Longtin, Himanshu Shah, and Ashish Tanwer. Firefly: A reconfigurable

wireless data center fabric using free-space optics. In Proceedings of the 2014

ACM Conference on SIGCOMM, SIGCOMM ’14, page 319–330, New York,

NY, USA, 2014. Association for Computing Machinery. ISBN 9781450328364.

https://github.com/google/cluster-data
https://github.com/google/cluster-data

BIBLIOGRAPHY 273

doi: 10.1145/2619239.2626328. URL https://doi.org/10.1145/2619239.

2626328.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation

learning on large graphs. arXiv, 2018.

Anna Harutyunyan, Will Dabney, Thomas Mesnard, Nicolas Heess, Moham-

mad G. Azar, Bilal Piot, Hado van Hasselt, Satinder Singh, Greg Wayne,

Doina Precup, and Rémi Munos. Hindsight Credit Assignment. Curran

Associates Inc., Red Hook, NY, USA, 2019.

Conor F. Hayes, Roxana Radulescu, Eugenio Bargiacchi, Johan Källström,

Matthew Macfarlane, Mathieu Reymond, Timothy Verstraeten, Luisa M.

Zintgraf, Richard Dazeley, Fredrik Heintz, Enda Howley, Athirai A. Iris-

sappane, Patrick Mannion, Ann Nowé, Gabriel de Oliveira Ramos, Mar-

cello Restelli, Peter Vamplew, and Diederik M. Roijers. A practical guide

to multi-objective reinforcement learning and planning. Auton. Agents

Multi Agent Syst., 36(1):26, 2022. doi: 10.1007/s10458-022-09552-y. URL

https://doi.org/10.1007/s10458-022-09552-y.

He He, Hal Daumé, and Jason Eisner. Learning to search in branch-and-

bound algorithms. In Proceedings of the 27th International Conference on

Neural Information Processing Systems - Volume 2, NIPS’14, page 3293–3301,

Cambridge, MA, USA, 2014. MIT Press.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual

learning for image recognition. In 2016 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 770–778, 2016. doi: 10.1109/CVPR.

2016.90.

John L. Hennessy and David A. Patterson. Computer Architecture, Sixth Edition:

A Quantitative Approach. Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 6th edition, 2017. ISBN 0128119055.

https://doi.org/10.1145/2619239.2626328
https://doi.org/10.1145/2619239.2626328
https://doi.org/10.1007/s10458-022-09552-y

274 BIBLIOGRAPHY

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski,

Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver.

Rainbow: Combining improvements in deep reinforcement learning. 2017.

R. Hinterding. Gaussian mutation and self-adaption for numeric genetic algo-

rithms. In Proceedings of 1995 IEEE International Conference on Evolutionary

Computation, volume 1, pages 384–, 1995. doi: 10.1109/ICEC.1995.489178.

Matthew W. Hoffman, Bobak Shahriari, John Aslanides, Gabriel Barth-Maron,

Nikola Momchev, Danila Sinopalnikov, Piotr Stanczyk, Sabela Ramos, An-

ton Raichuk, Damien Vincent, Leonard Hussenot, Robert Dadashi, Gabriel

Dulac-Arnold, Manu Orsini, Alexis Jacq, Johan Ferret, Nino Vieillard, Seyed

Kamyar Seyed Ghasemipour, Sertan Girgin, Olivier Pietquin, Feryal Be-

hbahani, Tamara Norman, Abbas Abdolmaleki, Albin Cassirer, Fan Yang,

Kate Baumli, Sarah Henderson, Abe Friesen, Ruba Haroun, Alex Novikov,

Sergio Gomez Colmenarejo, Serkan Cabi, Caglar Gulcehre, Tom Le Paine, Sri-

vatsan Srinivasan, Andrew Cowie, Ziyu Wang, Bilal Piot, and Nando de Freitas.

Acme: A research framework for distributed reinforcement learning. 2020. doi:

10.48550/ARXIV.2006.00979. URL https://arxiv.org/abs/2006.00979.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya,

Trevor Cai, Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks,

Johannes Welbl, Aidan Clark, Tom Hennigan, Eric Noland, Katie Millican,

George van den Driessche, Bogdan Damoc, Aurelia Guy, Simon Osindero,

Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.

Training compute-optimal large language models. 2022. doi: 10.48550/ARXIV.

2203.15556. URL https://arxiv.org/abs/2203.15556.

Chi-Yao Hong, Matthew Caesar, and P. Brighten Godfrey. Finishing flows

quickly with preemptive scheduling. In Proceedings of the ACM SIGCOMM

2012 Conference on Applications, Technologies, Architectures, and Protocols

https://arxiv.org/abs/2006.00979
https://arxiv.org/abs/2203.15556

BIBLIOGRAPHY 275

for Computer Communication, SIGCOMM ’12, page 127–138, New York,

NY, USA, 2012. Association for Computing Machinery. ISBN 9781450314190.

doi: 10.1145/2342356.2342389. URL https://doi.org/10.1145/2342356.

2342389.

J. J. Hopfield and D. W. Tank. "neural" computation of decisions in optimization

problems. Biological Cybernetics, 52(3):141–152, July 1985. ISSN 0340-1200.

doi: 10.1007/BF00339943.

Jeff Horen. Linear programming, by katta g. murty, john wiley & sons, new york,

1983, 482 pp. Networks, 15(2):273–274, 1985. URL http://dblp.uni-trier.

de/db/journals/networks/networks15.html#Horen85.

Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel,

Hado van Hasselt, and David Silver. Distributed prioritized experience replay.

In International Conference on Learning Representations, 2018. URL https:

//openreview.net/forum?id=H1Dy---0Z.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedfor-

ward networks are universal approximators. Neural Networks, 2(5):359–

366, 1989. ISSN 0893-6080. doi: https://doi.org/10.1016/0893-6080(89)

90020-8. URL http://www.sciencedirect.com/science/article/pii/

0893608089900208.

Jeremy Howard. Intro to machine learning: Lesson 4, Sept 2018. URL https:

//www.youtube.com/watch?v=0v93qHDqq_g.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Mia Xu Chen,

Dehao Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and

Zhifeng Chen. GPipe: Efficient Training of Giant Neural Networks Using

Pipeline Parallelism. Curran Associates Inc., Red Hook, NY, USA, 2019.

https://doi.org/10.1145/2342356.2342389
https://doi.org/10.1145/2342356.2342389
http://dblp.uni-trier.de/db/journals/networks/networks15.html#Horen85
http://dblp.uni-trier.de/db/journals/networks/networks15.html#Horen85
https://openreview.net/forum?id=H1Dy---0Z
https://openreview.net/forum?id=H1Dy---0Z
http://www.sciencedirect.com/science/article/pii/0893608089900208
http://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.youtube.com/watch?v=0v93qHDqq_g
https://www.youtube.com/watch?v=0v93qHDqq_g

276 BIBLIOGRAPHY

Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J.

Dally, and Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer

parameters and <0.5mb model size. arXiv preprint arXiv:1602.07360, 2016.

URL http://arxiv.org/abs/1602.07360. cite arxiv:1602.07360Comment:

In ICLR Format.

S. Jha, A. Patke, J. Brandt, A. Gentile, M. Showerman, E. Roman, Z. T.

Kalbarczyk, B. Kramer, and R. K. Iyer. A study of network congestion in

two supercomputing high-speed interconnects. In 2019 IEEE Symposium on

High-Performance Interconnects (HOTI), pages 45–48, 2019. doi: 10.1109/

HOTI.2019.00024.

Saurabh Jha, Archit Patke, Jim Brandt, Ann Gentile, Benjamin Lim, Mike

Showerman, Greg Bauer, Larry Kaplan, Zbigniew Kalbarczyk, William

Kramer, and Ravi Iyer. Measuring congestion in high-performance dat-

acenter interconnects. In 17th USENIX Symposium on Networked Sys-

tems Design and Implementation (NSDI 20), pages 37–57, Santa Clara,

CA, February 2020. USENIX Association. ISBN 978-1-939133-13-7. URL

https://www.usenix.org/conference/nsdi20/presentation/jha.

