UCL

DOCTORAL THESIS

Computer Network Optimisation with

Artificial Intelligence and Optics

Author: Supervisor:
Christopher W. F. Georgios ZERVAS
PARSONSON

A thesis submitted for the degree of

Doctor of Philosophy

Optical Networks Group

Electronic and Electrical Engineering Department

2023

https://www.ucl.ac.uk/
http://www.johnsmith.com
http://www.johnsmith.com
http://www.jamessmith.com
https://www.ucl.ac.uk/electronic-electrical-engineering/research/optical-networks
http://department.university.com

il

“Science is the belief in the ignorance of experts.”

Richard Feynman

1ii

Abstract

Christopher W. F. PARSONSON

Computer Network Optimisation with Artificial Intelligence and Optics

The last decade has seen a proliferation in data-intensive compute applications
such as artificial intelligence (AI), genome sequencing, and the internet-of-things.
The ever-growing throughput demand of these big-data jobs has coincided with
a slow down in the development of powerful computer chips. Consequently, there
has been a shift away from local computation with general-purpose CPUs towards
remote pooling of specialised high-bandwidth processors in cloud data centres
(DCs) and high-performance compute (HPC) clusters. Such computation relies
on a computer network to facilitate data querying and parallel processing. The
traditional Moore’s Law approach of evaluating compute power and cost purely
in terms of individual end points is therefore no longer appropriate. Instead,
compute must now be thought of as a system of interconnected resources which
can be orchestrated to perform a task.

However, there has been a lack of development in next-generation computer
networks, leading to the performance bottleneck of these systems moving away
from the end point processors themselves and into the network connecting
them. Optical networking is a technology which can offer orders-of-magnitude
improvement in computer network performance. For optical networks to be
widely used in DCs and HPCs, several obstacles related to physical optical device
characteristics and resource management must be overcome. In this thesis, we

develop and evaluate novel Al approaches for addressing these challenges.

iv

The first part of the thesis looks at optimising the physical plane’s devices
in an optical computer network. Concretely, three gradient-free Al signal
control approaches (ant colony optimisation, a genetic algorithm, and particle
swarm optimisation) are proposed to enable high-bandwidth, low-power optical
switching technologies to operate on the sub-nanosecond timescales required to
realise an optical circuit switched data centre network.

The second part of the thesis considers the problem of optimising the orches-
tration plane’s resource management methods used to control optical computer
networks. A novel algorithm, retro branching, is proposed to improve the solve
time performance of the canonical branch-and-bound exact solver using a graph
neural network (GNN) trained with reinforcement learning (RL). State-of-the-art
RL-for-branching results are achieved, opening the possibility for branch-and-
bound to be applied to large NP-hard discrete optimisation problems such as
those found in computer network resource management. We also propose another
algorithm, PAC-ML (partitioning for asynchronous computing with machine
learning), which trains a GNN with RL to automatically decide how much to
distribute deep learning jobs in an optical HPC architecture in order to meet
user-defined run time requirements, minimise the blocking rate, and maximise
system throughput under dynamic scenarios; the first of its kind to consider
such a problem setting.

So far we have have considered optimising the devices in the physical plane
and the resource managers in the orchestration plane of the computer network.
These areas have both received research attention in prior works. However, what
has not received much consideration is the underlying test bed in which physical
and orchestration plane research and optimisation is typically conducted. Real
DC and HPC environments are generally not available for research due to their
proprietary nature and expensive cost of deployment. Consequently, researchers
rely on simulated computer networks during novel system development. The

fidelity, reproducibility, and flexibility of these simulations is therefore at least as

important as the development and optimisation of the physical and orchestration
systems for which they are used. Poor simulations will lead to the misguided
development of network systems which do not perform as expected when deployed
in real production environments. With this motivation, the third part of this
thesis considers how to design and optimise the simulator used for computer
network system research and development. A novel open source traffic generation
framework and library, TrafPy, is presented, as well as a subsequent update
to the generation algorithm to make it scalable to computer networks with

thousands of nodes.

vii

Acknowledgements

I would like to thank my supervisor, Georgios Zervas, for taking me on as as a
Ph.D. student in his group. Georgios gave me the space to explore a variety of
topics across a broad range of research areas and provided invaluable guidance
both in relation to the Ph.D. and the additional extra-curricula experiences
I put myself forward for. I am also thankful to the wider Optical Networks
Group, headed by Polina Bayvel, for providing a light-hearted but focused and
academically rigorous environment in which I could develop as a researcher. In
addition, I am grateful to Lee Heagney, the Department’s IT & Systems Manager,
for providing critical technical help throughout my Ph.D.; even outside of office
hours. I also thank EPSRC and the Cambridge-UCL Integrated Photonic and
Electronic Systems centre for doctoral training for funding both my M.Res. and
Ph.D. studies. Moreover, I thank the ConceptionX team for giving me the chance
to learn more about how to convert blue sky Ph.D. research into practical and
useful solutions, as well as for all of the amazing people and companies which the
programme connected me with. Furthermore, I'd like to thank Thomas Barrett
and Alexandre Laterre for giving me the opportunity to undertake an internship
at InstaDeep, for supervising my project, and for patiently teaching me an
enormous amount about how to methodically and persistently conduct novel
machine learning research. On that note, I also thank everyone at InstaDeep
for being so welcoming and for enabling me to experience how an exceptional
research and engineering team operates in industry. I am also grateful to The
Alan Turing Institute for admitting me as an Enrichment Student for a six-

month placement, during which I met many fantastic people from a variety of

viil

backgrounds and research topics and with whom I had numerous interesting
conversations and fun experiences.

I would also like to thank all of the researchers, commentators, and authors
whose work I cite throughout this thesis for being the source of many of my
ideas and projects. I am especially grateful to Hongzi Mao, David Silver, Jure
Leskovec, and Jakob Foerster, whose research I found particularly inspiring
and who had a significant influence on my work. I also thank Mark Oxborrow
and Julian Jones whose lectures sparked my interest in academic research, as
well as my undergraduate tutor Fionn Dunne who engaged with this interest
and guided me through my studies. I am also grateful to my early teachers at
Barnardiston, particularly Paul Whittles, Caroline Blake, and Keith Boulter,
whose never-ending patience, encouragement, and generosity was most helpful.

Finally, I would like to thank my friends and family for supporting me during
my academic studies, especially Yasmin who chose to put up with me all these
years. | am particularly thankful to my parents, Richard and Sharon Parsonson,
for having provided me with all of the opportunities I could hope for. I am also
enormously grateful to my grandparents, Stuart and Pamela Parsonson, whose
infectious passion for knowledge and maths in part motivated my decision to
pursue academic research, and whose many hours of teaching in the preceding

years enabled me to do so.

Contents

Abstract
Acknowledgements

1 Introduction

1.1 The Information Revolution & Computer Networks
1.2 Artificial Intelligence for Optimisation.
1.3 Structure of & Publications from this Thesis
1.3.1 Backgroundo
1.3.2 Part I: Optimising the Physical Plane
1.3.3 Part II: Optimising the Orchestration Plane

1.3.4 Part III: Optimising the Simulator

2 Background

2.1 Computer Networks
2.2 Packet vs. Circuit Switching
2.3 Electronic vs. Optical Networking
2.4 Computational Complexity
2.5 Discrete Optimisation
2.6 Solving NP-Hard Problems
2.7 Artificial Intelligence oL
2.8 Machine Learningo
2.9 Function Approximation with Neural Networks

2.10 Graph Neural Networks

10
11

11

2.11 Reinforcement Learning 33
2.12 Deep Q-Learningo 38
Optimising the Physical Plane 45
SOA Control for Sub-Nanosecond Optical Switching 47
3.1 Introduction 49
3.2 Backgroundo 50
3.2.1 Semiconductor Optical Amplifiers 50
3.2.2 Evolutionary & Swarm Algorithms 55
3.2.3 Genetic Algorithms L. 57
3.2.4 Ant Colony Optimisation 60
3.2.5 Particle Swarm Optimisation 62
3.3 Related Work oo 65
3.4 Method 67
3.5 Simulation Setup L 70
3.6 Laboratory Setup 7
3.7 Results & Discussion 79

3.7.1 Hyperparameter Tuning & Generality Testing in Simulation 79

3.7.2 Optimising an SOA in the Laboratory 88

3.8 Conclusions, Limitations, & Further Work 93
Optimising the Orchestration Plane 97
Solving NP-Hard Discrete Optimisation Problems 99
4.1 Introduction 102
4.2 Backgroundo 105
4.2.1 Mixed Integer Linear Programming 105
4.2.2 Branch-and-Bound 105

4.3 Related Work 107

X1

4.4 Retro Branching Methodology 109
4.5 Experimental Setup oL 112
4.6 Results & Discussiono 113
4.6.1 Performance of Retro Branching 113
4.6.2 Analysis of Retro Branching 115

4.7 Conclusions, Limitations, & Further Work 117
5 Partitioning Distributed Compute Jobs 119
5.1 Introduction 122
5.2 Background 125
5.2.1 Parallelisation 0oL 125
52.2 RAMP 129

5.3 Related Work oo 130
5.4 User-Defined Blocking Rate 133
5.5 PAC-ML Partitioning Methodology 136
5.5.1 Markov Decision Process Formulation 136
5.5.2 PAC-ML Learning Setup 140

5.6 Experimental Setupo 140
5.7 Results & Discussion 144
5.7.1 Performance of the PAC-ML Partitioner 144
5.7.2 Analysis of the PAC-ML Partitioner 145

5.8 Conclusions, Limitations, & Further Work 147
IITI Optimising the Simulator 149

6 A Framework for Generating Custom and Reproducible Network

Traffic 151
6.1 Introduction L 154
6.2 Background & Related Work 157

6.3 Method 160

Xii

7

8

A

6.3.1 Design Objectives
6.3.2 TrafPy Overview,
6.3.3 Distribution Accuracy and Reproducibility
6.3.4 Node Distributions
6.3.5 Traffic Generation Methodology
6.3.6 Stipulating Traffic Generation Guidelines
6.4 Experimental Setupo
6.4.1 Network
6.4.2 Traffic Traces
6.4.3 Simulation Details
6.5 Results & Discussiono

6.6 Conclusions, Limitations, & Further Work

Accelerating Traffic Matrix Generation at Scale

7.1 Introduction
7.2 Custom Traffic Matrix Generation
7.3 Experimental Setup
7.4 Results & Discussion

7.5 Conclusions, Limitations, & Further Work

Afterword: Conclusions, Limitations, & Further Work

Solving NP-Hard Discrete Optimisation Problems

A1l RL Training
A.1.1 Training Parameters
A.1.2 Training Time and Convergence

A.2 Neural Network
A.2.1 Architecture
A.2.2 Inference & Solving Times

A.3 Data Set Size Analysis L.

181
183
184
187
188
189

191

xiii

A4 SCIP Parameters 198
A.5 Observation Features 198
A.6 FMSTS Implementation 198
A7 Pseudocodeo 200

A.7.1 Retrospective Trajectory Construction 200

A.7.2 Maximum Leaf LP Gain 202
A.8 Cost of Strong Branching Labels 202

B A Framework for Generating Custom and Reproducible Syn-

thetic Traffic 205
B.1 Table of Notation 205
B.2 TrafPy Distribution Parameters 205
B.3 TrafPy API Examples 209
B.3.1 Custom Distribution Shaping 209
B.3.2 Benchmark Importing & Flow Generation 213

B.4 Pseudocode 215
B.4.1 Schedulingo oo 215
B.4.2 TrafPy Benchmark Protocol 215

B.5 Traffic Skew Convergence 217
B.6 Scheduler Performance Summary 221
B.6.1 Completion Time Performance Plots 221
B.6.2 Throughput and Flows Accepted Performance Plots . . . 222
B.6.3 Performance Metric Tables 223
DCN Benchmarks 223

Skewed Nodes Distribution Benchmark 229

Rack Distribution Benchmark 232

B.6.4 Winner Tables 235

B.7 A Note on the Flow- vs. Job-Centric Traffic Paradigms 238

Xiv

C Partitioning Distributed Compute Jobs 241
C.1 Metric Definitions 241
C.2 Experimental Hardware 241
C.3 Additional Simulation Details 241

C.3.1 Code Structure 241
C.3.2 Job Allocation Procedure 243
C.3.3 Job Allocation Methods 243
C.3.4 First-Fit Operation Placement in RAMP 244
C.3.5 Evaluating the job completion time 245
C.3.6 Possible Causes of a Job Being Blocked 246
C.4 Job Computation Graph Data Sets 246
C.5 Neural Network Architecture 248
C.6 Reinforcement Learning Algorithm 251
C.6.1 Final Learning Curves 254
C.7 Additional Experimental Results 254

List of Figures

1.1

1.2

Visualisation of the three current trends in computing. (a) The
number of hyper-scale cloud data centres world-wide almost dou-
bled in a five year period [Cisco, 2016]. (b) By 2025, the majority
of processors in data centres will no longer be general-purpose
CPUs, but rather specialised high-bandwidth processors such as
GPUs and FPGAs [McKinsey, 2019]. (c) The number of dis-
tributed A100 GPUs needed to train the state-of-the-art natural
language processing models released between 2018 — 2022 has
grown by over 1000x [Kharya and Alvi, 2021].
(a) From 2010 to 2018, the average compute performance improve-
ment of the nodes in the top ten high-performance computing
(HPC) computer network systems far outstripped the improve-
ment in their communication bandwidth, leading to 92% fewer
bytes being communicated per floating point operation (FLOP)
[Bergman, 2018]. (b) How consequently the network overhead
- the fraction of the job completion time spent communicating
information between workers when no computation is taking place
- of distributed deep learning jobs increases with the number of
machines used in Meta’s GPU cluster, shifting the performance

bottleneck into the network [Wang et al., 2022].

XV

XVi

2.1

2.2

2.3

24

2.5

2.6

Visualisation of a computer network divided into the physical
plane made up of physical devices such as switches, end-point
processors, and communication links, and the orchestration plane
made up of resource management schemes such as job partitioning,
scheduling, and placement algorithms.
A visual comparison of the difference between packet and vanilla
circuit switching. (a) In vanilla circuit switching, once a physical
transmission line is established between source and destination,
the line cannot be interrupted or facilitate the transfer of any
other data. (b) In packet switching, the data of a single message is
split up into multiple "packets’ labelled with the message’s source
and destination. This allows each packet to take a number of
routes along different transmission lines and to be time-interleaved
with other messages’ packets in order to get to its destination.

Meta’s cloud data centre (a) packet size distribution and (b)
throughput as a function of latency assuming 100 gigabits per
second (Gbps) links [Clark et al., 2018].
(a) Visualisation of how an electronic network with 64-port switches
is typically scaled; layers are added to the switch hierarchy in
order to accommodate more servers, leading to a larger oversub-
scription ratio. (b) Assuming 400-Gbps per port, how the total
power consumed by the electronic network per unit of information
communicated increases significantly as the number of switch
layers (shown in brackets on the x-axis) is increased [Ballani et al.,
2020]. ..
Visualisation of how common time complexities scale with problem
instance size.
Euler diagram for the P, NP, NP-complete, and NP-hard com-

plexity classes, assuming P # NP.

14

15

17

18

20

2.7

2.8

2.9

2.10

a) Diagram showing the whole solution space of two decision
variables, x1 and x, for a linear convex optimisation problem. In
the continuous case, the equations bounding the feasible solution
space are known and the optimal solution is guaranteed to reside
on one of the boundary’s corners. In the discrete case where the
two variables must be integers, the equations of the feasibility
bounds are unknown and the optimal solution may not necessarily
be at corner points. (b) Illustration of how non-convex continuous
optimisation tasks can, although by no means trivially, be solved
with the use of gradient descent..
Main AT branches and sub-categories, with the methods explored
and used in this thesis highlighted. This diagram is far from
comprehensive, but gives a rough overview of where the methods
used in this thesis fit in to the broader Al paradigm.
Visualisation of a typical layer in a fully connected feedforward NN.
Each layer is composed of units, which in turn are composed of a
linear transform on a set of weights and a bias value followed by
a non-linear ‘activation’ function. In the specific example drawn
here, a four-pixel image is flattened into a vector and passed
into a single NN layer with three units (‘dimensions’). Each unit
outputs a single scalar whose value depends on the values of the
units’ weights and biases. Each unit’s output corresponds to the
NN’s confidence that the image belongs to one of three possible
image classes (e.g. dog, cat, or horse). During training, the values
of the weights and biases are optimised until the NN successfully
maps images to the correct corresponding image class.
Visualisation comparing non-Euclidean graph structures, such as
networks and molecules, with Euclidean-structured data, such as

sentences and images. Lo oo

xXVvii

xXVviii

2.11

2.12

3.1

3.2

3.3

3.4

3.5

The stages performed by each layer in a typical graph neural
network (GNN). Note that if the optional graph-level readout in
stage 4 is performed, it is only done in the final GNN layer. . . .
A reinforcement learning setting, showing the iterative environ-
ment interaction feedback loop used by the agent to learn strate-

gies which maximise the reward signal.

Schematic of an optical amplification device, such as a semiconduc-
tor optical amplifier (SOA). An optical input signal is amplified
in the gain region by the process of stimulated emission, thereby
outputting an optical signal with higher intensity. This is an
‘all-optical” process. o
Diagram of the stimulated emission process.
Schematic of how SOAs can be used to create an all-optical switch.
Input light signals are split up and passed along all the possible
routing paths. The SOA along the routing path corresponding to
the desired output fibre that the input signal should be routed
to is switched on, and all other SOAs are switched off. The SOA
that is switched on re-amplifies the split signal by stimulated
emission and allows it through to the output port. The SOAs
that are switched off absorb the signal by stimulated absorption.
All the fibres and SOAs are held in a polymer casing.
Schematic of the process of stimulated absorption. An incident
photon passes its energy on to an electron in the valence band,
exciting an electron to the conduction band.
Visualisation of a typical SOA response when amplifying an optical
signal. The SOA’s optical output will overshoot the target settling
point, and then ring for some period of time before settling within

+5% of the steady state.

33

53

3.6

3.7
3.8

3.9

3.10

3.11

3.12

Schematic of the process of spontaneous emission. An electron in
an excited state spontaneously recombines with a hole, emitting
a photon equal to the energy across which the electron relaxed. .
Visualisation of how PSO was applied to SOA optimisation.

Equivalent circuit diagrams of an SOA’s (a) microwave injection
current parasitics and (b) intrinsic parasitics, diffusion character-

istics and gain region.

Semi-logarithmic I-V plot for the SOA used to calculate n and I.

Equivalent circuit diagram of the SOA gain region (a) below Irpg
and (b) above Ipgp. Lo
Diagram of the semiconductor optical amplifier (SOA) experimen-
tal setup used.
Frequency responses of the theoretical transfer function (TF) and

the experimental SOA (Exp).

Xix

95
71

73
73

XX

3.13

3.14

3.15

3.16

Simulated SOA optical response to (a) particle swarm optimisa-
tion (PSO), (b) ant colony optimisation (ACO), and (c) genetic
algorithm (GA) driving signals relative to a standard step input.
For reference, the target SPs used have also been plotted. Learn-
ing curves showing how both the cost spread and the optimum
solution improved as the (d) PSO, (e) ACO, and (f) GA algo-
rithms were tuned, showing 10 learning curves for each set of
hyperparameters. The curves for the optimum hyperparameters
have been plotted in green. For PSO in (d), some additional
information has been plotted: i) No dynamic PSO, pre-impulse
step injection current (PISIC) shell, or embedded step (red), ii)
no PISIC shell or embedded step (blue), iii) no embedded step
(orange), and iv) the final PSO algorithm (green, also plotted on
separate graph (inserted)). For GA, the i) default DEAP library
constants (red) and ii) optimised (green) hyperparameter learning
curves have been plotted. For ACO, the blue curve is for a run
with a larger pheromone exponent (0.5) value than the optimum,
and the red is for a larger dynamic range on the signal search
space (£50%). 85
Simulated SOA optical responses of 10 different SOAs (each with
a different transfer function) to (a) step, (c¢) PSO, (e) ACO, and
(g) GA, and the corresponding driving signals for (b) PSO, (d)
ACO, and (f) GA. All artificial intelligence (AI) optimisations
were done with the same hyperparameters and a common target SP. 87
Experimental SOA responses to the step, PISIC, multi-impulse
step injection current (MISIC)1, raised cosine and proportional-
integral-derivative (PID) driving signals. 88
Experimental results showing the optimised SOA optical outputs
for (a) PSO, (b) ACO, and (c) GA. 90

3.17

3.18

4.1

Experimental results showing the optimised SOA electrical driving
signal inputs for (a) PSO, (b) ACO, and (¢) GA.
Scatter plot comparing the experimental rise times, settling times
and overshoots of all the driving signals tested. The outlined
target region highlights the performance required for truly sub-

nanosecond optical switching.o

The proposed retro branching approach used during training.
Each node is labelled with: Top: The unique ID assigned when
it was added to the tree, and (where applicable); bottom: The
step number (preceded by a ‘#’) at which it was visited by the
brancher in the original Markov decision process (MDP). The
MILP is first solved with the brancher and the branch-and-bound
(B&B) tree stored as usual (forming the ‘original episode’). Then,
ignoring any nodes never visited by the agent, the nodes are added
to trajectories using some ‘construction heuristic’ (see Sections
4.4 and 4.6) until each eligible node has been added to one, and
only one, trajectory. Crucially, the order of the sequential states
within a given trajectory may differ from the state visitation order
of the original episode, but all states within the trajectory will
be within the same sub-tree. These trajectories are then used for

training.

Xx1

102

xXxii

4.2

4.3

Typical 4-stage procedure iteratively repeated by B&B to solve an
MILP. Each node represents an MILP derived from the original
MILP being solved, and each edge represents the constraint added
to derive a new child node (sub-MILP) from a given parent. Each
node is labelled with the decision variable values of the solved LP
relaxation on the right hand side, the corresponding dual bound
in the centre, and the established primal bound beneath. Each
edge is labelled with the introduced constraint to generate the
child node. Green dotted outlines are used to indicate which
node and variable were selected in stages (1) and (2) to lead to
stages (3) and (4). The global primal (P) and dual (D) bounds
are increasingly constrained by repeating stages 1-4 until P and
D are equal, at which point a provably optimal solution will
have been found. Note that for clarity we only show the detailed
information needed at each stage, but that this does not indicate
any change to the state of the tree.
Performances of the branching agents on the 500 x 1000 set
covering instances. (a) Validation curves for the reinforcement
learning (RL) agents evaluated in the same non-depth-first search
(DFS) setting. (b) CDF of the number of B&B steps taken by
the RL agents for each instance seen during training. (c¢) The
best validation performances of each branching agent. (d) The
instance-level validation performance of the retro branching agent
relative to the imitation learning (IL) agent, with RL matching

or beating IL on 42% of test instances.

4.4 500 x 1000 set covering performances. (a) Validation curves for

0.1

four retro branching agents each trained with a different trajectory
construction heuristic: Maximum LP gain (MLPG); random (R);
visitation order (VO); and deepest (D). (b) The performances
of the best retro branching agent deployed in three different
node selection environments (default SCIP, DFS, and breadth-

first search (BFS)) normalised relative to the performances of

pseudocost branching (PB) (measured by number of tree nodes).

Diagram showing a deep neural network (DNN) job DAG being
partitioned. Top: A forward pass DAG where each node has an
associated partition degree (how many times it will be divided
when partitioned). Bottom: A partitioned DAG with forward and
backward passes handled consecutively. Green edges in the graph
represent data flow (i.e. output to input) between consecutive
operations in the forward pass. Orange edges represent gradient
exchanges processed in the backward pass (backpropagation).
Blue edges represent full connectivity collective operations to
synchronise weight updates across partitioned components of an
operation. Note that, for brevity, the top unpartitioned DAG
only shows the forward pass (since, before partitioning, the graph
structure is identical to the backward pass), whereas the bottom
partitioned DAG shows both the forward and backwards passes

(since, after partitioning, the graph structures are different).

xXxiil

116

126

XX1v

5.2

5.3

The mean network overhead of the 6 distributed deep learning jobs
reported by [Wang et al., 2022 in Meta’s GPU cluster compared
to that of RAMP as reported by Ottino et al. [2022] on the 5 jobs
considered in our work. Note that this is an approximate com-
parison, and that the important takeaway is that RAMP retains
low network overheads as jobs become increasingly distributed. .
(a-b) Demonstration of how more partitioning can lead to a lower
job completion time (JCT) than no partitioning (i.e. sequentially
running the job on a single device), but this may be at the
cost of a higher blocking rate since more cluster resources are
occupied when subsequent jobs arrive. (c-d) Demonstration of
how optimising for the cluster throughput leads to an unfair bias
towards more partitioning, because more parallelism creates more
work for the cluster and therefore artificially increases cluster
throughput even though, from the perspective of the user, the

original offered throughput may be lower.

129

5.4

9.9

2.6

An overview of our PAC-ML approach transitioning from step
t — t+ 1. At each time step ¢t when there is a new job to
be placed on the cluster, we: (i) Use a GNN to generate an
embedded representation of the node and edge features in the
job’s computation graph, and a standard feedforward DNN to do
the same for the global job and cluster features; (ii) concatenate
the outputs of (i) and use another feedforward DNN to generate
a logit for each action u' € U?; (iii) pass the chosen action u'
to the environment and partition the job accordingly; (iv) apply
any internal environment allocation heuristics (operation and
dependency placement and scheduling, etc.) to attempt to host
the job on the cluster; (v) if accepted onto the cluster, perform a
lookahead to evaluate the job’s completion time; (vi) fast-forward

the environment’s wall clock time ¢ to when the next job arrives,

XXV

and return the corresponding reward r**! and updated state s'™!. 137

The four [distributions used in our experiments in order to
measure the capability of each partitioner to cater to different
user-defined maximum acceptable completion time requirement
settings. In each fx experiment setting, each new job generated
was assigned a 3 value sampled from [x in order to get the

maximum acceptable job completion time, 5 - JCT* (see Section

Validation performances (higher is better) of each partitioning
agent evaluated across three seeds normalised with respect to the

best-performing partitioner in each Bx environment.

XxXVvi

5.7

6.1

6.2

Mean per-job blocking rates of the five job types considered for
each partitioning agent under each [x setting plotted against the
number of operations (ops.), number of dependencies (deps.), the
total job information size, and the sequential run time of the job

were it ran on a single device (JCT®*?).

TrafPy API user experience for using custom or benchmark TrafPy
parameters D’ to make flow traffic trace D with maximum Jensen-
Shannon distance threshold v/ JSD and minimum flow arrival
duration ¢, for m loads {p1,...,pm}. The generated trace
D can then be used to benchmark a DCN system test object
(e.g. a scheduler) in a test bed (a simulation, emulation, or
experimentation environment) to measure the key performance
indicators Pxpr. The user need only use TrafPy to generate the
traffic; all other tasks can be done externally to TrafPy in any
programming language.
How the Jensen-Shannon distances between the original (red)
and sampled (cyan) distributions and the sampled distributions’
characteristic parameters (target from original distribution plotted
as red dotted line) vary with the number of demands for (a) flow
size and (b) inter-arrival time. Note that the first sub-plots of
(a) and (b) are plotting the probability distribution of the flow
characteristic in question, whereas the other sub-plots are plotting
various metrics (\/JS—D7 minimum value, maximum value, etc.)
of the generated traffic as a function of the number of demands

(flows) generated.

165

6.3

6.4

6.5

6.6

Visualisation of the packed flow nodes converging on uniform
distributions as the total network load approaches 1.0 regardless
of how skewed the original target node distribution is. The plotted
distributions are for overall network loads (a) 0.1, (b) 0.3, (c)
0.5, (d) 0.7, and (e) 0.9, and (f) the final demonstrably uniform
endpoint loads on each server at 0.9 overall load.
2-layer spine-leaf topology used with 64 end point (server) nodes,
10 Gbps server-to-ToR links, and 80 Gbps ToR-to-core links (1:1
subscription ratio, 640 Gbps total network capacity).
TrafPy distribution plots for the DCN benchmark containing
the (a) University [Benson et al., 2010a], (b) Private Enterprise
[Benson et al., 2011], (¢) Commercial Cloud [Kandula et al., 2009],
and (d) Social Media Cloud [Roy et al., 2015] data sets. Each
plot contains (i) the end point node load distribution matrix
and (ii) the flow size and inter-arrival time histogram and CDF
distributions.o
TrafPy node distribution plots for the skewed nodes sensitivity
benchmark with (a) uniform, (b) 5%, (c¢) 10%, (d) 20%, and (e)
40% of nodes accounting for 55% of the overall traffic load, and
for the rack sensitivity benchmark with (f) uniform, (g) 20%, (h)
40%, (i) 60%, and (j) 80% traffic being intra-rack and the rest

inter-rack. L

XX Vil

xxviii

7.1

7.2

Al

A2

i) (a) The time for stages one (shaping and sampling) and two
(packing) when generating flows with the original packing algo-
rithm. ii) The packing (b) time and (c) Jensen-Shannon distance
between the target and the generated node distributions for the
original and vectorised packing algorithms when generating traffic
for networks with different numbers of nodes. (a) shows that
the original packing algorithm is the major traffic generation
bottleneck of Chapter 6. (b) shows that as the number of network
nodes is increased, the vectorised packer’s speed-up factor over
the original algorithm increases. (c) shows that both algorithms
achieve the exact same resultant node distribution. Note that the
original algorithm’s time results for |N| = 1024 are extrapolations
since it would have taken ~ 200 days to run the packer.
Custom traffic matrix distributions generated with 8, 16, 32, 64,
128, 256, 512, and 1024 nodes, where the colour of each source-
destination pair corresponds to the fraction of the overall network

load it requests.

Validation curve for the retro branching agent on the 500 x 1000
set covering test instances. Although most performance gains
were made in the first &~ 200k epochs, the agent did not stop
improving, with the last recorded checkpoint improvement at
485k epochs.o
Neural network architecture used to parameterise the Q-value
function for our ML agents, taking in a bipartite graph represen-
tation of the MILP and outputting the predicted Q-values for

each variable in the MILP.

A3

B.1

B.2

B.3

B.4
B.5

B.6

B.7

B.8

How the explore-then-strong-branch data labelling phase of the
strong branching imitation agent scales with set covering instance
size (rows X columns) using an Intel Xeon ES-2660 CPU and

assuming 120 000 samples are needed for each set.

Output of example code for interactively and visually shaping a
‘named’ distribution in a Jupyter Notebook.
Output for step 1 of example code for interactively and visually
shaping a ‘multimodal’ distribution in a Jupyter Notebook, where
you must first shape each mode individually.
Output for step 2 of example code for interactively and visually
shaping a ‘multimodal’ distribution in a Jupyter Notebook, where
you must combine your individually shaped modes into a single
distribution. L
Output of example code for generating a benchmark.
Skew factor heat maps for 0-100% of network nodes requesting
0-100% of the overall network traffic across loads 0.1-0.9 plotted
at 0.1% resolution. For clarity, combinations with skew factors
> 2 have been assigned the same colour.
Labelled skew factor tables for 0-100% of network nodes requesting
0-100% of the overall network traffic across loads 0.1-0.9 plotted
at 5% resolution.
Skew factor as a function of load for 5%, 10%, 20%, and 40% of
the network nodes requesting 55% of the overall network traffic.
The schedulers’ (a) mean, (b) 99 percentile, and (c¢) maximum
flow completion time metrics for the DCN benchmark dis-
tributions across loads 0.1-0.9, and (d) a scatter plot of flow
completion time as a function of flow size for the same distribution

at load 0.9.

XXix

220

XXX

B.9 The schedulers’ (a) mean, (b) 99" percentile, and (c) maximum
flow completion time metrics for the uniform node distribution
across loads 0.1-0.9, and (d) a scatter plot of flow completion time
as a function of flow size for the same distribution at load 0.9.

B.10 Sensitivity of the schedulers’ (a) mean, (b) 99" percentile, and
(¢) maximum flow completion times to the changing intra-rack
distribution for loads 0.1, 0.5, and 0.9. The complementary
CDF plots include data for all 4 schedulers, whereas the scatter
plots contain the top 2 performing schedulers (SRPT and FS) for
clarity.

B.11 Sensitivity of the schedulers’ (a) mean, (b) 99" percentile, and (c)
maximum flow completion times to the changing skewed nodes
distribution for loads 0.1, 0.5, and 0.9. The complementary
CDF plots include data for all 4 schedulers, whereas the scatter
plots contain the top 2 performing schedulers (SRPT and FS) for
clarity.

B.12 The schedulers’ (a) absolute throughput (information units trans-
ported per unit time), (b) relative throughput (fraction of arrived
information successfully transported), (c) fraction of arrived flows
accepted, and (d) fraction of arrived information accepted metrics
for the DCN benchmark distributions across loads 0.1-0.9. .

B.13 The schedulers’ (a) absolute throughput (information units trans-
ported per unit time), (b) relative throughput (fraction of arrived
information successfully transported), (c) fraction of arrived flows
accepted, and (d) fraction of arrived information accepted metrics

for the uniform node distribution across loads 0.1-0.9.

222

225

226

B.14 Sensitivity of the schedulers’ (a) relative throughput, (b) fraction

of arrived flows accepted, and (c) fraction of arrived information
accepted metrics to the changing intra-rack distribution for
loads 0.1, 0.5, and 0.9. The complementary CDF plots include
data for all 4 schedulers, whereas the scatter plots contain the

top 3 performing schedulers (SRPT, FS, and FF) for clarity.

B.15 Sensitivity of the schedulers’ (a) relative throughput, (b) fraction

of arrived flows accepted, and (¢) fraction of arrived information
accepted metrics to the changing skewed nodes distribution
for loads 0.1, 0.5, and 0.9. The complementary CDF plots include
data for all 4 schedulers, whereas the scatter plots contain the

top 3 performing schedulers (SRPT, FS, and FF) for clarity.

C.1 Visualisation of the characteristics of the deep learning compu-

C.2

tation graphs used for our experiments before partitioning. The
bottom left sub-figure contains the model colour code scheme
for all other sub-figures. The statistics shown are for the opera-
tions and dependencies which need to be executed and satisfied
to conduct one training iteration. Therefore, to carry out Ny,
training steps, the computation graph would need to be executed
Niter times. Computation time units are reported in seconds, and
memory units in bytes.o
Deep learning computation graphs used for our experiments before
partitioning. Each computation graph represents the operations
and dependencies which need to be executed and satisfied to
conduct one forward and one backward pass through the neu-
ral network. Therefore, to carry out Ny, training steps, the

computation graph would need to be executed Nj., times.

xXxxi

226

227

249

xxxii

C.3

C4

C.5

Schematic of the DNN architecture with |L| GNN layers used to
parameterise the policy of PAC-ML. The GNN is similar to that
of GraphSAGE with mean pooling [Hamilton et al., 2018]. Each
GNN layer [€ L contains a node, edge, and reduce DNN module
and ultimately learns to create an embedded representation for
each node in a given job DAG. These per-node embeddings are
then passed, along with any global job, cluster, and action features,
to a readout module. The readout module ultimately generates
scores for each possible action, which enables an action to be
selected following a given exploration-exploitation policy being
followed. For clarity, this figure only shows the GNN embedding-
generation process for node 1. See accompanying text for a

detailed explanation of this architecture and the accompanying

Validation performance of the Ape-X DQN hyperparameter sweep.
Each agent was trained for 100 learner steps, and at each learner
step a validation was performed across 3 seeds - the mean metrics
with their min-max interval bands are plotted for each hyperpa-
rameter set. L oL oL oL
Validation curves of the PAC-ML agent trained in four different
f distribution environments. At each learner step (update to
the GNN), the agent was evaluated across 3 seeds, with the
mean blocking rate, offered throughput, JCT, and JCT speed-up
(relative to the jobs’ sequential run time JCT**?) performance
metrics reported as well as their min-max confidence intervals. For
reference, the performances of the baseline heuristic partitioners

are also plotted.

xxxiii

C.6 Validation performances of each partitioning agent evaluated
across three seeds, with the mean blocking rate, offered through-
put, JCT, and JCT speed-up (relative to the jobs’ sequential run

time JCT®*) performance metrics reported.

List of Tables

2.1

3.1
3.2
3.3

3.4
3.5

3.6

4.1

5.1

Summary of the typical characteristics of approximation algo-
rithms, heuristics, and exact algorithms when solving combinato-

rial optimisation problems.

Comparison of SOA Optimisation Techniques. (Best in bold).

XXXV

25

68

Internal parameters used to model the SOA as an equivalent circuit. 75

External parameters used to model the SOA’s chip and packaging
parasitics as an equivalent circuit.
Constants used in the equivalent circuit transfer function.
Performance summary for the techniques applied to the 10 dif-
ferent simulated SOAs, given in the format min | max | mean |
standard deviation (best in bold).
Factor(s) used on the EC transfer function coefficients to simulate

different SOAs (factor = 1 unless stated otherwise).

Test-time comparison of the best agents on the evaluation in-
stances of the four NP-hard small combinatorial optimisation

(CO) problems considered.

Blocking rate performance of the partitioning agents on the four
§ distributions (best in bold). Results are given as the mean
across 3 seeds, and error bars denote the corresponding min-max

confidence intervals.

5
76

87

88

XXXV

Al

A2

A3

A4

A5

B.2

Training parameters used for training the RL agent. All parame-
ters were kept the same across CO instances except for the large
500 x 1000 set covering instances, which we used a larger batch
size and actor steps per learner update (specified in brackets).

Inferred mean solving times of the branching agents on the large
500 x 1000 set covering instances under the assumption that they
were ran on the same hardware as Gasse et al. 2019.
Summary of the SCIP 2022 hyperparameters used for all non-DFS
branching agents (any parameters not specified were the default
SCIP 2022 values).
Descriptions of the 20 variable features we included in our obser-
vation in addition to the 19 features used by Gasse et al. 2019. .
Summary of the SCIP 2022 hyperparameters used the DFS fitting
for minimising the sub-tree size (FMSTS) branching agent of
Etheve et al. 2020 (any parameters not specified were the default
SCIP 2022 values).

Benchmark categories with their real traffic characteristics re-
ported in the literature (where appropriate) and the correspond-
ing TrafPy parameters D’ needed to reproduce the distributions.
DCON g4 iid,i0> — <university, private__enterprise, commercial cloud, social _media__ -
cloud> Skewed <; i iii,iv,o> — skewed__nodes_ sensitivity <uniform, 0.05, 0.1, 0.2, 0.4>
Rack<; i4,4i4,i0,0> — rack_sensitivity <wuniform, 0.2, 0.4, 0.6, 0.8> ¢ Real traffic char-
acteristics reported in the literature. ® Corresponding TrafPy parameters D'. ¢ =
net.graph[‘rack__to_ep_ dict’] — Network cluster (i.e. rack) configuration. d(u) = int(u
* len(net.graph[‘endpoints’])) — Number of nodes to skew. e(u,v) = [v/d(u) for _ in
range(d(u))] — Fraction of overall traffic load to distribute amongst the skewed nodes. r |
rq | p|ns | np =rack prob_config | ‘racks dict’ | ‘prob_inter rack’ | num_skewed nodes

| skewed_node_probs oL oL 0L 0L 000 s e e e e e

194

199

XXX Vil

B.1 Table summarising the symbol notation used throughout the paper.208

B.3 Flow size, inter-arrival time, and node load distribution character-
istics for the University (U), Private Enterprise (PE), Commercial
Cloud (CC), and Social Media Cloud (SMC) data sets of the
DCN benchmark after generating the distributions from TrafPy
parameters D'.

B.4 Scheduler performance summary with 95% confidence intervals
for the University benchmark.

B.5 Scheduler performance summary with 95% confidence intervals
for the Private Enterprise benchmark.

B.6 Scheduler performance summary with 95% confidence intervals
for the Commercial Cloud benchmark.

B.7 Scheduler performance summary with 95% confidence intervals
for the Social Media Cloud benchmark.

B.8 Scheduler performance summary with 95% confidence intervals
for the skewed__nodes__sensitivity__uniform and rack__ sen-
sitivity__uniform benchmarks.

B.9 Scheduler performance summary with 95% confidence intervals
for the skewed__nodes__sensitivity__0.05 benchmark.

B.10 Scheduler performance summary with 95% confidence intervals
for the skewed__nodes__sensitivity_ 0.1 benchmark.

B.11 Scheduler performance summary with 95% confidence intervals
for the skewed__nodes__sensitivity_ 0.2 benchmark.

B.12 Scheduler performance summary with 95% confidence intervals
for the skewed__nodes__sensitivity_ 0.4 benchmark.

B.13 Scheduler performance summary with 95% confidence intervals
for the rack__sensitivity_ 0.2 benchmark.

B.14 Scheduler performance summary with 95% confidence intervals

for the rack_ sensitivity_ 0.4 benchmark.

224

230

230

231

231

XXXViii

B.15 Scheduler performance summary with 95% confidence intervals

for the rack__sensitivity_ 0.6 benchmark. 233
B.16 Scheduler performance summary with 95% confidence intervals

for the rack__sensitivity_ 0.8 benchmark. 234
B.17 The winning schedulers’ performances relative to the losing base-

lines for (from top to bottom) the 0 (uniform), 0.2,0.4,0.6, and

0.8 rack sensitivity traces. For brevity, ‘—’ indicates all schedulers’

performances were equal.00 235
B.18 The winning schedulers’ performances relative to the losing base-

lines for (from top to bottom) the 0 (uniform), 0.05,0.1,0.2, and

0.4 skewed nodes sensitivity traces. For brevity, ‘=" indicates all

schedulers’ performances were equal. 236
B.19 The winning schedulers’ performances relative to the losing base-

lines for (from top to bottom) the University, Private Enterprise,

Commercial Cloud, and Social Media Cloud DCN traces. For

brevity, ‘—’ indicates all schedulers’ performances were equal. . . 237

C.1 Descriptions of the various metrics referred to throughout the
main chapter.o Lo 242
C.2 Summary of the characteristics of the deep learning computa-
tion graphs used for our experiments before partitioning. The
statistics shown are for the operations (‘ops.) and dependencies
(‘deps.) which need to be executed and satisfied to conduct one
training iteration. Therefore, to carry out N, training steps,
the computation graph would need to be executed Ny, times.
Computation (‘comp.’) time units are reported in seconds, and

memory (‘mem.) units in bytes. 247

C.3

C4

XXXIX

Hyperparamters used for the PAC-ML ApeX-DQN DNN policy
architecture shown in Fig. C.3. Note that the ‘message passing’
dimensions refer to the dimensions of the concatenated node and
edge modules’ embeddings, so the dimensions of these modules’
hidden and output embeddings will be half the corresponding
‘message passing’ dimension. Due to the RLIib implementation
of Ape-X DQN, we did not apply an action mask, but instead
included the action mask in the global features given to the model
and used the reward signal to train the agent to avoid selecting
invalid actions. L

Ape-X DQN training parameter sweep search range, best value

found, and corresponding parameter importance.

List of Abbreviations

ACO ant colony optimisation

AT artificial intelligence

BFS breadth-first search

B&B branch-and-bound

CO combinatorial optimisation

CPU central processing unit

DAG directed acyclic graph

DCN data centre network

DFS depth-first search

DNN deep neural network

DQN deep Q-network

FLOP floating point operation
FMSTS fitting for minimising the sub-tree size
FPGA field-programmable gate array
GA genetic algorithm

GCN graph convolutional network

GNN graph neural network

xli

xlii

GPU graphics processing unit

HPC high-performance computing

IL imitation learning

ILP integer linear programming

JCT job completion time

JSD Jensen-Shannon distance

LP linear programme

MDP Markov decision process

MILP mixed integer linear programme

MISIC multi-impulse step injection current

ML machine learning

MPI message passing interface

MSE mean squared error

MT-NLG Megatron-Turing natural language generation

NN neural network

OBS optical burst switching

OCS optical circuit switching

OEOQO optical-electrical-optical

OPS optical packet switching

PB pseudocost branching

PID proportional-integral-derivative

xliii

PISIC pre-impulse step injection current

POMDP partially observable Markov decision process

PPO proximal policy optimisation

PSO particle swarm optimisation

RL reinforcement learning

SB strong branching

SOA semiconductor optical amplifier

SOTA state-of-the-art

SVM support vector machine

TPU tensor processing unit

List of Units

B bytes

bn billion

Gbps gigabits per second
m metre

ms millisecond

nm nanometre

ns nanosecond

ps picosecond

Tbps terabits per second

(s microsecond

xlv

xlvii

To my family

Chapter 1

Introduction

1.1 The Information Revolution & Computer

Networks

The information revolution began with the invention of the transistor in the mid-
20" century [Riordan, 2004]. Unlike the agricultural and industrial revolutions
whose effects took millennia and centuries to be felt across the globe, the
information revolution has transformed all facets of society within a single
generation [Davidson and Rees-Mogg, 1999]. The speed of its proliferation is
testament to its importance to the human condition; information technology is
now used everywhere, from the economy and politics to healthcare and education.

Due to this new-found dependence on information technology, society now
allocates a significant amount of capital and resources towards its advancement.
Consequently, as reflected by Moore’s Law, the 1965 observation that the
cost-per-FLOP of a central processing unit (CPU) halves every 18 months
[Thompson and Spanuth, 2018], we have enjoyed decades of exponentially more
powerful compute at ever-lower costs. This has facilitated a range of ubiquitous
technologies, from the internet and video streaming to personal computers and
smart phones. Twenty years ago when computers were 1000x less powerful,
none of these technologies in their present form would have been possible. It is

difficult to imagine what future innovations humanity might miss out on over

2 Chapter 1. Introduction

the next twenty years were advances in information technology to slow.

And yet, current trends do indeed suggest that things are slowing. From
1985 to 2005, compute performance increased by 52% per annum. Since 2005,
this rate has fallen to 22% [Hennessy and Patterson, 2017]. The fundamental
reason behind this slow down has been the difficulty of manufacturing transistors
on the nanometre (nm) scale, with the cost of building a chip fabrication plant
having increased 13% annually to reach $16 billion (bn) in 2022 [Rotman, 2020].

In order to circumvent this slow down in the cost-per-FLOP reduction of

CPUs, the last decade has seen three trends emerging (visualised in Fig. 1.1').

@) More cloud (b) More specialised (c) More distributed
computing computing computing
8
=] ® ELMo
= 600 - BERT
S 10% ® GPT2
«n % Megatron-LM
3 E ¥5 NLG
a ing-|
Q500+ O 02 Turing:
o =4 x MT-NLG
3 =
M < 101!
400 ¥
>
T 100
:#: T T T T T T T T T T 1
2016 2017 2018 2019 2020 2021 2017 2025 2018 2019 2020 2021 2022
Year Year

FIGURE 1.1: Visualisation of the three current trends in computing. (a) The
number of hyper-scale cloud data centres world-wide almost doubled in a five year
period [Cisco, 2016]. (b) By 2025, the majority of processors in data centres will no
longer be general-purpose CPUs, but rather specialised high-bandwidth processors
such as GPUs and FPGAs [McKinsey, 2019]. (c¢) The number of distributed A100
GPUs needed to train the state-of-the-art natural language processing models
released between 2018 — 2022 has grown by over 1000x [Kharya and Alvi, 2021].

The first is the proliferation of cloud data centres. Rather than everyone
needing to possess their own compute resources, a host provides compute-as-a-
service to multiple users. In doing so, users avoid the need to directly pay for,
implement, and manage the latest hardware themselves in order to use state-of-
the-art compute. Pooling resources in this way can offset the increasing relative
cost of improving compute performance. Consequently, cloud computing has
become abundantly popular. Today, almost everyone, everywhere, everyday uses

the cloud, be it through video streaming and Al assistants or instant messaging

'Fig. 1.1c assumes it takes 4480 A100 GPUs to train the 530 bn parameter Megatron-Turing
natural language generation model [Wiggers, 2021], and that there is a linear relationship
between the number of model parameters and the number of A100 GPUs needed to train it.

1.1. The Information Revolution & Computer Networks 3

and data backups. Over 95% of global information traffic now exists in the
cloud [Cisco, 2016], and with the appeal of pooling resources to increase the
accessibility of powerful compute unlikely to wane, our dependence on data
centres is likely to persist.

The second trend is the shift away from general purpose CPUs towards
specialised processors such as graphics processing units (GPUs), tensor processing
units (TPUs), and field-programmable gate arrays (FPGAs) in order to facilitate
new big data computational jobs such as Al and genome processing [McKinsey,
2019]. These processors do fewer things than CPUs but can perform significantly
better at their designated task. While Moore’s Law appears to have ended for
CPUs, the processing power of GPUs increased by over 25x from 2012 to 2018
[Perry, 2018]. However, the rate of this performance improvement was largely
due to the low hanging fruit of tackling the parts of the compute ecosystem not
well served by CPUs (primarily data-parallel computation, which has become
critical to the neural network (NN) architectures widely used today). In the five
years since 2018, the cost-per-FLOP of state-of-the-art GPUs has only halved
every 3 years [Tamay, 2022]; 2x slower than Moore’s Law. As articulated by
Stoica [2020], this slow down is coinciding with a huge increase in computational
demand by applications such as Al whose resource requirements have been
doubling every 3.4 months since 2012; 50x faster than Moore’s Law [OpenAl,
2018].

Consequently, a third trend has emerged; distributed computing. Rather
than trying to fit a large computational job into the memory of a single device
and sequentially running it, the job is instead split up and ran in parallel across
multiple machines in a HPC system.

Both data centres and HPC systems require computers to communicate
with one another, be it to query databases, synchronise the results of a parallel
computation, and so on. This communication is done via a computer network,

which is a system of connected end point processing nodes. The traditional

4 Chapter 1. Introduction

Moore’s Law approach of evaluating compute power and cost purely in terms
of individual end points is therefore no longer appropriate. Instead, compute
must now be thought of as a system of interconnected resources which can be

orchestrated to perform a task.

@) 10 O > 60% overhead
—e— Node compute power (FLOP/s) ° —~60 —— Job1 *
< -+ Node bandwidth (Gb/s) / S Job 2
103 = Bytes-per-flop ratio — - Job 3
g \t_:; .—‘.”'/. 2
2= — o 3 40 -
&9 _~ o __x <
£ 2 102 Il T TTTTT T TS mmsssssmoooe §
‘é : ... o
9.2 1 92% £ 20
o s decrease Q
o =
¥ ©
© 100 =2 A
T T T T T 0 LB | T T T LI B B B B |
2010 2012 2014 2016 2018 10! 102
Year # Workers

FIGURE 1.2: (a) From 2010 to 2018, the average compute performance improvement
of the nodes in the top ten HPC computer network systems far outstripped the
improvement in their communication bandwidth, leading to 92% fewer bytes being
communicated per FLOP [Bergman, 2018]. (b) How consequently the network
overhead - the fraction of the job completion time spent communicating information
between workers when no computation is taking place - of distributed deep learning
jobs increases with the number of machines used in Meta’s GPU cluster, shifting
the performance bottleneck into the network [Wang et al., 2022].

However, the ability with which we can increase compute power by increasing
the number of machines we distribute across is also slowing. Fig. 1.2a visualises
the average end point compute power and communication bandwidth of the top
ten HPC systems from 2010 to 2018 [Bergman, 2018|. As shown, although end
point compute power increased by a factor of 65, the network bandwidth only
increased by 4.8x, leading to a 92% decrease in bytes communicated per FLOP
over the eight year period and the maximum performance of these systems being
less than 10% of what is theoretically possible. This has shifted the performance
bottleneck of computer networks away from the end point nodes and into the
network connecting them [Wang et al., 2022] (see Fig. 1.2b). Furthermore, the
trend of using specialised parallel processors for executing ever-larger jobs is
resulting in significantly more communication between machines being required.
Improving the networks of modern HPC and data centre systems is therefore

crucial if we are to continue to improve computational performance and cater to

1.2. Artificial Intelligence for Optimisation 5

next-generation applications such as Al, data science, and genome processing,

and thus forms the focus of this thesis.

1.2 Artificial Intelligence for Optimisation

Al is a broad umbrella term with several definitions. In this thesis, Al is assumed
to be the study and design of ‘intelligent agents’, where an intelligent agent is a
system which perceives its environment and takes actions such that its chances
of success are maximised [Poole et al., 1998].

The concept of Al has existed in the imaginations of humans for millennia.
The oldest records date back to 400 B.C. with the legend of a 30 metre (m)
tall brass robot, Talos, protecting Crete from pirates [Sparkes, 2013]. TIts
establishment as a scientific discipline, however, is relatively recent. The Church-
Turing thesis [Turing, 1936, 1950] was the first to spark rigorous academic
interest in Al

The first half-century of Al research focused on its application to games; a
domain which strikes a balance between complexity and ease of access. This
began with the first analysis of chess playing as a search task [Shannon, 1950]
and the study of Al for executing checkers strategies [Samuel, 1959]. Progress
stalled in the ‘Al winter’ of the 1970s when funding for projects was sparse. In
the late 1990s, interest in Al began to pick up again by leveraging increased
computational power, focusing on specific tasks, establishing scientific standards,
and forging links between AI and other fields such as mathematics, statistics,
and economics.

The last decade has seen an explosion in the rate of Al progress, the cause of
which can largely be attributed to AlexNet [Krizhevsky et al., 2012]; the winner
of the 2012 ImageNet competition [Deng et al., 2009] to classify a database of
1.4 million images with 1000 possible classes. AlexNet was the first to achieve a

step-change in performance at a widely applicable and important task through

6 Chapter 1. Introduction

the use of NNs. The realisation that NNs can be efficiently trained with GPUs
to solve immensely challenging tasks automatically has led to significant progress
in machine learning (ML), a particular branch of Al, and a virtuous cycle of
both algorithmic and hardware development.

With AT having now achieved super-human performance in complex games
such as Go [Silver et al., 2016], Poker [Brown and Sandholm, 2019], and Statego
[Perolat et al., 2022], recent years have seen a shift towards applying Al to
real-world optimisation problems in a range of fields, from biology [Jumper et al.,
2021] and physics [Wu and Tegmark, 2019] to recommendation algorithms [Afsar
et al., 2022] and system management [Degrave et al., 2022].

This thesis considers optimisation problems which arise in computer networks,
both at the device level and in terms of overall resource management. Classical
approaches to solving these problems typically adopt the following workflow: (1)
Construct a simplified model of the computer system; (2) deconstruct high-level
design objectives (e.g. ‘minimise end-user latency’) into low-level tasks (e.g.
‘minimise network packet queuing delay’); (3) manually handcraft a heuristic to
optimise a problem within the simplified system model; and (4) meticulously
test and tune the heuristic until acceptable real-world performance is achieved
[Mao et al., 2020].

Al is particularly well suited to replace the above workflow and solve computer

network optimisation problems for reasons here summarised into six key factors:

1. Automatic optimisation: Rather than requiring expert understanding
of a given problem domain and then handcrafting a specific solution for
it, Al optimisers can be applied often with little to no tuning and expert
knowledge to automatically discover novel solutions without the costly

overhead of human design.

2. High-quality optimisation: As shown by the super-human performance

attained in games such as Go [Silver et al., 2016] and in the management

1.2. Artificial Intelligence for Optimisation 7

of systems such as nuclear reactors [Degrave et al., 2022], the solutions
discovered by Al to complex optimisation problems often outperform

heuristics designed by human experts.

3. High-speed optimisation: Many state-of-the-art handcrafted algorithms
and heuristics (e.g. solvers based on branch-and-bound [Land and Doig,
1960]) require expensive computational steps to be performed, which can
be detrimental to applications where fast decision making is critical. By
contrast, many Al methods, particularly those which use NNs as function
approximators, can make decisions on O(ms) time scales or less [Shabka

et al., 2022].

4. High-fidelity optimisation: AI methods can continuously adapt to
handle real experiences when interacting with an environment, allowing
them to directly optimise the actual computer network’s workload and
operating conditions in dynamic scenarios rather than relying on inaccurate

system models.

5. Handling of large search spaces: Computers can search for solutions
much faster than a human can think of them, often with parallel computa-
tion and the use of powerful function approximators such as NNs. This
enables Al optimisers to be applied to problem domains with in excess
of O(10'%%) possible solutions without the need for exhaustive search or

impractical solve times.

6. Simple objectives: Classical approaches to system optimisation often
require the construction of low-level tasks in order to meet high-level
design objectives, which inherently biases the resultant solution towards
a potentially sub-optimal prior approach, and requires an expert-level

understanding of the entire system stack. By contrast, AI methods can be

8 Chapter 1. Introduction

given simple high-level objectives, such as ‘win a game of chess’, and dis-
cover low-level policies and value functions which sufficiently optimise this
objective. This further reduces the complexity of tackling the problem for
practitioners, removes prior biases towards approaches which are assumed
to be, but are not necessarily, performant, and allows designers to tackle
problems without the need for an expert-level understanding of the whole

system.

The above factors form the motivation for this thesis, which seeks to develop
AT methods for optimising various components of computer networks at both
the device and the resource management level. Furthermore, it is shown how
optimisation with AI can enable the transition from electronic to optical network-
ing with superior scalability, bandwidth, latency, and power consumption, and
thereby address the shortcomings of modern cloud and HPC systems outlined
in Section 1.1. It is therefore hoped that this thesis will aid in facilitating the
development of next-generation compute applications, such as large-scale genome

processing and ever-more complex Al systems, over the coming decades.

1.3 Structure of & Publications from this Thesis

This thesis is divided into a background section followed by three main parts,
each of which addresses a different challenge in developing next-generation

computer networks.

1.3.1 Background

Chapter 2 provides an introduction to optical networking and the algorithmic
and conceptual tools common to multiple parts of this thesis. To aid the reader
in digesting the necessary background information, concepts required only for a

specific chapter are introduced within the corresponding chapter.

1.3. Structure of & Publications from this Thesis 9

1.3.2 Part I: Optimising the Physical Plane

Computer communication networks are made up of physical devices such as fibre
links, network switches, and end point processors. We refer to these devices
collectively as the computer network’s physical plane. The performances of the
physical plane’s components jointly determine the overall performance of the
computer network in terms of key metrics such as throughput, cost, and energy
consumption, and are therefore of critical importance.

Part I looks at optimising the physical devices in a computer communication
network. Specifically, Chapter 3 proposes three gradient-free Al signal control
approaches which enable high-bandwidth, low-power optical switching technolo-
gies to operate on the sub-nanosecond (ns) timescales that would be required in
an optical data centre network.

The following papers have been published based on the work reported in

Part I of this thesis:

o Hadi Alkharsan, Christopher W. F. Parsonson, Zacharaya Shabka,
Xun Mu, Alessandro Ottino, and Georgios Zervas, ‘Optimal and Low
Complexity Control of SOA-Based Optical Switching with Particle Swarm
Optimisation’, ECOC’22: Proceedings of the Forty-Eighth European Con-

ference on Optical Communication, 2022

e Thomas Gerard, Christopher W. F. Parsonson, Zacharaya Shabka,
Benn Thomsen, Polina Bayvel, Domanic Lavery, and Georgios Zervas,
‘AI-Optimised Tuneable Sources for Bandwidth-Scalable, Sub-Nanosecond

Wavelength Switching’, Optics Fxpress, 2021

o Christopher W. F. Parsonson, Zacharaya Shabka, W. Konrad Chlupka,
Bawang Goh, and Georgios Zervas, ‘Optimal Control of SOAs with Ar-
tificial Intelligence for Sub-Nanosecond Optical Switching’, Journal of

Lightwave Technology, 2020

10 Chapter 1. Introduction

o Thomas Gerard, Christopher W. F. Parsonson, Zacharaya Shabka,
Polina Bayvel, Domanic Lavery, and Georgios Zervas ‘SWIFT: Scalable
Ultra-Wideband Sub-Nanosecond Wavelength Switching for Data Centre

Networks’, arXiv, 2020

1.3.3 Part II: Optimising the Orchestration Plane

The physical devices in a computer network must all be orchestrated in order
to perform a computational task. Poor orchestration of the physical devices
can lead to under-utilised network resources and excessive operating costs and
energy consumption. We refer to the collective resource management methods
which perform physical device orchestration tasks as the computer network’s
orchestration plane.

Part II considers the resource management methods of the orchestration
plane used to control cloud and HPC networks. Chapter 4 proposes a new
algorithm which facilitates the integration of a GNN trained with RL to discover
novel variable selection policies into a freely-available exact branch-and-bound
solver which can be applied to generic NP-hard discrete optimisation problems
such as those found in computer network management. Chapter 5 proposes a
novel algorithm, also based on an RL-trained GNN, for automatically deciding
how much to distribute a deep learning job in an HPC in order to meet user-
defined run time requirements, minimise the blocking rate, and maximise system
throughput under dynamic scenarios; the first of its kind to consider such a
problem setting.

The following publications have come from Part II of this thesis:

o Christopher W. F. Parsonson, Zacharaya Shabka, Alessandro Ot-
tino, and Georgios Zervas, ‘Partitioning Distributed Compute Jobs with

Reinforcement Learning and Graph Neural Networks’, arXiv, 2023

1.3. Structure of & Publications from this Thesis 11

e Christopher W. F. Parsonson, Alexandre Laterre, and Thomas D.
Barrett, ‘Reinforcement Learning for Branch-and-Bound Optimisation
using Retrospective Trajectories’, AAAI’23: Proceedings of the Thirty-
Seventh AAAI Conference on Artificial Intelligence, 2023

e Thomas D. Barrett, Christopher W. F. Parsonson, and Alexandre
Laterre, ‘Learning to Solve Combinatorial Graph Partitioning Problems

via Efficient Exploration’, arXiv, 2022

1.3.4 Part III: Optimising the Simulator

So far we have considered optimising the devices in the physical plane and the
resource managers in the orchestration plane of computer networks. These are
both areas which have received significant attention from the research community.
However, what has not had much focus is the underlying test bed in which
physical and orchestration plane research and optimisation is typically conducted.

Real production computer network systems such as data centre networks
(DCNs) and HPCs are not generally available for researchers to build and test
novel system components due to their proprietary nature and expensive cost
of deployment. Consequently, many researchers resort to simulating computer
networks in order to develop novel computer network systems. The fidelity, repro-
ducibility, and flexibility of these simulations is therefore at least as important as
the development and optimisation of the physical and orchestration systems for
which they are used. Poor simulations will lead to the misguided development
of network systems which do not perform as expected when deployed in real
production environments.

With this motivation, Part III addresses a key problem faced by many
computer network researchers, which is the reliance on low-fidelity, difficult-
to-reproduce, and inflexible computer network simulations in the absence of

access to real production systems. A novel open source traffic generation

12 Chapter 1. Introduction

framework and library is presented in Chapter 6, and a subsequent update to
the generation algorithm to make it scalable to computer networks with O(103)
nodes is proposed in Chapter 7.

The following are publications which have come from Part III of this thesis:

o Joshua L. Benjamin, Christopher W. F. Parsonson, and Georgios Zer-
vas, ‘Data Scheduling Unit for Nanosecond Optical Data Center Networks’,
arXiv, 2023

o Yanwu Liu, Joshua L. Benjamin, Christopher W. F. Parsonson, and
Georgios Zervas, ‘A Hybrid Beam Steering Free-Space and Fiber Based

Optical Data Center Network’, arXiv, 2023

o Christopher W. F. Parsonson, Joshua L. Benjamin, and Georgios
Zervas, ‘A Vectorised Packing Algorithm for Efficient Generation of Custom
Traffic Matrices’, OFC’23: Optical Fiber Communications Conference and

Ezxhibition, 2023

o Christopher W. F. Parsonson, Joshua L. Benjamin, and Georgios
Zervas, ‘Traffic generation for benchmarking data centre networks’, Optical

Switching and Networking, 2022

o Joshua L. Benjamin, Alessandro Ottino, Christopher W. F. Parsonson,
and Georgios Zervas, ‘Traffic Tolerance of Nanosecond Scheduling on
Optical Circuit Switched Data Center Network’, OFC"22: Optical Fiber

Communications Conference and Exhibition, 2022

e Joshua L. Benjamin, Christopher W. F. Parsonson, and Georgios
Zervas, ‘Benchmarking Packet-Granular OCS Network Scheduling for

Data Center Traffic Traces’, Photonic Networks and Devices, 2021

13

Chapter 2

Background

2.1 Computer Networks

A computer network is a system of processors (a.k.a. ‘workers’ or ‘servers’), such
as CPUs, GPUs, and/or FPGAs, interconnected via a communication network.
Computer networks are typically represented as graphs. The nodes in a computer
network are either end point processors, which perform computational jobs, or
intermediary network switches, which forward data being communicated between
end points around the network. The edges of the graph are communication links
along which data can be passed between nodes. The computer network types
considered in this thesis include data centres, such as commercial, university,
and social media data centres, and HPCs, such as compute systems dedicated
to performing large deep learning tasks.

Computer networks have two facets; the physical plane and the orchestration
plane (see Figure 2.1). The physical plane encompasses any physical device in the
computer network, such as the end point processors, the intermediary switches,
and the communication links. The orchestration plane refers to the resource
orchestration schemes which determine how the physical plane’s resources are
utilised. These schemes include tasks such as placement (which devices to
use) and scheduling (in which order to use the devices). Both the physical and

orchestration planes are critical to determining the network’s overall performance

14 Chapter 2. Background

in terms of throughput, latency, power consumption, and cost, and both are

studied in this thesis.

Partitioning
v

glacement >_Orchestration
+ plane

\ Scheduling /
Communication Link
network
>_PhyS|caI
End plane
points
- _

FIGURE 2.1: Visualisation of a computer network divided into the physical plane

made up of physical devices such as switches, end-point processors, and communi-

cation links, and the orchestration plane made up of resource management schemes
such as job partitioning, scheduling, and placement algorithms.

2.2 Packet vs. Circuit Switching

To communicate information, modern computer networks typically encode data
into light by modulating the light’s phase or amplitude and transmitting it
along a glass fibre. In a single glass fibre, no two messages with the same
wavelength and polarisation can be transmitted at the same time. There are
two predominant paradigms for addressing this constraint; circuit switching and
packet switching.

Circuit switching. In the vanilla circuit switching paradigm, a direct
transmission line is established between source and destination. This line cannot
be interrupted, broken, or changed for the duration of the transmission. The
data are then streamed as one large block until all data have arrived at the
destination. Consequently, as shown in Fig. 2.2a, no other end points can

communicate along the same physical transmission line already in use; their

2.2. Packet vs. Circuit Switching 15

messages must instead be queued until the line is free. Circuit switched networks
have the advantage that they can guarantee throughput and latency quality
once communication begins, but have the disadvantage that there may be long
queuing delays whilst waiting for a suitable transmission line to be free.
Packet switching. In the packet switching paradigm, rather than sending
a message as one large block of data, the message is instead split up into smaller
‘packets’, usually around 500 to 1500 bytes (B) in size. Each packet is labelled
with a ‘header’ indicating its source and destination, and can then be sent via
any path through the network to arrive at its destination. A single message’s
packets do not necessarily need to arrive at their destination via the same route
or as a constant stream; as shown in Fig. 2.2b, each packet can be adaptively
routed to avoid conflicts. Packet switched networks have the advantage that
they can provide low queue times before transmission begins, but have the
disadvantages that they cannot provide service guarantees, since buffering may
be required at the intermediary switches where the links are fully occupied, and

that they may be forced to take inefficient routes around the network.

@ (b)
User A User B User A User B

Message
stream

Message
stream

User C User D User C User D

FIGURE 2.2: A visual comparison of the difference between packet and vanilla
circuit switching. (a) In vanilla circuit switching, once a physical transmission line
is established between source and destination, the line cannot be interrupted or
facilitate the transfer of any other data. (b) In packet switching, the data of a
single message is split up into multiple 'packets’ labelled with the message’s source
and destination. This allows each packet to take a number of routes along different
transmission lines and to be time-interleaved with other messages’ packets in order
to get to its destination.

Ultra-fast circuit switching. To combine the low latency and high ser-

vice guarantee benefits of both packet and circuit switching, recent work has

16 Chapter 2. Background

considered ultra-fast circuit switching [Benjamin, 2020]. As with vanilla circuit
switching, a communication line is established between source and destination.
However, the data are split up into packets and interleaved on short timescales
with other transmission requests to enable multiple messages to be transmit-
ted along the same link via time-division multiplexing [Ralph, 1959]. This
interleaving is done by rapidly reconfiguring the circuit each time a packet
is communicated. The key remaining difference between packet and circuit
switching is the decision process of where and when to send messages. In packet
switching, this is done on a per-hop basis at each intermediary switch, whereas
in circuit switching these decisions are made in advance. Ultra-fast circuit
switching therefore retains the benefit of guaranteeing network performance by
reserving communication resources for the duration of data transmission whilst
also achieving low queuing delays by interleaving data from multiple different
sources and destinations along the same physical communication line.
However, a key challenge in realising ultra-fast circuit switching is reconfig-
uring the logical circuits each time a new packet is to be communicated. For
example, as shown in Fig. 2.3, large-scale cloud data centres typically have
91% of packets being < 576 B in size (see Fig. 2.3a), which takes < 43 ns to
transmit along a 100 Gbps link (see Fig. 2.3b). The reconfiguration process must
therefore occur on ns timescales in order to achieve acceptable network latency
overhead; far lower than the millisecond (ms) scale speeds of classical electronic
network switches and software-based schedulers [Benjamin, 2020]. This problem

is further addressed in Chapter 3.

2.3 Electronic vs. Optical Networking

Most current computer networks use optic fibre communication links, but the
switch devices which interconnect the network are usually electronic. Such

networks are hereby referred to as electronic networks, as opposed to optical

2.3. Electronic vs. Optical Networking 17

60 (a) (b)
2801
=407 5
o '2-60
w -
o 2
)
20 =
0 T T T T T T T T T T T
<64 65-128 129-255 256-576 > 577 0 10 20 30 40 50
Packet Size (B) Processing Delay (ns)

FIGURE 2.3: Meta’s cloud data centre (a) packet size distribution and (b) through-
put as a function of latency assuming 100 Gbps links [Clark et al., 2018].

networks which are interconnected by optical switches. For further details on
how one form of optical switch works, see Chapter 3.

The limitations of electronic networking. Electronic networks have
poor scalability, bandwidth, latency, and power consumption. Concretely, the
‘Moore’s law for networking’, that electrical switches double their bandwidth
every two years for a fixed power and cost [Ballani et al., 2018], lags behind
the annual doubling of cloud traffic bandwidth demands [Shi et al., 2019].
Consequently, rather than upgrading to higher bandwidth switches, electronic
networks are typically scaled by adding more switches to build a hierarchy of
switch layers (see Fig. 2.4a). This increases the ‘oversubscription ratio’, which
is the ratio of the bandwidth of all servers connected to a switch port to the
bandwidth of the port itself. Since the per-port bandwidth of an electronic
switch is limited and the power consumption required to cool active electronic
devices is expensive, the amount of oversubscription achievable in an electronic
network is restricted, thus hampering the network’s overall scalability. As shown
in Fig. 2.4b, electronic networks have a ‘scale tax’ where the power, cost, and
latency of the network worsens as the network scales [Ballani et al., 2020].

Compounding these current limitations, things are expected to get worse for
electronic networks. The ‘Moore’s law for networking’ is expected to undergo a
significant slow down beyond 2024 [Ballani et al., 2018]. Furthermore, with the

growing requirements of large computational jobs such as training deep learning

18 Chapter 2. Background

(a) @ server O Layer 1 switch O Layer 2 switch — Communication link
2 servers 64 servers 2,048 servers

o

(b)

oo

32 2400

O o=

x E w

5 2 £ 200

ER

[H

z¥< o T T T T T
2 64 2K 65K 2M
(0) (1) (2) (3) (4)

Servers

(# Switch Layers)

FIGURE 2.4: (a) Visualisation of how an electronic network with 64-port switches is
typically scaled; layers are added to the switch hierarchy in order to accommodate
more servers, leading to a larger oversubscription ratio. (b) Assuming 400-Gbps
per port, how the total power consumed by the electronic network per unit of
information communicated increases significantly as the number of switch layers
(shown in brackets on the x-axis) is increased [Ballani et al., 2020].

models and processing biological genomes, cloud data centre and HPC demands
are not only becoming more distributed and therefore more communication
intensive, but are also moving away from being low bandwidth, software-driven
CPU workloads towards becoming high bandwidth, hardware-driven GPU, TPU,
and FPGA tasks with ultra-low latency requirements [Andreades et al., 2019].
For example, while CPUs rarely saturate 100 Gbps links, GPUs today can
process in excess of 2.4 terabits per second (Tbps) of network traffic; a number
which is increasing year-on-year [Ballani et al., 2020]. By 2025, the proportion
of cloud requests being serviced by CPUs will have decreased by 75% in 2019
to < 50% in 2025 [McKinsey, 2019]. These factors are creating a perfect storm
where the ever-worsening latency, power, cost, and scalability performance of
electronic switching is coinciding with an abrupt increase in demand for low
latency, high bandwidth computer networks.

The benefits of optical networking. Computer networks with optical
switches have the potential to offer significant performance improvements over

electronic networks. With a circuit switching implementation, since links are

2.4. Computational Complexity 19

reserved and unchanged for the duration of a message being communicated from
source to destination (see Section 2.2), there is no need for packet inspection,
optical buffering, optical-electrical-optical (OEO) conversion for in-switch pro-
cessing, or mid-transmission contention and blocking, leading to significantly
lower latency and power consumption than their electronic and packet switched
counterparts [Liu et al., 2015]. Unlike optical packet switching (OPS), optical
circuit switching (OCS) networks do not require optical buffering, queuing,
or addressing, and are therefore more simple to implement [Benjamin, 2020].
Furthermore, the lack of OEO conversion overhead, the transparency to signal
modulation format, and the lower heat generation reduces the number of ex-
pensive transceiver components needed, the hardware changes required when
new transmission protocols are adopted, and the overall network power con-
sumption compared to electronic networks, making OCS networks lower cost
and more energy efficient to operate and upgrade. Additionally, optical switches
have significantly higher bandwidth, enabling optical networks to retain low
oversubscription ratios and thereby allow more servers to be connected to the
same switch without increasing queue times as more switches and switch layers
are added to scale the network. Moreover, optical switches are much more
physically compact than their electronic counterparts. Having a small ‘footprint’
is a key design criterion in data centres and HPCs, where it is beneficial to
have components close together at high density for the lowest latency. For these
reasons, a core theme throughout this thesis is the development of Al-driven

optimisation methods to help realise OCS computer networks.

2.4 Computational Complexity

Computational complexity is a key concept in computer science. It describes
how much of a given resource is required to run a given algorithm. A problem

instance II has size n, where n might be, for example, the number of binary

20 Chapter 2. Background

digits needed to encode the instance. An algorithm used to solve the problem
has a ‘worst-cast’ time complexity function O(-) which maps the instance size
n to the maximum time needed for the algorithm to find a solution to the
problem. Common O(-) complexity functions include O(1) (constant time),
O(logy(n)) (logarithmic time), O(n) (linear time), O(n*) (polynomial time),
O(Ek™) (exponential time), and O(n!) (factorial time), where k is a constant

k > 1. Fig. 2.5 visualises how these common complexity functions scale with n.

—— Constant e Linear Exponential
Logarithmic -~ Quadratic Factorial

50

>
o
|

w
o
1

\V)
e=)
1

Worst-Case
Solving Time (a.u.)

—
=)
1

0 10 20 30
Instance Size (a.u.)

FIGURE 2.5: Visualisation of how common time complexities scale with problem
instance size.

A problem for which there exists no known solution algorithm with a poly-
nomial complexity function may take a prohibitively long time to solve. If
only brute force solutions exist where every possible solution is explored, the
problem is said to be intractable. Although most problems can be theoretically
solved by brute force algorithms, if the search is not bound by polynomial time,
such problems cannot be ‘exactly’ (provably optimally) solved in practical time
frames when scaled to larger instance sizes. How such problems can be solved
in practice is explored in Section 2.6.

Building on the notion of computational complexity, decision problems (those
with a ‘yes’ or ‘no’ answer) can be categorised by complezxity class, as visualised

in Fig. 2.6. A complexity class is a set of problems that a machine can solve

2.4. Computational Complexity 21

given sufficient time resources. There are many complexity classes, with the four

main ones being:

1. P-problems: the set of decision problems which can be solved in polyno-

mial time;

2. NP-problems: the set of decision problems where the solution’s validity
can be verified in polynomial time, but where the solution itself cannot be

guaranteed to be found in polynomial time;

3. NP-complete problems: the set of decision problems X in NP for which
there is a polynomial time algorithm to reduce any other NP problem Y
to X in polynomial time (therefore if you can solve Y quickly, then you

can also solve X quickly); and

4. NP-hard problems: the set of decision problems which are at least as
hard as NP-complete problems, but which are not necessarily in NP and

therefore may not be verifiable in polynomial time.

NP-Complete

Axadwo)

FIGURE 2.6: Euler diagram for the P, NP, NP-complete, and NP-hard complexity
classes, assuming P # NP.

Goldreich [2008] provides a comprehensive overview of computational com-
plexity. NP-complete and NP-hard problems constitute the most difficult to
solve problems in computer science, since it is widely thought that P # NP
[Goldreich, 2010]. Many real-world discrete optimisation problems, such as the
computer network optimisation problems considered in this thesis, turn out to

be NP-complete or NP-hard.

22 Chapter 2. Background

2.5 Discrete Optimisation

Overview. Optimisation problems are a form of search where an optimal
solution is being sought amongst some finite or infinite search space. There are
two families of optimisation problem; continuous variable problems searching
for an optimal set of real numbers or a function, and discrete variable problems
searching for an optimal object (such as an integer, a set, a graph, and so on)
from a finite (or countably infinite) set of possible objects. The latter category
is colloquially referred to as CO, which is any optimisation problem with at
least one decision variable which is subject to the integrality constraint (i.e.
that its value must be an integer). There are many real-world examples of
CO problems such as the travelling salesman problem [Laporte, 1992], finding
the shortest path between two nodes in a graph [Johnson, 1973], routing data
packets optimally in the internet [Johnson and Maltz, 1996], allocating flight
crews to planes [Graf et al., 2020], and many more. All of the computer network
optimisation problems addressed in this thesis fall under the category of CO,
which also encompasses problems where some of the variables are continuous
and some are discrete, and will be mathematically formulated as such.

