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Abstract

The prevailing theme of modern quantum many-body physics is circumscribed by

the question: are such systems useful? Can we use them to simulate something, or

compute the answer to a problem? Despite this, information-theoretic analyses of

quantum many-body systems are rare. This thesis seeks to address that by investi-

gating informational aspects of problems that might be conventionally delegated to

the condensed matter community.

I start by investigating ‘local memory’ in systems that exhibit some form of

ergodicity-breaking. A quantitative investigation of how much information is actu-

ally retained, and whether or not that information can be accessed, is lacking in this

context. I introduce an information-theoretic framework and a criteria by which ‘lo-

cal memory’ can be quantitatively defined. I analyze many-body localized (MBL)

and quantum scarred systems; both touted to exhibit local memory.

I then investigate entanglement complexity in terms of how compressible a

representation of a given state is. I propose a novel kind of geometric entanglement

in terms of matrix-product state representations of fixed bond dimension. This rep-

resentation is more efficient than storing the full state, and so gives an indication of

how much information is needed to reconstruct it. By analysing ground state phase

diagrams and the ergodic-to-MBL transition, I find that this quantity is exceedingly

effective when employed to detect phase boundaries, even in systems where the

phases are not known a priori.

Finally, I investigate systems which are informed by the capabilities of current-

generation experimental devices. I first consider whether MBL is accessible in

quantum dot arrays by investigating the properties of the von Neumann entropy, im-
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balance, and number entropy. I then consider phase crossovers in twin-rail quantum

dot devices using the statistics of singlet-triplet profiles and the fidelity susceptibil-

ity. Finally, I consider idle information loss in an interacting transmon array which

simulates IBM’s quantum computers.
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Quantum technologies form the backbone of a vast academic-industrial complex.

The scope of this complex includes, inter alia: research groups, international ini-
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Academic Impact - The main academic impact of my PhD takes the form
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introduces the notion of the ‘accessible information game’ into condensed matter

contexts - which serves as an important stepping stone for developing quantum

communication technology. This may eventually have ramifications in terms of

global health, energy, and cybersecurity.
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Chapter 1

Introduction

“Thou didst not turn in contempt from my childish play in among dust, and the

steps that I heard in my playroom are the same that are echoing from star to star.”

— Rabindranath Thakur

“Physics is not important.”

— Shankar Das Sarma

The first (and only)

time we ever met.

The prevailing questions that surround quantum many-body systems are oddly

utilitarian: what are their value? Can these systems be controlled, harnessed, and

eventually exploited? Can we use them to simulate, calculate, optimize, or com-

municate? These questions - consciously or otherwise - inform the state-of-the-art.

These questions dictate the way that many people frame their research interests,

and thus how they channel those research interests into grant applications. In aca-

demic settings these questions have fractured, spawning further questions that have,

in turn, coalesced into vast fields of interrelated research. Resource theories of

quantum entanglement, quantum algorithms, and the extent (or indeed, existence)

of quantum speedup and advantage over classical algorithms are all examples of

this vague question brought into sharp focus by very clever people with very large

grants. In corporate settings these questions are posed in tandem with the promise
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of a lucrative future. In social settings the lay public - in pubs, and bars, and par-

ties, and over their dinner tables, and on their balconies - discuss these questions;

pondering how the widely advertised quantum horizon will change our lives.

This has, of course, all come to a head with the advent of the noisy

intermediate-scale quantum (NISQ) device [1]. A half-century of research and in-

novation on a global scale has led to the creation of, inter alia, mesoscale electronic

quantum devices (e.g. quantum dots and wires), lattices of trapped ions, atom chips,

and superconducting qubits. We now have actual, functioning, quantum computers

- even if they are still a bit rough around the edges.

Despite this the field that is best poised to answer these questions remains fairly

unexcavated. Quantum information theory has been, and continues to be, mostly

concerned with either many replicas of individual states, or small non-interacting

systems passed through some quantum channel. Interdisciplinary work has begun

to bridge the gap between information-theoretic and condensed matter frameworks,

but there is still much that each can learn from the other. The rising interest in

ergodicity-breaking quantum systems is an additional incentive in building these

interdisciplinary connections. Information and thermalization have long formed a

symbiotic relationship: classical information theory was formed, in part, by analogy

to thermalization. The fields were parted suddenly by the advent of quantum theory,

but the discovery of ergodicity-breaking quantum phenomena admits the possibility

that they can be slowly reunited.

This thesis is devoted to exploring and building these interdisciplinary con-

nections, with the focus shifting through two broad movements sundered by an

interlude. In Chapter 2 I will use direct imports from quantum information theory

to interrogate information retention and in quantum many-body systems exhibit-

ing ergodicity breaking. Such systems are often touted as sporting ‘local memory’

where information encoded into a subsystem can be locally retrieved at a later time.

Thus, these systems are obvious candidates as sub-components - e.g. memory reg-

isters - of larger quantum computers and devices; and a framework for analyzing

information retention in such systems is thus desirable. In Chapter 3 I introduce a
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novel extension of the geometric measure of entanglement which exploits the ma-

trix product state formalism. I then use this measure to probe the ground-state phase

diagrams of four systems of increasing complexity, as well as an ergodic-localized

transition. This study reveals that the novel measure is particularly suited to the

identification of phase boundaries, and may serve as a useful exploratory probe in

future research. This chapter is the ‘interlude’ of the thesis, and draws more broadly

on purely informational principles than the other two. Finally, in Chapter 4 I in-

terrogate informational aspects of various state-of-the-art NISQ devices - including

von Neumann and number entropies, divergences between probability distributions,

and the Holevo quantity. The general structure of this chapter takes the repetitive

form of device-model-quantity: I introduce an experimental device, then I discuss

the model that simulates the device, finally I investigate some of the model’s prop-

erties. The three NISQ devices I consider in this thesis are: single-rail quantum

dot arrays simulated by an extended Fermi-Hubbard model, twin-rail quantum dot

arrays simulated by an antiferromagnetic Heisenberg ladder, and IBM’s quantum

computers simulated by an extended Bose-Hubbard model. All the model parame-

ters are in turn informed by experimental characterizations - connecting the results

of this thesis to realistic experiment.

1.1 Summary of Results

Each chapter of this thesis focuses on a different broad topic: memory in Chapter 2,

entanglement-complexity in Chapter 3, and realistic NISQ devices in Chapter 4.

They are, of course, interrelated and share themes that focus on bridging the gap

between condensed matter and quantum information theory. The results of each

chapter are split into two rough halves, the first half of each chapter is focused

on work that has already been finished and exists either as a publication or as an

online preprint. The latter half of each chapter focuses on unpublished and ongoing

work that extends the principles developed in the first half. In general, the parts

of this thesis that are yet unpublished present very interesting results, but do not

lend themselves as well to detailed interrogation or interpretation as the published
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parts. In this section I synopsize the results of each chapter. I also detail which

parts of this thesis exist in print already, and which are ongoing research project.

This information is covered here such that the internal flow of each chapter remains

uninterrupted.

Chapter 2 focuses on interrogating local memory in non-ergodic quantum sys-

tems, namely in a toy model of MBL and in a scarred systems. I first introduce

the ‘accessible information game’ is introduced in Section 2.1, which leads to the

introduction of a brief set of criteria that define a memory quantifier. The results

for MBL are shown in Section 2.2. For a small system of L = 16 particles I find

that an information-theoretic reinterpretation of the imbalance - a quantity widely

used in to characterize memory in MBL - drastically underestimates the amount

of information retained by a subsystem in the MBL phase. By introducing several

other memory quantifiers, which I benchmark with the von Neumann entropy, I

determine that the Holevo quantity captures the most information, followed by a

configurational version of the mutual information. I then investigate the ergodic-

MBL transition and perform scaling analyses to extract critical exponents. I find

that artificially dephasing certain quantities yields scaling results consistent with

the Harris bound ν > 2, a rarity in the literature surrounding small-scale analyses

of the MBLT. This suggests that the MBL phase in the thermodynamic limit con-

sists of blocks which have dephased with respect to each other, an idea I evidence

by investigating localization in the XX (non-interacting) and Heisenberg (interact-

ing) models. In Section 2.3 I investigate memory in the context of quantum scars

realized in a Dzyaloshinskii-Moriya interacting spin-1 chain. I find a retention of

information similar to that of the MBL case which is robust to small perturbations

of the Hamiltonian. This suggests that scars may be suitable as memory registers

- though the protocol I investigate only encodes a single classical bit. Whether or

not scarred systems can sustain more complicated protocols is an open question.

The sections on memory quantifiers, MBL, and the ergodic-MBL transition, have

been adapted from work published in Physical Review B and Physical Review Re-

search in Refs. [2] and [3] respectively. The work on scars is, at the time of writing,
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ongoing and still in its infancy.

Chapter 3 is concerned with a novel re-imagining of the geometric measure of

entanglement from the perspective of tensor networks. I introduce the matrix prod-

uct state formalism and construct the novel measure - which I dub an ‘entanglement-

complexity’ measure - in Section 3.1. The results of applying this measure to

ground state phase analyses of a variety of systems is shown in Section 3.2. This

application reveals that my new measure can detect phases of matter which the con-

ventional geometric entanglement cannot. Moreover, by tuning the bond dimension

of the underlying matrix product states, different phases of a system can be slowly

revealed in increasing detail. I then use this measure to investigate ground state

entanglement in a scarred system and find a strange periodicity that is yet unex-

plained. Since scarce few known ground states in condensed matter physics are

separable, but ground states generally have area-law entanglement, I contend that

this measure is a much more useful probe of entanglement and of phase diagrams

in condensed matter contexts. I also investigate mid-spectrum eigenstates and the

ergodic-MBL transition in Section 3.3 which yields no surprising results - a critical

point of hc ∼ 3.5 with no concrete scaling results is found. However, this does pro-

vide a case study for how my new measure can be applied in such a context. The

sections introducing the measure and applying the measure to ground state phase

diagrams have been adapted from work published in Physical Review Research in

Ref. [4]. The ground state phase diagram of the scarred model is ongoing research

that is not yet published.

Chapter 4 addresses different informational topics across a variety of differ-

ent experimental NISQ devices. The structure of this chapter is quite different, in

each section I first introduce the experimental device and theoretical model, then I

investigate several properties of the device given realistic characterizations of the

model parameters. In Section 4.1 I investigate the accessible regimes, and possi-

bility of detecting MBL, in modern small-scale L ≤ 10 quantum dot arrays. The

results suggest that current generation arrays are close to accessing MBL, but that

differentiating MBL from other phases is a difficult task. Most notably I identify
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a ‘frozen’ non-MBL insulating phase which experimental quantum dot arrays may

realize. By investigating a variety of quantities, I determine that local charge sens-

ing alone can identify MBL and uniquely demarcate it from this frozen phase. In

Section 4.2 I investigate ground states of twin-rail quantum dot arrays realizing an

antiferromagnetic Heisenberg ladder. In particular I focus on profiles of singlet-

triplet measurements and the fidelity susceptibility which appear to track each other

as the model parameters are scanned across a phase crossover. I then incorporate

disorder and finite time quenches which may transport the state of the system away

from the ground state. The results of this extended analysis indicates that modern

experimental systems can indeed access this crossover, and accurate ground state

preparation is possible. Finally, in Section 4.3 I analyze transmon arrays which

simulate the natural underlying dynamics of IBM’s superconducting quantum com-

puters. By invoking the Holevo quantity and Loschmidt echo, I investigate idle

information loss - information lost locally due to the accretion of long-range entan-

glement and information spreading. These results place certain constraints on some

characterizations of IBM devices. I suggest how IBM’s characterizations could be

improved, and that in-situ experimental analyses of these quantities may provide

insight into how information is distributed and lost in modern quantum comput-

ers. The section on MBL in quantum dot arrays has been adapted from the work

in Ref. [5]. The sections on twin-rail quantum dot arrays and IBM’s devices are

comprised of research that is still ongoing.

1.2 The Informational Approach

Claude Shannon’s Promethean text ‘A Mathematical Theory of Communication’ is

both a bedrock beneath, and a glittering minaret that rises over, the fields of the

natural sciences1 [6]. The central result of this work is the most widely-accepted

mathematical definition of the rather nebulous term ‘information’. Information,

according to Shannon, should be envisaged through the lens of communication.

A single message drawn from an ensemble of possible messages only becomes

1Evidenced by it’s monstrous citation count that rivals the population of Oxford.
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‘information’ once it has been passed through a (typically noisy) channel to another

party who then tries to reconstruct it. The informational content of the message is

thusly related to how reliably communication between the two parties succeeds.

Consider, for example, the state of a coin. When uncontextualized and lying

on the stained wood of a Soho bar, the coin means nothing. It is only when Alice

encodes a message into the coin: “heads I want another round, tails I want to leave”,

passes it through the noisy channel of being slid across the bar to Bob, and Bob’s

subsequent inspection of it, that it comes to bear meaning. That it comes to bear

information. Clearly if the noisy channel is too noisy, if their colleague Eve grabs

the coin in transit and flips it a few times, then the information is erased. Bob cannot

figure out - from the state of the coin alone - what message Alice intended to send.

This perspective: wherein information and its physical embodiment are char-

acterized by increasingly complicated communication games played between Alice

and Bob, is the ‘informational approach’ I allude to throughout this thesis. A ver-

sion of this game is discussed in detail in Section 2.1 at the start of Chapter 2, and

relevant information-theoretic concepts are introduced throughout the text. This

preliminary section is dedicated to introducing the central concept of entropy in

classical and quantum contexts, and impressing upon the reader the value of such

an informational approach.

1.2.1 Classical Shannon Theory

Systems that have a degree of uncertainty in their possible states are generally better

at bearing information. A flat coin has only two states, it can only encode a binary

decision: a yes or a no, a one or a zero, a single ‘bit’ of information. The state of

a dice is clearly richer, it can take one of six values and thus more information can

be encoded into it. These six values may - however - be harder to distinguish. The

bleary-eyed, overworked, two-pints-down Bob may have difficulty distinguishing

five and six; and its a lot harder for Alice to slide a die without rolling it than slide

a coin without flipping it. This interplay between uncertainty and distinguishability

is a topic I shall revisit in Chapter 2 in the context of quantum channels.

Given uncertainty’s central role in classical information theory, a precise quan-
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tification H(·) thereof is required. Consider the finite scheme {pi,ρi} of N states

wherein the state ρi occurs with probability pi. In classical physics, the states ρi are

all distinct and fully distinguishable. There are several intuitive relations that H(·)

should satisfy [7, 8]:

1. H(·) should be continuous in the pi.

2. H(·) should be maximized for equiprobable events pi = 1/N. This corre-

sponds to a system with maximal uncertainty, and the value of H(·) should

reflect that.

3. H(·) should be expandable, i.e. the inclusion of a new state ρN+1 which

cannot occur pN+1 = 0 should not change H(·). This reflects the intuition

that anything outside the scope of the system in question should not affect it.

4. H(·) of a joint system AB where A and B are two finite schemes should satisfy

the relation

H(AB) = H(A)+HA(B) (1.1)

where HA(B) is the uncertainty of B given the state of A. This intuitively

captures the notion that the uncertainty we have about the joint system AB

is not just the uncertainty we have about A and B independently. Knowing

A may inform us about B, and hence the state of B is conditioned upon A.