T Jiménez, J C Aguado, I de Miguel, R J Durán, N Fernández, M An-

gelou, D Sánchez, N Merayo, P Fernández, N Atallah, R M Lorenzo,

I Tomkos, and E J Abril. A Cognitive System for Fast Quality of Trans-

mission Estimation in Core Optical Networks. In Optical Fiber Com-

munication Conference, page OW3A.5. Optical Society of America, 2012.

doi: 10.1364/OFC.2012.OW3A.5. URL http://www.osapublishing.org/

abstract.cfm?URI=OFC-2012-OW3A.5.

David B. Johnson and David A. Maltz. Dynamic source routing in ad hoc

wireless networks. In Mobile Computing, pages 153–181. Kluwer Academic

Publishers, 1996.

http://arxiv.org/abs/1602.07360
https://www.usenix.org/conference/nsdi20/presentation/jha
http://www.osapublishing.org/abstract.cfm?URI=OFC-2012-OW3A.5
http://www.osapublishing.org/abstract.cfm?URI=OFC-2012-OW3A.5

BIBLIOGRAPHY 277

Donald B. Johnson. A note on dijkstra’s shortest path algorithm. J. ACM, 20

(3):385–388, July 1973. ISSN 0004-5411. doi: 10.1145/321765.321768. URL

https://doi.org/10.1145/321765.321768.

JSSPP. JSSPP Workloads Archive. Technical report, 2017. URL https:

//jsspp.org/workload/.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Fig-

urnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin

Žídek, Anna Potapenko, Alex Bridgland, Clemens Meyer, Simon A. A. Kohl,

Andrew J. Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav

Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman,

Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas

Berghammer, Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W.

Senior, Koray Kavukcuoglu, Pushmeet Kohli, and Demis Hassabis. Highly

accurate protein structure prediction with alphafold. Nature, 596(7873):583–

589, Aug 2021. ISSN 1476-4687. doi: 10.1038/s41586-021-03819-2. URL

https://doi.org/10.1038/s41586-021-03819-2.

Sham Kakade. A Natural Policy Gradient. In Adv. Neural Inf. Process Syst.,

volume 14, pages 1531–1538, 2001.

Srikanth Kandula, Sudipta Sengupta, Albert Greenberg, Parveen Patel, and

Ronnie Chaiken. The nature of data center traffic: Measurements &; analysis.

In Proceedings of the 9th ACM SIGCOMM Conference on Internet Measure-

ment, IMC ’09, page 202–208, New York, NY, USA, 2009. Association for

Computing Machinery. ISBN 9781605587714. doi: 10.1145/1644893.1644918.

URL https://doi.org/10.1145/1644893.1644918.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin

Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei.

https://doi.org/10.1145/321765.321768
https://jsspp.org/workload/
https://jsspp.org/workload/
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1145/1644893.1644918

278 BIBLIOGRAPHY

Scaling laws for neural language models. CoRR, abs/2001.08361, 2020. URL

https://arxiv.org/abs/2001.08361.

Can Karakus, Rahul Huilgol, Fei Wu, Anirudh Subramanian, Cade Daniel,

Derya Cavdar, Teng Xu, Haohan Chen, Arash Rahnama, and Luis Quintela.

Amazon sagemaker model parallelism: A general and flexible framework

for large model training. 2021. doi: 10.48550/ARXIV.2111.05972. URL

https://arxiv.org/abs/2111.05972.

James Kennedy, Russell Eberhart, and Bls Gov. Particle Swarm Optimization.

International Conference on Neural Networks, 11(1):111–117, 1995. ISSN

1598-8619. URL http://ci.nii.ac.jp/naid/10015518367.

Shauharda Khadka, Estelle Aflalo, Mattias Mardar, Avrech Ben-David, Santiago

Miret, Shie Mannor, Tamir Hazan, Hanlin Tang, and Somdeb Majumdar.

Optimizing memory placement using evolutionary graph reinforcement learn-

ing. In International Conference on Learning Representations, 2021. URL

https://openreview.net/forum?id=-6vS_4Kfz0.

Elias Boutros Khalil, Pierre Le Bodic, Le Song, George L. Nemhauser, and

Bistra N. Dilkina. Learning to branch in mixed integer programming. In

AAAI, 2016.

Mehrdad Khani et al. Sip-ml: High-bandwidth optical network interconnects for

machine learning training. SIGCOMM, 2021. doi: 10.1145/3452296.3472900.

Paresh Kharya and Ali Alvi. Using deepspeed and megatron to train

megatron-turing nlg 530b, the world’s largest and most powerful

generative language model. https://developer.nvidia.com/blog/

using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/,

Oct 2021.

https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2111.05972
http://ci.nii.ac.jp/naid/10015518367
https://openreview.net/forum?id=-6vS_4Kfz0
https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/

BIBLIOGRAPHY 279

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

In Yoshua Bengio and Yann LeCun, editors, 3rd International Conference

on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,

2015, Conference Track Proceedings, 2015. URL http://arxiv.org/abs/

1412.6980.

B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A. Al

Sallab, Senthil Yogamani, and Patrick Pérez. Deep reinforcement learning for

autonomous driving: A survey. IEEE Transactions on Intelligent Transporta-

tion Systems, 23(6):4909–4926, 2022. doi: 10.1109/TITS.2021.3054625.

Serkan Kiranyaz. Adaptation, Learning, and Optimization, volume 15. Springer,

2014. doi: 10.1007/978-3-642-37846-1_3.

Robert Kirk, Amy Zhang, Edward Grefenstette, and Tim Rocktäschel. A

survey of generalisation in deep reinforcement learning, 2021. URL https:

//arxiv.org/abs/2111.09794.

Dalibor Klusáček and Boris Parák. Analysis of Mixed Workloads from Shared

Cloud Infrastructure. In Dalibor Klusáček, Walfredo Cirne, and Narayan

Desai, editors, Job Scheduling Strategies for Parallel Processing, pages 25–42,

Cham, 2017. Springer International Publishing. ISBN 978-3-319-77398-8.

Boris Knyazev, Graham W. Taylor, and Mohamed R. Amer. Understanding

Attention and Generalization in Graph Neural Networks. Curran Associates

Inc., Red Hook, NY, USA, 2019.

B. H. Korte and Jens Vygen. Combinatorial Optimization: Theory and Al-

gorithms. Springer-Verlag, New York, NY, 2012. ISBN 9783642244889

3642244882 3642244874 9783642244872. doi: 10.1007/978-3-642-24488-9.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet

classification with deep convolutional neural networks. In F. Pereira,

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2111.09794
https://arxiv.org/abs/2111.09794

280 BIBLIOGRAPHY

C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances

in Neural Information Processing Systems 25, pages 1097–1105. Cur-

ran Associates, Inc., 2012. URL http://papers.nips.cc/paper/

4824-imagenet-classification-with-deep-convolutional-neural-networks.

pdf.

Karol Kurach, Anton Raichuk, Piotr Stanczyk, Michał Zając, Olivier Bachem,

Lasse Espeholt, Carlos Riquelme, Damien Vincent, Marcin Michalski, Olivier

Bousquet, and Sylvain Gelly. Google research football: A novel reinforcement

learning environment. 2019. doi: 10.48550/ARXIV.1907.11180. URL https:

//arxiv.org/abs/1907.11180.

D. H. Kusuma, M. Ali, and N. Sutantra. The comparison of optimization

for active steering control on vehicle using pid controller based on artificial

intelligence techniques. In 2016 International Seminar on Application for

Technology of Information and Communication (ISemantic), pages 18–22, Aug

2016. doi: 10.1109/ISEMANTIC.2016.7873803.

A. H. Land and A. G. Doig. An automatic method of solving discrete program-

ming problems. Econometrica, 28(3):pp. 497–520, 1960. ISSN 00129682.

LANL and TwoSigma. ATLAS Traces Repository. Technical report, 2018. URL

https://ftp.pdl.cmu.edu/pub/datasets/ATLAS/.