Problem formulation. An instance of a CO problem IT is a triple (.5, f,),
where S is a set of candidate solutions to II, f is the objective function which
assigns an objective function value f(s) to each candidate solution s € S, and {2
is a set of problem-specific constraints. Each solution s € S is made up of a series
of m components (variables) C' = {c1,¢s,...,¢,n}. S is the sub-set of feasible
solutions which satisfy Q, where S C S. CO problems are either maximisation
or minimisation problems where the goal is to find the optimal solution s* € S
which either maximises (f(s*) > f(s)Vs € S) or minimises (f(s*) < f(s)Vs € S)
the solution’s objective function value f(s). For a comprehensive introduction
to CO, refer to Papadimitriou and Steiglitz [1982].

Why discrete optimisation problems are difficult. Optimising an

2.5. Discrete Optimisation 23

objective function with variables subject to the integrality constraint often turns
out to be significantly more difficult than the same problem with the integrality
constraints relaxed.

Linear and convex continuous functions are easy to optimise efficiently with
algorithms such as simplex [Horen, 1985]. This is because the optimal solution
will always reside on the corner points of the boundary of the feasible region

(see Fig. 2.7a), and the equations for the feasible boundary are known.

@

Discrete
solution

Continuous
feasihility
. . . . bounds

Discrete
. . ¢ . —— feasibility
bounds

T2

FIGURE 2.7: a) Diagram showing the whole solution space of two decision variables,
x1 and xo, for a linear convex optimisation problem. In the continuous case, the
equations bounding the feasible solution space are known and the optimal solution
is guaranteed to reside on one of the boundary’s corners. In the discrete case
where the two variables must be integers, the equations of the feasibility bounds
are unknown and the optimal solution may not necessarily be at corner points. (b)
Illustration of how non-convex continuous optimisation tasks can, although by no
means trivially, be solved with the use of gradient descent..

As soon as the integrality constraint is introduced, the optimal solution can
instead reside anywhere within the feasible region, making methods such as
simplex, which only navigate the feasibility region’s corner points, inadequate.

Non-linear and non-convex continuous problems can also be inherently easier
to solve than the same problem with integrality constraints added (see Fig. 2.7b).
This is because the discrete version is non-differentiable, meaning that there is
no easy way to know that a step in a given direction of the solution space is (1)
feasible and (2) more optimal. Consequently, many combinatorial optimisation
problems fall into the NP-complete and NP-hard complexity classes; the most

difficult-to-solve problems in computer science. Such problems have no known

24 Chapter 2. Background

algorithm which can deterministically find an optimal solution in polynomial

time.

2.6 Solving NP-Hard Problems

There are three classes of algorithms for solving NP-hard problems; heuristic
algorithms, approximation algorithms, and ezact algorithms (see Table 2.1 for a
summary of their characteristics).

Heuristic algorithms. Heuristics are ‘rules of thumb’ They generate
solutions to combinatorial problems based on principles which are thought to be
performant a priori. Typically, although not necessarily, heuristics can be scaled
to large optimisation problems and can generate solutions quickly. Historically,
heuristics have been handcrafted by human experts, but recent years have seen
a surge of interest in the application of ML to learn heuristics automatically,
as done in Chapters 4 and 5. General-purpose heuristic frameworks, termed
metaheuristics, can be applied to many different problems with little to no
tuning or problem-specific adaptations. Examples of metaheuristics include
the Al evolutionary and swarm intelligence algorithms developed in Chapter
3. However, heuristics and metaheuristics provide no guarantee on how far the
generated solution is from the optimal solution, which can be detrimental in
applications where high solution quality is important.

Approximation algorithms. Approximation algorithms apply domain-
specific mathematical tricks to certain problems in order to approximate the
original complex problem into a simpler version which can be solved exactly.
Approximation algorithms are able to provide an optimality bound guarantee
on the worst-case distance of the generated solution from the optimal one, such
as ‘this solution is within at least 92% of the optimal solution’, even when the
optimal solution itself is not known. Although this guarantee is useful, these

approximations are only applicable to certain problem settings and are therefore

2.7. Artificial Intelligence 25

not generalisable, and approximation algorithms are typically not scalable to
large instances.

Exact algorithms. Exact algorithms are algorithms which, if left to run
for long enough, are guaranteed to eventually find the provably optimal solution
to a combinatorial problem. Although they generate optimal solutions and are
generalisable to many different problems, exact algorithms typically scale poorly
and are therefore unable to cope with large instances. As explored in Chapter 4,
ML approaches can be integrated into exact solvers in order to improve their

scalability whilst retaining their optimality guarantee and generality.

‘ Approximation Algorithms Heuristics Exact Algorithms

Quality guarantee Yes No Yes
Generalisable No Yes Yes
Scalable No Yes No

TABLE 2.1: Summary of the typical characteristics of approximation algorithms,
heuristics, and exact algorithms when solving combinatorial optimisation problems.

2.7 Artificial Intelligence

Al is the study and design of ‘intelligent agents’, where an intelligent agent is a
system which perceives its environment and takes actions such that its chances
of success are maximised [Poole et al., 1998]. Fig. 2.8 provides a visualisation of
some of the branches of AI which are most popular at the time of writing [Mata
et al., 2018], with the methods used in this thesis highlighted.

AT can be applied to solving NP-hard discrete optimisation problems via
integration into the heuristic, approximation, or exact algorithmic paradigms
outlined in Section 2.6. The power of Al techniques stems from the general
principle of machine-powered automated problem solving. They are useful for
complex problems which cannot be solved either analytically or in a practical
time frame, and can often be applied without an expert knowledge of the specific

problem domain.

Chapter 2. Background

26

Evolutionary
computation

Swarm intelligence

Local search and
metaheuristics

Knowledge-based
reasoning and
planning methods

Search methods and
optimisation theory

Artificial Intelligence

Game theory Learning methods

Statistical models

ﬁ

| |)

paradigm.

Learning probabilistic
methods

Expectation
maximisation

Supervised learning

Unsupervised
learning

Machine learning

Reinforcement
learning

g e

FIGURE 2.8: Main Al branches and sub-categories, with the methods explored and
used in this thesis highlighted. This diagram is far from comprehensive, but gives
a rough overview of where the methods used in this thesis fit in to the broader Al

2.8. Machine Learning 27

There are no hard rules specifying which problems are most suited to which
Al techniques. The designer must therefore combine their high-level knowledge
and intuition about both the problem being solved and the Al techniques
available. They must then explore the efficacy and possible adaptation of the
narrowed-down techniques for the problem being solved to determine which is
best.

This thesis considers optimisation problems in computer networks. The most
simple networking environments are those which are deterministic, observable,
static, and completely known. Such scenarios are well-suited to search algorithms
and classical optimisation theory methods such as breadth-first search and
integer linear programming (ILP), which have been applied to simple small-scale
network routing and planning problems [Simmons, 2008]. However, when these
ideal conditions are relaxed or when the network is scaled to larger sizes, such
techniques become inapplicable. Instead, they can be complemented or replaced
by more flexible and scalable AI local search algorithms and metaheuristics as
shown in Chapter 3. For highly dynamic environments, learning agents which
can adapt to new conditions and unforeseen scenarios that could not have been
anticipated at the design stage become powerful alternative or complementary
problem solving tools. Such learning techniques have been applied to a range
of networking problems, including quality of transmission estimation [Jiménez
et al., 2012], modulation format recognition [Gonzalez et al., 2010], and task

scheduling [Mao et al., 2019a], and are used in Chapters 4 and 5.

2.8 Machine Learning

ML is a sub-field of AI. A machine is said to have ‘learned‘ from experience E
to execute a set of tasks 7' if its performance, as measured by P, improves with

experience E [Mitchell, 1997]. The motivation for ML stems from the desire to

28 Chapter 2. Background

have systems which can solve dynamic problems without the need for human
intervention or explicit instruction.

There are three broad learning paradigms. (1) Supervised learning:
‘Labelled’ data sets containing the inputs and the corresponding desired outputs
are fed into the model, enabling the model to learn to map unseen inputs to seen
labels (e.g. classification, regression, and so on). (2) Unsupervised learning:
‘Unlabelled’ data sets containing only inputs are fed into the model, enabling
the model to learn underlying structures, patterns, or features of the data
and thereby reduce unseen data into these learned structures (e.g. clustering,
association, and so on). (3) Reinforcement learning: Input data is in the
form of an observation from a dynamic sequential decision making environment
which returns a reward signal to the model based on the actions it chooses to
perform, enabling the model to learn how to take actions which maximise its
expected long-term reward (e.g. playing chess, controlling complex systems, and
S0 on).

This thesis focuses on the reinforcement learning paradigm in Chapters 4
and 5, although Chapter 4 also implements a supervised learning algorithm as a

baseline. For a detailed overview of ML, refer to Russell and Norvig [2009].

2.9 Function Approximation with Neural Networks

In many cases, such as the RL setting where a value and/or policy function
is being learned (see Section 2.11), tabular approaches which map inputs (e.g.
states) to their exact outputs (e.g. optimal actions) are infeasible because they
would require excessive amounts of memory. Instead, the true function mapping
inputs to outputs can be approximated with a NN, and this has now become
common practice in many applications of ML.

Layers. NNs are a composition of linear transforms and non-linear (acti-

vation) functions connected in a chain to form a directed acyclic computation

2.9. Function Approximation with Neural Networks 29

graph. Each function in the chain is a layer in the NN, although sometimes
linear and non-linear function pairs are referred to as a single layer.

Parameterisation. Each NN layer is parameterised by a set of weights and
biases. The weights of a layer form a matrix, and the bias values form a vector.
Each vector dimension of the weight matrix and each scalar element of the bias
vector operate on either all (‘fully connected’) or some of (‘sparsely connected’)
the input’s dimensions being passed to the layer, thus transforming the input
into some output (see Fig. 2.9). The weights and bias value operating on a
particular (set of) input dimension(s) are collectively termed a ‘unit’ or ‘neuron’
in the NN layer. The exact values of the weights and biases of each unit are
what determine how the input is mapped to an output.

Learning. Training a NN constitutes learning (i.e. optimising) the set of
weights and bias values of each layer to take an input and produce a desired
output. For example, a simple learning task might be to find the values of the
weights and biases in a NN which accurately map house characteristics (number
of bedrooms, surface area, year built, and so on) to the house’s price. This
learning process is done by defining a loss function, such as the mean squared
error between the predicted price and the actual price, and minimising the
loss by adjusting the model’s parameters using an appropriate optimisation
algorithm during training. The optimisation algorithm used is typically gradient-
based, such as the Adam optimiser [Kingma and Ba, 2015], but may also be
gradient-free, such as the Al optimisation methods considered in Chapter 3.

Hidden layers. During training, only the target outputs of the final output
layer are given; all intermediary layers between the input and output layers have
‘hidden’ targets determined by the learning framework being used. Hence, layers
between the input and output layers are referred to as ‘hidden layers’.

Deep neural networks. NNs with multiple hidden layers are referred to
as DNNs. It has been shown that, given enough hidden units (parameters), a

NN with only one hidden layer can approximate any continuous function with

30 Chapter 2. Background

Input (e.g. Neural network layer Output (e.g.
pixels) classification
predictions)

T fnon—linear <flinea.r (W -+ b)) Yy

/" Linear function, Activation™,
weights, & bias function

Class 1
Pixel 2

Class 2

Class 3
Pixel 4

FIGURE 2.9: Visualisation of a typical layer in a fully connected feedforward NN.
Each layer is composed of units, which in turn are composed of a linear transform
on a set of weights and a bias value followed by a non-linear ‘activation’ function.
In the specific example drawn here, a four-pixel image is flattened into a vector and
passed into a single NN layer with three units (‘dimensions’). Each unit outputs a
single scalar whose value depends on the values of the units’ weights and biases.
Each unit’s output corresponds to the NN’s confidence that the image belongs
to one of three possible image classes (e.g. dog, cat, or horse). During training,
the values of the weights and biases are optimised until the NN successfully maps
images to the correct corresponding image class.

a finite number of hidden units [Hornik et al., 1989], therefore making NNs
universal function approximators. However, to approximate high-dimensional
functions, one hidden layer would require exponentially more units as the number
of dimensions in the function increases. The power of DNNs lies in their ability
to assign feature labels by transforming high dimensional features into linearly
separable regions [Osindero, 2018]; indeed, Montufar et al. [2014] showed that as

the number of hidden layers is increased, the number of linearly separable regions

of the DNNs increases exponentially, whereas increasing the number of hidden

2.10. Graph Neural Networks 31

units only increases the assignable feature label count polynomially. Therefore,
much more powerful representations are attained with deep and narrow NNs as
opposed to shallow and wide models.

The state of neural networks today. The last decade has seen the
successful application of the function approximation power of DNNs to solve a
variety of problems, from natural language processing [Goldberg and Hirst, 2017]
to image recognition [Deng et al., 2009]. In this thesis, DNNs trained within
the reinforcement learning paradigm are used to solve difficult combinatorial
optimisation problems. For a detailed introduction to deep learning, refer to

Goodfellow et al. [2016].

2.10 Graph Neural Networks

This thesis focuses on graph-based combinatorial optimisation problems and
computer networks. However, traditional NN architectures cannot easily handle
graph-structured data because graphs have no fixed node ordering or reference
point, an arbitrarily varying size, a complex topological structure (i.e. no regular
spatial locality, as vectors and grids do), and data points (nodes) with multiple
features intricately related to other nodes via relationships (edges). Whereas
standard NNs are restricted to handling only vector- and grid-structured inputs,
such as sentences and images, GNNs are generalised NN architectures which can
handle graph-structured data, such as networks and molecular structures (see
Fig. 2.10). This thesis therefore uses GNNs for the graph-based ML problems
considered in Chapters 4 and 5.

Most current GNNs use the message passing paradigm to map each node and
edge onto a vector embedding space which captures neighbourhood relationships
before performing additional graph-level embeddings and readouts if desired.
Concretely, each GNN layer usually performs four stages (see Fig. 2.11): (1)

Message passing: On each edge in the input graph, use a message function

32 Chapter 2. Background

Non-Euclidean Euclidean

e e

Graph Image Text

FIGURE 2.10: Visualisation comparing non-Euclidean graph structures, such as
networks and molecules, with Euclidean-structured data, such as sentences and
images.
to generate a message (representation) to pass from a source node to a set
of destination nodes, where each node stores the message(s) it receives in its
mailboz. (2) Message aggregation: On each node in the input graph, apply
an aggregate function (a vanilla reduce operation such as mean, sum, max, min,
and so on, or a trainable function) to the messages in its mailbox to generate
an intermediate aggregate representation of its neighbourhood. (3) Node-
level embedding: Pass the intermediate aggregate representation through a
trainable function to produce a final vector embedding for each node, which is an
aggregated representation of the node and its neighbourhood. (4) Graph-level
embedding (optional): If desired, at the end of the final GNN layer, pass
the node embeddings through a trainable function to produce a graph-level

representation.

To include information from & hops away in a given node’s embedding and
therefore capture k-distance dependencies between nodes across the graph in
the final GNN representation, k& of these GNN layers can be used. Crucially, the
parameters of all message, aggregation, and forward pass functions are shared
across nodes, enabling GNNs to be inductive in that they can generalise to

unseen nodes and graphs.

2.11. Reinforcement Learning 33

£
[=N
©
U]
5
j=1
=
i ._Mailbox
r ™ Message
. .*—*..\g
L
B = e
’ g
.-
g Mailbox
a- &= embedding
o~ [
S —
s
n
.-
J
Node
” . embedding
"y . @
=
@ o °
J
ﬁ Graph
g embedding
n
= —
9
c
i)
a
e

FIGURE 2.11: The stages performed by each layer in a typical GNN. Note that if
the optional graph-level readout in stage 4 is performed, it is only done in the final
GNN layer.

2.11 Reinforcement Learning

RL is an ML learning paradigm. It is the study of optimal decision making in
natural and artificial systems [Silver, 2009]. In the general RL setting shown in
Fig. 2.12, an agent interacts with an environment at each sequential time step .
The environment can be described by tuple (T, R), where T is a state transition
probability matrix defining the transition probabilities from all states s to all
successor states s’ taking action v where T%, = P(S'™! = §/|S* = 5, U’ = u), and

R is a scalar reward function giving the expected immediate (next state) reward

34 Chapter 2. Background

given current state s and chosen action u where R* = E(R™|S! = 5, U = u).

Agent

Action
Ut

<Rer1- .
L Environment J‘i

e Sggq1 -

FIGURE 2.12: A reinforcement learning setting, showing the iterative environment
interaction feedback loop used by the agent to learn strategies which maximise the
reward signal.

Markov decision process. The environment is usually assumed to have
the Markov property whereby P(st*1|s') = P(s'T!|h?); that is to say that the
probability of the next state being s'™! given the current state s’ is the same as
the equivalent probability given all previous states in history ht = {s', ..., s'}.
As such, this RL setting is usually assumed to be a MDP described by tuple
(S,U, T, R,~) where S is a finite set of possible environment states, U is either
a discrete (finite) or continuous (infinite) set of possible actions, and v € [0, 1]
is a discount factor specifying the factor by which to multiply future expected
rewards to discount their present value. Since Markov states are stochastic, future
rewards are never fully certain and are therefore expressed as an expectation.

Agent goal. The agent’s goal is to learn to maximise its expected total
discounted future reward, termed the ‘value’ or ‘return’ G* = Y72 yF RIHF+L
over the course of an episode (a sequence of decision steps which may or may not
terminate at some point). To do so, the agent can use model-free RL to avoid
explicitly modelling the environment by only using its policy function and/or
its walue function to make decisions. The policy function m maps an observed
state s’ to a corresponding action u' such that some estimated score objective
is maximised. The value function estimates the expected return G; from being
in state s* and following policy 7 (the state value function v) or from being in

state s', taking action u’, and following policy 7 (the action value function q).

2.11. Reinforcement Learning 35

Crucially, value and policy functions can be approximated and learned with
NNs, enabling RL to be scaled to large problem instances (see Section 2.9 for
background information on NNs).

Prediction and control. There are two aspects to maximising Gy; prediction
and control. The prediction task is to, given a policy m and an MDP, find
the value function v, which correctly evaluates how well the agent would do
by following 7 in the MDP. The control task is to, given an MDP, find the
optimum value function v, which maximises the value function over all policies,
v4(s) = max, v, (s), and the corresponding optimal policy 7, which achieves the
optimum value function, 7, > mw,Vxr. Note that in order to solve the control
problem (finding the optimum value function and optimal policy), the agent must
first solve the prediction problem (finding the value function which correctly
evaluates a given policy). There are three classes of model-free RL algorithms
for addressing the prediction and control tasks; value-based, policy-based, and
actor-critic RL.

Value-based RL. Value-based methods involve learning a value function
which implicitly defines a policy by following a policy, such as e-greedy [Tokic
and Palm, 2011], which is based on the expected returns predicted by the
value function. Examples of common value-based algorithms include SARSA
[Rummery and Niranjan, 1994] (on-policy learning), Q-learning [Watkins and
Dayan, 1992] (off-policy learning), and DQN [Mnih et al., 2015] (Q-learning
with experience replay), and are explored in Chapters 4 and 5. Value-based
methods can be advantageous in environments with small action spaces since
value function updates tend to be large and therefore achieve rapid convergence.
However, since a value function must be defined, the maximum value of all
possible state-action pairs must be found. This is often inefficient, since usually
the agent would only want the best action rather than knowing the value of all
state-action pairs, and cannot be used for large or continuous (infinite) action

spaces. Furthermore, the policy typically sampled deterministically at test time

36 Chapter 2. Background

with the action with the highest value being preferred, which is disadvantageous
for certain scenarios such as rock-paper-scissors where a random policy beats any
deterministic policy [Bowling and Veloso, 2001] or in some partially observable
Markov decision process (POMDP) problems such as the aliased grid-world
problem [Crook and Hayes, 2003] which benefit from having stochastic elements
in the policy.

Policy-based RL. Policy-based methods such as REINFORCE [Williams,
1992] do not consider a value function. Instead, they explicitly define a policy and
directly learn the policy which maximises their expected return. Policy updates
are often small and therefore converge more smoothly on an optimum policy.
Furthermore, since there is no value function, the agent does not need to consider
the value of every possible state-action pair, therefore policy-based algorithms
can be scaled to very large or continuous action spaces; this is the most common
motivation for researchers to use policy-based methods. Additionally, they can
learn stochastic policies, which can be good for certain POMDPS. On the other
hand, due to the small policy updates at each iteration, policy-gradient methods
are vulnerable to long convergence times and stagnation at local minima rather
than finding the global optimum policy. Furthermore, policy-based algorithms
typically use Monte-Carlo methods without bootstrapping and therefore the
agent does not get a reward until the end of an episode, thereby potentially
introducing high variance and making learning difficult.

Actor-critic RL. Actor-critic methods are a new class of RL algorithms
which are becoming increasingly popular. They explicitly define both a policy
function (the actor) and a value function (the critic) and learn to optimise them
both in order to try to get the advantages of both value- and policy-based meth-
ods. Common actor-critic algorithms include natural policy gradient [Kakade,
2001], A2C, A3C and Q-actor-critic [Mnih et al., 2016], deep deterministic
policy gradient [Lillicrap et al., 2016], and proximal policy optimisation (PPO)

[Schulman et al.; 2017], and are considered in Chapters 4 and 5.

2.11. Reinforcement Learning 37

Advantages of RL. Using traditional RL has several advantages over
heuristics and other ML paradigms such as supervised learning. First, no
external data from human-designed or computationally expensive heuristics is
required, enabling an agent to learn super-human policies without potentially
sub-optimal initial biases towards a certain strategy or a costly expert example
collection-and-labelling phase [Silver et al., 2016]. Second, a DNN with a
finite number of layers and neurons will have its expressivity constrained [Dong
et al., 2020], restricting the complexity of the set of functions it is capable
of approximating. Because the objective of an RL agent is to maximise its
expected future return which, under the assumption that a suitable reward
function has been crafted, is equivalent to maximising performance on a given
task, RL agents are able to maximise task performance given DNN expressivity
constraints. Third, since RL agents maximise the future return, they are capable
of learning sophisticated non-myopic policies which sacrifice short-term reward
in exchange for higher long-term return [Sutton and Barto, 2018].

The state of reinforcement learning today. RL has been an established
field for a long time. However, recent breakthroughs over the last decade in
the development of large DNN models have yielded impressive results when
trained in the RL paradigm. Mnih et al. [2015] showed that a DNN trained to
approximate the value function via Q-learning can be used to play Atari games
with super-human performance, and many ‘deep RL’ algorithms have since
been developed. AlphaGo represented a significant milestone, being the first
Go computer programme to beat professional human players on a full 19 x 19
board [Silver et al., 2016], combining deep reinforcement learning with Monte
Carlo tree search [Browne et al., 2012]. Recently, RL has surpassed humans at
complex real-time partially observable strategy games such as StarCraft [Vinyals
et al., 2019], Dota [OpenAl et al., 2019], and Poker [Brown and Sandholm,
2019]. There have also been several breakthroughs in real-world applications,

with OpenAl training a robot to solve a physical rubik’s cube [Agostinelli et al.,

38 Chapter 2. Background

2019a] and Kiran et al. [2022] demonstrating a self-driving learning agent. This
progress in RL presents a ripe opportunity for its application in discrete problem
solving and computer network optimisation, as explored in Chapters 4 and 5.

For a detailed introduction to RL, refer to Sutton and Barto [2018].

2.12 Deep Q-Learning

Deep Q-network (DQN) (also known as ‘deep Q-learning’) is a state-of-the-art
value-based RL algorithm [Mnih et al., 2013, 2015], and some of its variants
are used in Chapers 4 and 5. This section breaks down the components of this
popular RL method.

Q-learning. Q-learning [Watkins, 1989] is the canonical value-based al-
gorithm which can be applied to a sequential decision making process for-
malised as an MDP (see Section 2.11). It is an off-policy temporal differ-
ence algorithm whose goal is to learn the action value function mapping state-
action pairs to their expected discounted future return when following a policy
m Q7 (s,u) = EF[Z;’,‘LHIvt/_lr(st/)|st:s,ut:u] By definition, an optimal
policy . will select an action which maximises the true Q-value Q.(s,u),
T.(s) = argmax,s Q.(s,u).

Concretely, the classical (Q-learning algorithm maintains an action value
look-up table Q(s,u) mapping all possible state-action pairs to their predicted
discounted return. The return is the sum of future rewards over the remainder
of the episode. During training, Q-learning follows an exploration-exploitation
policy. The simplest such policy is e-greedy, where a random action is sampled
with probability € € [0, 1] and the best action, according to the current @) table,
is sampled with probably 1 — €. At each time step t, the agent in state s,
uses this policy to select an action u; which it performs in the environment
to transition to the next state s;,1 and receive a reward r,1. Q(s,u) is then

updated according to:

2.12. Deep Q-Learning 39

Q(st,uy) + Q(s4,uy) + - <7“t +7 - max Q(sir1,u') — Q(sy, ut)> (2.1)

On the right-hand side of Eq. 2.1, Q(s,u;) is the agent’s estimate of the
discounted return of taking action u; in state s;, « is the learning rate, vy is
the factor by which to discount future rewards to their present value, and
max,s Q(si4+1,u’) is an estimate of the future value of being in state s;y; and
taking an ‘optimal’ action according to @). The r; + v - max, Q(s;41, ') term is
called the temporal difference target, and the collective r; +~-max, Q(s441,u") —
Q(s¢t, ay) term the temporal difference error. As such, the max,, Q(s¢41,u’) term
treats () as an oracle from which optimal actions can be sampled. Although @
is usually randomly initialised and changes at each update step, the general idea
is that, with stable learning and sufficient exploration,) will converge on the
true @, function.

As a side note, Q-learning is a temporal difference algorithm because, rather
than using the actual returns to update @ in Eq. 2.1 as done by Monte Carlo
methods, it uses a bootstrapped estimate of the future returns max,, Q(ss 41,).
Furthermore, it is an off-policy algorithm because the policy used to select the
action u; at the current time step, such as e-greedy sampling of @), is different to
the policy used to select the next-state action u’ when evaluating the temporal
difference target, such as greedy sampling of (). This is as opposed to on-policy
temporal difference algorithms, such as SARSA, which use the same action
selection policy for both the current time step and for future time steps when
bootstrapping.

Deep Q-learning. Many practical problems have an extremely large number
of possible state-action combinations. For example, the game of Go has over
107 possible sequences; far more than the number of atoms in the universe

[Silver et al., 2016]. As such, modelling the action value function with a tabular

40 Chapter 2. Background

approach is intractable given practical memory constraints. To enable Q-learning
to be scaled to complex problems, DQN [Mnih et al., 2013] approximates the
true Q-function with a DNN parameterised by 6 such that Qg(s, u) ~ Q.(s,u).

Concretely, during training at each time step ¢, Qg(s,u) is used with an
exploration strategy such as e-greedy to select an action and add the observed
transition T = (Sy, Ug, 441, Ve+1, St+1) to a replay memory buffer [Lin, 1992]. The
network’s parameters 6 are then optimised with stochastic gradient descent to
minimise the mean squared error loss between the online network’s predictions

and a bootstrapped estimate of the Q-value,

JDQN(Q) = [Ttﬂ + Vet1 muz}x Qa(St41, U/) — Qo(51, Ut)ra (2.2)

where ¢ is a time step uniform randomly sampled from the buffer and Q);
a target network with parameters 6 which are periodically copied from the
acting online network. The target network is not directly optimised, but is
used to provide the bootstrapped Q-value estimates for the loss function. Only
periodically updating the target network rather than at each learning step leads
to lower variance in the bootstrapped targets at each step. This helps helps to
stabilise learning and leads to better convergence [Mnih et al., 2013].

Double DQN. In the traditional Q-learning update rule of Eq. 2.1 and the
DQN loss of Eq. 2.2, the Q-function used to select and evaluate an action for
the temporal difference target is the same; max, Q(syy1,u’) for Eq. 2.1, and
max, Qg(si1,u’) for Eq. 2.2. However, this can lead to an overestimation bias
where the chosen action u’ is incorrectly over-valued because the same function
which perceives u' as being best is also being asked to evaluate it. This can lead
to high variance updates, unstable learning, and convergence on local minima.
Double DQN [van Hasselt et al., 2015] reduces overestimation by decomposing
the max operation in the temporal difference target into action selection and

action evaluation and performing these two tasks with two separate networks.

2.12. Deep Q-Learning 41

Concretely, action u' is greedily selected according to the online network Qg
and evaluated with the separate target network (). The loss term from Eq. 2.2

then becomes:

JDDQN(Q) = [Ttﬂ + Y111Qa(5t41, H%f,tX Qo(St+1, Ul)) — Qo1 Ut)r- (2.3)

Prioritised experience replay. Vanilla DQN replay buffers are sampled
uniformly to obtain transitions for network updates. A preferable approach
is to more frequently sample transitions from which there is much to learn.
Prioritised experience replay [Schaul et al., 2016] deploys this intuition by
sampling transitions with probability p; proportional to the last encountered

absolute temporal difference error,

Pr OC |71 + Vi muf,iX Qa(5t41, U/) — Qo(ss,ur)|”, (2.4)

where w is a tuneable hyperparameter for shaping the probability distribution.
New transitions are added to the replay buffer with maximum priority to ensure
all experiences will be sampled at least once to have their errors evaluated.

n-step Q-learning. Traditional Q-learning uses the target network’s greedy
action at the next step to bootstrap a Q-value estimate for the temporal difference
target. Alternatively, to improve learning speeds and help with convergence
[Sutton and Barto, 2018, Hessel et al., 2017], forward-view multi-step targets
can be used [Sutton and Barto, 2018], where the n-step discounted return from

state s is

n—1
n k
Tt(= Z%S)Tt—i-k—i—l: (2.5)
k=0

resulting in an n-step DQN loss of

42 Chapter 2. Background

n n / 2
Tpon,(@Q) = [ri" + 71" max Qg (st ') — Qolsi ur)| - (2.6)

Dueling DQN. Traditional DQN approaches use a DNN architecture which
is not specific to RL. Consequently, when learning the Q-function, the entire DNN
architecture must learn to estimate the state value and the action advantage for
each action in order to learn the state-action function Q™ (s, u) of being in state
s, taking action u, and following policy 7. However, in many problems where
bootstrapped Q-learning is applied, the most important objective is to learn to
estimate the value of each state rather than the effect of each action for each
state. This is especially true in environments and individual states where future
transitions are mainly influenced by factors other than the agent’s actions.

Leveraging the insight that in many states it is unnecessary to estimate the
value of each action choice, Wang et al. [2015] developed a new DNN architecture,
termed ‘dueling DQN’, which is better suited to the Q-learning task. Concretely,
the dueling architecture uses the same core DNN as standard DQN. However,
rather than following the initial encoding with a single sequence of fully connected
layers to get a Q-value for each possible action in the current state, dueling DQN
uses two separate streams of fully connected layers. One stream, parameterised
by 3, estimates the state value function Vj g(s) (the estimated future discounted
return of the current state regardless of future actions taken), and the other
stream, parameterised by «, estimates the relative action advantage function
Ay o(s,u) (the relative difference in the future discounted return of each action).

The outputs of the two streams are then combined via a special aggregation
function to recover the state-action value function). Crucially, V(s) and
A(s,u) must be combined into Q(s,) in such a way that they are independently
identifiable from the output) values alone in order for backpropagation to be
able to calculate the appropriate loss and weight updates for the separate V' (s)

and A(s,u) streams. As such, a simple Q(s,u) = V(s) + A(s,u) aggregation

2.12. Deep Q-Learning 43

function to get the Q-values from the two streams does not suffice. Instead, the
authors tried two different aggregation schemes.

The first aggregation method subtracted the advantage of the mazimum
advantage action from all advantages to make the argmax action’s advantage 0

and the rest < 0,

Qo0 = Vos(s)+ <A9,a(s,u) — max A97a(s,ul)>7 (2.7)

thus enabling V'(s) to be recovered at the argmax action’s Q-value.
The second aggregation method subtracted the mean advantage from all
action advantages to centre the advantage values around 0 (i.e. to have a mean

of 0),

Qo0 = Vos(s)+ <A9,a(s,u) — M}’ ZA(,LQ(S, u')) (2.8)

This makes V(s) recoverable from Q(s,u) by estimating the V(s) value
which, when subtracted from each A(s, u) value, leads to a set of A(s,u) values
which have a mean of 0. In practice, this second approach of using the mean was
found to lead to more stable learning since using a mean operation resulted in
lower variance targets between learning steps compared to when a max operation
was used.

As with standard Q-learning, the output of the dueling network is a set of
Q-values (one for each action), therefore no change to the underlying algorithm
other than a slight adjustment of the network architecture was required. By
decomposing the Q-function approximator in this way, dueling DQN is able
to attain superior policy evaluation in the presence of many similar-value ac-
tions, and the authors demonstrated their architecture achieving state-of-the-art
performance on the Atari 2600 games.

Ape-X DQN. Noting that state-of-the-art ML performance is often achieved

with more computation, more powerful models, and larger training data sets,

44 Chapter 2. Background

Horgan et al. [2018] proposed Ape-X; a parallelisation approach to off-policy
experience replay RL. Concretely, rather than using a single actor-learner setup,
Ape-X decouples acting from learning. It distributes many actors across a set
of CPU cores each with their own instance of the environment. FEach actor
retains a copy of a DNN shared across actors which it uses for action selection to
accumulate experiences in parallel with other actors. These experiences are then
communicated to a central shared replay buffer, where a single learner mounted
on a GPU uses prioritised experience replay to sample the most important
experiences for learning. Learner sampling, gradient computation, and network
updates are done asynchronously with one another on separate threads, as are
the periodic updates made to the actors’ networks with the latest shared learner
network. By using multiple actors in parallel, not only can orders of magnitude
more transition data be attained for learning, but also a broader diversity of
experiences can be collected by allocating a different exploration strategy to
each actor and thereby avoid local optima in difficult exploration and large
state-action space settings. For Ny ors distributed actors, Horgan et al. [2018]
used a per-actor e-greedy exploration strategy whereby each actor ¢ had a fixed
exploration probability ¢; = € FaroraT® where € = 0.4 and o = 0.7. The
authors demonstrated their approach achieving new state-of-the-art results on

Atari in a fraction of the training time of prior works.

45

Part 1

Optimising the Physical Plane

Communication Link I
network
FPhysicaI

End plane
points

47

Chapter 3

SOA Control for Sub-Nanosecond

Optical Switching

Abstract

Novel approaches to switching ultra-fast semiconductor optical amplifiers us-
ing artificial intelligence algorithms (particle swarm optimisation, ant colony
optimisation, and a genetic algorithm) are developed and applied both in sim-
ulation and experiment. Effective off-on switching (settling) times of 542 ps
are demonstrated with just 4.8% overshoot, achieving an order of magnitude
improvement over previous attempts described in the literature and standard

dampening techniques from control theory.

48 Chapter 3. SOA Control for Sub-Nanosecond Optical Switching

Publications related to this work (contributions indented):

o Hadi Alkharsan, Christopher W. F. Parsonson, Zacharaya Shabka,
Xun Mu, Alessandro Ottino, and Georgios Zervas, ‘Optimal and Low
Complexity Control of SOA-Based Optical Switching with Particle Swarm
Optimisation’, ECOC"22: Proceedings of the Forty-Eighth European Con-

ference on Optical Communication, 2022

— PSO code

o Thomas Gerard, Christopher W. F. Parsonson, Zacharaya Shabka,
Benn Thomsen, Polina Bayvel, Domanic Lavery, and Georgios Zervas,
‘Al-Optimised Tuneable Sources for Bandwidth-Scalable, Sub-Nanosecond

Wavelength Switching’, Optics Fxpress, 2021
— PSO code, simulation & lab experiments, plots

o Christopher W. F. Parsonson, Zacharaya Shabka, W. Konrad Chlupka,
Bawang Goh, and Georgios Zervas, ‘Optimal Control of SOAs with Ar-
tificial Intelligence for Sub-Nanosecond Optical Switching’, Journal of

Lightwave Technology, 2020

— ACO/PSO/GA algorithm selection, PSO code, simulation & lab

experiments, paper writing, plots

e Thomas Gerard, Christopher W. F. Parsonson, Zacharaya Shabka,
Polina Bayvel, Domanic Lavery, and Georgios Zervas ‘SWIFT: Scalable
Ultra-Wideband Sub-Nanosecond Wavelength Switching for Data Centre
Networks’, arXiv, 2020

— PSO code, simulation & lab experiments, paper writing, plots

3.1. Introduction 49

3.1 Introduction

The challenge of all-optical switching in DCNs stems from the short bursty nature
of DCN traffic and the lack of an all-optical memory alternative to traditional
storage techniques during buffering and contention resolution. The small packets
which dominate DCN traffic (90% < 576 bytes [Clark et al., 2018]) take only
O(microsecond (us)) to transfer. Therefore, to avoid an inefficient network with
a switching time that is comparable to or greater than the forwarding time, OCS
networks must be switched at O(ns) packet timescales [Benjamin et al., 2020].
However, current state-of-the-art commercial optical switches have O(> 100us)
switching times [Farrington et al., 2010, Hamedazimi et al., 2014, Gray et al.,
2015, Mellette et al., 2017, Webster, 2022].

A promising technology for high-speed all-optical switching is the SOA.
SOAs have high and relatively flat optical gain bandwidths and can therefore
be used for both space and wavelength switching [Assadihaghi et al., 2010].
They also have inherently fast switching times (theoretically limited only by
their 100 picosecond (ps) carrier recombination lifetimes [Connelly, 2003]), a
high extinction/optical contrast ratio, and a relatively compact design. These
characteristics make SOAs an ideal candidate for low latency-, scalability-, and
footprint-constrained DCN switching.

However, SOAs have an intrinsic optical overshoot and oscillatory response
to electronic drive currents due to exciton density variations and spontaneous
emission in the gain region [Paradisi, 2019]. This results in the key advantage of
SOA DCN switching (rapid switching times) being negated, preventing sub-ns
switching. Prior attempts to fix these faults have failed to achieve sub-ns switch
times and cannot be scaled (see Section 3.3).

In this chapter, we propose a novel and scalable approach to optimising the
SOA driving signal in an automated fashion with three AI techniques; GA, ACO,

and PSO. These algorithms were chosen on the basis that they had previously

50 Chapter 3. SOA Control for Sub-Nanosecond Optical Switching

been applied to PID tuning in control theory [Kusuma et al., 2016]. Moreover,
AT techniques propose the benefit of not requiring prior knowledge of the SOA
and therefore provide a means of developing an optimisation method that is
generalisable to any SOA-based switch. All algorithms were shown to reduce the
settling and rise times to the O(100 ps) scale, and we experimentally demonstrate
an order of magnitude improvement over the previous switching speed world
record. The algorithms’ hyperparameters were tuned in an SOA equivalent circuit
simulation environment and their efficacy was demonstrated in an experimental
setup. Al performance was compared to that of both standard and state-of-the-
art literature approaches to optimising oscillating and overshooting systems, all
of which the AT algorithms outperformed. Of the Al algorithms, PSO was found
to have both the best performance and generalisability due to the additional
hyperparameters and search space restrictions that were required for GA and
ACO. All code and plotted data are freely available at Parsonson et al. [2020a]

and Parsonson et al. [2020b] respectively.

3.2 Background

3.2.1 Semiconductor Optical Amplifiers

SOA physics. The basic principle of an SOA’s operation is shown in Fig. 3.1. A
gain (or active) region is sandwiched between an n-type material, which has many
electrons in its conduction band, and a p-type material, which has many holes
in its valence band. A driving pump current is applied via metal electrodes to
supply excesses of electrons and holes to the n- and p-type materials respectively.
The excess holes and electrons pass into the gain region’s valence and conduction
bands respectively, forming electron-hole pairs called excitons. An optical input
signal is pumped into the gain region, stimulating electrons to recombine with

holes by stimulated emission (see Fig. 3.2). This relaxation causes a photon

3.2. Background 51

of energy equal to the gain region’s band gap to be released. This band gap is
chosen to be equal to the input optical signal’s wavelength, therefore the SOA’s
stimulated emission process increases the intensity of the optical signal, thus
creating an amplified optical output signal. Refer to Connelly [2003] for more
details on SOAs.

Pump current

—

ctrode

Amplified
optical output

Optical input

Electrode

Pump current

FI1GURE 3.1: Schematic of an optical amplification device, such as a semiconductor

optical amplifier (SOA). An optical input signal is amplified in the gain region by

the process of stimulated emission, thereby outputting an optical signal with higher
intensity. This is an ‘all-optical’ process.

Electron
) Conduction band

Inducing photon
Incident photon

—_——

Stimulated photon

_—

LJ Valence band
Hole

FIGURE 3.2: Schematic of the process of stimulated emission; the key phenomenon

behind optical amplification. An incident ‘inducing’ photon stimulates the relax-

ation and recombination of an electron and a hole, thus stimulating the emission of
a photon of energy equal to the bandgap across which the electron relaxed.

Optical switching with SOAs. SOAs have great potential as an ultra-fast

all-optical switch technology [Connelly, 2003, Assadihaghi et al., 2010]. Consider

52 Chapter 3. SOA Control for Sub-Nanosecond Optical Switching

a simple n X n = 2 x 2 switch module, as shown in Fig. 3.3. In this case, there
are n = 2 input fibres and n = 2 output fibres, therefore a switch is needed
that can switch either of the two input fibres to either of the two output fibres.
To create such a switch, n? = 4 SOAs are needed, with n? = 4 optic fibres
connecting n = 2 input fibres to n = 2 output fibres having one SOA each. The
light from each input fibre is split into % = % intensity beams using a decoupler
(in this case, a 50:50 decoupler). Each SOA is either ‘on’ (an electrical pump
current is applied) or ‘off” (no electrical pump current applied). In the ‘on’ state,
there is a sufficient density of excited states in the active region for stimulated
emission to be the dominant phenomenon occurring in the SOA. The light passes
through the SOA, and the gain region amplifies the light signal by n times,
thus re-amplifying the signal to its original intensity and compensating for the
intensity loss incurred by splitting the signal upon entry to the switch. In the
‘off” state, there are not enough excited states in the active region for stimulated
emission to dominate. As such, the SOA has a high extinction ratio (the ratio
of photons absorbed to photons emitted), and the majority of the photons are
absorbed by the process of stimulated absorption (see Fig. 3.4). The end result
is an all-optical switch that can route light to any output port from any input
port by turning on the corresponding SOA.

Advantages of SOA switching. There are three primary advantages
of using SOAs for optical switching. (1) Ultra-fast switching: In theory, the
switching speed of an SOA is limited only by the carrier recombination lifetime
(how long, on average, it takes a hole and an electron to recombine), which
is O(ps). As such, SOA switches open up the possibility of ultra-fast sub-ns
switching, thereby reducing network latency and enabling OCS architectures.
(2) Scalability: The loss in signal intensity across each line in the switch with its
corresponding SOA is constant across all lines/SOAs, and does not increase as

the number of input/output ports is increased, thus enabling significant port

3.2. Background 53

Polymer casing

fibres fibres

.

ninput - n output
.
)

FIGURE 3.3: Schematic of how SOAs can be used to create an all-optical switch.
Input light signals are split up and passed along all the possible routing paths. The
SOA along the routing path corresponding to the desired output fibre that the
input signal should be routed to is switched on, and all other SOAs are switched off.
The SOA that is switched on re-amplifies the split signal by stimulated emission
and allows it through to the output port. The SOAs that are switched off absorb
the signal by stimulated absorption. All the fibres and SOAs are held in a polymer

casing.
Hole)
) Conduction band
Incident photon
[
Electron Valence band

F1GURE 3.4: Schematic of the process of stimulated absorption. An incident
photon passes its energy on to an electron in the valence band, exciting an electron
to the conduction band.

scalability. (3) Low power consumption: Since SOA switching is a a passive all-
optical process which generates little to no heat, therefore the amount of power
needed to cool the switches is reduced. This significantly reduces the power

consumption and running cost of the network relative to electronic switches and

other optical switching technologies.

54 Chapter 3. SOA Control for Sub-Nanosecond Optical Switching

Challenges of SOA switching. Despite these advantages, SOAs present
two key challenges preventing their application to switching; power overshoot
and power ringing (see Fig. 3.5 for a visualisation of these phenomena). (1)
Power overshoot: An intrinsic SOA response to an injection of current is to
rapidly create excitons. The density of these excited states is initially high before
falling to a more constant level. Therefore, there is an initial ‘power overshoot’ in
the optical output power of an SOA switch; rather than a signal being a perfect
off-on step function, it will initially overshoot the ‘on’ power state. This can
lead to non-linearity problems related to the optical power in the transmission
fibre. (2) Power ringing: When the SOA is turned ‘on’ by applying a pulse
of electrical current, after the initial power overshoot, some excited carriers in
the gain region begin to relax by spontaneous emission (see Fig. 3.6). This
lowers the carrier density, therefore lowering the level of stimulated emission and
causing a reduction in SOA gain, thus reducing the power output of the SOA.
The carriers are then re-excited by the present current pulse, therefore increasing
the gain again, but with the aforementioned power overshoot. Eventually after
oscillations/ringing in the power output, the SOA gain settles on a constant
level, but this initial ringing (which occurs for a period of time known as the
settling time) leads to distortions in the signal being transmitted, and therefore
cannot be used. As a result, although the on-off time of an SOA is quick (on
the order of picoseconds), the effective on-off time (which must account for the
settling time) is much slower (on the order of nanoseconds).

In this chapter, we address these two challenges by applying Al techniques
to optimising the driving signal to the SOA such that the negative effects of

power overshoot and ringing are minimised.

3.2. Background 95

Overshoot Ringing
A rJ_] r A B
_ Settling time _

31 'fi['??-‘-el"ﬁ
Y /N0 LN T —
-D] I
= | :
a | :
E] 1
<] :

107/ . :

= :
Rise time Time (a.u.)

F1cURE 3.5: Visualisation of a typical SOA response when amplifying an optical
signal. The SOA’s optical output will overshoot the target settling point, and then
ring for some period of time before settling within +5% of the steady state.

Electron
) Conduction band
Emitted photon
® Valence band
Hole

FIGURE 3.6: Schematic of the process of spontaneous emission. An electron in an
excited state spontaneously recombines with a hole, emitting a photon equal to the
energy across which the electron relaxed.

3.2.2 Evolutionary & Swarm Algorithms

Swarm and evolutionary algorithms are similar in that the methods in both
categories are inspired by natural biological phenomena, and both are composed

of a population of agents searching for near-optimal solutions. In fact, prior

56 Chapter 3. SOA Control for Sub-Nanosecond Optical Switching

to the mid-1990s, swarm algorithms were categorised as evolutionary methods
[Bansal, 2019]. Their modern distinction is due to their differing philosophies;
swarm algorithms utilise the emergent collective behaviour of their population,
retaining the individual identity of the agents over time, whereas evolutionary
algorithms rely on the concepts of natural selection and genetics, replacing
individual identities with new generations of agents over time.

Swarm algorithms. Swarm intelligence algorithms are composed of simple
agents which cooperate in a self-organised and decentralised manner such that a
so-called ‘intelligent’ collective search strategy emerges [Bonabeau et al., 1999,
Bansal, 2019]. Each agent constitutes a possible solution to the problem being
solved. At every iteration, each solution is stochastically updated according to
the ‘fitness’ (efficacy) of both the individual solution and the collective population
of solutions following various update rules and communication strategies. Unlike
many subsequent nature-inspired swarm methods, the first swarm algorithm,
stochastic diffusion search [Bishop, 1989], was built entirely from a comprehensive
mathematical framework. Later swarm algorithms such as ACO [Dorigo, 1992]
and PSO [Kennedy et al., 1995], which today are among the most widely used
[Bansal, 2019], were inspired by the natural social phenomena exhibited by ant
colonies, flocks of birds, and schools of fish.

Evolutionary algorithms. Evolutionary computation algorithms are also
composed of simple agents but, rather than cooperating, these agents typically
compete and get replaced by new generations of agents with advantageous
characteristic updates following the ‘survival of the fittest’ principle [De Jong
et al., 1997]. Evolutionary algorithms have been around for several decades,
with the first use of evolutionary programming thought to be in by Fraser [1958].
They generally work by randomly initialising a population of possible solutions,
iteratively modifying them to generate a new set of solutions via a series of
selection, crossover and mutation operations, and stochastically discarding poor

solutions while evolving fit solutions into the next generation. The evolved

3.2. Background o7

solutions should therefore improve generation-by-generation until a near-optimal
solution is converged on.

Swarm & evolutionary algorithms for optimisation. There are several
drawbacks evolutionary and swarm algorithms. Their efficacy often heavily
depends on the hyperparameters used to control their behaviour and exploration-
exploitation trade-offs, hence computationally costly tuning is often required.
Furthermore, their fundamental reliance on stochastic behaviour creates problems
with reproducibility and guaranteed global optimum convergence. As such,
quadratic optimisation problems with linear constraints or linear programming
problems of a reasonable size are best solved by classical methods with rigorous
mathematical frameworks and good convergence properties. However, many
real-world problems are unstructured, have complex, non-differentiable and
non-convex objective functions and, at scale, have too many variables to be
solved by classical techniques. Such problems are where the use of evolutionary

and swarm intelligence algorithms can become advantageous.

3.2.3 Genetic Algorithms

GAs are a family of evolutionary algorithms. They mimic the mechanism
of Darwinian evolution. In nature, each physical property (phenotype) of a
living organism, such as eye and hair colour, is determined by a set of rules
or instructions called genes. The genes are strung together into structures
called chromosomes. As such, it is the genes within the chromosomes which
determine the decoded phenotypic traits of the organism. These core concepts
and terminologies are used by GAs. GAs are local search metaheuristics which,
in the discrete case, can find near-optimal solutions to NP-hard CO problems.

Problem formulation. Given a problem II described by triple (S, f,),
a chromosome is a candidate solution s to Il. The string of genes making up

the chromosome are the solution’s variables. Each gene is usually encoded by

58 Chapter 3. SOA Control for Sub-Nanosecond Optical Switching

a binary (0Os and 1s) string representation (for example, a variable with 256
possible values can be encoded by an 8-bit string), although for problems with
continuous variables, real-valued genes can also be used. The string of genes
(variables) making up the chromosome (solution) have a real phenotypic value
(solution output). The fitness of the resultant phenotype is determined by a
fitness (objective) function f (for example, the difference between the actual and
the target solution outputs, such as network latency vs. 0 latency). The task
is therefore to find the optimum set of gene values s* which result in the most
favourable performance as determined by the fitness function f(s). The fitness
function used is always problem-dependent. In nature, this function corresponds
to the organism’s ability to operate and survive in a given environment, and the
probability of selecting a given gene to pass on to future chromosomes during
reproduction is proportional to the chromosome’s fitness.

Optimisation process. As described by Kiranyaz [2014], the general pro-
cess for GA optimisation via Darwinian evolution is as follows. (1) Initialisation:
Generate a population of chromosomes whose gene strings are randomly ini-
tialised to yield a comprehensive range of possible solutions across the search
space (set of possible solutions) S. (2) Selection: For each successive generation,
first stochastically select chromosomes to use to breed into the next generation,
granting higher selection probabilities to chromosomes with greater fitness val-
ues. (3) Reproduction: Second, use genetic operators (such as ‘crossover’ and
‘mutation’) to breed children of the chosen chromosomes whose genes differ but
are similar to the original parent chromosomes. (4) Evaluation: Evaluate the
fitness of the child chromosomes and substitute them for any chromosomes in
the previous generation’s population with poorer fitness values so as to keep the
population size constant generation-to-generation. (5) Termination: If a target
fitness is achieved, if the maximum number of generations has been reached, or
if incremental fitness improvements have converged across multiple generations,

terminate the GA process. Otherwise, repeat steps 2-4.

3.2. Background 59

Algorithm 1 formulates this GA procedure for a population C' of n chromo-
somes where each chromosome ¢ occupies a phenotype state s in a search space

(set of possible solutions) S with fitness function f.

Algorithm 1 Genetic Algorithm

Require: n > 0,Vs € S
Repeat (for each generation):
Select a set of parent chromosomes C, € C
Apply genetic operator(s) to reproduce a set of child chromosomes C.
for ¢, in C, do
Cgitness —_ f(cc>
if Cgitness > min(cfitness) then
Clmin(CTiness)] < ¢,
end if
end for

until termination

Crossover & mutation. Given a pair of chromosomes from which to breed,
the key genetic operators in the above GA process are crossover and mutation.
Crossover is applied with probability Py, and is where the genetic information
of each chromosome is swapped about some string position L to create two new
chromosomes. For example, given two 16-bit chromosomes each made up of two
8-bit genes, [01001001 10001010] and [10100101 00001111}, and given that L
has been sampled at L = 10, the crossover operator would produce the child
chromosomes [01001001 10001111] and [10100101 00001010]. Crossover allows
for accelerated search early on in the GA process and enables exploration of
sub-solution combinations for different chromosomes. However, as always with
AT techniques, there is a trade-off. Set Px too high and risk unstable fitness
values oscillating about the global optimum; set Px too low and suffer long
convergence times and stagnation at local optima. Similarly, mutation is applied
to the child chromosomes with probability P,;, and is where a single randomly
chosen bit in the chromosome is flipped (0 = 1 or 1 = 0). Mutation increases
the ergodicity of GAs, compromising short-term fitness in exchange for greater

exploration and therefore improved long-term performance. As with Px, Py,

60 Chapter 3. SOA Control for Sub-Nanosecond Optical Switching

must also be carefully tuned. Too low and non-ergodic genetic drift without
sufficient exploration will occur, resulting in convergence on local optima; too
high and the volatile stochastic nature of the mutations will prevent convergence
on the global optimum.

There are many different flavours of GA which generally differ according to
the exact operator(s) and problem formulation used, but all fundamentally work

as described above. For a comprehensive overview of GAs, refer to Kiranyaz

2014].

3.2.4 Ant Colony Optimisation

ACO is a swarm intelligence metaheuristic. It mimics the process by which
ants forage for food. In nature, ants coordinate their activities via stigmergy; a
form of indirect communication via modification of the surrounding environment
by the deposition of pheromone chemicals. The trail pheromone is a specific
type of pheromone used to mark paths on the ground, such as from a nest to
a food source. When walking along a path, an ant deposits trail pheromones.
Other ants can smell these pheromones and tend to choose, stochastically, paths
with strong pheromone concentrations. When foraging begins, there are initially
no pheromone trails, hence the path chosen by each ant is uniformly random.
However, because pheromones have an evaporation rate, the first ant to find
food and return to the nest will leave the strongest pheromone trail, thereby
marking the shortest path. This in turn will bias the stochastic path choice of
other ants, increasing the pheromone concentration on the shortest path via
an autocatalytic process until most ants converge on the optimum path, with
a few random fluctuations in path choice retaining some level of exploration.
Hence, ants have a built-in optimisation capability; by using stochastic rules
based on local information, they can collectively find the shortest path between

two points.

3.2. Background 61

These core concepts form the basis of ACO. They can be abstracted beyond
shortest path identification to a variety of discrete optimisation problems via
a mapping. ACO is a constructive metaheuristic which can be used to find
near-optimal solutions to NP-hard CO problems.

Problem formulation. Consider a CO minimisation problem II described
by the triple (S, f, Q). The search space constitutes a finite set of discrete compo-
nents (variable values) C' = {cy, ¢a, ..., ¢ }, where m is the number of components
in the search space. Each solution s is a finite sequence s = (¢;, ¢j, ..., ¢p, ...) Over
the elements in C'. To solve (S, f,), artificial ants iteratively build a solution
by constructing a path on the construction graph G = (C, L) whose edges L
fully connect the nodes C'. Components ¢; € C' and connections /; ; € L have an
associated pheromone trail T, which is the long-term memory of the ant search
process and which is updated by the ants themselves. They also have a heuristic
value 1, which captures a priori or run-time information about the problem and
which is from a source other than the ants, such as the estimated cost of adding
a new component or connection to the partial solution under construction.

Optimisation process. Each ant k uses G = (C, L) to search for the
optimal solution s* € S for (S, f,Q). It has a memory M* in which to store
information about the path followed (i.e. the partial solution built) so far. When
initialised at its start node, the ant selects a node j amongst its neighbourhood
of nodes N* to move to. This selection is made by applying a stochastic decision
rule. The decision rule is a function of the available local 7 and 7 values
associated with each possible action, the ant’s private memory M* storing its
current partial solution, and the problem constraints {2 which prevent invalid
selections. Once the ant has iteratively added its selected component actions c;

k are met, the ant re-traces its path in

to M* until > 1 termination conditions e
reverse and updates the pheromone trail values 7 at each component.
The above ACO process can be deconstructed as follows [Dorigo and Stiitzle,

2004]. (1) Construct solutions: Move each ant through G by applying a stochastic

62 Chapter 3. SOA Control for Sub-Nanosecond Optical Switching

local decision process to incrementally build a solution to the optimisation
problem being solved until a termination condition is reached. (2) Update
pheromones: Update the pheromone values 7 in G based on which components
were in each ant’s solution and on the evaporation rate (which forms a useful
‘forgetting” mechanism by which rapid convergence on local optima can be
avoided). (3) Daemon actions: Implement custom centralised actions which
cannot be performed by single ants (e.g. collect global information to decide
which particular paths found by the ants were especially good and therefore
warrant additional pheromone deposits on their respective components).
Algorithm 2 formulates this ACO process for a colony K of n ants. Dorigo

and Stiitzle [2004] provide a more comprehensive overview of ACO.

Algorithm 2 Ant Colony Optimisation

Require: n > 0,Vs € S
Repeat (for each iteration):
for k in K do
Repeat (for each step):
Stochastically choose an action j from neighbourhood N*
MF «— MF¥ j
until termination
end for
Update 7 values in GG using ants’ solutions and any daemon actions
until convergence on near-optimal solution

3.2.5 Particle Swarm Optimisation

PSO is a swarm intelligence algorithm. It mimics the way in which bird flocks
and fish schools exhibit self-organised decentralised collective adaption to their
surrounding environment. PSO is a local search metaheuristic which can be
used to find near-optimal solutions to NP-hard CO problems.

Problem formulation. To solve a problem II described by triple (S, f,2),
a swarm of n particles are initialised at random positions. Each particle position
represents a potential solution s € S to IT and has m components (dimensions).

At iteration ¢, the position (solution) represented by particle j is denoted s;(3).

3.2. Background 63

The goal is for the swarm of particles to collectively navigate through the search
space S to find the optimal solution s* according to the fitness function f.
Optimisation process. At each sequential iteration in the PSO process,
the particle positions are updated by adding a velocity term v;(i), as in Eq. 3.1.
This velocity term is what drives the PSO process. It contains the personal
knowledge of the particle (the ‘cognitive component’, which is proportional to the
distance between s;(i) and the particle’s historic ‘personal best’ position ppes;)
and the socially exchanged information of the particle’s neighbours (the ‘social
component’, which is proportional to the distance between s;(i) and the whole
swarm'’s historic ‘global best’” position gnes). At each iteration i, the velocity
of particle j at the ¢™ dimension in position s;(i) is updated according to Eq.
3.2, where C' = {c1,¢2,...,¢n}, confy; and confy; are the personal and social
‘confidence acceleration constants’ of particle j used to scale the contributions
of the cognitive and social components respectively, r1; and ry; are random
values in range [0, 1] sampled from a uniform distribution in order to introduce
stochastic exploration, and w; is the ‘momentum’ of particle j used to control

the exploration-exploitation inclinations of the particle.

Vjeli+1) = w;ovje(i)+confy; 11 (6)- [Prest;. (1) = s5e(i)] +cont;ra;(0)- [ghest. — 5c]
(3.2)

A higher conf; encourages the particle to be more confident in itself and
explore more positions, but possibly take longer to converge on the optimum gpeg; .
On the other hand, a higher confy encourages the particle to trust the social
knowledge of its neighbours and converge faster on gpest, but be less inclined to

explore new positions. As such, conf; and confy are critical in controlling the

64 Chapter 3. SOA Control for Sub-Nanosecond Optical Switching

exploration-exploitation trade-off of PSO. It has been shown that so long as
these variables satisfy FEq. 3.3, PSO is guaranteed to converge on some solution
rather than unstably oscillate around objective function minima [Van Den Bergh

and Engelbrecht, 2001].

1

0< 3 (conf; + confy) — 1 <w < 1 (3.3)

In a common variant of PSO, known as dynamic PSO [Clerc, 1999], w, conf;
and confy can be dynamically updated at the start of each iteration according to
Eqgs. 3.4, 3.5 and 3.6 respectively, thereby avoiding being either too exploitative
or too exploratory at local iterations in the PSO process. w(0) is an ‘initial
inertia weight’ constant (0 < w(0) < 1), w(n;) is the ‘final inertia weight’
constant (w(0) > w(n;)), h;(i) is the relative fitness improvement of particle j
at iteration 4, and conf,,,, and conf,;, are the maximum and minimum values

for the acceleration constants respectively.

wi-+1) = w(0) + (o) = w(0))- (”‘1)] (3.4)

ehi(®) 11

, confin + confpes confpes — confo, e M0 —1
conhall) = 2 " 2 Teworr B9

f is used to evaluate a given particle position s;, and in the case of a
minimisation problem instance, can be used to update pres;; and gres; at each

iteration according to Eqgs. 3.7 and 3.8 respectively.

best ; [5 if Sj 1 = best. 1
Poest; (i + 1) = Pres (1) Feli4 1) 2 F e, (1) (3.7)

s;(i+1), otherwise

3.3. Related Work 65

» Grest (1), Af f(s;(0 4+ 1)) = f(gbest(i))
Goest (1 + 1) = (3.8)

s;(i4+1), otherwise

Kiranyaz [2014] gives a more in-depth overview of the PSO metaheuristic.

3.3 Related Work

Various alternatives to OCS solutions have been proposed as a means to enable
all-optical DCNs. These include optical loop memory [Srivastava et al., 2009],
optical burst switching (OBS) [Chen, 2005], and OPS [Benjamin et al., 2017,
Wang et al., 2018]. However, such techniques require more complex, expensive
and unscalable architectures than provided by OCS [Benjamin, 2020]. The
drawback of OCS is the aforementioned lack of a viable ultra-fast all-optical
switch.

PISIC techniques. There have been a range of previous attempts to bring
SOA switching speeds closer to their theoretical 100 ps optimum. A previous
study looking to optimise SOA output applied a PISIC driving signal to the
SOA [Gallep and Conforti, 2002]. This PISIC signal pre-excited carriers in the
SOA’s gain region, increasing the charge carrier density and the initial rate of
stimulated emission to reduce the 10% to 90% rise time from 2 ns to 500 ps.
However, this technique only considered rise time when evaluating SOA off-on
switching times. A more accurate off-on time is given by the settling time, which
is the time taken for the signal to settle within +5% of the ‘on’ steady state.
Before settling, bits experience a variable signal to noise ratio, which impacts
the bit error rate (BER) and makes the signal unusable until settled, therefore
the switch is effectively ‘off” during this period.

MISIC techniques. Later attempts looked at applying a MISIC driving

signal to remedy the SOA oscillatory and overshoot behaviour [Conforti and

66 Chapter 3. SOA Control for Sub-Nanosecond Optical Switching

Gallep, 2006, Ribeiro et al., 2009, Figueiredo et al., 2015]. As well as a pre-
impulse, the MISIC signal included a series of subsequent impulses to balance
the oscillations, reducing the rise time to 115 ps and the overshoot by 50%
[Figueiredo et al., 2015]. However, the method for generating an appropriate
pulse format was trial-and-error. Since each SOA has slightly different properties
and parasitic elements, the same MISIC format cannot be applied to different
SOAs, therefore a different format must be generated through this inefficient
manual process for each SOA, of which there will be thousands in a real DCN.
As such, MISIC is not scalable. Furthermore, the MISIC technique did not
consider the settling time, therefore the effective off-on switching time was still
several ns.

Surrounding component optimisation. More recent works used the
MISIC technique, but focused on closer integration between SOA microwave
elements to decrease rise time, instability, and non-linear behaviour [Figueiredo
et al., 2017]. Taglietti et al. [2018] adopted this principle but also applied a
Wiener filter. The filter was determined by the steady state value of the SOA
response. The mean squared error (MSE) between the output and the filter is
minimised by finding the optimal set of weight coefficients for the filter. The
work accomplished a 60% reduction in guard time, with the goal of reducing
guard time as much as possible such that the BER of the output did not exceed
a particular level. However, the study did not consider the settling time, which
is crucial for optimising the practical switching speed. Similarly, Sutili et al.
[2019] explored the optimisation of an SOA by means of both modification of the
driving signal and optimisation of the SOA’s microwave mounting. A best case
of 33% reduction in guard time was accomplished with an improved microwave
mounting architecture and a step driving signal, where various MISIC and
PISIC driving signals were also tested. This work demonstrated that significant
improvements in guard time could be derived exclusively from improvements

made to the microwave mounting of the SOA and that the improvement of

3.4. Method 67

the SOA’s output by optimisation of the driving signal did not preclude the
simultaneous improvement by optimisation of the microwave mounting. It is
therefore complementary to the results we present in this chapter, since we
do not consider microwave component optimisation, but rather only focus on
optimising the SOA drive signal.

The previous solutions discussed so far have had a design flow of first manually
coming up with a heuristic for a simplified model of an SOA, followed by
meticulous testing and tuning of the heuristic until good real world performance
is achieved. If some aspect of the problem is changed such as the SOA type used
or the desired shape of the output signal, this process must be repeated. In this
chapter we present Al as a fully automated optimisation technique for any SOA,
and experimentally demonstrate an order of magnitude improvement in switch
speed over the previous world record. A comparison of our work and that of the

literature is presented in Table 3.1.

3.4 Method

Problem formulation. Finding a near-optimal driving signal for an SOA
can be formulated using the CO framework presented in Section 2.5. II can
be described by triple (S, f,€2). Here, the set of candidate solutions S to II
is the set of possible electrical signals (which are voltage vs. time functions)
available to drive the SOA with, where the constraints) are defined by the
equipment used (which determines signal resolution, frequency response, and
so on). Each solution s € S is therefore made up of a series of m components
C = {c,co,...,cn} where each component ¢; corresponds to a point in the
driving signal at time ¢. Each component can take one of 2" possible voltage
values, where u is the bit resolution of the driving signal generator. f is the
the objective function which takes the optical signal output by the SOA (an

intensity vs. time function with p points, here termed the ‘process variable’)

68

Chapter 3. SOA Control for Sub-Nanosecond Optical Switching

TABLE 3.1: Comparison of SOA Optimisation Techniques. (Best in bold).

e @ Though exact value not reported in Sutili et al. [2019], it is referred to as being ‘below 500 ps’.

o b Comparison of the ASM mounting against the commercial STF mounting.

o ¢ Exact value not reported in Sutili et al. [2019] so percentage improvement is (approximately) inferred
from a graph presented in Sutili et al. [2019]. Comparison made at bias current value corresponding to
the best case performance of the best performing ASM mount + drive combination and is compared
against the STF mount + drive at the same bias and for the same drive (step was best performing in
the reported metrics).

« @ Comparison is made between the best and worst cases presented in Taglietti et al. [2018].

o ¢ Several variants of the ‘MISIC’ format were tested in Figueiredo et al. [2015] and the best is used
here for comparison.

o f Comparison made with respect to the performance of the STEP driving signal presented in Figueiredo

et al. [2015].
Method Reference Rise Time, ps|Settling Time,| Overshoot, % | Guard Time,
(Technique) (Reduction, ps (Reduction, ps
%) (Reduction, %) (Reduction,
%) %)
PSO This work 454 ps 547 ps 5% -
(Signal (35%) (85%) - -
Optimisation)
ACO This work 413 ps 560 ps 4.8% -
(Signal (41%) (85%) - -
Optimisation)
GA This work 340 ps 825 ps 10.3% -
(Signal (51%) (78%) - -
Optimisation)
PISIC This work 502 ps 4350 ps 40.5% -
(Signal (28%) (-17%) - -
Optimisation)
MISIC1 This work 502 ps 4020 ps undershot -
(Signal (28%) (-8%) - -
Optimisation)
Raised Cosine This work 921 ps 4690 ps undershot -
(Signal (-32%) (-26%) - -
Optimisation)
PID Control This work 501 ps 4020 ps 2.3% -
(Signal (28%) (-8%) - -
Optimisation)

ASM Mounting + | Sutili et al. [2019] - - ~ 5% L] ~ 500 ps [@
STEP Drive - - (= 75% by | (= 33% (b
(Microwave

Mounting
Optimisation)
STEP Drive + Taglietti et al. [2018] - - - 286 ps

Wiener Filtering - - - (60% ld1)

(Signal
Optimisation +
Filtering)
PISIC Drive Figueiredo et al. [2015] 115 ps - 25% -
(Signal (34% (1) - (-56% Lf1) -
Optimisation)
MISIC-6 Drive €] |Figueiredo et al. [2015] 115 ps - 12.5% -
(Signal (34% L1 - (22% 1) -

Optimisation)

3.4. Method 69

when driven with the electrical signal s € S (the ‘input control signal’ with
m points, here termed OP) and evaluates the driving signal’s performance by
assigning it a scalar objective function value. We define f (Eq. 3.9) as the
MSE between the PV and a target ‘set point’ (SP), where SP is an ideal optical
output with 0 rise time, settling time and overshoot. Thus, this CO problem is a
minimisation problem where the goal is to find the optimal driving signal s* € S
which minimises the objective function value f(s) such that f(s*) < f(s)Vs € S.

p
)= I3 (P - 5P (3.9)
=1

’E

Using the above CO formulation, GA, ACO and PSO can all be applied to
the CO problem of finding a near-optimal driving signal for a given SOA, as
will now be described. The hyperparameter tuning process and settings used for
each Al technique are given in Section 3.7.1.

Genetic algorithm. A chromosome represented a driving signal and a
gene represented the voltage value for a given point in the driving signal. For
a u-bit driving signal, each gene was encoded with a u-bit binary string. The
phenotype resulting from the string of genes making up the chromosome was the
corresponding SOA optical output whose fitness was evaluated by the objective
function in Eq. 3.9. At each generation, nioumsize individuals were stochastically
selected to breed into the next generation from a population of n chromosomes
using the mutation and crossover genetic operators. Mutation was implemented
using Gaussian mutation [Hinterding, 1995] where normally distributed noise
of mean p and standard deviation ¢ was applied to change a gene’s value with
mutation probability P,;. Crossover between two individuals in nioumsize Was
applied with probability Py. Through the process of evolution, the population
of n chromosomes would eventually converge on a near-optimal driving signal s*
for the SOA.

Ant colony optimisation. A graph G with m clusters (one cluster for

70 Chapter 3. SOA Control for Sub-Nanosecond Optical Switching

each component) where each cluster had 2" nodes (one node for each possible
component value) was initialised. A population of n ants started at the first
cluster (point in the signal), chose a node (signal voltage value) in the cluster,
and then moved to the next cluster. In this way, each ant could travel through G
and iteratively build a driving signal solution s by choosing nodes in GG. Defining
the strength of the pheromone trail using the objective function in Eq. 3.9, an
associated evaporation rate, and a probability of random path selection, the
ants could iteratively converge on a near-optimal driving signal s* for the SOA.

Particle swarm optimisation. A visualisation of how PSO was applied to
SOA optimisation is given in Fig. 3.7. A population of n particles were initialised
at random positions, where each position was an m-component driving signal.
Since experimental results showed spurious overshoots after the rising edge and
therefore an increase in the settling time, the PSO search space was bounded by
a PISIC-shaped ‘shell’ beyond which the particle dimensions could not assume
values. An added benefit of the shell was a reduction in the complexity of the
problem and therefore also the convergence time. The shell area was a PISIC
signal with a leading edge whose width was defined as some fraction of the ‘on’
period of the signal. The particles could then be flown through the search space,
updating prest for each particle and gpes; for the population at each it" iteration
according to Eq. 3.9 until the particles converged on a near-optimal driving

signal s* for the SOA.

3.5 Simulation Setup

To enable rapid hyperparameter tuning, rather than relying on laboratory
experiments, it was useful to first simulate an SOA and use this simulation

environment to tune the Al hyperparameters and to test novel ideas such as the

PISIC shell.

3.5. Simulation Setup

71

Initialise the algorithm:
Initialise n random particles where each particle position
e

« * . ,,,“
SRR || x'\",";'i‘m"i'
) ‘ \H‘\” "

co t“‘un“?""""vl

th e par tI red)

:

r
i

i

MM i

t t
For each particle:

Find the distance between its

Doest () d its current

posltlon,x(blue) Bias this with
confide

Use the fitness improvement
of x relative to pjes; to get an
‘inertia weight’ w. Multiply this
by the current velocity v to get
the particle’s momentum.

ge on position with best fitne

hptl find the MSE
its output and the SP,

twi
and store this as its ‘fitness.

V.!z!!!iii:nlllllu.i'||ll!||.\|!!||"

0

. Bias with a social

Find the position with the global best
fitness and set this as gpes ().

“ ‘H,)M
i '\'\ﬂ i

Vmw i

I HU'(b

Update the particle’s velocity by
mmmmmm g the personal and social
distance terms with the momentum
term. Add the new velocity to the

urrent position to get the new
particle position, x(t + 1).

t
s. This is the optimum driving signal for the SOA.
Iter 35
R TV AN

t

Iter = 150

| ﬂ‘ “\ Ai\ il
. h i ‘IW‘ x“,’“f;] V
g | \Mw il

MW"II)“

t

FIGURE 3.7: Visualisation of how PSO was applied to SOA optimisation.

The shortcomings of rate equations.

SOAs are typically modelled

using simple rate equations. However, as shown by Ghafouri-Shiraz [2004], the

electrical parasitics of an SOA and its surrounding packaging degrade optical

signals by broadening the output optical pulse width, reducing the peak optical

72 Chapter 3. SOA Control for Sub-Nanosecond Optical Switching

power (thereby reducing optical contrast), and causing a slight time delay in
the emitted optical pulse. Additionally, they alter the relaxation frequency of
the SOA output oscillations. As such, modelling the electrical parasitics was
crucial to building a simulation environment in which to optimise switching. As
described by Ghafouri-Shiraz [2004], Figueiredo et al. [2011], and Tucker et al.
[1984], assuming a small circuit model, microwave equivalent circuits can be
used to more accurately simulate semiconductor diodes by accounting for these
electrical parasitics. Therefore, equivalent circuits were the chosen approach to
SOA modelling for this chapter.

Equivalent circuit modelling. The electrical parasitics were split into
two categories; the parasitics from the microwave injection current components
(the 5012 resistor of the source, the metallic plate, and the SOA sub-mount
plate and wire parasitics) and the SOA’s intrinsic parasitics [Figueiredo et al.,
2015]. Fig. 3.8a shows the microwave injection current parasitics modelled as an
equivalent circuit, and Fig. 3.8b shows the SOA’s intrinsic parasitics, diffusion
characteristics, and gain region. These two equivalent circuits were connected to
form a single SOA model that accounted for all the electrical parasitics. Since at
low voltages (< 0.8V) the current (I) - voltage (V') relationship can be described
by Equation 3.10, the ideality factor n and the saturation current I, could be
calculated using the semi-logarithmic -V curve of the SOA in Fig. 3.9. Defining
the threshold current (I7g) as the bias current needed for stimulated emission
to become more dominant than spontaneous emission, the SOA small signal
model was split into two parts; below Irr (2-50 mA) and above Irg (75-110
mA). The equivalent circuits used to model the gain region of these two parts

are shown in Fig. 3.10.

in(1) = in(1,) + (3}) (;Q;) (3.10)

Simulating below and above the threshold current. For the below

3.5. Simulation Setup 73

X . X Intrinsic SOA SOA diffusion SOA gain
i Source resistor i Metallic plate | SOA sub-mount’s plate & wire parasitics characteristics region
i parasitics { parasitics parasitics L Rq 1 L
i ! s s

L, R, Ly Le R. _,_._NWN\L J/
1B L Csc Cq ?:1 Rs2

FIGURE 3.8: Equivalent circuit diagrams of an SOA’s (a) microwave injection
current parasitics and (b) intrinsic parasitics, diffusion characteristics and gain

region.
5r
55
—~ y =24.5x - 24.08
£z 6

-6.51

0.7 071 072 073 074 075 076 0.77
Voltage (V)

FI1GURE 3.9: Semi-logarithmic I-V plot for the SOA used to calculate n and I.

ldc IdC RS1
L VA ‘}_@
AN RN | 5
Csc Cd Rd —=—Cs¢c —— Cq R1 F\{/Ag
s
I 1l

(a) (B)
FIGURE 3.10: Equivalent circuit diagram of the SOA gain region (a) below Irg
and (b) above Irg.
Irr simulation, Equations 3.11 - 3.13 were used to calculate the space-charge
capacitance Cj., the diffusion capacitance Cy, and the Schockley diode resistance
R, (where V. = applied voltage). Taking these values and extrapolating them
to higher bias currents, the SOA was modelled for above I7r. Equations 3.14
- 3.16 were used to calculate the space-charge capacitance (Cs.), the diffusion
capacitance (Cy), the resistances Ry, Rs and Ry which together modelled the

SOA optical output oscillation dampening due to spontaneous and stimulated

74 Chapter 3. SOA Control for Sub-Nanosecond Optical Switching

emission, and the inductance (Lg). The SOA oscillations that arise from the
dynamic exchange of energy between photons and SOA active region carriers
were modelled by the charge-discharge effect between the capacitance Cs. + Cy
and the inductance L;. The internal and external constants for these equations
were taken from the literature values for a typical silicon laser diode [Ghafouri-
Shiraz, 2004, Figueiredo et al., 2011, Tucker et al., 1984]. All constant values

used are summarised in Tables 3.2 and 3.3.