More specifically HA(B) ≤ H(B) with equality only for when A and B are

independent. This fact is not necessarily true for quantum systems, an idea I

touch on later in the discussion of the coherent information in Section 2.1.3.

Collectively, these principles are known as the ‘Shannon-Khinchin’ axioms, and

they can uniquely be satisfied by the equation

H({pi}) =−∑
i

pi log pi (1.2)

where pi log pi
.
= 0 for pi = 0, and where the logarithm is in any fixed base [6].

Throughout this thesis, I will use logarithm base two unless otherwise indicated.
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This allows us to interpret many results in terms of bits of information. The quantity

of Eq. (1.2) is referred to as the entropy of the scheme due to its analogical form to

and historical relationship with the thermodynamic entropy introduced by Ludwig

Boltzmann in his famous H-theorem. This connection is perhaps most solemnly

recognized in the fact that Boltzmann’s grave bears his entropy relation on its front,

and Shannon’s grave - over four thousand miles apart - bears his on its reverse.

Considering again the fair coin and the fair die discussed above, the uncertainty

in the state of the coin is H({1/2,1/2}) = log2 = 1, and the uncertainty in the state

of die is H({1/6, · · · ,1/6}) = log6 ≈ 2.585. This latter fact implies that the exact

state of the die can be inferred - at minimum - with between two and three binary

queries. An example may be: (i) is the state even or odd (ii) is the state one or six

(iii) is the state two or five. These questions will always exactly determine the state

of the die, either after asking (ii) or after asking (iii). On average, 2.585 queries will

be required.

From the above formative ideas, the field of classical information theory was

formalized and codified. Coding theorems, compression algorithms, telecommuni-

cations, codebreaking, and the fundamental principles of modern classical compu-

tation followed; and humanity charged headlong into the age of information - the

age of unrestricted communication. Some sociological thinkers suggest that this

age is now coming to an end [9, 10]; but it is not an understatement to say that

Shannon’s paper is a keystone in the foundations of modernity. With the advent of

quantum computers on the horizon: these informational principles, transposed into

a quantum-mechanical context, are as relevant as ever.

1.2.2 Quantum Shannon Theory

A quantum theory of information starts with the substitution of our classical ensem-

ble with an ensemble of quantum states {pi,ρi}. Without any additional information

about which state has been selected from this ensemble, an observer receives the

combined state ρ = ∑i piρi where ρ is a trace-unity positive semi-definite Hermi-

tian operator with real eigenvalues λi that sum to unity ∑i λi = 1. These eigenvalues

can thus be interpreted as the probabilities that the state ρ will be observed in its
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various eigenstates. The von Neumann entropy is defined as the Shannon entropy

over the eigenvalues, i.e. the vector of effective probabilities:

S(ρ) =−∑
i

λi logλi =−Tr [ρ logρ] (1.3)

where S(·) is definitionally invariant under change of basis, and is an intrinsic prop-

erty of the ensemble {pi,ρi}. The von Neumann entropy in this context quantifies

the uncertainty an observer has in the state of S(ρ) but - unlike the classical case -

that uncertainty can arise when information is distributed non-locally. In the clas-

sical theory, the joint system AB has entropy that is strictly greater than or qual to

the entropy of either A or B individually. This can be seen by invocation of the

final Shannon-Khinchin axiom discussed above H(AB) ≥ H(A) with equality only

at HA(B) = 0, i.e. when knowledge of A fully determines B. The same is not true

of quantum systems, wherein information can be distributed between two disjoint

systems A and B. In the quantum theory it is perfectly possible for the von Neumann

entropy of the joint system S(ρAB) to be far less than the entropy of a subsystem

S(ρA). This non-local distribution of information is called ‘entanglement’, a topic

that is central to this thesis. In particular Chapter 3 and parts of Chapter 4 focus

heavily on investigating quantum entanglement and entropy directly. It is also used

to benchmark results in Chapter 2.

Another major difference that comes into play when considering information

and communication via quantum states is the fact that the quantum states ρi may

not be distinguishable. Indeed if the ρi are fully distinguishable (mutually com-

muting) then they are themselves the eigenstates of ρ and the situation reduces to

the classical case where the eigenvalues λi = pi. Non-orthogonality of the ρi is not

just a possible feature of quantum information theory, it is central and necessary. A

failure to exploit the essentially quantum nature of the states causes the whole thing

to reduce to the classical theory.

Given the discussion of the Shannon-Khinchin axioms above, it in unsurprising

that the von Neumann entropy is maximized for equiprobable eigenvalues λi = 1/N.

This however bears a very different interpretation when it comes to the quantum
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theory. Due to the lack of guarantee that the quantum states are distinguishable,

maximally uncertain states are no longer necessarily useful for bearing information.

Consider two extremes: an ensemble of orthogonal (classical) states which yields

ρ = I/N where I is the N×N identity matrix, and an ensemble of states arbitrarily

close to the identity ρi∼ I/N which also yield ρ = I/N. Clearly the first ensemble is

excellent as a source for encoding messages, whilst the second is completely useless

- the states are barely distinguishable. Despite this, both have high von Neumann

entropies and - if we naı̈vely interpret the result by analogy to the classical theory -

both should be equally useful sources. This may seem a contrived example, but in

systems with little memory where information is rapidly erased, this exact process

becomes quite important. If we have a very noisy channel that tends to send all input

states to the identity, then this situation arises exactly. I discuss this in more detail

in Section 2.1.2 where I introduce the Holevo quantity - a bound on the classical

capacity of a quantum channel with accounts for this exact behaviour.

Throughout the rest of this thesis, informational principles such as the rela-

tive entropy and the mutual information are invoked. These principles inform how

well the systems in question can bear and transmit information, how useful they

are from a technological and industrial perspective, and how they may fit into the

accelerating age of information. Even where the results of this thesis aren’t di-

rect information-theoretic imports: objects like the divergence between probability

distributions and entropic quantities still bear strong connections to classical and

quantum information theory.

1.3 Equilibrium, Ergodicity, Thermalization, and

Chaos
The nature of equilibria has been a continual focus of scientific attention for more

than a century. From early toiling by Maxwell and Gibbs, through the lost Viennese

cafés in which Loschmidt and Boltzmann argued over sachertorte, flanked by the

blossoming twin fields of probability and information theory whose first strained

steps were guided by the efforts of Shannon and Khinchin and Kolmogorov, and
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distilled down through the accurately-trained scientific legions of the twentieth cen-

tury arrived statistical mechanics: the theory of equilibrium.

In the classical theory, the ergodic hypothesis - that generic classical systems

visit every part of the phase space admitted by macroscopic conservation laws -

leads naturally to thermalization. Ergodicity can be used to justify a foundational

principle of statistical mechanics: the principle of equal a priori probabilities which

states that different (allowed) microstate configurations of the system are equally

likely to occur. Statistical mechanics then assigns each microstate to a macrostate,

and thus - after agglomerating all the microstates - to each macrostate a finite prob-

ability. Macroscopic quantities can then be calculated by averaging over ensembles

of macrostates, with the underlying probability distributions governed by the mi-

croscopic features of the system.

Whilst the nature of these ensembles, how they are formed and how they can

give rise to macroscopic physics, are well understood; why such a procedure should

give such good results is generally not. Real experiments are usually made on a

single system, not a vast ensemble; and the common arguments for the validity

of the underlying principles either appeals to the ergodic hypothesis2 or a coarse-

graining procedure which shatters dynamical reversibility. These significant gaps in

the physical foundation aren’t the only Damoclean threat to statistical mechanics;

and - as with almost every pinnacle attained by the physical sciences before the

advent of the 1920s - the question of reconciling classical statistical physics with

the quantum revolution eventually reared from the billows [11].

The bridling issue is that of phase space: the prevailing approaches to classical

statistical mechanics rely on a well-defined phase space, or the ability to demar-

cate well-defined phase space volumes [11]. This is precisely what is implied by

my above discussion regarding the assignation of microstates to macrostates. A

fundamental feature of quantum mechanics however is that conjugate variables (in

the case of quantum analogy to classical phase space, position and momentum) do

not commute, and thus the precision to which they can be defined is limited by a

2Proven only for a few systems such as the Sinai billiard.
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corresponding Heisenberg uncertainty relation. This means that conventional phase

spaces, and volumes within those phase spaces, cannot be defined [12]. This also

afflicts notions of ‘chaos’ in quantum systems. Classically, chaos is often char-

acterized by the exponentially rapid divergence as ∼ eλ t of nearby trajectories in

phase space - characterized by the Lyapunov exponent λ . Due to the unitarity of

closed system dynamics, the distance between two quantum states is preserved:

⟨ψ|U†(t)U(t)|ψ + δψ⟩ is a constant in time. Thus novel ways of defining chaos

via random matrix theory, and of extracting Lyapunov exponents by e.g. OTOCs,

have been introduced.

However, equilibration, thermalization, and chaos are known to occur in quan-

tum systems. We can observe it. The existence of steady-state solutions to Lindblad

master equations, the relaxation of observables in closed quantum systems to val-

ues uncorrelated with the initial state, and the prevalence of systems with chaotic

Wigner-Dyson level statistics. This last fact is in fact a consequence of a working

definition of chaos in quantum systems - that chaotic Hamiltonians give the same re-

sults as random matrices with identical symmetries [13]. One of the most significant

questions in the study of quantum many-body systems is how we can understand the

mechanism by which thermalization occurs in a closed quantum system. A close

second is how can this mechanism be broken.

1.3.1 The Eigenstate Thermalization Hypothesis

As indicated in the preceding discussion, a precise definition of thermalization and

the mechanisms by which it occurs in a quantum-mechanical context are still up

for debate. However, several attempts to define quantum thermalization have been

made which do not reference phase space; the most notable incarnation being the

eigenstate thermalization hypothesis (ETH). As the ETH is not directly relevant to

the methodology or results of this thesis, but still undergirds much of the literature

upon which this thesis is built, I briefly give an overview of it here. For more

information see Refs. [11] and [14], two well-known and in-depth reviews of the

topic.

In a nutshell, the eigenstate thermalization hypothesis (ETH) proposes one
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possible mechanism by which a closed quantum system can be said to have self-

‘thermalized’. Originally proposed in the seminal work of Deutsch [15] and Sred-

nicki [16, 17], it is easiest understood by following the similarly foundational work

of Rigol et al. in Ref. [18], which I summarize. The expectation value of a generic

observable Â in a closed system with Hamiltonian H, eigenvectors |α⟩, and corre-

sponding eigenvalues Eα evolves as

⟨Â(t)⟩= ∑
α,β

C∗αCβ ei(Eα−Eβ)tAαβ (1.4)

where Aαβ = ⟨α|Â|β ⟩, and the probability amplitudes Cα are fixed by the choice

of initial state. For long times non-degenerate eigenvalues Eα yield thusly incom-

mensurate off-diagonal oscillations Eα −Eβ ̸= 0, and the long-time value should

fluctuate around

⟨Â(t)⟩D = ∑
α

|Cα |2 Aαα . (1.5)

If the steady-state value of the observable relaxes at all, then it is reasonable to

assume that it will relax to this value. One can interpret Eq. (1.5) as an observable

averaged over the diagonal ensemble, and denote it by the subscript ⟨·⟩D. We can

now compare this generic prediction of quantum mechanics to the predictions of an

appropriately chosen statistical ensemble: the microcanonical ensemble (denoted

by the subscript ⟨·⟩M), from which the equilibrium value of the same observable Â

is

⟨Â(t)⟩M =
1

NE0,∆E
∑

α∈E
Aαα (1.6)

where E is the set of all α such that the corresponding eigenvalue Eα is close enough

in energy to the energy of the initial state E = {α | |Eα − E0| < ∆E} for some

appropriately chosen energy window ∆E, and where NE0,∆E is the cardinality of E.

The equivalence of results from diagonal and microcanonical ensembles

⟨Â(t)⟩D = ⟨Â(t)⟩M (1.7)

is a statement supported by classical analogy, extensive numerical confirmation,
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and - in scant few cases - rigorous proof, but is still, generically, conjecture; and

implicitly forms half of the ‘hypothesis’ in the acronym ‘ETH’. The explicit part of

the ‘hypothesis’ is the proposed explanation for the equivalence in Eq. (1.7): that the

eigenstate expectation values of a few-body operator themselves are almost equal in

a small enough energy window

Aαα = ⟨α|Â|α⟩ ≈ ⟨Â⟩M ∀ α ∈ E. (1.8)

The ETH thus reveals a mechanism of thermalization which appears far re-

moved from the type we are used to in classical mechanics: each eigenstate itself

is a thermal state in the sense expectation values of observables calculated with it

yields the steady-state ‘thermalized’ value. In general, non-thermal states are in

fact complicated coherent superpositions of these eigenstates which in turn yield

non-thermal expectation values. The ETH is well summarized by an ansatz first

proposed by Srednicki in Ref. [17] to describe the matrix elements of observables

in the system’s eigenbasis:

Aαβ = A(E)δαβ + e−S(E)/2 fO(E,ω)Rαβ (1.9)

where E = (Eα − Eβ )/2 is the average energy of the eigenstates α and β ,

ω = Eβ −Eα , S(E) is the thermodynamic entropy, A(E) = ⟨Â⟩M is the microcanon-

ical average over states close in energy to E, fO(E,ω) is a smooth function of its

arguments, and Rαβ is a random variable with zero mean and unit variance [11]. If

the system exhibits symmetries which divide the energy shell into disparate sectors,

then those sectors may independently follow the ETH.

For the purposes of this thesis, the most relevant part of Eq. (1.9) is the smooth-

ness of A(E). When A(E) is smooth then eigenstates with energy close to E have

similar expectation values, Eq. (1.8) is satisfied, and the ETH holds. When A(E)

rapidly varies, then Eq. (1.8) fails, as does the ETH. It is in this sense, once the ETH

has been violated which in turn leads to a breakdown of the equivalence in Eq. (1.7),

that the quantum system fails to thermalize. Such non-thermalizing quantum sys-
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tems, far-from-equilibrium, are important to the rest of this thesis.

1.3.2 Many-Body Localization

Many-body localization (MBL) is a phenomenon wherein certain quantum systems

fail to thermalize. As my discussion up to this point indicates, the word ‘thermal-

ize’ here can mean different things to different people. Moreover, a confluence

of theoretical, numerical, and experimental breakthroughs that occurred in the late

twentieth through early twenty-first centuries reinvigorated the field of MBL and

ergodicity-breaking in general. As such, the field of MBL has gone through an

array of paradigmatic shifts since the roots of its inception in 1958 3.

MBL was originally envisaged as a kind of Anderson localization which was

robust to interactions [19] - quantum wavefunctions describing interacting many-

body systems could be localized by disordered fields in a similar way to classical

wave localization in disordered materials. This was the ultimate result of the semi-

nal work by Basko, Altshuler, and Aleiner in Ref. [20] and published in 2006. This

behemoth of a work proved the existence of wavefunction localization in (closed)

disordered conductors in the presence of electron-electron interactions. The con-

densed matter community jumped at the chance to study this novel phase of matter

and the early golden age of MBL research began. Some landmark results include,

inter alia: Pal and Huse’s foundational numerical study of the transition of a system

into an MBL phase in 2010 [21], the groundbreaking work of Schreiber et al. who

first experimentally probed the MBL phase in 2015 [22], and Imbrie’s construction

of exact local integrals of motion for an MBL model in 2016 [23]. These land-

mark results were informed by a dedicated decade of theoretical, numerical, and

experimental study - the results of which have been condensed into a handful of

exceptional review articles4 [24–27].
3These paradigm shifts have also rendered MBL a deeply funny field to work in. Based on

my discussions with my contemporaries at conferences: some people swear by MBL, some people
don’t think it exists at all. Some people think that phenomenological approaches to the ergodic-MBL
transition are the future of the field, others find this to be a deep and fundamental betrayal for the
sake of citations. Some people are so bored of averaging over random samples that they’re quitting
the field altogether. I once saw someone sarcastically cite the actual 1852 Occam’s Razor article as a
comeback to a comment on the arXiv. It’s a spectacular melting pot of personalities and perspectives,
and I love it.