Gilbert Laporte. The traveling salesman problem: An overview of exact and

approximate algorithms. European Journal of Operational Research, 59(2):231–

247, 1992. ISSN 0377-2217. doi: https://doi.org/10.1016/0377-2217(92)

90138-Y. URL http://www.sciencedirect.com/science/article/pii/

037722179290138Y.

Kevin Leyton-Brown, Mark Pearson, and Yoav Shoham. Towards a universal

test suite for combinatorial auction algorithms. In Proceedings of the 2nd

ACM Conference on Electronic Commerce, EC ’00, page 66–76, New York,

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://arxiv.org/abs/1907.11180
https://arxiv.org/abs/1907.11180
https://ftp.pdl.cmu.edu/pub/datasets/ATLAS/
http://www.sciencedirect.com/science/article/pii/037722179290138Y
http://www.sciencedirect.com/science/article/pii/037722179290138Y

BIBLIOGRAPHY 281

NY, USA, 2000. Association for Computing Machinery. ISBN 1581132727. doi:

10.1145/352871.352879. URL https://doi.org/10.1145/352871.352879.

H. Li. Realistic workload modeling and its performance impacts in large-scale

escience grids. IEEE Transactions on Parallel and Distributed Systems, 21(4):

480–493, 2010. doi: 10.1109/TPDS.2009.99.

Qingping Li, Jingwei Xu, and Chun Cao. Scheduling distributed deep learning

jobs in heterogeneous cluster with placement awareness. In Proceedings of the

12th Asia-Pacific Symposium on Internetware, Internetware ’20, page 217–228,

New York, NY, USA, 2021. Association for Computing Machinery. ISBN

9781450388191. doi: 10.1145/3457913.3457936. URL https://doi.org/10.

1145/3457913.3457936.

Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken

Goldberg, Joseph Gonzalez, Michael Jordan, and Ion Stoica. RLlib: Abstrac-

tions for distributed reinforcement learning. In Jennifer Dy and Andreas

Krause, editors, Proceedings of the 35th International Conference on Machine

Learning, volume 80 of Proceedings of Machine Learning Research, pages

3053–3062. PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.press/

v80/liang18b.html.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom

Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with

deep reinforcement learning. In Yoshua Bengio and Yann LeCun, editors,

ICLR, 2016. URL http://dblp.uni-trier.de/db/conf/iclr/iclr2016.

html#LillicrapHPHETS15.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom

Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with

deep reinforcement learning. 2019.

https://doi.org/10.1145/352871.352879
https://doi.org/10.1145/3457913.3457936
https://doi.org/10.1145/3457913.3457936
https://proceedings.mlr.press/v80/liang18b.html
https://proceedings.mlr.press/v80/liang18b.html
http://dblp.uni-trier.de/db/conf/iclr/iclr2016.html#LillicrapHPHETS15
http://dblp.uni-trier.de/db/conf/iclr/iclr2016.html#LillicrapHPHETS15

282 BIBLIOGRAPHY

J. Lin. Divergence measures based on the shannon entropy. IEEE Transactions

on Information Theory, 37(1):145–151, 1991. doi: 10.1109/18.61115.

Long-Ji Lin. Self-improving reactive agents based on reinforcement learning,

planning and teaching. Mach. Learn., 8(3–4):293–321, May 1992. ISSN

0885-6125. doi: 10.1007/BF00992699. URL https://doi.org/10.1007/

BF00992699.

Igor Litvinchev and Edith Lucero Ozuna Espinosa. Solving the two-stage

capacitated facility location problem by the lagrangian heuristic. In Hao

Hu, Xiaoning Shi, Robert Stahlbock, and Stefan Voß, editors, Computational

Logistics, pages 92–103, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

ISBN 978-3-642-33587-7.

Shiyun Liu, Qixiang Cheng, Muhammad Ridwan Madarbux, Adrian Wonfor,

Richard V. Penty, Ian H. White, and Philip M. Watts. Low latency optical

switch for high performance computing with minimized processor energy

load [invited]. Journal of Optical Communications and Networking, 7(3):

A498–A510, 2015. doi: 10.1364/JOCN.7.00A498.

Andrea Lodi and Giulia Zarpellon. On learning and branching: a survey. TOP,

25(2):207–236, 2017. ISSN 1863-8279. doi: 10.1007/s11750-017-0451-6. URL

https://doi.org/10.1007/s11750-017-0451-6.

C. Lu, K. Ye, G. Xu, C. Xu, and T. Bai. Imbalance in the cloud: An analysis

on alibaba cluster trace. In 2017 IEEE International Conference on Big Data

(Big Data), pages 2884–2892, 2017. doi: 10.1109/BigData.2017.8258257.

Stephen Maher, Matthias Miltenberger, João Pedro Pedroso, Daniel Rehfeldt,

Robert Schwarz, and Felipe Serrano. PySCIPOpt: Mathematical programming

in python with the SCIP optimization suite. In Mathematical Software –

ICMS 2016, pages 301–307. Springer International Publishing, 2016. doi:

10.1007/978-3-319-42432-3_37.

https://doi.org/10.1007/BF00992699
https://doi.org/10.1007/BF00992699
https://doi.org/10.1007/s11750-017-0451-6

BIBLIOGRAPHY 283

Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth Kandula.

Resource management with deep reinforcement learning. In Proceedings of

the 15th ACM Workshop on Hot Topics in Networks, HotNets ’16, page 50–56,

New York, NY, USA, 2016. Association for Computing Machinery. ISBN

9781450346610. doi: 10.1145/3005745.3005750. URL https://doi.org/10.

1145/3005745.3005750.

Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili Meng,

and Mohammad Alizadeh. Learning scheduling algorithms for data process-

ing clusters. In Proceedings of the ACM Special Interest Group on Data

Communication, SIGCOMM ’19, page 270–288, New York, NY, USA, 2019a.

Association for Computing Machinery. ISBN 9781450359566. doi: 10.1145/

3341302.3342080. URL https://doi.org/10.1145/3341302.3342080.

Hongzi Mao, Shaileshh Bojja Venkatakrishnan, Malte Schwarzkopf, and Moham-

mad Alizadeh. Variance reduction for reinforcement learning in input-driven

environments. In 7th International Conference on Learning Representations,

ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019b.

URL https://openreview.net/forum?id=Hyg1G2AqtQ.

Hongzi Mao, Computer Science, Mohammad Alizadeh, Computer Science, Thesis

Supervisor, Leslie A Kolodziejski, and Computer Science. Network System

Optimization with Reinforcement Learning : Methods and Applications. PhD

thesis, MIT, 2020.

Javier Mata, Ignacio de Miguel, Ramón J. Durán, Noemí Merayo, Sandeep Ku-

mar Singh, Admela Jukan, and Mohit Chamania. Artificial intelligence (AI)

methods in optical networks: A comprehensive survey. Optical Switching and

Networking, 28:43–57, 2018. ISSN 15734277. doi: 10.1016/j.osn.2017.12.006.

Ruben Mayer and Hans-Arno Jacobsen. Scalable deep learning on distributed

infrastructures: Challenges, techniques, and tools. ACM Comput. Surv., 53

https://doi.org/10.1145/3005745.3005750
https://doi.org/10.1145/3005745.3005750
https://doi.org/10.1145/3341302.3342080
https://openreview.net/forum?id=Hyg1G2AqtQ

284 BIBLIOGRAPHY

(1), feb 2020. ISSN 0360-0300. doi: 10.1145/3363554. URL https://doi.

org/10.1145/3363554.

McKinsey. Artificial-intelligence hardware: New opportunities for semicon-

ductor companies. Technical report, McKinsey, 2019. URL https:

//www.mckinsey.com/industries/semiconductors/our-insights/

artificial-intelligence-hardware-new-opportunities-for-semiconductor-companies.