. T]KbT 1

Ry - (3.11)
qls onw,T
T,
Cy=— 3.12
1= R (3.12)
v\
oo = Cao| 1 = 2% 3.13
R,
— 3.14
T + Y7 So ()
R,
Ry =4 (3.15)
YTn
/BFRdTpItA
o = o ttdTplA 1
B ayT,SE (3.16)
RdT
L,=—"22 3.17
'77—7150 ()

Obtaining an input-output model. It was found that the SOA in the
experimental setup had the optimum trade-off between gain and signal noise at
a bias current of 75 mA, therefore the simulated SOA was biased at this current.
Using MATLAB’s Simulink tool, a transfer function (TF) for the SOA equivalent

circuit was obtained and simplified as shown in Eq. 3.18 with the constants

3.5. Simulation Setup

5

TABLE 3.2: Internal parameters used to model the SOA as an equivalent circuit.

Name Symbol Value Units
Ideality factor n 1.59 -
Saturation current Is 3.48e—11 A
Threshold current It 70 mA
Boltzmann constant Ky 1.381e—23 JK~!
Temperature T 298.15 K
Electron charge q 1.602¢e—19 C
Charge carrier lifetime Tn 3 ns
Zero-bias space-charge capacitance Cgco 1 pF
Built-in potential Vb 1.3 \%4
Gain compression factor € 4.5e—12 m3
Boltzmann constant Ky 1.381e—12 JK~!
Gain coefficient X group velocity ¥ 2.4e—12 m3s—1
Spontaneous emission factor B e—4 -
Optical confinement factor r 0.4 -
Photon lifetime Tp 1 DS
Active region volume \% 4e—16 m3
Charge X active region volume a 6.41e—25 Cm3
Active region carrier density Nrr e24 m~3
SOA leakage current Ir 15 mA

parasitics as an equivalent circuit.

TABLE 3.3: External parameters used to model the SOA’s chip and packaging

Origin Symbol Value Units
Source C, 0.25 pF
Source L, 0.3 nH
Source R, 50 Q
Metallic plate 81 pF
Metallic plate Ly 1.38 nH
Sub-mount C. 1.2 pF
Sub-mount L. 2.5 nH
Sub-mount R, 0.9 Q
Sub-mount Cu 30 pF

76 Chapter 3. SOA Control for Sub-Nanosecond Optical Switching

TABLE 3.4: Constants used in the equivalent circuit transfer function.

g 1.65 as | 1.37 x 10°?
ag | 4.56 x 100 | a3 | 2.82 x 10%2
ar | 3.05 x 10%' | ay | 9.20 x 10™
ag | 4.76 x 103! | a; | 1.69 x 10%
as | 1.70 x 1022 | a | 2.40 x 10%

defined in Table 3.4. This allowed for custom drive signals to be generated, sent
to the biased SOA equivalent circuit, and an optical output measured. We note
that the exponents in the TF of Table 3.4 are unusually high. To verify that
the TF accurately modelled the SOA, Section 3.7.1 shows that the theoretical
and experimental optical response frequency of the modelled and the real SOA
closely matched oneanother. One possible reason for the high exponents could be
overfitting to the complex relationships of the simulation. Another explanation
could be that the setup of the MATLAB simulation was not conducive to easy
interpretation by a TF model. However, given that the obtained TF accurately
modelled the optical response of the experimental device, the TF model’s fidelity
was deemed sufficient for the purposes of this chapter. A full investigation of

the high exponents and the TF model is left for further work.

2,01 x 10%

=0 "1

Analytically optimising SOAs is difficult. As illustrated by the sim-
ulation methodology outlined above, the difficulty with SOA modelling, and
subsequently also SOA switching, is that there are many variables whose values
are difficult to experimentally measure, and which vary significantly even for
same-specification SOAs due to parasitics introduced during manufacturing and
packaging. Re-measuring these constants for a new SOA would be cumbersome,
difficult, and unfruitful since broad assumptions would still need to be made.

Furthermore, scaling this bespoke-modelling to 1,000s of SOAs in a single DCN

3.6. Laboratory Setup 7

would be unrealistic. As such, analytical solutions to SOA switching are not
beneficial. Additionally, different driving circuit setups with different amplifiers,
bias tees, cabling, and so on influence the shape of the driving signal that arrives
at the SOA, thereby requiring more manual tuning every time the equipment
surrounding the SOA is changed. This highlights the need for the partially
‘model-free’ Al approaches proposed in this chapter, which neither make or
require any assumptions about the SOA or the surrounding driving circuit they
are optimising, resulting in their optimised driving signals being superior both
in terms of performance and scalability relative to traditional analytical and/or
manual methods. Here, we borrow the term ‘model-free’ from the field of rein-
forcement learning, meaning an algorithm that does not initially know anything
about the environment in which it must perform its optimisation [Sutton and
Barto, 2018]. In Section 3.7.1, we justify the claim that tuning AI algorithms
in a single simulation environment enables the same Al hyperparameters to be

transferred to unseen SOAs.

3.6 Laboratory Setup

The experimental setup is shown in Fig. 3.11. An INPhenix-IPSAD1513C-5113
SOA with a 3 dB bandwidth of 69 nm, a small signal gain of 20.8 dB, a 0-140 mA
bias current range, a saturation output power of 10 dBm, a response frequency
of 0.6 GHz, and a noise figure of 7.0 dB was used. An SHF 100 BP RF amplifier
was selected by calculating the amplified MSE relative to the direct signal for
different amplifiers, enabling a full dynamic range peak-to-peak voltage of 7V.
A 5002 resistor was placed before the SOA, allowing for the maximum allowed
dynamic current range of 140 mA to be applied across the SOA.

The 70 mA optimum SOA bias current was found by measuring how MSE,
optical signal-to-noise ratio (OSNR), rise time, overshoot, and optical gain varied

with current. A 70 mA bias using a -2.5 dBm SOA input laser power produced

78 Chapter 3. SOA Control for Sub-Nanosecond Optical Switching

the lowest rise time and MSE. The SOA was therefore driven between 0 and
140 mA centred at 70 mA. The other equipment used included a Lightwave
7900b lasing system, an Agilent 8156A optical attenuator, an LDX-3200 Series
bias current source, a Tektronix 7122B AWG with 12 GSPS sampling frequency,
an Anritsu M59740A optical spectrum analyser (OSA), and an Agilent 86100C
oscilloscope (OSC) with an embedded photodiode. The RF signal going into the
SOA had a rise time of 180 ps, therefore this was the best possible rise time (and
settling time) that the SOA could have achieved. Throughout the experiments,

a wavelength of 1,545 nm was used.

lsolator SOA 3dB ||||| ot
Laser : Splitter 1

____Optical

__ Electrical

FiGURE 3.11: Diagram of the SOA experimental setup used.

3.7. Results & Discussion 79

3.7 Results & Discussion

3.7.1 Hyperparameter Tuning & Generality Testing in

Simulation

Verifying simulation fidelity. To verify that the equivalent circuit was
accurately simulating the SOA, Fig. 3.12 compares the frequency response of
the theoretical TF with the experimental SOA. The TF had a -3dB bandwidth
of 0.5 GHz (around 700 ps rise time) compared to the experimental SOA’s
0.6 GHz (around 550 ps rise time). These values were similar to one another
and consistent with both the theoretical and experimental optical responses.
The differences between the responses were due to the use of equivalent circuit

parameters from the literature which did not exactly match those of our SOA.

0 fpwm=
['JV\,‘-\,.\.-)J
n
5 w TF
10 \ \ Exp
- < "‘J
-154 ‘\

Gain (dB)

-20 ‘\v
[
- M‘Wﬁw‘v

0.5

1.0
Frequency (GHz)

FIGURE 3.12: Frequency responses of the theoretical transfer function (TF) and
the experimental SOA (Exp).

PSO hyperparameter tuning. The simulation environment enabled the
PSO hyperparameters to be rapidly tuned by plotting the PSO learning curve
(MSE vs. number of iterations). Since the same PSO algorithm ran multiple
times may converge on different minima, each PSO version with its unique
hyperparameters was ran 10 times and the 10 corresponding learning curves
plotted on the same graph to get a ‘cost spread’ (i.e. how much the converged

solution’s MSE varied between PSO runs). A lower cost spread gave greater

80 Chapter 3. SOA Control for Sub-Nanosecond Optical Switching

reliability that PSO had converged on the best solution that it could find rather
than getting stuck in a local minimum.
To help with convergence time and performance, some additional hyperpa-

rameters were defined:

o iter,.. = Maximum number of iterations that PSO could evolve through
before termination. Higher gives more time for convergence but longer

total optimisation time.

e max_v__f = Factor controlling the maximum velocity a particle could
move with at each iteration. Higher can improve convergence time but, if

too high, particles may oscillate around the optimum and never converge.

e on_s fandoff s f=‘On’and ‘off’ suppression factors used to set the
minimum and maximum driving signal amplitudes the particle positions
could take when the step signal was ‘on” and ‘off” respectively. Lower will
restrict the particle search space to make the problem tractable for the

algorithm, but too low will impact the generalisability of the algorithm to

any SOA.

o shell _w__f = Factor by which to multiply the ‘on’ time of the signal to get
the width of the leading edge of the PISIC shell. Higher (wider) value will
give the algorithm more freedom to rise over a longer period at the leading
edge of the signal and improve generalisability, but will also increase the

size of the search space and impact convergence.

To begin with, it was found that using dynamic PSO whereby w, ¢; and ¢y
were adapted at the beginning of each generation led to multiple advantages.
First, the solution found by 10 dynamic particles had the same MSE as that
found by 2,560 static particles, reducing the computation time by a factor of
256. Second, the final driving signal found by adaptive PSO was significantly

less noisy since it was less prone to local minima. Third, the final MSE found

3.7. Results & Discussion 81

was 63% lower. Fourth, although the relative cost spread of dynamic PSO was
72% compared to 50% due to the lower MSE, the absolute cost spread was just
8.7 x 10713 compared to 140 x 10713,

Pursuing with dynamic PSO, it was found that placing a ‘PISIC shell’ on
the search space (with shell _w__f = 0.1) beyond which the particles could not
travel led to an absolute cost spread of 6.9 x 1072 and a further 14% reduction
in the final cost (despite initial costs being higher due to the fact that PISIC
signals lead to greater overshoot and subsequently also greater oscillations). It
was also found that initialising one of the n particle positions as a step driving
signal improved the convergence time by a factor of two.

Using dynamic PSO, a PISIC shell and an embedded step, the following
hyperparameter values were found to give the best spread, final cost and conver-
gence time: iter,,,, = 150, n = 160, maz_v_f = 0.05, w(0) = 0.9, w(n;) = 0.5,
Cmin = 0.1, Cpae = 2.5, 0n_s_f=2.0,and of f s f = 0.2. This final tuning
resulted in a cost spread of just 1.8%. The evolution of this PSO tuning process
is summarised in Fig. 3.13, where the learning curves for the above sets of
hyperparameters have been plotted in red, orange, blue and green respectively.

The final PSO SOA output, shown in Fig. 3.13, had a rise time, settling
time and overshoot of 669 ps, 669 ps and 3.7% respectively. Fig. 3.13 also shows
the optical response to a step driving signal, showing a rise time, settling time
and overshoot of 669 ps, 4.85 ns and 31.1% respectively. Thus, the simulations
indicated that the settling time (and therefore the effective off-on switching time)
could be reduced by a factor of 7.2 and the overshoot by a factor of 8.4 compared
to a step. Although rise time remained unimproved, the laboratory results in
Section 3.7.2 show that, for a real SOA with optical drift, PSO improves all
three parameters.

ACO hyperparameter tuning. The important hyperparameters with
respect to ACO (specifically the Ant Colony System algorithm used here) were

the pheromone exponent (where higher values encourage more exploitation

82 Chapter 3. SOA Control for Sub-Nanosecond Optical Switching

of previously found paths), the evaporation exponent (where higher values
discourage exploitation of previously found paths), the probability of an ant
travelling along a randomly selected path, and the number of ants n.

Parameters were tuned by means of running optimisation routines with one
hyperparameter varying across a range of values and the rest kept constant. For
each MSE value, the learning curve from 10 different runs were plotted against
each other. Just as with PSO, parameter values were selected to prioritise the
minimisation of cost spread to ensure that the optimisation technique could
give consistent results when used on different occasions. Firstly, it was found
that beyond 200 ants, the cost spread did not improve significantly. Similarly,
regardless of the spread, the ACO routine was typically converging after between
60 and 75 generations, so a generation cap of 100 was imposed since this was
sufficient to guarantee convergence. The values for the other parameters were
the pheromone constant a = 0.25, the evaporation constant p = 0.5 and the
exploration probability p = 0.1. It was also found that minimising the search
space by reducing the dynamic range of the signal to +25% centred at 50% of the
maximum shortened convergence time without degradation of the final signal,
which had the advantage of making matrices memory sizes manageable. No
further hyperparameters, such as the PISIC shell applied with the PSO method,
were utilised, which is more desirable since fewer hyperparameters simplify the
tuning process.

As seen in Fig. 3.13, the spread of the ACO routine was reduced from 23%
to 14.9% through tuning, but was still less consistent than the 1.8% spread of
the PSO algorithm. Fig. 3.13 shows the convergence of the Ant Colony System
algorithm for various hyperparameter combinations (described in the figure’s
caption). While the spread in the early iterations of the routine is explained by
the embedding of a square signal in the PSO routine described above (since it is
extremely unlikely to randomly initialise a signal better than a square and the

ACO does not use any sort of initial signal embedding), the spread in the later

3.7. Results & Discussion 83

stages is thought to be due to some practical limitations of the ACO optimisation
method. For N parameters with M values each, the ACO routine requires 2
(N? x M?) matrices (point-wise multiplied to make a third). A 100 point signal
with 100 possible values per point gives a matrix with 100, 000,000 elements.
Implemented with the popular NumPy Python library, a minimum of 8 bytes
per floating point means such a matrix is on the order of gigabytes. Given the
relatively low power PC used in the experiment, restrictions on the state space
had to be imposed due to memory limitations. This meant that rather than
optimising each point on the signal (240) with the maximum resolution allowed
by the AWG (8 bit = 256 points), only 180 points (those in the HIGH state
of the initial driving step signal) were optimised with a resolution of 50 points.
This meant that the state space viewed by the ACO routine was more strongly
discretised than that viewed by a method (such as PSO) with lower memory
requirements, limiting how optimum the generated signal can be and how well
ACO could generalise to other SOAs. Nevertheless, as will be seen, ACO still
produced driving signals that improved upon previous methods. The final ACO
tuning output, shown in Fig. 3.13, had a rise time, settling time and overshoot
of 753 ps, 1.58 ns and 9.1% respectively.

GA hyperparameter tuning. GA often uses a range of different hyperpa-
rameters (e.g. tournsize for Tournament Selection; or u, o, and Py, for Gaussian
Mutation). This results in an overall high number of hyperparameters which
might significantly impact the probability of the GA getting stuck in a local
minimum as well as the speed of convergence. The high number of hyperparam-
eters also meant that there were more values to fine-tune, which made tuning
both more complex and time consuming, thereby reducing its generalisability.
Since the high number of hyperparameters already impacted generalisability, we
refrained from restricting the search space (as done with ACO and with the PSO
PISIC shell) to try to still allow for as much generalisability as possible, but this

would have the knock-on effect of poorer convergence and a lesser settled signal.

84 Chapter 3. SOA Control for Sub-Nanosecond Optical Switching

However, as demonstrated in Fig. 3.14, GA was still able to generalise fairly
well to 10 different SOAs.

The DEAP Python library was used to implement GA, and came with a
set of suggested default hyperparameter values. These were varied using grid
search over 61 optimisations. A limit on the number of generations was set to
500, which was found to be sufficient for convergence.

Mutation was implemented using Gaussian Mutation, which has a probability
Py, of changing each of an individual’s points by applying normally distributed
noise of mean p and standard deviation o. Using a negative u led to a solution
with lower values, while a positive p did the opposite - each leading to a lower
overall performance, so u was set to 0. Decreasing P,; or ¢ slowed down the
process as it reduced the overall mutation speed, but increasing either one too
much led to the GA getting stuck at local minima. By performing grid search
on the hyperparameters, the optimal values were found to be 0.06 and 0.15
respectively. A population size of 60 led to the fastest initial convergence speed
(per number of fitness function evaluations), however, the higher number of 100
individuals in a population led to a better overall solution after many generations.
Additionally, both Px and P,; were increased significantly from 0.6 to 0.9 and
from 0.05 to 0.3 respectively. Increasing niourmsize above 4 did not have an impact
on the convergence, whereas using the values of 2 and 3 significantly slowed
down the process. Most hyperparameters did not change by much from the
DEAP library’s default values since the initial values were almost optimal and
changing them led to a slower convergence.

Fig. 3.13 shows the 10 learning curves for the default hyper parameters (red)
and the optimised parameters (green), where the cost spread was reduced from
58.6% to 10.8%. Fig. 3.13 also shows the simulated SOA output of the tuned
GA algorithm with a rise time, settling time and overshoot of 799 ps, 2.55 ns,
and 9.0% respectively.

Generalising to Unseen SOAs. The hyperparameters of the Al algorithms

3.7. Results & Discussion 85

() (b) . (o)
=25 <25 <25
> > >
B [\ s A S [\
@ 2f efe-deeegmeae e o 2 o B e e e e eedeltt=te © 2t gy
g S e & N AR g TR N2
9 o o
>15 >15 >15
3 % g
g1 31 g1
s —Target SP s —Target SP s —Target SP
Qo5 —Step Qo5 —Step Oos — Step
PSO ACO —GA
o - - +5% Settling Boundaries o 5% Settling Boundaries o b / - - £5% Settling Boundaries
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Time (ns) Time (ns) Time (ns)

[50 100 150 0 25 50 75 0 100 200 300 400 500
Iteration Iteration Iteration

FIGURE 3.13: Simulated SOA optical response to (a) PSO, (b) ACO, and (c) GA
driving signals relative to a standard step input. For reference, the target SPs used
have also been plotted. Learning curves showing how both the cost spread and the
optimum solution improved as the (d) PSO, (e) ACO, and (f) GA algorithms were
tuned, showing 10 learning curves for each set of hyperparameters. The curves
for the optimum hyperparameters have been plotted in green. For PSO in (d),
some additional information has been plotted: i) No dynamic PSO, PISIC shell, or
embedded step (red), ii) no PISIC shell or embedded step (blue), iii) no embedded
step (orange), and iv) the final PSO algorithm (green, also plotted on separate
graph (inserted)). For GA, the i) default DEAP library constants (red) and ii)
optimised (green) hyperparameter learning curves have been plotted. For ACO,
the blue curve is for a run with a larger pheromone exponent (0.5) value than the
optimum, and the red is for a larger dynamic range on the signal search space
(£50%).

86 Chapter 3. SOA Control for Sub-Nanosecond Optical Switching

can be used to address the general problem of ‘SOA optimisation’. This is because
the hyperparameters are only for restricting the search space to reduce the size
of the problem, and restricting how much the algorithm can change its solution
between iterations; they are specific to the general SOA optimisation problem,
but not to a specific SOA. The equivalent circuit simulation environment provided
a useful test bed in which to tune the algorithm hyperparameters and allow
optimisation of any SOA (even though drive signal solutions derived from
simulations are not directly transferable to experiment).

To test the above claim that these algorithms can in theory be generalised to
any SOA, we generated 10 different TFs each modelling a different SOA. These
were generated by multiplying the coefficients in Table 3.4 by various factors
(summarised in Table 3.6 so as to be reproducible), thereby simulating SOAs
with different characteristics. The optical outputs of these different SOAs in
response to the same step driving signal are shown in Fig. 3.14. Using the
PSO and GA algorithms with the same hyperparameters, all 10 of these SOAs
were able to be optimised with no changes to the algorithms, as shown in Fig.
3.14 (where the Al electrical drive signals have been included for reference).
Due to search space restrictions, ACO could not generalise. For all 10 SOAs, a
common target set point was chosen. The set point was defined as a perfect 0
overshoot, rise time and settling time step response based on the steady states
of the initial step response of one of the simulated SOA’s. However, the target
can be arbitrarily defined by the user if a different optical response is required,
demonstrating the flexibility of the Al algorithms to optimise optical outputs
with respect to specific problem requirements. Relative to this target set point,
the performances are summarised in Table 3.5. Signals that did not settle have

[

been marked as ‘-’ and excluded from performance summary metrics. PSO
had the greatest generalisability to optimising the settling times of different
SOAs. Researchers in our field should therefore be able to black box our PSO Al

approach and optimise their SOAs even though they will have different equivalent

3.7. Results & Discussion

87

TABLE 3.5: Performance summary for the techniques applied to the 10 different
simulated SOAs, given in the format min | max | mean | standard deviation (best

e Signals marked ‘-’

never settled.

in bold).

Technique | Rise Time (ps) | Settling Time (ns)| Overshoot (%)
Step 502, 753, 653, 86.4 3.1, -, 5.8, 3.0 16.5, 70.4, 39.2, 14.1
PSO 669, 837, 703, 58.5 | 0.67, 1.3, 0.87, 0.20 |2.51, 6.01, 4.46, 1.22
ACO 502, 753, 644, 79.4 1.6, -, 2.6, 0.82 11.1, 70.4, 32.6, 17.0
GA 760, 930, 793, 58.5 1.0, 1.5, 1.3, 1.5 4.31, 9.36, 7.04, 1.54

circuit components from the specific device(s) optimised in this chapter.

Voltage (V)
L o

35 (
SOA1
3/ SOA2 a
% SOA3
E SOA4
%25 SOAS
g, soms N
S SOA7 | [
@ SOA8
815 soag
g SOA10
B
2 |
o I —_————
05 Target SP
o / -~ +5% Settling Boundaries|
[} 5 10 15 20
Time (ns)
(b) 35
—S0A1
S0A2 (C
SOA3
‘4‘ ‘M\’ M | 25 SOA4
‘W\‘\] LH“ f I .‘[S soms
M‘ L w‘u \‘ LSOAe |
| WH I ,“) I I 2

\ i\ ! \MH i \\‘ ‘H [

Photodiode Voltage (mV)

SOA10 |
1
f

—S8O0A7 | [=
| sons ‘
57 sons

—Target SP
- - 5% Settling Boundaries|

20 0 5 10
Time (ns)

Voltage (V)

15 20

Voltage (V)
L o A

s
E
o
o
s
S
o
°
S
£
8
k]
2
o |
0.5 } ~— Target SP
o / -~ +5% Settling Boundaries
10 0 5 10 15 20
Time (ns) Time (ns)
3.5
~— SOA1 (
5| —soa2 g
2,0 Som
~25
o SOAS
8l soms
g —SOA7 1 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,
> SOA8
35| sons | |
3 SOA10
5 1
S
2
o
05 /(—Target SP
o -~ 5% Settling Boundaries,
0 5 10 15 20
Time (ns) Time (ns)

FIGURE 3.14: Simulated SOA optical responses of 10 different SOAs (each with
a different transfer function) to (a) step, (c¢) PSO, (e) ACO, and (g) GA, and
the corresponding driving signals for (b) PSO, (d) ACO, and (f) GA. All Al
optimisations were done with the same hyperparameters and a common target SP.

88 Chapter 3. SOA Control for Sub-Nanosecond Optical Switching

TABLE 3.6: Factor(s) used on the EC transfer function coefficients to simulate
different SOAs (factor = 1 unless stated otherwise).

TF Component: | Numerator | ag ay as
Factor(s): 1.0,1.2,1.4/0.8/0.7,0.8, 1.2|1.05, 1.1, 1.2

3.7.2 Optimising an SOA in the Laboratory

N

1.2
s S
< 1 B aRSEEEEEELEEEE =3
[
208
S
o —Step
]
o 06 —MISICA1
] —PISIC
(] I
"3_0‘4 rcos0.5
e} PID

0.2 —spP

- - 5% Settling Boundaries

9 13.5 18
Time (ns)

FIGURE 3.15: Experimental SOA responses to the step, PISIC, MISIC1, raised
cosine and PID driving signals.

In this section the experimental results for the SOA responses to step,
PISIC, MISIC, raised cosine, PID and Al driving signals have been compared.
The objective was to reduce the off-on switching time and power oscillations
(measured by the settling time and overshoot metrics).

Step. A step driving signal was the simplest format used to drive the SOA.
Fig. 3.15 (which has been normalised with respect to the steady state value as
done by Figueiredo et al. [2015] for easy comparison) shows the SOA optical
response to a step driving signal, resulting in a rise time, settling time and
overshoot of 697 ps, 3.72 ns and 0.0% (since it undershot the steady state)
respectively.

PISIC. The PISIC format proposed by Gallep and Conforti [2002] was
applied to the SOA with 2.95V step + 4.05V impulse, and the response is shown
in Fig. 3.15 with a rise time, settling time and overshoot of 502 ps, 4.35 ns
and 40.5% respectively. The form of the PISIC pulse used was optimised for

the SOA in use, where different step-impulse voltage combinations (as done by

3.7. Results & Discussion &9

Figueiredo et al. [2015]) were tested, as well as varying widths of the pre-impulse
section of the PISIC signal as a percentage of the total signal length centered at
the percentage used by Figueiredo et al. [2015]. It was found that a 500ps pulse
width gave the best results.

MISIC. The MISIC 1-6 bit-sequences proposed by Figueiredo et al. [2015]
were applied with 2.95V step + 4.05V impulse, where the same step-impulse
voltage combinations were tested as for PISIC. The format with the best per-
formance was MISIC1, whose response is shown in Fig. 3.15 with a rise time,
settling time and overshoot of 502 ps, 4.02 ns and 0.0% (undershot) respectively.

Raised cosine. A popular approach to optimising oscillating systems in
control theory is the raised cosine approach, whereby the rising step for a signal of
period T is adapted to a rising cosine defined by the frequency-domain piecewise
function in (3.19). As [increases (0 < 8 < 1), the rate of signal rise decreases.
The best performing raised cosine was 8 = 0.5, whose response is shown in Fig.
3.15 and whose rise time, settling time and overshoot were 921 ps, 4.69 ns and

0.0% (undershot) respectively.

1, if f<iF
H(f)= %[l—i-cos(%[f—%})}, if%<f§% (3.19)
0, otherwise

PID control. Another popular approach in control theory is the PID con-
troller. The optical response of the PID control signal is shown in Fig. 3.15, with
a rise time, settling time and overshoot of 501 ps, 4.02 ns and 2.3% respectively.
In order to quickly obtain values for the 3 PID parameters, K., K; and K4, a
First Order Plus Dead Time (FOPDT) model was applied to the SOA, where
the key parameters for this model (K, 7, and 6,) can be measured directly from
the step response of the device. The PID tuning parameter, 7., which is inversely
proportional to the magnitude of the response to offset, was tested with values

between that of an ‘aggressive’ tuning regime (7. ~ 0.1) and a ‘conservative’ one

90 Chapter 3. SOA Control for Sub-Nanosecond Optical Switching

—~
&
~—

N
o
—~
=3
~—
N
2
—~
o
~—

N

Photodiode Voltage (mV)
5 - a
Photodiode Voltage (mV)

°
&
|

4

g

g

=3
SF [AA~>" Tt

o

Photodiode Voltage (mV)

o
o

—spP
—Step

—spP

o
o

PSO
+5% Settling Boundaries|

J ACO
--£5% Settling Boundaries e

- - +5% Settling Boundaries

0 4.5 9 13.5 18 0 4.5 9 13.5 18 0 4.5 9 13.5 18
Time (ns) Time (ns) Time (ns)

o
5

FIGURE 3.16: Experimental results showing the optimised SOA optical outputs
for (a) PSO, (b) ACO, and (c) GA.

(b) s () AR R A2
() WM M
M@M%WWM 1 Ll | nwln

-~ N

Voltage (V)
Voltage (V)
o
Voltage (V)

| 01T,

: (iU

0 4.5 9 13.5 18 0 4.5 9
Time (ns) Time (ns) Time (ns)

P

F1cURE 3.17: Experimental results showing the optimised SOA electrical driving
signal inputs for (a) PSO, (b) ACO, and (c) GA.

(e = 10.0). The results shown in Fig. 3.15 are with 7. = 5.0 which was found
to be the best performing value.

PSO. The PSO algorithm used in the simulation environment was applied
to the real SOA. The SP and the PSO response are shown in Fig. 3.16, with a
rise time, settling time and overshoot of 454 ps, 547 ps and 5.0% respectively.

ACO. An ACO run with 200 ants accomplished a rise time, settling time
and overshoot of 413 ps, 560 ps and 4.8% respectively, performing similarly well
to the PSO algorithm. The ACO result is shown in Fig. 3.16

GA. Similarly, the GA result shown in Fig. 3.16 had a rise time, settling
time, and overshoot of 340 ps, 825 ps, and 10.3% respectively. The rise times
of the AI algorithms were an order of magnitude improvement on the step’s,
and the settling times (and therefore the effective off-on switching time) were
several factors faster than the previous MISIC1 optimum from the literature,
bringing SOA switching times truly down to the hundred ps scale. A scatter
plot comparing these data is shown in Fig. 3.18.

Switching comparison of AI methods. By comparison, PSO had the

3.7. Results & Discussion 91

lowest settling time and therefore the lowest overall switch time. We hypothesise
that this was due to the fact that PSO, being less memory-hungry than ACO
and having superior convergence properties compared to GA as a result of
having fewer hyperparameters to fine-tune and a smaller search space with the
PISIC shell, was able to be given a better search space-hyperparameter tuning
trade-off, and therefore was able to find a more optimum driving signal. This
larger search space also enabled PSO to explore a wider variety of drive signal
solutions without needing a large number of hyperparameters tuned (which adds
complexity), allowing PSO to generalise to a more diverse set of SOAs than
either ACO or GA were able to. Therefore, although in theory all Al algorithms
used were powerful and generalisable, due to the number of hyperparameters
and search space restrictions that were required in practice, PSO had both the

best performance and generalisability, although GA came close to matching

1000 520
| Target °
900 RCOS0.5
l
800 f 15
STEP
— 700 ° -
g . x
\g 600: ."»’.'.'f'm PISIC 10 "g'
= 500 PSO ® . S
3 400L ®Aco Standard Techniques GLJ
Y >
© oj0] *® 5 6
200 | AlTechniques
!
100 | 0
RS a8 %
0 05 1 15 2 25 3 35 4 45 5

Settling Time (ns)

FIGURE 3.18: Scatter plot comparing the experimental rise times, settling times
and overshoots of all the driving signals tested. The outlined target region highlights
the performance required for truly sub-nanosecond optical switching.

Switching comparison of all methods. Table 3.1 shows results (both
absolute and relative improvement for cross comparison) of the rise time, settling
time, overshoot and guard time for all methods implemented in this work, as
well as a variety from the literature. The rows associated with Figueiredo et al.
[2015] are the results for the optimised PISIC and MISIC-6 signals defined and

implemented in this work.

92 Chapter 3. SOA Control for Sub-Nanosecond Optical Switching

Optimised drive signal analysis. Finally, Fig. 3.17 shows the electrical
drive signals found by each algorithm. Whilst we stress that the main focus of
this chapter is the method rather than the specific drive signal, the drive signal
is important for real-World implementation and general understanding of the
search space restrictions used. As Fig. 3.17 shows, the derived driving signals
are noisy despite a smooth resultant optical output. This is likely because the
AWG (arbitrary waveform generator using an 8-bit digital to analogue converter)
drive signal frequency was 6 GHz offering 12 GSa/s whereas the SOA used had a
-3dB frequency response of 0.6 GHz, therefore we over-sampled the drive signal
by approximately 10x. In a real DCN scenario, to implement our algorithms’
driving signals in practice, we would likely use an FPGA or ASIC with an
embedded on-chip DAC for multilevel signal generation, and there are already
existing FPGAs (a.k.a. RF System on Chip (RFSoC)) that support multiple
DACs at 6 GSa/s. Therefore in practice the search space would be lower (fewer
dimensions/number of points to optimise) than assumed in this chapter, and
we would expect this to improve the Al convergence characteristics. Further
experiments using fewer points in the drive signal/a slower AWG are necessary
to see what the true effects are on the Al algorithms. This is beyond the scope
of this chapter, and we intend to further investigate it in our future work.

Signal noise analysis. Within the context of a DCN implementation of the
presented methods, some considerations were made with respect to the effect
that the algorithms have on the signal to noise ratio (SNR). Namely, it should
be considered if the oscillations caused by the algorithms (all of which are of
the order of 5%) have a negative effect on the SNR of the ‘on’ period of the
output, particularly in comparison to the output of a step driving signal, where
the ‘on’ period considered is defined as starting when the signal enters the +5%
(with respect to the steady state) region for a 20 ns pulse length. Following from
the model of amplifier noise given by Agrawal [2002] and accounting for Shot

noise, intrinsic amplifier noise (the noise figure of the SOA) and the additional

3.8. Conclusions, Limitations, & Further Work 93

noise due to the fluctuations in the output, we consider the penalty on the noise
figure (as defined by Agrawal [2002]) due to the deviations of the output from
its steady state value throughout the duration of its ‘on’ period. Assuming
(based on intrinsic and Shot noise contributions) a base noise figure (i.e. if the
driving method caused no deviations at all) of 7.1dB, the measured noise figure
penalties for ACO, PSO, GA and step were 1.05 dB, 0.65 dB, 1.12 dB and 0.53
dB with SNR values of 28.52 dB, 28.90 dB, 28.54 dB and 29.06 dB respectively,
showing that the additional noise figure penalty due to the Al methods ranges
between 0.08 dB (PSO) and 0.59 dB (GA) compared to a step in the case of the

best performing algorithm (PSO).

3.8 Conclusions, Limitations, & Further Work

In this chapter, simulation and experimental results of SOA off-on switching
were presented for various driving signal formats. The chapter outlined a novel
approach to SOA driving signal generation with Al algorithms which made no
assumptions about the SOA and therefore were general, required no historic
data collection, and could be scaled to any SOA-based switch, opening up
the possibility of rapid all-optical switching in real data centres. World-record
settling times (and therefore effective off-on times) of 547 ps were achieved using
PSO, offering an order of magnitude performance improvement with respect
to settling time over our implementation of the PISIC and MISIC techniques
from the literature and thereby establishing a new state-of-the-art. Additionally,
the standard PID control and raised cosine techniques from control theory were
shown to be inadequate for the problem of ultra-fast SOA switching. Although
ACO and GA demonstrated slightly faster rise times than PSO, PSO had a
faster settling time and also a significantly lower 1.8% cost spread, giving greater
reliability that any given PSO run had found the optimum solution. Furthermore,

due to the fewer restrictions placed on the search space and the lower number

94 Chapter 3. SOA Control for Sub-Nanosecond Optical Switching

of fine-tuned hyperparameters compared to ACO and GA, PSO was found to
be more easy to generalise to unseen SOAs.

While this is good progress, there is much further work needed to make this
technology viable for production DCNs.

Robustness to external noise. In DCN systems operating over long peri-
ods of time, environmental factors external to the SOA such as the temperature
and the driving current may fluctuate. An interesting area of further work would
be to test the optimised driving signal’s robustness to these external fluctuations.
To mitigate their impact, new methods could be developed which stochastically
sample different temperatures and bias currents during the optimisation process
to see whether the Al algorithms can account for these varying inputs in their
final optimised driving signal. Alternatively, a lookup table could be created
mapping external conditions such as temperature and bias current to the corre-
sponding optimal driving signal found by the Al algorithm under those specific
conditions.

Lower resolution drive signal. As previously discussed, the frequency of
the signal driving the SOA was 6 GHz whereas the SOA’s frequency response
was around 0.6 GHz, leading to 10x unnecessary oversampling. Future works
might therefore consider reducing the sampling rate of the drive signal to (1)
reduce the optimisation search space and thus improve Al convergence, and (2)
reduce the complexity of the hardware needed to drive the SOAs in a production
environment. On this latter point, it might be useful to develop approaches which
undersample the SOA drive signal to enable the use of cheap and low-complexity
hardware such as FPGAs and specialised ASICs.

Real data transmission. Although Gerard et al. [2021] took the work
developed in this chapter and built an end-to-end tuneable light source, the
system has not yet been used to transmit real data from source to destination.
This would be a necessary step to measure the true BER and usefulness of an

OCS communication network using the SOA switching method proposed here.

3.8. Conclusions, Limitations, & Further Work 95

Cascaded SOAs. In this chapter we considered the simple setting of either
blocking or amplifying a single light source with a single SOA. Gerard et al.
[2021] extended this to a setting with two SOAs, however in practice a single
switch device might contain many SOAs which might be cascaded in order to
facilitate more complex network routing. Interesting research questions include
whether or not the same optimised signal could be applied to each SOA in a
cascade, or if the optimisation algorithm could collectively optimise the whole
cascade simultaneously and how this might make the optimisation problem more

difficult with a larger search space with more complex inter-SOA dependencies.

97

Part 11

Optimising the Orchestration

Plane

Partitioning

v

Placement

v

Scheduling

99

Chapter 4

Solving NP-Hard Discrete

Optimisation Problems

Abstract

Combinatorial optimisation problems framed as mixed integer linear programmes
(MILPs) are ubiquitous across a range of real-world applications. The canonical
branch-and-bound algorithm seeks to exactly solve MILPs by constructing a
search tree of increasingly constrained sub-problems. In practice, its solving time
performance is dependent on heuristics, such as the choice of the next variable
to constrain (‘branching’). Recently, machine learning (ML) has emerged as a
promising paradigm for branching. However, prior works have struggled to apply
reinforcement learning (RL), citing sparse rewards, difficult exploration, and
partial observability as significant challenges. Instead, leading ML methodologies
resort to approximating high quality handcrafted heuristics with imitation
learning (IL), which precludes the discovery of novel policies and requires
expensive data labelling. This chapter proposes retro branching; a simple yet
effective approach to RL for branching. By retrospectively deconstructing the
search tree into multiple paths each contained within a sub-tree, we enable
the agent to learn from shorter trajectories with more predictable next states.
In experiments on four combinatorial tasks, our approach enables learning-to-

branch without any expert guidance or pre-training. We outperform the current

100 Chapter 4. Solving NP-Hard Discrete Optimisation Problems

state-of-the-art RL branching algorithm by 3-5x and come within 20% of the
best IL method’s performance on MILPs with 500 constraints and 1000 variables,
with ablations verifying that our retrospectively constructed trajectories are

essential to achieving these results.

Chapter 4. Solving NP-Hard Discrete Optimisation Problems 101

Publications related to this work (contributions indented):

o Christopher W. F. Parsonson, Alexandre Laterre, and Thomas D.
Barrett, ‘Reinforcement Learning for Branch-and-Bound Optimisation
using Retrospective Trajectories’, AAAI’23: Proceedings of the Thirty-
Seventh AAAI Conference on Artificial Intelligence, 2023

— Algorithm, code, experiments, paper writing, plots

e Thomas D. Barrett, Christopher W. F. Parsonson, and Alexandre
Laterre, ‘Learning to Solve Combinatorial Graph Partitioning Problems

via Efficient Exploration’, arXiv, 2022

— Baseline comparison experiments, abstract/introduction/related work /back-

ground paper writing, plots

102 Chapter 4. Solving NP-Hard Discrete Optimisation Problems

4.1 Introduction

A plethora of real-world problems fall under the broad category of CO (vehicle
routing and scheduling [Korte and Vygen, 2012]; protein folding [Perdomo-Ortiz
et al., 2012]; fundamental science [Barahona, 1982]). Many CO problems can be
formulated as MILPs whose task is to assign discrete values to a set of decision
variables, subject to a mix of linear and integrality constraints, such that some
objective function is maximised or minimised. The most popular method for
finding exact solutions to MILPs is B&B [Land and Doig, 1960]; a collection of
heuristics which increasingly tighten the bounds in which an optimal solution can
reside (see Section 4.2). Among the most important of these heuristics is variable
selection or branching (which variable to use to partition the chosen node’s
search space), which is key to determining B&B solve efficiency [Achterberg and
Wunderling, 2013].

Original episode Retrospective
' * trajectories

Step #1 Step #2 Step #14 -

& Construction) 2l ¥

() () heurlstlc) /; N
A= s
\
{Q‘\ ® ® O ®
/ \)

[(O Unvisited (O Visited (OFathomed Current state -» State transition]

FIGURE 4.1: The proposed retro branching approach used during training. Each
node is labelled with: Top: The unique ID assigned when it was added to the tree,
and (where applicable); bottom: The step number (preceded by a ‘#’) at which it
was visited by the brancher in the original MDP. The MILP is first solved with the
brancher and the B&B tree stored as usual (forming the ‘original episode’). Then,
ignoring any nodes never visited by the agent, the nodes are added to trajectories
using some ‘construction heuristic’ (see Sections 4.4 and 4.6) until each eligible
node has been added to one, and only one, trajectory. Crucially, the order of the
sequential states within a given trajectory may differ from the state visitation order
of the original episode, but all states within the trajectory will be within the same
sub-tree. These trajectories are then used for training.

State-of-the-art (SOTA) learning-to-branch approaches typically use the IL

paradigm to predict the action of a high quality but computationally expensive

4.1. Introduction 103

human-designed branching expert [Gasse et al., 2019]. Since branching can be
formulated as a MDP [He et al., 2014], RL seems a natural approach. The
long-term motivations of RL include the promise of learning novel policies from
scratch without the need for expensive expert data, the potential to exceed
expert performance without human design, and the capability to maximise the
performance of a policy parameterised by an expressivity-constrained DNN.

However, branching has thus far proved largely intractable for RL for reasons
we summarise into three key challenges. (1) Long episodes: Whilst even random
branching policies are theoretically guaranteed to eventually find the optimal
solution, poor decisions can result in episodes of tens of thousands of steps for
the 500 constraint 1000 variable MILPs considered by Gasse et al. 2019. This
raises the familiar RL challenges of reward sparsity [Trott et al., 2019], credit
assignment [Harutyunyan et al., 2019], and high variance returns [Mao et al.,
2019b]. (2) Large state-action spaces: Each branching step might have hundreds
or thousands of potential branching candidates with a huge number of unique
possible sub-MILP states. Efficient exploration to discover improved trajectories
in such large state-action spaces is a well-known difficulty for RL [Agostinelli
et al., 2019b, Ecoffet et al., 2021]. (3) Partial observability: When a branching
decision is made, the next state given to the brancher is determined by the next
sub-MILP visited by the node selection policy. Jumping around the B&B tree
without the brancher’s control whilst having only partial observability of the full
tree makes the future states seen by the agent difficult to predict. Etheve et al.
2020 therefore postulated the benefit of keeping the MDP within a sub-tree to
improve observability and introduced the SOTA FMSTS RL branching algorithm.
However, in order to achieve this, FMSTS had to use a DFS node selection
policy which, as we demonstrate in Section 4.6, is highly sub-optimal and limits
scalability.

In this chapter, we present retro branching; a simple yet effective method to

overcome the above challenges and learn to branch via reinforcement. We follow

104 Chapter 4. Solving NP-Hard Discrete Optimisation Problems

the intuition of Etheve et al. [2020] that constraining each sequential MDP state
to be within the same sub-tree will lead to improved observability. However,
we posit that a branching policy taking the ‘best’” actions with respect to only
the sub-tree in focus can still provide strong overall performance regardless of
the node selection policy used. This is aligned with the observation that leading
heuristics such as SB and PB also do not explicitly account for the node selection
policy or predict how the global bound may change as a result of activity in
other sub-trees. Assuming the validity of this hypothesis, we can discard the
DFS node selection requirement of FMSTS whilst retaining the condition that
sequential states seen during training must be within the same sub-tree.

Concretely, our retro branching approach (shown in Fig. 4.1 and elaborated
on in Section 4.4) is to, during training, take the search tree after the B&B
instance has been solved and retrospectively select each subsequent state (node)
to construct multiple trajectories. Each trajectory consists of sequential nodes
within a single sub-tree, allowing the brancher to learn from shorter trajectories
with lower return variance and more predictable future states. This approach
directly addresses challenges (1) and (3) and, whilst the state-action space is
still large, the shorter trajectories implicitly define more immediate auxiliary
objectives relative to the tree. This reduces the difficulty of exploration since
shorter trajectory returns will have a higher probability of being improved upon
via stochastic action sampling than when a single long MDP is considered,
thereby addressing (2). Furthermore, retro branching relieves the FMSTS
requirement that the agent must be trained in a DFS node selection setting,
enabling more sophisticated strategies to be used which are better suited for
solving larger, more complex MILPs.

We evaluate our approach on MILPs with up to 500 constraints and 1000
variables, achieving a 3-5x improvement over FMSTS and coming within ~ 20%
of the performance of the SOTA IL agent of Gasse et al. [2019]. Furthermore,

we demonstrate that, for small instances, retro branching can uncover policies

4.2. Background 105

superior to IL; a key motivation of using RL. Our results open the door to
the discovery of new branching policies which can scale without the need for
labelled data and which could, in principle, exceed the performance of SOTA

handcrafted branching heuristics.

4.2 Background

4.2.1 Mixed Integer Linear Programming

An MILP is an optimisation task where values must be assigned to a set of n
decision variables subject to a set of m linear constraints such that some linear

objective function is minimised. MILPs can be written in the standard form

arg min {CTX|AX <b,l1<x<uxeZ x R”‘p}, (4.1)

where ¢ € R" is a vector of the objective function’s coefficients for each
decision variable in x such that c'x is the objective value, A € R™*" is a matrix
of the m constraints’ coefficients (rows) applied to n variables (columns), b € R™
is the vector of variable constraint right-hand side bound values which must
be adhered to, and 1,u € R™ are the respective lower and upper variable value
bounds. MILPs are hard to solve owing to their integrality constraint(s) whereby
p < n decision variables must be an integer. If these integrality constraints
are relaxed, the MILP becomes a linear programme (LP), which can be solved
efficiently using algorithms such as simplex [Nelder and Mead, 1965]. The most

popular approach for solving MILPs exactly is B&B.

4.2.2 Branch-and-Bound

B&B is an algorithm composed of multiple heuristics for solving MILPs. It uses
a search tree where nodes are MILPs and edges are partition conditions (added

constraints) between them. Using a divide and conquer strategy, the MILP

106 Chapter 4. Solving NP-Hard Discrete Optimisation Problems

is iteratively partitioned into sub-MILPs with smaller solution spaces until an
optimal solution (or, if terminated early, a solution with a worst-case optimality
gap guarantee) is found. The task of B&B is to evolve the search tree until the
provably optimal node is found.

Concretely, as summarised in Fig. 4.2, at each step in the algorithm, B&B:
(1) Selects an open (unfathomed leaf) node in the tree whose sub-tree seems
promising to evolve; (2) selects (‘branches on’) a variable to tighten the bounds on
the sub-MILP’s solution space by adding constraints either side of the variable’s
LP solution value, generating two child nodes (sub-MILPs) beneath the focus
node; (3) for each child, i) solve the relaxed LP (the dual problem) to get the
dual bound (a bound on the best possible objective value in the node’s sub-tree)
and, where appropriate, ii) solve the primal problem and find a feasible (but not
necessarily optimal) solution satisfying the node’s constraints, thus giving the
primal bound (the worst-case feasible objective value in the sub-tree); and (4)
fathom any children (i.e. consider the sub-tree rooted at the child ‘fully known’
and therefore excluded from any further exploration) whose relaxed LP solution
is integer-feasible, is worse than the incumbent (the globally best feasible node
found so far), or which cannot meet the non-integrality constraints of the MILP.
This process is repeated until the primal-dual gap (global primal-dual bound
difference) is 0, at which point a provably optimal solution to the original MILP
will have been found.

Note that the heuristics (i.e. primal, branching, and node selection) at each
stage jointly determine the performance of B&B. More advanced procedures
such as cutting planes [Mitchell, 2009] and column generation [Barnhart et al.,
1998] are available for enhancement, but are beyond the scope of this work.
Note also that solvers such as SCIP 2022 only store ‘visitable’ nodes in memory;,
therefore in practice fathoming occurs at a feasible node where a branching
decision led to the node’s two children being outside the established optimality

bounds, being infeasible, or having an integer-feasible dual solution, thereby

4.3. Related Work 107

closing the said node’s sub-tree.

4.3 Related Work

Classical branching heuristics. PB [Benichou et al., 1971] and strong
branching (SB) [Applegate et al., 1995, 2007] are two canonical branching
algorithms. PB selects variables based on their historic branching success
according to metrics such as bound improvement. Although the per-step decisions
of PB are computationally fast, it must initialise the variable pseudocosts in some
way which, if done poorly, can be particularly damaging to overall performance
since early B&B decisions tend to be the most influential. SB, on the other
hand, conducts a one-step lookahead for all branching candidates by computing
their potential local dual bound gains before selecting the most favourable
variable, and thus is able to make high quality decisions during the critical early
stages of the search tree’s evolution. Despite its simplicity, SB is still today the
best known policy for minimising the overall number of B&B nodes needed to
solve the problem instance (a popular B&B quality indicator). However, its
computational cost renders SB infeasible in practice.

Learning-to-branch. Recent advances in deep learning have led ML re-
searchers to contribute to exact CO (surveys provided by Lodi and Zarpellon
2017, Bengio et al. 2021, and Cappart et al. 2021). Khalil et al. 2016 pioneered
the community’s interest by using IL to train a support vector machine (SVM)
to imitate the variable rankings of SB after the first 500 B&B node visits and
thereafter use the SVM. Alvarez et al. 2017 similarly imitated SB, but learned
to predict the SB scores directly using Extremely Randomized Trees [Geurts
et al., 2006]. These approaches performed promisingly, but their per-instance
training and use of SB at test time limited their scalability.

These issues were overcome by Gasse et al. 2019, who took as input a bipartite

graph representation capturing the current B&B node state and predicted the

108 Chapter 4. Solving NP-Hard Discrete Optimisation Problems

(1) Select node (2) Branch (3) Process (4) Fathom

XZG

P =950

P z1 < L/p Zg50Ne1 2> 2 @ < 1 >2
maximise: 10021 + 150z R -
1= . 2 =1
Infeasible i
subject to: 8000z + 4000z, < 40000 2y = 6.17 easible 25 = 6.17 Infeasible
1521 + 3023 < 200 P

- - ' P =950 =050
1,22 > 0 and 2,72 € Z @Unvnsnted@V:smted OFathomed

FIGURE 4.2: Typical 4-stage procedure iteratively repeated by B&B to solve
an MILP. Each node represents an MILP derived from the original MILP being
solved, and each edge represents the constraint added to derive a new child node
(sub-MILP) from a given parent. Each node is labelled with the decision variable
values of the solved LP relaxation on the right hand side, the corresponding dual
bound in the centre, and the established primal bound beneath. Each edge is
labelled with the introduced constraint to generate the child node. Green dotted
outlines are used to indicate which node and variable were selected in stages (1)
and (2) to lead to stages (3) and (4). The global primal (P) and dual (D) bounds
are increasingly constrained by repeating stages 1-4 until P and D are equal, at
which point a provably optimal solution will have been found. Note that for clarity
we only show the detailed information needed at each stage, but that this does not
indicate any change to the state of the tree.

corresponding action chosen by SB using a graph convolutional network (GCN).
This alleviated the reliance on extensive feature engineering, avoided the use
of SB at inference time, and demonstrated generalisation to larger instances
than seen in training. Works since have sought to extend this method by
introducing new observation features to generalise across heterogeneous CO
instances [Zarpellon et al., 2021] and designing SB-on-a-GPU expert labelling
methods for scalability [Nair et al., 2021].

Etheve et al. 2020 proposed FMSTS which, to the best of our knowledge, is
the only published work to apply RL to branching and is therefore the SOTA
RL branching algorithm. By using a DFS node selection strategy, they used
the DQN approach [Mnih et al., 2013] to approximate the Q-function of the
B&B sub-tree size rooted at the current node; a local Q-function which, in
their setting, was equivalent to the number of global tree nodes. Although
FMSTS alleviated issues with credit assignment and partial observability, it
relied on using the DFS node selection policy (which can be far from optimal),

was fundamentally limited by exponential sub-tree sizes produced by larger

4.4. Retro Branching Methodology 109

instances, and its associated models and data sets were not open-accessed.

4.4 Retro Branching Methodology

We now describe our retro branching approach for learning-to-branch with RL.

States. At each time step t the B&B solver state is comprised of the search
tree with past branching decisions, per-node LP solutions, the global incumbent,
the currently focused leaf node, and any other solver statistics which might be
tracked. To convert this information into a suitable input for the branching
agent, we represent the MILP of the focus node chosen by the node selector as
a bipartite graph. Concretely, the n variables and m constraints are connected
by edges denoting which variables each constraint applies to. This formulation
closely follows the approach of Gasse et al. 2019, with a full list of input features
at each node detailed in Appendix A.5.

Actions. Given the MILP state s; of the current focus node, the branching
agent uses a policy m(u|s;) to select a variable u; from among the p branching
candidates.

Original full episode transitions. In the original full B&B episode, the
next node visited is chosen by the node selection policy from amongst any of
the open nodes in the tree. This is done independently of the brancher, which
observes state information related only to the current focus node and the status
of the global bounds. As such, the transitions of the ‘full episode’ are partially
observable to the brancher, and it will therefore have the challenging task of
needing to aggregate over unobservable states in external sub-trees to predict
the long-term values of states and actions.

Retrospectively constructed trajectory transitions (retro branch-
ing). To address the partial observability of the full episode, we retrospectively
construct multiple trajectories where all sequential states in a given trajectory

are within the same sub-tree, and where the trajectory’s terminal state is chosen

110 Chapter 4. Solving NP-Hard Discrete Optimisation Problems

from amongst the as yet unchosen fathomed sub-tree leaves. A visualisation of
our approach is shown in Fig. 4.1. Concretely, during training, we first solve
the instance as usual with the RL brancher and any node selection heuristic
to form the ‘original episode’. When the instance is solved, rather than simply
adding the originally observed MDP’s transitions to the DQN replay buffer, we
retrospectively construct multiple trajectory paths through the search tree. This
construction process is done by starting at the highest level node not yet added
to a trajectory, selecting an as yet unselected fathomed leaf in the sub-tree
rooted at said node using some ‘construction heuristic’ (see Section 4.6), and
using this root-leaf pair as a source-destination with which to construct a path
(a ‘retrospective trajectory’). This process is iteratively repeated until each
eligible node in the original search tree has been added to one, and only one,
retrospective trajectory. The transitions of each trajectory are then added to
the experience replay buffer for learning. Note that retrospective trajectories are
only used during training, therefore retro branching agents have no additional
inference-time overhead.

Crucially, retro branching determines the sequence of states in each trajectory
(i.e. the transition function of the MDP) such that the next state(s) observed
in a given trajectory will always be within the same sub-tree (see Fig. 4.1)
regardless of the node selection policy used in the original B&B episode. Our
reasoning behind this idea is that the state(s) beneath the current focus node
within its sub-tree will have characteristics (bounds, introduced constraints, etc.)
which are strongly related with those of the current node, making them more
observable than were the next states to be chosen from elsewhere in the search
tree, as can occur in the ‘original B&B’ episode. Moreover, by correlating the
agent’s maximum trajectory length with the depth of the tree rather than the
total number of nodes, reconstructed trajectories have orders of magnitude fewer
steps and lower return variance than the original full episode, making learning

tractable on large MILPs. Furthermore, because the sequential nodes visited

4.4. Retro Branching Methodology 111

are chosen retrospectively in each trajectory, unlike with FMSTS, any node
selection policy can be used during training. As we show in Section 4.6, this is a
significant help when solving large and complex MILPs.

Rewards. As demonstrated in Section 4.6, the use of reconstructed trajec-
tories enables a simple distance-to-goal reward function to be used; a r = —1
punishment is issued to the agent at each step except when the agent’s action
fathomed the sub-tree, where the agent receives r = 0. This reward was chosen
because it provides an incentive for the the branching agent to reach the terminal
state as quickly as possible. This auxiliary objective is desirable because, when
aggregated over all trajectories in a given sub-tree, it corresponds to fathoming
the whole sub-tree (and, by extension, solving the MILP) in as few steps as
possible. This is because the only nodes which are stored by SCIP 2022 and
which the brancher will be presented with will be feasible nodes which potentially
contain the optimal solution beneath them. As such, any action chosen by the
brancher which provably shows either the optimal solution to not be beneath
the current node or which finds an integer feasible dual solution (i.e. an action
which fathoms the sub-tree beneath the node) will be beneficial, because it will
prevent SCIP from being able to further needlessly explore the node’s sub-tree.

A note on partial observability. In the above retrospective formulation of
the branching MDP, the primal, branching, and node selection heuristics active
in other sub-trees will still influence the future states and fathoming conditions
of a given retrospective trajectory. We posit that there are two extremes; DFS
node selection where future states are fully observable to the brancher, and
non-DFS node selection where they are heavily obscured. As shown in Section
4.6, our retrospective node selection setting strikes a balance between these two
extremes, attaining sufficient observability to facilitate learning while enabling
the benefits of short, low variance trajectories with sophisticated node selection

strategies which make handling larger MILPs tractable.

112 Chapter 4. Solving NP-Hard Discrete Optimisation Problems

Retro ~= Original —— FMSTS 100 - =« s
4) 95
@ a;n.o @ o] \
3 £ 85
81 5 A.00 - 80 | §
° 305 75
z o 0.95 70
102 a oy Ty ¢ 65
I T T 0.0 ; ; 10° 10]10 § 60 - At IL-level or better
0 1 2 10! 10 100 C 957
Epochs x10° B&B Steps S 50
® 45
% 40
3 35 X
30 3
25 \
20 \
15 oy
10 1 '-.‘
5= .
0 L]
Original Random FI\I/ZI)SFES— FMSTS PB Retro IL SB 50'_0 100.0 156.0 206.0 256-0

Relative Nodes (%)

FIGURE 4.3: Performances of the branching agents on the 500 x 1000 set covering

instances. (a) Validation curves for the RL agents evaluated in the same non-

DFS setting. (b) CDF of the number of B&B steps taken by the RL agents

for each instance seen during training. (¢) The best validation performances of

each branching agent. (d) The instance-level validation performance of the retro

branching agent relative to the IL agent, with RL matching or beating IL on 42%
of test instances.

4.5 Experimental Setup

All code for reproducing the experiments and links to the generated data sets
are provided at https://github.com/cwfparsonson/retro_branching.

Network architecture and learning algorithm. We used the GCN
architecture of Gasse et al. 2019 to parameterise the DQN value function with
some minor modifications which we found to be helpful (see Appendix A.2.1).
We trained our network with n-step DQN [Sutton, 1988, Mnih et al., 2013]
using prioritised experience replay [Schaul et al., 2016], soft target network
updates [Lillicrap et al., 2019], and an epsilon-stochastic exploration policy
(see Appendix A.1.1 for a detailed description of our RL approach and the
corresponding algorithms and hyperparameters used).

B&B environment. We used the open-source Ecole [Prouvost et al., 2020)]
and PySCIPOpt [Maher et al., 2016] libraries with SCIP 7.0.1 [SCIP, 2022] as
the backend solver to do instance generation and testing. Where possible, we

used the training and testing protocols of Gasse et al. [2019].

https://github.com/cwfparsonson/retro_branching

4.6. Results & Discussion 113

MILP Problem classes. In total, we considered four NP-hard problem
benchmarks: set covering [Balas et al., 2018], combinatorial auction [Leyton-
Brown et al., 2000], capacitated facility location [Litvinchev and Ozuna Espinosa,
2012], and maximum independent set [Bergman et al., 2016].

Baselines. We compared retro branching against the SOTA FMSTS RL
algorithm of Etheve et al. [2020] (see Appendix A.6 for implementation details)
and the SOTA IL approach of Gasse et al. [2019] trained and validated with
100000 and 20 000 strong branching samples respectively. For completeness, we
also compared against the SB heuristic imitated by the IL agent, the canonical
PB heuristic, and a random brancher (equivalent in performance to most infea-
sible branching [Achterberg et al., 2004]). Note that we have ommited direct
comparison to the SOTA tuned commercial solvers, which we do not claim to be
competitive with at this stage. To evaluate the quality of the agents’ branching
decisions, we used 100 validation instances which were unseen during training,
reporting the total number of tree nodes and LP iterations as key metrics to
be minimised. As shown in Appendix A.3, 100 instances was a sample size
with sufficient statistical significance to confidently draw conclusions about the

relative performance between the algorithms being evaluated.

4.6 Results & Discussion

4.6.1 Performance of Retro Branching

Comparison to the SOTA RL branching heuristics. We considered set
covering instances with 500 rows and 1000 columns. To demonstrate the benefit
of the proposed retro branching method, we trained a baseline ‘Original’ agent
on the original full episode, receiving the same reward as our retro branching
agent (—1 at each non-terminal step and 0 for a terminal action which ended

the episode - see Section 4.4 for details). We also trained the SOTA RL FMSTS

114 Chapter 4. Solving NP-Hard Discrete Optimisation Problems

branching agent in a DFS setting and, at test time, validated the agent in both
a DFS (‘FMSTS-DFS’) and non-DFS (‘FMSTS’) environment to fairly compare
the policies. Note that the FMSTS agent serves as an ablation to analyse the
influence of training on retrospective trajectories, since it uses our auxiliary
objective but without retrospective trajectories, and that the Original agent
further ablates the auxiliary objective since its ‘terminal step’ is defined as ending
the B&B episode (where it receives r; = 0 rather than r, = —1). As shown in
Fig. 4.3a, the Original agent was unable to learn on these large instances, with
retro branching achieving 14x fewer nodes at test time. FMSTS also performed
poorly, with highly unstable learning and a final performance 5x and 3x poorer
than retro branching in the DF'S and non-DFS settings respectively (see Fig.
4.3c). We posit that the cause of the poor FMSTS performance is due to its use
of the sub-optimal DFS node selection policy, which is ill-suited for handling
large MILPs and results in ~ 10% of episodes seen during training being on the
order of 10-100k steps long (see Fig. 4.3b), which makes learning significantly
harder for RL.

Comparison to non-RL branching heuristics. Having demonstrated
that the proposed retro branching method makes learning-to-branch at scale
tractable for RL, we now compare retro branching with the baseline branchers to
understand the efficacy of RL in the context of the current literature. Fig. 4.3c
shows how retro branching compares to other policies on large 500 x 1000 set
covering instances. While the agent outperforms PB, it only matches or beats
IL on 42% of the test instances (see Fig. 4.3d) and, on average, has a ~ 20%
larger B&B tree size. Therefore although our RL agent was still improving
and was limited by compute (see Appendix A.1.2), and in spite of our method
outperforming the current SOTA FMSTS RL brancher, RL has not yet been
able to match or surpass the SOTA IL agent at scale. This will be an interesting

area of future work, as discussed in Section 4.7.

4.6. Results & Discussion 115

4.6.2 Analysis of Retro Branching

Verifying that RL can outperform IL. In addition to not needing labelled
data, a key motivation for using RL over IL for learning-to-branch is the potential
to discover superior policies. While Fig. 4.3 showed that, at test-time, retro
branching matched or outperformed IL on 42% of instances, IL still had a
lower average tree size. As shown in Table 4.1, we found that, on small set
covering instances with 165 constraints and 230 variables, RL could outperform
IL by =~ 20%. While improvement on problems of this scale is not the primary
challenge facing ML-B&B solvers, we are encouraged by this demonstration
that it is possible for an RL agent to learn a policy better able to maximise the
performance of an expressivity-constrained network than imitating an expert such
as SB without the need for pre-training or expensive data labelling procedures
(see Appendix A.8).

For completeness, Table 4.1 also compares the retro branching agent to the
IL, PB, and SB branching policies evaluated on 100 unseen instances of four
NP-hard CO benchmarks. We considered instances with 10 items and 50 bids for
combinatorial auction, 5 customers and facilities for capacitated facility location,
and 25 nodes for maximum independent set. RL achieved a lower number of
tree nodes than PB and IL on all problems except combinatorial auction. This
highlights the potential for RL to learn improved branching policies to solve a
variety of MILPs.

TABLE 4.1: Test-time comparison of the best agents on the evaluation instances of
the four NP-hard small CO problems considered.

Set Covering Combinatorial Auction Capacitated Facility Location Maximum Independent Set

Method ‘ # LPs # Nodes ‘ # LPs # Nodes ‘ # LPs # Nodes ‘ # LPs # Nodes
SB | 184 6.76 | 13.2 4.64 | 282 10.2 | 192 3.80
PB 258 12.8 22.0 7.80 28.0 10.2 25.4 5.77
IL 244 10.5 16.0 5.29 28.0 10.2 20.1 4.08

Retro 206 8.68 18.1 5.73 28.4 10.1 19.1 4.01

116 Chapter 4. Solving NP-Hard Discrete Optimisation Problems

~
=
=

@103 —— MLPG— VO
— R —0D

0.631 0.619

Nodes
(Normalised)
o o
Do ot
(S8 o

o
o
)

Retro-Default Retro-DFS Retro-BFS

Epochs x10°

FIGURE 4.4: 500 x 1000 set covering performances. (a) Validation curves for four

retro branching agents each trained with a different trajectory construction heuristic:

Maximum LP gain (MLPG); random (R); visitation order (VO); and deepest (D).

(b) The performances of the best retro branching agent deployed in three different

node selection environments (default SCIP, DFS, and BFS) normalised relative to
the performances of PB (measured by number of tree nodes).

Demonstrating the independence of retro branching to future state
selection. As described in Section 4.4, in order to retrospectively construct a
path through the search tree, a fathomed leaf node must be selected. We refer
to the method for selecting the leaf node as the construction heuristic. The
future states seen by the agent are therefore determined by the construction
heurisitc (used in training) and the node selection heuristic (used in training
and inference).

During our experiments, we found that the specific construction heuristic
used had little impact on the performance of our agent. Fig. 4.4a shows the
validation curves for four agents trained on 500 x 1000 set covering instances
each using one of the following construction heuristics: Maximum LP gain
(‘MLPG’: Select the leaf with the largest LP gain); random (‘R’: Randomly
select a leaf); visitation order (‘VO’: Select the leaf which was visited first in the
original episode); and deepest (‘D’: Select the leaf which results in the longest
trajectory). As shown, all construction heuristics resulted in roughly the same
performance (with MLPG performing only slightly better). This suggests that
the agent learns to reduce the trajectory length regardless of the path chosen by
the construction heuristic. Since the specific path chosen is independent of node
selection, we posit that the relative strength of an RL agent trained with retro

branching will also be independent of the node selection policy used.

4.7. Conclusions, Limitations, & Further Work 117

To test this, we took our best retro branching agent trained with the default
SCIP node selection heuristic and tested it on the 500 x 1000 validation instances
in the default, DFS, and BFS SCIP node selection settings. To make the
performances of the brancher comparable across these settings, we normalised
the mean tree sizes with those of PB (a branching heuristic independent of the
node selector) to get the performance relative to PB in each environment. As
shown in Fig. 4.4b, our agent achieved consistent relative performance regardless

of the node selection policy used, indicating its indifference to the node selector.

4.7 Conclusions, Limitations, & Further Work

We have introduced retro branching; a retrospective approach to constructing
B&B trajectories in order to aid learning-to-branch with RL. We posited that
retrospective trajectories address the challenges of long episodes, large state-
action spaces, and partially observable future states which otherwise make
branching an acutely difficult task for RL. We empirically demonstrated that
retro branching outperforms the current SOTA RL method by 3-5x and comes
within 20% of the performance of IL whilst matching or beating it on 42% of
test instances. Moreover, we showed that RL can surpass the performance of IL
on small instances, exemplifying a key advantage of RL in being able to discover
novel performance-maximising policies for expressivity-constrained networks
without the need for pre-training or expert examples. However, retro branching
was not able to exceed the IL agent at scale. In this section we outline the
limitations of this chapter and areas of further work.

Partial observability. A limitation of our proposed approach is the re-
maining partial observability of the MDP, with activity external to the current
sub-tree and branching decision influencing future bounds, states, and rewards.

In this and other studies, variable and node selection have been considered

118 Chapter 4. Solving NP-Hard Discrete Optimisation Problems

in isolation. An interesting approach would be to combine node and variable
selection, giving the agent full control over how the B&B tree is evolved.

Reward function. The proposed trajectory reconstruction approach can
facilitate a simple RL reward function which would otherwise fail were the
original ‘full’ tree episode used. However, assigning a —1 reward at each step
in a given trajectory ignores the fact that certain actions, particularly early on
in the B&B process, can have significant influence over the length of multiple
trajectories. This could be accounted for in the reward signal, perhaps by using
a retrospective backpropagation method (similar to value backpropagation in
Monte Carlo tree search [Silver et al., 2016, 2017]).

Exploration. The large state-action space and the complexity of making
thousands of sequential decisions which together influence final performance
in complex ways makes exploration in B&B an acute challenge for RL. One
reason for RL struggling to close the 20% performance gap with IL at scale
could be that, at some point, stochastic action sampling to explore new policies
is highly unlikely to find trajectories with improved performance. As such,
more sophisticated exploration strategies could be promising, such as novel
experience intrinsic reward signals [Burda et al., 2018, Zhang et al., 2021b],
reverse backtracking through the episode to improve trajectory quality [Salimans
and Chen, 2018, Agostinelli et al., 2019b, Ecoffet et al., 2021], and avoiding
local optima using auxiliary distance-to-goal rewards [Trott et al., 2019] or

evolutionary strategies [Conti et al., 2018].

119

Chapter 5

Partitioning Distributed

Compute Jobs

Abstract

From natural language processing to genome sequencing, large-scale machine
learning models are bringing advances to a broad range of fields. Many of these
models are too large to be trained on a single machine, and instead must be
distributed across multiple devices. This has motivated the research of new
compute and network systems capable of handling such tasks. In particular,
recent work has focused on developing management schemes which decide
how to allocate distributed resources such that some overall objective, such
as minimising the job completion time (JCT), is optimised. However, such
studies omit explicit consideration of how much a job should be distributed,
usually assuming that maximum distribution is desirable. In this work, we show
that maximum parallelisation is sub-optimal in relation to user-critical metrics
such as throughput and blocking rate. To address this, we propose PAC-ML
(Eartitioning for asynchronous computing with machine learning). PAC-ML
leverages a graph neural network and reinforcement learning to learn how much
to partition computation graphs such that the number of jobs which meet
arbitrary user-defined JCT requirements is maximised. In experiments with five

real deep learning computation graphs on a recently proposed optical architecture

120 Chapter 5. Partitioning Distributed Compute Jobs

across four user-defined JCT requirement distributions, we demonstrate PAC-ML
achieving up to 56.2% lower blocking rates in dynamic job arrival settings than

the canonical maximum parallelisation strategy used by most prior works.

Chapter 5. Partitioning Distributed Compute Jobs 121

Publications related to this work (contributions indentend):

o Christopher W. F. Parsonson, Zacharaya Shabka, Alessandro Ot-
tino, and Georgios Zervas, ‘Partitioning Distributed Compute Jobs with

Reinforcement Learning and Graph Neural Networks’, arXiv, 2023

— Algorithm, code, experiments, paper writing, plots

122 Chapter 5. Partitioning Distributed Compute Jobs

5.1 Introduction

The last decade has seen an exponential increase in the amount of compute
demanded by big data jobs such as Al and genome processing, with resource
requirements doubling every 3.4 months since 2012; 50x faster than Moore’s Law
[OpenAl 2018]. This trend is showing no sign of slowing down. The fundamental
relationship between neural network accuracy and scale [Kaplan et al., 2020]
provides a strong incentive for practitioners seeking performance improvement
to further increase their resource requirements. Moreover, brain-scale Al will
require at least as many parameters as the ~1 000 trillion synapses present in
the human brain [Furber, 2016]; several orders of magnitude more than the
largest models used today.

The compute time and memory requirements of state-of-the-art big data
applications already far outstrip the capabilities of any single hardware device.
For example, one of the current largest DNNs, Megatron-Turing natural language
generation (MT-NLG) [Smith et al., 2022], contains 530 billion parameters. These
parameters alone occupy 1000 GB, exceeding the capacity of the largest A100
GPU by over an order of magnitude, and the parameter loss gradients tracked
during training occupy several times more. Even if the model could be fitted
onto a single device, the training time would be ~900 years®'. To address these
compute time and memory demands, rather than using a single device, big
data jobs must be distributed and parallelised across a cluster of machines. For
example, the Selene supercomputing cluster [NVIDIA, 2020] consists of 358 400
A100 GPU tensor cores, bringing the MT-NLG training time from 900 years
down to the order of days?.

However, parallelising jobs across ever-more machines brings its own chal-

lenges. With any parallelisation strategy, at some point the output of each

! Assuming it takes 8 V100 GPUs 36 years to train a 175 billion parameter model [NVIDIA,
2022] and extrapolating.
2Assuming a linear parallelisation speedup and 0 communication overhead.

5.1. Introduction 123

‘worker’ (a single device processing at least part of a job) must be collected
and synchronised to get the overall result of the parallelised computation. This
synchronisation requires communication between the workers. As discussed in
Chapter 1, as the number of workers used to execute a job is increased, the per-
worker computation demands decrease, but the overall communication overhead
between workers grows (see Fig. 1.2b). This shifts the performance bottleneck
away from the workers themselves and into the network connecting them, and
brings additional challenges with managing varying traffic characteristics for
different job types and parallelisation strategies [Wang et al., 2022, Parsonson et
al., 2022, Benjamin et al., 2021, 2022].

To address the communication bottleneck in distributed computing, recent
works have sought to develop optical clusters [Benjamin et al., 2020, Ballani
et al., 2020, Khani et al., 2021, Wang et al., 2022, Ottino et al., 2022]; machines
interconnected by optical switches [Parsonson et al., 2020, Gerard et al., 2020b,
2021]. Compared to their electronic counterparts, optically switched networks
offer orders of magnitude improvements in scalability, bandwidth, latency, and
power consumption [Ballani et al., 2020, Zervas et al., 2018, Mishra et al., 2021]
(see Section 5.2).

Optical clusters are typically operated under the OCS paradigm due to its
non-blocking circuit configurations with high capacity and scalability [Raja et al.,
2021]. OCS networks are fundamentally different from the electronic packet
switched architectures used by most current clusters, resulting in entirely new
communication patterns and resource demand characteristics. Consequently,
new compute and network resource management schemes are needed in order to
optimally allocate jobs and maximise performance.

Of the many resource management tasks which must be performed in a
compute cluster, job partitioning (how to split a job up across how many devices)
is key to overall performance. More partitioning can lead to lower compute

times. However, it may also increase network overhead and occupancy of

124 Chapter 5. Partitioning Distributed Compute Jobs

cluster resources, possibly leading to future jobs being blocked upon arrival
and consequently lower overall cluster throughput. Prior works such as SiP-ML
[Khani et al., 2021] have introduced simple partitioning heuristics for optical
networks which have notably improved cluster performance. However, they have
not been designed under the more realistic setting of dynamic and stochastic
job arrivals, have not considered the state of the cluster in a ‘network-aware’
manner when making partitioning decisions, and have been crafted to optimise
for the sub-optimal objective of minimising JCT.

In this work, we first argue that simply minimising the JCT is a naive objective
because it brazenly encourages more parallelisation of a job request without
considering the effect this has on the ability of a cluster to service subsequent
jobs. We then introduce a new more subtle formulation of the optimisation
metric, the user-defined blocking rate, which more aptly encompasses the desires
of cluster users. Next, we propose a simple modification of the quantised SiP-
ML partitioner which, rather than maximally parallelising all jobs, minimally
parallelises them such that they meet the user-defined maximum acceptable
completion time. Then, we propose a novel network-aware partitioning strategy
(see Fig. 5.4 and Section 5.5) called PAC-ML (partitioning for asynchronous
computing with machine learning) which utilises RL and a GNN to flexibly
meet the demands of the user in an arbitrary manner given the current state
of the cluster network. Finally, we demonstrate our method in simulation on
the recently propsed RAMP optical architecture [Ottino et al., 2022], achieving
up to 56.2% lower blocking rates than the best heuristic baseline. We show
that different user-defined demand environments require different partitioning
strategies for optimal results, and that a key advantage of PAC-ML is that it
is able to discover performant strategies automatically without the need for

handcrafted heuristics or environment-specific tuning.

5.2. Background 125

5.2 Background

5.2.1 Parallelisation

Types of parallelism. Parallelisation is the process of distributing a compu-
tational job across multiple devices. This is done in order to reduce the time
and/or physical memory needed to complete the job. There are three main types
of deep learning parallelism; data parallelism, model parallelism, and hybrid
parallelism (see below). Although today the most common method for DNN
training parallelisation is data parallelism for its simplicity and limited network
overhead, we focus on the less common but more desirable model parallelism
paradigm for its strong scaling capabilities [Khani et al., 2021]. Our proposed
partitioning methods are applicable to hybrid and pipeline parallelism, but these
require additional simulation complexity and are therefore beyond the scope of
this chapter.

Data parallelism. Data parallelism [Slotnick et al., 1962] is where an
identical copy of the DNN model is sent to each worker. The input training data
is parallelised by sampling a training batch, splitting it into non-overlapping
micro-batches, training each worker on its own micro-batch, and updating the
workers’ local model parameters using some method to synchronise the gradients
of the parameters with respect to the training loss after each training iteration.
This synchronisation step is commonly referred to as AllReduce, and can be
performed using various techniques. Data parallelism can be applied to any
DNN model regardless of its architecture, enables the use of large data sets
(which are crucial for scaling model performance [Hoffmann et al., 2022]), and
facilitates the use of large training batch sizes which can lead to smoother and
faster convergence. This is a form of weak scaling, where the JCT is decreased by
reducing the total number of training iterations needed via increasing the amount

of data processed per iteration as the number of workers is increased [Khani et

126 Chapter 5. Partitioning Distributed Compute Jobs

Original DAG
(to be partitioned)

Partition Degree: 1

Full connectivity

- -

- -

Full connectivity Full connectivity

FI1GURE 5.1: Diagram showing a DNN job DAG being partitioned. Top: A forward
pass DAG where each node has an associated partition degree (how many times
it will be divided when partitioned). Bottom: A partitioned DAG with forward
and backward passes handled consecutively. Green edges in the graph represent
data flow (i.e. output to input) between consecutive operations in the forward
pass. Orange edges represent gradient exchanges processed in the backward pass
(backpropagation). Blue edges represent full connectivity collective operations to
synchronise weight updates across partitioned components of an operation. Note
that, for brevity, the top unpartitioned DAG only shows the forward pass (since,
before partitioning, the graph structure is identical to the backward pass), whereas
the bottom partitioned DAG shows both the forward and backwards passes (since,
after partitioning, the graph structures are different).