4Incidentally the review of Abanin, Altman, Bloch, and Serbyn of Ref. [24] was the earliest
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Gradually the hallmark features of MBL were collated and distilled by the sci-

entific community: (i) strong ergodicity-breaking and ETH violation in the MBL

phase [24], (ii) a rich many-body localization phase transition (MBLT) across the

entire spectrum with highly debated properties [21, 28–36], and (iii) emergent in-

tegrability and associated local memory [23, 37–40] which provides a lucrative

testbed for applications in quantum computing. Further characteristics of MBL

which emerge from these general features include: the relaxation of observables -

most notably the imbalance [22, 41–46] and prevalence of area-law entangled mid-

spectrum eigenstates [31, 32, 47–50], the slow logarithmic growth of entanglement

entropies [41, 50–56] and spatial correlation functions [57–59]. Across the ergodic-

MBL transition, the unfolded level statistics themselves undergo a quantitative tran-

sition [21, 29, 53, 60–65], and myriad other signatures have been found in myriad

other quantities [42, 57, 66, 67]. Devices in which MBL has been experimentally

realized include ultracold atoms and ions in optical lattices [22, 44, 45, 68–70], and

superconducting qubits [71], with recent evidence suggesting that extant transmon-

based quantum computers naturally tread a delicate line between localization and

chaos [72].

Figure 1.1: Schematic of a state initialized in a non-thermal density wave configuration
that, after unitary evolution, either relaxes to a thermal configuration or retains
some memory about its initial state. Figure retrieved from Ref. [24].

It is in the above phenomenological sense that a system ‘fails to thermalize’.

Neglecting the precise underlying mechanism: the absence of thermalization is

article I ever remember reading on the subject of MBL - right at the start of my PhD. Sitting next to
Maksym and listening to Dmitry deliver (remotely) the keynote talk at a conference years later is a
fond memory of mine.
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manifest in a system wherein local excitations do not spread, wherein the initial

state of a subsystem is locally preserved and can be retrieved. A schematic example

of this is shown in Fig. 1.1 wherein the features of the initial state of some closed

interacting system are either erased (thermalization) or retains some memory of its

initial state (MBL).

Mechanically, a simple explanation of many-body localization can be found

in terms of energetic suppression of certain transitions. In a closed system with

quenched disorder, a single-site change typically incurs an energy cost of the order

of the (random) disorder strength. This means that two quantum states which are

spatially close (in the sense that only a few local operations are required to transform

one into the other) are energetically separated. On the other hand, states which are

energetically close are typically spatially separated, requiring an extensive number

of operations to change one into the other. Given the fact that a closed system cannot

overcome this energetic gap by exchanging constituents with an environment: the

system is necessarily localized. MBL specifically occurs when can the new channels

opened up by interactions cannot provide the energy required to surmount single-

particle localization.

A more nuanced, modern, understanding of MBL is driven by the discovery of

(quasi) local integrals of motion (LIOMs) and the diagonalization of MBL Hamil-

tonians in terms of l-bits τ̂ j: local operators dressed with non-local corrections that

exponentially fall off with distance [23, 38, 40]. The Hamiltonian of the system

deep in the MBL phase can be rewritten in terms of z-components of these l-bits as

follows:

H = ∑
i

Jiτ̂
z
i +∑

i j
Ji jτ̂

z
i τ̂

z
j +∑

i jk
Ji jkτ̂

z
i τ̂

z
j τ̂

z
j + · · · .

This reveals a new mechanism for MBL: as a version of the underlying ‘clean’

system, in which the emergent l-bits dephase with respect to each other but cannot

flip or exchange with each other. Essentially, transport can still occur within the

support of an l-bit, but not between them.

Finally, it is worth outlining a categorical ambiguity present in literature, and

that I necessarily perpetrate throughout this thesis. Both ‘many-body localization’
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(referring to the general phenomenon) and ‘many body localized’ (the state of a

specific system) bear the acronym ‘MBL’. Typically one can determine which is

meant by context, but it does lead to some strange turns of phrase; the same system

can ‘exhibit MBL’ or ‘be MBL’ depending on which the author means. Highlight-

ing this is not just pedantry on my part, there is an ongoing (sometimes heated)

argument in literature about whether the many-body localized phase exists as a spe-

cific and stable phase of matter, or whether a system simply exhibits many-body

localization for an interim period.

1.3.3 The Many-Body Localization Transition

As discussed in the previous section, an thermalizing system exhibits strikingly

different behaviour to a localized one. A natural question to ask is what the tran-

sition between the two looks like? As it turns out the characterization and analysis

of the ergodic-MBL transition forms a rich seam of physics. Unlike conventional

quantum phase transitions [73], the MBL transition (MBLT) takes place across the

spectrum [24, 26, 27, 74]; making its analysis a far more elaborate task than that

of other quantum critical systems. An additional difficulty is manifest the fact that

each eigenstate appears to localize at a different disorder strength, a feature known

as the mobility edge [26, 29, 75]. Advancements in quantum simulators have paved

the way for experimental attempts to probe the transition [44, 67, 71, 76–79] and an

array of theoretical breakthroughs have resulted in a general debate over the nature

of the transition itself [21, 28–36, 80].

I summarize features of disorder-induced transitions and the MBLT in the fol-

lowing subsections, but I first discuss general finite-size scaling theory and data col-

lapse for continuous transitions in Section 1.3.3.1. The topic of finite-size scaling is

relevant to several sections of this thesis, and necessarily prefaces the discussion of

the MBLT. I then discuss disorder-induced transitions in Section 1.3.3.2, addressing

the analytical results of Harris [81] and developments thereof by Chayes et al. and

Chandran et al. [82, 83]. Finally, I briefly discuss some general numerical results

which inform much of MBLT literature up to this point, as well as the results of

Chapter 2.
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1.3.3.1 Finite-Size Scaling Theory

The characteristic feature of a continuous phase transition, the feature which drives

the transition itself, is the existence and divergence of some underlying correlation

length ξ [84]. As the critical point is reached λ → λc, ξ diverges as

ξ ∼ 1
|λ −λc|ν

(1.10)

with critical exponent ν > 0. In this sense, we can intuit the critical value λc as

where the transition takes place, and the critical exponent ν as how fast it takes

place (i.e. how fast the correlation length diverges). Typically, we cannot access

the underlying correlation length directly, and the system-specific question of how

to do so implicitly has driven innovation in the field; see for example the Thouless

time and energy first introduced in the context of Anderson localization in Ref. [85]

and the modern discussion thereof in e.g. Refs. [86, 87]. An appropriately selected

quantity O∞(λ ) will diverge at the critical point in a similar fashion to the underly-

ing characteristic length

O∞(λ )∼
1

|λ −λc|ζ
∼ ξ

ζ/ν . (1.11)

where the scaling exponent ζ determines how quickly O∞(λ ) diverges, and so the

ratio ζ/ν can be intuited as how closely our quantity tracks the effect of diverging

ξ .

For a finite system however, there is an upper limit to ξ ; the (smallest) physical

extent of the system L (though I will consider one-dimensional systems for the rest

of this thesis). For a finite-sized quantity OL(λ ), this length takes the place of ξ

close to the critical point:

OL(λ )∼ Lζ/ν for λ → λc (1.12)

which, in conjunction with the idea that - at the critical point - the quantity should
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follow a scaling law [88], yields the celebrated finite-size scaling ansatz:

O∞(λ ) = ξ
ζ/ν f (L/ξ ) (1.13)

which describes the bulk behaviour of the quantity close to the critical point. We

note that our scaling function f (·) is arbitrary provided it satisfies two crucial con-

ditions [89]:

f (L/ξ )

= const. if L≫ ξ

∼ (L/ξ )ζ/ν if L≪ ξ

(1.14)

which ensure the behaviour of Eq. (1.11) and Eq. (1.12) respectively. A conve-

nient (and commonplace) choice of scaling function which renders our ansatz more

tractable by eliminating explicit ξ dependence is f (·) = ·ζ/νg(·1/ν) where unspec-

ified g(·) satisfies conditions similar to those in Eq. (1.14) such that they still hold

for our specified scaling function. This yields our tractable scaling ansatz for a

continuous phase transition [90]:

O∞(λ ) = Lζ/νg(L1/ν |λ −λc|). (1.15)

The process of data collapse can now be used to extract the critical value λc,

and critical exponents ν and ζ , simply by calculating the quantity O∞(λ ) for a range

of λ at varying scales L. The procedure involves rescaling

O′∞(λ ) = L−ζ/νO∞(λ )

λ
′ = L1/ν |λ −λc|

such that O′∞(λ ) = g(λ ′), which is free from explicit dependence on L, ξ , and all

critical values and exponents. As such, all rescaled curves are identical and should

fall upon each other: the well-known ‘data collapse’. The art is simply in finding

the optimal values of λc, ν , and ζ for which the collapse succeeds.

The collapse is systematically affected by finite-size effects, as the ansatz

works only in the limit of the bulk L→∞. We can also see the seeds of scale invari-
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ance, either as a function of the rescaling, or in the case that the scaling exponent

ζ = 0 where we would see the unscaled curves cross at a single point, regardless of

L.

1.3.3.2 Disorder-Induced Transitions

At the heart of the theory of disorder-induced transitions is the celebrated Harris cri-

terion ν > 2/d, used to determine whether or not an existing continuous phase tran-

sition in an undisordered (uniform) system persists under the addition of quenched

disorder [81, 91]. We will now heuristically re-derive the criterion and point out its

flaws by considering a clean system of dimension d exhibiting a continuous phase

transition. As discussed in Section 1.3.3.1, such a transition has an underlying cor-

relation length that diverges as ξ ∼ |λ − λc|−ν as we approach the critical point

λ → λc. We can consider the clean system to consist of sub-regions of volume ξ d

which - by the definition of the correlation length - do not depend on each other.

Under the addition of quenched disorder (to bonds or sites) the n-th sub-region’s

critical value λ
(n)
c changes slightly. Since the effect of quenched disorder on each

sub-region has been averaged over ξ d i.i.d. random variables, the unbiased estima-

tor for the variance of these {λ (n)
c } is given by:

s2
λc
∼ 1

ξ d−1
(1.16)

In the thermodynamic limit where ξ isn’t bounded by unfortunate physicality, unbi-

ased corrections to the standard deviation and the −1 in the radicand of Eq. (1.16))

can both be neglected such that the standard deviation of the {λ (n)
c } is of the order

sλc ∼ ξ−d/2. From this and our general form for the correlation length in a con-

tinuous phase transition we find that the fluctuations in λc due to the addition of

quenched disorder is of the order sλc ∼ |λ −λc|dν/2. For the clean phase transition

to be stable under the addition of quenched disorder - it suffices that the original

critical value λc is not dominated by these fluctuations:

|λ −λc|> |λ −λc|dν/2 (1.17)
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from which we can determine the Harris criterion ν > 2/d by simple comparison

of the exponents on the left and right hand sides. Intuitively, for ν > 2/d, the

disorder is less and less relevant at larger scales and the critical properties in the

thermodynamic limit are determined by the zero-randomness model. For ν < 2/d,

the opposite is true, disorder becomes more relevant at larger scales and the critical

properties in the thermodynamic limit are determined by the infinite-randomness

model.

Despite it’s widespread citation, the original (heuristic) formulation of the Har-

ris criterion in 1974 (see Ref. [81]) is of limited use. There are four relevant fea-

tures of the above derivation which limit its usefulness in the modern studies of

disorder-driven transitions: i) the underlying correlation length ξ is accessible, ii) it

necessarily references an existing clean transition; devoid of quenched disorder, iii)

it uses the continuous phase transition (power-law) form for ξ , and iv) it considers

systems in the thermodynamic limit wherein ξ is unbounded by the physical extent

of the system. Unfortunately, the bulk of modern analyses of disorder-induced tran-

sitions i) use quantities (spatial and otherwise) or heuristic correlation lengths (such

as the Thouless time) ii) have no clean counterpart without quenched disorder, iii)

are not necessarily continuous phase transitions, and iv) are limited in system size.

Due to these shortcomings, there have been considerable advancements made

in our understanding and generalization of the Harris criterion. Notably the work

of Chayes-Chayes-Fisher-Spencer (CCFS) in Ref. [82] and Chandran-Laumann-

Oganesyan (CLO) in [83] which address some of these issues. Despite this, very

little about the functional form of the famous formula ν > 2/d has changed. Indeed

in the forty years that span the publication of Harris’ seminal work in 1974, and

the work of Chandran, Laumann, and Oganesyan in 2015, the defining feature of

disorder-driven transitions still fits into a few letters:

ν ≥ 2
d +2a

(1.18)

making Harris’ original qualitative inquiry an exceptional examples of an ‘educated

guess’. Despite this, arguments have been made that the Harris bound is irrele-
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vant to MBL, either because the transition is of a Kosterlitz-Thouless type (making

the scaling ansatz invalid) [35, 36, 92, 93], or - as discussed by Cecile Monthus in

Ref. [80] - because the averaging over the ξ d i.i.d random variables is not explicit

but happens implicitly over eigenstates, and as such the crucial central limiting be-

haviour of Eq. (1.16) is not seen.

1.3.3.3 Numerical Results for the MBLT

Numerical results for the MBLT fall into two broad groups. The limitation of exact

numerics to small system sizes (L∼ 20) makes extracting the behaviour of the sys-

tem in the thermodynamic limit challenging. Scaling analyses in such systems are

riddled with pathological finite-size effects and thus almost all small-scale numer-

ical analyses strongly violate the Harris bound. Such analyses typically assume a

continuous phase transition and find 1≤ ν ≤ 1.5. A few notable exceptions [66, 94]

that capitalize on quantities which are robust to finite-size effects satisfy the Harris

bound. In contrast, large phenomenological approaches - though blind to micro-

scopic features of the system - have had markedly more success: either consistently

achieving this bound [30, 34, 95–98], or supporting the idea that the transition is

of a Kosterlitz-Thouless type [35]. It has also been suggested by Khemani et al.

in Ref. [32] that there are two universality classes at play: one that is accessible to

small-scale analyses which doesn’t need to satisfy the Harris bound, and one that is

accessible to large-scale analyses which does. These universality classes are loosely

identifiable as the infinite-randomness and zero-randomness cases discussed in Sec-

tion 1.3.3.2.