William M. Mellette, Rob McGuinness, Arjun Roy, Alex Forencich, George

Papen, Alex C. Snoeren, and George Porter. Rotornet: A scalable, low-

complexity, optical datacenter network. In Proceedings of the Conference

of the ACM Special Interest Group on Data Communication, SIGCOMM

’17, page 267–280, New York, NY, USA, 2017. Association for Computing

Machinery. ISBN 9781450346535. doi: 10.1145/3098822.3098838. URL

https://doi.org/10.1145/3098822.3098838.

Azalia Mirhoseini, Hieu Pham, Quoc V Le, Benoit Steiner, Rasmus Larsen, Yue-

feng Zhou, Naveen Kumar, Mohammad Norouzi, Samy Bengio, and Jeff Dean.

Device Placement Optimization with Reinforcement Learning. In Doina Precup

and Yee Whye Teh, editors, Proceedings of the 34th International Conference

on Machine Learning, volume 70 of Proceedings of Machine Learning Research,

pages 2430–2439, International Convention Centre, Sydney, Australia, 2017.

PMLR. URL http://proceedings.mlr.press/v70/mirhoseini17a.html.

Azalia Mirhoseini, Anna Goldie, Hieu Pham, Benoit Steiner, Quoc V. Le, and Jeff

Dean. A hierarchical model for device placement. In International Conference

on Learning Representations, 2018. URL https://openreview.net/forum?

id=Hkc-TeZ0W.

Vaibhawa Mishra, Joshua L. Benjamin, and Georgios Zervas. Monet: hetero-

geneous memory over optical network for large-scale data center resource

https://doi.org/10.1145/3363554
https://doi.org/10.1145/3363554
https://www.mckinsey.com/industries/semiconductors/our-insights/artificial-intelligence-hardware-new-opportunities-for-semiconductor-companies
https://www.mckinsey.com/industries/semiconductors/our-insights/artificial-intelligence-hardware-new-opportunities-for-semiconductor-companies
https://www.mckinsey.com/industries/semiconductors/our-insights/artificial-intelligence-hardware-new-opportunities-for-semiconductor-companies
https://doi.org/10.1145/3098822.3098838
http://proceedings.mlr.press/v70/mirhoseini17a.html
https://openreview.net/forum?id=Hkc-TeZ0W
https://openreview.net/forum?id=Hkc-TeZ0W

BIBLIOGRAPHY 285

disaggregation. Journal of Optical Communications and Networking, 13(5):

126–139, 2021. doi: 10.1364/JOCN.419145.

John E Mitchell. Integer programming: branch and cut algorithmsInteger Pro-

gramming: Branch and Cut Algorithms, pages 1643–1650. Springer US, Boston,

MA, 2009. ISBN 978-0-387-74759-0. doi: 10.1007/978-0-387-74759-0_287.

URL https://doi.org/10.1007/978-0-387-74759-0{_}287.

Tom M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997. ISBN

978-0-07-042807-2.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep

reinforcement learning. NeurIPS‘13 Workshop, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel

Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K.

Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik,

Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane

Legg, and Demis Hassabis. Human-level control through deep reinforcement

learning. Nature, 518(7540):529–533, February 2015. ISSN 00280836. URL

http://dx.doi.org/10.1038/nature14236.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timo-

thy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous

Methods for Deep Reinforcement Learning. In Maria Florina Balcan and

Kilian Q Weinberger, editors, Proceedings of The 33rd International Confer-

ence on Machine Learning, volume 48 of Proceedings of Machine Learning

Research, pages 1928–1937, New York, New York, USA, 2016. PMLR. URL

http://proceedings.mlr.press/v48/mniha16.html.

Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Ben-

gio. On the Number of Linear Regions of Deep Neural Networks. In

https://doi.org/10.1007/978-0-387-74759-0{_}287
http://dx.doi.org/10.1038/nature14236
http://proceedings.mlr.press/v48/mniha16.html

286 BIBLIOGRAPHY

Z Ghahramani, M Welling, C Cortes, N Lawrence, and K Q Weinberger,

editors, Advances in Neural Information Processing Systems, volume 27

of NIPS’14, pages 2924–2932, Cambridge, MA, USA, 2014. Curran As-

sociates, Inc. URL https://proceedings.neurips.cc/paper/2014/file/

109d2dd3608f669ca17920c511c2a41e-Paper.pdf.

Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid von Glehn, Pawel Li-

chocki, Ivan Lobov, Brendan O’Donoghue, Nicolas Sonnerat, Christian Tjan-

draatmadja, Pengming Wang, Ravichandra Addanki, Tharindi Hapuarachchi,

Thomas Keck, James Keeling, Pushmeet Kohli, Ira Ktena, Yujia Li, Oriol

Vinyals, and Yori Zwols. Solving mixed integer programs using neural networks.

2021.

Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri,

Nikhil Devanur, Greg Granger, Phil Gibbons, and Matei Zaharia.

Pipedream: Generalized pipeline parallelism for dnn training. In

ACM Symposium on Operating Systems Principles (SOSP 2019), October

2019. URL https://www.microsoft.com/en-us/research/publication/

pipedream-generalized-pipeline-parallelism-for-dnn-training/.

Deepak Narayanan, Amar Phanishayee, Kaiyu Shi, Xie Chen, and

Matei Zaharia. Memory-efficient pipeline-parallel dnn training. In

International Conference on Machine Learning (ICML 2021), July

2021. URL https://www.microsoft.com/en-us/research/publication/

memory-efficient-pipeline-parallel-dnn-training/.

NCSA. Blue Waters HPC Cluster Trace. Technical report, 2018. URL https:

//github.com/CSLDepend/monet.

John A. Nelder and Roger Mead. A simplex method for function minimization.

Computer Journal, 7:308–313, 1965.

https://proceedings.neurips.cc/paper/2014/file/109d2dd3608f669ca17920c511c2a41e-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/109d2dd3608f669ca17920c511c2a41e-Paper.pdf
https://www.microsoft.com/en-us/research/publication/pipedream-generalized-pipeline-parallelism-for-dnn-training/
https://www.microsoft.com/en-us/research/publication/pipedream-generalized-pipeline-parallelism-for-dnn-training/
https://www.microsoft.com/en-us/research/publication/memory-efficient-pipeline-parallel-dnn-training/
https://www.microsoft.com/en-us/research/publication/memory-efficient-pipeline-parallel-dnn-training/
https://github.com/CSLDepend/monet
https://github.com/CSLDepend/monet

BIBLIOGRAPHY 287

NVIDIA. Nvidia selene: Leadership-class supercomputing infras-

tructure. https://www.nvidia.com/en-us/on-demand/session/

supercomputing2020-sc2019/, Nov 2020.

NVIDIA. Nvidia ai platform delivers big gains for large

language models. https://developer.nvidia.com/blog/

nvidia-ai-platform-delivers-big-gains-for-large-language-models/,

Jul 2022.

OpenAI. Ai and compute. https://openai.com/blog/ai-and-compute/, May

2018.

OpenAI, :, Christopher Berner, Greg Brockman, Brooke Chan, Vicki Che-

ung, Przemysław Dębiak, Christy Dennison, David Farhi, Quirin Fischer,

Shariq Hashme, Chris Hesse, Rafal Józefowicz, Scott Gray, Catherine Olsson,

Jakub Pachocki, Michael Petrov, Henrique Pondé de Oliveira Pinto, Jonathan

Raiman, Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor,

Ilya Sutskever, Jie Tang, Filip Wolski, and Susan Zhang. Dota 2 with large

scale deep reinforcement learning. arXiv, 2019.

OpenCloud. OpenCloud Hadoop Workload. Technical report, 2012. URL

http://ftp.pdl.cmu.edu/pub/datasets/hla/.

Simon Osindero. Deep Mind Lecture Series, Lecture 3, Neural Networks Foun-

dations, 2018.