5.2. Background 127

al., 2021]. However, it scales poorly for large models with many parameters
since all parameters must fit onto a single worker and then be synchronised at
the end of each training step, and has the constraint that the training data must
be i.i.d. in order for parameter updates to be computed and summed across
workers to attain the updated model parameters.

Model parallelism. Model parallelism [Karakus et al., 2021] is where the
DNN model is partitioned (split) and a part of the model is sent to each worker.
In the DNN forward pass, a training batch is sampled, copied, and sent to each
worker which holds layer-1 of the DNN. The layer-1 worker(s) then compute
the layer-1 output(s) and forward them to the worker(s) which hold layer-2,
and so on. In the backward pass, the gradients of the model parameters with
respect to the training loss are computed by starting at the worker(s) which
hold the final layer and propagating these gradients back to the layer-1 workers,
after which the partitioned model will be globally synchronised. Layer outputs,
gradients, and activations are exchanged during the training iteration using a
synchronisation step commonly referred to as AllGather. Model parallelism
facilitates the use of very large models which otherwise would not fit onto a single
worker and caters for time-efficient parallelisation of computational operations
where possible. This is a form of strong scaling, where the JCT and per-worker
memory utilisation are decreased via increasingly partitioning different parts
the job across more workers as the number of workers is increased [Khani et al.,
2021]. However, passing gradients between workers during training can create a
large communication overhead [Mirhoseini et al., 2017, 2018], and expert domain
knowledge of the specific model architecture is needed to know how to split the
model across multiple workers.

Hybrid parallelism. Hybrid parallelism [Dean et al., 2012] is where a
combination of data and model parallelism is used to strive for the benefits
of both. This can be extended to include pipeline parallelism [Huang et al.,

2019, Narayanan et al., 2019], where intra-batch parallelism (data and model

128 Chapter 5. Partitioning Distributed Compute Jobs

parallelism) are combined with inter-batch parallelism (pipelining) where multiple
micro-batches are processed simultaneously where possible. Hybrid parallelism
can result in higher worker utilisation and the advantages of both model and
data parallelism, but requires complex bidirectional pipelining across different
inputs, careful model parameter versioning to ensure correct computations of
the gradients during the backward pass, and each stage allocated across workers
must be load-balanced to ensure roughly equivalent computational times between
workers in order to maximise peak pipeline throughput.

Computational jobs. A computational job is a directed acyclic graph
(DAG) whose nodes are operations and edges are dependencies. Operations are
computational tasks (e.g. some mathematical reduction, a database query, etc.).
Dependencies are either control dependencies, where the child operation can
only begin once the parent operation has been completed, or data dependencies,
where at least one tensor is output from the parent operation and required as
input to the child operation. In the context of DNNs; a job DAG is a sequence
of forward pass, backward pass, and parameter update operations which need to
be performed on data exchanged between operations. Whether or not this data
passes through a communication network is determined by how the operations
are partitioned, placed across a cluster of workers, and parallelised.

Job partitioning. Job partitioning refers to the process of splitting the
operations of a job DAG into u (the partition degree) smaller sub-operations
which can in turn be placed across u workers, thus reducing their run time and
memory requirements. Partitioning is used in the model, hybrid, and pipeline
parallelisim paradigms. More partitioning can decrease compute time and
memory requirements, but requires more inter-worker communication, complex
intra-worker operation scheduling, and greater resource utilisation, therefore
potentially increasing overall completion time, cluster complexity, and subsequent
job blocking rates. Fig. 5.1 visualises how an initial DAG for some arbitrary

neural network architecture, where each operation has a partitioning degree, can

5.2. Background 129

be re-represented in terms of its partitioned form. Both forward and backward
passes are explicitly represented since inter-operation information dependencies

(i.e. the edges in the graph) are not the same in each pass.

é‘i —e— Meta RAMP .
_g 40 ./
S 40 -
=
§ /./
O 20 - ®
5 M/
2.0
S o] o2 013 049 099
[} LI I 1 1 1 1 1 1 LI I
=2 10! 10?
Workers

FIGURE 5.2: The mean network overhead of the 6 distributed deep learning jobs
reported by [Wang et al., 2022] in Meta’s GPU cluster compared to that of RAMP
as reported by Ottino et al. [2022] on the 5 jobs considered in our work. Note
that this is an approximate comparison, and that the important takeaway is that
RAMP retains low network overheads as jobs become increasingly distributed.

5.2.2 RAMP

Overview. RAMP is a state-of-the-art OCS architecture designed specifically
for cloud data centres and distributed deep learning systems [Ottino et al.,
2022]. RAMP networks are parameterised by N communication groups, Ng
racks per communication group, and Ng servers per rack, resulting in a Ny =
N¢e x Ni x Ng worker cluster with a colloquially termed ‘RAMP shape’ defined
by tuple (N¢, Ng, Ng). At its core, RAMP proposes a novel set of message
passing interfaces (MPIs) for performing the synchronisation steps (AllReduce,
AllGather, etc.) required by distributed DNN training jobs. These will be
referred to as collective operations. These MPIs are designed to take full
advantage of the high bandwidth provided by optical network architectures.
Consequently, as shown in Fig. 5.2, the network overhead of RAMP remains
remarkably low as the number of workers used to execute a job increase (see

Section 5.6 for experimental details). The RAMP authors showed that this low

130 Chapter 5. Partitioning Distributed Compute Jobs

network overhead enables unprecedented scalability with up to 65536 worker
nodes capable of training O(trillion) parameter DNN models.

RAMP placement rules. As detailed in Ottino et al. [2022], a group of
workers in a RAMP shape can only undergo collective operations if they are
selected with respect to certain rules, loosely termed here ‘symmetry’ rules. For
shape (N¢, Ng, Ng), these rules are as follows: (1) Ng workers per rack spread
over Ny racks requires that the set of workers on each rack span Ny distinct
communication groups. These Ny distinct communication groups do not have
to be the same set across racks. (2) Ng workers on Ng = 1 rack must span Ng
communication groups. (3) Ng workers spread over Ng racks (Vg = 1 worker
per rack) must span Ng distinct communication groups.

In our simulations, we use a simple first-fit operation placement heuristic

which conforms to these rules (refer to Appendix C.3.4 for further details).

5.3 Related Work

Recent years have seen a surge of interest in developing methods to distribute ML
tasks across multiple devices [Ben-Nun and Hoefler, 2019, Mayer and Jacobsen,
2020]. One approach has been to optimise the physical plane of the distributed
cluster such as its compute and network devices and architectures [Parsonson
et al., 2020, Khani et al., 2021, Wang et al., 2022, Ottino et al., 2022]. In this
work, we instead focus on optimising the orchestration plane, which determines
how physical layer resources are allocated to execute a job. We divide the
orchestration plane into three sub-components: Job (1) partitioning (how many
devices to use); (2) placement (which devices to use); and (3) scheduling (in
which order to use the devices). Many prior orchestration plane works have
considered (2) and (3) (how to distribute), whereas we focus on (1) (how much
to distribute). However, in this section we comment on recent progress across

all these fields, since we leverage this progress throughout our work.

5.3. Related Work 131

ML for discrete optimisation. Many CO problems turn out to be NP-
hard, rendering exhaustive search techniques intractable for practical application
[Bengio et al., 2021]. Consequently, practitioners rely on either approximate
algorithms, which give restricted performance guarantees and poor scalability
[Williamson and Shmoys, 2011], or heuristics, which have limited solution efficacy
[Halim and Ismail, 2019]. Since the first application of neural networks to CO by
Hopfield and Tank [1985], the last decade has seen a resurgence in ML-for-CO
[Bello et al., 2016, Dai et al., 2017, Barrett et al., 2019, Gasse et al., 2019,
Barrett et al., 2022, Parsonson et al., 2022]. The advantages of ML-for-CO over
approximation algorithms and heuristics include handling complex problems
at scale, learning either without external input and achieving super-human
performance or imitating strong but computationally expensive solvers, and
(after training) leveraging the fast inference time of a DNN forward pass to rapidly
generate solutions. Since almost all cluster resource management tasks can be
reduced to canonical CO problems [Bengio et al., 2021], many state-of-the-art
resource management methods utilise recent advances in ML-for-CO.

Job placement. Mirhoseini et al. [2017] were the first to apply ML to the
task of deciding which operations in a computation graph to place on which
devices in a cluster. They used a sequence-to-sequence model consisting of an
LSTM DNN with an attention mechanism trained with the simple REINFORCE
policy gradient RL algorithm [Williams, 1992] such that the JCT of a deep
learning job was minimised, outperforming handcrafted heuristics when training
the Inception-V3 computer vision and LSTM natural language processing models.
Gao et al. [2018] furthered this work by replacing REINFORCE with the more
advanced PPO RL algorithm [Schulman et al., 2017] with lower variance and
reduced training hardware demands. They demonstrated their method beating
Mirhoseini et al. [2017] on the CIFAR-10 image recognition benchmark in
terms of JCT. Mirhoseini et al. [2018] proposed a novel hierarchical model

which decomposed the job placement task into a joint group-and-place problem,

132 Chapter 5. Partitioning Distributed Compute Jobs

reducing the JCT of Inception-V3, ResNet, LSTM, and NMT models by up to
60% relative to the state-of-the-art.

All works up to this point used DNN architectures restricted to Euclidean-
structured input data. Consequently, in order to handle non-Euclidean graph-
structured data such as computation graphs and cluster networks, they had to
be re-trained each time a new graph structure was considered. Addanki et al.
[2019] were the first to instead leverage a GNN, as well as the grouping scheme
of Mirhoseini et al. [2018], to learn to generalise across different job types with
varying computation graph structures, demonstrating device placement schemes
which were on par with or better than prior approaches on Inception-V4, NASNet,
and NMT after 6.1x fewer training steps. Khadka et al. [2021] furthered the
use of GNNs for job placement by combining GNNs, RL, and population-based
evolutionary search with the hierarchical group-and-place scheme of Mirhoseini
et al. [2018]. Concretely, they replaced the manually-designed operation grouping
heuristic with a learned policy capable of superior scaling and JCT performance.

Job scheduling. Bao et al. [2018] addressed the job scheduling problem
(the order in which to execute operations placed across a set of devices) using a
primal-dual framework for online job scheduling. They represented the problem
as an [LP which their proposed algorithm could solve in polynomial time in
an online fashion such that the cluster resources were maximally utilised and
the JCT minimised. Li et al. [2021] proposed a placement-aware scheme which
leveraged the pre-determined device placement allocation to decide on a job
schedule which could reduce the average JCT by up to 25% relative to other
scheduling methods. Paliwal et al. [2020] went further by utilising an RL-
trained GNN and a genetic algorithm to jointly optimise both job placement and
scheduling, demonstrating both lower JCT and peak memory usage than other
strategies when distributing TensorFlow computation graphs across a cluster.

Job partitioning. To the best of our knowledge, Khani et al. [2021] are the

only ones to have explicitly considered the question of how much to distribute a

5.4. User-Defined Blocking Rate 133

computation graph in the context of an optical network. Like other works, they
assumed that a maximum parallelisation strategy (i.e. partition the job across
as many workers as possible) is a desirable objective, and then focused on how
best to design the physical layer such that the JCT could be minimised.

All works discussed in this section have assumed that the JCT is the key
objective to minimise. Consequently, where the question of partitioning is
considered, prior works have assumed that more parallelisation is desirable.
However, we posit that user-critical metrics such as throughput and blocking
rate are compromised by prioritising optimisation of the JCT in a cluster setting
with dynamic job arrivals. To address this shortcoming, we propose a new ML-
based resource management scheme which explicitly addresses the partitioning
question. Concretely, our work leverages the emergent trend from these other
orchestration plane fields, namely utilising an RL-trained GNN, to decide how
much to partition different jobs in a dynamic setting with arbitrary user-defined

completion time requirements.

5.4 User-Defined Blocking Rate

To motivate our work, we first explore the key metrics to consider when evaluating
a job partitioning strategy with the help of an experiment on 32 GPU workers,
and then introduce a new formulation of the user-defined blocking rate. All
experimental details are given in Section 5.6.

The inadequacy of optimising the job completion time. As discussed
in Section 5.3, most prior works researching management schemes for distributed

computing aim to minimise JCT; the time taken to complete a given job. If a job

end
we,]?

j begins running at wall clock time 5% and is completed at time ¢

we,j researchers

end __ tstart

wej — Luey - Consequently, most

usually record the completion time as JCT; =t
systems maximise the degree to which they parallelise jobs in order to minimise

JCT. While it is true that end users undoubtedly want this JCT metric to be

134 Chapter 5. Partitioning Distributed Compute Jobs

—e— Sequential Para,nax
(@) x10% , ®
000-0-0—0—0—0—0 0.4
z, ~
|— 203
9] i :
= 05:4-0 g _o_9—0—©
1 o 3 *—0—o
& 0.2
» (c) x107 » (d) x107
0 1.25 o o
N ~— R X: ./ -5 ~— ./
851,00 o g 5 1.007 2
g Q. /. QL o /. "
= c P = =X
O 075 .0 O 2075 o
e ._.' e ..J
< T T = T T
= 1.0 1.5 = 1.0 1.5
Load %107 Load %107
Rate (B/s) Rate (B/s)

FIGURE 5.3: (a-b) Demonstration of how more partitioning can lead to a lower
JCT than no partitioning (i.e. sequentially running the job on a single device), but
this may be at the cost of a higher blocking rate since more cluster resources are
occupied when subsequent jobs arrive. (c-d) Demonstration of how optimising for
the cluster throughput leads to an unfair bias towards more partitioning, because
more parallelism creates more work for the cluster and therefore artificially increases
cluster throughput even though, from the perspective of the user, the original offered
throughput may be lower.
minimised, it fails to quantify when a job was blocked, which occurs when no
cluster resources were available to service it. While more parallelism will often
lead to a lower JCT for a given job, it will also use up more of the cluster’s
compute and network resources, potentially blocking future job arrivals (see
Fig. 5.3). Therefore in practice, end-users wish to minimise both the JCT and
the overall blocking rate (the fraction of jobs blocked over a given time period).
While maximum parallelisation will lead to a minimised JCT, we posit that
a balance between these two extreme parallelisation strategies can more aptly
optimise for both the JCT and blocking rate.

Alternative optimisation objectives. One metric which encapsulates
both the JCT and blocking rate is throughput; the information processed per
unit time. There are two issues with using throughput as an optimisation
objective. (1) Operators must be careful how they measure the throughput to be

optimised. If they measure the cluster throughput (the total cluster information

processed per unit time), they will be biased towards more parallelisation,

5.4. User-Defined Blocking Rate 135

because when a job is partitioned and parallelised, the edge dependencies coming
in to and out of the partitioned operation node(s) must be replicated (see Fig.
5.1). This artificially creates more information for the cluster to process even
though, from the end users’ perspective, the total information processed of
their original demand is the same. Therefore, the offered throughput (the total
original demand information (i.e. before partitioning was applied) processed
per unit time) is a more suitable throughput metric to optimise. Figure 5.3
shows an example of how a ‘maximum partitioning’ strategy, such as that used
by SiP-ML [Khani et al., 2021], can have superior cluster throughput when
compared to a ‘no partitioning’ strategy (sequentially running the job on a single
device) despite having lower offered throughput. However, offered throughput is
still an inadequate optimisation metric, because (2) in practice, different jobs
being serviced by the cluster originating from different client users have different
priorities and job completion time requirements. For example, two identical
machine learning training jobs might be submitted to the cluster, but one from
a user who intends to deploy the model commercially and requires it to be
completed overnight, and the other from a user who is employing the model for
research and has less stringent completion time requirements. Ideally, operators
would direct their clusters to meet flexible user-defined per-job completion time
requirements.

The user-defined blocking rate. To enable users to dynamically determine
the completion time on a per-job basis whilst also maximising the number of job
demands satisfied, we introduce a new formulation of the user-defined blocking
rate objective for the partitioning algorithm to optimise. Given a job which, if
executed sequentially on one device, would be completed in JCT5™, we define the
mazimum acceptable JCT as JCT* = - JCT™, where {3 € R: 0 < § < 1},
Here, [is a parameter chosen by the user which determines how quickly the
job must be completed. If JCT; > - JCT}™, then the cluster will have failed

to complete the job within the required time and the job will be recorded as

136 Chapter 5. Partitioning Distributed Compute Jobs

having been blocked. The user-defined blocking rate is therefore the fraction
of jobs which failed to meet the JCT; < 3 -J CT;eq requirement over a given
period of time. Note that rather than brazenly optimising for either the JCT or
the blocking rate, the user-defined blocking rate enables the cluster operator to
instead dynamically specify their desired completion time on a per-job basis, and
the performance of the cluster is evaluated according to how well it was able to
meet the requirements of the user. Furthermore, the § parameter corresponds to
the speed-up factor being requested by the user and, since { € R: 0 < 5 < 1},

can be given directly as input to a DNN.

5.5 PAC-ML Partitioning Methodology

RL agents can learn general policies without the need for human guidance. An
RL job partitioner therefore has the potential to take an arbitrary maximum
acceptable JCT provided by the user and automatically decide how much to
distribute the job such that, over a period of time, the number of jobs which
meet the JCT requirements specified by the user is maximised. Such an agent
would therefore be able to minimise the blocking rate whilst also accounting for
the flexible and dynamic JCT specifications of the user. Following this logic,
we now describe our PAC-ML (partitioning for asynchronous computing with
machine learning) approach for learning to partition computation jobs with RL

and a GNN.

5.5.1 Markov Decision Process Formulation

Since allocating cluster resources for jobs arriving dynamically in time is a
sequential decision making process, formulating problems such as job partition-
ing as an MDP is a natural approach and facilitates the application of many
traditional and state-of-the-art RL algorithms [Mao et al., 2016, Addanki et al.,

2019, Paliwal et al., 2020].

5.5. PAC-ML Partitioning Methodology 137

Agent
DNN forward pass Action selection
Generate job Generate global Generate Action
graph embedding embedding logits SCOres
——— —— —— ——
5 'Qi | u =0
H i | wt
> d i v i H1= !
1 ? 3 Concatenate ——» - TSSO ESUSSUN SS— » uy =2
7 i T ! ug =3
. i i
ko4 -
DNN modules)
Node Edge Global Logit
St eepe ut
. A pttl
Environment i
Input at time £ Environment transition
Job Cluster Partitioned job
———
Allocate
place ops.
D
schedule ops. <
D
place deps.
B
schedule deps.
OOperation — Dependency l:‘ Worker Communication link —— NN Module Action

FIGURE 5.4: An overview of our PAC-ML approach transitioning from step
t —t+ 1. At each time step ¢ when there is a new job to be placed on the cluster,
we: (i) Use a GNN to generate an embedded representation of the node and edge
features in the job’s computation graph, and a standard feedforward DNN to do
the same for the global job and cluster features; (ii) concatenate the outputs of (i)
and use another feedforward DNN to generate a logit for each action u! € U?; (iii)
pass the chosen action u! to the environment and partition the job accordingly; (iv)
apply any internal environment allocation heuristics (operation and dependency
placement and scheduling, etc.) to attempt to host the job on the cluster; (v) if
accepted onto the cluster, perform a lookahead to evaluate the job’s completion
time; (vi) fast-forward the environment’s wall clock time ty. to when the next job
arrives, and return the corresponding reward r/*! and updated state s‘*1.

States. A new job j arriving at time step ¢ is comprised of a DAG G(O, D, g;)
with node operations O, edge dependencies D, and any other job statistics which
might be recorded g;. Similarly, the state of the cluster at time ¢ is made up of
the number of workers available, the jobs currently running on the cluster, and
so on. To compress the state of the cluster and the job requesting to be placed

into a representation suitable as input for a neural network at time step ¢, we

encode this information into five feature vectors:

1. Per-operation features o;Vi € {1,...,|0|} (5 features): (i) The compute
cost (run time in seconds on an A100 GPU); (ii) a binary variable indicating

whether the operation has the greatest compute cost in the job; (iii) the

138

Chapter 5. Partitioning Distributed Compute Jobs

memory cost (byte occupancy); (iv) a binary variable indicating whether
the operation has the greatest memory cost in the job; and (v) the node
depth with respect to the source node. The compute and memory costs
are normalised by the highest compute and memory cost operations in the

job, and the node depth is normalised by the depth of the deepest node.

Per-dependency features d,Vi € {1, ...,|D|} (2 features): (i) The size
(in bytes) of the edge dependency normalised by the largest dependency
in the job; and (ii) a binary indicator of whether the dependency is the

largest in the job.

Global job features g; (15 features): (i) The number of operations; (ii)
the number of dependencies; (iii) the sequential job completion time; (iv)
the maximum acceptable job completion time; the maximum acceptable
job completion time fraction both (v) raw and (vi) normalised; (vii)
the total memory cost of all of the operations; (viii) the total size of
all of the dependencies; (ix) the number of training steps which need to
be performed; the (x) mean and (xi) median of the operation compute
costs; the (xii) mean and (xiii) median of the operation memory costs; and
(xiv) the mean and (xv) median of the dependency sizes. Each feature

is normalised by the highest respective value of the feature across all job

types.

Global cluster features g/, (2 features): (i) The number of occupied
workers; and (ii) the number of jobs running. Both features are normalised

by the total number of workers in the cluster Ny .

Global action features g}, (NTW features): A binary vector indicating
the validity of each possible partitioning decision given the state of the

cluster and the RAMP rules defined by [Ottino et al., 2022].

5.5. PAC-ML Partitioning Methodology 139

Actions. Given the state s' encapsulating both the job requesting to be
placed and the current state of the cluster, the partitioning agent uses a policy
7(s") to select a number of times u’ up to which to partition each operation in the
job’s computation graph (using a similar minimum operation run time quantum
discretisation scheme to Khani et al. [2021]), where ulVi € {0,1,..., 2} (i.e.
there are (NTW + 1) possible discrete actions). Note that u’ = 0 enables the agent
to reject a job without placing it, u* = 1 places the job onto one worker and runs
it sequentially, and 1 < u! < NTW attempts to distribute the job’s operations
across up to u! workers. In our setting and given the RAMP rules of Ottino
et al. [2022], an invalid partitioning action is one which is at least one of: (i) An
odd number (except u* = 1), or either (ii) greater than the number of workers
available or (iii) has no valid RAMP placement shape given the current state of
the cluster (see Section 5.2).

Rewards. As a consequence of the RAMP rules defined by Ottino et al.
[2022], which require that the worker and network resources allocated to a
given job are reserved exclusively for that job for the duration of its run time,
we are able to perform a deterministic lookahead to evaluate what the overall
completion time, JCT), of the job will be as soon as it is placed. Subsequently,
when a job j arrives at time step ¢, we can immediately determine whether or
not the cluster met the JCT}* specified by the user. This enables the use of a

simple per-step +1/—1 reward scheme,

1, if JOT, < 8- JCT
ritl = ’ T (5.1)

—1, otherwise
which when aggregated and maximised over the course of an episode corre-
sponds to maximally meeting the specified per-job completion time requirements
and therefore minimising the user-defined blocking rate.

Transitions. In our hybrid time- and event-drive simulation, when the agent

140 Chapter 5. Partitioning Distributed Compute Jobs

makes a partitioning decision at time step ¢, the environment transitions to the
next step t + 1 by fast-forwarding its internal simulated wall clock time, .,
to when the next job arrives and requests to be placed, updating the states of
any running and completed jobs and their corresponding compute and network

resources as necessary. The episode terminates when ¢y, = Toe*.

5.5.2 PAC-ML Learning Setup

Reinforcement learning algorithm. To find a policy which maximises the
expected return when partitioning jobs, we used the state-of-the-art Ape-X DQN
[Horgan et al., 2018] RL algorithm; a distributed and highly scalable value-based
method (see Appendix C.6 for algorithm details and hyperparameters).
Neural network architecture. To make the learning of value and policy
functions tractable in large state-action spaces, we approximated them with a
custom-built message passing GNN implemented using the open-source PyTorch
[Paszke et al., 2019] and DGL [Wang et al., 2019] libraries. Refer to Appendix

C.5 for further architectural details.

5.6 Experimental Setup

All code for reproducing the experiments and links to the generated data sets
are provided at https://github.com/cwfparsonson/ddls.

Simulation environment. We built an open-source Gym environment
[Brockman et al., 2016] to simulate the RAMP OCS system of Ottino et al.
[2022] in an RL-compatible manner. We used a hybrid time- and event- driven
simulation approach where we kept track of the internal simulation wall clock
time t,., enabling the measurement of time-based metrics, but only took a
partitioning decision when needed (i.e. when a new job demand arrived at the
cluster), aiding efficiency since no discrete steps were needlessly simulated. All

our experiments used similar cluster parameters to Ottino et al. [2022]. We used

https://github.com/cwfparsonson/ddls

5.6. Experimental Setup 141

0.04 1

0.02 -
4

Probability

o
o3
I

Probability _
- <
(@)
!

o
o

T T 1
0.2 0.4 0.6 0.8 1.0

B

FI1GURE 5.5: The four g distributions used in our experiments in order to measure
the capability of each partitioner to cater to different user-defined maximum
acceptable completion time requirement settings. In each Bx experiment setting,
each new job generated was assigned a 8 value sampled from Sy in order to get
the maximum acceptable job completion time, 5 - JCT®** (see Section 5.4).
Nw =32 (Ne =4,Nr =4, Ng = 2) A100 GPUs with 80 GB memory capacity,
2 THz memory frequency, and a peak computational power of 130 Tflop/s. We
assumed an intra-GPU propagation latency of 50 ns, a negligible OCS circuit
reconfiguration latency of 1 ns, a worker input-output latency of 100 ns, and a
total worker communication capacity of 1.6 TB/s (resulting in a per-transceiver
bandwidth of % B/s). All experiments were run up to a simulated wall
clock time of T = 10° s (around 12 days) of continuous cluster operation
with dynamic job arrivals and were repeated across 3 random seeds, with the
subsequent min-max confidence intervals for each measurement metric reported.
More details of the simulation environment are provided in Appendix C.3.
Compute jobs. We used the computation graph time and memory profiles
of five real deep learning job types open-accessed with Microsoft’s PipeDream
research [Narayanan et al., 2019, 2021] (see Appendix C.4 for details). These jobs
encompassed image classification (AlexNet [Krizhevsky et al., 2012], ResNet-18
[He et al., 2016], SqueezeNet-10 [Iandola et al., 2016], and VGG-16 [Simonyan
and Zisserman, 2014]) and natural language processing (GNMT [Wu et al.,

2016]) tasks, thereby testing the generality of the approaches we considered.

142 Chapter 5. Partitioning Distributed Compute Jobs

All jobs arrived to the cluster dynamically and stochastically throughout the
simulation period, with the inter-arrival time fixed at 1000 s to control the load
rate. Each job was ran for Ny, = 50 training iterations, where one training
iteration consists of one forward and backward pass through the neural network.

Partitioning. When partitioning the operations in a job’s computation

Nw

graph, we allowed the partitioning agents to split each operation up to =

times (the environment’s ‘maximum partitioning degree’). We followed Khani et
al. [2021] by (1) assuming a linear dependency between the total number of
operation splits and each split’s compute time; and (2) choosing a minimum
quantum of computation time, 7, and splitting operations up to a number of
times which would result in sub-operations with a compute time no smaller
than 7 in order to maximise GPU utilisation. We set 7 = 10 ms. As such, a
given partitioning action u' set the maximum partitioning degree of the job,
but individual operations within the job could be split fewer times depending
on their initial compute time and 7. Note that although this restricts each
operation to be distributed across a maximum of u! servers, the total number of
workers used by all operations in the job can still be greater than u' depending
on the operation placement heuristic’s choices.

Maximum acceptable job completion times. In our setting, a partitioner
would ideally be able to take an arbitrary job with an arbitrary maximum
acceptable job completion time, § - JCT* and partition the job such that
the completion time requirement is satisfied for as many dynamically arriving
jobs as possible (thereby minimising the user-defined blocking rate; see Section
5.4). To test each partitioner’s ability to do this, we ran experiments using
four § distributions (84, g, Bc, and fp; see Fig. 5.5). For each Sx experiment,
when one of the five possible jobs was randomly generated to arrive at the
cluster, a (8 value, discretised to two decimal places, was randomly sampled
from the experiment’s fx distribution and assigned to the job. By sampling a

broad range of § values from a selection of Sx distributions, we ensured that

5.6. Experimental Setup 143

we could analyse the performance of each partitioning agent under different
completion time requirement settings and subsequently measure the capability

of each method to cater for different user-defined requirements.

Heuristics RL
Random Para,,q. Para,, | PAC-ML

Ba 0.517F301% 0.262+5902 0.3097901 | 0.203+0-007
Bp 0.60173%07 0.263+59%% 0.3967999 | 0.258+0-007
Be 0.50573818 0.267159%4 030775913 | 0.117+0:003
Bp 0.46570006 0.26370005 0.142700% | 0.09979-098

TABLE 5.1: Blocking rate performance of the partitioning agents on the four g
distributions (best in bold). Results are given as the mean across 3 seeds, and
error bars denote the corresponding min-max confidence intervals.

Partitioner baselines. We considered three heuristic baseline partitioning
strategies. (1) Most prior works partition a given job across as many workers
as are available up to a pre-defined environment maximum partition degree
[Khani et al., 2021, Wang et al., 2022]. We refer to this strategy as ‘Para,,q, .
(2) Given the low network overhead (see Fig. 5.2) and contentionless nature
of RAMP, and given the operations’ linear split-compute time dependency of

our environment, a reasonable estimate for the completion time of a job with

sequential run time JCT**¢ distributed across u' workers would be JCT ~ chfeq.

Therefore, in light of our objective to minimise the user-defined blocking rate,

Y

we introduce a new partitioning strategy, ‘Para,,;,’, which partitions the job
up to the estimated minimum amount of parallelisation needed to satisfy the
job’s completion time requirements, u! = f%} (i.e. the estimated speed-up
factor needed). (3) For completeness, we also ran a ‘Random’ partitioning
baseline, which selects a partitioning degree randomly from amongst the number
of available workers.

Metrics recorded. To measure the performance of our partitioning agents,
we recorded the following key metrics. (1) User-defined blocking rate (which

we abbreviate to ‘blocking rate’): The fraction of arrived jobs which had their

completion time requirements met by the cluster. (2) Offered throughput: The

144 Chapter 5. Partitioning Distributed Compute Jobs

total ‘information size’ of the original jobs (i.e. before partitioning was applied)
processed per unit time. Since the open-access PipeDream job profiles used
in our experiments did not contain per-operation flop/s (computational load)
information, we summed the jobs’ operation and dependency sizes (measured in
bytes (B)) to get the total ‘information size’ of each job. The load rate could
then be defined as the rate of job information arriving at the cluster per unit
time, and the corresponding offered throughput as the rate at which this total
job information was processed by the cluster. For a full list of metric definitions,

refer to Appendix C.1.

5.7 Results & Discussion

mmm PAC-ML (Ours) mmm Para,,,, WS Para,,;, B8 Random

(0]
5 1.00 - £1.0- 4 Better
n A iWorse
ks F08-
g’ 0.50 + %0
Té = 0.6

Ba Be Bc Bp Ba Be Bc Bp

FIGURE 5.6: Validation performances (higher is better) of each partitioning
agent evaluated across three seeds normalised with respect to the best-performing
partitioner in each Bx environment.

5.7.1 Performance of the PAC-ML Partitioner

Comparison to the baseline partitioners. To test the performance of
each partitioning agent under different completion time requirement settings,
we ran our experiments across four different /5 distributions (see Section 5.6).
We visualise the relative blocking rate and throughput performance differences
between the agents in Fig. 5.6, where an agent’s ‘score’ is its normalised

performance relative to the best-performing agent with respect to a given

5.7. Results & Discussion 145

best_blockmg_rate) ’ and

metric. We evaluate these scores as scorepiocking = (Dlocking rate

throughput
best__throughput

SCOT€throughput =) for each agent (refer to Appendix C.7 for all
raw metric values). As shown in Table 5.1 and Fig. 5.6, our PAC-ML agent
achieved the best blocking rate across all four 5 distributions, beating its nearest
rival by 22.5%,1.90%, 56.2%, and 30.3% for S 5 .c p respectively.
Comparison amongst the baseline partitioners. Fig. 5.6 visualises
the performance of the best PAC-ML agents on each of the four g distribution
environments compared to the baseline heuristic performances. Interestingly, the
best baseline in terms of blocking rate for 54 g ¢ is Para,,,,, but this switches
to Para,,;, for Bp. On S, PAC-ML achieved roughly equivalent performance
to Para,,q, by learning that, on this § demand distribution, maximum paralleli-
sation led to the lowest blocking rates. This shows that different partitioning
strategies have varying relative performances under different cluster settings. A
key advantage of PAC-ML is therefore that the question of which partitioning
strategy is best for a given environment need not be addressed by sub-optimal
hand-crafted heuristics or environment-specific hyperparameter tuning. Instead,

we have demonstrated in Table 5.1 and Fig. 5.6 that PAC-ML can automatically

learn performant partitioning strategies in arbitrary environment settings.

5.7.2 Analysis of the PAC-ML Partitioner

Offered throughput analysis. One risk of optimising only for the blocking
rate when training the PAC-ML agent is that it maximises the number of jobs
accepted by prioritising small low-information jobs at the cost of a sub-optimal
offered throughput; a key metric when measuring a cluster’s quality of service
to users. Fig. 5.6 shows that the offered throughput improves with the blocking
rate, with the PAC-ML agent ultimately achieving the best throughput across
all four 8 distributions.

Bias analysis. An important question is whether there is any bias in the

146 Chapter 5. Partitioning Distributed Compute Jobs

® PAC-ML (Ours) o Para,us ® Para,, ® Random
Ba /33 Be ,BD
0 067 . 06— e | — — et e
b & O) ° °
o 0.4 0.4
a0 0.4
£ 0.4 — — o .
= o — e, >
Y "é_\: o © 0.2 R , 024 o
= . ¢ 1
5 0.2 . . e . -{,
T T T T T T
50 100 50 100 50 100 50 100
Ops. # Ops. # Ops. # Ops.
[0} 0.6 ° 0.6 o\.'\" —.;._ '—'—.—‘.
" 0 ° ° ° °
o 0.4 0.4
80 0.4
£ 0.4 %—1—:6 T ——— o
5 s<: M — " 0.2 .
a? 0.2 ’\..\. .\,_7\3\.‘ c*.\.- %
T T T T T T T T T T T T
50 100 150 50 100 150 50 100 150 50 100 150
Deps. # Deps # Deps. # Deps.
0.6 e o ° °
[0.6qeo———— - ——— o O —)
s o T———2 ° ° ©
o 0.4 0.4
80 0.4
= ° 0.44 ° I
] . S ,02- 0.2 .
5 F— . e . . -
o 0.2-° . ° .. 5 = 6 = . ¢ 4 0 *
T T T T T T T T
2.5 5.0 2.5 5.0 2.5 5.0 2.5 5.0
Job Size x 1010 Job Size y 1010 Job Size x 1010 Job Size y 1010
0 067 — 06 —_— —_— .. —_—
= ° ° °
o 0.4 0.4
80 0.4
= o, 0.4 ° s — e,
S —— _® o 0.2 ‘e
R % o 0 I P .
@0 . — 5 — . %
T T T T T T T T T T T T
1 2 3 1 2 3 1 2 3 1 2 3
JCT*°? 10 JCT®°? 10t JCT®°? w10 JCT®°? w10

FIGURE 5.7: Mean per-job blocking rates of the five job types considered for each

partitioning agent under each Sx setting plotted against the number of operations

(ops.), number of dependencies (deps.), the total job information size, and the

sequential run time of the job were it ran on a single device (JCT*¢?).

kinds of jobs the PAC-ML agent learns to prioritise in order to minimise the
blocking rate. To investigate this, Fig. 5.7 shows the blocking rate vs. the
original characteristics for each of the five jobs considered (see Appendix C.4
for a summary of these characteristics) for each fx distribution environment.
The PAC-ML agent had little to no bias across the jobs relative to the other
partitioners, with all jobs attaining approximately the same blocking rate. There
was a slight bias towards the larger jobs with greater sequential completion times
and more information to process, which is likely due to the fact that larger jobs

occupy more resources and therefore inherently become favoured over smaller

jobs.

5.8. Conclusions, Limitations, & Further Work 147

5.8 Conclusions, Limitations, & Further Work

In conclusion, we have introduced a new partitioning strategy called PAC-ML.
Leveraging RL and a GNN, PAC-ML learns to partition computation jobs dy-
namically arriving at a cluster of machines such that the number of jobs which
meet arbitrary user-defined completion time requirements is maximised without
the need for hand-crafted heuristics or environment-dependent hyperparameter
tuning. We tested our partitioner on the recently proposed RAMP optical archi-
tecture [Ottino et al., 2022] across four distributions of user-defined completion
time requirements, demonstrating up to 56.2% lower blocking rates relative to
the canonical maximum parallelisation strategies used by most prior works when
partitioning five real deep learning jobs. We hope that our work will spur a
new avenue of research into developing partitioning strategies for distributed
computing. In this section, we outline some limitations of the work done in this
chapter and potentially interesting areas of further work.

Exceeding completion time expectations. In this work, we rewarded
PAC-ML with +1 for completing a job within the user-defined maximum ac-
ceptable completion time and —1 for failing to do so. Although minimising the
blocking rate is crucial for users, it would also be desirable to minimise the
JCT as much as possible. An interesting area of further study would therefore
be to incorporate this objective into the reward function, perhaps by combin-
ing the JCT speed-up factor or offered throughput with the blocking rate via
multi-objective RL [Hayes et al., 2022].

Real-world experiments. Our work has considered real open-access deep
learning computation graph profiles but on a simulated optical architecture.
A natural but significant next step would be to implement PAC-ML in a real
distributed cluster. An important question would be whether an agent trained
in a simulated environment would be capable of inferring in a real cluster at test

time, or if real-world training would be needed.

148 Chapter 5. Partitioning Distributed Compute Jobs

Generalisation to unseen environments. This study ran PAC-ML in
an environment which had the same load rate, 5 distribution, cluster network
size, and job computation graphs at train and test time. An interesting research
question would be whether PAC-ML would be able to learn on one set (or a
distribution) of these parameters and then generalise to a new set at test time,
or if it would need to leverage existing or new state-of-the-art methods in GNN
[Knyazev et al., 2019, Garg et al., 2020, Fan et al., 2021] and RL [Cobbe et al.,
2019, Wang et al., 2020, Kirk et al., 2021] generalisation.

Robustness to stochastic inter-arrival times. In our experiments, we
fixed the inter-arrival rate in order to fix the load rate. However, real clusters have
variable inter-arrival times [Parsonson et al., 2022]. Handling highly stochastic
environments is a known challenge for RL [Mao et al., 2019b], and therefore
presents an interesting future research avenue for PAC-ML.

Combining the orchestration plane. In our work, we have considered
the job partitioning task in isolation of the job placement and scheduling tasks.
However, prior works have found the merging of the latter sub-tasks into a
single resource management problem beneficial to performance [Paliwal et al.,
2020]. An interesting area of further work would be to combine PAC-ML into a
a single algorithm which handled job partitioning, placement, and scheduling
via methods such hierarchical RL [Barto and Mahadevan, 2003, Vezhnevets
et al., 2017, Mirhoseini et al., 2018, Paliwal et al., 2020, Zhang et al., 2021a] or

multi-agent RL [Foerster, 2018].

149

Part 111

Optimising the Simulator

Physi
ppppp

151

Chapter 6

A Framework for Generating
Custom and Reproducible
Network Traffic

Abstract

Benchmarking is commonly used in research fields, such as computer architecture
design and machine learning, as a powerful paradigm for rigorously assessing,
comparing, and developing novel technologies. However, the data centre network
(DCN) community lacks a standard open-access and reproducible traffic genera-
tion framework for benchmark workload generation. Driving factors behind this
include the proprietary nature of traffic traces, the limited detail and quantity of
open-access network-level data sets, the high cost of real world experimentation,
and the poor reproducibility and fidelity of synthetically generated traffic. This is
curtailing the community’s understanding of existing systems and hindering the
ability with which novel technologies, such as optical DCNs, can be developed,
compared, and tested.

This chapter presents TrafPy; an open-access framework for generating
both realistic and custom DCN traffic traces. TrafPy is compatible with any

simulation, emulation, or experimentation environment, and can be used for

Chapter 6. A Framework for Generating Custom and Reproducible Network
152
Traffic

standardised benchmarking and for investigating the properties and limitations
of network systems such as schedulers, switches, routers, and resource managers.
We give an overview of the TrafPy traffic generation framework, and provide a
brief demonstration of its efficacy through an investigation into the sensitivity of
some canonical scheduling algorithms to varying traffic trace characteristics in
the context of optical DCNs. TrafPy is open-sourced via GitHub [Parsonson and
Zervas, 2021a] and all data associated with this manuscript via RDR [Parsonson

and Zervas, 2021b].

Chapter 6. A Framework for Generating Custom and Reproducible Network
153
Traffic

Publications related to this work (contributions indented):

o Christopher W. F. Parsonson, Joshua L. Benjamin, and Georgios
Zervas, ‘Traffic generation for benchmarking data centre networks’, Optical

Switching and Networking, 2022
— Algorithms, code, experiments, paper writing, plots

o Joshua L. Benjamin, Alessandro Ottino, Christopher W. F. Parsonson,
and Georgios Zervas, ‘Traffic Tolerance of Nanosecond Scheduling on
Optical Circuit Switched Data Center Network’, OFC"22: Optical Fiber

Communications Conference and Ezxhibition, 2022
— Code, traffic generation

e Joshua L. Benjamin, Christopher W. F. Parsonson, and Georgios
Zervas, ‘Benchmarking Packet-Granular OCS Network Scheduling for

Data Center Traffic Traces’, Photonic Networks and Devices, 2021

— Code, traffic generation

Chapter 6. A Framework for Generating Custom and Reproducible Network
154
Traffic

6.1 Introduction

A benchmark is a series of experiments performed within some standard frame-
work to measure the performance of an object. Researching data centre network
(DCN) systems and objects such as networks, resource managers, and topologies
involves understanding which types of mechanisms, principles or architectures
are generalisable, scalable and performant when deployed in real-world environ-
ments. Benchmarking is a powerful paradigm for investigating such questions,
and has proved to be a strong driving force behind innovation in a variety of
fields [Weber et al., 2019]. A famous example of a successful benchmark is the
ImageNet project [Deng et al., 2009], which has facilitated a range of significant
discoveries in the field of deep learning over the last decade.

In order to benchmark a DCN system, a traffic trace with which to load
the network is required. This presents several challenges. (1) Data related
to DCNs are often considered privacy-sensitive and proprietary to the owner,
therefore few DCN traffic traces are openly available. (2) When a real DCN
trace is made available, it is often specific to a particular DCN and possibly
not representative of current and future systems, too limited for cutting-edge
data-hungry applications such as reinforcement learning, and not sufficient for
stress-testing different loads in networks with arbitrary capacities to understand
system limitations and vulnerabilities to future workloads. (3) Even if an attempt
is made to make a real DCN available for live testing, deploying experimental
systems in such large-scale production environments is often too expensive and
time consuming. (4) Reducing or approximating DCN traffic down to small-scale
experiments is often unfruitful since many DCN application traffic patterns only
emerge at large scales.

For these reasons, most DCN researchers revert to simulating DCN traffic in
order to conduct their experiments. However, synthetic DCN traffic generation is

often plagued by numerous inadequacies. A common simplification approach is

6.1. Introduction 155

to assume uniform or ‘named’ (Gaussian, Pareto, log-normal, etc.) distributions
from which to sample DCN traffic characteristics. However, such distributions
often ignore fluctuations caused by the short bursty nature of real DCN traffic,
rendering the simulation unrealistically simple. Sometimes researchers will try
to implement their own unique distributions to better describe real DCN traffic,
however this brings difficulties with trying to reproduce and benchmark against
literature reports since there is no standard framework for doing so. Another
common approach is to only focus on the temporal (arrival time) dependence
of DCN traffic characteristics and assume uniform spatial (server-to-server)
dependencies. However, this fails to capture the spatial variations in server-
to-server communication which are needed to accurately mimic real traffic.
Works by Alizadeh et al. [2012, 2013] and Bai et al. [2016] introduced important
DCN systems, but the traffic generators released with their papers fall short of
addressing the issues of fidelity, reproducibility, and compatibility with generic
network architectures (see Section 6.2).

These difficulties with simulating DCN traffic have meant that no traffic
generation framework, and subsequently no universal DCN system benchmark,
has emerged as the networking research field’s tool-of-choice. The lack of a
rigorous benchmarking framework has been a major issue in DCN literature
since individual researchers have often used their own tests without adhering
to the aforementioned requirements. This has limited reproducibility, stifled
network object prototype benchmarking, and hindered training data supply
for novel machine learning systems. Without benchmarking, it is difficult to
systematically and consistently test and validate new heuristics for specific tasks
such as flow scheduling. Furthermore, without sufficient training data, state-of-
the-art machine learning models are less able to replace existing heuristics.

To address the lack of openly available traffic data sets, the aforementioned

problems with simulation, and the absence of a system benchmark, a common

Chapter 6. A Framework for Generating Custom and Reproducible Network
156
Traffic

DCN traffic generation framework is needed. We introduce TrafPy: An open-
source Python API for realistic and custom DCN traffic generation for any
network under arbitrary loads, which can in turn be used for investigating
a variety of network objects such as networks, schedulers, buffer managers,
switch /route architectures, and topologies. TrafPy contributes two key novel

ideas to traffic generation, which we detail throughout this chapter:

1. Reproducibility guarantee A novel method for providing a distribution
reproducibility guarantee when generating traffic based on the Jensen-

Shannon distance metric (see Section 6.3.3).

2. Traffic generation algorithm: A novel method for efficiently creating
reproducible flow-level traffic with granular control over both spatial and

temporal characteristics (see Section 6.3.5).

In addition to the above, TrafPy also contains the following features which,
when combined with these novel aspects, make TrafPy a useful tool for benchmark

workload generation:

o Interactivity: A distribution shaping tool for rapid creation of complex
distributions which accurately mimic realistic workloads given only high-

level characteristic descriptions (see Appendix B.3).

o Compatibility: Compatibility with any simulation, emulation, or experi-
mentation environment by exporting traffic into universally compatible

file formats.

e Accessibility: Open-source code and documentation with a low barrier

to entry.

6.2. Background & Related Work 157

6.2 Background & Related Work

While there is limited literature on DCN traffic generation, data sets, and
benchmarking for the reasons outlined in Section 6.1, there have been notable
works striving towards their creation.

Real workloads. There are a collection of publicly available DCN workload
traces and job computation graph data sets [Yahoo, 2015, Google, 2015, Facebook,
2014, OpenCloud, 2012, Ren et al., 2012, Eucalyptus, 2015, Pucher et al., 2015,
Wolski and Brevik, 2017, Delft, 2015, Shen et al., 2015, JSSPP, 2017, Klusacek
and Pardk, 2017, Azure, 2017, Cortez et al., 2017, Alibaba, 2017, Lu et al.,
2017, LANL and TwoSigma, 2018, Amvrosiadis, 2018, Amvrosiadis et al., 2018,
NCSA, 2018, Jha et al., 2019, Jha et al., 2020]. However, almost all of these
stem from Hadoop clusters and are limited to data mining applications [Pucher
et al., 2015], therefore their use is primarily suited to application-specific testing
and evaluation rather than as a generic tool for generating arbitrary loads and
testing and designing DCN systems as TrafPy is proposed for. Additionally,
many of them lack flow-level data, which is needed to accurately benchmark
network systems.

Real workload characteristics. There is a limited body of work, primarily
from private corporations, aiming to characterise real DCN workloads without
open-accessing the underlying proprietary raw data. Benson et al. [2010a] built on
work done by Kandula et al. [2009] and Benson et al. [2010b] by characterising
DCN traffic into one of three categories; university, private enterprise, and
commercial cloud DCNs. They identified that each of these categories serviced
different applications and therefore had different traffic patterns. University
DCNs serviced applications such as database backups, distributed file system
hosting (e.g. email servers, web services for faculty portals, etc.), and multicast
video streams. Private enterprise hosted the same applications as university

DCNs but additionally serviced a significant number of custom applications and

Chapter 6. A Framework for Generating Custom and Reproducible Network
158
Traffic

development test beds. Commercial cloud DCNs focused more on internet-facing
applications (e.g. search indexing, webmail, video, etc.), and intensive data
mining and MapReduce-style jobs. They also went further than prior works by
quantifying the number of hot spots and characterising the flow-level properties
of DCN traffic.

The above cloud DCN studies came almost exclusively from Microsoft, who
primarily service MapReduce-style applications. Roy et al. [2015] broke this
homogeneous view of cloud traffic by reporting the traffic characteristics of
Facebook’s DCNs, thereby introducing a fourth DCN category; social media
cloud DCNs. Social media cloud applications include generating responses
to web requests (email, messenger, etc.), MySQL database storage and cache
querying, and newsfeed assembly. This results in network traffic being more
uniform and, in contrast to Microsoft’s commercial cloud DCNs, having a much
lower proportion (12.9%) of traffic being intra-rack.

Note that the above examples did not open-access the full data sets, but rather
provided quantitative characterisations of their nature for other researchers to
inform their own traffic generators.

Traffic generators. In their seminal pFabric work, Alizadeh et al. [2013]
provided open-access traffic generation code which loosely replicated web search
and data mining DCN workloads by following a Poisson flow inter-arrival time
distribution whose arrival rate was adjusted to meet a required target load
and with a mix of small and large characteristically heavy-tailed flow sizes.
Additionally, the same authors [Alizadeh et al., 2012] released a simple generator
which used a server application to create many-to-one flow requests from 9
servers, again following a load-adjustable Poisson arrival time distribution with
80% of flows having a size of 1 kB (a single packet) and 20% being 10 MB.
As the authors noted themselves, these workloads were not intended to be
realistic, but rather were designed to demonstrate clear impact comparisons

between different DCN design schemes and the small latency-sensitive and large

6.2. Background & Related Work 159

bandwidth-sensitive flows. TrafPy, on the other hand, can facilitate the shaping
of complex inter-arrival and flow size distributions with one-to-one, many-to-one,
and one-to-many non-uniform server-server distributions with ease. Furthermore,
TrafPy enables the generation of traffic with the same characteristics as Alizadeh
et al. [2013, 2012}, but for any network topology with an arbitrary number of
servers and link capacities, allowing for the straightforward comparison of novel
DCN fabrics with pre-established benchmark workloads.

Similarly, Bai et al. [2016] conducted an extensive experiment into the trade-
off between throughput, latency, and weighted fair sharing in scenarios where
each switch port had multiple queues. Alongside their study they released
an open-access traffic generator which could take a configuration file as input
and generate both uniform and non-uniform server-server flow requests from
pre-defined discrete probability distributions. However, to produce traffic, users
had to manually enter numbers into a configuration file, which made the code
difficult to use. Furthermore, the generator of Bai et al. [2016] had no mechanism
for ensuring distribution reproducibility when sampling from a pre-defined
probability distribution; a feat achieved by TrafPy via the Jensen-Shannon
distance method (see Section 6.3.3).

The key objective of TrafPy is to augment DCN research projects such as
those cited above [Alizadeh et al., 2013, 2012, Bai et al., 2016]. Unlike our
work, the primary focus of such projects was not on the traffic generator itself,
but rather on using traffic generation as a means of benchmarking innovative
ideas. We posit that the fidelity, generality, reproducibility, and compatibility of
TrafPy, achieved by generating custom server-level flow traffic, would make such

works easier to conduct and to compare against as baselines in future projects.

Chapter 6. A Framework for Generating Custom and Reproducible Network

160

Traffic

6.3 Method

6.3.1 Design Objectives

Designing successful network object benchmarks requires a flexible, modular,

and reproducible traffic generation framework. The framework should enable

fair comparisons between different systems whilst maintaining a rigorous experi-

mental setting. In light of the issues highlighted in Section 6.1, the following

criteria are required of such a framework:

Fidelity: Generate demands which represent realistic DCN traffic.
Generality: Generate traffic for arbitrary DCN applications and topologies.
Scalability: Efficiently scale to large networks.

Reproducibility: Reliably reproduce traffic traces to run multiple test

repeats or to reproduce other researchers’ traffic conditions.

Repeatability: Summarise traffic distributions such that, given just a few
parameters, other researchers can repeat the demand data set for cross-

validation and comparison.

Replicability: Interactively shape characteristic distributions visually to
replicate realistic data given only a plot or written description (i.e. in the

absence of raw data).

Compatibility: Export generated demands into universally compatible data
formats such that they can be imported into any simulation, emulation, or

experimentation test bed.

Comparability: Compare a set of standardised performance metrics across

different studies.

6.3. Method 161

6.3.2 TrafPy Overview

An overview of the TrafPy API user experience is given in Fig. 6.1 and further
elaborated on throughout this chapter, with Table B.1 summarising the notation
used and some API examples given in Appendix B.3. The core component of
TrafPy is the Generator, which can be used for generating custom, literature, or
standard benchmark network traffic traces. These traces can be saved in standard
formats (e.g. JSON, CSV, pickle, etc.) and imported into any script or network
simulator. Researchers can therefore design their systems and experiments
independently of TrafPy and use their own programming languages, making
TrafPy compatible with already-developed research projects and future network
objects. This also means that TrafPy can be used with any simulation, emulation,
or experimentation test bed. The Generator has an optional interactive visual
tool for shaping and reproducing distributions, therefore little to no programming
experience is required to use it to generate and save traffic data in standard
formats. As the nature of DCN traffic changes, new traffic distributions can be

generated with TrafPy and state-of-the-art benchmarks established.

e v — roeee N

Parameters
DJ’
JS5D |DHD { S .
{) 5 Sze v
Plye-es P 2 H]
' . g i iTest Object Test Bed Prpr
. t,min = Do n
; D& k> § 5 > =T
=] Topology > Time =] 5
Fa l_
[a]
Src

F1cURE 6.1: TrafPy API user experience for using custom or benchmark TrafPy
parameters D’ to make flow traffic trace D with maximum Jensen-Shannon distance
threshold vJSD and minimum flow arrival duration ¢; :, for m loads {p1, ..., pm }.
The generated trace D can then be used to benchmark a DCN system test object
(e.g. a scheduler) in a test bed (a simulation, emulation, or experimentation
environment) to measure the key performance indicators Px pr. The user need only
use TrafPy to generate the traffic; all other tasks can be done externally to TrafPy
in any programming language.

Chapter 6. A Framework for Generating Custom and Reproducible Network
162
Traffic

Flow traffic. The flow-centric paradigm considers a single demand as a
flow, which is a task demanding some information be sent from a source node
to a destination node in the network. Flow characteristics include size (how
much information to send), arrival time (the time the flow arrives ready to be
transported through the network, as derived from the network-level inter-arrival
time which is the time between a flow’s time of arrival and its predecessor’s), and
source-destination node pair (which machine the flow is queued at and where it
is requesting to be sent). Together, these characteristics form a network-level
source-destination node pair distribution (‘how much’ (as measured by either
probability or load) each machine tends to be requested by arriving flows). When
a new flow arrives at a source and requests to be sent to a destination, it can be
stored in a buffer until completed (all information fully transferred) or, if the
buffer is full, dropped. Once dropped or completed, the flow is not re-used.

TrafPy distributions. At the heart of TrafPy are two key notions; that no
raw data should be required to produce network traffic, and that every aspect
of the API should be parameterised for reproducibility. To achieve the first,
rather than using clustering and autoregressive models to fit distributions to
data [Li, 2010, Feitelson, 2003], TrafPy provides an interactive tool for visually
shaping distributions. This way, researchers need only have either a written
(e.g. ‘the data followed a Pareto distribution with 90% of the values less than
17) or visual description of a traffic trace’s characteristics in order to produce
it. To achieve the second, all distributions are parameterised by a handful of
parameters (termed D’; see Appendix B.2 for an example of the parameters
used in this chapter), and a third party need only see D’ in order to reproduce
the original distribution. As such, TrafPy traces are discrete distributions in the
form of hash tables, which can be sampled at run-time to generate flows. These
tables map each possible value taken by all flow characteristics to fractional
values which represent either the ‘probability of occurring’ for size and time

distributions, or the ‘fraction of the overall traffic load requested‘ for node

6.3. Method 163

distributions. This enables traffic traces to be generated from common TrafPy
benchmarks for custom network systems in a reproducible manner without
needing to reformat the original data in order to make it compatible with new
systems and topologies, as would be needed if the benchmarks were hard-coded

request data sets instead of distributions.

6.3.3 Distribution Accuracy and Reproducibility

All TrafPy distributions are summarised by a set of parameters D’. Once D’ has
been established (by e.g. the community as a benchmark or a researcher as a
custom stress-test or future workload trace), TrafPy must be able to reliably and
accurately reproduce (via sampling) the ‘original’ distribution parameterised
by D’ each time a new set of traffic data is generated. Therefore, a guarantee
that the sampled distribution will be close to the original is required to ensure
reproducibility. TrafPy utilises the Jensen-Shannon Divergence (JSD) [Rao,
1982, Lin, 1991] to quantify how distinguishable discrete probability distributions
are from one another. Given a set of n probability distributions {Py,...,P,}, a
corresponding set of weights {my,...,m,} to quantify the contribution of each
distribution’s entropy to the overall similarity metric, and the entropy H (IP;) of a
discrete distribution with m random variables X; = {z%, ..., ' } which occur with
probability P; = {P;(z}), ..., Pi(z},)} where H(X;) = — Y72 Py(a))logPs(x}), the
JSD between the distributions can be calculated as in Eq. 6.1. In the context of
TrafPy, the P; distributions are the hash tables of variable value-fraction pairs

and the weights are simply set to 1.

JSDW1,...,7Tn (Pl, ;Pn) = H(Z?T,L]P)z) —_ Z?T,LHGEDZ) (61)
=1 =1

The square root of the Jensen-Shannon Divergence gives the Jensen-Shannon
distance [Lin, 1991], which is a metric between 0 and 1 used to describe the

similarity between distributions (0 being exactly the same, 1 being completely

Chapter 6. A Framework for Generating Custom and Reproducible Network
164
Traffic

different). The TrafPy API enables users to specify their own maximum V' JSD
threshold, v/JSDipreshold, When sampling data from a set of original distributions
to create their own data set(s). A lower distance requires that the sampled
distributions be more similar to the original distributions. TrafPy will automati-
cally sample more demands until, by the law of large numbers, the user-specified
V/JSD threshold is met.

Fig. 6.2 shows how, for an example benchmark’s flow size and inter-arrival
time distribution, the v/J.SD between the original and the sampled distributions
changes with the number of samples (number of demands). As shown, most
characteristic parameters (mean, minimum, maximum, and standard deviation)
of the sampled distributions converge at v/ JSD ~ 0.1; a threshold reached after
137,435 demands for the flow size distribution and 27,194 for the inter-arrival
times. The greater the number of possible random variable values and complexity
in the original distribution, the more demands which will be needed to lower
the v/JSD. The distribution which requires the most demands to meet the
v/JSD threshold will determine the minimum number of demands needed for
the generated flow data set to accurately reproduce the original set from which

it is sampled.

6.3.4 Node Distributions

‘Node distributions’ are a mapping of how much each machine (network node)
pair tends to be requested by arriving flows, as measured by the pair’s load (flow
information arriving per unit time), to form a source-destination pair matrix.
These distributions can be defined explicitly on a per-node basis. However,
explicit mappings would result in D’ being defined for a specific topology (since
each topology might have a different number of machines and/or a different
machine labeling convention). Therefore, TrafPy node distributions can also be

implicitly defined by high-level parameters. These parameters are the fraction

6.3. Method 165

le-2 le2
1.0 —_
_4?47 + Original o
= Sampled Q (VRER
0
W0 0.5 N
(a)g 27 3 L'-‘ n
@] ' c
8- 0+ ‘ : ool ————— — ...
102 10° 102 104 102 10
Size (B) Demands Demands
— — _1le5 le5
o @ 24 =)
w S—
[
N 10° 3 s
w - wn
> o T P &
o R P S A
s ‘ ‘ R E= . I REEE :
102 104 102 10° 102 10
Demands Demands Demands
le-3 —~ le2
1.0 n
_4?5 ¥ + Original =2
=2 Sampled Q Vg
()& | @ 0.5- £
0 = =
° -
a0 w4 | o [TTTTmmm RS s S S
. T 0.0 = T T T T T
o 5 0 1 2 = 9 1 2
Time (us) 1e4 Demands le4 Demands le4
- w led — led
3 T 3.1.00 2 1.00
o =
o w 0.75
£ E 0.75 {4t @073 TR
|>_< S 050 I 050
© 1041, ‘ : g ™ , 2 ‘
= 0 1 2 s 0 1 2 n 0 1 2
Demands le4 Demands 1e4 Demands 1e4

FIGURE 6.2: How the Jensen-Shannon distances between the original (red) and
sampled (cyan) distributions and the sampled distributions’ characteristic param-
eters (target from original distribution plotted as red dotted line) vary with the
number of demands for (a) flow size and (b) inter-arrival time. Note that the
first sub-plots of (a) and (b) are plotting the probability distribution of the flow
characteristic in question, whereas the other sub-plots are plotting various metrics
(v JSD, minimum value, maximum value, etc.) of the generated traffic as a function
of the number of demands (flows) generated.

of the nodes and/or node pairs which account for some proportion of the overall
traffic load and, optionally, the fraction of the traffic which is intra- vs. inter-
cluster (where ‘clusters’ are usually considered as ‘racks’ in the context of DCNs).
In this way, node distributions can be defined independently of the network
topology, enabling greater generality and the use of custom topologies with traffic
traces and benchmarks parameterised by D’, even if D’ was originally defined
for a different topology. Furthermore, this allows individual or groups of network

nodes to be set as ‘hot’, ‘cold’, or any combination of hot and cold as desired

Chapter 6. A Framework for Generating Custom and Reproducible Network
166
Traffic

by the user. Note that this formalism also enables both in-cast (many-to-one)
and out-cast (one-to-many) traffic patterns, since any node(s) can have multiple
out-cast and in-cast flow demands generated at a given point in time when

sampling from the node distribution.

6.3.5 Traffic Generation Methodology

Algorithm 3 TrafPy traffic generation process.

Input: P(B®), P(B"), P(B™), 1/ JSDthreshold Pargets (n, s Ce), bt min
Output: {b%,b%,bP}
Initialise: ny, {b%,b'} empty arrays

Step 1: Partially initialise ny flows {b%, b}

while /JSD(P(B*),P(6%)) < /IS Dinresnota do
b® < Sample b® from P(B?) ny times
ng:=[1.1xmng]
end while
while \/JSD(]P’(Bt),]P’(bt)) < /75 Dihrestond do
b! «+ Sample b? from P(B*) ny times
ny:=[1.1Xng]
end while
ny = max({length(b"), length(b®)})
Resample so that length(b®) = length(b?) = ng
Initialise b® zero array of length ny
for i in [2,...,ny] do
— t
by =bf_ 4 + by
end for
"f bs

— i=1 * —
0= FTa'=ga > pP=
n 0

_ P
— ar = —EL—
7l/n-C2‘c-nc t Ptarget
for i in [1,...,ny] do
b := at x bf
end for
"f b
i=1 1

Q= Ta _—pa_
b”f b0

Q

- Pi= nnp-Cec-nec
2

Step 2: ‘Pack the flows’ — fully initialise ny flows {b%, b%,bP}
Initialise b and b" from P(B"™) with n?l — ny, elements
d=g-b" - (b}, —bf)
for i in [1,...,ny] do
Sort pairs in descending d, order and randomly self-shuffle equal d}, pairs

First pass: Attempt dp ~ 0Vp € [1, ,ni — ny)
2

for p in [1,...,n;, — ny] do
if dp — b; > 0 then
bf =p
dp :=dp — b7
break
end if
end for

if first pass unsuccessful then

Second pass: Ensure no link capacity exceeds Ce

2
for p in [1, ,n% — ny] do
if capacity not exceeded then
bf =p
dp :=dp — bf
break
end if
end for
end if
end for

Step 3: Ensure b%f - bg >t min
if b%'f —bi < t¢,min then
5o bflf —bg
tt,min
{b%,b%,bP} := double({b®, b?,bP}) B times
end if

6.3. Method 167

Given the distributions of flow sizes, inter-arrival times, and node pairs
P(B?), P(B"), and P(B™) of a benchmark B, TrafPy can generate traffic at a
(optionally) specified target load fraction (fraction of overall network capacity
being requested for a given time period) prarget € [0, 1] with maximum Jensen-
Shannon distance threshold /JSDyreshola for an arbitrary topology T with n,,
server nodes, n. channels (light paths) per communication link, and C,. capacity
per server node link channel (divided equally between the source and destination
ports such that each machine may simultaneously transmit and receive data),
forming tuple (n,,n., C.) with total network capacity per direction (maximum

information units transported per unit time) C; = . Since load rate is

nn-Cene

2
defined as information arriving per unit time, in order to generate traffic at
arbitrary loads, either the amount of information (flow sizes) or the rate of arrival
(flow inter-arrival times) must be adjusted in order to change the load rate. Since
DCNs tend to handle particular types of applications and jobs which result in
particular flow sizes, we posit that a reasonable assumption is that changing
loads are the result of changing rates of demand arrivals rather than changing
flow sizes (which remain fixed for a given application type). Therefore, if a target
load is specified, TrafPy automatically adjusts the scale of the inter-arrival time
distribution values in P(B*) by a constant factor to meet the target load whilst
keeping the same general shape of the P(B*) distribution that was initially input
to the generator. The following 3-step traffic generation process (summarised in
Algorithm 3) is used to achieve the above:

Step 1 (generate ny flows with size and arrival time characteristics {b®, b"}):

First, nys flow sizes and ny inter-arrival times are independently sampled from

P(B*) and P(B!) to form vectors b® and b' respectively, where ny and n

are incrementally increased by a constant factor until \/ JSD(P(B#),P(b*%)) <

V' JSDipreshola and \/JSD(]P’(Bt),IP’(bt)) < VIS Dipreshold by the law of large

numbers. Whichever distribution needed fewer samples to meet v JSD <

V/JSDinreshola is then continually sampled such that there are ny flow sizes

Chapter 6. A Framework for Generating Custom and Reproducible Network
168
Traffic

and inter-arrival times, where n; = max({nys,ny}). Then, b® (whose order is
arbitrary from the previous random sampling process) can be converted to an
equivalent arrival time vector b* by initialising a zero array of length n, and
setting b¢ := b¢ | + b._,Vi € [2,...,ny], resulting in a total time duration of
ty = by P by over which the flows arrive. Next, the load rate g is evaluated with
>ty b
R

0= , converted to a load fraction p = C%, and adjusted to meet piarger by

multiplying the elements of b" by a constant factor a; = Pta/r)get. Then, b* can be
re-initialised with the updated b as before, and a set {b%, "} of n; flows can
be partially initialised each with size 0° and arrival time b* and an overall load
P = Prarges ON Network T,

Step 2 (‘pack the flows’ — generate n; flows with size, arrival time, and
source-destination node pair characteristics {b°,b",b"}): Next, to meet the
source-destination node pair load fractions specified by P(B"), the flows are
packed into node pairs with a simple packing algorithm. First, a vector of n? —n,,
node pairs b” (which do not include self-similar pairs) and their corresponding
load pair fractions b" are extracted from P(B™). Next, these ‘target’ load
pair fractions b" are converted into a hash table mapping each pair p of the
[1,...,n2 — n,] pairs to their current ‘distance’ from their respective target total
information request magnitudes d = ¢ - " - t;. In other words, we take the load
fractions (fraction of overall information requested) of each node pair b" and
multiply them by the total simulation load rate (information units arriving per
unit time) ¢ and the total simulation time ¢; to create a vector d which, when
first initialised, represents the total amount of information which is requested
by each source-destination pair across the whole simulation. The task of the
packer is therefore to assign source-destination pairs to each flow such that
d, ~ 0Vp € [1,...,n%2 — n,]. For each sequential i*" flow Vi € [1,...,n;|, after
sorting the pairs in descending d, order (with any pairs with equal d, randomly

shuffled amongst one-another), the packer will try to ‘pack the flow’ (given its

size b;) into a source-destination pair in two passes. For the first pass the packer

6.3. Method 169

loops through each sorted p' pair Vp € [1,...,n2 — n,,] and checks that assigning

the flow to this pair would not result in d, < 0. If this condition is met, the
packer sets b = p and d,, := d, — b] before moving to the next flow. However, if
the condition is violated for all pairs, the packer moves to the second pass, where
it again loops through each sorted pair p but now, rather than ensuring d, > 0,
only ensures that assigning the pair would not exceed the maximum server link’s
source/destination port capacity % before setting b! = p and d,, :=d, — b;. In
other words, the first pass attempts to achieve d,, ~ 0¥p € [1,...,n2 — n,] to try
to match P(B™) but, failing that, the second pass ensures that no server link
load exceeds 1.0 of the link capacity. Consequently, as piarget approaches 1.0, so
too will the resultant packed node distribution’s server links, thereby converging
on a uniform distribution no matter what the original skewness was of P(B") as
shown in Fig. 6.3 and further elaborated on in Appendix B.5. Once this packing
process is complete, a set {b*, b, b”} of n; flows each with size b°, arrival time
b*, and source-destination node pair b7, an overall load piarger On network 7', and
a flow size, inter-arrival time, and node distribution of approximately P(B*),

P(B), and P(B™) will have been fully initialised.

0 10 20 30 40 50 60 0 10 20 30 40 50 60 0.0005
(a)o 500200 (b) o 000175 (C)Oo 10 20 30 40 50 60

101 0.00175 10 0.00150 104 . I_-' i 0.0004
201 " : : 0.00150 20 - : H 0.00125 20
0.00125 B | O 0.0003
Y 301 < Y 30 0001080 U 3 | I.'.'. = e
(] i T 000100 U 1t T n . . o S
404 40 0.00075 404 =l s 0.0002
0.00075 RO | S P
501 = - 000050 50 - - 0.00050 50 4 ‘: - = 1
- - . 0.0001
601 ———— 0.00025 60 ———— 0.00025 SR W | IS I S
Dst Dst " T Dst T

0.00000 0.00000 0.0000

0.00040 (e) . .l 0 2 3 0 0 0 0.00030 (.I:) Lo

0.00035

0.00025

0.00030 10

0.00025 20 5 0.00020

|

i |
0.0002p2 L% 30 ' _' E ‘_ b 0.000152 3 0.50 H “ ‘
0.00015 40 0.00010 0.25
0.00010 50 iy A H “ ‘
60 0.00005 0.00
0.00005 . [= 0 20 40 60
00000 Dst 000000 Server

FI1GURE 6.3: Visualisation of the packed flow nodes converging on uniform distribu-

tions as the total network load approaches 1.0 regardless of how skewed the original

target node distribution is. The plotted distributions are for overall network loads

(a) 0.1, (b) 0.3, (c) 0.5, (d) 0.7, and (e) 0.9, and (f) the final demonstrably uniform
endpoint loads on each server at 0.9 overall load.

Chapter 6. A Framework for Generating Custom and Reproducible Network
170
Traffic

Step 3 (ensure b,, — by = temin): The final stage of the flow generation
process is then to ensure that the flow arrival duration t; is greater than or
equal to some minimum duration #; ,,;, (a parameter often required for test bed
measurement, reliability) specified by either the user. This is done by simply
doubling the set {b°,b*,b"} of flows § = [tttﬁw times to make an updated set
of ny := p-ny flows with ¢, > t; ,,;n, and the same distribution and load statistics

as before.

6.3.6 Stipulating Traffic Generation Guidelines

Given a user- or benchmark-specified set of distribution parameters D', TrafPy
generates traffic trace D. As such, whenever using TrafPy to generate D, D’
should always be reported to help others reproduce the same trace (as done in
Table B.2 of Appendix B.2 for this chapter). For the same reason, all traffic
traces D generated from D’ should have a maximum +/JSDipreshola Of 0.1 as
outlined in Section 6.3.3. Enough demands should be generated so as to have a
last demand arrival time ¢, larger than the time needed to complete the largest
demands in the user-defined network 7" under the test conditions used; not doing
so would result in all large flows being dropped regardless of what decisions
were made. This would unfairly punish systems optimised for large demands,
since such systems would allocate network resources to requests which ultimately
could never be completed during the experiment. TrafPy conveniently generates
and saves traffic data sets in a range of formats including JSON, CSV, and
pickle. Therefore if desired, users may generate traffic in TrafPy and then use
their own custom test bed and analysis scripts written in any programming
language thereafter by simply importing the TrafPy-generated traffic. For result
reliability, each trace D should be generated R times from D’ and used to test
the network object, where R should be sufficiently large enough so as to have a

satisfactory confidence interval (which might vary between projects but should

6.4. Experimental Setup 171

be reported regardless).

6.4 Experimental Setup

Here we conduct a brief experiment into the sensitivity of four schedulers to
different traffic traces. Specifically, we look at shortest remaining processing
time (SRPT) [Cai et al., 2016, Alizadeh et al., 2013, Hong et al., 2012], fair share
(FS) [Cai et al., 2016], first fit (FF) [Al-Fares et al., 2010], and random DCN
flow scheduling. We note that while TrafPy can be used to rigorously investigate
and understand different scheduling systems and topologies, the purpose of the
experiments ran here is to illustrate how TrafPy can be used to benchmark
systems. A deep analysis and investigation of the scheduling algorithms, topolo-
gies, and other state-of-the-art systems beyond those considered here is left for

further work.

Core

FIGURE 6.4: 2-layer spine-leaf topology used with 64 end point (server) nodes, 10
Gbps server-to-ToR links, and 80 Gbps ToR-to-core links (1:1 subscription ratio,
640 Gbps total network capacity).

6.4.1 Network

All experiments assume an optical TDM-based circuit switched network architec-

ture with a 64-server folded clos (spine-leaf) topology made up of 2 core switches,

Chapter 6. A Framework for Generating Custom and Reproducible Network
172
Traffic

4 top-of-the-rack (ToR) switches, and 64 servers (16 servers per rack) with bidi-
rectional links, as shown in Fig. 6.4. The server-to-rack and ToR-to-core links
each have one channel with 10 Gbps and 80 Gbps capacity respectively, leading
to a 1:1 subscription ratio and a total network capacity of 640 Gbps (320 Gbps
bisection bandwidth). Flows are mapped to TDM circuits, and we assume ideal
server-level time multiplexing of the flows’ packets such that the bandwidth of
each channel can be fully utilised. The core switch performs link/fiber switching.
There are various ways to perform packet/TDM aggregation of flows at the

server and to realise such networks, but neither are the focus of this work.

6.4.2 Traffic Traces

We use TrafPy to generate two categories of traffic with which to investigate our
schedulers; DCN traces based on real-world application data, and custom skewed
node and rack data for testing system performance under extreme conditions.
We use a maximum v/JSDipreshold Of 0.1, setting temin =3.2€b us (~10 times
larger than the time taken to complete the largest ~20e6 B flow amongst our
benchmarks), and generating traffic of loads 0.1-0.9 for each data set. We
generate each set R = 5 times to run five repeats of our experiments and
therefore ensure reliability. All TrafPy parameters D’ used to generate the traffic
are reported in Table B.2 of Appendix B.2 for reproducibility.

‘Realistic’ DCN traces. Four types of Data Centers and their network flow
demand distributions are explored; University [Benson et al., 2010a|, Private
Enterprise [Benson et al., 2011], Commercial Cloud [Kandula et al., 2009],
and Social Media Cloud [Roy et al., 2015]. Each DCN type services different
applications and therefore has a different traffic pattern. Using TrafPy, flow
distributions for each of these categories were generated to established a set of
open-source traffic traces for the DCN benchmark. The tuned TrafPy parameters

D' of each flow characteristic have been summarised in Table B.2. The resultant

6.4. Experimental Setup 173

distributions are shown in Fig. 6.5, and the subsequent quantitative summary

of each distribution’s characteristics is given in Table B.3 of Appendix B.2.

nnnnn

0 10 20 30 40 50 60 [co0or 0Cr 10 20 30 40 50 60 0 10 20 30 40 50 60 [oooiz 0 10 20 30 40 50 60
e o 01

nnnnn ot

PR RN 0
20101 00005 20 "=|: FEEE oo 20 20 08
o304 11| ocoose © 30 1t s = o 30 o U 30 o
a) & 0 I = b) & s c) & d) & ®
@ 52 H Ol i 0| B © &2 @ 5» .
i I | Y B | | L E - S
50 e e e e - 50 PR | | o.0002 50 o 50
L A 60 60 R | foooo2 60
Ted Dst ag000 Ted Dst Hooaon Tes Dst 00000 led Dst Lo
2 2 8501 | L2
s gz S s
8 L c1 ML Sl 1 3: 1
il { m L . voll [l [t
10 10 1.0 1.0
_H— il 7
w w w w
805 gos J—; gos gos , A
it I j
0.0 0.0 0. 0.0l—=—
10° 100 10° 10° 104 10° 10° 10* 10 10° 10* 10° 10° 10t 107 10° 10* 10t 10° 10° 107
Interarrival Time (ps) Interarrival Time (us) Interarrival Time (ps) Interarrival Time (ps)
led led led led
22 L2 L2 82
c c c €
’H Ii 3 il 3 a il Ll
L0l i B L L0 = o L.
1.0 > 10 —— 1. 10 —
5 ~
w w 7 w 7 w 7
005 005 005 v 005
o] > o - o J_l_r

= i i o

2 0.0b=—== X X
10t 10° 10° 107 10t 10° 10° 107 10t 10° 10° 107 10t 10°
Flow Size (B) Flow Size (B) Flow Size (B) Flow Size (B)

°
°
°
°

10°

FIGURE 6.5: TrafPy distribution plots for the DCN benchmark containing the (a)
University [Benson et al., 2010a], (b) Private Enterprise [Benson et al., 2011], (c)
Commercial Cloud [Kandula et al., 2009], and (d) Social Media Cloud [Roy et al.,
2015] data sets. Each plot contains (i) the end point node load distribution matrix
and (ii) the flow size and inter-arrival time histogram and CDF distributions.