1.3.4 Quantum Scars

Quantum many-body scars are a kind of ‘weak’ ergodicity breaking behaviour

found in certain systems. Weak ergodicity breaking occurs when the ETH is satis-

fied for most of the system’s eigenstates, but a select few eigenstates dramatically

violate it [13, 100]. A quantum scar is a band of these ETH-violating eigenstates

which ‘scar’ the spectrum. These scars effectively embed a non-thermalizing sys-

tem within an large thermalizing space. Systems initialized in the scarred subspace
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Figure 1.2: Experimental evidence of revivals in the domain wall density in a scarred
system. The revivals are independent of system size. Figure retrieved from
Ref. [99].

will behave as though decoupled from the thermalizing bulk of the spectrum. Thus,

systems with quantum scars can exhibit unique kinds of non-thermal behaviour for

very specific initial state configurations.

The precise mechanisms that lead to the existence of quantum scars are yet

unknown - though the prevailing explanation is that the Hilbert space of a compli-

cated system can fragment into a myriad of dynamically decoupled sectors which

may not appear if one only examines global conservation laws [13, 101]. However,

as with MBL, the features of scarred systems are being thoroughly examined and

documented. The main feature of scarred systems are sharp quantum revivals of

states initialized within the scarred subspace, quantified by e.g. a Loschmidt echo

[102, 103]. In practice, a state initially prepared in the scarred subspace will appear

to be erased - as though the system has thermalized - then will suddenly re-emerge

at a time much less than the recurrence times of the full closed system. This effect

is shown in Fig. 1.2 retrieved from Ref. [99], the landmark work of Bernien et al.

which shows revivals in the domain wall density of a Rydberg array that have a

size-independent frequency. This has led to scars too being touted as having a kind

of ‘memory’ which may be accessible and technologically exploitable. I interrogate

this claim in Section 2.3, and investigate the ground state phase diagram of a scarred

system in Section 3.2.4.

Ultimately, scars do not form an overwhelming part of this thesis. Where they
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do appear, I mostly use them as an example of another setting in which non-ergodic

effects may lead to local memory. This, in turn, warrants their investigation through

the lens of the informational approach. As such this overview is intentionally cur-

sory, and I would direct the interested reader towards Refs. [13] and [104], two

excellent and detailed reviews of the topic.
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Chapter 2

Memory in Ergodicity-Breaking

Systems

“A way a lone a last a loved a long the”

— James Joyce

“You say memory too much.”

— Abolfazl Bayat

Giving me feedback on our article.

In this chapter I examine the idea of ‘local memory’, a feature of certain con-

densed matter systems in which subsystems retain information about their initial

state (see e.g. Refs [1, 2]). By interrogating the meaning of ‘local memory’ as it is

used in contemporary literature, I contend that the current working quantifications

of memory (for there are several) are either loose, underdeveloped, or not partic-

ularly useful. Exploiting the ‘accessible information game’ - an import from the

quantum information community - as a bedrock on which to build an operational

definition of memory, I define a brief criteria by which quantifiers of memory can

be identified. I then apply this criteria, as well as several other quantities widely

used in quantum information theory, to interrogate memory in two popular types

of ergodicity-breaking condensed matter contexts: MBL and quantum scars. The

introductory sections of this chapter, as well as the analysis of MBL in Section 2.2

is adapted from my published works in Refs. [3, 4].
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I argue in Section 2.1 that the definitions (for there are several) of ‘memory’ in

a condensed matter context are woefully loose, underdeveloped, and not particularly

useful. It is in this context that I introduce the ‘accessible information game’, an

import from the quantum information community that I can exploit as the bedrock

for an operational definition of memory. This leads to a brief criteria which a true

information-theoretic quantifier of memory must satisfy.

I draw attention to Section 2.1.2 and Section 2.1.3 which concerned with the

Holevo quantity and the quantum coherent information respectively. These two

quantities are critical to this chapter and encapsulate generally useful ideas sur-

rounding the ‘accessible information game’ which is played throughout this entire

thesis. The Holevo quantity in particular is incarnated into several forms throughout

this thesis. For interested readers, much of these sections are covered in far greater

detail in Preskill’s famous quantum computation notes (see Ref. [5]); though I do

not adapt from these notes directly.

I subsequently apply the devised definitions and quantities to analyses of mem-

ory in two popular types of ergocity-breaking condensed matter systems: MBL in

Section 2.2 and quantum scars in Section 2.3. In the context of MBL, I find that

its value as a hard drive- as a store of memory over time - is well founded; though

extant studies fail to capture how much information is actually retained. This in-

vestigation also reveals some interesting features regarding how subsystems may

decohere with respect to each other in the thermodynamic limit. However, in the

context of quantum scars, their value as memory stores is a much more nebulous

problem. I find certain highly-constructed contexts in which they exhibit excep-

tional memory, retaining information at exponential timescales, though this seems

to be a fragile phenomenon.

2.1 The Accessible Information Game
The ‘accessible information game’ is a term coined1 in the quantum Shannon en-

tropy section of Preskill’s famous quantum computation notes. There it appears

1Presumably by either Preskill or Kitaev. I don’t know exactly who wrote exactly what.
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exactly twice, framed first as a game played by Bob when “Alice finds it easier to

send signals [...] which are imperfectly distinguishable rather than mutually orthog-

onal”, and secondly when an “experimental physicist tries to measure an unknown

classical force using a quantum system as a probe” [5]. This chapter (as well as

some sections of future chapters) concerns itself with the former case, though trans-

planted into the context of many-body condensed matter systems. The latter case is

also a subject of considerable interest which represents a rising current in quantum

theory which I briefly touch upon in Chapter 4: quantum metrology and sensing.

However, I do not consider the ramifications of this framework on metrology and

sensing in this thesis.

Alice Bob

X Y

xk ykρ(k) ρ(k)′

S S′

M M′

Q Q′

R

Λ

Figure 2.1: Schematic of the ‘accessible information game’ played by Alice and Bob. Clas-
sical information xk drawn by Alice fromX is encoded in the quantum state ρ(k)

and loaded into the message register M of some larger system S. After being
passed through the channel Λ and measured by Bob to produce some output yk
that defines a prior Y , the game is decided by how well Bob can reconstruct X
from his observed Y .

The game itself is played thusly: Alice encodes a classical message xk (a ran-

dom variable drawn from the ensembleX = {pk,xk}) as either classical (incoherent)

or quantum (coherent) information into the state ρ(k) of a subsystem M the ‘mes-

sage register’, which is in contact with the rest of the system Q such that S = Q∪M.

S then evolves under some CPTP quantum channel Λ, and Bob performs some

measurements on the message register M′ of the resulting system S′ and receives a

decoded message yk which defines a prior Y . Alice and Bob may both optionally

access a reference state R which is a purification of the initial state of the message
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register M. The game is decided by how well Bob can reconstruct X from Y , and is

shown schematically in Fig. 2.1.

The key twist in this thesis is that S is actually - rather than simply in prin-

ciple - a messy, complicated, many-body quantum system. In this context, the ab-

stract framework above can be understood as encapsulating a vast range of protocols

in current-generation quantum devices, from conventional communication between

two parties, to information storage or ‘local memory’ if Alice and Bob decide to

treat M as a quantum ‘hard drive’ of sorts. That is to say that they are the same

person who discards all information about X after encoding ρ(k) into M, and who

returns later to reconstruct the information using only M′. Clearly, if modern noisy-

intermediate-scale quantum (NISQ) devices are ever to be taken seriously as actual

computational platforms, these protocols need to be theoretically understood and

experimentally interrogated. This chapter investigates the latter protocol: the na-

ture and quantification of ‘local memory’ in many-body quantum systems, and the

consequent potential value of such systems as quantum ‘hard drives’.

2.1.1 What Is, and Isn’t, Memory: An Operational Definition

Despite the fact that ‘local memory’ is widely quoted in the literature, especially in

MBL literature, it is infrequently the subject of direct investigation. In this section

I leverage the ideas of Section 2.1 into an operational definition of a true memory

quantifier. I then discuss the ways in which memory has been captured in MBL

systems before, and outlines their shortcomings. Given the framing of condensed

matter systems as mediating an ‘accessible information game’, it is natural to lever-

age that framing into an actual definition of ‘local memory’.

The operational definition of a memory quantifier that I suggest, as preempted

by the preceding section Section 2.1, is extremely simple. A memory quantifier

should satisfy two criteria: (i) it should yield a number of bits of information that

can be extracted from the system in question and (ii) it should contain non-trivial

temporal correlations with reference to some initial state. Despite the simplicity of

these requirements, many widely-used signatures of information spreading or reten-

tion in a condensed matter context do not satisfy them; I outline relevant examples
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below.

In theoretical and experimental studies alike ‘memory’ is most frequently

discussed in terms of non-zero steady-states of appropriate observables, notably

quantities derived from local magnetization or occupancy measurements [1, 6–

10]. Should these measurements systematically coincide with similar measure-

ments made on the initial state of the system, then system has retained some ‘local

memory’ of those initial features. A generic starting point for constructing quanti-

ties of this kind is the autocorrelation function:

F(t) =
〈
Ŵ (0)Ŵ (t)

〉
(2.1)

of some appropriate observable Ŵ . The premier example here is the imbalance, used

extensively in MBL literature and to great effect in landmark experiments (see, for

example, Ref. [11–15]). It is defined in terms of local fermionic number expecta-

tion values ⟨n̂ j(t)⟩ = n j(t) where j indexes sites on a lattice. If the initial system

is in some charge density wave configuration then the aggregate deviation of the

n j(t) from their initial values n j(0) quantifies how well the system remembers its

initial number configuration. The prototypical example, for a system of spinless

fermions such that n j(t) ∈ [0,1] and initialised in the charge density wave state

|0,1,0, · · · ,0,1⟩, the imbalance is defined as:

I(t) = Ne(t)−No(t)
Ne(t)+No(t)

(2.2)

where Ne(o) = ∑ j∈even(odd) n j(t) is the total number of fermions on even (odd) sites.

The initial state has all even sites unoccupied, and all odd sites occupied, so I(0) =

1. As the system evolves, it can either thermalize to homogeneity such that the

initial configuration is lost limt→∞I(t) = 0, else it can relax to a state which is

either correlated limt→∞I(t)> 0 or anti-correlated limt→∞I(t)< 0 with the initial

configuration.

It is often argued that a more sophisticated grasp of memory can be attained by
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investigating the growth of the out-of-time-order correlator (OTOC)

OWV (t) =
〈
[W (t),V (0)]†[W (t),V (0)]

〉
β

(2.3)

for some appropriately chosen, spatially separated, operators Ŵ and V̂ , which ini-

tially commute. The angle braces ⟨·⟩β here denote the thermal average at inverse

temperature β . Originally envisaged as an analogy to the classical Poisson bracket

as a measure of quantum chaos, it can also be interpreted as an indirect measure of

information scrambling: the speed and strength with which the effect of the pertur-

bation V̂ is felt by the distant Ŵ tells us how quickly information is carried through

the system. In ergodic systems the effect of the perturbation spreads rapidly and the

OTOC grows exponentially in time OWV (t) ∼ eλLt at a rate governed by the Lya-

punov exponent λL; whilst in the localized phase this growth appears logarithmic or

power-law [16, 17].

More precisely, the OTOC quantifies the spreading of the support of the opera-

tor Ŵ (t) onto the support of the operator V̂ . If they share support, then information

about one can be non-locally inferred from the other. Thus an OTOC depends on

an appropriate choice of operators, has no clear interpretation in terms of how may

bits of information can actually be extracted from a subsystem, and is exceedingly

difficult to measure experimentally.

Finally, local memory can be inferred without appealing to explicit tempo-

ral correlations by monitoring, e.g., the growth of entanglement entropies, spatial

correlators, the spatial mutual information, and the emergence of local integrals of

motion [18, 19]. Some of these quantities have obvious bit-wise informational inter-

pretations, or are advantageously blind to the specifics of measurement procedure,

but unilaterally lack any kind of temporality.

In summary, the prevailing methods by which memory is accessed in MBL

systems all have respective strengths and shortcomings. The dynamics of local ob-

servables like the magnetization and imbalance are experimentally tractable and

temporally connect the initial conditions with late-time measurements; but can

be rendered useless by a poor choice of measurement basis, and do not immedi-
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ately quantify how much information - in bits - can be extracted from a subsystem.

OTOCs, whilst much more sophisticated and theoretically invaluable, suffer simi-

larly from the specification of perturbation/measurement operators and the lack of a

bitwise interpretation, and aren’t readily accessible to experimental. Quantities like

the entropy and spatial mutual information are informational, but lack the temporal

correlations necessary to act as true memory quantifiers.

Over the next few sections I introduce and compare a myriad of quantities,

most of which satisfy these conditions of a memory quantifier and which interrogate

memory in different ways.

2.1.2 The Holevo Quantity

The Holevo quantity - first introduced by Alexander Holevo in Ref. [20]2 - quan-

tifies the maximum amount of accessible (classical) information in a given system.

This definition is worth unpicking in detail as it undergirds the definition of the

quantum coherent information discussed in Section 2.1.3, and is bluntly wielded as

a memory quantifier throughout much of this thesis.

Formally, one can consider Alice encoding the elements {xk} of an alphabet X

in the states {ρ(k)}, each with probability pk. Alice then passes these states, each

bearing some classical information, to Bob who may then perform any generic pos-

itive operator-valued measure (POVM) measurements on it. The readout of these

measurements yield to Bob a corresponding alphabet Y of classical outcomes {yk},

each with probability qk. The accessible information is then defined as the mutual

information

H(X : Y ) = H(X)+H(Y )−H(X ,Y ) (2.4)

where H(X) =−∑ j p j log2 p j is the Shannon entropy of X , H(Y ) is the correspond-

ing Shannon entropy of Y , and H(X ,Y ) is their joint entropy[21]. The Holevo quan-

tity is solely a function of the input ensemble {pk,ρ
(k)} and is defined as follows

C({pk,ρ
(k)}) = S

(
∑
k

pkρ
(k)

)
−∑

k
pkS
(

ρ
(k)
)

(2.5)

2I must admit that I have not read this paper - it is written in Russian.
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where S(ρ) =−Tr[ρ log2 ρ] is the von Neumann entanglement entropy. The defin-

ing feature of the Holevo quantity is that it upper-bounds the accessible information

H(X : Y )≤C({pk,ρ
(k)}) (2.6)

and thus represents the upper limit on how much information about X Bob can

reconstruct given Y after X has been passed through a quantum channel. This result

is called the Holevo bound, or Holevo’s theorem. The proof of the inequality of

Eq. (2.6) is simply and elegantly given in the excellent textbook of Nielsen and

Chaung (see Ref. [22]), as are several applications of the Holevo quantity.

It is worth discussing some important features of the Holevo quantity of

Eq. (2.5) before applying it in earnest to condensed matter systems. First of all

it is entirely independent of the measurements made by Bob, any increase in the

Holevo quantity - and a commensurate increase in the maximum possible acces-

sible information - is completely controlled by Alice. This makes some intuitive

sense, the inequality defines only an upper bound. Bob can always perform a point-

less or stupid measurement, or spill his coffee all over Y , and whilst the accessible

information H(X : Y ) decreases, the Holevo quantity does not. Bob can, in these

situations, just select a better POVM or tidy his desk a bit before trying to do quan-

tum physics. However the best that dear Bob can possibly do, even with a generous

EPSRC grant and perfectly commuting measurements, is ultimately contingent on

Alice’s ensemble.