Alessandro Ottino, Joshua Benjamin, and Georgios Zervas. Ramp: A flat

nanosecond optical network and mpi operations for distributed deep learning

systems. arXiv, 2022. doi: 10.48550/ARXIV.2211.15226. URL https://

arxiv.org/abs/2211.15226.

https://www.nvidia.com/en-us/on-demand/session/supercomputing2020-sc2019/
https://www.nvidia.com/en-us/on-demand/session/supercomputing2020-sc2019/
https://developer.nvidia.com/blog/nvidia-ai-platform-delivers-big-gains-for-large-language-models/
https://developer.nvidia.com/blog/nvidia-ai-platform-delivers-big-gains-for-large-language-models/
https://openai.com/blog/ai-and-compute/
http://ftp.pdl.cmu.edu/pub/datasets/hla/
https://arxiv.org/abs/2211.15226
https://arxiv.org/abs/2211.15226

288 BIBLIOGRAPHY

Aditya Paliwal, Felix Gimeno, Vinod Nair, Yujia Li, Miles Lubin, Pushmeet Kohli,

and Oriol Vinyals. Reinforced Genetic Algorithm Learning for Optimizing

Computation Graphs. arXiv e-prints, art. arXiv:1905.02494, May 2019.

Aditya Paliwal, Felix Gimeno, Vinod Nair, Yujia Li, Miles Lubin, Pushmeet

Kohli, and Oriol Vinyals. Reinforced genetic algorithm learning for optimizing

computation graphs. In 8th International Conference on Learning Represen-

tations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020, 2020. URL

https://openreview.net/forum?id=rkxDoJBYPB.

Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization:

Algorithms and Complexity. Prentice-Hall, Inc., USA, 1982. ISBN 0131524623.

Alberto Paradisi. Optical Communications: Advanced Systems and Devices for

Next Generation Networks. 2019.

C. W. F. Parsonson, Z. Shabka, W. K. Chlupka, B. Goh, and G. Zervas.

Optimal control of soas with artificial intelligence for sub-nanosecond optical

switching. Journal of Lightwave Technology, 38(20):5563–5573, 2020. doi:

10.1109/JLT.2020.3004645.

Christopher Parsonson and Georgios Zervas. Trafpy, July 2021a. URL https:

//github.com/cwfparsonson/trafpy.

Christopher Parsonson and Georgios Zervas. Trafpy rdr data, July 2021b.

Christopher Parsonson, Zacharaya Shabka, Konrad Chlupka, Bawang Goh, and

Georgios Zervas. https://github.com/cwfparsonson/soa_driving, May 2020a.

URL https://doi.org/10.5281/zenodo.3865905.

Christopher Parsonson, Zacharaya Shabka, Konrad Chlupka, Bawang

Goh, and Georgios Zervas. https://doi.org/10.5522/04/12356696.v1,

May 2020b. URL https://rdr.ucl.ac.uk/articles/An_Artificial_

https://openreview.net/forum?id=rkxDoJBYPB
https://github.com/cwfparsonson/trafpy
https://github.com/cwfparsonson/trafpy
https://doi.org/10.5281/zenodo.3865905
https://rdr.ucl.ac.uk/articles/An_Artificial_Intelligence_Approach_to_Optimal_Control_of_Sub-Nanosecond_SOA-Based_Optical_Switches/12356696/1
https://rdr.ucl.ac.uk/articles/An_Artificial_Intelligence_Approach_to_Optimal_Control_of_Sub-Nanosecond_SOA-Based_Optical_Switches/12356696/1

BIBLIOGRAPHY 289

Intelligence_Approach_to_Optimal_Control_of_Sub-Nanosecond_

SOA-Based_Optical_Switches/12356696/1.

Christopher W. F. Parsonson, Alexandre Laterre, and Thomas D. Barrett.

Reinforcement learning for branch-and-bound optimisation using retrospective

trajectories. 2022. doi: 10.48550/ARXIV.2205.14345. URL https://arxiv.

org/abs/2205.14345.

Christopher Parsonson et al. Traffic generation for benchmarking data centre

networks. Optical Switching and Networking, 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-

bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,

Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary

DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit

Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An

imperative style, high-performance deep learning library. In Advances

in Neural Information Processing Systems 32, pages 8024–8035. Cur-

ran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.

pdf.

Alejandro Perdomo-Ortiz, Neil Dickson, Marshall Drew-Brook, Geordie Rose,

and Alán Aspuru-Guzik. Finding low-energy conformations of lattice protein

models by quantum annealing. Scientific Reports, 2:571, 2012.

Julien Perolat, Bart De Vylder, Daniel Hennes, Eugene Tarassov, Florian Strub,

Vincent de Boer, Paul Muller, Jerome T. Connor, Neil Burch, Thomas An-

thony, Stephen McAleer, Romuald Elie, Sarah H. Cen, Zhe Wang, Audrunas

Gruslys, Aleksandra Malysheva, Mina Khan, Sherjil Ozair, Finbarr Tim-

bers, Toby Pohlen, Tom Eccles, Mark Rowland, Marc Lanctot, Jean-Baptiste

Lespiau, Bilal Piot, Shayegan Omidshafiei, Edward Lockhart, Laurent Sifre,

https://rdr.ucl.ac.uk/articles/An_Artificial_Intelligence_Approach_to_Optimal_Control_of_Sub-Nanosecond_SOA-Based_Optical_Switches/12356696/1
https://rdr.ucl.ac.uk/articles/An_Artificial_Intelligence_Approach_to_Optimal_Control_of_Sub-Nanosecond_SOA-Based_Optical_Switches/12356696/1
https://rdr.ucl.ac.uk/articles/An_Artificial_Intelligence_Approach_to_Optimal_Control_of_Sub-Nanosecond_SOA-Based_Optical_Switches/12356696/1
https://arxiv.org/abs/2205.14345
https://arxiv.org/abs/2205.14345
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

290 BIBLIOGRAPHY

Nathalie Beauguerlange, Remi Munos, David Silver, Satinder Singh, Demis

Hassabis, and Karl Tuyls. Mastering the game of stratego with model-

free multiagent reinforcement learning. Science, 378(6623):990–996, 2022.

doi: 10.1126/science.add4679. URL https://www.science.org/doi/abs/

10.1126/science.add4679.

Tekla Perry. Move Over, Moore’s Law: Get Ready for Huang’s Law. Technical

report, 2018.

D. Poole, A. Mackworth, and R. Goebel. Computational Intelligence: A Logical

Approach. Oxford University Press, 1998.

Antoine Prouvost, Justin Dumouchelle, Lara Scavuzzo, Maxime Gasse, Didier

Chételat, and Andrea Lodi. Ecole: A gym-like library for machine learning

in combinatorial optimization solvers. In Learning Meets Combinatorial

Algorithms at NeurIPS2020, 2020. URL https://openreview.net/forum?

id=IVc9hqgibyB.

A. Pucher, E. Gul, R. Wolski, and C. Krintz. Using trustworthy simulation to

engineer cloud schedulers. In 2015 IEEE International Conference on Cloud

Engineering, pages 256–265, 2015. doi: 10.1109/IC2E.2015.14.

Arslan Sajid Raja, Sophie Lange, Maxim Karpov, Kai Shi, Xin Fu, Raphael

Behrendt, Daniel Cletheroe, Anton Lukashchuk, Istvan Haller, Fotini Karinou,

Benn Thomsen, Krzysztof Jozwik, Junqiu Liu, Paolo Costa, Tobias Jan

Kippenberg, and Hitesh Ballani. Ultrafast optical circuit switching for data

centers using integrated soliton microcombs. Nature Communications, 12(1):

5867, Oct 2021. ISSN 2041-1723. doi: 10.1038/s41467-021-25841-8. URL

https://doi.org/10.1038/s41467-021-25841-8.

Bown Ralph. Time division multiplex system for signals of different bandwidth,

u.s. patent us2919308a, 1959.

https://www.science.org/doi/abs/10.1126/science.add4679
https://www.science.org/doi/abs/10.1126/science.add4679
https://openreview.net/forum?id=IVc9hqgibyB
https://openreview.net/forum?id=IVc9hqgibyB
https://doi.org/10.1038/s41467-021-25841-8

BIBLIOGRAPHY 291

C.Radhakrishna Rao. Diversity and dissimilarity coefficients: A unified ap-

proach. Theoretical Population Biology, 21(1):24–43, 1982. ISSN 0040-

5809. doi: https://doi.org/10.1016/0040-5809(82)90004-1. URL https:

//www.sciencedirect.com/science/article/pii/0040580982900041.