‘Extreme’ skewed node and rack sensitivity traces. We generated two
additional traces; the skewed nodes sensitivity benchmark and the rack sensitivity
benchmark. These were not based on realistic data, but rather designed to
test and better understand our systems under extreme conditions. Both use
the same flow size and inter-arrival time distributions as the commercial cloud
data set in Fig. 6.5, however the node distribution is adjusted. Specifically, the
skewed nodes benchmark is made up of five sets with uniform, 5%, 10%, 20%,
and 40% of the server nodes being ‘skewed’ by accounting for 55% of the total
overall traffic load, named skewed_nodes _sensitivity__uniform, 0.05, 0.1, 0.2,
and 0.4 respectively (see Appendix B.5 for further justification and analysis
of these values). Similarly, the rack distribution benchmark is made up of 5
sets with uniform, 20%, 40% , 60%, and 80% of the traffic being intra-rack
(and the rest inter-rack) named rack_sensitivity _uniform, 0.2, 0.4, 0.6, and 0.8

respectively. Therefore, these distributions allow for investigations into DCN

Chapter 6. A Framework for Generating Custom and Reproducible Network
174
Traffic

system sensitivity to i) the number of skewed nodes and ii) the ratio of intra- vs.

inter-rack traffic. They have been plotted in Fig. 6.6.

(@) (b) (©) (d) (e)

0 10 20 30 40 50 60 0 10 20 30 40 50 60 000200 0 10 20 30 40 50 60 00012 0 10 20 30 40 50 60 0 10 20 30 40 50 60
o 8 o 0

uuuuuu

uuuuu

Dst
®

0 10 20 30 40 50 60
0y

sooazs
Dst 500000 Dst o000 Dst
(h) 0]
401020 30 40 50 60 focuno 401020 30 40 50 60 fecwos 0 10 20 30 40 50 60 flocoss

nnnnnnnnnnn
ooooo

L 00000

10 10
ooooooooooo

000020
20 201 A | [Foooos 20
oo | | oo o o B | e
=230 2 2 30 2230 2
& 000028% 55 0000 35 307 TN w0 0008
ooco0 407 N[40 401 I |||
00002

DSt 0.00000 DSt 0.0000 DSt

Dst

FIGURE 6.6: TrafPy node distribution plots for the skewed nodes sensitivity

benchmark with (a) uniform, (b) 5%, (c¢) 10%, (d) 20%, and (e) 40% of nodes

accounting for 55% of the overall traffic load, and for the rack sensitivity benchmark

with (f) uniform, (g) 20%, (h) 40%, (i) 60%, and (j) 80% traffic being intra-rack
and the rest inter-rack.

6.4.3 Simulation Details

We use a time-driven simulator where scheduling decisions are made at fixed
intervals. The time between decisions is the ‘slot size’; smaller slot sizes result
in greater scheduling decision and measurement metric granularity, but at the
cost of longer simulation times and the need for scheduler and switch hardware
optimisation [Benjamin, 2020, Parsonson et al., 2020, Gerard et al., 2020a, 2021,
Benjamin et al., 2021]. We use a slot size of 1 ms. We assume perfect packet
time-multiplexing whereby the scheduler is allowed to schedule as many flow
packets for the next time slot as the channel bandwidth of its rate-limiting link
in its chosen path will allow. We run 9 simulations (loads 0.1-0.9) for each
benchmark data set, terminating the simulation when the last demand arrives
at t = t; (which is > t; i, =3.2€5 pus). We set the warm-up time as being
10% of the simulation time t; before which no collected data contribute to the
final performance metrics. Similarly, since the simulation is terminated at ¢;,
we exclude any cool-down period from measurement. For each experiment, we

then record: (1) mean flow completion time (FCT); (2) 99* percentile (p99)

6.5. Results & Discussion 175

FCT; (3) maximum (max) FCT; (4) absolute throughput (total number of
information units transported per unit time); (5) relative throughput (fraction
of arrived information successfully transported); and (6) fraction of arrived flows
accepted. We report each of these metrics’ mean across the R = 5 runs and

their corresponding 95% confidence intervals.

6.5 Results & Discussion

To begin the investigation into the sensitivity of different schedulers, we first
input TrafPy-generated traffic with heavily skewed nodes and racks (see Section
6.4.2) into our simulator to understand how the four schedulers considered behave
at the extremes. We then test the same schedulers under traces for different
DCN types to see how the results from the ‘extreme’ condition investigation
translate into more realistic scenarios. For brevity, we provide the full results in
Appendix B.6 and a summary in this section.

Extreme rack conditions. As shown in Table B.17, as the rack distribution
becomes heavily skewed to intra-rack, the completion time metrics of F'S become
increasingly superior to SRPT. This suggests that real DCNs which have heavy
intra-rack traffic (e.g. social media cloud DCNs) would benefit from deploying
pure F'S scheduling policies, at least at higher loads, whereas DCNs with heavy
inter-rack traffic (e.g. university DCNs) would benefit from deploying F'S at
medium loads and SRPT at low and high loads.

In terms of throughput and demands accepted, FF is competitive with SRPT
and FS at low intra-rack traffic levels, but as the DCN becomes more heavily
intra-rack (e.g. social media cloud DCNs), SRPT and FS are preferable, with
FS achieving the best performances at higher loads. Again, a preferable strategy
would likely be to utilise SRPT strategies at low loads before switching to FS at

loads about 0.3 to 0.5 (depending on the level of intra-rack traffic).

Chapter 6. A Framework for Generating Custom and Reproducible Network
176
Traffic

Extreme node conditions. As shown in Table B.18, at the two extremes
of heavily skewed and uniform traffic, scheduler completion time performances
are similar in that SRPT outperforms FS at low and high loads, but F'S performs
well at medium loads. However, in between these two extremes (around 40% of
nodes requesting 55% of overall traffic), there is a point where FS becomes the
dominant scheduler in terms of completion time.

In terms of throughput and demands accepted, under heavily skewed condi-
tions (5% nodes requesting 55% of traffic), FF and/or Rand beat SRPT and
FS across all 0.1-0.9 loads in terms of throughput and fraction of information
accepted. This suggests that FF and SRPT are strained under high skews with
respect to these two metrics. However, as observed with the uniform distribution,
this comes at the cost of the fraction of arrived flows accepted, where SRPT
and FS outperform FF and Rand across all loads. As the proportion of nodes
requesting 55% of traffic is increased to 10%, 20%, and 40%, relative scheduler
performances converge to those seen with the uniform distribution, with FS and
SRPT being mostly dominant except at high 0.8 and 0.9 loads, where FF often
has the better throughput and fraction of information accepted.

Realistic conditions. Table B.19 summarises the results for the four
schedulers on each of the four ‘realistic’ DCN benchmarks considered. As shown,
the SRPT scheduler tends to achieve the best completion time metrics when
loads are low (< 0.7) and where traffic is primarily inter-rack (the University
and Private Enterprise DCNs). This is to be expected, since a policy which
prioritises completion of the smallest flows as soon as possible will keep its
completion time averages low. However, as traffic reaches higher loads (> 0.7),
the fair share policy achieves the best completion time metrics. This indicates
that networks would benefit from scheduling policies which can dynamically
adapt to changing traffic loads. Moreover, for networks with characteristically
intra-rack traffic (the Commercial Cloud and Social Media Cloud DCNs), the

fair share policy attains the best completion time and throughput metrics. These

6.6. Conclusions, Limitations, & Further Work 177

results therefore validate the predictions made by the rack distribution sensitivity
analysis study; namely that completion time metrics in real DCN traces with
heavily intra-rack (e.g. Commercial Cloud and Social Media Cloud) traffic
benefit from FS scheduling strategies. On the other hand, at least for low loads,
low intra-rack DCN traces (e.g. University and Private Enterprise) benefit from
SRPT scheduling strategies.

These results suggest that not only should scheduling policies be adapted
to changing traffic loads, but also to changing characteristics such as the level
of inter- vs. intra-rack communication. Note that, as expected, the fair share
policy provides the best worst-case completion time (max FCT), the greatest
network utilisation (throughput), and the strongest service guarantee (number

of flow requests satisfied) across most loads and DCN types.

6.6 Conclusions, Limitations, & Further Work

In conclusion, we have introduced TrafPy; an API for generating custom and
realistic DCN traffic and a standardised protocol for benchmarking DCN systems
which is compatible with any simulation, emulation, or experimentation test bed.
These systems can be any combination of networked devices or methods such as
schedulers, switches, routers, admission control policies, management protocols,
topologies, buffering methods, and so on. TrafPy has been developed with a
focus on having a high level of fidelity, generality, scalability, reproducability,
repeatability, replicability, compatbility, and comparability in the context of DCN
research, which in turn will aid in accelerating innovation.

We have demonstrated the efficacy of TrafPy by briefly investigating the
sensitivity of four canonical schedulers to varying traffic loads and characteristics.
The scheduler performances were heavily dependent on the level of intra-rack
traffic and overall network load. We found that SRPT was generally the dominant

scheduler for low intra-rack traffic (particularly at low loads), but that F'S became

Chapter 6. A Framework for Generating Custom and Reproducible Network
178
Traffic

superior across all loads at high intra-rack levels. These insights were then found
to translate into realistic DCN traces, with low intra-rack users such as University
and Private Enterprise DCNs benefiting from SRPT policies at low and medium
loads and high intra-rack traces such as Commercial Cloud and Social Media
Cloud being more suited to FS strategies. This shows that there is no ‘one size
fits all’ strategy for scheduling different types of DCNs, and that there would be
great value in the development of traffic-informed and dynamic DCN systems.
With its standardised traffic generation and benchmark protocol, TrafPy is an
ideal tool for developing such systems via the benchmark paradigm described
throughout this chapter.

The space of potential research areas from this work is vast. We hope presently
unforeseeable avenues will be pursued with the support of TrafPy’s standardised
traffic generation and rigorous benchmarking framework. For example, based on
the preliminary results of scheduler sensitivity to varying load conditions and
traffic trace characteristics, we expect new scheduling heuristics and learning
algorithms to be developed which can dynamically adapt to network traffic states
and outperform literature baselines in open-source TrafPy benchmarks. The 2.5
TB of open-access simulation data from this chapter enable some interesting
offline reinforcement learning opportunities.

With regards to how future research might enhance TrafPy itself, here we
outline some of the limitations of this chapter and interesting avenues of further
work.

More benchmark traffic traces. TrafPy has been built to enable users to
easily establish and share new benchmark traffic traces. Therefore, in addition to
the initial benchmark traffic distributions introduced in this chapter, future works
could develop new benchmarks. These might consider modelling proprietary
traffic traces which cannot be open sourced directly but which can be legally
synthetically mimicked. Alternatively, they could be presently unrealistic traces

designed to test systems under extreme conditions or to model systems in

6.6. Conclusions, Limitations, & Further Work 179

environments which are expected to exist in the future.

Automatic characterisation & imitation of real data. Although
TrafPy can generate traces without any raw data given whatever characteristic
distributions the user provides, it would be useful to be able to input real data
(e.g. [Bai et al., 2016]) and have TrafPy automatically characterise the traffic in
order to generate realistic data. An interesting extension to this would be to
build a tool that learns to generate synthetic data from a limited sample of real
data, possibly with the use of generative ML.

Expansion to the job-centric traffic paradigm. In this chapter, we
have considered the flow-centric traffic paradigms where DCN demands are
considered as network flows. However, as discussed in Appendix B.7, in practice
network flows arise from jobs being submitted to the DCN. A useful project
would therefore be to extend TrafPy’s functionality to generate DCN jobs from
which flow traffic would arise. This would not only more accurately mimic
real DCN job tasks, but also bridge the gap between the computer science
and networking communities, which usually consider the job- and flow-centric
paradigms in isolation.

Establishing TrafPy-powered leaderboards. The flourishing of Al over
the last decade can be attributed to the winner of the 2012 ImageNet competition.
Without ImageNet, it would have been difficult to demonstrate the primary of
neural networks trained on GPUs at real world tasks such as image classification.
Benchmarking with leaderboards which compare and evaluate systems on the
same task under strict constraints can lead to the highly effective research and
development of novel systems. Therefore, a useful project would be to use TrafPy
to establish open-access and rigorous benchmarking leaderboards, similar to
ImageNet, which evaluate systems such as flow schedulers on particular tasks.

Beyond data centre traffic. The version of TrafPy propsed here has been
specifically designed for generating DCN traffic. However, there is no reason

why TrafPy should be restricted in this way. Fundamentally, all traffic in any

Chapter 6. A Framework for Generating Custom and Reproducible Network
180
Traffic

network, from long-haul core networks to road transportation networks, can be
modelled by flows which have a source, destination, arrival time, and some ‘cost’
of transport (size, time, fuel, and so on). Future works might therefore work on
generalising the language and front-end interface of TrafPy to be generic to any

form of network traffic generation.

181

Chapter 7

Accelerating Traffic Matrix

(GGeneration at Scale

Abstract

This chapter proposes a new algorithm for generating custom network traffic
matrices which achieves 13x, 38, and 70x faster generation times than the
algorithm originally proposed for TrafPy traffic generation on networks with 64,

256, and 1024 nodes respectively.

182 Chapter 7. Accelerating Traffic Matrix Generation at Scale

Publications related to this work (contributions indented):

e Christopher W. F. Parsonson, Joshua L. Benjamin, and Georgios
Zervas, ‘A Vectorised Packing Algorithm for Efficient Generation of Custom
Traffic Matrices’, OFC’23: Optical Fiber Communications Conference and

Exhibition, 2023

— Algorithm, code, experiments, paper writing, plots

7.1. Introduction 183

7.1 Introduction

Data centres have become critical tools for modern computational tasks. To
meet the ever-increasing demands of data centres, recent years have seen a
growth in the research and development of next-generation data centre optical
systems [Khani et al., 2021]. However, most researchers rely on simulations,
which require the generation of synthetic traffic. In doing so, they often make
overly simplistic assumptions about the characteristics of their generated traffic
and develop systems which, in practice, perform poorly under real-world condi-
tions [Parsonson et al., 2022]. Furthermore, many works omit open-accessing
their synthetic traffic or even the methodology used to generate it, bringing
problems with reproducibility, benchmarking, and cross-validation. The lack
of a reproducible and high-fidelity synthetic traffic generation tool has been a
long-standing problem in the data centre research community.

Prior works [Alizadeh et al., 2013, Bai et al., 2016] have released traffic
generators, but these were either intended to be unrealistic, were for specific
network topologies, required the cumbersome use of inflexible configuration files,
or lacked a reproducibility guarantee. To address this, Chapter 6 presented
TrafPy; an open source tool for generating reproducible data centre traffic
with custom distributions and characteristics [Parsonson et al., 2022]. However,
Chapter 6 only demonstrated traffic generation for 64 network nodes; far smaller
than the O(1000) node data centres which are becoming increasingly common
place.

In this chapter, we first show that the original flow source-destination assign-
ment algorithm (‘packing’, see Section 7.2) presented in Chapter 6 is a major
bottleneck when generating traffic with TrafPy because its time complexity
scales poorly with the number of data centre nodes |N| for which |F| flows are
being generated. This prevents the generation of traffic for large networks. Next,

we propose a novel vectorised packing algorithm which fits in with the rest of the

184 Chapter 7. Accelerating Traffic Matrix Generation at Scale

TrafPy traffic generation framework. Finally, we demonstrate the new vectorised
packer achieving 13x, 38x, and 70x faster generation times than originally
reported in Chapter 6 on networks with 64, 256, and 1024 nodes respectively
with up to ~ 5M traffic flows, with the speed-up factor increasing with the
network size. We expect this work to unlock a new realm of data centre research
at scale and to further facilitate the development of next-generation systems
and common platforms for benchmarking networks. We note that while here we
focus on generating traffic for optical data centres, the same traffic generation
scheme and vectorised packing algorithm could be re-purposed and applied to

any network system.

7.2 Custom Traffic Matrix Generation

Problem statement. Data centre traffic is made up of flows. A flow f is fully
described by its size f* (how much information to send), arrival time f* (when
the flow requests to be transported through the data centre, thus giving rise to
the inter-arrival time in a dynamic multi-flow setting), and source-destination
pair fP (which machines in the data centre the flow is requesting to be sent
between). In the framework presented in Chapter 6, traffic generation is split
into two stages. In the first stage (‘shaping and sampling’), custom flow size and
inter-arrival time distributions are generated and sampled to attain a set of sizes
b® and arrival times b® for f € F' flows which match the target distributions
within some Jensen-Shannon distance (JSD) threshold!. In the second stage
(‘packing’), given b® and b®, the task is to assign each flow f € F' to a source-
destination pair such that some target node distribution (a.k.a. traffic matrix
heat map) PV with nodes n € N and corresponding source-destination node

pairs p € P is realised as closely as possible without exceeding the load capacity

IThe JSD € [0,1] is a measure of how similar two distributions are to one another (lower is
more similar), and the JSD ‘threshold’ as defined in Chapter 6 is a constraint on how similar
the generated traffic characteristics must be to the target distributions.

7.2. Custom Traflic Matrix Generation 185

limitations of any node. Chapter 6 formulates this task by extracting the fraction
of the overall load requested by each pair p € P into an array, multiplying each
element by the overall data centre’s target load rate to get the per-pair target
load rate, and then again multiplying each element by the simulation duration
(the time between the first and last flows’ arrivals) to get the total amount of
information to load onto each pair, bf(;ﬁget, needed in order to achieve the desired
target node distribution P¥. The packing task is therefore reduced to finding
the source-destination node pair assignments for each flow f € F' such that the
difference between the actual and the target per-pair total information loads,
bf(;{nget — bﬁéual, is 0 or, where this is not possible given any incompatibility
between the target node distribution PV and the overall data centre load rate,
to match PV as closely as possible (see Chapter 6 for further details).

As shown in Fig. 7.1a, as |N| is increased, stage two (packing) becomes a

major bottleneck, taking ~1000000 times longer than stage one for |N| =1024.

Therefore, in this chapter we focus on optimising stage two.

Stage Qne Sta_ge_ Two . —e— Original Packer Vectorised Packer
10 (Sampling) (Original Packing) - © s (over)
e L S ame (overlapping]
_ @) 1M x 3 (b) . Imxd— 0.010 resultant traffic
® overhead /' speed-up o : matrix
3 10! < 10t 2
2 2 /I38>< o
= £ /. Speed-up <
o [< 0.005
£10-2 201072 ./hgxd S
[% ./ 'Speed-up a
=
AL ELELE & L R — E
8 16 32 64 128 256 5121024 10! 10? 10° 10! 102 103
Network Nodes |N| # Network Nodes |N| # Network Nodes |N|

FIGURE 7.1: i) (a) The time for stages one (shaping and sampling) and two
(packing) when generating flows with the original packing algorithm. ii) The
packing (b) time and (c) Jensen-Shannon distance between the target and the
generated node distributions for the original and vectorised packing algorithms
when generating traffic for networks with different numbers of nodes. (a) shows that
the original packing algorithm is the major traffic generation bottleneck of Chapter
6. (b) shows that as the number of network nodes is increased, the vectorised
packer’s speed-up factor over the original algorithm increases. (c) shows that both
algorithms achieve the exact same resultant node distribution. Note that the
original algorithm’s time results for |N| = 1024 are extrapolations since it would
have taken ~ 200 days to run the packer.

Original packing algorithm. The original packing algorithm presented

in Chapter 6 works by sequentially iterating through the set of flows and, for

186 Chapter 7. Accelerating Traffic Matrix Generation at Scale

each flow, conducting two passes through the candidate source-destination pairs.
In the first pass, the packer attempts to match the target node distribution
by looping through all pairs, sorted in descending order of the total size of
flow information previously assigned, to find a pair which has not yet met its
target information load given the target node distribution and total flow arrival
duration provided. Failing to find such a node pair, the packer moves to the
second pass, whereby it again loops through each sorted pair but now in search
of a source-destination combination which, if allocated the flow in question,
would not exceed either the source’s or the destination’s maximum load capacity

given any prior flow allocations.

Algorithm 4 Vectorised packing algorithm pseudocode.

. D, 1
Input: F, P, btarget

Output: b?!

actual

Initialise: b?! = 0(|P|), bP»¢ = bode capacity (| p)

actual 2

for f in F do
bP>™ =where(b?:¢ — f* < 0,0,1) // Generate boolean mask

p,Im _ pp,l p,m p,I,m v p, 1 p,m . : .
bt(’n"get - btt;,rget[b Lba’ctiu.al - ba;tual[b] // Mask invalid pairs

_ p,I,m p.I,m .
p"e® = argmax(2- by, 0, — b)) // Get furthest pairs

chosen

P = random_choice(p™%¥)

// Randomly choose pair
update_trackers(f, pc°%€") // Assign flow to pair

end for

Vectorised packing algorithm. We negate the need for separate first and
second passes and for nested pair for loops by using vector array operations.
We begin by initialising the per-pair remaining capacity vector as the maximum
port capacity (half the per-node capacity, since it is split between the source
and destination ports) b?¢. We then sequentially iterate through f € F' and,
for each flow f, we generate a boolean vector pairs mask bP»™ which masks out
any pair indices i € [0, ..., | P|] which would exceed their load capacity were they

to be allocated the flow in question:

7.3. Experimental Setup 187

0 ifbPC— f<0
bP™ = (7.1)

1, otherwise
We then apply this pairs mask to filter out any invalid pairs, thus ensuring
that any pair chosen from here on would meet the requirements of the second
pass of the generation methodology in Chapter 6 and also reducing the time
complexity of the argmax operation below in Eq. 7.2 (since the number of
candidate pairs is now reduced). Next, we take the masked candidate pairs’
current distances from the target information loads, b, — b2E™ shift them

by bf(;{«;;t in order to retain any skewness in PV for as long as possible given the

overall data centre load specified, and find the pairs in this masked subset which

max.

are furthest from their target information loads, p

actual

p™"** = argmax (2 . bfl’l{ngt B) (7.2)

In order to avoid any bias towards smaller pair indices and create the fade
phenomenon in the resultant traffic heat map (see Section 6.3.5), we randomly
choose a pair Peposen € P to which to allocate the flow f, thus meeting the
requirements of the first pass of Chapter 6. Finally, we update the current total
information vector’s element for the chosen pair, b??=<»! “and the remaining
capacity vector elements b”¢ for any pairs p € P which share either a source

or a destination with p.nesen. The pseudocode for this vectorised packer is

summarised in Algorithm 4.

7.3 Experimental Setup

TrafPy enables the production of custom traffic distributions through the control
of a handful of parameters. These include the flow size and inter-arrival time

distribution parameters, the node distribution’s inter- vs. intra-rack and skew

188 Chapter 7. Accelerating Traffic Matrix Generation at Scale

zzzzzzzz

0.035
o]

0.030

1
2 0.025
g’ 0020,
5, g
0015

B

6

0.010

. 0.005

0.000

o008 0 S ® 13 ™ 3 2

0.0025
0.007

0.006 | - 0.0020

0.005
. U - I | 0.0015,

0004 &

0.003 0.0010

0.002

8 8 & ¥ ¥ B o

¥ ¥ 8 G B o, o

0.0005
0.001 - == W | 5 RS A | | 0.0001

Dst Dst
0.000 0.0000 0.0000

0.0001

0.0001!
0.0001.
00001

0.0000

0.0000!

ol LI WILLHN |EY 00000 55, | ! 500 fiis L i 1000 i
Dst. Dst. Dst Dst.
0.00001 0 0.0 0.0

FIGURE 7.2: Custom traffic matrix distributions generated with 8, 16, 32, 64,
128, 256, 512, and 1024 nodes, where the colour of each source-destination pair
corresponds to the fraction of the overall network load it requests.

node fractions, and the overall network load. To measure the packing times
for the original and vectorised packing algorithms, we generated an assortment
of custom traffic patterns typical for a ‘university’ data centre? as detailed in
Chapter 6 for networks with 4 racks and |N| = {8, 16, 32, 64, 128, 256, 512, 1024}
nodes (see Fig. 7.2). We assumed an optical data centre network with with
an overall network load rate of 50%. For each traffic matrix, we generated
|F| =5 |N|? flows to ensure non-sparse packing. Each packing algorithm was
ran on a shared cluster with an Intel Xeon ES-2660 CPU across 4 seeds to ensure
reliable packing times given the variance in use of the shared cluster, with the

95% confidence interval bands plotted for any metrics recorded.

7.4 Results & Discussion

Fig. 7.1b shows the packing times taken by the original and the vectorised
packers when generating the distributions shown in Fig. 7.2. The vectorised

packer achieved a ~ 38x speed-up over the original packer on the |[N| = 264

2University data centres service applications such as database backups, distributed file
system hosting, and multicast video streaming, with ~ 70% of traffic being inter-rack and
~ 20% of nodes requesting = 55% of the traffic load.

7.5. Conclusions, Limitations, & Further Work 189

traffic matrix and ~ 70x on the |N| =1024 matrix. Although the vectorised
algorithm was slightly slower than the original packer on the smallest |[N| = 8
network due to performing a where vector operation on all pairs, the absolute
generation time was still O(s) and this additional overhead quickly becomes
negligible across |N| > 8 networks.

To verify that our proposed vectorised packing algorithm was generating the
same node distributions as the original packer used in Chapter 6, we measured
the JSD between the target and the generated node distributions for each
algorithm (see Fig. 7.1c). As expected, both packers deterministically reach the
same solution, but the Jensen-Shannon distance will not be exactly 0 for either
due to the incompatibility between the 50% network load and the skewed target

distribution (see Chapter 6 for more details).

7.5 Conclusions, Limitations, & Further Work

In conclusion, we have proposed a flow source-destination pair assignment
algorithm which makes novel use of vector array operations to achieve orders
of magnitude faster traffic generation times than the original algorithm used
in Chapter 6 when generating custom traffic matrices. This work significantly
improves the utility of an open source traffic generation framework in order
to aid the production of high-fidelity traffic patterns and to test and develop
network systems at scale. Here we outline the limitations of this chapter and
areas of further work.

GPU implementation. The fundamental insight of this chapter is that
the traffic generation task can be framed as a series of tensor operations. GPUs
are particularly good at parallelising tensor operations, therefore implementing
the algorithm proposed in this chapter on a GPU would likely improve the

traffic generation speed by several factors and enable additional scalability. This

190 Chapter 7. Accelerating Traffic Matrix Generation at Scale

might enable traffic generation for networks with > O(10%) nodes without any
adjustment needed to the generation algorithm.

Analysing network system scalability. With the ability to generate traf-
fic for O(10%) node networks, an interesting project would be to take previously
proposed network systems, such as the scheduler of Benjamin et al. [2021], and

see whether the reported performance can be retained at scale.

191

Chapter 8

Afterword: Conclusions,

Limitations, & Further Work

This thesis has motivated, proposed, and investigated a number of challenges
facing the realisation of next-generation computer networks, with a particular
focus on Al-driven optical solutions. These included Al methods to switch
all-optical SOA switches on the sub-ns timescales required for a practical optical
data centre, establishing a new switch speed record in Chapter 3. The thesis
also proposed how key optical cluster resource management challenges, such
as how much to partition computational jobs in Chapter 5, can be addressed
automatically by Al methods which learn to optimise key user-defined perfor-
mance criteria. Moreover, consideration was given as to how to solve generic
NP-hard discrete optimisation problems such as those found in all manner of
orchestration and physical layer computer network components by proposing a
new RL-based branching algorithm which achieved state-of-the-art results in
Chapter 4. Chapters 6 and 7 are the first to propose a general traffic generation
framework for standardising DCN system testing and benchmarking, which will
help future researchers to output reproducible, cross-validated, and performant
novel ideas.

While this is good progress, there are many outstanding challenges which
remain, and specific areas for further work have been outlined at the end of each

chapter. An overarching theme of further work is to implement the ideas proposed

192 Chapter 8. Afterword: Conclusions, Limitations, & Further Work

in this thesis in a practical laboratory setting. With a real implementation of
an OCS network using the Al-driven SOA switching methodology of Chapter
3 and the resource management schemes proposed in Chapters 4 and 5, the
practical efficacy with which the network could process information could be
evaluated using the TrafPy-generated traffic of Chapters 6 and 7. Once verified
with TrafPy, a small optical HPC architecture, such as RAMP [Ottino et al.,
2022] from Chapter 5, could be implemented and augmented with the methods
proposed in this thesis, and a real DNN model could be trained to demonstrate
the practical benefits of an Al-driven OCS computer network.

Furthermore, this thesis has not comprehensively evaluated the robustness
and resilience of the proposed Al methods to different scenarios in the real world.
Methods which formally verify neural network performance [Tjeng et al., 2017,
Albarghouthi, 2021] would be an interesting research direction.

Moreover, computer network practitioners may be reluctant to adopt new
AT methods whose policies they do not fully understand. Further model inter-
pretability research [Rudin et al., 2021] may be crucial for adoption.

These additional investigations will undoubtedly present formidable chal-
lenges. However, they will also offer the potential to realise computer network
systems with dramatically improved processing power and, ultimately, unleash
the next generation of big data jobs, from Al and genome sequencing to the

internet of things and large-scale data science.

193

Appendix A

Solving NP-Hard Discrete

Optimisation Problems

A.1 RL Training

A.1.1 Training Parameters

The RL training hyperparameters are summarised in Table A.1. We used n-step
DQN [Sutton, 1988, Mnih et al., 2013] with prioritised experience replay [Schaul
et al., 2016], with overviews of each of these approaches provided in Section
2.12. For exploration, we followed an e-stochastic policy (e € [0,1]) whereby the
probabilities for action selection were € for a random action and 1 — € for an
action sampled from the softmax probability distribution over the Q-values of
the branching candidates. We also found it helpful for learning stability to clip

the gradients of our network before applying parameter updates.

A.1.2 Training Time and Convergence

To train our RL agent, we had a compute budget limited to one A100 GPU
which was shared by other researchers from different groups. This resulted in
highly variable training times. On average, one epoch on the large 500 x 1000 set
covering instances took roughly 0.42 seconds (which includes the time to act in

the B&B environment to collect and save the experience transitions, sample from

194 Appendix A. Solving NP-Hard Discrete Optimisation Problems

Training Parameter Value
Batch size 64 (128)
Actor steps per learner update 5 (10)
Learning rate 5e—>H
Discount factor 0.99
Optimiser Adam
Buffer size | M |inis 20e3
Buffer size | M |capacity 100e3
Prioritised experience replay [0.4
Prioritised experience replay Bgnal 1.0
Binit — Bfinal learner steps 5e3
Prioritised experience replay o 0.6
Minimum experience priority le—3
Soft target network update 7y le—4
Gradient clip value 10
n-step DQN n 3
Exploration probability e 2.5e—2

TABLE A.1: Training parameters used for training the RL agent. All parameters

were kept the same across CO instances except for the large 500 x 1000 set covering

instances, which we used a larger batch size and actor steps per learner update
(specified in brackets).

the buffer, make online vs. target network predictions, update the network, etc.).
Therefore training for 200k epochs (roughly the amount needed to converge on
a strong policy within ~ 20% of the imitation agent) took 5-6 days.

As shown in Fig. A.1, when we left our retro branching agent to train for
~ 13 days (~ 500k epochs), although most performance gains had been made in
the first ~ 200k epochs, the agent never stopped improving (the last improved
checkpoint was at 485k epochs). A potentially promising next step might
therefore be to increase the compute budget of our experiments by distributing
retro branching across multiple GPUs and CPUs and see whether or not the
agent does eventually match or exceed the 500 x 1000 set covering performance

of the IL agent after enough epochs.

A.2. Neural Network 195

103

Retro

Nodes

T T T
0 2 4

Epochs %10°

FIGURE A.1: Validation curve for the retro branching agent on the 500 x 1000 set

covering test instances. Although most performance gains were made in the first

~ 200k epochs, the agent did not stop improving, with the last recorded checkpoint
improvement at 485k epochs.

A.2 Neural Network

A.2.1 Architecture

We used the same GCN architecture as Gasse et al. 2019 to parameterise our
DQN value function with some minor modifications which we found to be
helpful. Firstly, we replaced the RelLU activations with Leaky ReLLUs which
we inverted in the final readout layer in order to predict the negative Q-values
of our MDP. Secondly, we initialised our linear layer weights and biases with
a normal distribution (x = 0,0 = 0.01) and all-zeros respectively, and our
layer normalisation weights and biases with all-ones and all-zeros respectively.
Thirdly, we removed a network forward pass in the bipartite graph convolution
message passing operation which we found to be unhelpfully computationally
expensive. For clarity, Fig. A.2 shows the high-level overview of the neural
network architecture. For a full analysis of the benefit of using GCNs for learning

to branch, refer to Gasse et al. 2019.

196 Appendix A. Solving NP-Hard Discrete Optimisation Problems

MILP bipartite state Variable embedding module nSIIIIIIIIIID)
I . N

N Rl = ' : : ' ~
Variable nodes § 5 5 g " W Variable Q
nan O peeeees S P 2 ErM of-r-di-> e - values
gl s 517§ | H V
g g H
r - - H H]

Edge embedding module Readout head module

N] HE
5 LR
] S [E] o>
5 L
k] 3"

[LeakyRe\u]

>

_____________________ NI S I N
£

convolution module
A4

convolution module

Inverted LeakyRelu

Constraint embedding module
E)
El -] |3
----------- sp{Ep]
HEERE
g

~ Constraint nodes
FIGURE A.2: Neural network architecture used to parameterise the Q-value function
for our ML agents, taking in a bipartite graph representation of the MILP and
outputting the predicted Q-values for each variable in the MILP.

Variable-to-constraint bipartite graph
Constraint-to-variable bipartite graph

'
v

[L kyR\]
v

A.2.2 Inference & Solving Times

The key performance criterion to optimise for any branching method is the
reduction of the overall B&B solving time. However, accurate and precise solving
time and primal-dual integral over time comparisons are difficult because they
are hardware-dependent. This is particularly problematic in research settings
where CPU/GPU resources are often shared between multiple researchers and
therefore hardware performance (and consequently solving time) significantly
varies. Consequently, as in other works Khalil et al. [2016], ?], Etheve et al.
[2020], we presented and optimised for the number of B&B tree nodes as this is
hardware-independent and, in the context of prior work, can be used to infer
the solving time.

Specifically, we use the same GCN-based architecture of Gasse et al. 2019
for all ML branchers, thus all ML approaches have the same per-step inference
cost. Therefore the relative difference in the number of tree nodes is exactly
the relative wall-clock times on equal hardware. When the per-step inference
process is different (as for our non-ML baselines, such as SB), the number of
tree nodes is not an adequate proxy for solving time. However, Gasse et al.
2019 have already demonstrated that the GCN-based branching policies of 1L
outperform the solving time of other branchers such as SB. As this ML speed-
up has already been established, in this chapter we focus on improving the

per-step ML decision quality using RL rather than further optimising network

A.3. Data Set Size Analysis 197

architecture, or otherwise, for speed, which we leave to further work.

However, empirical solving times are of interest to the broader optimisation
community. Therefore, Table A.2 provides a summary of the solving times of
the branching agents on the large 500 x 1000 set covering instances under the

assumption that they were ran on the same hardware as Gasse et al. 2019.

Method | Solving time (s)
SB 33.5
IL 2.1
Retro 2.5
FMSTS-DFS 12.2
FMSTS 7.6
Original 35.8

TABLE A.2: Inferred mean solving times of the branching agents on the large
500 x 1000 set covering instances under the assumption that they were ran on the
same hardware as Gasse et al. 2019.

A.3 Data Set Size Analysis

As described in Section 4.5, we used 100 MILP instances unseen during training
to evaluate the performance of each branching agent. This is in line with prior
works such as Khalil et al. 2016 who used 84 instances and Gasse et al. 2019 who
used 20. To ensure that 100 instances are a large enough data set to reliably
compare branching agents, we also ran the agents on 1000 large 500 x 1000
set covering instances. The relative performance of each branching agent was
approximately the same as when evaluated on 100 instances, with Retro scoring
65.3 nodes, FMSTS 250 (3.8x worse than Retro), IL 55.4 (17.8% better than
Retro), and SB 43.3. In the interest of saving evaluation time and hardware
demands and to make the development of and comparison to our work by future
research projects more accessible, as well as for clarity in the per-instance Retro-

IL comparison of Fig. 4.3d, we report the results for 100 evaluation instances in

198 Appendix A. Solving NP-Hard Discrete Optimisation Problems

the main chapter in the knowledge that the relative performances are unchanged

as we scale the data set to a larger size.

A.4 SCIP Parameters

For all non-DFS branching agents we used the same SCIP 2022 B&B parameters

as Gasse et al. 2019, as summarised in Table A.3.

SCIP Parameter Value
separating/maxrounds 0
separating/maxroundsroot 0
limits/time 3600

TABLE A.3: Summary of the SCIP 2022 hyperparameters used for all non-DFS
branching agents (any parameters not specified were the default SCIP 2022 values).

A.5 Observation Features

We found it useful to add 20 features to the variable nodes in the bipartite
graph in addition to the 19 features used by Gasse et al. 2019. These additional
features are given in Table A.4; their purpose was to help the agent to learn
to aggregate over the uncertainty in the future primal-dual bound evolution
caused by the partially observable activity occurring in sub-trees external to its

retrospectively constructed trajectory.

A.6 FMSTS Implementation

Etheve et al. [2020] did not open-source any code, used the paid commercial
CPLEX [2009] solver, and experimented with proprietary data sets. Furthermore,
they omitted comparisons to any other ML baseline such as Gasse et al. [2019],
further limiting their comparability. However, we have done a ‘best effort’

implementation of the relatively simple FMSTS algorithm, whose core idea is to

A.6. FMSTS Implementation

199

Variable Feature

Description

db_frac_change
pb_frac_change
max_db_frac_change
max_pb_frac_change
gap_frac

num_leaves_frac
num_feasible leaves frac
num_infeasible_leaves_frac
num_lp_iterations_frac
num_siblings frac
is_curr_node_best
is_curr_node_parent_best
curr_node_depth
curr_node_db_rel init_db
curr_node_db_rel global _db
is_best_sibling none
is_best_sibling best_node
best_sibling db_rel_init_db

best_sibling db_rel global_db
best_sibling db_rel curr_node_db

Fractional dual bound change
Fractional primal bound change

Maximum possible fractional dual change
Maximum possible fractional primal change
Fraction primal-dual gap

leaves divided by # nodes

feasible leaves divided by # nodes

infeasible leaves divided by # nodes

nodes divded by # LP iterations

Focus node’s # siblings divided by # nodes
If focus node is incumbent

If focus node’s parent is incumbent

Focus node depth

Initial dual divided by focus’ dual

Global dual divided by focus’ dual

If focus node has a sibling

If focus node’s sibling is incumbent

Initial dual divided by sibling’s dual
Global dual divided by sibling’s dual
Sibling’s dual divided by focus’ dual

TABLE A.4: Descriptions of the 20 variable features we included in our observation
in addition to the 19 features used by Gasse et al. 2019.

200 Appendix A. Solving NP-Hard Discrete Optimisation Problems

set the Q-function of a DQN agent as minimising the sub-tree size rooted at the
current node and to use a DFS node selection heuristic. To replicate the DFS
setting of Etheve et al. [2020] in SCIP [2022], we used the parameters shown in
Table A.5. We will release the full re-implementation to the community along

with our own code.

SCIP Parameter Value
separating/maxrounds 0
separating/maxroundsroot 0
limits/time 3600
nodeselection/dfs/stdpriority 1073741823
nodeselection/dfs/memsavepriority 536870911
nodeselection/restartdfs/stdpriority —536870912
nodeselection/restartdfs/memsavepriority —536 870912
nodeselection/restartdfs/selectbestfreq 0
nodeselection/bfs/stdpriority —536870912
nodeselection/bfs/memsavepriority —536870912
nodeselection/breadthfirst/stdpriority —536870912
nodeselection/breadthfirst/memsavepriority —536870912
nodeselection/estimate/stdpriority —536870912
nodeselection/estimate/memsavepriority —536870912
nodeselection/hybridestim/stdpriority —536870912
nodeselection/hybridestim/memsavepriority —536870912
nodeselection/uct/stdpriority —536870912
nodeselection/uct/memsavepriority —536870912

TABLE A.5: Summary of the SCIP 2022 hyperparameters used the DFS FMSTS
branching agent of Etheve et al. 2020 (any parameters not specified were the default
SCIP 2022 values).

A.7 Pseudocode

A.7.1 Retrospective Trajectory Construction

Algorithm 5 shows the proposed ‘retrospective trajectory construction” method,
whereby fathomed leaf nodes not yet added to a trajectory are selected as the
brancher’s terminal states and paths to them are iteratively established using

some construction method.

A.7. Pseudocode

201

Algorithm 5 Retrospectively construct trajectories.

Input: B&B tree T from solving MILP
Output: Retrospectively constructed trajectories
Initialise: nodes added, subtree_ episodes = [Tro0t—1], []
// Construct trajectories until all valid node(s) in 7 added
while True do
// Root trajectories at highest level unselected node(s)
subtrees = ||
for node in nodes added do
for child node in 7,ge.children do
if child node not in nodes added then
// Use depth-first-search to get sub-tree
subtrees.append(dfs(7, root=child node))
end if
end for
end for
// Construct trajectory episode(s) from sub-tree(s)
if len(subtrees) > 0 then
for subtree in subtrees do
subtree_episode = construct_ path(subtree) (6)
subtree episode[—1].done = True
subtree_ episodes.append(subtree_ episode)
for node in subtree episode do
nodes_added.append(node)
end for
end for
else
// All valid nodes in 7 added to a trajectory
break
end if
end while

202 Appendix A. Solving NP-Hard Discrete Optimisation Problems

A.7.2 Maximum Leaf LP Gain

Algorithm 6 shows the proposed ‘maximum leaf LP gain’ trajectory construction
method, whereby the fathomed leaf node with the greatest change in the dual

bound (‘LP gain’) is used as the terminal state of the trajectory.

Algorithm 6 Maximum leaf LP gain trajectory construction.

Input: Sub-tree S
Output: Trajectory Sg
Initialise: gains = {}
for leaf in S.leaves do
if leaf closed by brancher then
gains.leaf = |S;0r.dual _bound — Sjeap.dual _bound|
end if
end for
terminal node = max(gains)
Sg = shortest__path(source=8,001, target=terminal _node)

A.8 Cost of Strong Branching Labels

As well as performance being limited to that of the expert imitated, IL methods
have the additional drawback of requiring an expensive data labelling phase.
Fig. A.3 shows how the explore-then-strong-branch labelling scheme of Gasse
et al. 2019 scales with set covering instance size (rows x columns) and how this
becomes a hindrance for larger instances. Although an elaborate infrastructure
can be developed to try to label large instances at scale [Nair et al., 2021], ideally

the need for this should be avoided; a key motivator for using RL to branch.

A.8. Cost of Strong Branching Labels 203

e
(=}
1

w
(=}
1

Labelling Time (days)
= Do
(=} (=}
1 |

0_
T T T T T
100x100 200x200 400x400 800x800 1600x1600
Instance Size

FI1GURE A.3: How the explore-then-strong-branch data labelling phase of the strong

branching imitation agent scales with set covering instance size (rows x columns)

using an Intel Xeon ES-2660 CPU and assuming 120 000 samples are needed for
each set.

205

Appendix B

A Framework for Generating
Custom and Reproducible
Synthetic Traffic

B.1 Table of Notation

B.2 TrafPy Distribution Parameters

TABLE B.2: Benchmark categories with their real traffic characteristics reported
in the literature (where appropriate) and the corresponding TrafPy parameters D’

needed to reproduce the distributions.
DCN 4,44 444,i0> — <university, private__enterprise, commercial_cloud, social_media__cloud>
Skewed < i, iii,iv,0> — skewed_nodes_ sensitivity_ <uniform, 0.05, 0.1, 0.2, 0.4>
Rack<; ii,ii4,i0,0> — rack_sensitivity <wuniform, 0.2, 0.4, 0.6, 0.8>
@ Real traffic characteristics reported in the literature.
b Corresponding TrafPy parameters D’.
¢ = net.graph[‘rack_to_ep_ dict’] — Network cluster (i.e. rack) configuration.
d(u) = int(u * len(net.graph[‘endpoints’])) — Number of nodes to skew.
e(u,v) = [v/d(u) for __ in range(d(u))] — Fraction of overall traffic load to distribute amongst the skewed
nodes.
r|rq | p| ns | np = rack_prob_config | ‘racks dict’ | ‘prob_inter_rack’ | num_skewed nodes |
skewed__node_ probs

Benchmark Applications Size, Bytes Inter-arrival Inter- | Hot Nodes |
Category Time, us Intra-Rack Load
Traffic, % Requested, %
DCN; Database backups, hosting ¢ 80% < 10,000 ¢ 10% < 400, @70 | 30 "’20\55b‘multimod
Benson distributed file systems b ognormal’, 80% < 10, 000 b r={rq: ¢, p: ns=d(0.2),
et al. (email, servers, web {p: 7, o: 2.5}, b ‘weibull’, 0.7 } np=e(0.2,0.55)
[20104a], services for faculty portals min_ val=1, {a: 0.9, A:
Benson etc.), multi-cast video max_ val=2e7, 6,000},
et al. [2011] streams round=25 min_ val=1,
round=25

Appendix B. A Framework for Generating Custom and Reproducible Synthetic

206

Traffic

al

al

DCN;; University + ‘custom’ @ 80% < 10,000 ¢ 80% < 1,000 @ 50 | 50 ‘120|55b‘mu1timod
Benson applications and b ‘lognormal’, b ‘multimodal’, b r={rgq: c, p: ns=d(0.2),
et al. development test beds {p: 7, 0 2.5}, min_ val=1, 0.5} np=e(0.2,0.55)
[2010a] min_ val=1, max_ -
max__val=2e7, val=100,000,
round=25 locations=[40,1],
skews=[-1,4],
scales=[60,1000],
num_ skew_ -
samples
=[10]e3,
round=25,
bg_ factor=0.05
DCN,;; Internet-facing ¢ 80% < 10,000 @ Median 10 @20 | 80 C"20|55b‘multimocl
Benson applications (search b Yognormal’, b ‘multimodal’, b r={rq: c, p: ns=d(0.2),
et al. indexing, webmail, video, {p: 7, o 2.5}, min_ val=1, 0.2} np=e(0.2,0.55)
[2010a], etc.), data mining and min__val=1, max_ -
Kandula MapReduce-style max_ val=2e7, val=100,000,
et al. [2009] applications round=25 locations
=[10,20,100,1],
skews=[0,0,0,100],|
scales=[1,3,4,50],
num_ skew_ -
samples
=[10,7,5,20]e3,
round=25,
bg_factor=0.01
DCN;, Roy Web request response ¢ 10% < 300, ¢ 10% < 20, @ 12.9 | 87.1 a‘20|55b‘multimod

et al. [2015]

generation (mail,

90% < 100, 000
b ¢

90% < 10, 000

b r={ry: c, p:

ns=d(0.2),

al

messenger, etc.), MySQL weibull’, b ‘ognormal’, 0.129} np=e(0.2,0.55)
database storage & cache {a: 0.5, A: {p: 6, o: 2.3},
querying, newsfeed 21,000}, min_ val=1,
assembly min_ val=1, round=25
max_ val=2e6,
round=25
Skewed;, - bDCN,;“; bDCNiii b<uniform?’, b<uniform’
Rack; r = None ns =np =
None
Skewed;; - bDCNiu bDCNiii b<uniform?, 5\55b‘uniform’
r = None ns = d(0.05)
ny =
(0.05, 0.55)
Skewed;;; - bDCNi” bDCNiii b<uniform?’, 5\55b‘uniform’
r = None ng = d(0.1)
ny =
€(0.1,0.55)
Skewed;,, - bDCNi” bDCNiii b<uniform?, 5\55b‘uniform’
r = None ng = d(0.2)
np =
(0.2, 0.55)
Skewed, - bDCNi” bDCNiii b<uniform?, 5\55b‘uniform’
r = None ng = d(0.4)
np =
(0.4, 0.55)
Rack;; - bDCNy4; bDCNyy; 80|20°‘uniform’, b<uniform’
r={rg:cp: ng =np =
0.8} None

B.2. TrafPy Distribution Parameters

207

Rack;;; bDCN“;,; bDCNiii 60|40b‘uniform’7 b<uniform’
r={rqg:c,p: ng =np =

0.6} None
Rack;, YDCN;i; "DCN;;4 40|60 ‘uniform?’, b<uniform’
r={rqg:c,p: ng =np =

0.4} None
Rack, YDCN;i; "DCN;;; 20/80 ‘uniform?’, b<uniform’
r={rqg:c,p: ng =np =

0.2} None

Appendix B. A Framework for Generating Custom and Reproducible Synthetic

208
Traffic

Symbol Definition
D’ Set of parameters defining the TrafPy distributions
D Traffic trace generated using the D’ TrafPy parameters
P Probability distribution
X Discrete random variables
H Entropy
JSD Jensen-Shannon divergence

JSD Jensen-Shannon distance
{71, ey T} Weightings for the JSD of n distributions

B3,B!, B® Flow size, inter-arrival time, and node pair random variables for benchmark workload B

bs, b, b" Flow sizes, inter-arrival times, and node pairs sampled from benchmark workload B
be Flow arrival times derived from inter-arrival times b
T DCN network topology
p Load fraction (fraction of overall network capacity requested)
Ny, Number of server nodes
Ne Number of channels per communication link
C. Capacity per server node link channel
Cy Total network capacity per direction
ny Number of flows generated
t Total time duration of simulation
0 Load rate (information arriving per unit time)
o Inter-arrival time adjustment factor
dp Difference between a node pair’s current and target information request magnitude
B Number of flows adjustment factor
R Number of traffic traces to generate and simulate for a suitable confidence interval

TABLE B.1: Table summarising the symbol notation used throughout the paper.

TABLE B.3: Flow size, inter-arrival time, and node load distribution characteristics
for the University (U), Private Enterprise (PE), Commercial Cloud (CC), and
Social Media Cloud (SMC) data sets of the DCN benchmark after generating the

distributions from TrafPy parameters D’.

Variable DCN # Modes Min. Max. Mean Variance Skewness Kurtosis
U 1 1 19.8e6 22.9e3 42¢e9 39.4 2.41e3
Size (B) PE 1 1 19¢6 23.3e3 53.5e9 44.1 2.79¢3
cC 1 1 19.2e6 22.3e3 38.4€9 36.9 2.08e3
SMC 1 1 3.17e6 42e3 8.87e9 6.20 66.4
U 1 1 126e3 6.3e3 49.9e6 2.44 9.92
Inter-arrival PE 2 1 100e3 2.83e3 154€6 5.7 33.1
time (us) CC 4 1 10e3 84.5 0.32e6 13 179
SMC 1 1 54.6e5 5.51e3 2.11e9 47.8 3.75e3
Variable DCN % Hot Nodes % Hot Node Traffic % Inter-Rack
U 20 55 70
Node load PE 20 55 50
distribution (%) CcC 20 55 20

SMC 20 55 12.9

© W N Uk W N =

o
o

D Ut R W N =

B.3. TratPy API Examples 209

_alpha: | 0.9
_lambda: | 6000
[logscale
transparent
Run Interact
Characteristics of generated distribution:

DescribeResult(nobs=150000, minmax=(1.8, 97200.0), mean=6337.27624, variance=50874152.53085501, skewness=2.368596
672509809, kurtosis=8.72711838148607)

1.0
500001 | ﬂfj

= T8
S 0 0.5
O 250004 (@]

O

“\l
T v - T T T 0.0 r ; T
0 20000 40000 60000 80000 100000 0 20000 40000 60000 80000 100000
Random Variable Random Variable

FiGUurE B.1: Output of example code for interactively and visually shaping a
‘named’ distribution in a Jupyter Notebook.

B.3 TrafPy API Examples

B.3.1 Custom Distribution Shaping

Interactively & Visually Shaping a Custom ‘Named’ Distribution in a
Jupyter Notebook. Example of interactively and visually shaping a weibull
distribution’s parameters to achieve a target distribution for some random

variable in Jupyter Notebook (output in Fig. B.1):

import trafpy.generator as tpg

dist = tpg.gen_named_val_dist(dist='weibull',
interactive_plot=True,
min_val=1,
max_val=None,

size=15e4)

This same distibution can then be reproduced by using the same parameters:

dist = tpg.gen_named_val_dist(dist='weibull',
params={'_alpha': 0.9, '_lambda': 6000}
min_val=1,

max_val=None)

[

B B>, BV V)

—-

aokR WwN

[un

© 00 9 O Uk W N

Appendix B. A Framework for Generating Custom and Reproducible Synthetic
210
Traffic

Interactively & Visually Shaping a Custom ‘Multimodal’ Distribu-
tion in a Jupyter Notebook. To generate a multimodal distribution, first

shape each mode individually (output in Fig. B.2):

import trafpy.generator as tpg

data_dict = tpg.gen_skew_dists(min_val=1,
max_val=1le5,

num_modes=2)

Then combine the distributions, filling the distribution with a tuneable

amount of ‘background noise’ (output in Fig. B.3):

multimodal_dist = tpg.combine_multiple_mode_dists(data_dict,
min_val=1,

max_val=1e5)

This same distribution can be reproduced using the same parameters:

multimodal_dist = tpg.gen_multimodal_val_dist(min_val=1,
max_val=1le5,
locations=[40, 1],
skews=[-1, 4],
scales=[60, 1000],
num_skew_samples=[le4, le4],

bg_factor=0.05)

N.B. An equivalent function can be used for generating custom skew distri-
butions with a single mode which also do not fall under one of the canonical

‘named’ distributions.

B.3. TrafPy API Examples 211

Lnuﬁun:lnn

Ekaw:l-L

|
|
Snﬂe:lbn |
sampEﬁ:llmmo |
0 logscale

& transparent

hhs:l] |

Run Interact

Characteristics of generated distribution:
DescribeResult(nobs=10808, minmax=(1.9, 186.9), mean=41.7762, wvariance=870.1683304128414, skewness=8.B741137306360
377, kurtosis=8.3142768678371356)

1.0 /,—
[T
0 054
o
0.0
50 100 150 0 50 100 150
Random Variable Random Variable
Ln:aﬁun:l 1
E&ew:l 4 |
Scale: | 1000 |

sampks:lluxm
0 logscale
& transparant

mns:l]

Run Interact

Characteristics of generated distribution:
DescribeResult{nobs=18808, minmax=({1.8, 3781.8), mean=B42 .9528, wariance=339914 4872128813, skewnesz=0.92901483643
62686, kurtosis=0.7355146185502610)

1.0
L
0 05-
]
0.0£
1000 2000 3000 0 1000 2000 3000
Random Variable Random Variable

Figure B.2: Output for step 1 of example code for interactively and visually
shaping a ‘multimodal’ distribution in a Jupyter Notebook, where you must first
shape each mode individually.

Appendix B. A Framework for Generating Custom and Reproducible Synthetic

212
Traffic

bg_factor | 0.05
logscale
transparent

bins: | 12
Run Interact

Chosen skew 1 stats: {'location': 40, 'skew': -1.8, 'scale': 60.8, 'min_val': 1, 'max_val': 108080.8, 'num_skew_ s
amples': 10000, 'xlim': None, 'logscale': False, 'transparent': True, 'rand_var_name': 'Random Variable', 'num_bi
ns': @, 'round_to_nearest': 1, 'num decimal_places': 1}

Chosen skew 2 stats: {'location': 1, 'skew': 4.8, 'scale': 1000.0, 'min_val': 1, 'max_val': 100000.8, 'num_skew s
amples': 10008, 'xlim': None, 'logscale': False, 'transparent': True, 'rand_var_name': 'Random Variable', ‘'num_bi
ns': @, 'round_to_nearest': 1, 'num decimal_places': 1}

Characteristics of generated distribution:

DescribeResult(nobs=209975, minmax=(1.0017667755316637, 99950.8), mean=2838.2258603392297, variance=154197488.167
07903, skewness=5.6382173881365825, kurtosis=32.237152346449236)

40000 pummmm Lo
w
€ 505
= | 5
3 20000 8
0 L[]

0L 1_| . — 1 1_l 0.0 N , . -
10! 103 10% 10t 103 10°
Random Variable Random Variable

FIGURE B.3: Output for step 2 of example code for interactively and visually
shaping a ‘multimodal’ distribution in a Jupyter Notebook, where you must combine
your individually shaped modes into a single distribution.

fu

W W W W W W W W wNNN NN N NN NN e e e
0 N O U kR W N = O © 00NN OO R WN RO © N0 U R W N = O © 0NN Ut R W N

B.3. TrafPy API Examples 213

B.3.2 Benchmark Importing & Flow Generation

Example code for generating and visualising a load 0.1 University benchmark

data set of flows for a custom topology (output in Fig. B.4):

import trafpy.generator as tpg
from trafpy.benchmarker import BenchmarkImporter

from trafpy.generator import Demand, DemandsAnalyser, DemandPlotter

set wariables
min_duration = 1000

jsd_threshold = 0.1

initialise network

net = tpg.gen_arbitrary_network(num_eps=64, ep_channel_capacity=1250)

initialise benchmark distributions
importer = BenchmarkImporter (benchmark_version='0.01")

dists = importer.get_benchmark_dists(benchmark='university', eps=net.graph['endpoints'])

generate flow-centric demand data set
network_load_config = {'network_rate;capacity': net4graph['max4nw_capacity'],
'ep_channel_capacity': net.graph['ep_channel_capacity'],
'target_load_fraction': 0.1}
flow_centric_demand_data = tpg.create_demand_data(eps=net.graph['endpoints'],
node_dist=dists['node_dist'],
flow_size_dist=dists['flow_size_dist'],
interarrival_time_dist=dists['interarrival_time_dist'],
network_load_config=network_load_config,
jsd_threshold=jsd_threshold,

min_duration=min_duration)

print summary table
demand = Demand(flow_centric_demand_data, net.graph['endpoints'])

DemandsAnalyser ([demand], net).compute_metrics(print_summary=True)

visualise distributions

plotter = DemandPlotter (demand)
plotter.plot_flow_size_dist()
plotter.plot_interarrival_time_dist()

plotter.plot_node_dist()

Appendix B. A Framework for Generating Custom and Reproducible Synthetic

214

Traffic

Name Flows 1st Last Duration

Load Smallest

0 demand 135916 0.0 788907.126500 788907.126500 3.155629e+09

1.0 17236750.0

led
B 2] -
c
§ 17 ‘
1o ol
1.0
L
0 0.5
o
0.0 ; . ' '
10! 103 10° 107
Flow Size (B)
led
; B
et
S 2|
8 | ‘
0 + + T 4 ';l J l] : + I - i
1.0
L
0 0.5
@]
0.0 . . ‘ ' '
10° 10! 102 103 104 10°
Interarrival Time (us)
0 10 20 30 40 50 60 [00007
(VR v s . I O |
10_ | 1 0.0006
20_ Y | 0.0005
E 304. | —0.0002_2
wn 40 1 I | - 0.0003
50, r 0.0002
60,| [N L s L 0.0001
DSt —-0.0000

F1GURE B.4: Output of example code for generating a benchmark.

B.4. Pseudocode 215

B.4 Pseudocode

B.4.1 Scheduling

The flow scheduling pseudocode is shown in Algorithm 7. First, information
about the queued flows such as their characteristics (packets left, time of arrival,
flow queue, destination node, etc.), the network links requested in the source-
destination path, and the bandwidth requested, is collected. If the scheduler
uses cost-based scheduling (e.g. SRPT uses flow completion time cost), a cost is
also assigned to each flow. Next, for each link being requested by the flows, while
the link in question has some available bandwidth left to allocate for the current
time slot, the scheduler chooses flows until either there is no bandwidth left or
there are no flows demanding the link which have not been chosen. Finally, for
each flow in the set of these provisionally chosen flows, the smallest number of
packets scheduled for the flow in question across all links is chosen as the flow’s
number of packets to schedule. Note that this simulation methodology considers
bandwidth bottlenecks throughout all layers of the network. The pseudocode in
Algorithm 8 is used to resolve any contentions and attempt to set up the flow,
thus adding the flow to the ultimate set of flows chosen by the scheduler for the
given time slot. The parts which are scheduler-specific have been marked in

bold.

B.4.2 TrafPy Benchmark Protocol

Appendix B. A Framework for Generating Custom and Reproducible Synthetic

216

Traffic

Algorithm 7 Flow scheduling process.

Collect flow information
link__allocations =]
for link in links do
while link bandwidth # 0 do
link__allocations.append(scheduler choose flow)
end while
end for
chosen_ flows = ||
for flow in flows do
if flow in link_ allocations then
flow__packets = min(packets allocated for flow in link_allocations)
establish, removed__flows = scheduler resolve__contentions(flow, chosen__flows)
if establish then
chosen_flows.append(flow)
chosen_ flows.remove(removed_ flows)
end if
end if
end for

Algorithm 8 Flow contention resolution process.

Require: flow, chosen flows
removed_ flows =]
while True do
if no_ contention(flow) then
establish = True
return establish, removed_ flows
else
contending_ flow = find__contending_ flow()
establish = scheduler resolve_contention(flow, contending flow)
if not establish then
chosen_ flows.append(removed_ flows)
return establish
else
chosen_ flows.remove(contending_ flow)
continue
end if
end if
end while

Algorithm 9 TrafPy benchmark protocol.

for r in range(R) do
for d in D do
for p < 0.1 to 0.9 step 0.1 do
Pgpr = Y(x, d, p)
end for
end for
end for

B.5. Traffic Skew Convergence 217

B.5 Traffic Skew Convergence

A constraint of any traffic matrix is that the load on each end point (the fraction
of the end point’s capacity being requested) cannot exceed 1.0. Consequently,
certain traffic skews become infeasible at higher loads (for example, it is impos-
sible for an n > 1 network to have 1 node requesting 100% of the traffic if the
overall network is under a 1.0 load). As shown in Fig. 6.3, this results in all
traffic matrices tending towards uniform (i.e. having no skew) as the overall
network load tends to 1.0.

A question traffic trace generators may ask is: for a given load, what
combination of i) number of skewed nodes, ii) corresponding fraction of the
arriving network traffic the skewed nodes request, and iii) overall network load
results in the traffic matrix being skewed or not skewed? To answer this question,

we make the following assumptions:

o All network end points have equal bandwidth capacities.
o All end points are either ‘skewed’ or ‘not skewed’ by the same amount.

o ‘Skew’ is defined by a skew factor, which is the fractional difference between
the load rate per skewed node and the load rate per non-skewed node (the

highest being the numerator, and the lowest being the denominator).

o For a given combination of skewed nodes and the load rate they request of
some overall network load, any excess load (exceeding 1.0) on a given end
point is distributed equally amongst all other end points whose loads are

< 1.0.

With the above assumptions, we can calculate the skew factor for each
combination of skewed nodes, corresponding traffic requested, and overall network
load. Doing this for 0-100% of the network nodes being skewed and requesting

0-100% of the overall network load under network loads 0.1-0.9, we can construct

Appendix B. A Framework for Generating Custom and Reproducible Synthetic
218

Traffic
100 Load 0.1] Load 0.2 ‘ Load 0.3
80
60
40
20
0 Load 0.4 '
100 oa Load 0.5 Load 0.6 0
@
9 80 18
2 S
60 1.6 ©
40 1.4
9 g
wn [7p]
e 20 1.2
0 1.0
Load 0.7 Load 0.8 Load 0.9
75 100 0 100 0

% of Overall Traf‘flc Requested

F1GURE B.5: Skew factor heat maps for 0-100% of network nodes requesting
0-100% of the overall network traffic across loads 0.1-0.9 plotted at 0.1% resolution.
For clarity, combinations with skew factors > 2 have been assigned the same colour.

a look-up table of skew factors for each of these combinations before generating
any actual traffic. Fig. B.5 shows a high resolution (0.1%) heat map of these
combinations, with any skew factors > 2.0 set to the same colour for visual
clarity. Fig. B.6 shows the corresponding plots with lower resolution (5%) but
with the skew factors labelled. As expected, above 0.6 network loads, certain
combinations of number of skewed nodes and traffic requested become restricted
as to how much skew there can be in the matrix, with many combinations
tending towards uniform (skew factor 1.0) at 0.9 loads.

Using the skew factor data from Figs. B.5 and B.6, we can be confident at
5%, 10%, 20%, and 40% of the network nodes requesting 55% of the overall
network traffic that the skew factor will be > 1.0 across loads 0.1-0.9. Fig. B.7

shows the skew factor as a function of load for these combinations. Therefore,

B.5. 'Traffic Skew Convergence 219

Load 0.1 Load 0.2 Load 0.3
0 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 8 90 1000 10 20 30 40 50 60 70 80 90 100
100
8 18 19 19 19 19 18 18 19 18 18 15 12 10 8.1 6.3 48 3421 1 if 63 6.3 6.3 6.3 6.3 6.3 6.3 6.36.3 6.3 6.3 636363636348 3421 1 iff 3{8 38 3.8 3.8 3.8 3.8 38 3.8 3.8 38 3.8 38 3.8 38 38 38 38 3421 1
QQif 171 81 50 36 27 21 16 13 11 9 74 6 48 39 3 22 16 1 21 iff 9 9 9 9 9 8 8 9 9 8 74 6 4839 3 2216 1 2.1 iff 45 45 45 45 45 45 45 45 45 45 45 45 45 4539 3 22 16 1 2.1 iff
10751 2 22 17 13 10 8569 57 46 3831 24 19 14 1 1634 it b 17 16 16 16 16 13 10 85 69 57 46 38 31 24 19 14 1 1634 Hf 57 57 5757 57 57 57 5757 57 57 46 3831 24 19 14 1 16 34 ¥t
80Mf 76 36 22 16 11 9374 6 49 4 332722 17 13 1 1422 48 iff #f 76 36 22 16 11 93 7.4 6 49 4 33 2722 17 13 1 14 22 48 iff 8 8 8 8 8 8 74 5 49 4 3327221713 1 142247 if

W57 27 16 12 8 7 564537 2 25 2 1613 1 1319 3 63 iff if 57 27 16 12 8 7 564537 2 25 2 1613 1 1319 3 63 if 4 14 14 14 12 9 7 564537 3 25 2 1613 1 1319 3 63 iff
TOWf 44 21 13 93 7 5443 352923191613 1 13172439 81 ff (ff 44 21 13 93 7 54 4335292319 1613 1 13172439 81 iff if 44 21 13 93 7 54 4335292319 16 13 1 13 17 24 39
W 35 16 10 7.4 5.6 4.3 3.4 28 23 19 15 12 1 13 1622 31 48 10 iff i 35 16 10 7.4 56 43 34 28 23 19 15 12 1 13 1622 31 48 10 ijf if 35 16 10 7.4 56 43 3.4 2.8 23 19 15 12 1 13 16 2.2 31 48

60Wf 28 13 85 6 45352822 181512 1 12 16 2 2738 6 12 iff 1385 6 45352822 181512 1 1216 2 2738 6 12 if Wf 28 13 85 6 45352822 181512 1 1216 2 2738 6 12 ¥

W 23 11 69 49 37 2923 18 15 12 1 12 15 19 25 33 46 7.4 15 if

10694937 2923 18 15 12 1 12 15 19 25 33 46 7.4 15 if

11 694937292318 1512 1 12 15 19 2533 46 74 15 i
957 4 323191512 1 12151923 3 4 57 9 19 if f 19 957 4 3 23191512 1 12151923 3 4 57 o 1 if M 19 957 4 2 23191512 1 12151923 2 4 57 9 1 ¥
iff 15 7.4 463325191512 1 121518232937 4969 11 23 iff iff 15 74 46 33 2519 1512 1 12 15 18 23 29 37 49 69 11 23 f uff 15 7.4 46 33 2519 1512 1 12 15 18 23 29 37 49 69 11 23 i
40Wf 12 6 3827 2 1612 1 12151822283545 5 8513 28 iff jf 12 6 3827 2 1612 1 12 151822283545 5 8513 28 iff M 12 6 3827 2 1612 1 121518 222835 45 6 85 13 28 i
Wff 10 483122 1613 1 12 1519232834 435674 10 16 35 if il 10 4831 22 16 13 1 12 15 1923 2834 4356 7.4 10 16 35 off #f 10 48 31 22 1613 1 12 15 19 23 28 34 43 56 7.4 10 16 35 i

% Skewed Nodes
g

30#f 813924 1713 1 1316 192329354354 7 93 13 21 4 iff

392417 13 1 13 16 19 23 29 35 43 54 7 93 13 21 44 iff

39241713 1 1316192329354354 7 9313 21 44 i
Wf 63 3 1913 1 1316 2 25 2 374556 7 8 11 17 27 56 i
201f 48 2314 1 1317222733 4 49 6 74 93 11 16 22 3% 76 if

633 1913 1 1316 2 25 2 374556 7 8 11 17 27 56 if if 63 3 1913 1 1316 2 25 3 374556 7 9 11 14 14 15 It

482314 1 1317222733 4 49 6 7.4 93 11 16 22 3 76 iff

482314 1 1317222733 4 49 574 8 8 8 8 8 8

W 34 L6 1 1419243138 4657 698510 13 17 22 2 51107 it Wt 34 16 1 14 1924 3138 4657 6985 10 13 16 16 17 16 17 i 34 L6 1 14 19 24 3138 46 57 57 57 57 57 57 57 57 57 57 5l
10#f 21 1 1622 3 3948 6 74 9 11 13 16 21 27 3 50 80 171 aff Mf 21 1 1622 3 3948 6 74 8 8 9 9 9 9 9 9 9 § Hf 21 1 1622 3 39 45 45 45 45 45 45 45 45 45 45 45 45 45 45
W 1213447638110 12 15 18 18 19 19 19 19 19 19 19 18 1 Wt 1 2134 47 63 63 63 63 63 63 6.3 6.3 6.3 6.3 63 63 6363 63 63 Wt 1 2134 38 38 38 38 38 38 38 38 38 36 8 38 38 38 38 38 3
n \
Load 0.4 Load 0.5 Load 0.6
100o 10 20 30 40 50 60 70 8 90 1000 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

272727272727 272727272727 27272727272721 1 ff 201212121212121212121212121212121212121 1 #ff 71717 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 1 i

90% 3 3 3 3 3 3 3 3 3 23 3 3 3 322161 21uf 222322232322222323222222222322222216 1 21 il X818 1618 18 18 18 18 18 16 18 1.8 18 18 18 18 18 16 1 21 iff
3434 3434 34 34 34 3434 34 34 34 343124 19 14 1 16 34 if 204 24 2424 24 24 24 24 24 24 24 24242424 1914 1 1634 if 10 19 19 19 19 1919 19 19 19 19 19 19 19 19 19 14 1 16 34 il
803 3 4 4 4 4 4 4 4 3 33327221713 1 142248 il 27 272727272727272727272727221713 1 1422 48 iff 22 2 2 22222222 217131 142247
44 45 5 4 44537 22521613 11319 3 63 iff 232333323 3252161311319 3 63if 2(12121212121212121212121 2 1613 1 1319 3 63 iff

704 6 6 6 6 6 544335292319 1613 1 1317243981 iff 35 353535 3535 353535292319 1613 1 1317243981 iff 20323232323232323232323191613 1 1317 2439 81 iff
1212 10 74 5643342823 191512 1 13 16223148 10 iff 4l343 43 43 43 4343342823 191512 1 13 1622 3148 10 if 2(6 2.6 2.6 2.6 2.6 2.6 2.6 26 26 23 19 15 12 1 13 16 22 31 48 10

0
[

-8 6OWf 28 13 85 6 45352822 18 1512 1 12 16 2 2738 6 12 iff 6 6 6 6 45352822181512 1 1216 2 2738 6 12 if 33 3 3 3 32822181512 1 1216 2 2738 6 12
=4 if 23 11 6.9 49 37 2.9 23 18 15 1.2 1 12 15 19 2,5 3.3 46 74 15 iff 11 11 69 4937292318 1512 1 12 151925334674 15 iff 37 37 3.7 3.7 37 3.7 2923 18 1.5 1.2 1 12 15 1.9 25 33 46 74 9

= iff 15 7.4 46 33 2519 15 12 1 12 15 18 23 29 37 49 69 11 23 iff iff 15 7.4 4633 2519 15 12 1 12 15 18 23 29 37 49 69 11 10 9 7446332519 1512 1 12 15 1823 29 37 37 37 37 37 3
$ 0w C0!NORISOu pINguIsOulSgo| 8] 0uiogn| g 7P PRI SOUINEIGY, _[ESR1G O | PN O RO A A 26 ss27 2 1612 1 1215182226 3 3 3 3 3 3
2 Wi 10 483122 1613 1 12 1519232834 4356 74 10 12 13 5 W 10 48 3122 1613 1 12 15 1923 28 34 43 43 43 43 43 43 43 4t 10 48 31 22 16 13 1 12 15 19 23 26 26 26 26 26 26 26 26 2l
B

3

392417 13 1 13 16 19 23 29 35 35 35 35 35 35 35 35 35

30#f 813924 17 13 1 13 16 192329 35 43 54 6 8139241713 1 13 161923232323 2323232323232[3

if 633 1913 1 1316 225237455 5 5 4 4 4 5

3191311326225 3323333323

633 1913 1 1316 2 21212121212121212121212[1
20#f 48 2314 1 1317222733 3 3 4

2314 1 1317 2227 27 27 27 27 27 27 27 27 27 27 27

482314 113172 2 2 2 2 2 2 2 212 22
Wff 3416 1 14 19 2.4 31 34 34 34 34 34 34 34 34 34 34 34 34 308
10Mf 21 1 1622 3 3 3 3 3 2 2 3 3 3 33 3 33 W 21 1 16222222222222222223232322222322222
Wf 1 2127272727272727272727272727272727272)7 H 1 2121212121212121212121212121212121212)1 #f 1 1717 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17

16 1 14 19 24 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 24 2.4 3416 1 1419191919 19 1919 19 19 19 19 19 19 19 19 1l9

W 21 1 16 18 18 18 1.6 18 18 18 1.6 1.8 1.8 18 18 1.8 1.8 18 18 1|

0
Load 0.7 Load 0.8 Load 0.9

0 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 8 90 100 0 10 20 30 40 50 60 70 80 90 100
100

15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 1 ff 131313 13 131313 13 13 13 1313 13 13 13 13 13 1313 1 #ff 1 11 1111 11 1111 11 11 11 1111 11 11 11 1111 11 11 1
Q015 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 1 2.1 iff H3 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 1 21 iff M1 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 1 2.1 iff

15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 14 1 1634 #ff 131313 13131313 13 13 131313 13 13 131313 1 1634 #ff 11 11 111111 1111 11 11 11 1111 11 11 11 1111 1 16 3
8016 16 1.6 1.6 1.6 1.6 1.6 1.6 16 16 16 16 16 16 1.6 13 1 14 2.3 48 iff 1313 13 1313 131313 13 13131313 131313 1 1422 48 iff 41 11 111111 1111111111 111111111111 1 14 1 1

071717 17 17 1717 17 17 17 1717 17 16 13 1 1319 3 63 iff 14 14 14 14 14 14 14 14 14 14 14 14 14 14 13 1 1319 3 4 4 1212121212121212 1212121212 12 12 1 13 17 17 17 1f

7048 16 18 18 17 18 18 1.8 18 18 18 18 16 13 1 13 17 24 39 8.1 ilf 141414 14 14 14 14 14 14 14 14 14 13 1 1317 24 2 3 121212121212 1212121212 1212 1 13 15 15 15 15 1|

169191919 191919 1919191915 12 1 13 162231 48 7
607 2 2 2 2 2 2 2 2 181512 1 1216 2 2738
2022222222222222181512 1 12151925 3 3 3 3

14 14 14 14 14 14 14 14 14 14 14 12 1 13 16 22 23 2.3 23 23

121212 12 1212 12 12 12 12 12 12 1 13 14 14 14 14 14 1

15151515 15151515 151512 1 1216 1 1 1 1 2 12121212 12121212 121212 1 12 13 13 13 13 13 13 1

16 16 16 16 16 16 16 16 15 12 1 12 15 18 18 18 18 18 18 1|

1212 12 12 1212 12 12 12 12 1 12 13 13 13 13 13 13 13 1|

25252525252319 1512 1 12 15 19 23 25 25 25 25 25 25

1717 17 17 17 17 17 15 12 1 12 15 17 17 17 17 17 17 17 1| 121212121212 12 1 1212 12 13 12 12 12 12 12 12

33 3 325191512 1 121518222222222222222

18 18 18 18 18 18 15 12 1 12 15 16 16 16 16 16 16 16 16 1|

131313131313 1312 1 12121212 121212121212 1
404 4 33827 21612 1121518 2 2 2 2 2 2 2 2 111 1 11612 1 1215151515 1515151515 15 1 131313131313 12 1 1212121212 121212 12 12 12 1

7 4831221613 1 12 151919 19 19 19 19 19 19 19 19 1

23221613 1 12 14 14 14 14 14 14 14 14 14 14 14 1|

141414141413 1 12121212 12 12 12 1212 12 12 12 12

% Skewed Nodes
g

30#f 813924 17 13 1 13 16 18 18 1.8 18 18 18 18 17 18 18 18 1

2417 13 1 13 14 14 14 14 14 14 14 14 14 14 14 14 1| 151515 15 13 1 12 12 12 12 12 12 12 12 12 12 12 12 12 12

Wf 63 3 1913 1 13161717 1717 17 17 17 17 17 17 17 17 1f7 43 1913 1 131414141414 14 14 14 14 14 14 14 14 1

17171713 1 121212121212 12 12 12 1212 12 12 12 12
200f 48 23 14 1 13 16 16 16 16 16 16 16 16 16 16 16 16 16 16 1lo

482314 1 13131313 13 13 13 13 13 13 13 13 13 13 13 1|

141 111111 21111111 111111 1111 11 11 11 1))
iff 34 16 1 14 1515 15 15 15 15 15 15 15 15 15 15 15 15 15 1fs s
10#f 21 1 1515 1515 15 15 15 15 15 15 15 15 15 15 15 15 15 1f5 if 21 1 13131313 13 13 13 1313 13 13 13 1313 13 13 13 18 #f 21 1 11 11 1111 11 11 11 11 11 11 11 11 11 11 11 11 11 11
Wf 1 1515 15 1515 15 15 15 15 15 15 15 15 15 15 15 15 15 15 iff 1 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13

3416 1 131313 13 13 13 13 13 13 13 13 13 13 13 13 13 1 2 16 1 1111111111111111111111 111111111111

W 1 111111111111 11111111 111111 1111 11 11 11 11

% of Overall Traffic Requested % of Overall Traffic Requested % of Overall Traffic Requested

FIGURE B.6: Labelled skew factor tables for 0-100% of network nodes requesting
0-100% of the overall network traffic across loads 0.1-0.9 plotted at 5% resolution.