Secondly, if Alice can tune the ensemble {pk,ρ
(k)} freely, the Holevo quantity

can be maximized by setting all the ρ(k) to pure orthogonal states and setting all pk

equal. This corresponds to Alice encoding and transmitting her classical message

by writing it down on a sheet of paper and just handing it to Bob - no quantumness

required. Again, Bob can always screw this up by being a clumsy idiot, but in theory

he can always determine X perfectly - he can just read it.

The true power of the Holevo quantity, and the upper bound it defines, lies

somewhere between these two extremes. Let’s assume that I have been too harsh on

Bob, and that he’s really is trying his best. Let’s also assume that Alice’s messages



2.1. The Accessible Information Game 47

are closer perhaps to a conventional alphabet - that she has very limited control

over the states ρ(k), but can tune freely the probabilities pk with which she trans-

mits states to Bob. This, with the kind of oracular foreshadowing that only fiction

authors and natural scientists can produce in their writing, is very close to the situa-

tion of transmitting messages via condensed matter systems. Alice wants to embed

a message to Bob in a system which may have impurities, nonlinear interaction

terms, and which will likely carry her prepared state ρ(k) to one that she cannot

easily predict ρ(k)′. This is a kind of noisy channel [23]. It is, of course, ρ(k)′ that

Bob receives and experiments upon. Hence, Alice cannot consistently and reliably

predict or affect the states themselves, but can tweak the probabilities with which

she inputs certain messages into her messy condensed matter system. It is in this

framework that the game of communication and of memory retention becomes a

fascinating question immediately relevant to the world of modern quantum simula-

tion.

I formalize the above discussion by defining ρ(k)′ in terms of a generic

completely-positive trace preserving (CPTP) map Λ which enacts an arbitrary quan-

tum channel ρ(k)′ = Λ[ρ(k)], resulting in a reformulated Holevo quantity

C
({

pk,Λ
[
ρ
(k)
]})

= S

(
∑
k

pkΛ[ρ(k)]

)
−∑

k
pkS
(

Λ

[
ρ
(k)
])

(2.7)

that is more generic than the original, and makes explicit that the classical messages

are being passed through some quantum channel Λ which encapsulates layers of

encoding, transmission, transformation, and decoding. Now the maximum amount

of accessible information is contingent not only on Alice’s ensemble {pk,ρ
(k)}, but

also the channel Λ through which she passes the state to Bob.

Furthermore, this reformulation highlights a few specific cases in which the

Holevo quantity excels as a memory quantifier. Firstly it is clearly invariant un-

der change of basis of the outcome Λ[ρ(k)]→UΛ[ρ(k)]U†; this sidesteps all prob-

lems with Bob making a ‘poor measurement’. Consider, for example, that Bob

measures the two-state ensemble of X eigenstates {ρ0 = |+⟩⟨+|,ρ1 = |−⟩⟨−|} in
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the Z basis; even though the states are distinguishable and the single bit message

{x0 = 0,x1 = 1} can be perfectly retrieved, Bob has failed to do so due to a poor

choice of measurement basis. This is ultimately due to the fact that the Holevo

quantity is an intrinsic property of the ensemble {pk,Λ[ρ
(k)]}, but it is still a fact

worth explicating as - in future sections - I will consider the kind of results that Bob

can actually achieve rather than optimally achieve. Secondly, and far more subtly,

generic quantum channels can both increase and decrease the von Neumann entan-

glement entropy [5]. This means that states {ρ(k)} that are initially distinguishable

can be transmitted to states which are indistinguishable, e.g. Λ[ρ(k)] = |0⟩⟨0| ∀ k.

The Holevo quantity can be understood in the context of this fact as a delicate inter-

play between distinguishability and purity. If the Λ[ρ(k)] cannot be distinguished,

or if they are maximally mixed, then the terms in Eq. (2.7) cancel and no informa-

tion can be transmitted. Purity doesn’t matter if your states aren’t distinguishable,

and distinguishability reduces as the states become more and more mixed. Though

the examples we’ve outlined here are extreme, I will encounter a milder form of this

behaviour later, wherein initially distinguishable pure states are mixed and rendered

less distinguishable, causing the Holevo quantity to decrease.

Concluding this section, I note that the rightmost term in the definition of

Eq. (2.7) is simply the mean von Neumann entanglement entropy of the states

Λ[ρ(k)]. Given that ∑k pkΛ[ρ(k)] can - at best - be the scaled identity operator

Idim(Hρ )/dim(Hρ) of dimension equal to the dimension dim(Hρ) of the Hilbert

space in which the {ρ(k)} live, the Holevo quantity is upper-bounded in turn by the

quantity

C({pk,ρ
(k)},Λ)≤ log2 dim(Hρ)−∑

k
pkS(Λ[ρ(k)]) (2.8)

which I can interpret as quantifying the purity of the ensemble states ρ(k). This in-

terpretation is of importance to the results of Section 2.2 and is a crucial benchmark

given the discussion of purity and distinguishability outlined above. Additionally,

given that the von Neumann entanglement entropy is widely-used in condensed

matter theory as a signature of phase transitions and as evidence of information be-

ing distributed in non-local degrees of freedom, this connection serves as a useful
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comparative benchmark.

2.1.3 The Quantum Coherent Information

The quantum coherent information is defined in terms of some generic system Q

passed through some channel Λ and a reference system R that purifies the original

state of the system Q [24]. The reference system is held ‘in hand’ and does not

evolve (i.e. Λ only acts on Q). The definition of the quantum coherent information

is simply a reformulation of the classical accessible information of Eq. (2.4) using

von Neumann entanglement entropies instead of Shannon entropies

Iq(R⟩Q) = S(Λ[ρ]Q)−S(Λ[ρ]RQ) (2.9)

where ρ is the initial pure state of the entire system, Λ[ρ]Q is the final state of the

system Q and Λ[ρ]RQ is the final state of the combined system RQ. The quantum

coherent information is thought to play a similar role in quantum information theory

as the mutual information does in classical information theory, satisfying equivalent

quantum data processing inequalities [22]. Despite this, it does not yet have the

clear informational interpretation that the Holevo quantity has.

The most notable feature of the coherent information of Eq. (2.9) is that it

can be either positive or negative. The same is not true of the analogous classical

quantity: the joint Shannon entropy can be decomposed as H(R,Q) = H(R|Q)+

H(Q) such that the entropy of the joint system can never be less than the entropy

of a subsystem H(R,Q) ≥ H(Q). Thus the direct classical analogy of Eq. (2.9)

wherein von Neumann entropies are replaced with Shannon entropies can never be

positive. Thus the quantum coherent information can be used as a signature of non-

classicality - signifying information that can only be stored by exploiting quantum

coherence [24].
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2.2 Memory in the Many-Body Localized Heisenberg

Spin Chain
A key concept in MBL is the emergence of memory: the local retention of infor-

mation about initial conditions. Memory is necessarily temporal and thus typically

discussed through dynamical quantities such as the imbalance, steady-states of local

observables, or deduced from entanglement and correlation spreading [7, 8, 15, 25–

27]. As discussed in Section 2.1.1, these quantities may or may not actually capture

memory.

By instead computing the Holevo quantity in Eq. (2.5) for a given input en-

semble {pk,ρ
(k)} and environment state |e⟩ under the action of the map E [·] one

can directly quantify how much information, in bits, can be extracted locally from

the system s at time t about its initial state. This is indeed a direct, dynamical quan-

tification of local memory in the subsystem s. The use of this quantity and several

other memory quantifiers in characterising the ergodic-MBL transition is the subject

of the rest of this section.

2.2.1 The Disordered Heisenberg Spin Chain

The Heisenberg chain with quenched random disorder has been used extensively

in literature as a toy model of MBL, and I continue that tradition in this thesis.

Enforcing periodic boundary conditions, the model is governed by the Hamiltonian

H = J
L

∑
j=1

S⃗ j · S⃗ j+1 +
L

∑
j=1

h jSz
j (2.10)

where S⃗ j = (Sx
j,S

y
j,S

z
j)
⊤ is a vector of the standard spin-1/2 operators, and where h j

are quenched random variables drawn uniformly from the interval [−h,h] where h

characterizes the disorder strength. For small system sizes, this model localizes at

a critical value near hc ≳ [28, 29] in a fashion that looks like a second-order phase

transition. However, as discussed in Section 1.3.3, the ergodic-MBL transition is not

yet well understood: the apparent critical value changes dramatically as a function

of system size and the transition may belong to different universality classes [30–
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32].

The model of Eq. (2.10) is widely used for good reason. Short-range interac-

tions admit simple tensor network treatments of the system. With the inclusion of

a ZZ anisotropy the system can be tuned between interacting and non-interacting

versions. Different forms for the hi can lead to staggered or quasi-random Z fields

with different localizing effects. It is simple, easy to implement, and highly flexible.

Exploitation of these advantages in the context of MBL have in turn yielded novel

advances in the analysis and simulation of condensed matter systems in general, see

e.g. Refs. [33, 34].

2.2.2 The Subsystem ‘Hard Drive’ Protocol

In the system of L spin-1/2 particles governed by the Heisenberg model of

Eq. (2.11), I can identify a subsystem of l particles (our message register) and there

encode pure separable messages of the form

ρ
(k) = |x(k)1 ,x(k)2 , · · · ,x(k)l ⟩⟨x

(k)
1 ,x(k)2 , · · · ,x(k)l |= |xk⟩⟨xk| (2.11)

in which x(k)i ∈ {↑,↓} encodes either zero 0→↑ or one 1→↓, i.e. the state of a

single classical bit. In the context of the accessible information game discussed in

Section 2.1, the messages x(k)1 x(k)2 · · ·x
(k)
l are the classical messages xk drawn from

some alphabet X that Alice has encoded in the state ρ(k) of the message register

M. The message register in this case is simply the first l sites of our model, within

which the 2l different possible classical messages that comprise the alphabet X can

be encoded in the 2l mutually orthogonal (and thus perfectly distinguishable) com-

putational basis states. The message register is then embedded in an environment

of size L− l which is initially prepared in a pure quantum state |E⟩⟨E|, this is our

complement Q to the message register M such that the combined system S is the

entire Heisenberg chain. The combined state of message and environment is of size

L, and is initially given by the quantum state ρ(k)⊗|E⟩⟨E|.

For notational convenience, I incorporate this embedding, time evolution under

the Hamiltonian of Eq. (2.11), and eventual extraction of the state of the message
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Figure 2.2: Schematic diagram of the procedure by which individual messages ρ(k) are
transmitted via the channel Λ.

register (i.e. the partial trace over the degrees of freedom in the environment E) all

into the channel Λ. The action of Λ on ρ(k) is thus given by

Λ
r[ρ(k)] = TrQ

[
e−iHt

(
ρ
(k)⊗|E⟩⟨E|

)
eiHt
]
= ρ

(k)(t) (2.12)

where I have added a superscript r to the channel to serve as a notational re-

minder than H and E are specific realizations of the Hamiltonian and environment

states (though for compactness I omit explicit superscripts on these symbols and on

ρ(k)(t)), and thus that Λr only represents a single realization of the channel. Later

on I will have to average not only over the message index k, but also over many

different realizations of our channel (indexed by r).

This procedure is shown schematically in Fig. 2.2, and essentially defines

a kind of quantum ‘hard drive’. Information initially localized within the mes-

sage may bleed out into the environment during transmission, represented in the

schematic by blending of the blue message with the green environment. A sub-

system M embedded into a larger system Q that I want to encode information into

and then retrieve at a later time. I can quantify the maximum quality of this data

retrieval with the Holevo quantity of Section 2.1.2, but in practice - and as I shall

demonstrate in the rest of this chapter - this protocol can admit different quantifiers

of memory, different Hamiltonians, the incorporation of dissipative baths, and ar-
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bitrary encoding and decoding procedures. In conjunction with the criteria given

in Section 2.1.1, this general protocol gives a clear operational definition for ‘local

memory of initial conditions’ and a systematic method for analyzing local memory

in condensed matter systems by treating them as hard drives.

2.2.3 Four Hierarchical Informational Quantities

The results in the next section mainly centre on the Holevo quantity as defined in

Eq. (2.7). However, it is flanked by three other quantities which inform the dis-

cussion of memory in different ways. Two are quantifiers of memory (as per the

criteria laid out in Section 2.1.1) that depend on the kind of measurements that can

be employed by Bob - one of which is a direct information-theoretic analogy to the

imbalance of Eq. (2.2). I also discuss the simple modification of the von Neumann

entanglement entropy of Eq. (2.6) which - though subtly devoid of temporal corre-

lation and thus useless as a memory quantifier - serves as an upper-bound for all

other quantities. All four quantities are summarised in Table 2.1, and defined and

discussed in detail below. In this section I introduce and discuss these quantities,

how they are constructed, and what they may tell us about memory in condensed

matter systems.

Quantity Memory Quantifier Measurements Definition

VNE No Full State Tomography Eq. (2.13)

Holevo Yes Full State Tomography Eq. (2.14)

CMI Yes Global Measurements on M Eq. (2.18)

SSMI Yes Local Measurements in M Eq. (2.16)

Table 2.1: Summary of the four quantities discussed in Section 2.2.3 based on two features:
whether they hold the status of a valid memory quantifier based on the criteria
laid out in Section 2.1.1, and what measurements need to be made to construct
the quantity3.

For notational convenience, I first introduce three averages: message averaging

over the index k will be written out explicitly as it informs our discussion of which

3Full state tomography here means full extraction of all the elements of the state vector (density
operator) describing the pure (mixed) state of a system (subsystem) in some convenient basis.
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quantities are true memory quantifiers and takes a different form for each quantity.

Channel averaging over different channel realizations Λr is denoted by angle brack-

ets ⟨·⟩, and in the case of disordered systems it is here that disorder averaging takes

place. The combined effect of message averaging, channel averaging (typically a

geometric mean), and normalization between zero and unity is denoted by a bar · .

The normalization of each memory quantifier allows us to compare them directly,

even for different message sizes l. This normalization also endows each memory

quantifier with an additional interpretation: as the a kind of density or rate of in-

formation transfer. That is to say, the amount of information - in bits - that can be

reliably transmitted per component of the message register M.

The first quantity of relevance is the simple modification of the von Neumann

entropy introduced in Eq. (2.6) and the associated discussion:

P(t) = 1−S(t) =
1
l

〈
l−∑

k
pkS(ρ(k)(t))

〉
. (2.13)

This modified von Neumann entropy is bounded as 0≤ P(t)≤ 1, and upper bounds

all further quantities. In the perfect transmission regime, wherein Λr[ρ(k)] = ρ(k) =

|xk⟩⟨xk|, all terms in the sum are zero and the upper limit P(t)→ 1 is saturated; in

the complete scrambling limit each ρ(k)(t)→ I/2l , all terms in the sum are pkl, and

I saturate the lower limit P(t)→ 0.

Though the presence of pk in Eq. (2.13) suggests the existence of temporal

correlations - promoting this quantity to the status of a memory quantifier - this is

not in fact true. Consider again the channel which sends all initial states {ρ(k)} to

the single pure state |0⟩. Clearly this channel is entirely useless for transmitting

information, but Eq. (2.13) still saturates the upper limit P(t)→ 1. Rather, the

quantity P(t) characterizes the average instantaneous mixedness of the ensemble

{ρ(k)(t)}, not how well that ensemble can actually bear information from the past

or into the future.