Kai Ren, Garth Gibson, YongChul Kwon, Magdalena Balazinska, and Bill

Howe. Hadoop’s Adolescence; A Comparative Workloads Analysis from

Three Research Clusters. In High Performance Computing, Networking,

Storage and Analysis (SCC), page 1452, 2012. ISBN 978-1-4673-6218-4. doi:

10.1109/SC.Companion.2012.253.

N. S. Ribeiro, A. L. Toazza, C. M. Gallep, and E. Conforti. Rise time and gain

fluctuations of an electrooptical amplified switch based on multipulse injection

in semiconductor optical amplifiers. IEEE Photonics Technology Letters, 21

(12):769–771, 2009. doi: 10.1109/LPT.2009.2017731.

Michael Riordan. The Lost History of the Transistor. IEEE Spectrum, 2004.

David Rotman. We’re not Prepared for the End of Moore’s Law. MIT Technology

Review, 2020.

Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C. Sno-

eren. Inside the social network’s (datacenter) network. In Proceedings of the

2015 ACM Conference on Special Interest Group on Data Communication,

SIGCOMM ’15, page 123–137, New York, NY, USA, 2015. Association for

Computing Machinery. ISBN 9781450335423. doi: 10.1145/2785956.2787472.

URL https://doi.org/10.1145/2785956.2787472.

Cynthia Rudin, Chaofan Chen, Zhi Chen, Haiyang Huang, Lesia Semenova, and

Chudi Zhong. Interpretable machine learning: Fundamental principles and 10

grand challenges. ArXiv, abs/2103.11251, 2021.

https://www.sciencedirect.com/science/article/pii/0040580982900041
https://www.sciencedirect.com/science/article/pii/0040580982900041
https://doi.org/10.1145/2785956.2787472

292 BIBLIOGRAPHY

G. A. Rummery and M. Niranjan. On-line q-learning using connectionist systems.

Technical report, 1994.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.

Prentice Hall Press, USA, 3rd edition, 2009. ISBN 0136042597.

Tim Salimans and Richard Chen. Learning montezuma’s revenge from a single

demonstration. 2018.

A. L. Samuel. Some studies in machine learning using the game of checkers. IBM

J. Res. Dev., 3(3):210–229, jul 1959. ISSN 0018-8646. doi: 10.1147/rd.33.0210.

URL https://doi.org/10.1147/rd.33.0210.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized

experience replay. 2016.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg

Klimov. Proximal policy optimization algorithms. CoRR, abs/1707.06347,

2017. URL http://dblp.uni-trier.de/db/journals/corr/corr1707.

html#SchulmanWDRK17.

SCIP. The SCIP Optimization Suite 7.0. Technical report, Optimization Online,

2022.

Zacharaya Shabka and Georgios Zervas. Nara: Learning network-aware resource

allocation algorithms for cloud data centres, 2021.

Zacharaya Shabka, Michael Enrico, Nick Parsons, and Georgios Zervas. One-

shot, offline and production-scalable pid optimisation with deep reinforcement

learning. arXiv, 2022. doi: 10.48550/ARXIV.2210.13906. URL https:

//arxiv.org/abs/2210.13906.

Claude E. Shannon. Programming a computer for playing chess. 1950.

https://doi.org/10.1147/rd.33.0210
http://dblp.uni-trier.de/db/journals/corr/corr1707.html#SchulmanWDRK17
http://dblp.uni-trier.de/db/journals/corr/corr1707.html#SchulmanWDRK17
https://arxiv.org/abs/2210.13906
https://arxiv.org/abs/2210.13906

BIBLIOGRAPHY 293

S. Shen, V. Van Beek, and A. Iosup. Statistical characterization of business-

critical workloads hosted in cloud datacenters. In 2015 15th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing, pages 465–

474, 2015. doi: 10.1109/CCGrid.2015.60.

Kai Shi, Sophie Lange, Istvan Haller, Daniel Cletheroe, Raphael Behrendt, Benn

Thomsen, Fotini Karinou, Krzysztof Jozwik, Paolo Costa, and Hitesh Ballani.

System demonstration of nanosecond wavelength switching with burst-mode

pam4 transceiver. In 45th European Conference on Optical Communication

(ECOC 2019), pages 1–4, 2019. doi: 10.1049/cp.2019.1034.

David Silver. Reinforcement Learning and Simulation-Based Search in Computer

Go. PhD thesis, University of Alberta, 2009.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre,

George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda

Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John

Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach,

Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the

game of Go with deep neural networks and tree search. Nature, 529(7587):

484–489, January 2016. ISSN 0028-0836. doi: 10.1038/nature16961. URL

https://doi.org/10.1038/nature16961.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja

Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian

Bolton, Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre, George

van den Driessche, Thore Graepel, and Demis Hassabis. Mastering the game

of go without human knowledge. Nature, 550(7676):354–359, Oct 2017. ISSN

1476-4687. doi: 10.1038/nature24270. URL https://doi.org/10.1038/

nature24270.

https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature24270

294 BIBLIOGRAPHY

J Simmons. Optical Network Design and Planning. Optical Network Design and

Planning, 2008. ISSN 1935-3839. doi: 10.1007/978-0-387-76476-4.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks

for large-scale image recognition. CoRR, abs/1409.1556, 2014. URL http:

//arxiv.org/abs/1409.1556.

Daniel L. Slotnick, W. Carl Borck, and Robert C. McReynolds. The solomon

computer. In Proceedings of the December 4-6, 1962, Fall Joint Computer

Conference, AFIPS ’62 (Fall), page 97–107, New York, NY, USA, 1962.

Association for Computing Machinery. ISBN 9781450378796. doi: 10.1145/

1461518.1461528. URL https://doi.org/10.1145/1461518.1461528.

Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam

Rajbhandari, Jared Casper, Zhun Liu, Shrimai Prabhumoye, George Zerveas,

Vijay Korthikanti, Elton Zhang, Rewon Child, Reza Yazdani Aminabadi, Julie

Bernauer, Xia Song, Mohammad Shoeybi, Yuxiong He, Michael Houston,

Saurabh Tiwary, and Bryan Catanzaro. Using deepspeed and megatron

to train megatron-turing nlg 530b, a large-scale generative language model.

arXiv, 2022. doi: 10.48550/ARXIV.2201.11990. URL https://arxiv.org/

abs/2201.11990.

Brian A Sparkes. The red and the black: studies in Greek pottery. Routledge,

2013.

Rajiv Srivastava, Rajat Kumar Singh, and Yatindra Nath Singh. Design analysis

of optical loop memory. Journal of Lightwave Technology, 27(21):4821–4831,

2009. ISSN 07338724. doi: 10.1109/JLT.2009.2026493.

Ian Stoica. The future of computing is distributed. https://www.datanami.

com/2020/02/26/the-future-of-computing-is-distributed/, Feb 2020.

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
https://doi.org/10.1145/1461518.1461528
https://arxiv.org/abs/2201.11990
https://arxiv.org/abs/2201.11990
https://www.datanami.com/2020/02/26/the-future-of-computing-is-distributed/
https://www.datanami.com/2020/02/26/the-future-of-computing-is-distributed/

BIBLIOGRAPHY 295

T. Sutili, P. Rocha, C. M. Gallep, and E. Conforti. Energy efficient switch-

ing technique for high-speed electro-optical semiconductor optical ampli-

fiers. Journal of Lightwave Technology, 37(24):6015–6024, 2019. doi:

10.1109/JLT.2019.2945168.

Richard S Sutton. Learning to predict by the methods of temporal differences.

Machine Learning, 3(1):9–44, 1988. ISSN 1573-0565. doi: 10.1007/BF00115009.

URL https://doi.org/10.1007/BF00115009.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An

Introduction. The MIT Press, Cambridge, MA, USA, second edition,

2018. ISBN 0262039249. URL http://incompleteideas.net/book/

the-book-2nd.html.