Appendix B. A Framework for Generating Custom and Reproducible Synthetic

220
Traffic
—— Skewed 0.05
Skewed 0.1
Skewed 0.2
10% —— Skewed 0.4
| -
(@]
4
@]
2
=
@
N
(V]
100 B T T T T T T T -----I

01 02 03 04 05 06 07 08 09
Load

FIGURE B.7: Skew factor as a function of load for 5%, 10%, 20%, and 40% of the
network nodes requesting 55% of the overall network traffic.

these were the combinations chosen for the skewed nodes sensitivity benchmark

defined in Section 6.4 of this manuscript.

B.6. Scheduler Performance Summary 221

B.6 Scheduler Performance Summary

B.6.1 Completion Time Performance Plots

Plots showing the schedulers’ completion performances are provided for the
realistic DCN (Fig. B.8) uniform (Fig. B.9, extreme rack (Fig. B.10), and

extreme nodes (Fig. B.11 traffic traces.

(@) (b) (© s (@)
Y A - —
= 6x10 e ; N . / . - 2 FF Rand
2,100 3 3 Fs 7 el = 5.
I8 Rand . Randi () = / b e
O 3x10° SRPT G1otf . seer\ AL/ 8] /) . FF o |
. o / = /i Yoo A/ FS @111
c o / x 10 7 o
2 S2x10 o e R /A Rand S
i . s a e = 4 . SRPT g,
- =" | 3
[025 050 0.75 025 050 0.75 025 050 075 10? 10°
2 Load Load Load Flow Size (B)
S 10 -
S5, K M T A\ — FF Rand
5 NN Fs X . Fs L N\ FS —— SRPT
[051 | N Rand NG =~ Rand)
© Nl TS SRPT N s Yy
0.0 — e—— — > .
2x10° 3x10° 4x10° 6x10° 104 10° 10° 10% 10°
Mean FCT (us) p99 FCT (ps) Max FCT (us) Load 0.89 FCTs (us)
6x10° 3t
7 P w
) s _LEE / — FF - = -~ 3 FF Rand
/) v e = <
8 a0 £S / 2 £ Z =2 / N et FS
0 = Rand y. = Rand 7 = s 02 .
S Ps3x108 . sper / O 107 . SRPT Q fF i | BT
e p TN , w g 4 Ry s 3 1 il
=l 3 2x10° e o/ a - 3 / Rand e I
Iﬁ 2 e L e = / SRPT g, I I
° 025 050 075 025 050 0.75 025 050 0.75 = 107 105
- Load Load Load Flow Size (B)
> 1.0
‘= " '\ FF N — FF S p——— — FF Rand
o5 0s] % Fs IS Fs Fs) FS —— SRPT
S \ - Rand N e Rand Rand \'.\
v N S~ SRPT - —— sReT et N
0.0 —— s = ——
2x10° 3x10° 4x10° 6x10° 10 10° 10° 10¢ 10°
Mean FCT (ps) p99 FCT (us) Max FCT (us) Load 0.9 FCTs (us)
— w 3
» 6x10%{ - FF . FF 7\ » = ~ El
- =2 [ER— £ Fs N E] S .
=] - 4x10° Rand / y = Rand : = 7 FF 22
o 2 3x108| - SRPT v Q 104 - SRPT . ~ s o
o c / o / // x 10 // w 1
- D 3 / ,/ a / 7 T Rand o
s L2x10| S 2 o = / . SRPT 3
o L . — o0
5 025 050 075 025 050 0.75 025 050 0.75 - 10 10°
g Load Load Load Flow Size (B)
10
g " NS FF N FF == FF N\ —— FF Rand
O5,. 1 — Fs \ FS L Fs N\ FS| | i SRPT
Q5 \ — Rand N Rand . Rand T\ \ A
(6} Y SRPT Nae, SRPT SRPT - AN ~
~—_ S N AN N~
0.0 ~ = - = -
2x10° 3x10°4x10° 6x10° 10* 10° 10° 104 10°
Mean FCT (ps) Max FCT (us) Load 0.89 FCTs (us)
. le5
m FF / — — /S @4
g = FS e ES 10 El 7 =
[} = Rand S = = 10° 7/ G3
3} b . SRPT s O 8] / FF s
o - A/ [= A Fs o ?
8 3) a] = Rand ©.
3 = ot L =10t A - SRPT B
So
p}
s 0.25 L%sa[::l 0.75 025 Lo.sod 075 00 100 105
= 0a Flow Size (B)
8 FF NG FF TR FF \ FF Rand
] Fs s ks N\ FS —— SRPT
Rand N Rand — Rand "=, \\\ iy
. SRPT SRPT — % SRPT ‘\\ =
10° 10° 10° 10° 10° 10° 104 10°
Mean FCT (ps) p99 FCT (us) Max FCT (ps) Load 0.9 FCTs (us)

FIGURE B.8: The schedulers’ (a) mean, (b) 99*" percentile, and (c) maximum flow

completion time metrics for the DCN benchmark distributions across loads

0.1-0.9, and (d) a scatter plot of flow completion time as a function of flow size for
the same distribution at load 0.9.

Appendix B. A Framework for Generating Custom and Reproducible Synthetic
222
Traffic

@5 exres| - (b) FF] (e). (CIE
2 FS P 4 FS Z \%’i_ =
5 4x10° Rand e P Rand — = L2
. 10 .
= 3x10° SRPT|.. 2/ g e 2 105 A Fs o
g ! o i 3 Vs Rand 3!
) 3 7 . (o2} » -
2 2x10 L - o o = / . SRPT]
—_— v So
025 050 075 025 050 075 025 050 075 10 108
Load Load Load Flow Size (B)
1.0 S
RN —— FF N~ — FF S~ — AN i e
Sl Lo Fs N Fs 3 Fs \ N\
e T~ Rand N Rand .. Rand ——_ N
© . ~— SRPT S SRPT —— SRPT
0.0 = - ———
2x10° 3x10°4x10° 6x10° 104 10° 10° 104 10°
Mean FCT (ps) p99 FCT (us) Max FCT (ps) Load 0.9 FCTs (ps)

FIGURE B.9: The schedulers’ (a) mean, (b) 99" percentile, and (c) maximum flow

completion time metrics for the uniform node distribution across loads 0.1-0.9,

and (d) a scatter plot of flow completion time as a function of flow size for the
same distribution at load 0.9.

N Load 0.1 N Load 0.1 1 Load 0.1
(a) i . [(b) = i () =
5 Fs & Fs & AN 3
Qo5 A . Rand Qo3 Rand A QO] Rand
© N —— SRPT © SRPT © S SRPT
X - X - X ~
152 153 154 155 156 20 22 24 26 28 30 35 40 45 50 55 60
Mean FCT (ps) le3 p99 FCT (us) le3 Max FCT (us) led
N Load 0.5 1 Load 0.5 N Load 0.5
5 o 8ol | ‘ £oosl "
Gos l 1 Rand Gost Rand Gos ™ Fond
© “—— SRPT © I —— SRPT o AN SRPT
0.0 | 0. X -
16 18 20 22 24 26 025 050 075 100 125 150 175 200 o i 20 25 30 ECIY)
Mean FCT (ps) le3 p99 FCT (us) led Max FCT (us) 1e5
N Load 0.89 N Load 0.89 N Load 0.89
. . — FF . — FF . - — FF
5 | Fs 5 | Fs 5 Fs
Qo5 4 Rand Qo5 Rand Qo5 Rand
© 1 SRPT © SRPT. © SRPT
[X [X L 0.
2 3 1 5 6 7 [1 2 3] 5 6 26 28 30 32 E)
Mean FCT (us) le3 p99 FCT (us) led Max FCT (us) le5
1e3 Load 0.1 1e3 Load 0.5 1e3Load 0.89 1e3 Load 0.1 1e3 Load 0.5 1e4Load 0.89 1e4 Load 0.1 1e5 Load 0.5 1esLoad 0.89
1524
Fs 1585 19611 Fs 19984 Fs /| 208 Fs Pt Fs A 5]\ s ool Fs
Lsgal o SRPT \ . sRPT 19982| - SRPT . SRPT . SRPT 42 \ . SRPT - oseeT |,
- / . / \ / 14{ \ /
El 1580 ("~ / Lo4 AR / 10 o " 31
E NV \ /| g 19980) 296 S40 13 7\
5 1520 1575 Fs 1924 | /5 1oo78| /0 204/ 0.9 5 - 3.0
v / .« SRPT \ & 1.99761¢ &L 38 29
S 1518 / 190 e } 08 x A
& 1570 | o 292 % y 11 \
k. Q 19974 2.6/ \ 28
1516 / 1.565 188 \/ 1.9972 2.90 071 N\ . 1/ Fs |10 .
g _— . oseeT |
; 1seol 186 v ! 19970 : 288 i I S B N U : i 09 ; ;i N
025 050 075 035 050 075 025 050 075 025 050 0.75 025 050 075 025 050 075 025 050 075 025 050 075 025 050 075
% Intra-Rack % Intra-Rack % Intra-Rack % Intra-Rack % Intra-Rack % Intra-Rack % Intra-Rack % Intra-Rack % Intra-Rack

FIGURE B.10: Sensitivity of the schedulers’ (a) mean, (b) 99" percentile, and

(c) maximum flow completion times to the changing intra-rack distribution

for loads 0.1, 0.5, and 0.9. The complementary CDF plots include data for all

4 schedulers, whereas the scatter plots contain the top 2 performing schedulers
(SRPT and FS) for clarity.

B.6.2 Throughput and Flows Accepted Performance Plots

Plots showing the schedulers’ throughput and accepted flow performances are
provided for the realistic DCN (Fig. B.12, uniform (Fig. B.13), extreme rack

(Fig. B.14), and extreme nodes (B.15) traffic traces.

B.6. Scheduler Performance Summary

223

N Load 0.1 N Load 0.1 N Load 0.1
(@), il (b) S OBV N fh
5 Fs 5 I FS 5 Fs
Q05 Rand Qos Rand Q05 Rand
o N . SRPT o 4 SRPT o SRPT
0.0 TR I . e 004+ . - v ’ — 00l y ¢ . " o v =
152 154 156 158 160 162 164 166 168 20 25 30 35 40 45 50 04 06 08 10 12 12 16 18 2
Mean FCT (us) le3 p99 FCT (us) 1e3 Max FCT (ps) les
10 Load 0.49) Load 0.49 N Load 0.49
— FF ’ FF
w
Sos | L Fs 5 Fs & Fs
Qo Rand Qo5 t Rand Q05 O Rand
O 1 — SRPT S 4 SRPT © SRPT
00 18 20 22 24 00— y v - e 0.0 ! I - —
e o4 06 08 10 12 14 16 15 20 25 30 35 40 45
Mean FCT (us) p99 FCT (s) led Max FCT (us) 1es
. Load 0.89 1o Load 0.89 5 Load 0.89
— FF FF
w FF w
=] Fs & Fs 8 Fs
Gos Rand 8 0.5 N Rand Qo5 Rand
o SRPT S ™ " s} . SRPT
SRPT — —
0. - s o —
2 3 I3 5 6 7 8 9 o 1 3 7 5 26 28 30 32 34 36 38 40
Mean FCT (us) 1le3 p99 FCT (us) led Max FCT (us) 1e5
1e3 Load 0.1 1e3Load 0.49 1e3Load 0.89 1e3 Load 0.1 55 1e3load 0.49 1e4L0ad 0.89 1e5 Load 0.1 1esLoad 0.49 40 1esLoad 0.89
1545 Fs 1.750 28 A Fs 225 A 14| Fs 204 : A
.« SRPT | 1725 212 .« SRPT | 54 .« SRPT 38
= 1540 _ 200 — 12! 351
£l 1.700 26 @ 210 TRE e
1535 2 45 175 = 3017
5 1675 B, Fs 5 208 Fs 150 5 34
@ 1530, 1650 < SRPT -+ SRPT o 2.06 4.0 © SRPT o 25+ 3.2
3§ 1525 22 - 125 5°°
o 1625 g Q204 35 = 20 3.0
\ 1.00 ¥
1520 \ 1.600 20 202 Fs 06 is s s s
] * . . SRP . § . SRP
1515+ 7 sTs 2,00~ .| 304 | o SRPT 04 SRPT . SRPT

02 o
% Hot Nodes

02 04
% Hot Nodes

02 o
% Hot Nodes

02 04 02 04
% Hot Nodes % Hot Nodes

02 [
% Hot Nodes

02 o
% Hot Nodes

02 04
% Hot Nodes

02 04
% Hot Nodes

FIGURE B.11: Sensitivity of the schedulers’ (a) mean, (b) 99" percentile, and (c)
maximum flow completion times to the changing skewed nodes distribution
for loads 0.1, 0.5, and 0.9. The complementary CDF plots include data for all
4 schedulers, whereas the scatter plots contain the top 2 performing schedulers

(SRPT and FS) for clarity.

B.6.3 Performance Metric Tables

The below performance tables summarise the schedulers’ mean performances
(averaged across 5 runs, 95% confidence intervals reported) for each Pgp;, each

load, and each benchmark.

DCN Benchmarks

A Framework for Generating Custom and Reproducible Synthetic

Traffic

Mean FCT (us)

p99 FCT (us)

Max FCT (us)

Throughput (Frac)

Flows Accepted (Frac)

Info Accepted (Frac)

1557.240.19%
1521.540.028%
1543.540.051%
1518.8+0.021%
1677.7£1.0%
1537.6+£0.11%
1600.8+0.18%
1529.5+0.079%
1887.8+0.78%
1575.3+0.19%
1682.3+0.2%
1551.240.099%
2124.142.2%
1643.5+0.12%
1762.54+0.23%
1561.940.08%
1902.14+1.1%
1740.54+1.2%
1947.74+1.8%
1582.24+0.16%
1989.3+1.0%
1677.74£0.53%
2322.442.7%
1630.0+0.084%
2434.1+1.8%
1672.2+0.4%
3083.84+1.4%
1712.6+0.28%
3394.142.1%
1724.5+0.31%
3861.5+1.8%
1950.34+1.3%
5550.1+1.9%
2015.940.54%
5718.1+7.5%
2645.045.0%

2903.240.77%
1997.24+0.0059%
2708.240.38%
1996.940.0039%
5629.148.4%
1999.440.0039%
3050.2+1.3%
2014.74+0.56%
10474.44+4.9%
2630.44+2.8%
3937.4+0.35%
2500.540.29%
15235.44+11.0%
3562.84+4.5%
5081.840.67%
2771.340.31%
6389.1+2.7%
4533.5+12.0%
6365.3+4.5%
2904.84+0.36%
7602.7+4.6%
3701.94£1.1%
9921.048.2%
3630.4+0.48%
12649.64+5.0%
4415.8+1.9%
19421.04+4.0%
4502.1+1.8%
23179.14+3.5%
6302.9+1.9%
25389.94+1.9%
7574.3+6.7%
44869.3+2.5%
12793.3+1.7%
38174.0+8.7%
19839.54+12.0%

44249.84+8.9%
45984.44+11.0%
72316.3+9.1%
50036.6+11.0%
77986.8+8.3%
72962.6+5.9%
182454.6+11.0%
102306.4+£12.0%
174541.8+£16.0%
134195.3+3.0%
381073.0+4.0%
235811.04£5.7%
247350.94+7.0%
230440.4+6.6%
295319.0+1.8%
221163.5+5.0%
391005.8+7.6%
344343.1+7.9%
443976.4+11.0%
363481.8+7.4%
335234.245.2%
314020.0+4.8%
398738.8+2.5%
322416.8+5.0%
305610.1+2.9%
246486.9+2.9%
377667.2+2.1%
280418.94+5.9%
265525.7+5.5%
236377.1£3.3%
317002.44+2.3%
271794.0+1.7%
333023.3+11.0%
254036.6+10.0%
346773.24+12.0%
319581.94+11.0%

0.99440.2%
0.99340.24%
0.9914+0.2%
0.9954+0.2%
0.985+0.39%
0.98340.4%
0.96240.34%
0.9854+0.32%
0.9754+0.17%
0.97+0.12%
0.8574+0.87%
0.9564+0.29%
0.93940.38%
0.9264+0.58%
0.816+0.75%
0.90240.41%
0.90940.94%
0.9+1.1%
0.818+1.2%
0.8754+0.76%
0.9174+0.39%
0.91240.31%
0.805+0.48%
0.87940.47%
0.91240.35%
0.91440.3%
0.7554+1.1%
0.87840.46%
0.94+0.23%
0.9134+0.28%
0.7314+0.83%
0.8484+0.36%
0.87+0.62%
0.8734+0.9%
0.69240.71%
0.7554+0.43%

1.0£0.0012%
1.0+0.00082%
1.040.00078%
1.040.00025%
1.040.01%
1.0£0.0019%
1.0£0.0025%
1.0£0.0019%
0.999+40.0073%
1.040.0013%
0.999+40.0063%
1.04:0.00062%
0.99840.02%
0.99940.0025%
0.99940.0092%
1.04:0.0014%
0.99940.0067%
0.99940.0055%
0.99840.0037%
1.040.0012%
0.99940.0057%
0.9994-0.0036%
0.99740.027%
1.0£0.0022%
0.99840.033%
0.999+40.0033%
0.99340.048%
0.999+40.008%
0.99540.033%
0.99940.004%
0.98840.033%
0.99940.017%
0.98740.041%
0.9984+0.013%
0.97940.045%
0.99340.12%

0.9944+0.2%
0.99340.24%
0.9914+0.2%
0.9954+0.2%
0.985+0.39%
0.98340.4%
0.96240.34%
0.98540.32%
0.9754+0.17%
0.97£0.12%
0.8574+0.87%
0.9564+0.29%
0.93940.38%
0.9264+0.58%
0.8164+0.75%
0.90240.41%
0.90940.94%
0.9+1.1%
0.818+1.2%
0.8754+0.76%
0.91740.39%
0.91240.31%
0.805+0.48%
0.87940.47%
0.91240.35%
0.91440.3%
0.755+1.1%
0.87840.46%
0.94+0.23%
0.9134+0.28%
0.7314+0.83%
0.8484+0.36%
0.87+0.62%
0.8734+0.9%
0.69240.71%
0.7554+0.43%

Scheduler performance summary with 95% confidence intervals for
the University benchmark.

Mean FCT (us)

p99 FCT (us)

Max FCT (us)

Throughput (Frac)

Flows Accepted (Frac)

Info Accepted (Frac)

Appendix B.
224

Load Subject
0.10 FF
0.10 FS
0.10 Rand
0.10 SRPT
0.20 FF
0.20 FS
0.20 Rand
0.20 SRPT
0.30 FF
0.30 FS
0.30 Rand
0.30 SRPT
0.40 FF
0.40 FS
0.40 Rand
0.40 SRPT
0.50 FF
0.50 FS
0.50 Rand
0.50 SRPT
0.60 FF
0.60 FS
0.60 Rand
0.60 SRPT
0.70 FF
0.70 FS
0.70 Rand
0.70 SRPT
0.79 FF
0.79 FS
0.79 Rand
0.79 SRPT
0.89 FF
0.89 FS
0.89 Rand
0.89 SRPT
TABLE B.4:

Load Subject
0.10 FF
0.10 FS
0.10 Rand
0.10 SRPT
0.20 FF
0.20 FS
0.20 Rand
0.20 SRPT
0.30 FF
0.30 FS
0.30 Rand
0.30 SRPT
0.40 FF
0.40 FS
0.40 Rand
0.40 SRPT
0.50 FF
0.50 FS
0.50 Rand
0.50 SRPT
0.60 FF
0.60 FS
0.60 Rand
0.60 SRPT
0.70 FF
0.70 FS
0.70 Rand
0.70 SRPT
0.79 FF
0.79 FS
0.79 Rand
0.79 SRPT
0.90 FF
0.90 FS
0.90 Rand
0.90 SRPT

1576.740.34%
1522.1£0.021%
1550.940.053%
1520.3+0.01%
1726.6+1.6%
1532.2+0.13%
1598.9+0.16%
1529.5+0.11%
2058.943.1%
1549.9+0.13%
1684.2+0.39%
1543.2+0.056%
2638.3+4.1%
1599.440.25%
1799.14+0.54%
1564.140.085%
2824.64+5.9%
1682.640.72%
1993.9+1.9%
1582.940.26%
2230.441.3%
1705.0£0.53%
2282.441.6%
1624.0+0.21%
2449.3+0.71%
1696.4+0.49%
2636.540.7%
1691.0+0.23%
3400.040.81%
1732.440.24%
3264.4+1.7%
1841.940.58%
5851.8+1.9%
1940.34+0.35%
4124.741.4%
2492.0+5.5%

3207.943.5%
1997.14+0.0079%
2765.24:0.49%
1997.340.0079%
6794.6+11.0%
2048.44+0.76%
3199.84+2.0%
2214.84+1.6%
16033.04+12.0%
2528.84+1.1%
4149.84+1.9%
2616.240.41%
30026.6+9.2%
3333.2+1.9%
5653.64+2.3%
2802.840.32%
34301.5+£14.0%
5048.543.6%
7870.444.9%
2938.140.38%
11218.745.3%
5843.243.2%
12522.146.0%
3425.1+1.3%
13110.24+2.3%
5751.04+4.4%
18278.24+2.0%
4085.2+1.5%
24127.3+1.5%
6508.5+1.6%
27586.443.0%
5834.0+2.5%
48861.6+2.7%
11084.74+2.1%
36647.1+2.2%
16474.54+15.0%

50143.545.5%
46335.0+4.4%
82610.547.8%
48062.1+5.8%
70833.743.0%
66026.742.0%
166233.24+8.3%
87532.1+7.1%
149462.64+8.8%
121311.04+7.3%
285851.7+4.8%
196424.249.0%
205182.9+8.2%
211188.7+4.4%
280714.7+3.0%
210192.4+7.6%
365468.3+13.0%
311288.14+9.1%
381296.94+10.0%
332134.3+£13.0%
339021.94£2.3%
326252.1+3.6%
412445.3+4.4%
375244.9+5.9%
297091.8+4.2%
283512.5+4.4%
363011.5+2.3%
315470.7+£7.2%
275964.6+3.9%
258779.8+3.2%
325223.7+£2.3%
292946.1+3.7%
274329.942.0%
268340.1+3.0%
294642.14+0.58%
267699.8+2.0%

0.99840.085%
0.99740.095%
0.99440.19%
0.99740.13%
0.98340.29%
0.98340.22%
0.94640.6%
0.98440.22%
0.98+0.19%
0.98140.24%
0.89940.73%
0.9784+0.22%
0.94240.6%
0.9434+0.21%
0.84+1.1%
0.9374+0.46%
0.907+1.0%
0.9024+1.2%
0.8114+1.1%
0.903+0.65%
0.9154+0.44%
0.907+0.43%
0.7824+1.4%
0.898+0.38%
0.92140.26%
0.90740.17%
0.74£1.0%
0.89240.36%
0.8974+0.37%
0.89340.45%
0.6754+0.73%
0.8534+0.25%
0.866+0.64%
0.84240.52%
0.625+1.5%
0.7114+0.41%

.0+0.00094%
.0+0.0006%
.0£0.00074%
.0£0.00047%
0.999+0.01%
1.04+0.00072%
1.0£0.0044%
1.0£0.00048%
0.999+0.016%
1.0£0.001%
0.999+0.0088%
1.0£0.00089%
0.997+0.036%
1.0£0.002%
0.999+0.015%
1.0£0.0017%
0.994+0.11%
0.999+0.0061%
0.998+0.019%
1.04+0.0026%
0.997+0.065%
0.999+0.0044%
0.99740.029%
1.0£0.0028%
0.998+0.02%
0.999+0.003%
0.995+0.029%
1.0£0.0026%
0.994+0.03%
0.999+0.0034%
0.989+0.04%
0.999+0.011%
0.983+0.08%
0.998+0.0064%
0.983+0.055%
0.99440.2%

1
1
1
1

0.99840.085%
0.99740.095%
0.99440.19%
0.99740.13%
0.9834+0.29%
0.98340.22%
0.9464+0.6%
0.98440.22%
0.98+0.19%
0.98140.24%
0.89940.73%
0.9784+0.22%
0.94240.6%
0.9434+0.21%
0.84+1.1%
0.9374+0.46%
0.907+1.0%
0.9024+1.2%
0.8114+1.1%
0.903+0.65%
0.9154+0.44%
0.90740.43%
0.7824+1.4%
0.89840.38%
0.9214+0.26%
0.9074+0.17%
0.74£1.0%
0.89240.36%
0.8974+0.37%
0.89340.45%
0.6754+0.73%
0.8534+0.25%
0.866+0.64%
0.84240.52%
0.625+1.5%
0.71140.41%

TABLE B.5: Scheduler performance summary with 95% confidence intervals for
the Private Enterprise benchmark.

B.6. Scheduler Performance Summary

225

University

Commercial Cloud Private Enterprise

Social Media Cloud

— led (@) (c)
9, 1.0 - 1.000 S===== _—
a 5 2 0995 2
z, B9 g;‘ : o9 =
3 =4 2 0.990 FF 3
5 , oS08 ” Fs <08
= = 0.985
31 / Rand £ ES Rand o
f=4
E SRPT 07 2 0.980 SRPT £
025 050 075 025 050 075 025 050 075
Load Load Load
\\ FF FF <" FF FF —— "
~. Fs FS 1 FS FS
~ Rand Rand ~ N Rand Rand
—— SRPT || — SRPT = —— SRPT —— SRPT N
05 10 15 20 25 30 070 075 080 085 090 095 100 0.980 0985 0990 0995 1000 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Throughput (B/us) le4 Throughput Flows Accepted Info Accepted
le4
= 1.0
g3 10 - 1.000 — =
@ E 2) 209
=) 209 2 (995 a0
52 < 8 5]
3 D8 o] FF O 0.8
< 3> < 0.990 s <
E Rand < o7 2 Rand o7
2 SRPT = S 0985 SRPT £
£ i
025 050 075 025 050 075 0.25
Load Load
~— FF FF TN FF o=
e FS FS W\ Fs
\ Rand Rand N Rand
T—— SRPT || — SRPT —— SRPT —
05 10 15 20 25 30 0.7 038 09 10 0985 0.990 0.995 07 038 0.9 1.0
Throughput (B/us) le4 Throughput Flows Accepted Info Accepted
—~ led 10 10
Y B —| N e 5 L0 N ——
S FF A ~~ 2 X S © ~—
a Fs (i E T - AN L 2 TS
=5 Rand <08 3 0.99 \ %oa \"
2 | - ST e FF \] FF S FF \
=] < O \
< ° FS . FS < FS .
{=2 = v 0.98 /
S1 < Rand = Rand v L Rand
2 = o6 SRPT o SRPT 06 SRPT
_’E 'S
025 050 075 025 050 075 025 050 075 025 050 075
Load Load Load Load
\\ FF FF R —i FF FF - N
~__ FS FS \ Fs Fs \
~— Rand Rand \ Rand " Rand \
—— SRPT || — SRPT \\ —— SRPT) — SRPT
05 10 15 20 25 30 06 0.7 038 09 10 0975 0.980 0.985 0.990 0.995 1.000 06 0.7 038 09 10
Throughput (B/us) led Throughput Flows Accepted Info Accepted
— le4
[0 7 Lo < 10 B
<3 = N 2 3 TN
o 3
=) 209 \ a 509 \
5 < \ 8 oo o \
32 FF Dg FF o O s FF \
E] & o]
< FS 3 FS \ - < FS \
=1 Rand ,‘E 0.7 Rand \ 208 Q07 Rand \\
<4 SRPT SRPT \ K= c SRPT \
=] 0.6 > L 0.6 :
025 050 075 025 050 0.75 025 050 075
Load Load Load
T~ FF PP T~ FFo— PP T~
‘\\\ FS FS — FS FS
- Rand Rand i Rand Rand
LT SRPT —— SRPT —— SRPT —— SRPT
05 10 15 20 25 30 3506 0.7 038 09 10 075 080 085 090 095 1.00 0.6 07 0.8 0.9
Throughput (B/us) led Throughput Flows Accepted Info Accepted

F1GURE B.12: The schedulers’ (a) absolute throughput (information units trans-
ported per unit time), (b) relative throughput (fraction of arrived information
successfully transported), (c) fraction of arrived flows accepted, and (d) fraction of
arrived information accepted metrics for the DCN benchmark distributions

across loads

0.1-0.9.

Appendix B. A Framework for Generating Custom and Reproducible Synthetic

226

Traffic

led

1.0 - 1.00 1.0 Frammmre
(@) g —] (b, ©)3 = (dg e
Q A 309 S 0.99 a NN
9 \ N
2 S o 9] FF
2 FF Dos 2 FF 0 0.8 \
< Fs ° » 0.98 FS < FS
=2 = 2 Rand L 07 Rand
351 Rand =07 o = 0
£ SRPT 2 097 SRPT £ SRPT
= 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75
025 030 075 1nad Load Load
1.0
o FF FF = FF i E FF &S
o FS FS ~ FS ~\ FS .
O 0.5 Rand T Rand \ Rand \] Rand \
o N Y 1
SRPT e SRPT SRPT SRPT \\
0.0 ™ X
05 10 15 20 25 30 0.7 0.8 0.9 10 097 0.98 0.99 1.00 0.7 0.8 0.9 1.0
Throughput (B/ps) le4 Throughput Flows Accepted Info Accepted

FIGURE B.13: The schedulers’ (a) absolute throughput (information units trans-
ported per unit time), (b) relative throughput (fraction of arrived information
successfully transported), (c) fraction of arrived flows accepted, and (d) fraction of
arrived information accepted metrics for the uniform node distribution across

Load 0.1

loads

0.1-0.9.

N Load 0.1 N Load 0.1
1 ¥
@ = ® = © T =
& Fs Qos [,, Fs Sos I ~—
Q057 Rand R Q T Rand Q Rand
o — SRPT . © SRPT T © — SRPT -
0. o -
000591 0592 0993 0994 0995 0996 0997 0998 09990 09992 09994 09996 09998 10000 0991 0992 0993 0994 0995 0996 0997 0998
Throughput Flows Accepted Info Accepted
N Load 0.5 N Load 0.5 N Load 0.5
& s 5 " 5 "
Q0% Rand Y Qs Rand Qo8 Rand
© SRPT i © | — sreT © SRPT
o + o o +
082 084 086 088 090 092 094 096 098 0.9950 0.9955 0.9960 0.9965 0.9970 0.9975 0.9980 0.9985 0.9990 082 084 086 088 090 092 094 096 098
Throughput Flows Accepted Info Accepted
N Load 0.89 N Load 0.89 N Load 0.89
w FF w FF w FF
O st Fs Qs s \ L Qs s
o Rand Q- Rand N - Rand
© SRPT 1 1 O | sreT R 1 © SRPT
o - 0. - o
055 060 065 070 075 080 085 0965 0970 0875 0980 0985 0990 0995 055 060 065 070 075 080 085
Throughput Flows Accepted Info Accepted
Load 0.1 Load 0.5 Load 0.89 Load 0.1 Load 0.5 Load 0.89 Load 0.1 Load 0.5 Load 0.89
0.998 7] 0.9800 A < 1.0000 7o -] 0998 709800 A
N A — - / J \ -
Y NN 0861 0.995 / |0 N \ 0.86
0.997 7 [0S N \ T 0.9998- 0,998 - 0997 A 09775 \//
5 '\ 09750 084 =3 o [\ / |oems0 08e
o / 0.990 s \
£ o099 \ /) losrs FF | 80999 . FF Z099% \ 09725 o
5 ‘ o8 0997 Fs g \’ o
3 0995 V 09700 082 SRPT | T 0,990 0985 . SRPT | < 0995 (0.9700 082 . sReT
E 2 2
0.9675 3 N 0.9675
09941/ - FF . FF 0.80 2 09992+ | 099 i N £ 0.004 < FF - 0.80
FS 09650 Fs / FS 0.980 1< FS 09650 Fs -
0993/ ST | sl ST ors P 09900/ y 0995 SRPT 0993 LS| sl ST ors)
025 050 075 025 050 075 025 050 075 025 050 075 025 050 075 025 050 075 025 050 075 025 050 075 025 050 075

% Intra-Rack

% Intra-Rack

% Intra-Rack

% Intra-Rack

% Intra-Rack

% Intra-Rack % Intra-Rack

% Intra-Rack % Intra-Rack

FIGURE B.14: Sensitivity of the schedulers’ (a) relative throughput, (b) fraction of
arrived flows accepted, and (c) fraction of arrived information accepted metrics to
the changing intra-rack distribution for loads 0.1, 0.5, and 0.9. The complemen-
tary CDF plots include data for all 4 schedulers, whereas the scatter plots contain
the top 3 performing schedulers (SRPT, FS, and FF) for clarity.

B.6. Scheduler Performance Summary

227

Load 0.1

FF
Fs

Rand
SRPT

0986 0988

0990 0992 099
Throughput

Load 0.49

0594

— FF
Fs
Rand
SRPT

0800 0825

0850 0875 0800 0925 0850 0875

Throughput
Load 0.89
FF
Fs
AN Rand
— ST

00
09990

09992

Load 0.1

FF
Fs

— Rand
SRPT

09994 09996 0.999!
Flows Accepted

Load 0.49

8

1.0000

0986 0988

FF
Fs

Rand
SRPT

Load 0.1

FF
Fs
Rand

SRPT -
0990 0992 0994 099
Info Accepted

Load 0.49

— FF
Fs
Rand
SRPT

0.70 080 085

075
Throughput

Load 0.49 Load 0.89

0965 0870 0975 0880 0985

Flows Accepted

Load 0.89

FF
Fs

Rand
SRPT

Flows Accepted
Load 0.49

0.9950 0.9955 0.9960 0.9965 0.9970 0.9975 0.9980 0.9985 0.9990

0990 0595

Load 0.89

0800 0825

0850 0875 0900 0925 0950 0975
Info Accepted
Load 0.89

FF
Fs

N Rand

\ —— SRPT

0.70 0.80 085

075
Info Accepted

Load 0.49 Load 0.89

Load 0.1

0997

0996

Throughput

09sa/]

09931}

094 {4

092

0.90

088

086

02 04
% Hot Nodes

096

7] os7s
0850{"
0825

Fs
- SRPT

*0.800

0775

0750 {1
v | o7)

02 04 02)
% Hot Nodes % Hot Nodes

1.0000

09998

09996

09994

lows Accepted

. FF
Fs
. SRRT

0.9990

099851 ||

0.9980{!

09975

09970 |/

09951

|

0990

0985
| . 09801
R 0975

[N
©OSRPT N\ 70

02 0
% Hot Nodes

02 04
% Hot Nodes

02 0
% Hot Nodes

0997

0.996-

Info Accepted

3

09931

02 04
% Hot Nodes

J ogrs ~
osso|”
0825
0800
0775
0750 |+
0725

02 04 02 04
% Hot Nodes % Hot Nodes

FIGURE B.15: Sensitivity of the schedulers’ (a) relative throughput, (b) fraction
of arrived flows accepted, and (c) fraction of arrived information accepted metrics
to the changing skewed nodes distribution for loads 0.1, 0.5, and 0.9. The
complementary CDF plots include data for all 4 schedulers, whereas the scatter
plots contain the top 3 performing schedulers (SRPT, FS, and FF) for clarity.

Load Subject Mean FCT (us) p99 FCT (us) Max FCT (us) Throughput (Frac) Flows Accepted (Frac) Info Accepted (Frac)
0.10 FF 1588.2+0.46% 3604.1+2.4% 49490.31+6.8% 0.996+0.052% 1.04+0.0019% 0.996+0.052%
0.10 FS 1520.140.083% 1997.14+0.0039% 42361.1+4.6% 0.994+0.16% 1.04+0.00059% 0.994+0.16%
0.10 Rand 1551.440.12% 2816.9+0.47% 75051.0£13.0% 0.994+0.2% 1.04+0.0023% 0.994+0.2%
0.10 SRPT 1519.340.077% 1997.74+0.0059% 42911.84+5.8% 0.996+0.08% 1.040.00037% 0.996+0.08%
0.20 FF 1747.8+£1.2% 7437.1+6.9% 67090.9+3.3% 0.9940.29% 0.99940.018% 0.9940.29%
0.20 FS 1524.940.14% 1998.84+0.0059% 59363.5+6.5% 0.99140.3% 1.040.0013% 0.99140.3%
0.20 Rand 1602.14+0.24% 3372.3+1.2% 171058.6+6.9% 0.97+0.64% 1.0+0.0033% 0.97+0.64%
0.20 SRPT 1525.8+0.13% 2276.5+0.57% 71962.2+7.8% 0.991+0.26% 1.0+£0.0013% 0.991+0.26%
0.30 FF 2274.3+2.6% 21086.74+9.0% 116200.4+8.8% 0.987+0.06% 0.99940.012% 0.987+0.06%
0.30 FS 1538.440.061% 2149.440.9% 85571.7+5.5% 0.9940.066% 1.040.00071% 0.9940.066%
0.30 Rand 1707.2£0.29% 4544.2+1.7% 249283.94+9.6% 0.933£0.58% 1.04+0.003% 0.933£0.58%
0.30 SRPT 1540.74£0.023% 2620.5+0.31% 119981.5+12.0% 0.989+0.092% 1.040.00056 % 0.989+0.092%
0.40 FF 3203.24+3.6% 39373.6+7.1% 153040.1+4.9% 0.964+0.31% 0.99440.11% 0.964+0.31%
0.40 FS 1557.24+0.17% 2559.2+0.57% 129399.84+9.6% 0.968+0.36% 1.040.00083% 0.968+0.36%
0.40 Rand 1889.3+0.56% 6600.9+3.0% 259317.4+3.9% 0.87+0.65% 0.99940.012% 0.87+0.65%
0.40 SRPT 1564.1+0.13% 2830.9+0.38% 190613.2+10.0% 0.97+0.25% 1.04+0.00072% 0.97+0.25%
0.50 FF 4495.2+3.4% 60948.44+4.3% 255736.7+14.0% 0.939+0.64% 0.989+0.18% 0.939+0.64%
0.50 FS 1584.6+0.13% 2963.7+0.38% 196875.6+7.7% 0.947+0.84% 1.04+0.0039% 0.947+0.84%
0.50 Rand 2324.1+3.3% 12139.1+11.0% 353111.3+13.0% 0.797+0.74% 0.99640.027% 0.797+0.74%
0.50 SRPT 1585.34+0.082% 2962.4+0.21% 254463.8+8.2% 0.942+0.56% 1.040.0022% 0.942+0.56%
0.60 FF 4837.1+5.1% 68328.0+3.3% 387525.7+2.3% 0.924+0.23% 0.9784+0.2% 0.924+40.23%
0.60 FS 1639.9+0.14% 3835.1+0.83% 268943.4+3.6% 0.94140.14% 1.040.0018% 0.94140.14%
0.60 Rand 3236.84+0.65% 22198.940.66% 439374.7+1.1% 0.74440.42% 0.9934+0.015% 0.74440.42%
0.60 SRPT 1628.1+£0.15% 3565.0+0.8% 308435.8+4.8% 0.92240.26% 1.0+0.0026% 0.92240.26%
0.70 FF 3173.6+0.7% 22472.44+2.9% 327840.2+2.7% 0.905+0.31% 0.99240.044% 0.905+0.31%
0.70 FS 1686.9+0.23% 4915.5+1.0% 254484.7+1.8% 0.921+0.44% 0.99940.0024% 0.921+40.44%
0.70 Rand 3760.31+0.94% 31788.5+2.2% 365861.9+£2.2% 0.675+£0.25% 0.98940.027% 0.675+0.25%
0.70 SRPT 1715.240.24% 4404.1£1.2% 264969.5+5.5% 0.903£0.33% 1.04+0.004% 0.903£0.33%
0.79 FF 4144.24+2.0% 30541.3+4.0% 301349.24+2.6% 0.902+0.18% 0.99340.025% 0.902+0.18%
0.79 FS 1743.5+0.24% 6572.0+1.6% 259058.4+2.9% 0.905+0.18% 0.99940.0026% 0.905+0.18%
0.79 Rand 4740.4£0.98% 46094.7+2.0% 344636.1+0.65% 0.6£0.65% 0.98+0.032% 0.6£0.65%
0.79 SRPT 1889.5+0.74% 6169.9+3.9% 292500.7+4.5% 0.868+0.038% 0.99940.0052% 0.868+0.038%
0.89 FF 6856.2+0.89% 54158.74+2.0% 272757.7+1.4% 0.853+0.25% 0.976+0.14% 0.853+0.25%
0.89 FS 1940.3+£0.16% 10891.240.75% 253250.9+1.6% 0.844+0.37% 0.9984+0.0061% 0.844+0.37%
0.89 Rand 5320.7+1.0% 55646.54+1.6% 300652.9+0.86% 0.54140.4% 0.97240.051% 0.54140.4%
0.89 SRPT 2234.9+1.5% 10623.8+4.9% 267587.5+2.8% 0.719+0.62% 0.99640.025% 0.719+0.62%

TABLE B.6: Scheduler performance summary with 95% confidence intervals for
the Commercial Cloud benchmark.

Appendix B. A Framework for Generating Custom and Reproducible Synthetic

228

Traffic

Load

Subject

Mean FCT (us)

p99 FCT (us)

Max FCT (us)

Throughput (Frac)

Flows Accepted (Frac)

Info Accepted (Frac)

0.10
0.10
0.10
0.10
0.20
0.20
0.20
0.20
0.30
0.30
0.30
0.30
0.40
0.40
0.40
0.40
0.50
0.50
0.50
0.50
0.60
0.60
0.60
0.60
0.69
0.69
0.69
0.69
0.80
0.80
0.80
0.80
0.90
0.90
0.90
0.90

FF

FS
Rand
SRPT
FF

FS
Rand
SRPT
FF

FS
Rand
SRPT
FF

FS
Rand
SRPT
FF

FS
Rand
SRPT
FF

FS
Rand
SRPT
FF

FS
Rand
SRPT
FF

FS
Rand
SRPT
FF

FS
Rand
SRPT

1536.7+0.074%
1513.940.062%
1536.5+0.054%
1515.240.062%
1591.64+0.11%
1523.740.033%
1581.440.097%
1532.640.054%
1707.840.42%
1539.540.056%
1660.7+0.13%
1565.840.095%
1924.6+0.8%
1563.940.11%
1808.3+0.31%
1622.6+0.19%
2646.7+2.9%
1624.4+0.21%
2218.840.77%
1737.3+0.53%
4495.944.4%
1755.84+0.41%
3262.0+1.6%
2034.542.0%
8175.5+2.7%
2384.6+1.7%
6394.441.4%
4937.449.9%
7182.3+1.7%
4026.142.1%
8489.042.2%
11412.4+4.1%
8731.6+1.5%
4809.94+1.4%
10800.940.96%
18401.3+2.4%

2766.24+0.3%
2053.440.84%
2762.440.35%
2189.14+0.38%
3410.3+1.2%
2560.640.61%
3237.3+£1.2%
2720.740.49%
4849.3+2.3%
2859.540.27%
4184.24+1.1%
2972.740.14%
7639.743.0%
3266.6+1.1%
5802.5+0.92%
3731.7+£0.93%
20076.0+7.9%
4201.741.4%
10570.143.4%
4829.9+1.8%
55356.7+7.6%
6110.1+1.8%
24348.04+2.2%
8447.14£8.2%
121246.243.5%
14253.54+3.9%
72096.843.3%
64798.0+18.0%
77566.243.8%
32187.74£2.7%
89488.4+1.5%
154590.043.9%
76236.3+1.8%
40007.0+2.0%
110549.14+0.69%
204251.6+2.0%

7153.942.0%
6892.34+3.1%
13551.44+11.0%
6820.54+3.6%
12773.24+12.0%
11206.14+11.0%
29019.5+19.0%
11620.8411.0%
24735.7410.0%
15729.0+8.7%
47524.14+19.0%
18417.1+12.0%
39600.949.7%
17450.84:3.5%
92643.3423.0%
23635.447.2%
117682.7+9.7%
31567.843.4%
207351.1+11.0%
49492.84+6.5%
237610.0+£7.3%
47599.245.6%
269243.0£2.0%
193698.448.9%
468538.0+5.4%
138806.74+6.4%
507914.94£2.5%
500125.6+2.8%
443785.0+2.9%
243834.5+3.5%
446095.0+1.4%
443708.3+1.7%
380339.7+2.7%
228118.7+2.1%
407971.94+1.1%

416090.44+0.56%

1.040.0064%
1.040.0062%
1.040.0079%
1.040.0063%
1.040.0045%
1.040.0056%
1.0+0.0099%
1.0+0.0052%
1.04£0.011%
1.04+0.0089%
0.99940.025%
1.040.0073%
0.99840.021%
0.99940.019%
0.996+0.042%
0.999+0.01%
0.99640.066%
0.99740.058%
0.9874+0.15%
0.99740.045%
0.98840.16%
0.99240.15%
0.95140.31%
0.99240.12%
0.96440.22%
0.98640.14%
0.90140.29%
0.93940.81%
0.93840.13%
0.94740.19%
0.84640.23%
0.74840.42%
0.946+0.13%
0.93140.14%
0.78840.41%
0.6140.78%

0+£0.00041%
0+£0.00024%
0+£0.00056%
0+£0.00032%
0+£0.00091%
0+£0.00047%
0+£0.0015%
0+£0.0005%
0+£0.0032%
0+£0.0006%
0+£0.0033%
040.00098%
0.999+0.0098%
1.01+0.0023%
0.999+0.0058%
1.01+0.0038%
0.997+0.052%
1.0£0.0047%
0.998+0.019%
0.999+0.013%
0.989+0.053%
0.999+0.024%
0.991£0.049%
0.998+0.071%
0.934+0.82%
0.998+0.026%
0.98+0.049%
0.981+0.55%
0.951+0.19%
0.992+0.034%
0.966+£0.06%
0.854+0.88%
0.97+0.2%
0.989+0.038%
0.949+0.15%
0.751£0.98%

RFRRRRRRRRERRR

1.040.0064%
1.040.0062%
1.040.0079%
1.04:0.0063%
1.040.0045%
1.040.0056%
1.0+0.0099%
1.0+0.0052%
1.0+0.011%
1.040.0089%
0.99940.025%
1.040.0073%
0.99840.021%
0.99940.019%
0.996+0.042%
0.999+0.01%
0.99640.066%
0.99740.058%
0.98740.15%
0.99740.045%
0.98840.16%
0.99240.15%
0.95140.31%
0.99240.12%
0.964+0.22%
0.986+0.14%
0.90140.29%
0.93940.81%
0.93840.13%
0.94740.19%
0.84640.23%
0.74840.42%
0.946+0.13%
0.93140.14%
0.78840.41%
0.6140.78%

TABLE B.7: Scheduler performance summary with 95% confidence intervals for

the Social Media Cloud benchmark.

B.6. Scheduler Performance Summary

229

Skewed Nodes Distribution Benchmark

Mean FCT (us)

p99 FCT (us)

Max FCT (us)

Throughput (Frac)

Flows Accepted (Frac)

Info Accepted (Frac)

Load Subject
0.1 FF
0.1 FS
0.1 Rand
0.1 SRPT
0.2 FF
0.2 FS
0.2 Rand
0.2 SRPT
0.3 FF
0.3 Fs
0.3 Rand
0.3 SRPT
0.4 FF
0.4 FS
0.4 Rand
0.4 SRPT
0.5 FF
0.5 FS
0.5 Rand
0.5 SRPT
0.6 FF
0.6 FS
0.6 Rand
0.6 SRPT
0.7 FF
0.7 FS
0.7 Rand
0.7 SRPT
0.8 FF
0.8 Fs
0.8 Rand
0.8 SRPT
0.9 FF
0.9 FS
0.9 Rand
0.9 SRPT

1554.5+0.15%
1518.8+0.12%
1544.14+0.11%
1518.3+0.12%
1620.8+0.34%
1524.34+0.1%
1579.34+0.18%
1524.940.087%
1744.240.55%
1532.940.1%
1643.64+0.22%
1537.14£0.071%
1917.340.82%
1544.540.079%
1776.34+0.22%
1554.74+0.058%
2254.640.82%
1563.8+0.16%
2259.14+1.4%
1580.440.069%
2696.54+1.4%
1595.6+0.15%
3309.7+1.1%
1620.940.077%
3436.84+1.0%
1660.94+0.21%
4393.5+1.1%
1668.4+0.15%
4361.4+2.1%
1758.14+0.5%
5762.24+1.5%
1758.140.41%
5520.34+1.7%
1890.94+0.47%
7095.94+1.3%
1890.8+0.89%

2977.0+0.79%
1997.5+0.0039%
2750.140.34%
1998.040.0039%
4398.3+4.0%
1999.640.016%
3049.841.1%
2234.741.0%
6564.0+2.3%
2255.940.46%
3856.540.36%
2612.7+0.59%
9481.84-2.8%
2602.740.7%
5093.540.91%
2819.0+0.48%
14792.94+1.9%
2927.5+0.58%
9368.24+3.4%
2948.540.13%
19574.043.3%
3652.140.98%
17326.44+1.6%
3373.6+0.78%
27933.1+2.3%
4953.9+1.2%
24778.6+1.8%
3827.340.71%
34817.042.7%
7135.041.9%
32239.6+1.4%
4842.1+2.4%
43104.14£2.4%
9974.241.9%
39006.4+1.4%
6584.6+4.1%

38288.3+6.7%
39693.2+4.6%
60170.8+9.4%
41190.0+5.2%
43732.0+4.4%
42196.8+4.5%
79304.04+9.3%
44396.8+4.8%
80217.5+5.9%
71447.0+7.3%
180283.046.6%
84911.1+7.0%
89676.1+6.4%
85476.6+5.7%
239854.047.3%
109885.34+8.2%
100669.6+4.8%
101281.5+7.7%
403534.7+12.0%
148065.04+4.9%
242541.4+13.0%
161242.9414.0%
401082.84+4.4%
294496.9+6.8%
297748.1+£3.1%
255268.4+4.4%
354839.4+2.2%
320957.0+4.4%
287276.943.8%
283104.741.3%
329015.74£2.0%
309165.943.6%
278164.1+£2.2%
287700.1+3.1%
306075.6+1.6%
287161.6+2.9%

0.9954+0.11%
0.9954+0.11%
0.99140.15%
0.9954+0.11%
0.98+0.3%
0.98240.32%
0.97440.25%
0.9834+0.28%
0.98840.18%
0.98940.16%
0.97340.27%
0.9940.15%
0.98140.29%
0.9840.3%
0.94640.38%
0.984+0.25%
0.97840.24%
0.98140.23%
0.88340.74%
0.9774+0.25%
0.9714+0.36%
0.97340.24%
0.8240.87%
0.96240.35%
0.9354+0.51%
0.9424+0.36%
0.7384+1.1%
0.91440.47%
0.90740.59%
0.899+0.8%
0.693+1.1%
0.8584-0.63%
0.846+0.61%
0.823+0.74%
0.6274+0.93%
0.77140.54%

1.040.024%
1.040.024%
1.040.024%
1.040.024%
0.99940.054%
0.99940.055%
0.99940.057%
0.999+0.055%
0.99940.069%
0.99940.064%
0.99940.066%
0.9994-0.064%
0.99840.057%
0.9994-0.049%
0.99940.05%
0.999+0.05%
0.998+0.046%
0.99940.042%
0.99740.041%
0.99940.04%
0.99740.051%
0.99940.051%
0.99340.066%
0.99940.051%
0.99440.077%
0.99940.078%
0.98640.082%
0.99840.077%
0.99+0.15%
0.99840.1%
0.97740.15%
0.99840.11%
0.98340.061%
0.998+0.038%
0.96840.041%
0.998+0.036%

0.9954+0.11%
0.9954+0.11%
0.9914+0.15%
0.9954+0.11%
0.9840.3%
0.98240.32%
0.97440.25%
0.98340.28%
0.9884+0.18%
0.98940.16%
0.97340.27%
0.99+0.15%
0.98140.29%
0.9840.3%
0.94640.38%
0.984+0.25%
0.97840.24%
0.98140.23%
0.88340.74%
0.9774+0.25%
0.97140.36%
0.97340.24%
0.8240.87%
0.96240.35%
0.9354+0.51%
0.94240.36%
0.7384+1.1%
0.91440.47%
0.90740.59%
0.899+0.8%
0.693+1.1%
0.85840.63%
0.846+0.61%
0.823+0.74%
0.62740.93%
0.77140.54%

TABLE B.8: Scheduler performance summary with 95% confidence intervals for
the skewed__nodes__sensitivity__uniform and rack__sensitivity__uniform
benchmarks.

A Framework for Generating Custom and Reproducible Synthetic

Traffic

Mean FCT (us)

p99 FCT (us)

Max FCT (us)

Throughput (Frac)

Flows Accepted (Frac)

Info Accepted (Frac)

1676.3+1.3%
1545.940.21%
1586.24+0.22%
1529.5+0.14%
1769.9£2.2%
1653.3+£0.56%
1691.1+£0.83%
1547.1+£0.16%
1697.5+£0.24%
1612.6+£0.46%
1686.6+£0.47%
1551.1+£0.14%
1789.6+0.58%
1584.6+£0.29%
1783.54+0.32%
1561.74+0.11%
2040.0+1.8%
1589.940.25%
2120.0+1.7%
1589.34+0.16%
2468.3+1.2%
1620.5£0.097%
3082.2+1.8%
1633.7£0.19%
3267.8+2.8%
1659.3+0.14%
4312.8+1.8%
1695.4+0.39%
4478.6+1.1%
1763.6+£0.15%
5939.0+1.5%
1792.64+0.76%
6062.3+2.5%
1924.440.59%
7280.94£2.0%
1905.54+0.72%

4965.6+5.9%
2137.24+1.5%
3071.941.5%
1998.740.0078%
4943.94£12.0%
3724.2411.0%
4168.9+5.4%
2306.64+1.5%
4419.942.0%
2501.74+1.3%
3854.9+0.88%
2604.440.24%
6066.7+3.7%
2728.74+0.95%
4928.8+0.76%
2830.340.32%
9688.9+8.6%
2081.840.49%
7781.7+3.5%
2963.840.28%
14704.24+3.3%
3756.5+0.77%
15591.243.3%
3493.74£1.2%
23735.14+7.2%
4784.44+0.97%
23854.61+2.8%
4072.74£2.1%
36615.6+3.5%
7054.14+1.4%
33275.3+2.1%
5219.34+3.7%
48771.84+3.1%
10517.04£2.1%
40622.7+2.7%
6722.442.8%

115613.14+£12.0%
111455.64+11.0%
204371.5+6.6%
144042.54+11.0%
281567.244.5%
264636.5+5.0%
185373.44:3.9%
165611.6+5.4%
289568.9+7.6%
297525.1+2.3%
210069.0+5.6%
228406.2+12.0%
257805.2+5.8%
201816.6+2.3%
275464.8+7.1%
266258.6+11.0%
287779.7+19.0%
177708.64+6.5%
314269.3+12.0%
306084.3+13.0%
311801.5+8.9%
197184.544.0%
430919.24+2.4%
337388.2+4.1%
301004.1+4.5%
251399.3+4.4%
362330.2+2.8%
320406.5+3.1%
307393.6+1.8%
269808.6+5.0%
332125.7+1.8%
303203.6+3.1%
278389.8+2.2%
284887.0+4.4%
304640.3+2.2%
288426.4+2.8%

0.99440.17%
0.99340.15%
0.98640.18%
0.99340.16%
0.92240.66%
0.89640.51%
0.90140.24%
0.933+0.29%
0.949+40.49%
0.92740.69%
0.91140.71%
0.94340.35%
0.95540.24%
0.93840.16%
0.90540.21%
0.94540.21%
0.9534+0.52%
0.954+0.48%

0.86640.72%
0.94+0.52%

0.9564-0.3%

0.9544-0.23%
0.81540.9%

0.9440.21%

0.939+0.27%
0.93740.32%
0.7514+1.2%

0.91840.35%
0.90540.4%

0.89640.29%
0.679+1.2%

0.84240.32%
0.85240.38%
0.81940.73%
0.62140.53%
0.75140.27%

0.999+0.042%
0.999+0.04%
0.999+0.04%
0.999+0.041%
0.997+0.086%
0.998+0.092%
0.998+0.091%
0.999+0.093%
0.999+0.037%
0.999+0.035%
0.999+0.036%
0.999+0.038%
0.998+0.096%
0.999+0.088%
0.998+0.092%
0.999+0.09%
0.997+0.15%
0.998+0.13%
0.996+0.14%
0.998+0.14%
0.998+0.042%
0.999+0.038%
0.995+0.056%
0.999+0.038%
0.995+0.062%
0.999+0.052%
0.988+0.088%
0.999+0.054%
0.989+0.085%
0.998+0.067%
0.977+0.087%
0.998+0.071%
0.979+0.075%
0.9974+0.1%
0.965+0.071%
0.997+0.095%

0.99440.17%
0.99340.15%
0.9864+0.18%
0.99340.16%
0.92240.66%
0.89640.51%
0.90140.24%
0.933+0.29%
0.94940.49%
0.92740.69%
0.91140.71%
0.94340.35%
0.95540.24%
0.93840.16%
0.90540.21%
0.94540.21%
0.953+0.52%
0.9540.48%

0.866+0.72%
0.94+0.52%

0.956+0.3%

0.95440.23%
0.81540.9%

0.9440.21%

0.939+0.27%
0.93740.32%
0.751+1.2%

0.91840.35%
0.90540.4%

0.89640.29%
0.6794+1.2%

0.84240.32%
0.85240.38%
0.819+0.73%
0.6214+0.53%
0.75140.27%

Scheduler performance summary with 95% confidence intervals for
the skewed_ nodes__sensitivity__0.05 benchmark.

Mean FCT (us)

p99 FCT (us)

Max FCT (us)

Throughput (Frac)

Flows Accepted (Frac)

Info Accepted (Frac)

Appendix B.
230

Load Subject
0.10 FF
0.10 FSs
0.10 Rand
0.10 SRPT
0.20 FF
0.20 FS
0.20 Rand
0.20 SRPT
0.30 FF
0.30 FS
0.30 Rand
0.30 SRPT
0.40 FF
0.40 FS
0.40 Rand
0.40 SRPT
0.50 FF
0.50 FS
0.50 Rand
0.50 SRPT
0.60 FF
0.60 FS
0.60 Rand
0.60 SRPT
0.70 FF
0.70 FS
0.70 Rand
0.70 SRPT
0.79 FF
0.79 FS
0.79 Rand
0.79 SRPT
0.90 FF
0.90 FS
0.90 Rand
0.90 SRPT
TABLE B.9:

Load Subject
0.10 FF
0.10 FS
0.10 Rand
0.10 SRPT
0.20 FF
0.20 FS
0.20 Rand
0.20 SRPT
0.30 FF
0.30 FS
0.30 Rand
0.30 SRPT
0.40 FF
0.40 FS
0.40 Rand
0.40 SRPT
0.50 FF
0.50 FS
0.50 Rand
0.50 SRPT
0.60 FF
0.60 FS
0.60 Rand
0.60 SRPT
0.70 FF
0.70 FS
0.70 Rand
0.70 SRPT
0.80 FF
0.80 FS
0.80 Rand
0.80 SRPT
0.89 FF
0.89 FS
0.89 Rand
0.89 SRPT

1589.740.2%
1526.7+0.14%
1554.940.18%
1520.940.11%
1904.3+1.3%
1575.6+0.12%
1641.1+0.21%
1542.8+0.11%
2110.445.3%
1695.1+0.62%
1734.6+1.1%
1551.940.15%
1757.440.3%
1640.040.54%
1738.44+0.63%
1564.440.083%
1890.34+0.82%
1624.6+0.76%
1921.440.49%
1590.140.1%
2228.041.3%
1619.8+0.32%
2611.0+3.2%
1634.8+0.17%
2875.4+1.1%
1653.5+0.21%
4114.6+1.3%
1719.6+0.24%
4161.543.0%
1754.440.31%
5293.042.7%
1862.64+0.57%
6157.74£1.4%
1936.440.45%
7365.440.86%
2185.8+3.7%

3580.940.61%
1998.84+0.016%
2849.240.33%
1998.240.0098%
11165.247.4%
2708.544.0%
3799.1+0.95%
2384.0+1.5%
13637.64+22.0%
6015.8+11.0%
5030.54+5.8%
2671.040.84%
5007.64+1.5%
2879.04+1.3%
4569.241.4%
2821.240.2%
6780.9+4.0%
3202.14+3.5%
6121.44+1.8%
3024.8+0.66%
11127.244.4%
3642.9+1.6%
11568.84+5.7%
3676.2+1.4%
18523.24+3.0%
4697.6+0.6%
22245.14+2.0%
4455.5+1.8%
32209.945.0%
7051.44+1.7%
29396.443.3%
6197.4+2.1%
49317.2+1.9%
11082.242.2%
41371.3+£1.0%
11390.24+12.0%

72990.844.8%
70198.044.2%
91598.045.9%
81555.445.0%
170783.14+17.0%
172624.94+5.3%
258243.8+8.6%
237546.1+11.0%
364074.5+7.9%
348982.1+3.3%
329509.4+5.2%
347195.5+7.9%
232866.4+6.1%
290705.3+4.7%
253293.4+7.2%
236239.4+6.3%
309771.9+13.0%
263314.3+5.5%
344062.44+11.0%
345835.9412.0%
325509.6+4.4%
278038.2+4.2%
414642.6+4.4%
310853.9+6.2%
278140.2+6.7%
230876.0+2.8%
368369.0+2.3%
254458.0+2.9%
290395.7+3.7%
270181.8+3.0%
306156.3+1.7%
296322.5+3.7%
281000.4+3.5%
272673.6+2.7%
297468.5+1.7%
265498.8+1.9%

0.99540.13%
0.9954+0.14%
0.9954+0.14%
0.995+0.13%
0.966+0.67%
0.9574+0.77%
0.90140.8%
0.9514+0.71%
0.92240.62%
0.9084+0.47%
0.8714+0.9%
0.91140.58%
0.93340.32%
0.9034+0.38%
0.86940.54%
0.90940.35%
0.9364+0.71%
0.92440.54%
0.8654+0.87%
0.91240.45%
0.94140.43%
0.935+0.29%
0.83940.76%
0.91540.3%
0.93240.48%
0.93540.28%
0.78440.92%
0.90440.36%
0.9084+0.36%
0.94+0.21%
0.7194+1.1%
0.858+0.27%
0.86240.28%
0.83140.44%
0.63940.88%
0.7264+0.49%

0.999+0.044%
0.999+0.045%
0.999+0.045%
0.999+0.045%
0.998+0.044%
0.99940.045%
0.999+0.047%
0.999+0.046%
0.997+0.057%
0.999+0.031%
0.999+0.036%
0.999+0.031%
0.998+0.086%
0.998+0.086%
0.998+0.093%
0.999+0.087%
0.999+0.036%
0.999+0.03%
0.998+0.036%
0.999+0.031%
0.998+0.063%
0.999+0.041%
0.996+0.064%
0.999+0.044%
0.996+0.055%
0.999+0.042%
0.99+0.13%
0.999+0.044%
0.989+0.055%
0.998+0.081%
0.978+0.095%
0.997+0.088%
0.979+0.12%
0.997+0.071%
0.964+0.12%
0.996+0.086%

0.99540.13%
0.99540.14%
0.9954+0.14%
0.9954+0.13%
0.966+0.67%
0.9574+0.77%
0.90140.8%
0.9514+0.71%
0.92240.62%
0.90840.47%
0.8714+0.9%
0.9114+0.58%
0.9334+0.32%
0.90340.38%
0.86940.54%
0.90940.35%
0.9364+0.71%
0.92440.54%
0.8654+0.87%
0.91240.45%
0.9414+0.43%
0.9354+0.29%
0.83940.76%
0.9154+0.3%
0.93240.48%
0.93540.28%
0.78440.92%
0.90440.36%
0.9084+0.36%
0.94+0.21%
0.719+1.1%
0.8584+0.27%
0.86240.28%
0.8314+0.44%
0.63940.88%
0.7264+0.49%

TABLE B.10: Scheduler performance summary with 95% confidence intervals for
the skewed__nodes__sensitivity__ 0.1 benchmark.

B.6. Scheduler Performance Summary

231

Mean FCT (us)

p99 FCT (us)

Max FCT (us)

Throughput (Frac)

Flows Accepted (Frac)

Info Accepted (Frac)

1555.240.21%
1518.9+0.18%
1544.840.22%
1515.5+0.18%
1653.640.43%
1538.140.21%
1604.640.33%
1529.440.1%
1879.0+1.4%
1587.8+0.47%
1688.9+0.27%
1555.3+0.14%
2047.84+1.9%
1656.340.3%
1750.5+0.46%
1565.640.083%
1893.6+1.5%
1752.44+1.1%
1941.6+1.1%
1588.240.059%
1981.74+0.88%
1692.940.47%
2203.64+1.2%
1638.440.15%
2412.440.75%
1671.6+0.3%
3156.74+0.98%
1756.4+0.26%
3541.740.85%
1731.940.23%
5311.243.2%
2006.740.79%
6282.4+3.1%
2051.14+0.77%
9434.3+8.7%
2864.244.1%

2960.340.45%
1997.540.0059%
2746.4+0.76%
1997.140.0039%
4948.5+3.1%
2078.941.6%
3121.741.8%
2199.9+0.86%
9864.3+5.0%
2934.7+2.7%
4259.14+1.6%
2580.540.5%
12996.04+8.4%
4469.840.9%
5216.241.9%
2783.840.28%
6355.4+4.8%
5396.1+12.0%
6437.143.0%
2940.440.42%
7326.243.0%
3992.542.3%
8062.842.4%
3706.440.78%
12132.24£2.0%
4565.0+1.8%
15098.8+1.5%
5157.5+1.5%
24415.3+1.9%
6430.1+1.5%
30099.0+3.7%
8444.443.0%
51863.0+£4.5%
13365.04+2.2%
55751.749.7%
23077.6+10.0%

63958.8+7.2%
53307.44+6.3%
80003.7+8.1%
55035.646.0%
100796.447.0%
86478.5+8.6%
210697.645.6%
107139.24+10.0%
219455.7+9.2%
165814.7+9.3%
388493.84+6.6%
318733.6+8.1%
253351.7+3.1%
237826.1+6.6%
272425.1+£5.7%
235162.6+£6.6%
440695.9+8.9%
331678.2+8.6%
458290.7+9.6%
415335.3+7.7%
372958.5+3.3%
297476.644.3%
407016.8+2.1%
327127.1+6.4%
307320.44+1.3%
292849.3+3.5%
369120.84+2.5%
326751.6+4.6%
304075.14+3.6%
234881.5+4.1%
329220.0+1.8%
291953.9+5.8%
361626.44+12.0%
340927.74+9.7%
394053.6+12.0%
394099.5+12.0%

0.995+0.078%
0.995+0.11%
0.993+0.11%
0.996+0.068%
0.984+0.39%
0.978+0.44%
0.937£0.7%
0.979+0.48%
0.968+0.39%
0.965+0.38%
0.811+1.2%
0.947+0.66%
0.901£0.99%
0.901+0.88%
0.774+0.66%
0.88+0.78%
0.887+0.41%
0.888+1.2%
0.795+0.49%
0.856+0.52%
0.901+0.21%
0.898+0.22%
0.801+0.43%
0.863£0.25%
0.897+0.33%
0.906+0.18%
0.782+0.31%
0.862+0.16%
0.892+0.17%
0.901£0.21%
0.728+1.2%
0.833+0.37%
0.876+0.5%
0.869+1.1%
0.677+0.61%
0.731+1.4%

1.0+0.026%
1.0+0.025%
1.04+0.025%
1.04+0.025%
0.9994-0.063%
0.9994-0.059%
0.9994-0.06%
0.999+0.058%
0.998+0.059%
0.999+40.06%
0.99840.063%
0.99940.061%
0.99740.077%
0.99940.058%
0.99740.059%
0.99940.058%
0.998+0.073%
0.99940.052%
0.99840.056%
0.99940.056%
0.9984-0.043%
0.9994-0.037%
0.99740.043%
0.9994-0.039%
0.99740.054%
0.999+0.051%
0.99340.057%
0.999+40.053%
0.99340.075%
0.99940.061%
0.9840.12%
0.99840.059%
0.98240.17%
0.9974+0.092%
0.96240.14%
0.98740.23%

0.995+0.078%
0.9954+0.11%
0.99340.11%
0.996+0.068%
0.984+0.39%
0.978+0.44%
0.937+0.7%
0.979+0.48%
0.968+0.39%
0.965+0.38%
0.811+1.2%
0.94740.66%
0.901+0.99%
0.901+0.88%
0.77440.66%
0.88+0.78%
0.887+0.41%
0.888+1.2%
0.7954+0.49%
0.856+0.52%
0.90140.21%
0.898+0.22%
0.801+0.43%
0.863+0.25%
0.897+0.33%
0.906+0.18%
0.782+0.31%
0.862+0.16%
0.89240.17%
0.901+0.21%
0.728+1.2%
0.833+0.37%
0.876+0.5%
0.869+1.1%
0.677+0.61%
0.731+1.4%

Scheduler performance summary with 95% confidence intervals for
the skewed__nodes__sensitivity__0.2 benchmark.

Mean FCT (us)

p99 FCT (us)

Max FCT (us)

Throughput (Frac)

Flows Accepted (Frac)

Info Accepted (Frac)

Load Subject
0.10 FF
0.10 Fs
0.10 Rand
0.10 SRPT
0.20 FF
0.20 FS
0.20 Rand
0.20 SRPT
0.30 FF
0.30 FS
0.30 Rand
0.30 SRPT
0.40 FF
0.40 FS
0.40 Rand
0.40 SRPT
0.50 FF
0.50 Fs
0.50 Rand
0.50 SRPT
0.61 FF
0.61 FS
0.61 Rand
0.61 SRPT
0.70 FF
0.70 FS
0.70 Rand
0.70 SRPT
0.80 FF
0.80 FS
0.80 Rand
0.80 SRPT
0.90 FF
0.90 Fs
0.90 Rand
0.90 SRPT
TABLE B.11:
Load Subject
0.10 FF
0.10 FS
0.10 Rand
0.10 SRPT
0.20 FF
0.20 FS
0.20 Rand
0.20 SRPT
0.30 FF
0.30 FS
0.30 Rand
0.30 SRPT
0.40 FF
0.40 FS
0.40 Rand
0.40 SRPT
0.51 FF
0.51 FS
0.51 Rand
0.51 SRPT
0.60 FF
0.60 FS
0.60 Rand
0.60 SRPT
0.71 FF
0.71 FS
0.71 Rand
0.71 SRPT
0.80 FF
0.80 FS
0.80 Rand
0.80 SRPT
0.89 FF
0.89 Fs
0.89 Rand
0.89 SRPT

1550.740.14%
1516.9+0.13%
1542.240.16%
1516.34+0.13%
1626.34+0.32%
1527.74+0.11%
1582.240.082%
1528.6+0.12%
1748.0+0.97%
1534.440.1%
1662.0+0.58%
1538.940.064%
1940.0+0.89%
1552.04£0.17%
1836.84+0.6%
1561.440.11%
2329.14+1.4%
1576.2+0.19%
2429.3+3.3%
1592.140.16%
2939.042.1%
1633.640.4%
3201.242.1%
1632.64+0.094%
3837.7+1.9%
1730.6+0.38%
3911.64+1.4%
1706.2+0.21%
4505.243.5%
1843.6+0.83%
4761.74£2.7%
1807.6+0.51%
5277.0+2.7%
2042.140.48%
7441.64+3.5%
2271.44+3.0%

2940.740.61%
1997.54-0.0078%
2746.440.23%
1997.94-0.0098%
4422.142.7%
2008.040.33%
2999.54+0.33%
2280.140.98%
6884.946.0%
2385.540.78%
3976.1+1.9%
2658.740.41%
9772.043.0%
2718.840.66%
5756.4+1.2%
2844.940.29%
16228.34+6.2%
3237.0+1.5%
11991.04+7.5%
2987.740.52%
23736.5+4.0%
4389.9+2.1%
19085.7+4.6%
3514.94+1.3%
34431.1+4.0%
6601.94+1.2%
24538.5+3.2%
4321.1+1.7%
40048.5+6.2%
9336.04+3.2%
28060.7+2.3%
5691.1+2.9%
49286.4+4.5%
14036.04+2.1%
41471.0+2.8%
14379.14+11.0%

41390.8+6.7%
40765.3+4.2%
62404.4+12.0%
41765.3+4.4%
55331.845.9%
46606.0+7.2%
98692.2+7.2%
53343.44+7.0%
70468.94+9.3%
68968.2+8.7%
232725.1+11.0%
85328.2+9.3%
88904.4+3.9%
81504.4+5.4%
274773.4+£3.7%
111871.64+4.0%
218249.3+18.0%
120960.846.1%
422835.24+8.8%
263110.8412.0%
343896.8+6.1%
258643.045.9%
436718.7+£1.5%
323235.84+4.6%
322903.84+2.5%
274442.8+2.9%
381889.74+2.0%
365187.14+2.6%
297883.9+2.8%
284147.5+4.5%
315479.64+2.5%
275652.6+5.5%
301906.9+1.8%
273754.243.0%
294162.84+1.2%
294316.142.1%

0.99740.072%
0.997+0.07%
0.997+0.082%
0.997+0.07%
0.98+0.11%
0.981+0.11%
0.961+0.22%
0.983+0.22%
0.99+0.19%
0.9914+0.2%
0.97240.47%
0.991+0.18%
0.981+0.23%
0.983+0.25%
0.908+0.39%
0.981+0.24%
0.97+0.62%
0.97240.6%
0.826+0.52%
0.967+0.66%
0.948+0.36%
0.959+0.32%
0.766+1.7%
0.934+0.47%
0.911£0.37%
0.922+0.39%
0.731£1.2%
0.886+0.35%
0.854+0.38%
0.856+0.62%
0.694+0.71%
0.819+0.61%
0.814+0.44%
0.7940.55%
0.633+1.2%
0.746+0.67%

1.04+0.018%
1.04+0.018%
1.04£0.017%
1.04£0.018%
0.99940.044%
0.999+0.045%
0.999+40.044%
0.999+40.045%
0.999+40.084%
0.99940.084%
0.99940.085%
0.99940.084%
0.99840.086%
0.99940.082%
0.998+0.085%
0.99940.082%
0.99740.1%
0.99940.078%
0.99540.089%
0.9994-0.078%
0.9964-0.045%
0.9994-0.043%
0.9934+0.055%
0.999+0.044%
0.99240.084%
0.999+40.05%
0.98940.076%
0.99940.054%
0.98540.18%
0.99740.095%
0.98240.12%
0.998+0.1%
0.9740.43%
0.99640.11%
0.96440.2%
0.99240.29%

0.99740.072%
0.99740.07%
0.99740.082%
0.997+0.07%
0.98+0.11%
0.981+0.11%
0.961+0.22%
0.983+0.22%
0.99+0.19%
0.9914+0.2%
0.97240.47%
0.99140.18%
0.981+0.23%
0.983+0.25%
0.908+0.39%
0.98140.24%
0.9740.62%
0.9724+0.6%
0.826+0.52%
0.967+0.66%
0.948+0.36%
0.959+0.32%
0.766+1.7%
0.93440.47%
0.911£0.37%
0.92240.39%
0.731+1.2%
0.886+0.35%
0.85440.38%
0.856+0.62%
0.694+0.71%
0.81940.61%
0.81440.44%
0.79+0.55%
0.633+1.2%
0.746+0.67%

TABLE B.12: Scheduler performance summary with 95% confidence intervals for

the skewed__nodes__sensitivity__0.4 benchmark.