The Holevo quantity can consequently be interpreted as a minor correction

to Eq. (2.13) that compensates for this issue by taking state distinguishability into
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account:

C(t) =
1
l

〈
S

(
∑
k

pkρ
(k)(t)

)
−∑

k
pkS(ρ(k)(t))

〉
(2.14)

clearly the new term saturates to l as ∑k pkρ(k)(t)→ I/2l , which occurs both when

all the states {ρ(k)(t)} are maximally mixed, and - more crucially - when all the

states {ρ(k)(t)} are pure and orthogonal. In the former case, the second term also

saturates and C(t)→ 0. In the latter case, the first term can be interpreted as cap-

turing the distinguishability of the {ρ(k)(t)} and saturates to l, the second term is

driven to zero, and C(t)→ 1. I note that the {ρ(k)(t)} need not be identical to the

{|xk⟩} in order for the Holevo quantity to saturate: if our channel simply rotates

some initial states as follows {|xk⟩} = {|0⟩, |1⟩} → {ρ(k)(t)} = {|+⟩, |−⟩}, where

|±⟩ = (|0⟩± |1⟩)/
√

2, then the Holevo quantity will still saturate C(t) = 1. It is in

this sense that the Holevo quantity is ‘optimal’, it enforces Bob’s hypothetical use of

the optimal measurement basis. The fact that the Holevo quantity is independent of

measurement basis (and Bob’s decoding protocol) is unique amongst the quantities

in the following paragraphs.

Motivated by the local single-site measurements which can be readily made in

a range of experimental quantum simulators, I also consider the maximum informa-

tion that can be gleaned about the initial configuration of individual sites within the

message register. The joint probability that a site j in the message ρ(k) = |xk⟩⟨xk| is

initialized in the state σ and then measured at time t in the state σ ′ is given by:

pk, j(σ ,σ ′, t) = tr
[
Pσ

j ρ
(k)
]

tr
[
Pσ ′

j ρ
(k)(t)

]
(2.15)

where Pσ
j = |σ j⟩⟨σ j| is the local projection operator onto the state σ at site j. I then

define the average single-site mutual information

Is(t) =

〈
∑

k,σ ,σ ′
pk p̃k(σ ,σ ′, t) log2

p̃k(σ ,σ ′, t)
p̃k,Σ(σ , t)p̃k,Σ′(σ ′, t)

〉
(2.16)

where p̃k(σ ,σ ′, t) = ∑ j pk, j(σ ,σ ′, t)/l and where pk,Σ(σ , t) = ∑σ ′ p̃k(σ ,σ ′, t) and

pk,Σ′(σ
′, t) = ∑σ p̃k(σ ,σ ′, t) are the marginal distributions of our site-averaged ini-
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tial and final state variables respectively. This is a natural information-theoretic

extension of the imbalance in the sense that Eq. (2.16) is the information that can

be gleaned at time t about the initial conditions using only the measurements taken

when computing the imbalance (i.e. single-site measurements in a fixed, predeter-

mined, basis). If the state of each individual site, as measured in a basis specified by

the Pσ
j , is locally preserved then Is(t) saturates to unity. If the single-site states are

not preserved - either because the channel scrambles the message, or if they rotate

into new states that measurements Pσ
j cannot distinguish, then Is(t)→ 0. There is

a crucial note to be made here which is that I am free to choose when to take the

message average (over k) and the site average (over j). Our choice of taking the

site average at the level of individual probabilities, and the message average at the

level of disorder/environment (channel) averaging may, at first, appear arbitrary; but

our justifications follow four simple ideas: (i) an average at the level of probabilities

must be taken; without averaging the protocol sends a single message with probabil-

ity unity, and as such cannot bear information. This can be verified by inspection of

the definition of Is(t) in Eq. (2.16) (ii) For a given site, the rest of the message effec-

tively forms part of the environment, as such a change in message corresponds to a

change in the channel, motivating our decision to average over both simultaneously

(iii) This definition of the SSMI is analogous to the conventional construction of

the imbalance which averages over each site first, then over realizations (iv) results

for taking the combined order - with both site and message averaging at the level

of individual probabilities - yield no scaling results, and show an overall decrease

in informational content with increasing system size; indicating that this decoding

protocol is functionally useless.

One can extend the above idea to the entire message register, taking measure-

ments in the basis of the message states themselves. In this case, the outcome of the

measurements is one of the 2l spin configurations (the computational basis). The

joint probability p(k,k′, t) of sending the state |xk⟩ and measuring the state |xk′⟩ at
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time t is given by the diagonal elements

p(k,k′, t) = pk⟨xk′|ρ(k)(t)|xk′⟩= pkρ
(k)
k′k′(t). (2.17)

I then define the normalized configurational mutual information for this joint prob-

ability as

Ic(t) =
1
l

〈
∑
kk′

p(k,k′, t) log2
p(k,k′, t)

pK(k, t)pK′(k′, t)

〉
(2.18)

where pK(k, t) = ∑k′ p(k,k′, t) and pK′(k′, t) = ∑k p(k,k′, t) are the marginal dis-

tributions of our initial and final state variables respectively. Importantly, this con-

struction is exactly the Holevo quantity of Eq. (2.14) in the full decoherence limit, in

which ρ(k)(t) is replaced by a decohered density matrix ρ
(k)
D (t) with all off-diagonal

elements set to zero

ρ
(k)(t)→ ρ

(k)
D (t) = diag(ρ(k)

11 (t),ρ(k)
22 (t), · · · ,ρ(k)

2l2l(t)). (2.19)

I derive this property by first considering the CMI over a single channel realization

Ir
c(t):

Ir
c(t) =

1
l ∑

kk′
p(k,k′, t) log2

p(k,k′, t)
∑s p(k,s, t)∑s′ p(s′,k′, t)

(2.20)

such that

Ic(t) = ⟨Ir
c(t)⟩ . (2.21)

I note that: while I carry out the derivation in the basis of computational message

states {|xk⟩}, any suitable basis can - in principle - be used instead. I insert the

probabilities of Eq. (2.18) into Eq. (2.20) and resolve the first marginal distribution

∑s p(k,s, t) = pk trivially by the unit-trace condition of ρ(k)(t)4. Splitting up the

logarithm, and cancelling relevant terms then yields

Ir
c(t) =

1
l ∑

kk′
pkρ

(k)
k′k′(t) log2 ρ

(k)
k′k′(t)−

1
l ∑

kk′
pkρ

(k)
k′k′(t) log2 ∑

s′
ps′ρ

(s′)
k′k′ (t). (2.22)

4The second marginal distribution ∑s′ p(s′,k′, t) involves all message states and is generally non-
trivial.
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I note that, by constructing an operator with the ρ
(k)
k′k′(t) as eigenvalues, the sums

over k′ can be replaced with appropriate traces and some terms will take the form

of von Neumann entropies. A naturally suitable operator is the fully decohered (in

the computational basis) operator ρ
(k)
D (t), defined in Eq. (2.19), which trivially has

the ρ
(k)
k′k′(t) as eigenvalues. I can then recast Ir

c(t) in terms of traces as follows:

Ir
c(t)=

1
l ∑

k
pkTr

[
ρ
(k)
D (t) log2 ρ

(k)
D (t)

]
− 1

l
Tr

[(
∑
k

pkρ
(k)
D (t)

)
log2

(
∑
s

psρ
(s)
D (t)

)]
(2.23)

which, when rewritten in terms of the von Neumann entropy S(ρ) = −Trρ log2 ρ ,

yields the Holevo quantity over decohered states ρ
(k)
D (t):

Ir
c(t) =

1
l

S

(
∑
k

pkρ
(k)
D (t)

)
− 1

l ∑
k

pkS(ρ(k)
D (t)). (2.24)

demonstrating, by analogy to Eq. (Eq. (2.14)), that the configurational mutual in-

formation as I have constructed it is just the Holevo quantity in the full decoherence

limit. Though I have chosen the computational basis for our derivation, any suit-

able (orthonormal) basis can be used. I can intuit that different choices of basis

yield different diagonal elements in the ρ
(k)
D (t), and act as effective modifications

to the eigenvalues of all the ρ(k)(t) at once. The ‘optimality’ of the Holevo quan-

tity as discussed above can now also be understood in the sense that it uses the

true eigenvalues of the ρ(k)(t) rather than those of the a basis-dependent decohered

operatorsρ
(k)
D (t). This is equivalent to performing measurements in the eigenbasis

of each individual message ρ(k)(t), rather than fixing a measurement basis from the

outset.

I emphasize here that the decohering process of Eq. (2.19) occurs only after

full unitary evolution up to time t. Thus, while it destroys coherence within the

message register at the time of measurement, it doesn’t preclude the build up of

long-range coherence during the unitary evolution of the full system.

Finally, I draw attention to an important feature of the memory quantifiers in

that they are each constructed using different kinds of measurements. The Holevo
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quantity requires full tomography of the subsystem, the CMI requires measurements

in a fixed global basis on the subsystem, and the SSMI requires the same measure-

ments as the imbalance: namely local measurements in a fixed basis. As such, these

quantities give us a useful quantification of the maximum amount of information

that can be extracted from a subsystem given the kinds of measurement apparatus

available to Bob - a crucial point when considering the potential of MBL systems

in quantum computational settings. I summarize all quantities, the measurements

required to construct them, and their status as memory quantifiers in Table 4.1.

Figure 2.3: Hierarchy of channel-averaged informational quantities against time (normal-
ized between 0 and 1) for disorder strength h = 4 in the middle of the MBLT.
The schematic shows the action of a single channel realization on a single con-
tiguous message state initialized in the state ρ(k) = ρ(k) = |xk⟩⟨xk|. The peak at
Jt ≈ 8 occurs when the information carried away from the message first inter-
acts with itself, causing transient revival. Error bars shown where visible.

2.2.4 Results and Finite-Size Scaling Analyses

In this section, I interrogate the quantities discussed in Section 2.2.3 in the context

of the disordered Heisenberg model of Eq. (2.11). With the exception of a few

results at the end of this section, I mainly consider pure environment states |E⟩⟨E|

which are simply random product states of the Z eigenstates {| ↑⟩, | ↓⟩}.
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I compare all quantities with respect to two standards. Firstly, which better

captures local memory in terms of the number of bits of information preserved in

the subsystem over time. Secondly, which better captures the critical properties

of system Eq. (2.10) as I scan h across the MBLT, i.e. how strongly each quantity

violates the Harris bound ν > 2 (for a one-dimensional system, see Section 1.3.3.1).

The behaviour of the four quantities P(t), C(t), Ic(t), and Is(t) as a function

of time are shown in Fig. 2.3 for a system of size L = 16, message register size

l = 4 and disorder strength h/J = 4. From Fig. 2.3, one can clearly see that these

quantities form a strict hierarchy at all times. Indeed, I conjecture that the four

quantities obey the following inequality for all choices of L, l and h

1−S(t)≥C(t)≥ Ic(t)≥ Is(t) (2.25)

In Appendix A, I strictly prove that 1− S(t) ≥ C(t) ≥ Ic(t). The last part of the

inequality of Eq. (2.25), namely the CMI upper bounding the SSMI, has been ex-

tensively verified through numerical simulation and is intuitively sensible: internal

dephasing and our tracing out parts of a system should not increase the information

that one can glean from it.

Indeed all the inequalities of Eq. (2.25) have intuitive origins in quantum infor-

mation: as discussed in the section Section 2.2.3, the Holevo quantity is a correction

to 1−S(t) that specifically addresses whether or not information in the subsystem is

accessible given optimal measurements. The CMI is simply the Holevo quantity af-

ter all final message states have been passed through the fully dephasing channel in

Eq. (2.19), and by the monotonicity of the Holevo quantity under such a channel the

inequality C(t)≥ Ic(t) is evident. This is illustrated in the legend of Fig. 2.3, show-

ing the hierarchy and the intuitive informational reasons for its existence. Thus,

from a quantum informational perspective, the hierarchy of Eq. (2.25) is unsurpris-

ing. However, exploiting this informational framework and placing the hierarchy in

the context of MBL reveals an important consequence: the imbalance - widely used

as a quantifier of local memory in MBL - via its informational counterpart Is(t),

drastically underestimates memory in MBL systems. In the worst cases the use of
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Figure 2.4: Dynamics of the four informational quantities for L = 16, l = 4 on extreme
sides of the MBLT (a) h = 0.1, (b) h = 16, results for the middle of the MBLT
(h = 4) are given in main text. In all cases, a strict hierarchy is seen, and the
system convincingly relaxes to a steady-state at exponential times. Error bars
shown where visible.

Is(t) erases almost two thirds of the accessible information according to the Holevo

quantity.

A final feature of Fig. 2.3 and Fig. 2.4 is that all the four quantities have readily

reached a steady-state within very small error bars, even in the midst of the MBLT.

This allows us to define time-independent steady-state quantities:

O(ss)
= lim

t→∞
O(t)≈ O(T ) (2.26)

where O can be any of our four quantities, and where I take exponential time scales

of T = 1010 Jt for all subsequent results. These steady states can be used for inves-

tigating the scaling analysis across the MBL transition point, which is the subject

of the rest of this section.

In the context of this problem there are two relevant length scales: the message

length l and the total system size L. Inspired by Ref. [28, 35] and as discussed in

Section 1.3.3.1, it is expected that the steady state values follow a finite size ansatz

of the form

O(ss)
= L−ζ/ν f (l/L,L1/ν(h−hc)) (2.27)
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Figure 2.5: Disorder-averaged steady-state values of (normalized) informational quantities
as a function of disorder strength. The message-to-system size ratio for all
panels is l/L = 1/3. The panels show: (a) von Neumann entropy (b) Holevo
quantity (c) CMI (d) SSMI. Insets show the corresponding data collapse for the
three largest systems. Every fifth point is marked for legibility, and error bars
shown where visible.

where hc is the critical point, ν and ζ are critical exponents and f (·, ·) is an unspec-

ified function. By fixing the ratio as l/L = 1/3, I plot O(ss) as a function of h for

various system sizes in Fig. 2.5(a)-(d) for the four quantities, respectively. As is

clear from the figure, all four quantities show a crossover wherein curves of differ-

ent system sizes intersect. The existence of this crossover suggests scale-invariant

behaviour, indicates that ζ = 0, and determines the critical value hc for each quan-

tity. Interestingly, the critical point hc determined by the SSMI is far lower than the

ones deduced from the other three quantities.

I here use a more elaborate scaling analysis based on the principle of data

collapse [36, 37]. This, in conjunction with the ansatz of Eq. (2.27) allows us to

systematically determine hc, ζ , and ν as discussed in Section 1.3.3.1. Carrying out

these data collapses with variable ζ revealed that that ζ ≈ 0 for all quantities, hence
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I set ζ = 0 for the rest of this section. Respective data collapses for each quantity

are shown in the insets of Fig. 2.5(a)-(d), each yielding slightly different optimal

values for ν and hc.

Figure 2.6: Channel-averaged DVNE as a function of disorder strength. Every fifth point
is marked for readability, and error bars shown where visible. The inset shows
the corresponding data collapse of the largest three systems.