Bruno Taglietti, Tiago Sutili, Rafael C Figueiredo, Rafael Ferrari, and Evan-

dro Conforti. Semiconductor optical amplifier space switch BER im-

provement and guard-time reduction through feed-forward filtering. Op-

tics Communications, 426:295–301, 2018. ISSN 0030-4018. doi: https:

//doi.org/10.1016/j.optcom.2018.05.065. URL http://www.sciencedirect.

com/science/article/pii/S0030401818304504.

Marius Hobbhahn Tamay. Trends in GPU Price-Performance. Technical report,

2022.

Neil Thompson and Svenja Spanuth. The Decline of Computers As a General

Purpose Technology: Why Deep Learning and the End of Moore’s Law are

Fragmenting Computing. SSRN Electronic Journal, 2018. ISSN 1556-5068.

doi: 10.2139/ssrn.3287769.

Vincent Tjeng, Kai Y. Xiao, and Russ Tedrake. Evaluating robustness of neural

networks with mixed integer programming. In International Conference on

Learning Representations, 2017.

https://doi.org/10.1007/BF00115009
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
http://www.sciencedirect.com/science/article/pii/S0030401818304504
http://www.sciencedirect.com/science/article/pii/S0030401818304504

296 BIBLIOGRAPHY

Michel Tokic and Günther Palm. Value-Difference Based Exploration: Adaptive

Control between Epsilon-Greedy and Softmax. In Joscha Bach and Stefan

Edelkamp, editors, KI 2011: Advances in Artificial Intelligence, pages 335–346,

Berlin, Heidelberg, 2011. Springer Berlin Heidelberg. ISBN 978-3-642-24455-1.

Alexander Trott, Stephan Zheng, Caiming Xiong, and Richard Socher. Keeping

your distance: Solving sparse reward tasks using self-balancing shaped rewards.

In NeurIPS, 2019.

Rodney S. Tucker, Rodney S. Tucker, and Ivan P. Kaminow. High-Frequency

Characteristics of Directly Modulated InGaAsP Ridge Waveguide and Buried

Heterostructure Lasers. Journal of Lightwave Technology, 2(4):385–393, 1984.

ISSN 15582213. doi: 10.1109/JLT.1984.1073654.

A. M. Turing. Computing machinery and intelligence. Mind, 59(236):433–

460, 1950. ISSN 00264423, 14602113. URL http://www.jstor.org/stable/

2251299.

Alan M. Turing. On computable numbers, with an application to the

Entscheidungsproblem. Proceedings of the London Mathematical Society,

2(42):230–265, 1936. URL http://www.cs.helsinki.fi/u/gionis/cc05/

OnComputableNumbers.pdf.

F. Van Den Bergh and A. P. Engelbrecht. Training product unit networks using

cooperative particle swarm optimisers. Proceedings of the International Joint

Conference on Neural Networks, 1(4):126–131, 2001. doi: 10.1109/ijcnn.2001.

939004.

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning

with double q-learning. 2015.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess,

Max Jaderberg, David Silver, and Koray Kavukcuoglu. FeUdal networks

http://www.jstor.org/stable/2251299
http://www.jstor.org/stable/2251299
http://www.cs.helsinki.fi/u/gionis/cc05/OnComputableNumbers.pdf
http://www.cs.helsinki.fi/u/gionis/cc05/OnComputableNumbers.pdf

BIBLIOGRAPHY 297

for hierarchical reinforcement learning. In Doina Precup and Yee Whye

Teh, editors, Proceedings of the 34th International Conference on Machine

Learning, volume 70 of Proceedings of Machine Learning Research, pages 3540–

3549. PMLR, 06–11 Aug 2017. URL https://proceedings.mlr.press/v70/

vezhnevets17a.html.

O. Vinyals, I. Babuschkin, and W.M. Czarnecki. Grandmaster level in StarCraft

II using multi-agent reinforcement learning. Nature, 2019.

Kaixin Wang, Bingyi Kang, Jie Shao, and Jiashi Feng. Improving generalization

in reinforcement learning with mixture regularization, 2020. URL https:

//arxiv.org/abs/2010.10814.

Lin Wang, Xinbo Wang, Massimo Tornatore, Kwang Joon Kim, Sun Me Kim,

Dae Ub Kim, Kyeong Eun Han, and Biswanath Mukherjee. Scheduling with

machine-learning-based flow detection for packet-switched optical data center

networks. Journal of Optical Communications and Networking, 10(4):365–375,

2018. ISSN 19430620. doi: 10.1364/JOCN.10.000365.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing

Zhou, Chao Ma, Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis,

Jinyang Li, and Zheng Zhang. Deep graph library: A graph-centric, highly-

performant package for graph neural networks. 2019. doi: 10.48550/ARXIV.

1909.01315. URL https://arxiv.org/abs/1909.01315.

Weiyang Wang, Moein Khazraee, Zhizhen Zhong, Zhijao Jia, Dheevatsa Mudi-

gere, Ying Zhang, Anthony Kewitsch, and Manya Ghobadi. Topoopt: Op-

timizing the network topology for distributed dnn training. arXiv preprint

arXiv:2202.00433, 2022.

https://proceedings.mlr.press/v70/vezhnevets17a.html
https://proceedings.mlr.press/v70/vezhnevets17a.html
https://arxiv.org/abs/2010.10814
https://arxiv.org/abs/2010.10814
https://arxiv.org/abs/1909.01315

298 BIBLIOGRAPHY

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanc-

tot, and Nando de Freitas. Dueling network architectures for deep rein-

forcement learning, 2015. URL http://arxiv.org/abs/1511.06581. cite

arxiv:1511.06581Comment: 15 pages, 5 figures, and 5 tables.

C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, King’s College,

Oxford, 1989.

Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning,

8(3):279–292, May 1992. ISSN 1573-0565. doi: 10.1007/BF00992698. URL

https://doi.org/10.1007/BF00992698.

Lukas M. Weber, Wouter Saelens, Robrecht Cannoodt, Charlotte Soneson,

Alexander Hapfelmeier, Paul P. Gardner, Anne Laure Boulesteix, Yvan Saeys,

and Mark D. Robinson. Essential guidelines for computational method

benchmarking. Genome Biology, 20(1):1–12, 2019. ISSN 1474760X. doi:

10.1186/s13059-019-1738-8.

Joel Webster. “SERIES 7000 - 384x384 port Software-

Defined Optical Circuit Switch. https://www.polatis.com/

series-7000-384x384-port-software-controlled-optical-circuit-switch-sdn-enabled.

asp, 2022. URL https://www.polatis.com/

series-7000-384x384-port-software-controlled-optical-circuit-switch-sdn-enabled.

asp. [Online]. Available: https://www.polatis.com/

series-7000-384x384-port-software-controlled-optical-circuit-switch-sdn-enabled.

asp.

Kyle Wiggers. Nvidia makes massive language model avail-

able to enterprises. https://venturebeat.com/uncategorized/

nvidia-makes-massive-language-model-available-to-enterprises/,

Nov 2021.

http://arxiv.org/abs/1511.06581
https://doi.org/10.1007/BF00992698
https://www.polatis.com/series-7000-384x384-port-software-controlled-optical-circuit-switch-sdn-enabled.asp
https://www.polatis.com/series-7000-384x384-port-software-controlled-optical-circuit-switch-sdn-enabled.asp
https://www.polatis.com/series-7000-384x384-port-software-controlled-optical-circuit-switch-sdn-enabled.asp
https://www.polatis.com/series-7000-384x384-port-software-controlled-optical-circuit-switch-sdn-enabled.asp
https://www.polatis.com/series-7000-384x384-port-software-controlled-optical-circuit-switch-sdn-enabled.asp
https://www.polatis.com/series-7000-384x384-port-software-controlled-optical-circuit-switch-sdn-enabled.asp
https://www.polatis.com/series-7000-384x384-port-software-controlled-optical-circuit-switch-sdn-enabled.asp
https://www.polatis.com/series-7000-384x384-port-software-controlled-optical-circuit-switch-sdn-enabled.asp
https://www.polatis.com/series-7000-384x384-port-software-controlled-optical-circuit-switch-sdn-enabled.asp
https://venturebeat.com/uncategorized/nvidia-makes-massive-language-model-available-to-enterprises/
https://venturebeat.com/uncategorized/nvidia-makes-massive-language-model-available-to-enterprises/

BIBLIOGRAPHY 299

Ronald J. Williams. Simple statistical gradient-following algorithms for connec-

tionist reinforcement learning. Mach. Learn., 8(3–4):229–256, May 1992. ISSN

0885-6125. doi: 10.1007/BF00992696. URL https://doi.org/10.1007/

BF00992696.