Appendix B. A Framework for Generating Custom and Reproducible Synthetic

232

Traffic

Rack Distribution Benchmark

Mean FCT (us)

p99 FCT (us)

Max FCT (us)

Throughput (Frac)

Flows Accepted (Frac)

Info Accepted (Frac)

Load Subject
0.1 FF
0.1 FS
0.1 Rand
0.1 SRPT
0.2 FF
0.2 FS
0.2 Rand
0.2 SRPT
0.3 FF
0.3 FS
0.3 Rand
0.3 SRPT
0.4 FF
0.4 FS
0.4 Rand
0.4 SRPT
0.5 FF
0.5 FS
0.5 Rand
0.5 SRPT
0. FF
0.6 FS
0.6 Rand
0.6 SRPT
0.7 FF
0.7 FS
0.7 Rand
0.7 SRPT
0.8 FF
0.8 FS
0.8 Rand
0.8 SRPT
0.9 FF
0.9 FS
0.9 Rand
0.9 SRPT

1547.14£0.2%
1514.8+0.14%
1538.9+0.15%
1514.5+0.14%
1613.3+0.16%
1522.940.14%
1575.640.2%
1524.540.14%
1751.440.79%
1534.740.13%
1649.240.34%
1539.5+0.12%
1924.1+1.5%
1541.540.092%
1795.04£0.49%
1552.2+0.035%
2239.742.0%
1564.2+0.13%
2330.3+1.7%
1580.9+0.082%
2842.54+2.5%
1595.6+0.19%
3265.3+0.75%
1619.140.097%
3465.240.49%
1648.74+0.15%
4658.5+2.2%
1678.040.25%
4604.8+1.5%
1759.3+0.18%
5891.240.77%
1757.84£0.7%
6385.142.0%
1956.4+1.1%
8399.61+6.6%
1963.3+1.2%

2905.640.53%
1997.1+0.0059%
2708.240.35%
1997.6+0.0078%
4210.84+1.1%
1998.940.012%
3009.0+0.77%
2252.241.0%
6744.9+3.8%
2247.840.56%
3891.940.76%
2626.44+0.49%
9755.3+£7.2%
2542.440.5%
5339.041.4%
2802.54+0.34%
14440.3+7.6%
2914.54+0.6%
9746.8+4.0%
2940.440.36%
22991.24+7.0%
3658.7+0.66%
16613.3+1.2%
3390.5+1.8%
27554.1+1.9%
4775.0+£1.0%
25482.94+2.8%
3916.3+1.2%
37588.24+2.3%
7189.541.6%
32310.3+1.1%
4908.0+3.1%
52863.84+3.2%
11288.24+3.1%
46907.3+7.9%
7596.5+5.1%

36420.2+3.8%
35026.4+£2.6%
53118.6+£2.9%
35426.4+2.6%
43491.3+3.3%
38988.6+1.6%
70182.4+2.6%
41095.6+1.6%
67480.0+£9.5%
63424.2+7.2%
148433.8+8.6%
83252.7+9.4%
88414.14+9.8%
74926.1+11.0%
216058.0+7.5%
99179.44+14.0%
120877.0£5.2%
97264.9+6.6%
408828.1+10.0%
153416.6+£10.0%
308474.44+6.6%
137386.1+£5.7%
420951.4+3.7%
336922.0+5.1%
287240.44+6.0%
210756.3+2.1%
345529.5+3.4%
307069.7+3.6%
287174.0+1.8%
278549.2+2.2%
323761.6+2.1%
307367.1+4.4%
320436.3+9.5%
313425.0+11.0%
336830.9+12.0%
320009.5+13.0%

0.99340.23%
0.99440.23%
0.99140.21%
0.99440.22%
0.98540.34%
0.986+0.37%
0.9784+0.45%
0.9874+0.31%
0.98940.17%
0.99+0.17%
0.9774+0.19%
0.98940.2%
0.97740.23%
0.98+0.19%
0.94140.46%
0.97940.2%
0.97940.27%
0.98+0.21%
0.8924+1.0%
0.9784+0.3%
0.9674+0.28%
0.97240.28%
0.82540.81%
0.9614+0.37%
0.95+0.29%
0.95+0.28%
0.75540.84%
0.9274+0.29%
0.90440.52%
0.886+0.5%
0.6944+1.3%
0.853%0.39%
0.8714+0.69%
0.8454+0.79%
0.65+0.81%
0.7864+0.3%

0.999+0.047%
0.999+0.046%
0.999+0.046%
0.999+0.046%
0.999+0.032%
1.0£0.029%
0.999+0.029%
1.0£0.028%
0.999+0.042%
0.999+0.042%
0.999+0.041%
0.999+0.041%
0.998+0.086%
0.999+0.085%
0.998+0.089%
0.999+0.085%
0.998+0.048%
0.999+0.05%
0.997+0.055%
0.999+0.051%
0.996+0.067%
0.999+0.048%
0.994+0.065%
0.999+0.049%
0.994+0.066%
0.999+0.063%
0.985+0.055%
0.999+0.063%
0.988+0.11%
0.998+0.071%
0.977£0.11%
0.998+0.073%
0.984+0.041%
0.998+0.034%
0.964+0.082%
0.998+0.042%

0.99340.23%
0.99440.23%
0.9914+0.21%
0.99440.22%
0.98540.34%
0.986+0.37%
0.9784+0.45%
0.9874+0.31%
0.98940.17%
0.99+0.17%
0.9774+0.19%
0.98940.2%
0.9774+0.23%
0.98+0.19%
0.94140.46%
0.97940.2%
0.97940.27%
0.98+0.21%
0.8924+1.0%
0.9784+0.3%
0.9674+0.28%
0.97240.28%
0.8254+0.81%
0.9614+0.37%
0.95+0.29%
0.95+0.28%
0.7554+0.84%
0.92740.29%
0.90440.52%
0.8864+0.5%
0.6944+1.3%
0.85340.39%
0.8714+0.69%
0.8454+0.79%
0.65+0.81%
0.786+0.3%

TABLE B.13: Scheduler performance summary with 95% confidence intervals for

the rack__sensitivity_ 0.2 benchmark.

B.6. Scheduler Performance Summary

233

=
[}
1
o

Subject

Mean FCT (us)

p99 FCT (us)

Max FCT (us)

Throughput (Frac)

Flows Accepted (Frac)

Info Accepted (Frac)

Coooo
R e

COOO0O0O000O000000
SRR I NN NN OR N FR R CR O

©0000000000000000
OOV EITITITITDITDIO WU

FF

FS
Rand
SRPT
FF

FS
Rand
SRPT
FF
FS
Rand
SRPT
FF

FS
Rand
SRPT
FF

FS
Rand
SRPT
FF

FS
Rand
SRPT
FF
FS
Rand
SRPT
FF

FS
Rand
SRPT
FF

FS
Rand
SRPT

1553.940.15%
1515.840.057%
1541.340.058%
1515.540.052%
1643.840.34%
1525.740.11%
1587.840.18%
1526.4+0.12%
1787.0+0.46%
1532.240.15%
1671.2+0.57%
1536.4+0.17%
1997.740.57%
1542.84+0.11%
1805.3+0.55%
1553.240.061%
2476.5+1.5%
1562.64+0.05%
2104.842.3%
1578.240.12%
2880.0+1.5%
1592.540.094%
2420.94:0.64%
1619.640.11%
3534.3+1.3%
1642.8+0.05%
2652.7+1.1%
1660.0+0.2%
4311.5+0.84%
1731.1+0.25%
2906.540.56%
1747.34+0.58%
5497.142.4%
1872.440.26%
3347.14+1.2%
1861.44+0.99%

3023.9+1.1%
1997.540.0039%
2739.140.31%
1998.04-0.0078%
4775.74£2.4%
1999.34-0.0059%
3035.940.46%
2225.3+1.5%
7619.843.9%
2231.440.81%
4113.242.9%
2610.940.51%
11546.242.4%
2588.64+0.51%
6476.5+3.3%
2820.240.21%
20978.2+5.7%
2906.240.44%
11901.749.0%
2936.4+0.35%
24414.7+5.0%
3616.140.56%
17877.942.6%
3401.441.4%
33314.744.1%
4665.5+1.2%
21768.7+£1.6%
3780.84+1.1%
39028.2+2.3%
6579.1+1.4%
24944.4+1.5%
4642.04+2.8%
46230.6+2.7%
9593.3+1.6%
29914.940.63%
5931.54+4.3%

38020.6+5.6%
37020.6+5.8%
61994.1+11.0%
37373.3+6.5%
52879.543.8%
48949.2+3.9%
126408.048.0%
51165.444.0%
66882.6+8.2%
57004.14+7.0%
256001.0+7.5%
65648.0+10.0%
78798.64+6.6%
66608.7+3.7%
287594.6+1.8%
85975.8+3.3%
115951.94+3.9%
104707.6+4.4%
411058.5+11.0%
128711.34+3.1%
242585.743.1%
131921.24+7.3%
417817.1+£1.5%
235066.743.8%
311692.8+3.6%
245550.4+4.2%
375157.84+2.3%
327831.04+2.0%
294072.3+2.3%
238819.8+2.4%
320552.6+1.3%
280469.5+6.0%
280463.7+3.8%
290850.1+1.7%
306219.5+1.8%
286319.1+1.6%

0.997+0.15%
0.997+0.15%
0.996+0.16%
0.997+0.15%
0.986+0.2%

0.987+0.18%
0.976+£0.14%
0.988+0.17%
0.988+0.16%
0.989+0.21%
0.956+0.31%
0.989+0.16%
0.973+0.27%
0.976+0.23%
0.882+0.51%
0.977+£0.22%
0.976+0.45%
0.978+0.38%
0.822+40.74%
0.976+0.36%
0.9714+0.31%
0.972£0.22%
0.778+1.0%

0.966+0.35%
0.935+0.27%
0.9374+0.3%

0.71+£0.89%

0.9154+0.3%

0.911£0.39%
0.904+0.33%
0.665+1.4%

0.865+0.3%

0.851+0.43%
0.827+0.43%
0.608+1.4%

0.781£0.33%

1.0+0.029%
1.0+0.026%
1.04+0.026%
1.040.026%
0.9994-0.04%
0.9994-0.043%
0.9994-0.044%
0.999+0.044%
0.999+0.016%
1.040.015%
0.99940.015%
1.040.016%
0.99840.054%
0.99940.065%
0.99840.074%
0.99940.066%
0.9974+0.053%
0.99940.046%
0.99640.041%
0.99940.044%
0.99740.044%
0.9994-0.031%
0.99540.043%
0.9994-0.033%
0.99440.052%
0.999+0.057%
0.99340.071%
0.99940.059%
0.9940.056%
0.99940.047%
0.9940.063%
0.99940.05%
0.98340.086%
0.99740.094%
0.98740.095%
0.99740.095%

0.99740.15%
0.99740.15%
0.996+0.16%
0.99740.15%
0.986+0.2%

0.987+0.18%
0.976+0.14%
0.988+0.17%
0.988+0.16%
0.989+0.21%
0.956+0.31%
0.989+0.16%
0.973+0.27%
0.976+0.23%
0.882+0.51%
0.977+0.22%
0.976+0.45%
0.978+0.38%
0.82240.74%
0.976+0.36%
0.9714+0.31%
0.97240.22%
0.778+1.0%

0.966+0.35%
0.9354+0.27%
0.9374+0.3%

0.71£0.89%

0.9154+0.3%

0.91140.39%
0.904+0.33%
0.665+1.4%

0.865+0.3%

0.851+0.43%
0.82740.43%
0.608+1.4%

0.78140.33%

TABLE B.14: Scheduler performance summary with 95% confidence intervals for
the rack__sensitivity_ 0.4 benchmark.

Subject

Mean FCT (us)

p99 FCT (us)

Max FCT (us)

Throughput (Frac)

Flows Accepted (Frac)

Info Accepted (Frac)

0.7

COLooo0o0o00
‘o o oo o 0o bo

FF

FS
Rand
SRPT
FF

FS
Rand
SRPT
FF

FS
Rand
SRPT
FF

FS
Rand
SRPT
FF

FS
Rand
SRPT
FF

FS
Rand
SRPT
FF

FS
Rand
SRPT
FF

FS
Rand
SRPT
FF

FS
Rand
SRPT

1557.4+0.18%
1519.140.041%
1544.340.069%
1518.940.044%
1639.140.39%
1522.84+0.17%
1582.2+0.16%
1525.6+0.18%
1786.7+0.96%
1531.24+0.19%
1663.940.3%
1538.940.17%
2070.3+1.5%
1543.240.094%
1804.34+0.48%
1558.040.083%
2462.240.96%
1560.740.05%
2236.84+1.9%
1585.140.042%
2956.141.6%
1586.040.16%
2728.240.78%
1624.440.043%
3858.3+1.5%
1630.8+0.12%
3035.840.58%
1680.3+0.17%
4501.2+1.5%
1713.240.17%
3484.04+2.5%
1752.64+0.43%
5773.64+0.51%
1872.74+0.3%
3943.04+1.1%
1900.940.69%

2992.3+1.3%
1997.04-0.012%
2738.740.46%
1997.64-0.0098%
4710.0£2.0%
1998.9+0.0039%
3046.61+0.46%
2338.140.83%
7425.5+4.7%
2225.5+1.8%
4087.7+1.3%
2680.840.29%
11972.74+4.4%
2555.3+1.1%
6112.3+1.9%
2842.940.21%
18251.14+3.1%
2885.840.48%
13576.84:6.8%
2970.940.11%
24090.444.4%
3517.540.65%
22105.741.7%
3519.240.73%
35582.9+3.2%
4456.6+1.0%
26654.0+1.4%
3938.040.64%
38457.9+2.2%
6223.941.2%
32752.7+3.8%
4662.8+1.9%
46545.8+0.72%
9645.7+1.2%
39082.1+£1.2%
6304.443.1%

41866.0+3.4%
41866.0+£2.5%
63511.4+5.0%
42866.0+3.2%
48916.2+3.7%
47869.5+2.2%
105951.94+8.2%
46897.0+4.4%
64656.1+7.6%
57743.4+4.0%
233890.5+4.2%
64343.4+5.0%
89212.8+6.2%
84834.8+6.3%
210247.2+7.1%
108634.84+9.3%
121295.64+5.9%
89431.3+4.1%
390033.5+9.3%
136545.8411.0%
242220.9413.0%
138093.647.7%
432399.7+£2.9%
284839.9+4.3%
272734.1+8.6%
225655.3+3.9%
356900.5+1.4%
291331.3+5.2%
277274.4+2.6%
259604.2+3.1%
321488.944.3%
279493.1+£6.2%
263361.6+3.2%
274889.1+£1.4%
293317.741.1%
264047.542.1%

0.995+0.1%
0.995+0.1%
0.9924:0.23%
0.995+0.1%
0.98940.26%
0.989+0.27%
0.98140.28%
0.9940.23%
0.98640.29%
0.98740.32%
0.9674+0.37%
0.98840.32%
0.9840.34%
0.98140.34%
0.9174+0.59%
0.98140.28%
0.9840.15%
0.984+0.18%
0.84340.62%
0.9840.17%
0.97540.13%
0.9794+0.1%
0.771+0.97%
0.974+0.16%
0.9514+0.16%
0.9534+0.13%
0.70840.38%
0.93140.27%
0.91540.42%
0.908+0.33%
0.6444+1.1%
0.8694+0.31%
0.86740.22%
0.84440.17%
0.59540.58%
0.79340.19%

0.99940.045%
0.99940.044%
0.99940.044%
0.99940.044%
0.99940.039%
0.99940.043%
0.99940.043%
0.99940.043%
0.99940.047%
0.99940.046%
0.99940.046%
0.99940.046%
0.99740.09%

0.99940.085%
0.9984+0.088%
0.99940.085%
0.99740.062%
0.99940.048%
0.99740.048%
0.99940.05%

0.99640.065%
0.99940.063%
0.99440.081%
0.99940.064%
0.99340.051%
0.99940.058%
0.99140.072%
0.99940.058%
0.988+0.16%

0.9984+0.095%
0.986+0.087%
0.9984+0.098%
0.9784+0.14%

0.9974+0.07%

0.98140.062%
0.99740.066%

0.995+0.1%
0.995+0.1%
0.99240.23%
0.995+0.1%
0.98940.26%
0.989+0.27%
0.98140.28%
0.9940.23%
0.98640.29%
0.9874+0.32%
0.9674+0.37%
0.98840.32%
0.9840.34%
0.98140.34%
0.9174+0.59%
0.98140.28%
0.9840.15%
0.98+0.18%
0.84340.62%
0.9840.17%
0.97540.13%
0.9794+0.1%
0.771+0.97%
0.974+0.16%
0.9514+0.16%
0.9534+0.13%
0.70840.38%
0.93140.27%
0.91540.42%
0.908+0.33%
0.6444+1.1%
0.8694+0.31%
0.86740.22%
0.84440.17%
0.59540.58%
0.79340.19%

TABLE B.15: Scheduler performance summary with 95% confidence intervals for
the rack__sensitivity_ 0.6 benchmark.

Appendix B. A Framework for Generating Custom and Reproducible Synthetic

Traffic

Mean FCT (us)

p99 FCT (us)

Max FCT (us)

Throughput (Frac)

Flows Accepted (Frac)

Info Accepted (Frac)

234
Load Subject
0.1 FF
0.1 FS
0.1 Rand
0.1 SRPT
0.2 FF
0.2 FS
0.2 Rand
0.2 SRPT
0.3 FF
0.3 FS
0.3 Rand
0.3 SRPT
0.4 FF
0.4 FS
0.4 Rand
0.4 SRPT
0.5 FF
0.5 FS
0.5 Rand
0.5 SRPT
.6 FF
0.6 FS
0.6 Rand
0.6 SRPT
0.7 FF
0.7 FS
0.7 Rand
0.7 SRPT
0.8 FF
0.8 FS
0.8 Rand
0.8 SRPT
0.9 FF
0.9 FS
0.9 Rand
0.9 SRPT

1564.4+0.17%
1523.4+0.13%
1549.940.14%
1523.740.13%
1655.64+0.53%
1525.740.11%
1589.24+0.13%
1528.440.11%
1812.540.4%
1532.340.1%
1657.74£0.13%
1541.140.11%
2211.441.3%
1546.240.12%
1823.3+£0.45%
1560.4+0.088%
2670.2+1.5%
1561.9+0.088%
2097.1+1.6%
1586.5+0.14%
3437.5+0.59%
1589.9+0.079%
3021.941.6%
1632.040.072%
4226.441.0%
1630.640.12%
3899.6+1.9%
1694.340.1%
5264.1+1.5%
1721.540.35%
4485.1+1.8%
1772.74£0.17%
6797.942.0%
1891.3+1.2%
5968.6+7.1%
1935.1+0.79%

3075.8+0.78%
1997.440.002%
2779.940.22%
1998.4+0.0039%
4886.6+3.3%
1998.940.0078%
3175.54£1.1%
2350.240.88%
7816.84+1.9%
2202.540.51%
4051.6+0.72%
2701.440.27%
15442.445.6%
2605.94:0.68%
6253.9+1.4%
2854.54+0.31%
20930.84+5.2%
2883.440.46%
10368.7+5.3%
2988.940.73%
30455.8+3.2%
3541.0+0.89%
24451.34+2.3%
3575.44£0.19%
37246.2+1.9%
4431.6+0.92%
35618.2+3.2%
4009.5+0.56%
44602.4+1.7%
6287.8+2.1%
44277.74£2.8%
4871.14£0.47%
53200.842.1%
10007.94+4.7%
63779.3+11.0%
6647.8+2.6%

38130.3+3.3%
34026.7+£2.1%
60347.0+£7.3%
34147.9+£2.8%
48187.1+7.1%
41674.6+5.2%
91618.8+7.3%
43538.3+5.8%
68547.0+5.1%
64297.6+5.1%
227634.84+3.2%
73297.6+7.1%
107060.74+14.0%
76600.8+12.0%
256431.0+£7.3%
86910.4+10.0%
142824.2+12.0%
87631.8+5.5%
266946.94+14.0%
108035.3+3.4%
221359.14+14.0%
121075.9£9.3%
412148.6+1.0%
219688.9+7.6%
250830.8+3.5%
200199.14+3.6%
367726.5+1.9%
299390.8+5.7%
284358.6+6.4%
249298.1+4.5%
331280.5+2.2%
308528.4+3.4%
312515.94+11.0%
324448.5+7.9%
351222.1+11.0%
315660.84+11.0%

0.99840.055%
0.99840.055%
0.996+0.08%
0.99840.055%
0.9914+0.17%
0.99140.16%
0.98340.13%
0.99240.16%
0.986+0.17%
0.9874+0.2%
0.97240.33%
0.98940.14%
0.976+0.26%
0.98+0.3%
0.9184+0.43%
0.9840.22%
0.9634+0.51%
0.9684+0.45%
0.8464+0.85%
0.96840.46%
0.9714+0.22%
0.9784+0.15%
0.7714£0.67%
0.97+0.28%
0.95540.43%
0.9614+0.23%
0.68440.88%
0.9364+0.3%
0.905+0.58%
0.90740.49%
0.59+0.66%
0.87140.35%
0.866+0.59%
0.8564+0.93%
0.54+0.64%
0.79240.17%

1.0£0.032%
1.0£0.031%
1.0£0.032%
1.0£0.032%
0.998+0.1%
0.999+0.099%
0.999+0.099%
0.999+0.098%
0.999+0.049%
0.999+0.053%
0.999+0.051%
0.999+0.053%
0.997+0.065%
0.999+0.046%
0.99840.047%
0.999+0.047%
0.995+0.094%
0.999+0.086%
0.996+0.093%
0.999+0.087%
0.995+0.097%
0.999+0.066%
0.993+0.083%
0.999+0.069%
0.99240.1%
0.999+0.077%
0.988+0.14%
0.999+0.079%
0.985+0.066%
0.998+0.076%
0.984+0.1%
0.998+0.073%
0.977+0.08%
0.998+0.036%
0.971£0.097%
0.998+0.049%

0.99840.055%
0.99840.055%
0.9964+0.08%
0.99840.055%
0.9914+0.17%
0.99140.16%
0.98340.13%
0.99240.16%
0.986+0.17%
0.9874+0.2%
0.97240.33%
0.98940.14%
0.976+0.26%
0.98+0.3%
0.91840.43%
0.9840.22%
0.9634+0.51%
0.96840.45%
0.84640.85%
0.96840.46%
0.9714+0.22%
0.9784+0.15%
0.7714+0.67%
0.97+£0.28%
0.95540.43%
0.9614+0.23%
0.68440.88%
0.9361+0.3%
0.9054+0.58%
0.90740.49%
0.59+0.66%
0.8714+0.35%
0.866+0.59%
0.8564+0.93%
0.54+0.64%
0.79240.17%

TABLE B.16: Scheduler performance summary with 95% confidence intervals for

the rack__sensitivity_ 0.8 benchmark.

B.6. Scheduler Performance Summary

235

B.6.4 Winner Tables

The below ‘winner tables’” summarise the winning schedulers for each load and

benchmark with their performance improvement relative to the worst performing

baseline for each Py p; averaged across 5 runs. These tables are useful for gaining

an overarching view of the multi-faceted performance results which are often

difficult to interpret through graphical means alone.

Load Mean FCT p99 FCT Max FCT Throughput Flows Accepted
0.1 SRPT, -2.3% FS, -33% FF, -36% FF+FS+SRPT, 0.40% -
0.2 FS, -6.0% FsS, -55% FS, -47% SRPT, 0.92% —
0.3 FS,-12% FS, -66% FS, -60% SRPT, 1.7% -
0.4 FS, -19% FS, -73% FS, -64% FF, 3.7% FS+Rand+SRPT, 0.10%
0.5 FS, -31% FS, -80% FF, -75% FS, 11% FS+SRPT, 0.21%
0.6 FS, -52% SRPT, -83% FS, -60% FS, 19% FS+SRPT, 0.60%
0.7 FS, -62% SRPT, -86% FsS, -28% FS, 28% FS, 1.3%
0.8 FS+SRPT, -69% SRPT, -86% FS, -14% FF, 31% FS+SRPT, 2.1%
0.9 SRPT, -73% SRPT, -85% FF, -9.1% FF, 35% FS+SRPT, 3.1%
0.1 SRPT, -2.107% FS, -31.27% FS, -34.06% FS+SRPT, 0.3027% —
0.2 FS, -5.603% FS, -52.53% FS, -44.45% SRPT, 0.9202% FS+SRPT, 0.1001%
0.3 FS, -12.37% FS, -66.67% FS, -57.27% FS, 1.331% —
0.4 FS, -19.88% FS, -73.94% FS, -65.32% FS, 4.145% FS+SRPT, 0.1002%
0.5 FS, -32.88% FS, -79.82% FS, -76.21% FS, 9.865% FS+SRPT, 0.2006%
0.6 FS, -51.13% SRPT, -85.25% FS, -67.36% FS, 17.82% FS+SRPT, 0.503%
0.7 FS, -64.61% SRPT, -85.79% FS, -39.0% FF+FS, 25.83% FS+SRPT, 1.421%
0.8 SRPT, -70.16% SRPT, -86.94% FS, -13.96% FF, 30.26% FS+SRPT, 2.149%
0.9 FS, -76.71% SRPT, -85.63% FS, -6.949% FF, 34.0% FS+SRPT, 3.527%
0.1 SRPT, -2.471% FS, -33.94% FS, -40.28% FF+FS+SRPT, 0.1004% —
0.2 FS, -7.185% FS, -58.14% FS, -61.28% SRPT, 1.23% -
0.3 FS, -14.26% FsS, -70.72% FsS, -77.73% FS+SRPT, 3.452% FS+SRPT, 0.1001%
0.4 FS, -22.77% FS, -77.58% FS, -76.84% SRPT, 10.77% FS+SRPT, 0.1002%
0.5 FS, -36.9% FS, -86.15% FS, -74.53% FS, 18.98% FS+SRPT, 0.3012%
0.6 FS, -44.7% SRPT, -86.07% FS, -68.43% FS, 24.94% FS+SRPT, 0.402%
0.7 FS, -53.52% SRPT, -88.65% FS, -34.55% FS, 31.97% FS+SRPT, 0.6042%
0.8 FS, -59.85% SRPT, -88.11% FS, -25.5% FF, 36.99% FS+SRPT, 0.9091%
0.9 SRPT, -66.14% SRPT, -87.17% FF, -8.411% FF, 39.97% FS+SRPT, 1.424%
0.1 SRPT, -2.472% FS, -33.26% FF+FS, -34.08% FF+FS+SRPT, 0.3024% -
0.2 FS, -7.095% FS, -57.56% SRPT, -55.74% SRPT, 0.9174% -
0.3 FS, -14.3% FS, -70.03% FS, -75.31% SRPT, 2.172% —
0.4 FS, -25.46% FS, -78.66% FS, -59.65% FS+SRPT, 6.979% FS+SRPT, 0.2006%
0.5 FS, -36.61% FS, -84.19% FS, -77.07% FF+FS+SRPT, 16.25% FS+SRPT, 0.2006%
0.6 FS, -46.35% FS, -85.4% FS, -68.06% FS, 26.98% FS+SRPT, 0.503%
0.7 FS, -57.73% SRPT, -88.93% FS, -36.77% FS, 34.6% FS+SRPT, 0.8073%
0.8 FS, -61.94% SRPT, -87.88% FS, -19.25% FF, 42.08% FS+SRPT, 1.217%
0.9 FS, -67.56% SRPT, -86.46% FF, -10.21% FF, 45.71% FS+SRPT, 1.943%
0.1 FS, -2.621% FS, -35.06% FS, -43.61% FF+FS+SRPT, 0.2008% —
0.2 FS, -7.846% FS, -59.09% FS, -54.51% SRPT, 0.9156% FS+Rand+SRPT, 0.1002%
0.3 FS, -15.46% FS, -71.82% FS, -71.75% SRPT, 1.749% -
0.4 FS, -30.08% FsS, -83.13% FsS, -70.13% FS+SRPT, 6.754% FS+SRPT, 0.2006%
0.5 FS, -41.51% FS, -86.22% FS, -67.17% FS+SRPT, 14.42% FS+SRPT, 0.402%
0.6 FS, -53.75% FS, -88.37% FsS, -70.62% FS, 26.85% FS+SRPT, 0.6042%
0.7 FS, -61.42% SRPT, -89.24% FS, -45.56% FS, 40.5% FS+SRPT, 1.113%
0.8 FsS, -67.3% SRPT, -89.08% FS, -24.75% FS, 53.73% FS+SRPT, 1.837%
0.9 FS, -72.18% SRPT, -89.58% FF, -11.02% FF, 60.37% FS+SRPT, 2.781%

TABLE B.17: The winning schedulers’ performances relative to the losing baselines
for (from top to bottom) the 0 (uniform), 0.2,0.4,0.6, and 0.8 rack sensitivity
traces. For brevity, ‘—’ indicates all schedulers’ performances were equal.

Appendix B. A Framework for Generating Custom and Reproducible Synthetic

236
Traffic

Load Mean FCT p99 FCT Max FCT Throughput Flows Accepted

0.1 SRPT, -2.329% FS, -32.9% FF, -36.37% FF+FS+SRPT, 0.4036% -

0.2 FS, -5.954% FS, -54.54% FS, -46.79% SRPT, 0.924% -

0.3 FS, -12.11% FS, -65.63% FS, -60.37% SRPT, 1.747% -

0.4 FS, -19.44% FS, -72.55% FS, -64.36% FF, 3.7% FS+Rand+SRPT, 0.1002%

0.5 FS, -30.78% FS, -80.21% FF, -75.05% FS, 11.1% FS+SRPT, 0.2006%

0.6 FS, -51.79% SRPT, -82.76% FS, -59.8% FS, 18.66% FS+SRPT, 0.6042%

0.7 FS, -62.2% SRPT, -86.3% FS, -28.06% FS, 27.64% FS, 1.318%

0.8 FS+SRPT, -69.49% SRPT, -86.09% FS, -13.95% FF, 30.88% FS+SRPT, 2.149%

0.9 SRPT, -73.35% SRPT, -84.72% FF, -9.119% FF, 34.93% FS+SRPT, 3.099%

0.10 SRPT, -8.757% SRPT, -59.75% FS, -45.46% FF, 0.8114% -

0.20 SRPT, -12.59% SRPT, -53.34% SRPT, -41.18% SRPT, 4.129% SRPT, 0.2006%

0.30 SRPT, -8.624% FS, -43.4% Rand, -29.39% FF, 4.171% -

0.40 SRPT, -12.73% FS, -55.02% FS, -26.74% FF, 5.525% FS+SRPT, 0.1002%
0.50 SRPT, -25.03% SRPT, -69.41% FS, -43.45% FF, 10.05% FS+SRPT, 0.2008%
0.60 FS, -47.42% SRPT, -77.59% FS, -54.24% FF, 17.3% FS+SRPT, 0.402%

0.70 FS, -61.53% SRPT, -82.93% FS, -30.62% FF, 25.03% FS+SRPT, 1.113%

0.79 FS, -70.3% SRPT, -85.75% FS, -18.76% FF, 33.28% FS+SRPT, 2.149%

0.90 SRPT, -73.83% SRPT, -86.22% FF, -8.617% FF, 37.2% FS+SRPT, 3.316%

0.10 SRPT, -4.328% SRPT, -44.2% FS, -23.36% - -

0.20 SRPT, -18.98% SRPT, -78.65% FF, -33.87% FF, 7.214% FS+Rand+SRPT, 0.1002%
0.30 SRPT, -26.46% SRPT, -80.41% Rand, -9.494% FF, 5.855% FS+Rand+SRPT, 0.2006%
0.40 SRPT, -10.98% SRPT, -43.66% FF, -19.9% FF, 7.365% SRPT, 0.1002%

0.50 SRPT, -17.24% SRPT, -55.39% FS, -23.86% FF, 8.208% FF+FS+SRPT, 0.1002%
0.60 FS, -37.96% FS, -68.51% FS, -32.95% FF, 12.16% FS+SRPT, 0.3012%
0.70 FS, -59.81% SRPT, -79.97% FS, -37.32% FS, 19.26% FS+4SRPT, 0.9091%
0.80 FS, -66.85% SRPT, -80.76% FS, -11.75% FF, 26.29% FS, 2.045%

0.89 FS, -73.71% FS, -77.53% SRPT, -10.75% FF, 34.9% FS, 3.423%

0.10 SRPT, -2.553% SRPT, -32.54% FS, -33.37% SRPT, 0.3021% -

0.20 SRPT, -7.511% FS, -57.99% FS, -58.96% FF, 4.589% -

0.30 SRPT, -17.23% SRPT, -73.84% FS, -57.32% FF, 19.36% FS+SRPT, 0.1002%
0.40 SRPT, -23.55% SRPT, -78.58% SRPT, -13.68% FF+FS, 16.41% FS+SRPT, 0.2006%
0.50 SRPT, -18.2% SRPT, -54.32% FS, -27.63% FS, 11.7% FS+SRPT, 0.1002%
0.61 SRPT, -25.65% SRPT, -54.03% FS, -26.91% FF, 12.48% FS+SRPT, 0.2006%
0.70 FS, -47.05% FS, -69.77% FS, -20.66% FS, 15.86% FS+SRPT, 0.6042%
0.80 FS, -67.39% FS, -78.64% FS, -28.66% FS, 23.76% FS, 1.939%

0.90 FS, -78.26% FS, -76.03% FS, -13.49% FF, 29.39% FS, 3.638%

0.10 SRPT, -2.218% FS, -32.07% FS, -34.68% - -

0.20 FS, -6.063% FS, -54.59% FS, -52.78% SRPT, 2.289% -

0.30 FS, -12.22% FS, -65.35% FS, -70.36% FS+SRPT, 1.955% -

0.40 FS, -20.0% FS, -72.18% FS, -70.34% FS, 8.26% FS+SRPT, 0.1002%
0.51 FS, -35.12% SRPT, -81.59% FS, -71.39% FS, 17.68% FS+SRPT, 0.402%

0.60 SRPT, -49.0% SRPT, -85.19% FS, -40.78% FS, 25.2% FS+SRPT, 0.6042%
0.71 SRPT, -56.38% SRPT, -87.45% FS, -28.14% FS, 26.13% FS+SRPT, 1.011%

0.80 SRPT, -62.04% SRPT, -85.79% SRPT, -12.62% FS, 23.34% SRPT, 1.629%

0.89 FS, -72.56% FS, -71.52% FS, -9.325% FF, 28.59% FS, 3.32%

TABLE B.18: The winning schedulers’ performances relative to the losing baselines
for (from top to bottom) the 0 (uniform), 0.05,0.1,0.2, and 0.4 skewed nodes
sensitivity traces. For brevity, ‘—’ indicates all schedulers’ performances were equal.

B.6. Scheduler Performance Summary

237

Load Mean FCT p99 FCT Max FCT Throughput Flows

0.10 SRPT, -2.466% SRPT, -31.22% FF, -38.81% SRPT, 0.4036% —

0.20 SRPT, -8.834% FS, -64.48% FS, -60.01% FF+SRPT, 2.391% —

0.30 SRPT, -17.83% SRPT, -76.13% FS, -64.78% FF, 13.77% FS+SRPT, 0.1001%
0.40 SRPT, -26.47% SRPT, -81.81% SRPT, -25.11% FF, 15.07% SRPT, 0.2004%
0.50 SRPT, -18.77% SRPT, -54.54% FS, -22.44% FF, 11.12% SRPT, 0.2004%
0.60 SRPT, -29.81% SRPT, -63.41% FS, -21.25% FF, 13.91% SRPT, 0.3009%
0.70 FS, -45.77% FS, -77.26% FS, -34.73% FS, 21.06% FS+SRPT, 0.6042%
0.79 FS, -55.34% FS, -75.18% FS, -25.43% FS, 24.9% FS+SRPT, 1.113%
0.89 FS, -64.75% FS, -71.49% FS, -26.74% FS, 26.16% FS, 1.941%

0.10 SRPT, -3.577% FS, -37.74% FS, -43.91% FF, 0.4024% -

0.20 SRPT, -11.42% FS, -69.85% FS, -60.28% SRPT, 4.017% FS+Rand+SRPT, 0.1001%
0.30 SRPT, -25.05% FS, -84.23% FS, -57.56% FS, 9.121% FS+SRPT, 0.1001%
0.40 SRPT, -40.72% SRPT, -90.67% FF, -26.91% FS, 12.26% FS+SRPT, 0.3009%
0.50 SRPT, -43.96% SRPT, -91.43% FS, -18.36% FF, 11.84% SRPT, 0.6036%
0.60 SRPT, -28.85% SRPT, -72.65% FS, -20.9% FF, 17.01% SRPT, 0.3009%
0.70 SRPT, -35.86% SRPT, -77.65% FS, -21.9% FF, 24.46% SRPT, 0.5025%
0.79 FS, -49.05% SRPT, -78.85% FS, -20.43% FF, 32.89% FS+SRPT, 1.011%
0.90 FS, -66.84% FS, -77.31% SRPT, -9.144% FF, 38.56% FS, 1.526%

0.10 SRPT, -4.338% FS, -44.59% FS, -43.56% FF+SRPT, 0.6061% -

0.20 FS, -12.75% FS, -73.12% FS, -65.3% FS+SRPT, 2.165% FS+Rand+SRPT, 0.1001%
0.30 FS, -32.36% FS, -89.81% FS, -65.67% FS, 6.109% FS+Rand+SRPT, 0.1001%
0.40 FS, -51.39% FS, -93.5% FS, -50.1% SRPT, 11.49% FS+SRPT, 0.6036%
0.50 FS, -64.75% SRPT, -95.14% FS, -44.25% FS, 18.82% FS+SRPT, 1.112%
0.60 SRPT, -66.34% SRPT, -94.78% FS, -38.79% FS, 26.48% FS+SRPT, 2.249%
0.70 FS, -55.14% SRPT, -86.15% FS, -30.44% FS, 36.44% SRPT, 1.112%

0.79 FS, -63.22% SRPT, -86.61% FS, -24.83% FS, 50.83% FS+4SRPT, 1.939%
0.89 FS, -71.7% SRPT, -80.91% FS, -15.77% FF, 57.67% FS, 2.675%

0.10 FS, -1.484% FS, -25.77% SRPT, -49.67% - -

0.20 FS, -4.266% FS, -24.92% FS, -61.38% - -

0.30 FS, -9.855% FS, -41.03% FS, -66.9% FF+FS+SRPT, 0.1001% -

0.40 FsS, -18.74% FS, -57.24% FS, -81.16% FS+SRPT, 0.3012% FS+SRPT, 0.1001%
0.50 FS, -38.63% FS, -79.07% FS, -84.78% FS+SRPT, 1.013% FS, 0.3009%

0.60 FS, -60.95% FS, -88.96% FS, -82.32% FS+SRPT, 4.311% FS, 1.011%

0.69 FS, -70.83% FS, -88.24% FS, -72.67% FS, 9.434% FS, 6.852%

0.80 FS, -64.72% FS, -79.18% FS, -45.34% FS, 26.6% FsS, 16.16%

0.90 FS, -73.86% FS, -80.41% FS, -45.18% FF, 55.08% FS, 31.69%

TABLE B.19: The winning schedulers’ performances relative to the losing baselines
for (from top to bottom) the University, Private Enterprise, Commercial Cloud,
and Social Media Cloud DCN traces. For brevity, ‘—’ indicates all schedulers’
performances were equal.

Appendix B. A Framework for Generating Custom and Reproducible Synthetic
238
Traffic

B.7 A Note on the Flow- vs. Job-Centric Traffic
Paradigms

Common DCN jobs include search queries, generating social media feeds, and
performing machine learning tasks such as inference and backpropagation. These
jobs are directed acyclic graphs composed of operations (nodes) and dependencies
(edges) [Paliwal et al., 2019]. The dependencies are either control dependencies
(where the child operation can only begin once the parent operation has been
completed) or data dependencies (where > 1 tensors are output from the parent
operation as required input for the child operation). In the context of DCNs,
when a job arrives, each operation in the job is placed onto some machine to
execute it. These operations might all be placed onto one machine or, as is
often the case, distributed across different machines in the network [Shabka
and Zervas, 2021]. The DCN is then used to pass the tensors around between
machines executing the operations. Job data dependencies whose parent and
child operations are placed onto different machines have their tensors become
DCN flows.

There are therefore two paradigms when considering traffic demand gen-
eration in DCNs; the flow-centric paradigm, which is agnostic to the overall
computation graph being executed in the DCN when servicing an application,
and the job-centric paradigm, which does consider the computation graph when
generating network flows. For this manuscript, we considered the flow-centric
paradigm, where a single demand is a flow; a task demanding some information
be sent from a source node to a destination node in the network. Flow charac-
teristics include size (how much information to send), arrival time (the time
the flow arrives ready to be transported through the network, as derived from
the network-level inter-arrival time which is the time between a flow’s time of

arrival and its predecessor’s), and source-destination node pair (which machine

B.7. A Note on the Flow- vs. Job-Centric Traffic Paradigms 239

the flow is queued at and where it is requesting to be sent). Together, these
charactisterics form a network-level source-destination node pair distribution
(‘how much’ (as measured by either probability or load) each machine tends to
be requested by arriving flows).

In real DCNs, traffic flows can be correlated with one another since they may
be part of the same job and therefore share similar characteristics. An interesting
area of future work will be to develop TrafPy to support the job-centric paradigm
and have this type of inter-flow correlation. However, this is beyond the scope

of this manuscript.

241

Appendix C

Partitioning Distributed

Compute Jobs

C.1 Metric Definitions

Table C.1 summarises the metric jargon used throughout the main chapter.

C.2 Experimental Hardware

All environment simulations were ran on Intel Xeon ES-2660 CPUs, and all

learner network training and inference was done on either a V100 or an A100

GPU.

C.3 Additional Simulation Details

C.3.1 Code Structure

We built a core RAMP simulation environment which followed a Gym-like
interface [Brockman et al., 2016] but without inheriting from a Gym environment
object to allow additional flexibility. We then built a wrapper ‘job partitioning’

environment which did conform to the Gym interface but used our core RAMP

simulation environment to perform the internal RAMP simulation logic. Our

242 Appendix C. Partitioning Distributed Compute Jobs

Metric Description

Job completion time Time between job arriving and being
completed.

Sequential job completion time Time it would take to complete a job

were its operations ran sequentially
on a single device.

Maximum acceptable job completion time | Maximum time allowed to complete
a job.

Speed-up factor Factor difference between sequential
job completion time and actual job
completion time.

Network overhead Fraction of the job completion time
spent communicating information
between workers when no computa-
tion was taking place.

Blocking rate Fraction of the arrived jobs which
were successfully serviced across a
given period of time.

Job information size Summed sizes (in bytes) of a job’s
operations and dependencies.

Cluster throughput Total partitioned job information
processed per unit time by the clus-
ter.

Offered throughput Total original job information pro-
cessed per unit time by the cluster.

Load rate Amount of job information arriving
at the cluster per unit time.

Job inter-arrival time Time between when two jobs arrived

at the cluster.

TABLE C.1: Descriptions of the various metrics referred to throughout the main
chapter.

C.3. Additional Simulation Details 243

code base is publicly available at https://github.com/cwfparsonson/ddls

for further practical implementation details.

C.3.2 Job Allocation Procedure

When a job arrives at the cluster, our environment uses the following ordered

sequence of task executions to allocate the job:

1. Op. partitioning: Partition the job DAG’s operations to attain a

‘partitioned’ job DAG.

2. Op. placement: Place the operations in the partitioned job DAG onto a

sub-set of cluster workers.

3. Op. scheduling: For each worker, schedule the priority of its placed
operations to resolve conflicts where > 2 operations are ready to be

executed at the same time.

4. Dep. placement: Given the placed operations and the data dependencies
which must be exchanged between operations, place the dependencies onto

cluster communication links.

5. Dep. scheduling: For each communication link, schedule the priority of
its placed dependencies to resolve conflicts where > 2 dependencies are

ready to be communicated at the same time.

C.3.3 Job Allocation Methods

Each of the above allocation procedure tasks can be performed by any algorithm,

heuristic, or learning agent. In our work, we use the following methods:

1. Op. partitioning: PAC-ML, Para,,,,, Para,,;,, or Random. See the

main chapter for details.

https://github.com/cwfparsonson/ddls

244

Appendix C. Partitioning Distributed Compute Jobs

Op. placement: A first-fit heuristic customised for the requirements of

RAMP. See Section C.3.4 below for details.

Op. scheduling: Shortest remaining processing time [Cai et al., 2016,
Alizadeh et al., 2013, Hong et al., 2012]. Given a set of operations placed
on a worker, the operation with the shortest remaining run time will have
the highest priority and therefore be executed first wherever two operations

on the same worker request to be executed at the same time.

Dep. placement: Shortest path & first-fit. Given a set of operation
placements, for any dependencies which need to be transferred through the
network (i.e. for dependencies with size > 0 and whose parent operation
is placed on a separate worker from the child operation), (1) first-fit select
a path from the k—shortest path with available light channel(s), and (2)

first-fit select an available channel.

Dep. scheduling: Shortest remaining processing time. Given a set of
dependencies placed on a communication link channel, the dependency
with the shortest remaining processing time (i.e. the lowest amount of
information left to be transferred) will have the highest priority and
therefore be communicated first wherever two dependencies on the same

link channel request to be transported at the same time.

C.3.4 First-Fit Operation Placement in RAMP

The original RAMP paper of Ottino et al. [2022] did not specify an operation

placement heuristic which conformed to the RAMP placement rules (see Section

5.2). Here, we propose a simple first-fit heuristic which conforms to these rules

whilst making the placement problem tractable for large cluster networks.

The basic idea behind partitioning and placement in the scenario described in

this work is to exploit the network efficiencies of RAMP as much as possible. In

C.3. Additional Simulation Details 245

particular, this means maximising the use of RAMP’s highly efficient collective
operations. For a generic partitioned DAG, in the backward pass, collectives
happen for each operation when weights/gradients are shared between sub-
operations. If both a parent and child operation are placed on the same set
of (RAMP symmetry adherent) workers, then when the parent communicates
its output to the child’s input in the forward pass this will also constitute a
collective operation. As such the placement heuristic implemented here seeks
to primarily maximise the amount that these two conditions are encountered.
Given some operation, o, that has been partitioned into N equal sub-operations,

0; and needs to be placed, the placement is handled as:

1. If a parent of o has been partitioned and placed across N servers which
adhere to the RAMP symmetry conditions, and if these servers each have
enough memory to store o;, then place o across this set of N servers. This
ensures collective operations can happen in both the forward and backward

pass.

2. Otherwise, check if a set of N workers can be found in the network that
adheres to the RAMP symmetry requirements. This is achieved by sliding
the various possible symmetric shapes over the topology until a suitable
one (or none) is found. This ensures collective operations in the backward

pass only.

Allocating in this way ensures that every partitioned operation can exploit
RAMP’s efficient collective operation process on the backward pass, and where
possible can also exploit it on the forward pass when receiving information from

(one of) its parents.

C.3.5 Evaluating the job completion time

The time to complete each operation was taken from the real computation

job profiles of the DNN jobs considered (see Section C.4). To calculate the

246 Appendix C. Partitioning Distributed Compute Jobs

communication time of point-to-point information transfers and of the MPI

collectives, we used the equations and code of Ottino et al. [2022].

C.3.6 Possible Causes of a Job Being Blocked

A job is blocked when either JCT > - JCT®** (i.e. failing to meet user’s chosen
JCT requirement) or when the cluster does not have enough available resources

to service the job. The possible causes of this latter form of blocking are:

Prior jobs using up too many cluster resources when later jobs arrive;

e the minimum operation run time quantum not being low enough to parti-

tion the operations enough times to lead to the desired JCT;

o mounted worker operation scheduling conflicts for partitioned operations
mounted on the same worker leading to longer run times, since one worker

can only execute one operation at a time; and

e excessive communication overheads incurring from over-partitioning of the

job.

C.4 Job Computation Graph Data Sets

All computation graphs used in our experiments were taken from the open-access
PipeDream computation graph data set [Narayanan et al., 2019]. Fig. C.1 shows
a visualisation of the key computation graph characteristics for each neural
network model considered, where the numbers reported are for one training
iteration (i.e. one forward and backward pass through the model). Table C.2
reports the same characteristics but in tabular form. Finally, for completeness,

Fig. C.2 shows the actual job DAGs of the models used.

247

C.4. Job Computation Graph Data Sets

's994q Ul syrun ([wWeu,) AIOWeW pue ‘Spu0des Ul pajlodal are syun oy (durod,)
uorpeinduwo) “sewr) “PHAr paInoexe oq 03 paou pmom ydeis uoreinduos oty ‘sdois
gururery “2¥A7 Mo A1Ied 03 ‘9I0JOI0Y], “UOIJRISII SUIUIRI) SUO JONPUOD O} PAYSIIRs
pue pojnoexe oq 031 paau YIym (sdep,) seuspuadep pue (sdo,) suorjerodo oty
I0J oI UMOUS $O1)sTIe)s oy T, ‘Suruonijred o1o0jeq sjuswtedxe Ino 10y pesn syders
uoryendurod Surures] desp oY) JO SOIISLISORIRYD O} JO Arewrwing :g-0) d14dV],

697 9¥7¢ 861°0 69191 ¢cv'e Ly 24 699 6€€861°0 69762 970°€ ¢06°5€9 gr'1909¢ 9¥ PNXV
69056 L9T'T 6960016°LC €91 [40 69L0089T°1 6929 ¢96°7¢ LEITVLY gr'o008¢ 9¢1 0T-39N@zeonbg
69T LEV V6170 69108 LC0'T LTI 0€ 89167 69¢°¢ 6977 89¢€°C 88°GT 08°0L77 96 LINND
69L9T 7791 6990 L97°6¢ €8 08 69GTETYI'T 690€ G29°0€ 0€e €Tl ge'gesve ¢8 9I-DDA
699 €80 ¢¢8°0 696C €EL'8T 651 09 69¢ 1616280 6999 8GC° LT GCo'eLy Ge€'8999¢ vl ST-19NS9YH
ozis ‘dop 'xely ozis ‘dop X sdep # yyde@g wew ‘do 'xepy woew ‘dox owr} ‘dwod ‘do ‘XN poe Ol 'sdo # [ePOIN

248 Appendix C. Partitioning Distributed Compute Jobs

ions
(s)

JCTee (s
pe

Max. O

)

04

ax. Dependency Size (B)

Total Operation Memory (B)
© P

pt

e
o
g
| -

100 104 104 104
1 - 0.8 08 ,.0.8 ’—‘ ; ;
60 3 3 064 3
2 0.6 2 20.64
] Fos : 3
[< 0.4 [
20 0.4 044
0.2
- 2 T

T
& N o 10° 10° 10%
& e Operation Compute Time

Computation Graph D
&
5

T
107

> b 10%
& Dependency Memory

o

FicUure C.1: Visualisation of the characteristics of the deep learning computation

graphs used for our experiments before partitioning. The bottom left sub-figure

contains the model colour code scheme for all other sub-figures. The statistics

shown are for the operations and dependencies which need to be executed and

satisfied to conduct one training iteration. Therefore, to carry out Njt, training

steps, the computation graph would need to be executed Ny, times. Computation
time units are reported in seconds, and memory units in bytes.

C.5 Neural Network Architecture

As shown in Fig. C.3, we used a message passing GNN similar to GraphSAGE
with mean pooling [Hamilton et al., 2018] to parameterise the PAC-ML policy.
Table C.3 summarises the hyperparameters used for the components of this
DNN. We note that we did not perform extensive hyperparamter tuning on the
GNN architecture. Below is a detailed explanation of this architecture.

GNN. First, the GNN layer takes in the DAG’s node and edge features and
generates an embedding for each node and edge in the graph. Then, each local
node’s nearest neighbour (1-hop away) sends the local node a message (‘message
passing’) which is the neighbouring nodes’ embeddings concatenated with their
connected edges’ embeddings. These messages are stored in the local node’s
‘mailbox’, which now contains information about the node’s neighbourhood.
To ensure consistent dimensioning with the received messages, a dummy zero-

padded edge embedding is concatenated with the local node’s embedding. Next,

C.5. Neural Network Architecture 249

ResNet-18 VGG-16 GNMT SqueezNet-lO AlexNet

FiGURE C.2: Deep learning computation graphs used for our experiments before
partitioning. Each computation graph represents the operations and dependencies
which need to be executed and satisfied to conduct one forward and one backward
pass through the neural network. Therefore, to carry out Ny, training steps, the
computation graph would need to be executed N, times.

the reduce module takes the local and message embeddings and generates a
reduced representation for each. Finally, to generate a layer-/ output embedding

for the local node, the element-wise mean of the reduced embeddings is taken

250 Appendix C. Partitioning Distributed Compute Jobs

PAC-MLinput PAC-MIL policy architecture PAC-ML output
A A

GNN layer |

w2 w3

Job DAG

if 1<L

else

: Action mas i
i o ction scores
122, Logit module }7}
=l ... m | Chosen
- 2 | action
Global [g
LJ

Node Edge Global Embedding Pacding Concatenated
features tensors

feaures features n
Node: Type Edge
Label Label Label

FIGURE C.3: Schematic of the DNN architecture with |L| GNN layers used to
parameterise the policy of PAC-ML. The GNN is similar to that of GraphSAGE
with mean pooling [Hamilton et al., 2018]. Each GNN layer [€ L contains a
node, edge, and reduce DNN module and ultimately learns to create an embedded
representation for each node in a given job DAG. These per-node embeddings are
then passed, along with any global job, cluster, and action features, to a readout
module. The readout module ultimately generates scores for each possible action,
which enables an action to be selected following a given exploration-exploitation
policy being followed. For clarity, this figure only shows the GNN embedding-
generation process for node 1. See accompanying text for a detailed explanation of
this architecture and the accompanying figure.

RUID FC

Job Global module

luster

nojooooos

\-

(‘mean pooling’). Note that this embedding process is done for each node in the
DAG, but for clarity Fig. C.3 only follows node 1.

If | < L (i.e. if this is not the last GNN layer), these final node embeddings
are used as new features for the original DAG’s nodes and are passed to the
next GNN layer. If [= L, then the node embeddings are passed to the readout
module. Note that (1) the node, edge, and reduce modules are shared across
the aforementioned operations within a given GNN layer when generating node

embeddings, but not across different GNN layers, and (2) the ["*-layer’s output

C.6. Reinforcement Learning Algorithm 251

node embeddings will contain information about the node’s neighbourhood from
up to [hops away.

Readout. The readout module takes the GNN’s node embeddings and the
job’s and cluster’s global features as input. To convert the node-level embeddings
of the GNN into a representation of the overall job DAG, their element-wise
mean is taken. To generate an embedding capturing the global job, cluster,
and action information, a global DNN module is used. The DAG and global
embeddings are then concatenated and passed to a logit module, which in turn
generates a vector of (optionally masked) scores for each possible action in the
environment. Finally, based on these scores and the exploration-exploitation

policy being followed, an action is selected.

Parameter Value
Message passing # hidden dimensions 64
Message passing # output dimensions 32
Reduce module # hidden dimensions 64
Reduce module # output dimensions 64 if | < L, else 16
Global module # hidden dimensions 8
Global module # output dimensions 8
Logit module RLlib FC net # layers 1
Logit module RLlib FC net # hidden dimensions 256
All modules’ activation ReLU
GNN # layers L 2
Apply action mask False

TABLE C.3: Hyperparamters used for the PAC-ML ApeX-DQN DNN policy
architecture shown in Fig. C.3. Note that the ‘message passing’ dimensions refer
to the dimensions of the concatenated node and edge modules’ embeddings, so
the dimensions of these modules’ hidden and output embeddings will be half the
corresponding ‘message passing’ dimension. Due to the RLlib implementation of
Ape-X DQN, we did not apply an action mask, but instead included the action
mask in the global features given to the model and used the reward signal to train
the agent to avoid selecting invalid actions.

C.6 Reinforcement Learning Algorithm

Approach. Given the stochastic nature of our dynamic cluster environment

setting, we hypothesised that a value-based RL method would be best suited

252 Appendix C. Partitioning Distributed Compute Jobs

to our setting [Mao et al., 2019b]. We did try the PPO [Schulman et al., 2017]
actor-critic method but found performance to be worse, although we leave a full
analysis of alternative RL algorithms to future work.

As stated in the main chapter, we used the state-of-the-art value-based
Ape-X DQN RL algorithm [Horgan et al., 2018] to attain the PAC-ML policy.
Concretely, we used the Ape-X parallelisation approach with double Q-learning
action selection-evaluation [van Hasselt et al., 2015] and multi-step bootstrapped
learning targets [Sutton and Barto, 2018, Hessel et al., 2017], prioritised experi-
ence replay [Schaul et al., 2016], a dueling DQN network architecture [Wang
et al., 2015], and a per-actor e-greedy exploration algorithm. For a breakdown
of each of these components, refer to Appendix 2.12.

Hyperparameters. To select the algorithm hyperparameters, we conducted
a Bayesian search across the search space summarised in Table C.4, with simu-
lations conducted in a light 32-worker RAMP environment with a maximum
simulation run time of 2e5 seconds to speed up the search. We adopted simi-
lar search ranges to those used by Kurach et al. [2019], Hoffman et al. [2020],
Parsonson et al. [2022]. For each set of hyperparameters, we ran the algorithm
for 100 learner steps (a.k.a. training epochs), and performed a validation across
3 seeds at each learner step (see Fig. C.4). We selected the parameter set
with the highest episode return across the 3 seeds (see Table C.4). We also
report the importance of each parameter with respect to the total episode return.
The importance is calculated by training a random forest with all algorithm
hyperparameters as inputs and the episode return as the target output, with
the per-feature (hyperparameter) importance values predicted by random forest
reported accordingly [Fabros, 2018, Howard, 2018]. All our experiments used
the same per-actor e-greedy exploration as Horgan et al. [2018].

We note that our RL algorithms were implemented using the open-source
RLIib library [Liang et al., 2018] and hyperparameter tuning was done using
Weights & Biases [Biewald, 2020].

253

C.6. Reinforcement Learning Algorithm

ooueliodur 1ejewered Surpuodserioo pue

‘punoj onea 3soq ‘9furl yoress deams rojeuwrered sumurery NO X-°dy FD d14v],

- 0—9T 9—o1 > 10119-(] T, Aerdo1 posmyLIoni g
- 0000T 000071 S1IR)S SUTUIRd|
- 000 00T 000001 Ayoedes regnq Aedoy
— oNnIT, ONLIT, O °1quoq
— osreq osreq ASION
- T T suoje #
— onuf, ONIT, WQEQSD
- urepy wepy JestundQ
- ¢lg ¢l1S oZIS TPYe(UrRlL],
- 0¢ 0G 18Us] MO0y
- soposido pajeount], soposido pajesundiy, opouwr Pyey
- ! T s1oIoM N dD) #
- 48 4 s1oIoM N JD #
1280 € {or'g'e 't} doys-u
L¥0°0 0 {670°8°0°2°0°9°0°¢°0F°0°1°0} ¢ Lerdex pesyyion g
700 60 {670°8°0°2°0°9°0°6°0 ' 7°0°1°0} © Aerdor posyyLIoLLd
100°0 GoT { GoT ‘poT ‘go1 } £ouenboiy ogepdn sjzomjou JoSIe],
700°0 0001 {000t ‘00z ‘00T ‘0T ‘1} it
10°0 0001~ {0001— ‘00z~ ‘001— ‘01— ‘1—} wta
G¥0°0 L—O1CT'F (¢—oT ‘,—oT) senjea urIojiuN-gor] 91el FUrUIed|
700°0 666°0 {66660 ‘666°0 °266°0 ‘€66°0 ‘66°0} L 10300] JUNOOSIJ
oouejrodw] onpeA 1S9g aSuey yoIeag I9joureIR

254 Appendix C. Partitioning Distributed Compute Jobs

|
(3]
(=1
1
=
©
1

-1

o
1

Episode Return
|
=
S
1
Blocking Rate
e
[osd
1

(=]
-1
1

T T T T T T
20 40 60 80 100 20 40 60 80 100

Learner Steps Learner Steps

Ficure C.4: Validation performance of the Ape-X DQN hyperparameter sweep.

Each agent was trained for 100 learner steps, and at each learner step a validation

was performed across 3 seeds - the mean metrics with their min-max interval bands
are plotted for each hyperparameter set.

C.6.1 Final Learning Curves

For completeness, Fig. C.5 shows the learning curves of the tuned PAC-ML agents
in each fx environment superimposed on the baseline agents’ performances. At
each learner step, the PAC-ML agent was evaluated across three seeds in the

validation environment.

C.7 Additional Experimental Results

Fig. C.6 shows the performance of the agents in terms of raw blocking rate,

throughput, JCT, and JCT speed-up.

C.7. Additional Experimental Results 255

— PAC-ML (Ours) - Para,qe - Para,,;n, - Random

Rate

o
ot
|

(B/s)

Throughput Blocking

0.0 -

T 1 T 1 I T i I T i
0 100 200 O 100 200 O 100 200 O 100 200
Learner Steps Learner Steps Learner Steps Learner Steps

FicUure C.5: Validation curves of the PAC-ML agent trained in four different
distribution environments. At each learner step (update to the GNN), the agent
was evaluated across 3 seeds, with the mean blocking rate, offered throughput, JCT,
and JCT speed-up (relative to the jobs’ sequential run time JCT®®?) performance
metrics reported as well as their min-max confidence intervals. For reference, the
performances of the baseline heuristic partitioners are also plotted.

mmm PAC-ML (Ours) mmm Para,,,, WS Para,,;, WM Random

x 107
0.6_ ’(71\
2)
& 0.4 52—
2 a
X
5027 ?1—
an) =
0.0 - F-
%104
1.5+
o 157
=
31.0 — -E-lo -
5 &
= 0.5 ~ 5
(@)
o]
0.0~ 0-
Ba BB Bc Bp Ba BB Bc Bp

FicUrE C.6: Validation performances of each partitioning agent evaluated across

three seeds, with the mean blocking rate, offered throughput, JCT, and JCT

speed-up (relative to the jobs’ sequential run time JCT**?) performance metrics
reported.

257

Bibliography

T Achterberg and R Wunderling. Mized Integer Programming: Analyzing
12 Years of Progress. Facets of Combinatorial Optimization, 2013. doi:
10.1007/978-3-642-38189-818.

Tobias Achterberg, Thorsten Koch, and Alexander Martin. Branching rules
revisited. Technical Report 04-13, ZIB, Takustr. 7, 14195 Berlin, 2004.

Ravichandra Addanki, Shaileshh Bojja Venkatakrishnan, Shreyan Gupta, Hongzi
Mao, and Mohammad Alizadeh. Placeto: Learning Generalizable Device

Placement Algorithms for Distributed Machine Learning. Curran Associates

Inc., Red Hook, NY, USA, 2019.

M. Mehdi Afsar, Trafford Crump, and Behrouz Far. Reinforcement learning
based recommender systems: A survey. ACM Comput. Surv., jun 2022. ISSN
0360-0300. doi: 10.1145/3543846. URL https://doi.org/10.1145/3543846.

Just Accepted.

F. Agostinelli, S. McAleer, and A. Shmakov. Solving the Rubik’s cube with deep

reinforcement learning and search. Nature, 2019a.

Forest Agostinelli, Stephen McAleer, Alexander Shmakov, and Pierre Baldi.
Solving the rubik’s cube with deep reinforcement learning and search. Nature
Machine Intelligence, 1(8):356-363, Aug 2019b. ISSN 2522-5839. doi: 10.1038/

s42256-019-0070-z. URL https://doi.org/10.1038/s42256-019-0070~-z.

Gowind P. Agrawal. Fiber-Optic Communication Systems. John Wiley & Sons,
3rd edition, 2002.

https://doi.org/10.1145/3543846
https://doi.org/10.1038/s42256-019-0070-z

258 BIBLIOGRAPHY

Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson
Huang, and Amin Vahdat. Hedera: Dynamic flow scheduling for data cen-
ter networks. In Proceedings of the 7th USENIX Conference on Networked
Systems Design and Implementation, NSDI'10, page 19, USA, 2010. USENIX

Association.
Aws Albarghouthi. Introduction to neural network verification. arXiv, 2021.

Alibaba. Alibaba Cluster Trace. Technical report, 2017. URL https://github.

com/alibaba/clusterdata.

Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar, Amin
Vahdat, and Masato Yasuda. Less is more: Trading a little band-
width for Ultra-Low latency in the data center. In 9th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 12),
pages 253-266, San Jose, CA, April 2012. USENIX Association. ISBN
978-931971-92-8. URL https://www.usenix.org/conference/nsdil2/

technical-sessions/presentation/alizadeh.

Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick McKe-
own, Balaji Prabhakar, and Scott Shenker. Pfabric: Minimal near-optimal
datacenter transport. SIGCOMM Comput. Commun. Rev., 43(4):435-446,
August 2013. ISSN 0146-4833. doi: 10.1145/2534169.2486031. URL

https://doi.org/10.1145/2534169.2486031.

M Alizadeh et al. pfabric: Minimal near-optimal datacenter transport. SIG-
COMM, 2013.

Alejandro Marcos Alvarez, Quentin Louveaux, and Louis Wehenkel. A machine
learning-based approximation of strong branching. INFORMS J. Comput.,
29:185-195, 2017.

George Amvrosiadis. The Atlas Cluster Trace Repository. USENIX, 43(4), 2018.

https://github.com/alibaba/clusterdata
https://github.com/alibaba/clusterdata
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/alizadeh
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/alizadeh
https://doi.org/10.1145/2534169.2486031

BIBLIOGRAPHY 259

George Amvrosiadis, Jun Woo Park, Gregory R. Ganger, Garth A. Gibson,
Elisabeth Baseman, and Nathan DeBardeleben. On the diversity of cluster
workloads and its impact on research results. In 2018 USENIX Annual
Technical Conference (USENIX ATC 18), pages 533-546, Boston, MA, July
2018. USENIX Association. ISBN 978-1-939133-01-4. URL https://wuw.

usenix.org/conference/atc18/presentation/amvrosiadis.

Paris Andreades, Kari Clark, Philip M. Watts, and Georgios Zervas. Ex-
perimental demonstration of an ultra-low latency control plane for optical
packet switching in data center networks. Optical Switching and Network-
ing, 32:51-60, 2019. ISSN 1573-4277. doi: https://doi.org/10.1016/j.0sn.
2018.11.005. URL https://www.sciencedirect.com/science/article/

pii/S1573427718301577.

D. L. Applegate, R. E. Bixpy, V. Chvatal, and W. J. Cook. Finding cuts in the
TSP (A preliminary report). Technical report, DIMACS, 1995.

D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook. The Traveling

Salesman Problem: A Computational Study. Princeton University Press, 2007.

A Assadihaghi, H Teimoori, and T J Hall. SOA-Based Optical Switches. Optical

Switches - Materials and Design, pages 158180, 2010.

Azure. Azure Public Dataset. Technical report, 2017. URL https://github.

com/Azure/AzurePublicDataset.

Wei Bai, Li Chen, Kai Chen, and Haitao Wu. Enabling ecn in multi-service multi-
queue data centers. In 13th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 16), pages 537-549, Santa Clara, CA, March 2016.
USENIX Association. ISBN 978-1-931971-29-4. URL https://www.usenix.

org/conference/nsdil6é/technical-sessions/presentation/bai.

https://www.usenix.org/conference/atc18/presentation/amvrosiadis
https://www.usenix.org/conference/atc18/presentation/amvrosiadis
https://www.sciencedirect.com/science/article/pii/S1573427718301577
https://www.sciencedirect.com/science/article/pii/S1573427718301577
https://github.com/Azure/AzurePublicDataset
https://github.com/Azure/AzurePublicDataset
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/bai
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/bai

260 BIBLIOGRAPHY

Wei Bai et al. Enabling ecn in multi-service multi-queue data centers. NSDI,

2016.

Egon Balas, Andrew Ho, and Carnegie Mellon UniversityDesign Re-
search Center. Set covering algorithms using cutting planes, heuristics,
and subgradient optimization : a computational study, Jun 2018.
URL https://kilthub.cmu.edu/articles/journal_contribution/
Set_covering algorithms_using_ cutting planes_heuristics_and_

subgradient_optimization_a_computational_study/6707945/1.

Hitesh Ballani, Paolo Costa, Istvan Haller, Krzysztof Jozwik, Kai Shi, Benn
Thomsen, and Hugh Williams. Bridging the last mile for optical switching
in data centers. In Optical Fiber Communication Conference, page W1C.3.
Optica Publishing Group, 2018. doi: 10.1364/OFC.2018.W1C.3. URL https:

//opg.optica.org/abstract.cfm?URI=0FC-2018-W1C.3.

Hitesh Ballani, Paolo Costa, Raphael Behrendt, Daniel Cletheroe, Istvan
Haller, Krzysztof Jozwik, Fotini Karinou, Sophie Lange, Benn Thomsen,
Kai Shi, and Hugh Williams. Sirius: A flat datacenter network with
nanosecond optical switching. In SIGCOMM, SIGCOMM ’20, page
782-797, New York, NY, USA, August 2020. ACM, Association for Com-
puting Machinery. ISBN 9781450379557. doi: 10.1145/3387514.3406221.
URL https://www.microsoft.com/en-us/research/publication/

sirius-a-flat-datacenter-network-with-nanosecond-optical-switching/.

Jagdish Chand Bansal. Fvolutionary and Swarm Intelligence Algorithms, volume
779. 2019. ISBN 978-3-319-91339-1. URL http://link.springer.com/10.
1007/978-3-319-91341-4.

Yixin Bao, Yanghua Peng, Chuan Wu, and Zongpeng Li. Online job scheduling
in distributed machine learning clusters. In IEEE INFOCOM 2018 - IEEFE

Conference on Computer Communications, page 495-503. IEEE Press, 2018.

https://kilthub.cmu.edu/articles/journal_contribution/Set_covering_algorithms_using_cutting_planes_heuristics_and_subgradient_optimization_a_computational_study/6707945/1
https://kilthub.cmu.edu/articles/journal_contribution/Set_covering_algorithms_using_cutting_planes_heuristics_and_subgradient_optimization_a_computational_study/6707945/1
https://kilthub.cmu.edu/articles/journal_contribution/Set_covering_algorithms_using_cutting_planes_heuristics_and_subgradient_optimization_a_computational_study/6707945/1
https://opg.optica.org/abstract.cfm?URI=OFC-2018-W1C.3
https://opg.optica.org/abstract.cfm?URI=OFC-2018-W1C.3
https://www.microsoft.com/en-us/research/publication/sirius-a-flat-datacenter-network-with-nanosecond-optical-switching/
https://www.microsoft.com/en-us/research/publication/sirius-a-flat-datacenter-network-with-nanosecond-optical-switching/
http://link.springer.com/10.1007/978-3-319-91341-4
http://link.springer.com/10.1007/978-3-319-91341-4

BIBLIOGRAPHY 261

doi: 10.1109/INFOCOM.2018.8486422. URL https://doi.org/10.1109/

INFOCOM.2018.8486422.

Francisco Barahona. On the computational complexity of Ising spin glass models.

Journal of Physics A: Mathematical and General, 15(10):3241, 1982.

Cynthia Barnhart, Ellis L. Johnson, George L. Nemhauser, Martin W. P. Savels-
bergh, and Pamela H. Vance. Branch-and-price: Column generation for
solving huge integer programs. Oper. Res., 46(3):316-329, mar 1998. ISSN
0030-364X. doi: 10.1287/opre.46.3.316. URL https://doi.org/10.1287/

opre.46.3.316.

Thomas D Barrett, William R Clements, Jakob N Foerster, and Al Lvovsky. Ex-
ploratory combinatorial optimization with reinforcement learning. Association

for the Advancement of Artificial Intelligence, 2019.

Thomas D. Barrett, Christopher W. F. Parsonson, and Alexandre Laterre.
Learning to solve combinatorial graph partitioning problems via efficient
exploration. arXiv preprint arXiv:2205.14105, 2022. doi: 10.48550/ARXIV.

2205.14105. URL https://arxiv.org/abs/2205.14105.

Andrew G. Barto and Sridhar Mahadevan. Recent advances in hierarchical

reinforcement learning. Discrete Fvent Dynamic Systems, 13:341-379, 2003.

Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Ben-
gio. Neural combinatorial optimization with reinforcement learning. CoRR,

abs/1611.09940, 2016. URL http://arxiv.org/abs/1611.09940.

Tal Ben-Nun and Torsten Hoefler. Demystifying parallel and distributed deep
learning: An in-depth concurrency analysis. ACM Comput. Surv., 52(4), aug
2019. ISSN 0360-0300. doi: 10.1145/3320060. URL https://doi.org/10.

1145/3320060.

https://doi.org/10.1109/INFOCOM.2018.8486422
https://doi.org/10.1109/INFOCOM.2018.8486422
https://doi.org/10.1287/opre.46.3.316
https://doi.org/10.1287/opre.46.3.316
https://arxiv.org/abs/2205.14105
http://arxiv.org/abs/1611.09940
https://doi.org/10.1145/3320060
https://doi.org/10.1145/3320060

262 BIBLIOGRAPHY

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning
for combinatorial optimization: A methodological tour d’horizon. Furo-
pean Journal of Operational Research, 290(2):405-421, 2021. ISSN 0377-
2217. doi: https://doi.org/10.1016/j.ejor.2020.07.063. URL http://wuw.

sciencedirect.com/science/article/pii/S0377221720306895.

M Benichou, J M Gauthier, P Girodet, G Hentges, G Ribiere, and O Vincent.
Experiments in mixed-integer linear programming. Mathematical Programming,
1(1):76-94, 1971. ISSN 1436-4646. doi: 10.1007/BF01584074. URL https:

//doi.org/10.1007/BF01584074.

Joshua Benjamin. Towards Sub-Microsecond Optical Circuit Switched Networks

for Future Data Centres. PhD thesis, UCL, 2020.

Joshua L Benjamin, Thomas Gerard, Domani¢ Lavery, Polina Bayvel, and
Georgios Zervas. PULSE: Optical Circuit Switched Data Center Architecture
Operating at Nanosecond Timescales. J. Lightwave Technol., 38(18):4906-4921,

sep 2020. URL http://jlt.osa.org/abstract.cfm?URI=j1t-38-18-4906.

Joshua L Benjamin, Christopher W F Parsonson, and Georgios Zervas. Bench-
marking Packet-Granular OCS Network Scheduling for Data Center Traffic
Traces. In OSA Advanced Photonics Congress 2021, page NeW3B.3. Optica
Publishing Group, 2021. doi: 10.1364/NETWORKS.2021.NeW3B.3. URL

http://opg.optica.org/abstract.cfm?URI=Networks-2021-NeW3B.3.

Joshua L. Benjamin, Alessandro Ottino, Christopher W. F. Parsonson, and
Georgios Zervas. Traffic tolerance of nanosecond scheduling on optical cir-
cuit switched data center network. In 2022 Optical Fiber Communications

Conference and Ezhibition (OFC), pages 1-3, 2022.

Joshua Lawrence Benjamin, Adam Funnell, Philip Michael Watts, and Benn
Thomsen. A high speed hardware scheduler for 1000-port optical packet

switches to enable scalable data centers. Proceedings - 2017 IEEE 25th Annual

http://www.sciencedirect.com/science/article/pii/S0377221720306895
http://www.sciencedirect.com/science/article/pii/S0377221720306895
https://doi.org/10.1007/BF01584074
https://doi.org/10.1007/BF01584074
http://jlt.osa.org/abstract.cfm?URI=jlt-38-18-4906
http://opg.optica.org/abstract.cfm?URI=Networks-2021-NeW3B.3

BIBLIOGRAPHY 263

Symposium on High-Performance Interconnects, HOTI 2017, pages 41-48,
2017. doi: 10.1109/HOTI.2017.22.

Theophilus Benson, Aditya Akella, and David A. Maltz. Network traffic
characteristics of data centers in the wild. Proceedings of the ACM SIG-
COMM Internet Measurement Conference, IMC, pages 267-280, 2010a. doi:
10.1145/1879141.1879175.

Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. Understand-
ing data center traffic characteristics. SIGCOMM Comput. Commun. Rewv.,
40(1):92-99, January 2010b. ISSN 0146-4833. doi: 10.1145/1672308.1672325.

URL https://doi.org/10.1145/1672308.1672325.

Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. Microte:
Fine grained traffic engineering for data centers. In Proceedings of the Seventh
COnference on Emerging Networking EXperiments and Technologies, CONEXT
11, New York, NY, USA, 2011. Association for Computing Machinery. ISBN
9781450310413. doi: 10.1145/2079296.2079304. URL https://doi.org/10.
1145/2079296.2079304.

David Bergman, Andre A. Cire, Willem-Jan van Hoeve, and John Hooker. Deci-

ston Diagrams for Optimization. Springer Publishing Company, Incorporated,

1st edition, 2016. ISBN 3319428470.

Keren Bergman. Empowering Flexible and Scalable High Performance Architec-

tures with Embedded Photonics. IPDPS, 2018.

Lukas Biewald. Experiment tracking with weights and biases, 2020. URL

https://www.wandb.com/. Software available from wandb.com.

J. M. Bishop. Stochastic searching networks. IEE Conference Publication, (313):
329-331, 1989. ISSN 053799809.

https://doi.org/10.1145/1672308.1672325
https://doi.org/10.1145/2079296.2079304
https://doi.org/10.1145/2079296.2079304
https://www.wandb.com/

264 BIBLIOGRAPHY

E Bonabeau, M Dorigo, and G Theraulaz. Swarm Intelligence: From Natural to

Artificial Systems. Oxford University Press, 1999.

Michael Bowling and Manuela Veloso. Rational and convergent learning in
stochastic games. In Proceedings of the 17th International Joint Conference on
Artificial Intelligence - Volume 2, IJCAI’01, page 1021-1026, San Francisco,
CA, USA, 2001. Morgan Kaufmann Publishers Inc. ISBN 1558608125.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John

Schulman, Jie Tang, and Wojciech Zaremba. Openai gym, 2016.

Noam Brown and Tuomas Sandholm. Superhuman ai for multiplayer poker.
Science, 365(6456):885-890, 2019. doi: 10.1126/science.aay2400. URL https:

//www.science.org/doi/abs/10.1126/science.aay2400.

C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfsha-
gen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton. A survey of monte

carlo tree search methods. IEEE Transactions on Computational Intelligence

and Al in Games, 4(1):1-43, 2012. doi: 10.1109/TCIAIG.2012.2186810.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration

by random network distillation. 2018.

C. X. Cai, S. Saeed, 1. Gupta, R. H. Campbell, and F. Le. Phurti: Application
and network-aware flow scheduling for multi-tenant mapreduce clusters. In
2016 IEEE International Conference on Cloud Engineering (IC2E), pages
161-170, 2016. doi: 10.1109/1C2E.2016.21.

Quentin Cappart, Didier Chételat, Elias Khalil, Andrea Lodi, Christopher Morris,
and Petar Velickovi¢. Combinatorial optimization and reasoning with graph

neural networks. 2021.

Y. Chen. Optical Burst Switching: A New Area in Optical Networking Research.

IEEE, pages 16-23, 2005.

https://www.science.org/doi/abs/10.1126/science.aay2400
https://www.science.org/doi/abs/10.1126/science.aay2400

BIBLIOGRAPHY 265

Cisco. Cisco global cloud index: Forecast and methodology. Technical report,

Cisco, 2016.