These resulting optimal values for hc and ν are depicted in Fig. 2.7(a). Similar

to many previous studies: small system sizes lead to systematic underestimation of

the critical value ν , bounded analytically for this system by ν ≥ 2 [35, 38, 39]. The

von Neumann entropy ν = 1.31±0.04, the Holevo quantity ν = 1.23±0.04, and the

SSMI ν = 1.31±0.07 all violate the Harris bound to a similar extent. Unexpectedly,

all three of these quantities are outperformed in terms of Harris bound violation by

the CMI which attains a critical exponent of ν = 1.63± 0.06, a remarkably high

value for such small system sizes. In this sense one can state that the CMI captures

less information than the Holevo quantity (see the hierarchy of Fig. 2.3) but better

captures the behaviour of the MBLT in the sense that it violates the Harris bound

to a lesser extent. Finally, the SSMI performs badly both as the worst quantity with

which to capture retained information, and as a quantity which violates the Harris



64 Chapter 2. Memory in Ergodicity-Breaking Systems

bound to a much greater extent than the CMI. It also underestimates the critical

hc with respect to all other quantities. This indicates that the SSMI, and thus the

widely used imbalance, are poor scaling quantities which cannot precisely capture

properties of the MBLT. As such the SSMI, and by extension the imbalance, are not

useful quantifiers of local memory in any arena other than situations where - due to

the simple measurements they require - they are the only ones available. Additional

scaling results for a message-to-system size ratio of l/L = 1/4 are shown in Fig. 2.8

wherein no new behaviour can be seen that has not already been discussed.

The significantly higher values of ν for the CMI may suggest that this quanti-

fier better captures the behaviour of Eq. (2.10) in the thermodynamic limit than the

other quantities. Since the CMI is the decohered counterpart of the Holevo quan-

tity, it indicates that throwing away the off-diagonal coherences improves scaling

results. For small systems, where these off-diagonal quantum coherences persist, I

propose that it is beneficial to artificially set them to zero at the end of a simulation,

or to only extract diagonal elements in experiment.

To further support this, I compute the decohered von Neumann entropy

(DVNE) by decohering the message register ρ→ ρD according to Eq. (2.19) before

evaluating the von Neumann entropy of Eq. (2.13). This is essentially the Shannon

entropy of diagonal elements in the computational basis, and has been used (in some

form) occasionally in the context of MBL before [7, 40, 41]. The obtained critical

values of hc and ν are also shown in Fig. 2.7(a). The effect of artificial dephas-

ing according to Eq. (2.19) is shown in Fig. 2.7 by black arrows. Remarkably, the

von Neumann entropy of artificially dephased quantum states yields a critical value

ν = 1.95± 0.15 consistent with the Harris bound [38] and closer to large-system

analyses of the MBLT. Again, similar results can be found in the l/L = 1/4 case of

Fig. 2.8 .

I conjecture that this may be because artifically decohering the message sub-

system imitates the kind of effects that occur in the thermodynamic limit. The

decohering of a subsystem in the thermodynamic limit is a direct consequence of

interactions. I investigate this comparing the steady state Holevo quantity and its
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Figure 2.7: Main panel (a) shows the extracted critical values hc and exponents ν for
all memory quantifiers and the DVNE for a message-to-system size ratio
l/L = 1/3. Inset panels (b)-(d) compare the Holevo quantity and its decohered
counterpart, the CMI, for the XX and Heisenberg (XXX) models. Artificial
dephasing is indicated by the arrows.

decohered counterpart, the CMI, directly in systems with and without interactions

across the MBLT, and for a range of system sizes L. In Fig. 2.7(b) I replace the

interacting Heisenberg (XXX) Hamiltonian of Eq. (2.10) with the non-interacting

(XX) Hamiltonian. For the non-interacting case, the figure shows slight - if any

- convergence between the Holevo quantity and the CMI as the system size L in-

creases; even for small disorder strengths h/J = 1. In Fig. 2.7(c)-(d) I return to the

Heisenberg Hamiltonian. For small disorder strengths h/J = 1, the Holevo quan-

tity and the CMI quickly converge as the system size increases. Even close to the

transition point h/J = 3, one can see from Fig. 2.7(c) that the curves converge as

L increases, albeit the convergence is slowed. This evidences the fact that the de-

phasing of the subsystem slows down near the MBL transition point and thus larger

system sizes are required to emulate thermodynamic behaviour. Thus wholly quan-

tum quantities may fail to capture the Harris bound ν ≥ 2 in small finite systems

L ∼ 20. Essentially, rather than completing this convergence by taking L to a suf-



66 Chapter 2. Memory in Ergodicity-Breaking Systems

Figure 2.8: Extracted critical values and exponents for the memory quantifiers for the
message-to-system size ratio l/L = 1/4. Black arrows show artificial deco-
hering.

ficiently large value, our suggestion approximates it by artificially decohering the

subsystem instead.

I note here that this procedure enforces a particular understanding of the nature

of the MBL state in the thermodynamic limit: as a product state of dephased subsys-

tems. Thus I can only conjecture that this procedure emulates the thermodynamic

limit, though this conjecture is supported by some preliminary evidence (namely

Fig. 2.7(b)-(d)) and is similar to the LIOM picture of the MBL phase [2, 35, 42].

What I can state definitively is that this procedure considerably reduces the extent

to which the analytic Harris bound is violated in small systems, which in turn is

evidence that such an enforcement may be plausible.

2.2.5 Outlook

By drawing on principles from quantum information theory, and structuring an

investigation of local memory from the perspective of the accessible information

game, I determined a set of brief criteria for constructing a true memory quantifier.
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I subsequently introduced several such quantifiers in the context of MBL, and estab-

lished a systematic hierarchical order among them. This serves as a foundation not

just for future study of memory in MBL, but - as I shall demonstrate in Section 2.3

and Section 4.3 of Chapter 4 - in broader condensed matter contexts.

With respect to MBL specifically, our findings show that the Holevo quantity

represents the best quantifier of memory in terms of number of bits of information

retained over time. This is unsurprising, as the Holevo quantity is a direct import

from quantum information theory that quantifies the maximum classical capacity of

a given channel. Surprisingly, the informational version of the widely-used imbal-

ance performs the worst - suggesting that extant literature drastically underestimates

the amount of information actually retained. Furthermore when characterizing the

MBL transition using these memory quantifiers I find that, though the Holevo quan-

tity may the best quantifier of memory itself, the CMI - its decohered counterpart -

best captures the critical properties of the MBLT. Motivated by this, I compared the

von Neumann entropy of a small subsystem to its decohered variant and discovered

that it too outperforms its quantum, coherent, counterpart; yielding a critical expo-

nent consistent with the Harris bound. A plausible conclusion of this analysis is that

finite-size effects can be mitigated just by deliberately decohering the final state of

the message register. This provides a significant theoretical and experimental ad-

vantage: in theory one can drastically improve small-system scaling results and may

even be able to emulate the thermodynamic limit by deliberately throwing away in-

formation. In experiment one may only needs to measure the diagonal elements of

the reduced density matrix instead of extremely demanding state tomography. Ul-

timately these results not only shed light on memory and the thermodynamic limit

in MBL systems, but provide a solid test case for how a systematic investigation of

memory in any condensed matter system should look.

2.3 Memory in Quantum Many-Body Scars

In a complementary vein to MBL, quantum scars represent another example of

ergodicity-breaking in many-body condensed matter systems - though its mech-
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anism and manifestation is quite different (see Section 1.3.4). And, again in a

complementary vein to MBL, scars are said to retain a certain ‘memory’ of their

initial conditions [43–45]. This is usually characterized by periodic revivals in a

Loschmidt echo, with systems initialized in a scarred subspace returning to their

initial configuration at regular intervals which are much shorter than the full system

recurrence times [46, 47].

In this section I interrogate memory in a specific scarred system, the spin-1

Dzyaloshinskii-Moriya interacting chain, by applying the ‘accessible information

game’ discussed in Section 2.1 and applied to MBL in Section 2.2. This time, I

extend the study to open systems, wherein the role of the large environment states of

Section 2.2 are replaced by Markovian baths. In this context, the quantum coherent

information introduced in Section 2.1.3 also becomes relevant.

2.3.1 The Scarred Dzyaloshinskii-Moriya Interacting Spin

Chain

As a framework for studying a scarred model, I consider a system of N spin-1

particles that realize the Hamiltonian:

Ĥ =
N

∑
j, j′

λ j, j′
(

eiφ Ŝ+j Ŝ−j′ +h.c.
)
+Ω

N

∑
j=1

[(Ŝx
j)

2− (Ŝy
j)

2] (2.28)

where the spin-1 raising operator is:

Ŝ+ =
√

2 [|+1⟩⟨0|+ |0⟩⟨−1|] , (2.29)

the lowering operator is Ŝ− = (Ŝ+)†, and the remaining operators are defined as

Ŝx = (Ŝ++ Ŝ−)/2 and Ŝy =−i(Ŝ+− Ŝ−)/2. This model exhibits quantum scarring

for all values of the model parameters λ j, j′ , φ = kπ , and Ω; though as I show

later Ω ̸= 0 dramatically curtails the size of the scarred subspace. At integer k the

model becomes a spin-1 XX model, and for half-integer k the system realizes a

Dzyaloshinskii-Moriya interaction (DMI). Notably the model parameter λ j, j′ can

vary with the site indices j and j′, and is not subject to any restrictions. The scars
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Figure 2.9: The entanglement entropy S of the half-system reduced density matrices ρ
[n]
hc

of the energy eigenstates |En⟩; normalized such that the spectrum of eigenen-
ergies lies in the interval En ∈ [0,1]. The two QMBS states |X±⟩, circled in the
diagram above, have no entanglement SE = 0, and are well-separated from the
bulk states.

persist for arbitrary, potentially long-range, λ j, j′ . For the purposes of this thesis, I

use the generic functional form

λ j, j′ = λ/| j− j′|α (2.30)

where λ tunes the strength of the coupling, and α tunes the range of the interaction.

Given the periodicity of the model with respect to the phase φ I restrict it to the

interval φ ∈ [0,π] without loss of generality.

I now define two product states which are eigenstates of the Hamiltonian of

Eq. (2.28) at the DMI point φ = π/2:

|X±⟩ ≡ |±⟩|±⟩|±⟩|±⟩ . . . , (2.31)
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Figure 2.10: Top row (a)-(c) shows one minus the Holevo quantity over time for various
values of the system parameters. Bottom row (d)-(f) show corresponding
steady-state values at exponential times λ t f ∼ 1010 for addressable registers of
size m = L/2 of the left half of the system. Flat regions below the dash-dotted
black lines in panels (d)-(f) correspond to ‘stable’ regions wherein perfect in-
formation retention is attained despite imperfect scars.

where |±⟩ = (|+ 1⟩± |− 1⟩)/
√

2. In Fig. 2.9 I plot the half-system entanglement

entropies of all energy eigenstates for a particular choice of model parameters N =

8, φ = π/2, Ω = 0.1, λ = 1, and α = 2. This is a widespread method of evidencing

quantum scarring by identifying bands of eigenstates well-separated from the bulk

[46, 48–50]. The individual eigenstates of Fig. 2.9 are coloured by density, with

brighter regions corresponding to a higher density of states. From Fig. 2.9 one can

clearly see a bright bulk and a pair of well-separated states with zero entanglement

- identified by red circles. These zero entanglement eigenstates are precisely the

states |X±⟩ discussed above. The band of states between these two product states

and the bulk are other potential scar states that coalesce into a flatter band for Ω = 0

- it is in this sense that non-zero Ω disrupts the scars latent in the system.
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2.3.2 Stable Memory Away From Perfect Scarring

Given the product scar states |X±⟩ of Eq. (2.31), it is natural to encode a single

classical bit of information into the system by assigning

0→ |X+⟩, 1→ |X−⟩. (2.32)

This represents the simplest possible non-trivial message that a system can bear,

and serves as a crucial benchmark. After all, if a system fails to reliably store the

state of even a single classical bit, it cannot reasonably be said to have any kind of

useful ‘memory’.

After the encoding Eq. (2.32) of the state of a single classical bit into the sys-

tem, one can measure m sites at a later time t f and try to reconstruct the state of

this encoded bit. Once again, given the framing of the ‘accessible information

game’, the efficacy of this protocol is quantified by the Holevo quantity, which

yields the number of classical bits of information that can be retrieved given opti-

mal measurements on the final state. I assume that both messages are equally likely

p0 = p1 = 1/2 to occur in our alphabet, such that the Holevo quantity as introduced

in Section 2.1.2 takes the form

C(t) = S
(

1
2

[
ρ

S
0 (t)+ρ

S
1 (t)

])
− 1

2

[
S
(

ρ
S
0 (t)

)
− 1

2
S
(

ρ
S
1 (t)

)]
. (2.33)

In Fig. 2.10 panels (a)-(c), I show 1−C(t) against time for several different

choices of our Hamiltonian parameters φ , α , and Ω for a system of N = 8 particles.

Here, I take the m measureable sites to be the entire left half of the system m = L/2.

As expected, perfect scarring at φ = π/2 renders |X±⟩ as eigenstates and results

in a value of zero for all graphs - implying perfect classical information retention.

When probing the stability of this perfect information retention to changes in the

Hamiltonian parameters, I find that memory is stable to small changes in φ and Ω -

with exponentially small deviations from a perfect bitrate of C(t) = 1. This is shown

for nearest-neigbour interactions in Fig. 2.10 panel (a) for Ω = 0 and (b) for Ω =

0.1, wherein small deviations from φ = π/2 result in a minor loss of information
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over time which eventually equilibrates to an oscillation around a steady-state value.

However for long-range interactions, even ones that fall off rapidly α = 6, these

memory effects are essentially destroyed. This is shown in Fig. 2.10(c) in which

all curves aside from φ = π/2 eventually converge to unity indicating complete

information loss. Regardless, during the interim period up to times of t ∼ 103, a

significant amount of information is retained. Thus, even though the long-range

interacting scarred system is not capable of retaining information indefinitely, it

may still be valuable as an interim memory register for use in-situ - a quantum

many-body RAM if you will.

In panels Fig. 2.10(d)-(f) I formalize this notion of stability by taking the time-

average of the respective curves in (a)-(c)

C(t) =
∫ t f

0
C(t)dt (2.34)

and analyzing the steady-state deviation of the Holevo quantity from unity. If

1−C(t) < ε , where ε is some threshold probability, for some interval φ ∈ [π/2−

φε ,π/2+φε ] that is non-vanishing with system size, then we can say that memory

is ‘stable’ with respect to perturbations in φ . Strikingly, just such a stability can be

seen in Fig. 2.10(d) for a threshold probability ε = 10−7 denoted by a horizontal

black dash-dotted line. The places where individual curves fall below this line corre-

spond to stable regions as per my definition above. As a function of the double scal-

ing in the message-to-system size ratio m/L, it is easy to identify ‘plateaus’ in which

larger systems are more stable to perturbations in φ than smaller systems. This sta-

bility breaks down slightly for deviations in Ω as shown in Fig. 2.10(e), wherein the

plateaus follow no predictable behaviour in system size and the curves deform. Sta-

bility vanishes entirely for long-range interactions as shown in Fig. 2.10(f), though

again a study at intermediate times up to t ∼ 103 might reveal a kind of interim

stability.

Perhaps most interestingly, taking the m sites to lie anywhere else in the system

destroys stability entirely. This is shown in Fig. 2.11a for m/L sites taken in the

middle of the system. Increasing system size results in a corresponding increasingly
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(a) One minus the steady-state Holevo quantity at
exponential times λ t f ∼ 1010 for addressable
registers of size m = L/2 in the middle of the
system.