David P. Williamson and David B. Shmoys. The Design of Approximation

Algorithms. Cambridge University Press, 2011. ISBN 978-0-521-19527-0.

R. Wolski and J. Brevik. Qpred: Using quantile predictions to improve power

usage for private clouds. In 2017 IEEE 10th International Conference on Cloud

Computing (CLOUD), pages 179–187, 2017. doi: 10.1109/CLOUD.2017.31.

Tailin Wu and Max Tegmark. Toward an artificial intelligence physicist

for unsupervised learning. Phys. Rev. E, 100:033311, Sep 2019. doi:

10.1103/PhysRevE.100.033311. URL https://link.aps.org/doi/10.1103/

PhysRevE.100.033311.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,

Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey,

Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser,

Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens,

George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason

Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and

Jeffrey Dean. Google’s neural machine translation system: Bridging the gap

between human and machine translation. arXiv preprint arXiv:1609.08144,

2016. URL http://arxiv.org/abs/1609.08144. cite arxiv:1609.08144.

Yahoo. Yahoo Computing Systems Data. Technical report, 2015.

URL https://webscope.sandbox.yahoo.com/catalog.php?datatype=

s{&}guccounter=1.

Giulia Zarpellon, Jason Jo, Andrea Lodi, and Yoshua Bengio. Parameterizing

branch-and-bound search trees to learn branching policies, 2021.

https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://link.aps.org/doi/10.1103/PhysRevE.100.033311
https://link.aps.org/doi/10.1103/PhysRevE.100.033311
http://arxiv.org/abs/1609.08144
https://webscope.sandbox.yahoo.com/catalog.php?datatype=s{&}guccounter=1
https://webscope.sandbox.yahoo.com/catalog.php?datatype=s{&}guccounter=1

300 BIBLIOGRAPHY

Georgios Zervas, Hui Yuan, Arsalan Saljoghei, Qianqiao Chen, and Vaibhawa

Mishra. Optically disaggregated data centers with minimal remote memory

latency: Technologies, architectures, and resource allocation [invited]. Journal

of Optical Communications and Networking, 10(2):A270–A285, 2018. doi:

10.1364/JOCN.10.00A270.

Jesse Zhang, Haonan Yu, and Wei Xu. Hierarchical reinforcement learning by

discovering intrinsic options. In International Conference on Learning Repre-

sentations, 2021a. URL https://openreview.net/forum?id=r-gPPHEjpmw.

Tianjun Zhang, Huazhe Xu, Xiaolong Wang, Yi Wu, Kurt Keutzer, Joseph E.

Gonzalez, and Yuandong Tian. Noveld: A simple yet effective exploration

criterion. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan,

editors, Advances in Neural Information Processing Systems, 2021b. URL

https://openreview.net/forum?id=CYUzpnOkFJp.

https://openreview.net/forum?id=r-gPPHEjpmw
https://openreview.net/forum?id=CYUzpnOkFJp

	Abstract
	Acknowledgements
	Introduction
	The Information Revolution & Computer Networks
	Artificial Intelligence for Optimisation
	Structure of & Publications from this Thesis
	Background
	Part I: Optimising the Physical Plane
	Part II: Optimising the Orchestration Plane
	Part III: Optimising the Simulator

	Background
	Computer Networks
	Packet vs. Circuit Switching
	Electronic vs. Optical Networking
	Computational Complexity
	Discrete Optimisation
	Solving NP-Hard Problems
	Artificial Intelligence
	Machine Learning
	Function Approximation with Neural Networks
	Graph Neural Networks
	Reinforcement Learning
	Deep Q-Learning

	I Optimising the Physical Plane
	SOA Control for Sub-Nanosecond Optical Switching
	Introduction
	Background
	Semiconductor Optical Amplifiers
	Evolutionary & Swarm Algorithms
	Genetic Algorithms
	Ant Colony Optimisation
	Particle Swarm Optimisation

	Related Work
	Method
	Simulation Setup
	Laboratory Setup
	Results & Discussion
	Hyperparameter Tuning & Generality Testing in Simulation
	Optimising an SOA in the Laboratory

	Conclusions, Limitations, & Further Work

	II Optimising the Orchestration Plane
	Solving NP-Hard Discrete Optimisation Problems
	Introduction
	Background
	Mixed Integer Linear Programming
	Branch-and-Bound

	Related Work
	Retro Branching Methodology
	Experimental Setup
	Results & Discussion
	Performance of Retro Branching
	Analysis of Retro Branching

	Conclusions, Limitations, & Further Work

	Partitioning Distributed Compute Jobs
	Introduction
	Background
	Parallelisation
	RAMP

	Related Work
	User-Defined Blocking Rate
	PAC-ML Partitioning Methodology
	Markov Decision Process Formulation
	PAC-ML Learning Setup

	Experimental Setup
	Results & Discussion
	Performance of the PAC-ML Partitioner
	Analysis of the PAC-ML Partitioner

	Conclusions, Limitations, & Further Work

	III Optimising the Simulator
	A Framework for Generating Custom and Reproducible Network Traffic
	Introduction
	Background & Related Work
	Method
	Design Objectives
	TrafPy Overview
	Distribution Accuracy and Reproducibility
	Node Distributions
	Traffic Generation Methodology
	Stipulating Traffic Generation Guidelines

	Experimental Setup
	Network
	Traffic Traces
	Simulation Details

	Results & Discussion
	Conclusions, Limitations, & Further Work

	Accelerating Traffic Matrix Generation at Scale
	Introduction
	Custom Traffic Matrix Generation
	Experimental Setup
	Results & Discussion
	Conclusions, Limitations, & Further Work

	Afterword: Conclusions, Limitations, & Further Work
	Solving NP-Hard Discrete Optimisation Problems
	RL Training
	Training Parameters
	Training Time and Convergence

	Neural Network
	Architecture
	Inference & Solving Times

	Data Set Size Analysis
	SCIP Parameters
	Observation Features
	FMSTS Implementation
	Pseudocode
	Retrospective Trajectory Construction
	Maximum Leaf LP Gain

	Cost of Strong Branching Labels

	A Framework for Generating Custom and Reproducible Synthetic Traffic
	Table of Notation
	TrafPy Distribution Parameters
	TrafPy API Examples
	Custom Distribution Shaping
	Benchmark Importing & Flow Generation

	Pseudocode
	Scheduling
	TrafPy Benchmark Protocol

	Traffic Skew Convergence
	Scheduler Performance Summary
	Completion Time Performance Plots
	Throughput and Flows Accepted Performance Plots
	Performance Metric Tables
	DCN Benchmarks
	Skewed Nodes Distribution Benchmark
	Rack Distribution Benchmark

	Winner Tables

	A Note on the Flow- vs. Job-Centric Traffic Paradigms

	Partitioning Distributed Compute Jobs
	Metric Definitions
	Experimental Hardware
	Additional Simulation Details
	Code Structure
	Job Allocation Procedure
	Job Allocation Methods
	First-Fit Operation Placement in RAMP
	Evaluating the job completion time
	Possible Causes of a Job Being Blocked

	Job Computation Graph Data Sets
	Neural Network Architecture
	Reinforcement Learning Algorithm
	Final Learning Curves

	Additional Experimental Results