Kari Clark, Hitesh Ballani, Polina Bayvel, Daniel Cletheroe, Thomas Gerard,
Istvan Haller, Krzysztof Jozwik, Kai Shi, Benn Thomsen, Philip Watts, Hugh
Williams, Georgios Zervas, Paolo Costa, and Zhixin Liu. Sub-nanosecond
clock and data recovery in an optically-switched data centre network. In 2018
European Conference on Optical Communication (ECOC), pages 1-3, 2018.
doi: 10.1109/ECOC.2018.8535333.

Maurice Clerc. The swarm and the queen: Towards a deterministic and adaptive
particle swarm optimization. Proceedings of the 1999 Congress on Evolutionary

Computation, CEC 1999, 3:1951-1957, 1999. doi: 10.1109/CEC.1999.785513.

Karl Cobbe, Oleg Klimov, Chris Hesse, Taechoon Kim, and John Schulman.
Quantifying generalization in reinforcement learning. In Kamalika Chaud-
huri and Ruslan Salakhutdinov, editors, Proceedings of the 36th Interna-
tional Conference on Machine Learning, volume 97 of Proceedings of Ma-
chine Learning Research, pages 1282-1289. PMLR, 09-15 Jun 2019. URL

https://proceedings.mlr.press/v97/cobbel9a.html.

E. Conforti and C. M. Gallep. A fast electro-optical amplified switch us-
ing a resistive combiner for multi-pulse injection. In 2006 IEEE MTT-S
International Microwave Symposium Digest, pages 1935-1938, 2006. doi:
10.1109/MWSYM.2006.249812.

Michael Connelly. Semiconductor Optical Amplifiers and their Applications.
Applications of Photonic Technology 5, 4833(August 2003):974, 2003. doi:
10.1117/12.478235.

Edoardo Conti, Vashisht Madhavan, Felipe Petroski Such, Joel Lehman, Ken-
neth O. Stanley, and Jeff Clune. Improving exploration in evolution strategies

for deep reinforcement learning via a population of novelty-seeking agents.

https://proceedings.mlr.press/v97/cobbe19a.html

266 BIBLIOGRAPHY

In Proceedings of the 32nd International Conference on Neural Information
Processing Systems, NIPS’18, page 5032-5043, Red Hook, NY, USA, 2018.

Curran Associates Inc.

Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fontoura,
and Ricardo Bianchini. Resource central: Understanding and predicting
workloads for improved resource management in large cloud platforms. In
Proceedings of the 26th Symposium on Operating Systems Principles, SOSP
17, page 153-167, New York, NY, USA, 2017. Association for Computing
Machinery. ISBN 9781450350853. doi: 10.1145/3132747.3132772. URL

https://doi.org/10.1145/3132747.3132772.

IBM CPLEX. V12. 1: User’s manual for cplex. International Business Machines

Corporation, 46(53):157, 2009.

Paul A. Crook and Gillian Hayes. Learning in a state of confusion: Perceptual
aliasing in grid world navigation. In IN TOWARDS INTELLIGENT MO-
BILE ROBOTS 2003 (TIMR 2003), 4 TH BRITISH CONFERENCE ON
(MOBILE) ROBOTICS, 2003.

Hanjun Dai, Elias B. Khalil, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning
combinatorial optimization algorithms over graphs. In Proceedings of the 31st
International Conference on Neural Information Processing Systems, NIPS’17,
page 6351-6361, Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN
9781510860964.

James Dale Davidson and William Rees-Mogg. The Sovereign Individual; Mas-
tering the Transition to the Information Age. Simon & Schuster, Inc., USA,
1999. ISBN 0684832720.

K. De Jong, D. Fogel, and H.-P Schwefel. Handbook of Evolutionary Computation.
CRC Press, 1997.

https://doi.org/10.1145/3132747.3132772

BIBLIOGRAPHY 267

Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen, Matthieu Devin,
Quoc V. Le, Mark Z. Mao, Marc’Aurelio Ranzato, Andrew Senior, Paul
Tucker, Ke Yang, and Andrew Y. Ng. Large scale distributed deep networks.
In Proceedings of the 25th International Conference on Neural Information
Processing Systems - Volume 1, NIPS’12, page 1223-1231, Red Hook, NY,

USA, 2012. Curran Associates Inc.

Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey,
Francesco Carpanese, Timo Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego
de las Casas, Craig Donner, Leslie Fritz, Cristian Galperti, Andrea Huber,
James Keeling, Maria Tsimpoukelli, Jackie Kay, Antoine Merle, Jean-Marc
Moret, Seb Noury, Federico Pesamosca, David Pfau, Olivier Sauter, Cristian
Sommariva, Stefano Coda, Basil Duval, Ambrogio Fasoli, Pushmeet Kohli, Ko-
ray Kavukcuoglu, Demis Hassabis, and Martin Riedmiller. Magnetic control of
tokamak plasmas through deep reinforcement learning. NatureTY - JOUR, 602
(7897):414-419, Feb 2022. ISSN 1476-4687. doi: 10.1038/s41586-021-04301-9.

URL https://doi.org/10.1038/s41586-021-04301-9.

Delft. GWA-T-12 Bitbrains Trace. Technical report, 2015. URL http://gwa.

ewi.tudelft.nl/datasets/gwa-t-12-bitbrains.

J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE Conference on Computer
Vision and Pattern Recognition, pages 248-255, 2009. doi: 10.1109/CVPR.

2009.5206848.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on

computer vision and pattern recognition, pages 248-255. Ieee, 2009.

https://doi.org/10.1038/s41586-021-04301-9
http://gwa.ewi.tudelft.nl/datasets/gwa-t-12-bitbrains
http://gwa.ewi.tudelft.nl/datasets/gwa-t-12-bitbrains

268 BIBLIOGRAPHY

Kefan Dong, Yuping Luo, Tianhe Yu, Chelsea Finn, and Tengyu Ma. On the
expressivity of neural networks for deep reinforcement learning. In Proceed-
ings of the 37th International Conference on Machine Learning, ICML’20.
JMLR.org, 2020.

M Dorigo. Optimization, Learning and Natural Algorithms. PhD thesis, Politec-
nicodi Milano, 1992.

Marco Dorigo and Thomas Stiitzle. Ant colony optimization. The MIT Press,
2004. ISBN 9781439802847. doi: 10.4249/scholarpedia.1461.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O. Stanley, and Jeff
Clune. First return, then explore. Nature, 590(7847):580-586, Feb 2021. ISSN
1476-4687. doi: 10.1038/s41586-020-03157-9. URL http://dx.doi.org/10.

1038/s41586-020-03157-9.

Marc Etheve, Zacharie Ales, Come Bissuel, Olivier Juan, and Safia Kedad-
Sidhoum. Reinforcement learning for variable selection in a branch and bound
algorithm. Lecture Notes in Computer Science, page 176-185, 2020. ISSN
1611-3349. doi: 10.1007/978-3-030-58942-4 12. URL http://dx.doi.org/

10.1007/978-3-030-58942-4_12.

Eucalyptus. Eucalyptus IaaS Cloud Workload. Technical report, 2015. URL

https://sites.cs.ucsb.edu/{~}rich/workload/.

Melissa Fabros. Introduction to hyperparameters, Sept 2018. URL https:

//forums.fast.ai/t/wiki-lesson-thread-lesson-4/7540.

Facebook. Facebook Workload Repository. Technical report, 2014. URL https:

//github.com/SWIMProjectUCB/SWIM/wiki/Workloads-repository.

Shaohua Fan, Xiao Wang, Chuan Shi, Peng Cui, and Bai Wang. Generalizing
graph neural networks on out-of-distribution graphs, 2021. URL https:

//arxiv.org/abs/2111.10657.

http://dx.doi.org/10.1038/s41586-020-03157-9
http://dx.doi.org/10.1038/s41586-020-03157-9
http://dx.doi.org/10.1007/978-3-030-58942-4_12
http://dx.doi.org/10.1007/978-3-030-58942-4_12
https://sites.cs.ucsb.edu/{~}rich/workload/
https://forums.fast.ai/t/wiki-lesson-thread-lesson-4/7540
https://forums.fast.ai/t/wiki-lesson-thread-lesson-4/7540
https://github.com/SWIMProjectUCB/SWIM/wiki/Workloads-repository
https://github.com/SWIMProjectUCB/SWIM/wiki/Workloads-repository
https://arxiv.org/abs/2111.10657
https://arxiv.org/abs/2111.10657

BIBLIOGRAPHY 269

Nathan Farrington, George Porter, Sivasankar Radhakrishnan, Hamid Hajab-
dolali Bazzaz, Vikram Subramanya, Yeshaiahu Fainman, George Papen,
and Amin Vahdat. Helios: A hybrid electrical/optical switch architec-
ture for modular data centers. SIGCOMM Comput. Commun. Rev., 40
(4):339-350, August 2010. ISSN 0146-4833. doi: 10.1145/1851275.1851223.

URL https://doi.org/10.1145/1851275.1851223.

D. G. Feitelson. Metric and workload effects on computer systems evaluation.

Computer, 36(9):18-25, 2003. doi: 10.1109/MC.2003.1231190.

R. C. Figueiredo, T. Sutili, N. S. Ribeiro, C. M. Gallep, and E. Conforti.
Semiconductor optical amplifier space switch with symmetrical thin-film

resistive current injection. Journal of Lightwave Technology, 35(2):280-287,
2017. doi: 10.1109/JLT.2016.2635202.

Rafael C. Figueiredo, Eduardo C. Magalhaes, Napoleao S. Ribeiro, Cristiano M.
Gallep, and Evandro Conforti. Equivalent circuit of a semiconductor optical
amplifier chip with the bias current influence. SBMO/IEEE MTT-S Interna-
tional Microwave and Optoelectronics Conference Proceedings, pages 852—856,

2011. doi: 10.1109/IMOC.2011.6169263.

Rafael C. Figueiredo, Napoleao S. Ribeiro, Antonio Marcelo Oliveira Ribeiro,
Cristiano M. Gallep, and Evandro Conforti. Hundred-Picoseconds Electro-
Optical Switching With Semiconductor Optical Amplifiers Using Multi-
Impulse Step Injection Current. Journal of Lightwave Technology, 33(1):
69-77, jan 2015. ISSN 0733-8724. doi: 10.1109/JLT.2014.2372893. URL

http://ieeexplore.ieee.org/document/6963258/.

J Foerster. Deep multi-agent reinforcement learning. PhD thesis, University of

Oxford, 2018.

https://doi.org/10.1145/1851275.1851223
http://ieeexplore.ieee.org/document/6963258/

270 BIBLIOGRAPHY

A Fraser. Simulation of Genetic Systems by Automatic Digital Computers.
Australian Journal of Biological Sciences, (2):87-94, 1958. doi: 10.1109/
9780470544600.ch3.

Steve Furber. Large-scale neuromorphic computing systems. Journal of Neural
Engineering, 13(5):051001, aug 2016. doi: 10.1088/1741-2560/13/5/051001.

URL https://doi.org/10.1088/1741-2560/13/5/051001.

C.M. Gallep and E. Conforti. Reduction of semiconductor optical amplifier
switching times by preimpulse step-injected current technique. IEEE Pho-
tonics Technology Letters, 14(7):902-904, jul 2002. ISSN 1041-1135. doi:
10.1109/LPT.2002.1012379. URL http://ieeexplore.ieee.org/document/

1012379/.

Yuanxiang Gao, Li Chen, and Baochun Li. Spotlight: Optimizing device
placement for training deep neural networks. In Jennifer Dy and Andreas
Krause, editors, Proceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research, pages
1676-1684. PMLR, 10-15 Jul 2018. URL https://proceedings.mlr.press/

v80/gaol8a.html.

Vikas Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and rep-
resentational limits of graph neural networks. In Hal Daumé III and Aarti
Singh, editors, Proceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning Research, pages
3419-3430. PMLR, 13-18 Jul 2020. URL https://proceedings.mlr.press/

v119/garg20c.html.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea
Lodi. Ezact Combinatorial Optimization with Graph Convolutional Neural

Networks. Curran Associates Inc., Red Hook, NY, USA, 2019.

https://doi.org/10.1088/1741-2560/13/5/051001
http://ieeexplore.ieee.org/document/1012379/
http://ieeexplore.ieee.org/document/1012379/
https://proceedings.mlr.press/v80/gao18a.html
https://proceedings.mlr.press/v80/gao18a.html
https://proceedings.mlr.press/v119/garg20c.html
https://proceedings.mlr.press/v119/garg20c.html

BIBLIOGRAPHY 271

Thomas Gerard, Christopher Parsonson, Zacharaya Shabka, Polina Bayvel,
Domani¢ Lavery, and Georgios Zervas. Swift: Scalable ultra-wideband sub-
nanosecond wavelength switching for data centre networks. 2020a. doi:

10.48550/ARXIV.2003.05489. URL https://arxiv.org/abs/2003.05489.

Thomas Gerard, Christopher Parsonson, Zacharaya Shabka, Polina Bayvel,
Domanic¢ Lavery, and Georgios Zervas. Swift: Scalable ultra-wideband sub-

nanosecond wavelength switching for data centre networks, 2020b.

Thomas Gerard, Christopher Parsonson, Zacharaya Shabka, Benn Thomsen,
Polina Bayvel, Domani¢ Lavery, and Georgios Zervas. Al-optimised tuneable
sources for bandwidth-scalable, sub-nanosecond wavelength switching. Opt.
FEzpress, 29(7):11221-11242, mar 2021. doi: 10.1364/0OE.417272. URL http:

//opg.optica.org/oe/abstract.cfm?URI=0e-29-7-11221.

Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized
trees. Machine Learning, 63(1):3-42, 2006. ISSN 1573-0565. doi: 10.1007/

$10994-006-6226-1. URL https://doi.org/10.1007/s10994-006-6226-1.

H. Ghafouri-Shiraz. The principles of semiconductor laser diodes and amplifiers:
Analysis and transmission line laser modeling. Imperial College Press,
2004. ISBN 186094339X. URL https://books.google.co.uk/books/
about/The{_}Principles{_}of{_ }Semiconductor{_}Laser{ }Di.html?

id=zYvZwgiP1KUC{&}redir{_l}esc=y.

Yoav Goldberg and Graeme Hirst. Neural Network Methods in Natural Language
Processing. Morgan & Claypool Publishers, 2017. ISBN 1627052984.

Oded Goldreich. Computational Complezity: A Conceptual Perspective. Cam-
bridge University Press, USA, 1 edition, 2008. ISBN 052188473X.

https://arxiv.org/abs/2003.05489
http://opg.optica.org/oe/abstract.cfm?URI=oe-29-7-11221
http://opg.optica.org/oe/abstract.cfm?URI=oe-29-7-11221
https://doi.org/10.1007/s10994-006-6226-1
https://books.google.co.uk/books/about/The{_}Principles{_}of{_}Semiconductor{_}Laser{_}Di.html?id=zYvZwgiPlKUC{&}redir{_}esc=y
https://books.google.co.uk/books/about/The{_}Principles{_}of{_}Semiconductor{_}Laser{_}Di.html?id=zYvZwgiPlKUC{&}redir{_}esc=y
https://books.google.co.uk/books/about/The{_}Principles{_}of{_}Semiconductor{_}Laser{_}Di.html?id=zYvZwgiPlKUC{&}redir{_}esc=y

272 BIBLIOGRAPHY

Oded Goldreich. P, NP, and NP-Completeness: The Basics of Computational
Complezity. Cambridge University Press, USA, 1st edition, 2010. ISBN

0521122546.

N. G. Gonzalez, D. Zibar, and I. T. Monroy. Cognitive digital receiver for burst
mode phase modulated radio over fiber links. In 36th European Conference
and Exhibition on Optical Communication, pages 1-3, 2010. doi: 10.1109/
ECOC.2010.5621525.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. The MIT
Press, 2016. ISBN 0262035618.

Google. Google Cluster Workload. Technical report, 2015. URL https://

github.com/google/cluster-data.

Vojtech Graf, Dusan Teichmann, Jiri Horinka, and Michal Dorda. Dynamic
Model for Scheduling Crew Shifts. Mathematical Problems in Engineering,
2020. doi: https://doi.org/10.1155/2020/5372567.

C. Gray, R. Ayre, K. Hinton, and R. S. Tucker. Power consumption of iot
access network technologies. In 2015 IEEFE International Conference on
Communication Workshop (ICCW), pages 2818-2823, 2015. doi: 10.1109/
ICCW.2015.7247606.

A. Hanif Halim and Idris Ismail. Combinatorial optimization: Comparison of
heuristic algorithms in travelling salesman problem. Archives of Computational

Methods in Engineering, 26:367-380, 2019.

Navid Hamedazimi, Zafar Qazi, Himanshu Gupta, Vyas Sekar, Samir R. Das,
Jon P. Longtin, Himanshu Shah, and Ashish Tanwer. Firefly: A reconfigurable
wireless data center fabric using free-space optics. In Proceedings of the 201
ACM Conference on SIGCOMM, SIGCOMM 14, page 319-330, New York,
NY, USA, 2014. Association for Computing Machinery. ISBN 9781450328364.

https://github.com/google/cluster-data
https://github.com/google/cluster-data

BIBLIOGRAPHY 273

doi: 10.1145/2619239.2626328. URL https://doi.org/10.1145/2619239.

2626328.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation

learning on large graphs. arXiv, 2018.

Anna Harutyunyan, Will Dabney, Thomas Mesnard, Nicolas Heess, Moham-
mad G. Azar, Bilal Piot, Hado van Hasselt, Satinder Singh, Greg Wayne,
Doina Precup, and Rémi Munos. Hindsight Credit Assignment. Curran

Associates Inc., Red Hook, NY, USA, 2019.

Conor F. Hayes, Roxana Radulescu, Eugenio Bargiacchi, Johan Kallstrom,
Matthew Macfarlane, Mathieu Reymond, Timothy Verstraeten, Luisa M.
Zintgraf, Richard Dazeley, Fredrik Heintz, Enda Howley, Athirai A. Iris-
sappane, Patrick Mannion, Ann Nowé, Gabriel de Oliveira Ramos, Mar-
cello Restelli, Peter Vamplew, and Diederik M. Roijers. A practical guide
to multi-objective reinforcement learning and planning. Auton. Agents
Multi Agent Syst., 36(1):26, 2022. doi: 10.1007/s10458-022-09552-y. URL

https://doi.org/10.1007/s10458-022-09552-y.

He He, Hal Daumé, and Jason Eisner. Learning to search in branch-and-
bound algorithms. In Proceedings of the 27th International Conference on
Neural Information Processing Systems - Volume 2, NIPS’14, page 3293-3301,
Cambridge, MA, USA, 2014. MIT Press.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 770-778, 2016. doi: 10.1109/CVPR.
2016.90.

John L. Hennessy and David A. Patterson. Computer Architecture, Sizth Edition:
A Quantitative Approach. Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 6th edition, 2017. ISBN 0128119055.

https://doi.org/10.1145/2619239.2626328
https://doi.org/10.1145/2619239.2626328
https://doi.org/10.1007/s10458-022-09552-y

274 BIBLIOGRAPHY

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski,
Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver.

Rainbow: Combining improvements in deep reinforcement learning. 2017.

R. Hinterding. Gaussian mutation and self-adaption for numeric genetic algo-
rithms. In Proceedings of 1995 IEEE International Conference on Evolutionary
Computation, volume 1, pages 384—, 1995. doi: 10.1109/ICEC.1995.489178.

Matthew W. Hoffman, Bobak Shahriari, John Aslanides, Gabriel Barth-Maron,
Nikola Momchev, Danila Sinopalnikov, Piotr Stanczyk, Sabela Ramos, An-
ton Raichuk, Damien Vincent, Leonard Hussenot, Robert Dadashi, Gabriel
Dulac-Arnold, Manu Orsini, Alexis Jacq, Johan Ferret, Nino Vieillard, Seyed
Kamyar Seyed Ghasemipour, Sertan Girgin, Olivier Pietquin, Feryal Be-
hbahani, Tamara Norman, Abbas Abdolmaleki, Albin Cassirer, Fan Yang,
Kate Baumli, Sarah Henderson, Abe Friesen, Ruba Haroun, Alex Novikov,
Sergio Gomez Colmenarejo, Serkan Cabi, Caglar Gulcehre, Tom Le Paine, Sri-
vatsan Srinivasan, Andrew Cowie, Ziyu Wang, Bilal Piot, and Nando de Freitas.

Acme: A research framework for distributed reinforcement learning. 2020. doi:

10.48550/ARXIV.2006.00979. URL https://arxiv.org/abs/2006.00979.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya,
Trevor Cai, Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks,
Johannes Welbl, Aidan Clark, Tom Hennigan, Eric Noland, Katie Millican,
George van den Driessche, Bogdan Damoc, Aurelia Guy, Simon Osindero,
Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models. 2022. doi: 10.48550/ARXIV.

2203.15556. URL https://arxiv.org/abs/2203.15556.

Chi-Yao Hong, Matthew Caesar, and P. Brighten Godfrey. Finishing flows
quickly with preemptive scheduling. In Proceedings of the ACM SIGCOMM

2012 Conference on Applications, Technologies, Architectures, and Protocols

https://arxiv.org/abs/2006.00979
https://arxiv.org/abs/2203.15556

BIBLIOGRAPHY 275

for Computer Communication, SIGCOMM ’12, page 127-138, New York,
NY, USA, 2012. Association for Computing Machinery. ISBN 9781450314190.
doi: 10.1145/2342356.2342389. URL https://doi.org/10.1145/2342356.

2342389.

J. J. Hopfield and D. W. Tank. "neural" computation of decisions in optimization
problems. Biological Cybernetics, 52(3):141-152, July 1985. ISSN 0340-1200.
doi: 10.1007/BF00339943.

Jeff Horen. Linear programming, by katta g. murty, john wiley & sons, new york,
1983, 482 pp. Networks, 15(2):273-274, 1985. URL http://dblp.uni-trier.

de/db/journals/networks/networks15.html#Horen85.

Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel,
Hado van Hasselt, and David Silver. Distributed prioritized experience replay.
In International Conference on Learning Representations, 2018. URL https:

//openreview.net/forum?id=H1Dy---0Z.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedfor-
ward networks are universal approximators. Neural Networks, 2(5):359—
366, 1989. ISSN 0893-6080. doi: https://doi.org/10.1016,/0893-6080(89)
90020-8. URL http://www.sciencedirect.com/science/article/pii/

0893608089900208.

Jeremy Howard. Intro to machine learning: Lesson 4, Sept 2018. URL https:

//www.youtube.com/watch?v=0v93qHDqq_g.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Mia Xu Chen,
Dehao Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and
Zhifeng Chen. GPipe: Efficient Training of Giant Neural Networks Using
Pipeline Parallelism. Curran Associates Inc., Red Hook, NY, USA, 2019.

https://doi.org/10.1145/2342356.2342389
https://doi.org/10.1145/2342356.2342389
http://dblp.uni-trier.de/db/journals/networks/networks15.html#Horen85
http://dblp.uni-trier.de/db/journals/networks/networks15.html#Horen85
https://openreview.net/forum?id=H1Dy---0Z
https://openreview.net/forum?id=H1Dy---0Z
http://www.sciencedirect.com/science/article/pii/0893608089900208
http://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.youtube.com/watch?v=0v93qHDqq_g
https://www.youtube.com/watch?v=0v93qHDqq_g

276 BIBLIOGRAPHY

Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J.
Dally, and Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and <0.5mb model size. arXiv preprint arXiv:1602.07360, 2016.
URL http://arxiv.org/abs/1602.07360. cite arxiv:1602.07360Comment:

In ICLR Format.

S. Jha, A. Patke, J. Brandt, A. Gentile, M. Showerman, E. Roman, Z. T.
Kalbarczyk, B. Kramer, and R. K. Iyer. A study of network congestion in
two supercomputing high-speed interconnects. In 2019 IEEE Symposium on
High-Performance Interconnects (HOTI), pages 4548, 2019. doi: 10.1109/
HOTI.2019.00024.

Saurabh Jha, Archit Patke, Jim Brandt, Ann Gentile, Benjamin Lim, Mike
Showerman, Greg Bauer, Larry Kaplan, Zbigniew Kalbarczyk, William
Kramer, and Ravi Iyer. Measuring congestion in high-performance dat-
acenter interconnects. In 17th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 20), pages 37-57, Santa Clara,
CA, February 2020. USENIX Association. ISBN 978-1-939133-13-7. URL

https://www.usenix.org/conference/nsdi20/presentation/jha.

T Jiménez, J C Aguado, I de Miguel, R J Durdan, N Ferndndez, M An-
gelou, D Sanchez, N Merayo, P Fernandez, N Atallah, R M Lorenzo,
I Tomkos, and E J Abril. A Cognitive System for Fast Quality of Trans-
mission Estimation in Core Optical Networks. In Optical Fiber Com-
munication Conference, page OW3A.5. Optical Society of America, 2012.
doi: 10.1364/OFC.2012.0W3A.5. URL http://www.osapublishing.org/

abstract.cfm?URI=0FC-2012-0W3A.5.

David B. Johnson and David A. Maltz. Dynamic source routing in ad hoc
wireless networks. In Mobile Computing, pages 153-181. Kluwer Academic

Publishers, 1996.

http://arxiv.org/abs/1602.07360
https://www.usenix.org/conference/nsdi20/presentation/jha
http://www.osapublishing.org/abstract.cfm?URI=OFC-2012-OW3A.5
http://www.osapublishing.org/abstract.cfm?URI=OFC-2012-OW3A.5

BIBLIOGRAPHY 277

Donald B. Johnson. A note on dijkstra’s shortest path algorithm. J. ACM, 20
(3):385-388, July 1973. ISSN 0004-5411. doi: 10.1145/321765.321768. URL

https://doi.org/10.1145/321765.321768.

JSSPP. JSSPP Workloads Archive. Technical report, 2017. URL https:

//jsspp.org/workload/.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Fig-
urnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin
Zidek, Anna Potapenko, Alex Bridgland, Clemens Meyer, Simon A. A. Kohl,
Andrew J. Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav
Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman,
Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas
Berghammer, Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W.
Senior, Koray Kavukcuoglu, Pushmeet Kohli, and Demis Hassabis. Highly
accurate protein structure prediction with alphafold. Nature, 596(7873):583~
589, Aug 2021. ISSN 1476-4687. doi: 10.1038/s41586-021-03819-2. URL

https://doi.org/10.1038/s41586-021-03819-2.

Sham Kakade. A Natural Policy Gradient. In Adv. Neural Inf. Process Syst.,
volume 14, pages 1531-1538, 2001.

Srikanth Kandula, Sudipta Sengupta, Albert Greenberg, Parveen Patel, and
Ronnie Chaiken. The nature of data center traffic: Measurements &; analysis.
In Proceedings of the 9th ACM SIGCOMM Conference on Internet Measure-
ment, IMC 09, page 202-208, New York, NY, USA, 2009. Association for
Computing Machinery. ISBN 9781605587714. doi: 10.1145/1644893.1644918.

URL https://doi.org/10.1145/1644893.1644918.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin
Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei.

https://doi.org/10.1145/321765.321768
https://jsspp.org/workload/
https://jsspp.org/workload/
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1145/1644893.1644918

278 BIBLIOGRAPHY

Scaling laws for neural language models. CoRR, abs/2001.08361, 2020. URL

https://arxiv.org/abs/2001.08361.

Can Karakus, Rahul Huilgol, Fei Wu, Anirudh Subramanian, Cade Daniel,
Derya Cavdar, Teng Xu, Haohan Chen, Arash Rahnama, and Luis Quintela.
Amazon sagemaker model parallelism: A general and flexible framework
for large model training. 2021. doi: 10.48550/ARXIV.2111.05972. URL

https://arxiv.org/abs/2111.05972.

James Kennedy, Russell Eberhart, and Bls Gov. Particle Swarm Optimization.
International Conference on Neural Networks, 11(1):111-117, 1995. ISSN

1598-8619. URL http://ci.nii.ac.jp/naid/10015518367.

Shauharda Khadka, Estelle Aflalo, Mattias Mardar, Avrech Ben-David, Santiago
Miret, Shie Mannor, Tamir Hazan, Hanlin Tang, and Somdeb Majumdar.
Optimizing memory placement using evolutionary graph reinforcement learn-
ing. In International Conference on Learning Representations, 2021. URL

https://openreview.net/forum?id=-6vS_4Kfz0.

Elias Boutros Khalil, Pierre Le Bodic, Le Song, George L. Nemhauser, and
Bistra N. Dilkina. Learning to branch in mixed integer programming. In

AAAL 2016.

Mehrdad Khani et al. Sip-ml: High-bandwidth optical network interconnects for
machine learning training. SIGCOMM, 2021. doi: 10.1145/3452296.3472900.

Paresh Kharya and Ali Alvi. Using deepspeed and megatron to train
megatron-turing nlg 530b, the world’s largest and most powerful
generative language model. https://developer.nvidia.com/blog/
using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-1la:

Oct 2021.

https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2111.05972
http://ci.nii.ac.jp/naid/10015518367
https://openreview.net/forum?id=-6vS_4Kfz0
https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/

BIBLIOGRAPHY 279

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
In Yoshua Bengio and Yann LeCun, editors, 3rd International Conference
on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, 2015. URL http://arxiv.org/abs/

1412.6980.

B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A. Al
Sallab, Senthil Yogamani, and Patrick Pérez. Deep reinforcement learning for
autonomous driving: A survey. IEEE Transactions on Intelligent Transporta-

tion Systems, 23(6):4909-4926, 2022. doi: 10.1109/TITS.2021.3054625.

Serkan Kiranyaz. Adaptation, Learning, and Optimization, volume 15. Springer,

2014. doi: 10.1007/978-3-642-37846-1 3.

Robert Kirk, Amy Zhang, Edward Grefenstette, and Tim Rocktéschel. A
survey of generalisation in deep reinforcement learning, 2021. URL https:

//arxiv.org/abs/2111.09794.

Dalibor Klusacek and Boris Pardk. Analysis of Mixed Workloads from Shared
Cloud Infrastructure. In Dalibor Klusacek, Walfredo Cirne, and Narayan
Desai, editors, Job Scheduling Strategies for Parallel Processing, pages 25—42,
Cham, 2017. Springer International Publishing. ISBN 978-3-319-77398-8.

Boris Knyazev, Graham W. Taylor, and Mohamed R. Amer. Understanding

Attention and Generalization in Graph Neural Networks. Curran Associates

Inc., Red Hook, NY, USA, 2019.

B. H. Korte and Jens Vygen. Combinatorial Optimization: Theory and Al-
gorithms. Springer-Verlag, New York, NY, 2012. ISBN 9783642244889
3642244882 3642244874 9783642244872. doi: 10.1007/978-3-642-24488-9.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet

classification with deep convolutional neural networks. In F. Pereira,

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2111.09794
https://arxiv.org/abs/2111.09794

280 BIBLIOGRAPHY

C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems 25, pages 1097-1105. Cur-
ran Associates, Inc., 2012. URL http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.

pdf.

Karol Kurach, Anton Raichuk, Piotr Stanczyk, Michal Zajac, Olivier Bachem,
Lasse Espeholt, Carlos Riquelme, Damien Vincent, Marcin Michalski, Olivier
Bousquet, and Sylvain Gelly. Google research football: A novel reinforcement
learning environment. 2019. doi: 10.48550/ARXIV.1907.11180. URL https:

//arxiv.org/abs/1907.11180.

D. H. Kusuma, M. Ali, and N. Sutantra. The comparison of optimization
for active steering control on vehicle using pid controller based on artificial
intelligence techniques. In 2016 International Seminar on Application for
Technology of Information and Communication (ISemantic), pages 18-22, Aug
2016. doi: 10.1109/ISEMANTIC.2016.7873803.

A. H. Land and A. G. Doig. An automatic method of solving discrete program-
ming problems. Econometrica, 28(3):pp. 497-520, 1960. ISSN 00129682.

LANL and TwoSigma. ATLAS Traces Repository. Technical report, 2018. URL

https://ftp.pdl.cmu.edu/pub/datasets/ATLAS/.

Gilbert Laporte. The traveling salesman problem: An overview of exact and
approximate algorithms. European Journal of Operational Research, 59(2):231—
247, 1992. ISSN 0377-2217. doi: https://doi.org/10.1016/0377-2217(92)
90138-Y. URL http://www.sciencedirect.com/science/article/pii/

037722179290138Y.

Kevin Leyton-Brown, Mark Pearson, and Yoav Shoham. Towards a universal
test suite for combinatorial auction algorithms. In Proceedings of the 2nd

ACM Conference on Electronic Commerce, EC '00, page 66-76, New York,

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://arxiv.org/abs/1907.11180
https://arxiv.org/abs/1907.11180
https://ftp.pdl.cmu.edu/pub/datasets/ATLAS/
http://www.sciencedirect.com/science/article/pii/037722179290138Y
http://www.sciencedirect.com/science/article/pii/037722179290138Y

BIBLIOGRAPHY 281

NY, USA, 2000. Association for Computing Machinery. ISBN 1581132727. doi:

10.1145/352871.352879. URL https://doi.org/10.1145/352871.352879.

H. Li. Realistic workload modeling and its performance impacts in large-scale
escience grids. IEEE Transactions on Parallel and Distributed Systems, 21(4):
480-493, 2010. doi: 10.1109/TPDS.2009.99.

Qingping Li, Jingwei Xu, and Chun Cao. Scheduling distributed deep learning
jobs in heterogeneous cluster with placement awareness. In Proceedings of the
12th Asia-Pacific Symposium on Internetware, Internetware '20, page 217-228,
New York, NY, USA, 2021. Association for Computing Machinery. ISBN
9781450388191. doi: 10.1145/3457913.3457936. URL https://doi.org/10.

1145/3457913.3457936.

Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken
Goldberg, Joseph Gonzalez, Michael Jordan, and Ion Stoica. RLIlib: Abstrac-
tions for distributed reinforcement learning. In Jennifer Dy and Andreas
Krause, editors, Proceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research, pages
3053-3062. PMLR, 10-15 Jul 2018. URL https://proceedings.mlr.press/

v80/1iangl8b.html.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with
deep reinforcement learning. In Yoshua Bengio and Yann LeCun, editors,
ICLR, 2016. URL http://dblp.uni-trier.de/db/conf/iclr/iclr2016.

html#LillicrapHPHETS165.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with

deep reinforcement learning. 2019.

https://doi.org/10.1145/352871.352879
https://doi.org/10.1145/3457913.3457936
https://doi.org/10.1145/3457913.3457936
https://proceedings.mlr.press/v80/liang18b.html
https://proceedings.mlr.press/v80/liang18b.html
http://dblp.uni-trier.de/db/conf/iclr/iclr2016.html#LillicrapHPHETS15
http://dblp.uni-trier.de/db/conf/iclr/iclr2016.html#LillicrapHPHETS15

282 BIBLIOGRAPHY

J. Lin. Divergence measures based on the shannon entropy. IEEE Transactions

on Information Theory, 37(1):145-151, 1991. doi: 10.1109/18.61115.

Long-Ji Lin. Self-improving reactive agents based on reinforcement learning,
planning and teaching. Mach. Learn., 8(3-4):293-321, May 1992. ISSN
0885-6125. doi: 10.1007/BF00992699. URL https://doi.org/10.1007/

BF00992699.

Igor Litvinchev and Edith Lucero Ozuna Espinosa. Solving the two-stage
capacitated facility location problem by the lagrangian heuristic. In Hao
Hu, Xiaoning Shi, Robert Stahlbock, and Stefan Vo8, editors, Computational
Logistics, pages 92-103, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.
ISBN 978-3-642-33587-7.

Shiyun Liu, Qixiang Cheng, Muhammad Ridwan Madarbux, Adrian Wonfor,
Richard V. Penty, Ian H. White, and Philip M. Watts. Low latency optical
switch for high performance computing with minimized processor energy
load [invited]. Journal of Optical Communications and Networking, 7(3):

A498-A510, 2015. doi: 10.1364/JOCN.7.00A498.

Andrea Lodi and Giulia Zarpellon. On learning and branching: a survey. TOP,
25(2):207-236, 2017. ISSN 1863-8279. doi: 10.1007/s11750-017-0451-6. URL

https://doi.org/10.1007/s11750-017-0451-6.

C. Lu, K. Ye, G. Xu, C. Xu, and T. Bai. Imbalance in the cloud: An analysis
on alibaba cluster trace. In 2017 IEEE International Conference on Big Data

(Big Data), pages 2884-2892, 2017. doi: 10.1109/BigData.2017.8258257.

Stephen Maher, Matthias Miltenberger, Joao Pedro Pedroso, Daniel Rehfeldt,
Robert Schwarz, and Felipe Serrano. PySCIPOpt: Mathematical programming
in python with the SCIP optimization suite. In Mathematical Software —
ICMS 2016, pages 301-307. Springer International Publishing, 2016. doi:
10.1007/978-3-319-42432-3__37.

https://doi.org/10.1007/BF00992699
https://doi.org/10.1007/BF00992699
https://doi.org/10.1007/s11750-017-0451-6

BIBLIOGRAPHY 283

Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth Kandula.
Resource management with deep reinforcement learning. In Proceedings of
the 15th ACM Workshop on Hot Topics in Networks, HotNets "16, page 50-56,
New York, NY, USA, 2016. Association for Computing Machinery. ISBN
9781450346610. doi: 10.1145/3005745.3005750. URL https://doi.org/10.

1145/3005745.3005750.

Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili Meng,
and Mohammad Alizadeh. Learning scheduling algorithms for data process-
ing clusters. In Proceedings of the ACM Special Interest Group on Data
Communication, SIGCOMM 19, page 270-288, New York, NY, USA, 2019a.
Association for Computing Machinery. ISBN 9781450359566. doi: 10.1145/

3341302.3342080. URL https://doi.org/10.1145/3341302.3342080.

Hongzi Mao, Shaileshh Bojja Venkatakrishnan, Malte Schwarzkopf, and Moham-
mad Alizadeh. Variance reduction for reinforcement learning in input-driven
environments. In 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019b.

URL https://openreview.net/forum?id=Hyg1G2AqtQ.

Hongzi Mao, Computer Science, Mohammad Alizadeh, Computer Science, Thesis
Supervisor, Leslie A Kolodziejski, and Computer Science. Network System
Optimization with Reinforcement Learning : Methods and Applications. PhD
thesis, MIT, 2020.

Javier Mata, Ignacio de Miguel, Ramoén J. Duran, Noemi Merayo, Sandeep Ku-
mar Singh, Admela Jukan, and Mohit Chamania. Artificial intelligence (AI)
methods in optical networks: A comprehensive survey. Optical Switching and

Networking, 28:43-57, 2018. ISSN 15734277. doi: 10.1016/.0sn.2017.12.006.

Ruben Mayer and Hans-Arno Jacobsen. Scalable deep learning on distributed

infrastructures: Challenges, techniques, and tools. ACM Comput. Surv., 53

https://doi.org/10.1145/3005745.3005750
https://doi.org/10.1145/3005745.3005750
https://doi.org/10.1145/3341302.3342080
https://openreview.net/forum?id=Hyg1G2AqtQ

284 BIBLIOGRAPHY

(1), feb 2020. ISSN 0360-0300. doi: 10.1145/3363554. URL https://doi.

org/10.1145/3363554.

McKinsey. Artificial-intelligence hardware: New opportunities for semicon-
ductor companies. Technical report, McKinsey, 2019. URL https:
//www.mckinsey.com/industries/semiconductors/our-insights/

artificial-intelligence-hardware-new-opportunities—-for-semiconductor-companie

William M. Mellette, Rob McGuinness, Arjun Roy, Alex Forencich, George
Papen, Alex C. Snoeren, and George Porter. Rotornet: A scalable, low-
complexity, optical datacenter network. In Proceedings of the Conference
of the ACM Special Interest Group on Data Communication, SIGCOMM
17, page 267-280, New York, NY, USA, 2017. Association for Computing
Machinery. ISBN 9781450346535. doi: 10.1145/3098822.3098838. URL

https://doi.org/10.1145/3098822.3098838.

Azalia Mirhoseini, Hieu Pham, Quoc V Le, Benoit Steiner, Rasmus Larsen, Yue-
feng Zhou, Naveen Kumar, Mohammad Norouzi, Samy Bengio, and Jeff Dean.
Device Placement Optimization with Reinforcement Learning. In Doina Precup
and Yee Whye Teh, editors, Proceedings of the 34th International Conference
on Machine Learning, volume 70 of Proceedings of Machine Learning Research,
pages 2430-2439, International Convention Centre, Sydney, Australia, 2017.

PMLR. URL http://proceedings.mlr.press/v70/mirhoseinil7a.html.

Azalia Mirhoseini, Anna Goldie, Hieu Pham, Benoit Steiner, Quoc V. Le, and Jeff
Dean. A hierarchical model for device placement. In International Conference
on Learning Representations, 2018. URL https://openreview.net/forum?

id=Hkc-TeZOW.

Vaibhawa Mishra, Joshua L. Benjamin, and Georgios Zervas. Monet: hetero-

geneous memory over optical network for large-scale data center resource

https://doi.org/10.1145/3363554
https://doi.org/10.1145/3363554
https://www.mckinsey.com/industries/semiconductors/our-insights/artificial-intelligence-hardware-new-opportunities-for-semiconductor-companies
https://www.mckinsey.com/industries/semiconductors/our-insights/artificial-intelligence-hardware-new-opportunities-for-semiconductor-companies
https://www.mckinsey.com/industries/semiconductors/our-insights/artificial-intelligence-hardware-new-opportunities-for-semiconductor-companies
https://doi.org/10.1145/3098822.3098838
http://proceedings.mlr.press/v70/mirhoseini17a.html
https://openreview.net/forum?id=Hkc-TeZ0W
https://openreview.net/forum?id=Hkc-TeZ0W

BIBLIOGRAPHY 285

disaggregation. Journal of Optical Communications and Networking, 13(5):

126-139, 2021. doi: 10.1364/JOCN.419145.

John E Mitchell. Integer programming: branch and cut algorithmsInteger Pro-
gramming: Branch and Cut Algorithms, pages 1643-1650. Springer US, Boston,
MA, 2009. ISBN 978-0-387-74759-0. doi: 10.1007/978-0-387-74759-0_ 287.

URL https://doi.org/10.1007/978-0-387-74759-0{_}287.

Tom M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997. ISBN
978-0-07-042807-2.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, loannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep

reinforcement learning. NeurIPS‘13 Workshop, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel
Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K.
Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik,
Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane
Legg, and Demis Hassabis. Human-level control through deep reinforcement
learning. Nature, 518(7540):529-533, February 2015. ISSN 00280836. URL

http://dx.doi.org/10.1038/nature14236.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timo-
thy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous
Methods for Deep Reinforcement Learning. In Maria Florina Balcan and
Kilian Q Weinberger, editors, Proceedings of The 33rd International Confer-
ence on Machine Learning, volume 48 of Proceedings of Machine Learning
Research, pages 1928-1937, New York, New York, USA, 2016. PMLR. URL

http://proceedings.mlr.press/v48/mnihal6.html.

Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Ben-

gio. On the Number of Linear Regions of Deep Neural Networks. In

https://doi.org/10.1007/978-0-387-74759-0{_}287
http://dx.doi.org/10.1038/nature14236
http://proceedings.mlr.press/v48/mniha16.html

286 BIBLIOGRAPHY

7. Ghahramani, M Welling, C Cortes, N Lawrence, and K Q Weinberger,
editors, Advances in Neural Information Processing Systems, volume 27
of NIPS’14, pages 2924-2932, Cambridge, MA, USA, 2014. Curran As-
sociates, Inc. URL https://proceedings.neurips.cc/paper/2014/file/

109d2dd3608f669cal7920cb1l1c2adle-Paper. pdf.

Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid von Glehn, Pawel Li-
chocki, Ivan Lobov, Brendan O’Donoghue, Nicolas Sonnerat, Christian Tjan-
draatmadja, Pengming Wang, Ravichandra Addanki, Tharindi Hapuarachchi,
Thomas Keck, James Keeling, Pushmeet Kohli, Ira Ktena, Yujia Li, Oriol
Vinyals, and Yori Zwols. Solving mixed integer programs using neural networks.

2021.

Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri,
Nikhil Devanur, Greg Granger, Phil Gibbons, and Matei Zaharia.
Pipedream: Generalized pipeline parallelism for dnn training. In
ACM Symposium on Operating Systems Principles (SOSP 2019), October
2019. URL https://www.microsoft.com/en-us/research/publication/

pipedream-generalized-pipeline-parallelism-for-dnn-training/.

Deepak Narayanan, Amar Phanishayee, Kaiyu Shi, Xie Chen, and
Matei Zaharia. = Memory-efficient pipeline-parallel dnn training. In
International Conference on Machine Learning (ICML 2021), July
2021. URL https://www.microsoft.com/en-us/research/publication/

memory-efficient-pipeline-parallel-dnn-training/.

NCSA. Blue Waters HPC Cluster Trace. Technical report, 2018. URL https:

//github.com/CSLDepend/monet.

John A. Nelder and Roger Mead. A simplex method for function minimization.

Computer Journal, 7:308-313, 1965.

https://proceedings.neurips.cc/paper/2014/file/109d2dd3608f669ca17920c511c2a41e-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/109d2dd3608f669ca17920c511c2a41e-Paper.pdf
https://www.microsoft.com/en-us/research/publication/pipedream-generalized-pipeline-parallelism-for-dnn-training/
https://www.microsoft.com/en-us/research/publication/pipedream-generalized-pipeline-parallelism-for-dnn-training/
https://www.microsoft.com/en-us/research/publication/memory-efficient-pipeline-parallel-dnn-training/
https://www.microsoft.com/en-us/research/publication/memory-efficient-pipeline-parallel-dnn-training/
https://github.com/CSLDepend/monet
https://github.com/CSLDepend/monet

BIBLIOGRAPHY 287

NVIDIA. Nvidia selene: Leadership-class supercomputing infras-
tructure. https://www.nvidia.com/en-us/on-demand/session/

supercomputing2020-sc2019/, Nov 2020.

NVIDIA. Nvidia ai platform delivers big gains for large
language models. https://developer.nvidia.com/blog/
nvidia-ai-platform-delivers-big-gains-for-large-language-models/,

Jul 2022.

OpenAl. Ai and compute. https://openai.com/blog/ai-and-compute/, May
2018.

OpenAl, :, Christopher Berner, Greg Brockman, Brooke Chan, Vicki Che-
ung, Przemystaw Debiak, Christy Dennison, David Farhi, Quirin Fischer,
Shariq Hashme, Chris Hesse, Rafal Jozefowicz, Scott Gray, Catherine Olsson,
Jakub Pachocki, Michael Petrov, Henrique Pondé de Oliveira Pinto, Jonathan
Raiman, Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor,
Ilya Sutskever, Jie Tang, Filip Wolski, and Susan Zhang. Dota 2 with large

scale deep reinforcement learning. arXiv, 2019.

OpenCloud. OpenCloud Hadoop Workload. Technical report, 2012. URL

http://ftp.pdl.cmu.edu/pub/datasets/hla/.

Simon Osindero. Deep Mind Lecture Series, Lecture 3, Neural Networks Foun-

dations, 2018.

Alessandro Ottino, Joshua Benjamin, and Georgios Zervas. Ramp: A flat
nanosecond optical network and mpi operations for distributed deep learning
systems. arXiv, 2022. doi: 10.48550/ARXIV.2211.15226. URL https://

arxiv.org/abs/2211.15226.

https://www.nvidia.com/en-us/on-demand/session/supercomputing2020-sc2019/
https://www.nvidia.com/en-us/on-demand/session/supercomputing2020-sc2019/
https://developer.nvidia.com/blog/nvidia-ai-platform-delivers-big-gains-for-large-language-models/
https://developer.nvidia.com/blog/nvidia-ai-platform-delivers-big-gains-for-large-language-models/
https://openai.com/blog/ai-and-compute/
http://ftp.pdl.cmu.edu/pub/datasets/hla/
https://arxiv.org/abs/2211.15226
https://arxiv.org/abs/2211.15226

288 BIBLIOGRAPHY

Aditya Paliwal, Felix Gimeno, Vinod Nair, Yujia Li, Miles Lubin, Pushmeet Kohli,
and Oriol Vinyals. Reinforced Genetic Algorithm Learning for Optimizing

Computation Graphs. arXiv e-prints, art. arXiv:1905.02494, May 2019.

Aditya Paliwal, Felix Gimeno, Vinod Nair, Yujia Li, Miles Lubin, Pushmeet
Kohli, and Oriol Vinyals. Reinforced genetic algorithm learning for optimizing
computation graphs. In 8th International Conference on Learning Represen-
tations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020, 2020. URL

https://openreview.net/forum?id=rkxDoJBYPB.

Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization:

Algorithms and Complezity. Prentice-Hall, Inc., USA, 1982. ISBN 0131524623.

Alberto Paradisi. Optical Communications: Advanced Systems and Devices for

Next Generation Networks. 2019.

C. W. F. Parsonson, Z. Shabka, W. K. Chlupka, B. Goh, and G. Zervas.
Optimal control of soas with artificial intelligence for sub-nanosecond optical
switching. Journal of Lightwave Technology, 38(20):5563-5573, 2020. doi:
10.1109/JLT.2020.3004645.

Christopher Parsonson and Georgios Zervas. Trafpy, July 2021a. URL https:

//github.com/cwfparsonson/trafpy.
Christopher Parsonson and Georgios Zervas. Trafpy rdr data, July 2021b.

Christopher Parsonson, Zacharaya Shabka, Konrad Chlupka, Bawang Goh, and
Georgios Zervas. https://github.com/cwfparsonson/soa_ driving, May 2020a.

URL https://doi.org/10.5281/zenodo.3865905.

Christopher Parsonson, Zacharaya Shabka, Konrad Chlupka, Bawang
Goh, and Georgios Zervas. https://doi.org/10.5522/04/12356696.v1,

May 2020b. URL https://rdr.ucl.ac.uk/articles/An_Artificial_

https://openreview.net/forum?id=rkxDoJBYPB
https://github.com/cwfparsonson/trafpy
https://github.com/cwfparsonson/trafpy
https://doi.org/10.5281/zenodo.3865905
https://rdr.ucl.ac.uk/articles/An_Artificial_Intelligence_Approach_to_Optimal_Control_of_Sub-Nanosecond_SOA-Based_Optical_Switches/12356696/1
https://rdr.ucl.ac.uk/articles/An_Artificial_Intelligence_Approach_to_Optimal_Control_of_Sub-Nanosecond_SOA-Based_Optical_Switches/12356696/1

BIBLIOGRAPHY 289

Intelligence Approach_to_Optimal_Control_of_Sub-Nanosecond_

SOA-Based_Optical Switches/12356696/1.

Christopher W. F. Parsonson, Alexandre Laterre, and Thomas D. Barrett.
Reinforcement learning for branch-and-bound optimisation using retrospective
trajectories. 2022. doi: 10.48550/ARXIV.2205.14345. URL https://arxiv.

org/abs/2205.14345.

Christopher Parsonson et al. Traffic generation for benchmarking data centre

networks. Optical Switching and Networking, 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In Advances
in Neural Information Processing Systems 32, pages 8024-8035. Cur-
ran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.

pdf.

Alejandro Perdomo-Ortiz, Neil Dickson, Marshall Drew-Brook, Geordie Rose,
and Alan Aspuru-Guzik. Finding low-energy conformations of lattice protein

models by quantum annealing. Scientific Reports, 2:571, 2012.

Julien Perolat, Bart De Vylder, Daniel Hennes, Eugene Tarassov, Florian Strub,
Vincent de Boer, Paul Muller, Jerome T. Connor, Neil Burch, Thomas An-
thony, Stephen McAleer, Romuald Elie, Sarah H. Cen, Zhe Wang, Audrunas
Gruslys, Aleksandra Malysheva, Mina Khan, Sherjil Ozair, Finbarr Tim-
bers, Toby Pohlen, Tom Eccles, Mark Rowland, Marc Lanctot, Jean-Baptiste

Lespiau, Bilal Piot, Shayegan Omidshafiei, Edward Lockhart, Laurent Sifre,

https://rdr.ucl.ac.uk/articles/An_Artificial_Intelligence_Approach_to_Optimal_Control_of_Sub-Nanosecond_SOA-Based_Optical_Switches/12356696/1
https://rdr.ucl.ac.uk/articles/An_Artificial_Intelligence_Approach_to_Optimal_Control_of_Sub-Nanosecond_SOA-Based_Optical_Switches/12356696/1
https://rdr.ucl.ac.uk/articles/An_Artificial_Intelligence_Approach_to_Optimal_Control_of_Sub-Nanosecond_SOA-Based_Optical_Switches/12356696/1
https://arxiv.org/abs/2205.14345
https://arxiv.org/abs/2205.14345
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

290 BIBLIOGRAPHY

Nathalie Beauguerlange, Remi Munos, David Silver, Satinder Singh, Demis
Hassabis, and Karl Tuyls. Mastering the game of stratego with model-
free multiagent reinforcement learning. Science, 378(6623):990-996, 2022.
doi: 10.1126/science.add4679. URL https://www.science.org/doi/abs/

10.1126/science.add4679.

Tekla Perry. Move Over, Moore’s Law: Get Ready for Huang’s Law. Technical

report, 2018.

D. Poole, A. Mackworth, and R. Goebel. Computational Intelligence: A Logical

Approach. Oxford University Press, 1998.

Antoine Prouvost, Justin Dumouchelle, Lara Scavuzzo, Maxime Gasse, Didier
Chételat, and Andrea Lodi. Ecole: A gym-like library for machine learning
in combinatorial optimization solvers. In Learning Meets Combinatorial
Algorithms at NeurlPS2020, 2020. URL https://openreview.net/forum?

id=IVc9hqgibyB.

A. Pucher, E. Gul, R. Wolski, and C. Krintz. Using trustworthy simulation to
engineer cloud schedulers. In 2015 IEEFE International Conference on Cloud
Engineering, pages 256-265, 2015. doi: 10.1109/1C2E.2015.14.

Arslan Sajid Raja, Sophie Lange, Maxim Karpov, Kai Shi, Xin Fu, Raphael
Behrendt, Daniel Cletheroe, Anton Lukashchuk, Istvan Haller, Fotini Karinou,
Benn Thomsen, Krzysztof Jozwik, Junqgiu Liu, Paolo Costa, Tobias Jan
Kippenberg, and Hitesh Ballani. Ultrafast optical circuit switching for data
centers using integrated soliton microcombs. Nature Communications, 12(1):
5867, Oct 2021. ISSN 2041-1723. doi: 10.1038/s41467-021-25841-8. URL

https://doi.org/10.1038/s41467-021-25841-8.

Bown Ralph. Time division multiplex system for signals of different bandwidth,

u.s. patent us2919308a, 1959.

https://www.science.org/doi/abs/10.1126/science.add4679
https://www.science.org/doi/abs/10.1126/science.add4679
https://openreview.net/forum?id=IVc9hqgibyB
https://openreview.net/forum?id=IVc9hqgibyB
https://doi.org/10.1038/s41467-021-25841-8

BIBLIOGRAPHY 291

C.Radhakrishna Rao. Diversity and dissimilarity coefficients: A unified ap-
proach. Theoretical Population Biology, 21(1):24-43, 1982. ISSN 0040-
5809. doi: https://doi.org/10.1016/0040-5809(82)90004-1. URL https:

//www.sciencedirect.com/science/article/pii/0040580982900041.

Kai Ren, Garth Gibson, YongChul Kwon, Magdalena Balazinska, and Bill
Howe. Hadoop’s Adolescence; A Comparative Workloads Analysis from
Three Research Clusters. In High Performance Computing, Networking,
Storage and Analysis (SCC), page 1452, 2012. ISBN 978-1-4673-6218-4. doi:

10.1109/SC.Companion.2012.253.

N. S. Ribeiro, A. L. Toazza, C. M. Gallep, and E. Conforti. Rise time and gain
fluctuations of an electrooptical amplified switch based on multipulse injection
in semiconductor optical amplifiers. IEEE Photonics Technology Letters, 21
(12):769-771, 2009. doi: 10.1109/LPT.2009.2017731.

Michael Riordan. The Lost History of the Transistor. IEEE Spectrum, 2004.

David Rotman. We're not Prepared for the End of Moore’s Law. MIT Technology

Review, 2020.

Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C. Sno-
eren. Inside the social network’s (datacenter) network. In Proceedings of the
2015 ACM Conference on Special Interest Group on Data Communication,
SIGCOMM ’15, page 123-137, New York, NY, USA, 2015. Association for
Computing Machinery. ISBN 9781450335423. doi: 10.1145/2785956.2787472.

URL https://doi.org/10.1145/2785956.2787472.

Cynthia Rudin, Chaofan Chen, Zhi Chen, Haiyang Huang, Lesia Semenova, and
Chudi Zhong. Interpretable machine learning: Fundamental principles and 10

grand challenges. ArXiv, abs/2103.11251, 2021.

https://www.sciencedirect.com/science/article/pii/0040580982900041
https://www.sciencedirect.com/science/article/pii/0040580982900041
https://doi.org/10.1145/2785956.2787472

292 BIBLIOGRAPHY

G. A. Rummery and M. Niranjan. On-line g-learning using connectionist systems.

Technical report, 1994.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall Press, USA, 3rd edition, 2009. ISBN 0136042597.

Tim Salimans and Richard Chen. Learning montezuma’s revenge from a single

demonstration. 2018.

A. L. Samuel. Some studies in machine learning using the game of checkers. IBM
J. Res. Dev., 3(3):210-229, jul 1959. ISSN 0018-8646. doi: 10.1147/rd.33.0210.

URL https://doi.org/10.1147/rd.33.0210.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized

experience replay. 2016.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg
Klimov. Proximal policy optimization algorithms. CoRR, abs/1707.06347,
2017. URL http://dblp.uni-trier.de/db/journals/corr/corrl707.

html#SchulmanWDRK17.

SCIP. The SCIP Optimization Suite 7.0. Technical report, Optimization Online,

2022.

Zacharaya Shabka and Georgios Zervas. Nara: Learning network-aware resource

allocation algorithms for cloud data centres, 2021.

Zacharaya Shabka, Michael Enrico, Nick Parsons, and Georgios Zervas. One-
shot, offline and production-scalable pid optimisation with deep reinforcement
learning. arXiv, 2022. doi: 10.48550/ARXIV.2210.13906. URL https:

//arxiv.org/abs/2210.13906.

Claude E. Shannon. Programming a computer for playing chess. 1950.

https://doi.org/10.1147/rd.33.0210
http://dblp.uni-trier.de/db/journals/corr/corr1707.html#SchulmanWDRK17
http://dblp.uni-trier.de/db/journals/corr/corr1707.html#SchulmanWDRK17
https://arxiv.org/abs/2210.13906
https://arxiv.org/abs/2210.13906

BIBLIOGRAPHY 293

S. Shen, V. Van Beek, and A. Tosup. Statistical characterization of business-
critical workloads hosted in cloud datacenters. In 2015 15th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, pages 465—
474, 2015. doi: 10.1109/CCGrid.2015.60.

Kai Shi, Sophie Lange, Istvan Haller, Daniel Cletheroe, Raphael Behrendt, Benn
Thomsen, Fotini Karinou, Krzysztof Jozwik, Paolo Costa, and Hitesh Ballani.
System demonstration of nanosecond wavelength switching with burst-mode

pam4 transceiver. In 45th Furopean Conference on Optical Communication

(ECOC 2019), pages 1-4, 2019. doi: 10.1049/cp.2019.1034.

David Silver. Reinforcement Learning and Simulation-Based Search in Computer

Go. PhD thesis, University of Alberta, 2009.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre,
George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda
Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John
Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach,
Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the
game of Go with deep neural networks and tree search. Nature, 529(7587):
484-489, January 2016. ISSN 0028-0836. doi: 10.1038/nature16961. URL

https://doi.org/10.1038/naturel6961.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian
Bolton, Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre, George
van den Driessche, Thore Graepel, and Demis Hassabis. Mastering the game
of go without human knowledge. Nature, 550(7676):354-359, Oct 2017. ISSN
1476-4687. doi: 10.1038/nature24270. URL https://doi.org/10.1038/

nature24270.

https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature24270

294 BIBLIOGRAPHY

J Simmons. Optical Network Design and Planning. Optical Network Design and
Planning, 2008. ISSN 1935-3839. doi: 10.1007/978-0-387-76476-4.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. CoRR, abs/1409.1556, 2014. URL http:

//arxiv.org/abs/1409.1556.

Daniel L. Slotnick, W. Carl Borck, and Robert C. McReynolds. The solomon
computer. In Proceedings of the December 4-6, 1962, Fuall Joint Computer
Conference, AFIPS 62 (Fall), page 97-107, New York, NY, USA, 1962.
Association for Computing Machinery. ISBN 9781450378796. doi: 10.1145/

1461518.1461528. URL https://doi.org/10.1145/1461518.1461528.

Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam
Rajbhandari, Jared Casper, Zhun Liu, Shrimai Prabhumoye, George Zerveas,
Vijay Korthikanti, Elton Zhang, Rewon Child, Reza Yazdani Aminabadi, Julie
Bernauer, Xia Song, Mohammad Shoeybi, Yuxiong He, Michael Houston,
Saurabh Tiwary, and Bryan Catanzaro. Using deepspeed and megatron
to train megatron-turing nlg 530b, a large-scale generative language model.
arXiv, 2022. doi: 10.48550/ARXIV.2201.11990. URL https://arxiv.org/

abs/2201.11990.

Brian A Sparkes. The red and the black: studies in Greek pottery. Routledge,

2013.

Rajiv Srivastava, Rajat Kumar Singh, and Yatindra Nath Singh. Design analysis
of optical loop memory. Journal of Lightwave Technology, 27(21):4821-4831,
2009. ISSN 07338724. doi: 10.1109/JLT.2009.2026493.

Ian Stoica. The future of computing is distributed. https://www.datanami.

com/2020/02/26/the-future-of-computing-is-distributed/, Feb 2020.

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
https://doi.org/10.1145/1461518.1461528
https://arxiv.org/abs/2201.11990
https://arxiv.org/abs/2201.11990
https://www.datanami.com/2020/02/26/the-future-of-computing-is-distributed/
https://www.datanami.com/2020/02/26/the-future-of-computing-is-distributed/

BIBLIOGRAPHY 295

T. Sutili, P. Rocha, C. M. Gallep, and E. Conforti. Energy efficient switch-
ing technique for high-speed electro-optical semiconductor optical ampli-

fiers. Journal of Lightwave Technology, 37(24):6015-6024, 2019. doi:
10.1109/JL.T.2019.2945168.

Richard S Sutton. Learning to predict by the methods of temporal differences.
Machine Learning, 3(1):9-44, 1988. ISSN 1573-0565. doi: 10.1007/BF00115009.
URL https://doi.org/10.1007/BF00115009.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. The MIT Press, Cambridge, MA, USA, second edition,

2018. ISBN 0262039249. URL http://incompleteideas.net/book/

the-book-2nd.html.

Bruno Taglietti, Tiago Sutili, Rafael C Figueiredo, Rafael Ferrari, and Evan-
dro Conforti. Semiconductor optical amplifier space switch BER im-
provement and guard-time reduction through feed-forward filtering. Op-
tics Communications, 426:295-301, 2018. ISSN 0030-4018. doi: https:
//doi.org/10.1016/j.optcom.2018.05.065. URL http://www.sciencedirect.

com/science/article/pii/S0030401818304504.

Marius Hobbhahn Tamay. Trends in GPU Price-Performance. Technical report,
2022.

Neil Thompson and Svenja Spanuth. The Decline of Computers As a General
Purpose Technology: Why Deep Learning and the End of Moore’s Law are

Fragmenting Computing. SSRN FElectronic Journal, 2018. ISSN 1556-5068.
doi: 10.2139/ssrn.3287769.

Vincent Tjeng, Kai Y. Xiao, and Russ Tedrake. Evaluating robustness of neural

networks with mixed integer programming. In International Conference on

Learning Representations, 2017.

https://doi.org/10.1007/BF00115009
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
http://www.sciencedirect.com/science/article/pii/S0030401818304504
http://www.sciencedirect.com/science/article/pii/S0030401818304504

296 BIBLIOGRAPHY

Michel Tokic and Giunther Palm. Value-Difference Based Exploration: Adaptive
Control between Epsilon-Greedy and Softmax. In Joscha Bach and Stefan
Edelkamp, editors, KT 2011: Advances in Artificial Intelligence, pages 335—346,
Berlin, Heidelberg, 2011. Springer Berlin Heidelberg. ISBN 978-3-642-24455-1.

Alexander Trott, Stephan Zheng, Caiming Xiong, and Richard Socher. Keeping
your distance: Solving sparse reward tasks using self-balancing shaped rewards.

In NeurIPS, 2019.

Rodney S. Tucker, Rodney S. Tucker, and Ivan P. Kaminow. High-Frequency
Characteristics of Directly Modulated InGaAsP Ridge Waveguide and Buried
Heterostructure Lasers. Journal of Lightwave Technology, 2(4):385-393, 1984.
ISSN 15582213. doi: 10.1109/JLT.1984.1073654.

A. M. Turing. Computing machinery and intelligence. Mind, 59(236):433—
460, 1950. ISSN 00264423, 14602113. URL http://www.jstor.org/stable/

2251299.

Alan M. Turing. On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society,
2(42):230-265, 1936. URL http://www.cs.helsinki.fi/u/gionis/cc05/

OnComputableNumbers.pdf.

F. Van Den Bergh and A. P. Engelbrecht. Training product unit networks using
cooperative particle swarm optimisers. Proceedings of the International Joint
Conference on Neural Networks, 1(4):126-131, 2001. doi: 10.1109/ijenn.2001.

939004.

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning

with double g-learning. 2015.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess,

Max Jaderberg, David Silver, and Koray Kavukcuoglu. FeUdal networks

http://www.jstor.org/stable/2251299
http://www.jstor.org/stable/2251299
http://www.cs.helsinki.fi/u/gionis/cc05/OnComputableNumbers.pdf
http://www.cs.helsinki.fi/u/gionis/cc05/OnComputableNumbers.pdf

BIBLIOGRAPHY 297

for hierarchical reinforcement learning. In Doina Precup and Yee Whye
Teh, editors, Proceedings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learning Research, pages 3540~
3549. PMLR, 06-11 Aug 2017. URL https://proceedings.mlr.press/v70/

vezhnevetsl7a.html.

O. Vinyals, I. Babuschkin, and W.M. Czarnecki. Grandmaster level in StarCraft

IT using multi-agent reinforcement learning. Nature, 2019.

Kaixin Wang, Bingyi Kang, Jie Shao, and Jiashi Feng. Improving generalization
in reinforcement learning with mixture regularization, 2020. URL https:

//arxiv.org/abs/2010.10814.

Lin Wang, Xinbo Wang, Massimo Tornatore, Kwang Joon Kim, Sun Me Kim,
Dae Ub Kim, Kyeong Eun Han, and Biswanath Mukherjee. Scheduling with
machine-learning-based flow detection for packet-switched optical data center
networks. Journal of Optical Communications and Networking, 10(4):365-375,
2018. ISSN 19430620. doi: 10.1364/JOCN.10.000365.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing
Zhou, Chao Ma, Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis,
Jinyang Li, and Zheng Zhang. Deep graph library: A graph-centric, highly-
performant package for graph neural networks. 2019. doi: 10.48550/ARXIV.

1909.01315. URL https://arxiv.org/abs/1909.01315.

Weiyang Wang, Moein Khazraee, Zhizhen Zhong, Zhijao Jia, Dheevatsa Mudi-
gere, Ying Zhang, Anthony Kewitsch, and Manya Ghobadi. Topoopt: Op-
timizing the network topology for distributed dnn training. arXiv preprint

arXiw:2202.00433, 2022.

https://proceedings.mlr.press/v70/vezhnevets17a.html
https://proceedings.mlr.press/v70/vezhnevets17a.html
https://arxiv.org/abs/2010.10814
https://arxiv.org/abs/2010.10814
https://arxiv.org/abs/1909.01315

298 BIBLIOGRAPHY

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanc-
tot, and Nando de Freitas. Dueling network architectures for deep rein-
forcement learning, 2015. URL http://arxiv.org/abs/1511.06581. cite

arxiv:1511.06581Comment: 15 pages, 5 figures, and 5 tables.

C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, King’s College,
Oxford, 1989.

Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning,
8(3):279-292, May 1992. ISSN 1573-0565. doi: 10.1007/BF00992698. URL

https://doi.org/10.1007/BF00992698.

Lukas M. Weber, Wouter Saelens, Robrecht Cannoodt, Charlotte Soneson,
Alexander Hapfelmeier, Paul P. Gardner, Anne Laure Boulesteix, Yvan Saeys,
and Mark D. Robinson. Essential guidelines for computational method
benchmarking. Genome Biology, 20(1):1-12, 2019. ISSN 1474760X. doi:

10.1186/s13059-019-1738-8.

Joel Webster. “SERIES 7000 - 384x384 port Software-
Defined Optical Circuit Switch. https://www.polatis.com/
series-7000-384x384-port-software-controlled-optical-circuit-switch-sdn-enab!
asp, 2022. URL https://www.polatis.com/
series-7000-384x384-port-software-controlled-optical-circuit-switch-sdn-enab!
asp. [Online]. Available: https://www.polatis.com/

series-7000-384x384-port-software-controlled-optical-circuit-switch-sdn-enab!

asp.
Kyle Wiggers. Nvidia makes massive language model avail-
able to enterprises. https://venturebeat.com/uncategorized/

nvidia-makes-massive-language-model-available-to-enterprises/,

Nov 2021.

http://arxiv.org/abs/1511.06581
https://doi.org/10.1007/BF00992698
https://www.polatis.com/series-7000-384x384-port-software-controlled-optical-circuit-switch-sdn-enabled.asp
https://www.polatis.com/series-7000-384x384-port-software-controlled-optical-circuit-switch-sdn-enabled.asp
https://www.polatis.com/series-7000-384x384-port-software-controlled-optical-circuit-switch-sdn-enabled.asp
https://www.polatis.com/series-7000-384x384-port-software-controlled-optical-circuit-switch-sdn-enabled.asp
https://www.polatis.com/series-7000-384x384-port-software-controlled-optical-circuit-switch-sdn-enabled.asp
https://www.polatis.com/series-7000-384x384-port-software-controlled-optical-circuit-switch-sdn-enabled.asp
https://www.polatis.com/series-7000-384x384-port-software-controlled-optical-circuit-switch-sdn-enabled.asp
https://www.polatis.com/series-7000-384x384-port-software-controlled-optical-circuit-switch-sdn-enabled.asp
https://www.polatis.com/series-7000-384x384-port-software-controlled-optical-circuit-switch-sdn-enabled.asp
https://venturebeat.com/uncategorized/nvidia-makes-massive-language-model-available-to-enterprises/
https://venturebeat.com/uncategorized/nvidia-makes-massive-language-model-available-to-enterprises/

BIBLIOGRAPHY 299

Ronald J. Williams. Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning. Mach. Learn., 8(3-4):229-256, May 1992. ISSN
0885-6125. doi: 10.1007/BF00992696. URL https://doi.org/10.1007/

BF00992696.

David P. Williamson and David B. Shmoys. The Design of Approximation
Algorithms. Cambridge University Press, 2011. ISBN 978-0-521-19527-0.

R. Wolski and J. Brevik. Qpred: Using quantile predictions to improve power
usage for private clouds. In 2017 IEEE 10th International Conference on Cloud

Computing (CLOUD), pages 179187, 2017. doi: 10.1109/CLOUD.2017.31.

Tailin Wu and Max Tegmark. Toward an artificial intelligence physicist
for unsupervised learning. Phys. Rev. E, 100:033311, Sep 2019. doi:
10.1103/PhysRevE.100.033311. URL https://link.aps.org/doi/10.1103/

PhysRevE.100.033311.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey,
Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser,
Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens,
George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason
Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and
Jeffrey Dean. Google’s neural machine translation system: Bridging the gap
between human and machine translation. arXiv preprint arXiv:1609.08144,

2016. URL http://arxiv.org/abs/1609.08144. cite arxiv:1609.08144.

Yahoo. Yahoo Computing Systems Data. Technical report, 2015.
URL https://webscope.sandbox.yahoo.com/catalog.php?datatype=

s{&}guccounter=1.

Giulia Zarpellon, Jason Jo, Andrea Lodi, and Yoshua Bengio. Parameterizing

branch-and-bound search trees to learn branching policies, 2021.

https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://link.aps.org/doi/10.1103/PhysRevE.100.033311
https://link.aps.org/doi/10.1103/PhysRevE.100.033311
http://arxiv.org/abs/1609.08144
https://webscope.sandbox.yahoo.com/catalog.php?datatype=s{&}guccounter=1
https://webscope.sandbox.yahoo.com/catalog.php?datatype=s{&}guccounter=1

300 BIBLIOGRAPHY

Georgios Zervas, Hui Yuan, Arsalan Saljoghei, Qiangiao Chen, and Vaibhawa
Mishra. Optically disaggregated data centers with minimal remote memory
latency: Technologies, architectures, and resource allocation [invited]. Journal
of Optical Communications and Networking, 10(2):A270-A285, 2018. doi:
10.1364/JOCN.10.00A270.

Jesse Zhang, Haonan Yu, and Wei Xu. Hierarchical reinforcement learning by
discovering intrinsic options. In International Conference on Learning Repre-

sentations, 2021a. URL https://openreview.net/forum?id=r-gPPHEjpmw.

Tianjun Zhang, Huazhe Xu, Xiaolong Wang, Yi Wu, Kurt Keutzer, Joseph E.
Gonzalez, and Yuandong Tian. Noveld: A simple yet effective exploration
criterion. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan,
editors, Advances in Neural Information Processing Systems, 2021b. URL

https://openreview.net/forum?id=CYUzpnOkF Jp.

https://openreview.net/forum?id=r-gPPHEjpmw
https://openreview.net/forum?id=CYUzpnOkFJp

	Abstract
	Acknowledgements
	Introduction
	The Information Revolution & Computer Networks
	Artificial Intelligence for Optimisation
	Structure of & Publications from this Thesis
	Background
	Part I: Optimising the Physical Plane
	Part II: Optimising the Orchestration Plane
	Part III: Optimising the Simulator

	Background
	Computer Networks
	Packet vs. Circuit Switching
	Electronic vs. Optical Networking
	Computational Complexity
	Discrete Optimisation
	Solving NP-Hard Problems
	Artificial Intelligence
	Machine Learning
	Function Approximation with Neural Networks
	Graph Neural Networks
	Reinforcement Learning
	Deep Q-Learning

	I Optimising the Physical Plane
	SOA Control for Sub-Nanosecond Optical Switching
	Introduction
	Background
	Semiconductor Optical Amplifiers
	Evolutionary & Swarm Algorithms
	Genetic Algorithms
	Ant Colony Optimisation
	Particle Swarm Optimisation

	Related Work
	Method
	Simulation Setup
	Laboratory Setup
	Results & Discussion
	Hyperparameter Tuning & Generality Testing in Simulation
	Optimising an SOA in the Laboratory

	Conclusions, Limitations, & Further Work

	II Optimising the Orchestration Plane
	Solving NP-Hard Discrete Optimisation Problems
	Introduction
	Background
	Mixed Integer Linear Programming
	Branch-and-Bound

	Related Work
	Retro Branching Methodology
	Experimental Setup
	Results & Discussion
	Performance of Retro Branching
	Analysis of Retro Branching

	Conclusions, Limitations, & Further Work

	Partitioning Distributed Compute Jobs
	Introduction
	Background
	Parallelisation
	RAMP

	Related Work
	User-Defined Blocking Rate
	PAC-ML Partitioning Methodology
	Markov Decision Process Formulation
	PAC-ML Learning Setup

	Experimental Setup
	Results & Discussion
	Performance of the PAC-ML Partitioner
	Analysis of the PAC-ML Partitioner

	Conclusions, Limitations, & Further Work

	III Optimising the Simulator
	A Framework for Generating Custom and Reproducible Network Traffic
	Introduction
	Background & Related Work
	Method
	Design Objectives
	TrafPy Overview
	Distribution Accuracy and Reproducibility
	Node Distributions
	Traffic Generation Methodology
	Stipulating Traffic Generation Guidelines

	Experimental Setup
	Network
	Traffic Traces
	Simulation Details

	Results & Discussion
	Conclusions, Limitations, & Further Work

	Accelerating Traffic Matrix Generation at Scale
	Introduction
	Custom Traffic Matrix Generation
	Experimental Setup
	Results & Discussion
	Conclusions, Limitations, & Further Work

	Afterword: Conclusions, Limitations, & Further Work
	Solving NP-Hard Discrete Optimisation Problems
	RL Training
	Training Parameters
	Training Time and Convergence

	Neural Network
	Architecture
	Inference & Solving Times

	Data Set Size Analysis
	SCIP Parameters
	Observation Features
	FMSTS Implementation
	Pseudocode
	Retrospective Trajectory Construction
	Maximum Leaf LP Gain

	Cost of Strong Branching Labels

	A Framework for Generating Custom and Reproducible Synthetic Traffic
	Table of Notation
	TrafPy Distribution Parameters
	TrafPy API Examples
	Custom Distribution Shaping
	Benchmark Importing & Flow Generation

	Pseudocode
	Scheduling
	TrafPy Benchmark Protocol

	Traffic Skew Convergence
	Scheduler Performance Summary
	Completion Time Performance Plots
	Throughput and Flows Accepted Performance Plots
	Performance Metric Tables
	DCN Benchmarks
	Skewed Nodes Distribution Benchmark
	Rack Distribution Benchmark

	Winner Tables

	A Note on the Flow- vs. Job-Centric Traffic Paradigms

	Partitioning Distributed Compute Jobs
	Metric Definitions
	Experimental Hardware
	Additional Simulation Details
	Code Structure
	Job Allocation Procedure
	Job Allocation Methods
	First-Fit Operation Placement in RAMP
	Evaluating the job completion time
	Possible Causes of a Job Being Blocked

	Job Computation Graph Data Sets
	Neural Network Architecture
	Reinforcement Learning Algorithm
	Final Learning Curves

	Additional Experimental Results