(b) One minus the steady-state Holevo quantity
at exponential times λ t f ∼ 1010 for address-
able registers of size m = 1 of the leftmost
site of the system.

rapid failure of the system to retain information. This may suggest that the results

of Fig. 2.10 are simply edge effects - that perhaps the classical state of the system

is encoded into the state of a locked edge qubit. However this doesn’t seem to be

the case, as evidenced in Fig. 2.11b wherein I instead take m = 1 to be the leftmost

qubit, there is no significant increase in information retention compared to the m/L

sites in the middle of the system, and there is a dramatic decrease in information

retention when compared to Fig. 2.10(d). This suggests that the information is truly

distributed across an extensive portion of the register of m/L sites.

Given the above results, it seems that realistic systems, which will not perfectly

enact scarring, can still serve as effective memory registers provided an extensive

number of sites can be addressed. However, the value of quantum many-body scars

as practical stores of classical memory - even in the simplest toy case - is a compli-

cated interplay between how finely the Hamiltonian can be tuned, the system size,

and the specifics of the measurement protocol. For example, if the Hamiltonian in

the lab can be finely tuned, but few sites can be measured at a single time, then

smaller registers are better as memory stores. If more sites can be measured, then

larger registers are better. If the Hamiltonian cannot be finely tuned, then faster

measurement times are better.
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Figure 2.12: Holevo quantity of the open DMI chain with X noise over time for (a) varying
φ and fixed system size L = 6 and (b) verying system size L and fixed φ =
0.95π/2.

2.3.3 Memory in an Open Scarred System

A natural extension of the results of the previous section is an investigation of how

well an open scarred system can retain information. Generally, an environment will

leach information that is either lost into an extensive number of constituents, or

discarded entirely if no record of the environment is retained (in a Markovian bath

for example). In this case, it is possible to both investigate the Holevo quantity -

though this time for an addressable register m = L which takes up the entire system

- and the quantum coherent information.

As discussed in Section 2.1.3, the capacity of a system to transmit information

via quantum coherence can be quantified by the quantum coherent information:

I(R⟩S(t)) = S(ρS(t))−S(ρRS(t)) (2.35)

where R is a purification of ρS(0). Due to fact that I am taking the messages as

equiprobable, the initial state ρS(0), which is an even mixture of |X+⟩ and |X−⟩, is
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Figure 2.13: Quantum coherent information of the open DMI chain with X noise over time
for (a) varying φ and fixed system size L = 6 and (b) verying system size L
and fixed φ = 0.95π/2.

purified by the cat state

|ψ(0)⟩= |0⟩R|X+⟩S + |1⟩R|X−⟩S√
2

; (2.36)

an even superposition of our two messages entangled with the reference system R

which consists of a single two-level system.

To model the Markovian environments, I invoke the Lindblad equation for the

time evolution of the mixed state ρS(t):

ρ̇S(t) =−i [H,ρS(t)]+ γ ∑
j

L jρS(t)L
†
j −

1
2

{
L†

jL j,ρS(t)
}
. (2.37)

where L j are jump operators that describe the possible processes the system can

undergo once coupled to its environment. The parameter γ tunes the strength of

the interaction between environment and system, and I take it to be independent of

j. I consider three different on-site jump operators throughout this section, corre-

sponding to different kinds of environmental noise: X , Z, and +, enacted by local

operators L j = Sx
j, Sz

j, and S+j respectively.
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It is instructive at this junction to investigate the effects of these operators on

the states |X−⟩. This will inform the forthcoming results. For completeness, the

relevant spin-1 operators in the Z-basis are as follows:

Sx =
1√
2


0 1 0

1 0 1

0 1 0

 , Sz =


1 0 0

0 0 0

0 0 −1

 , S+ =
√

2


0 1 0

0 0 1

0 0 0

 . (2.38)

By direct calculation, Sx annihilates |−⟩ and interconverts the states |+⟩ ←→ |0⟩.

This means that jump operators of the form L j = Sx
j should have no effect on the

state |X−⟩ and drive the state |X+⟩ towards a mixed state which is orthogonal to

|X−⟩. Thus, the two states remain distinguishable despite the effect of the channel.

The operator Sz interconverts |+⟩ ←→ |−⟩ and drives the system towards a mixed

state of the two - leading to indistinguishability and the erasure of information. The

operator S+ has the expected effect of mapping both states |±⟩ to mixed states of

|0⟩ and |1⟩, and so again erases any information encoded in the original state of the

system. This rough analysis gives us insight into the type of noise that the system

may be resistant to, namely X noise.

For the rest of this section I consider systems of L = 6 particles with Ω = 0,

α = 2, and λ = 1 in the Hamiltonian of Eq. (2.28). I also fix the strength of the

environmental coupling γ = 0.1 and evoltuion times of λ t = 102 throughout. This

choice of parameters, specifically the setting of Ω = 0, is to isolate the behaviours

that one might see in the ‘ideal’ scarred system without any other kind of interac-

tion. The Lindblad equation of Eq. (2.37) is directly constructed and numerically

integrated using a sparse brute force fourth order Runge-Kutta scheme5.

The Holevo quantity in the context of X noise is shown in Fig. 2.12. Panel

5The ability to access larger system sizes is curtailed first by my decision to numerically integrate
the Lindblad equation which scales as O(Ω2) where Ω is the dimensionality of the system, then
by the local dimensionality d = 3 due to my consideration of spin-1 particles, and finally by the
inclusion of ancillae qubits in the calculation of the quantum coherent information which multiply
the dimensionality of the problem by an additional factor of 2. Altogether the problem scales as
O(32L+log3 4). In terms of a conventional qubit problem, the L = 6 system corresponds to numerical
integration of an ∼ 21 qubit chain; which is close to the limit for exact diagonalization studies on
conventional hardware.
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Figure 2.14: Informational quantities against time for varying φ and different kinds of jump
operators. (a) Quantum coherent information and + operators. (b) Holevo
quantity and + operators. (c) Quantum coherent information and Z operators.
(d) Holevo quantity and Z operators.

(a) shows results for a fixed system size L = 6 at varying φ . Strikingly, even in

a noisy system coupled to the environment, there is perfect retention of classical

information at the exact scarring point φ = π/2. This can be explained by the

discussion above, wherein the mixed state that the jump operators L j = Sx
j drive

|X+⟩ towards is still fully distinguishable from the state |X−⟩. As φ varies away

from π/2, |X−⟩ is no longer a scar eigenstate and so is gradually affected more and

more by the noise, resulting in this distinguishability being slowly degraded over

time. As can be seen from Fig. 2.12(a), even minor deviations in φ = 0.95π/2

induce rapid information loss. Only when φ deviates from the exact scarring point

by 1% at φ = 0.99π/2 can we see any kind of significant information retention at

intermediate times λ t = 102. Moreover, this information loss becomes dramatically

more pronounced as the system size increases. This is evidenced in panel (b) of

Fig. 2.12 in which a deviation to φ = 0.95π/2 manifests as only a slight drop in

preserved information for L = 2, but almost total erasure for L > 2.
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The quantum coherent information Iq(t) for the same system is shown in

Fig. 2.13 and it fares no better in the arena of open system dynamics. As discussed

in Section 2.1.3, a positive value for Iq(t) (shown as a dashed black line) indicates

strictly non-classical behaviour; i.e. the existence of some degree of quantum co-

herence in the relevant basis. As evidenced by Fig. 2.13(a) this non-classicality is

rapidly lost in the open system - all curves quickly drop from the maximum value

to zero or below. Interestingly the exact scar at φ = π/2 preserves some of the

quantum coherent information Iq(t) = 0 even at late times, whilst deviation from

φ = π/2 results in a quantum coherent information that falls towards Iq(t) = −1

instead. This suggests that some information can be preserved, but that it may be

encoded classically rather than within the specifics of quantum coherences between

states. Again, the ability of a system to preserve information after detuning from

exact scarring φ = π/2 falls off rapidly with system size, as shown in Fig. 2.13(b).

In general this is unsurprising. Dephasing channels like the one I consider here

drive states towards incoherent diagonal mixed states. As such only information

that Alice encoded classically (i.e. in diagonal elements) persists and is accessible

by Bob [51]. Thus one can simultaneously see a rapid falling off of the quantum

coherent information, yet a persistent non-zero value of the Holevo quantity. Inter-

estingly, this is reflected in the fact that the behaviour of Fig. 2.13 after the loss of

non-classicality when Iq(t) crosses zero, is almost identical to the behaviour of the

Holevo quantity shown in Fig. 2.12. This suggests a potentially concrete connection

between the quantum coherent information and channel capacities.

Finally, the encoding even of even a classical bit of information in the states

|X±⟩ is ruined entirely by different kinds of noise. The + and Z noise are considered

by invoking jump operators S+j and Sz
j respectively.. For + operators, results are

shown in Fig. 2.14(a) and (b) for the quantum coherent information and Holevo

quantity over time respectively. For Z operators, corresponding results are shown

in Fig. 2.14(c) and (d). All quantities aside from the quantum coherent information

for Z operators (panel (c)) drop rapidly to their minimum values. This corresponds

to total erasure of all information. As discussed before, the fact that Sx annihilates
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|−⟩ means that even after the channel has run its course, the resulting states are still

distinguishable. Thus the system in question is resistant to a certain specific type of

noise, but not to noise in general.

Ultimately this section represents a preliminary investigation of memory in

scarred systems in open and closed contexts. Many questions have arisen in the

course of this investigation, some of which I outline here but defer to my future

work. First of all, does a more concrete connection between the Holevo quantity

and the quantum coherent information, as suggested by the similarities between

Fig. 2.12(a) and Fig. 2.13(a)? Secondly, are there other systems which bear the

latent ability to postpone or entirely halt the loss of quantum coherence? Finally, are

these properties strengthened by the fact that we have been working in the scarred

subspace? This final question in particular represents a real, exploitable, use case

for quantum scars in the context of quantum information processing and computing.

2.4 Outlook

In this chapter I have introduced the accessible information game, the Holevo quan-

tity, and the quantum coherent information, in the context of non-ergodic quantum

systems. In doing so I defined a brief criteria for determining whether or not a

quantity in a ‘memory quantifier’. In Section 2.2, I used a range of these memory

quantifiers to determine how reliably MBL systems store information over time.

This addresses a long-standing notion in MBL literature wherein they are held to

have a kind of ‘local memory’. I find that MBL systems indeed exhibit memory,

with - in extreme cases - up to 95% of the data encoded within an MBL subsystem

retained over time. However, the main extant quantifier of this memory, the imbal-

ance, drastically underestimates this. My subsequent scaling analyses also revealed

that the best quantifier of memory, the Holevo quantity, does not best capture the

ergodic-MBL transition. I subsequently suggest that scaling results can be improved

by discarding information, enforcing a procedure that the system would carry out

automatically in the thermodynamic limit. The results of this analysis show that by

discarding off-diagonal elements of subsystem density matrices, scaling analyses



80 Chapter 2. Memory in Ergodicity-Breaking Systems

yield coefficients consistent with the Harris criterion. This is a rarity in small-scale

MBL literature.

In Section 2.3 I analyze the Holevo quantity and coherent information in both

open and closed scarred systems. By encoding the simplest possible classical mes-

sage - the state of a single bit - into the system, I was able to analyze whether or not

claims of ‘memory’ in scarred systems are as well-founded as the similar claim of

MBL systems. In closed systems, my results show that, whilst the scarred system

exhibits a kind of robust memory which preserves information perfectly over time;

it is very fragile to certain changes in the Hamiltonian. Moreover, the information

seems to be non-locally encoded in the state of edge sites. In open systems, po-

tential signatures of information retention were found, but only for certain kinds of

noise. Ultimately these results suggest that scarred systems could generally exhibit

a kind of memory, but that it is so delicate and fragile that it cannot reliably store

even the state of a single bit. I contend that scarred memory is not as robust and

general-purpose as MBL memory; and that the latter makes for a better quantum

‘hard drive’. I conclude the section by suggesting ways in which these preliminary

findings could be extended.
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Chapter 3

An Entanglement-Complexity

Geometric Measure

“Happiness, free, for everyone, and let no one be forgotten!”

— Arkady and Boris Strugatsky

“I would like to make a confession which may seem immoral: I do not believe in

Hilbert space anymore.”

— John von Neumann

Also Basil Hiley every time we talk.

The preceding chapter detailed how tools from the quantum information com-

munity can be used to quantify information retained by the state of a dynamically

evolving system about its initial conditions. This took the form of an ‘accessible in-

formation game’ in which we tried to extract as much information as possible from

some known final state. In this chapter, the game is reversed: how much informa-

tion do we need to keep in order to accurately represent a given state? And what

insight can this reversal provide with respect to condensed-matter systems?

A sweepingly successful answer to this reversed question takes the form of

tensor network approaches to quantum state representation. A quantum state that

is represented in full by a number of elements exponential in system size can in-

stead be represented by a linear number of fixed-size tensors. Moreover, certain
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classes of quantum state actually have an efficient representation as a tensor net-

work, wherein very little information about the quantum state is lost, even when the

fixed size of the tensors is taken to be relatively small. In essence, when much of the

exponentially large Hilbert space is irrelevant and can be discarded [1]. The result

can be dramatic, later on in this chapter I consider ground states systems with five-

hundred constituent spin-1 particles. An exact representation would require storing

3512 ≈ 10244 complex numbers1. Tensor network approaches dropped this down to

about ten million, a literal O(10237) speedup.

In this chapter I propose a new geometric measure of entanglement based on

tensor networks, specifically the matrix-product state (MPS) formalism. They key

advantage of this measure over extant measures is that it does not rely on separa-

bility, which allows it to address a wide class of condensed-matter contexts which

the conventional geometric measure cannot. In essence, the MPS representation

of a state becomes efficient when the amount of entanglement in a state is limited

in some way. States with a low amount of entanglement permit exact (or close to

exact) representations as MPS of low bond dimension, whilst states with a large

amount of complicated entanglement structures require an MPS of large bond di-

mension that approaches the dimension of the total original Hilbert space [2, 3]. I

thus construct a geometric measure of entanglement without appealing to separabil-

ity by reversing this approach: the entanglement of a given state can be quantified

by how much a low-χ MPS fails to represent it. This chapter concerns itself with

the definition of this new geometric measure, additional motivations and discussions

surrounding it, and the application of the measure to ground state phase diagrams

and mid-spectrum eigenstate analyses. These analyses reveal that the MPS-derived

entanglement-complexity geometric measure of entanglement is a potentially pow-

erful tool for interrogating quantum systems and identifying phase transitions.

1Given a rough Fermi-style estimate of 1080 atoms in the observable universe, lets figure out
what storing this number would look like. If every isolated atom in our observable universe was
transmuted into an individual universe in its own right, and if each of the atoms in each of those uni-
verses was once again transmuted into its own sovereign universe, then if a single bit of information
was etched upon every atom in all the unfolding, cascading cosmos, we could store about 0.0003%
of the data required to modern floating-point precision. I did it with a laptop because a clever dude
called Guifre Vidal wrote some papers in 2008.
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Figure 3.1: Schematics showing a) the diagrammatic equation for our generalization of the
geometric entanglement (an overview of this diagrammatic notation is given
in Appendix B) and b) a Hilbert space which has been organized into nested
manifolds of states with perfect representations as MPS of bond dimension
χ . The χ = 1 manifold is a manifold of product states, and the full Hilbert
space is attained as χ → Ω where Ω is the total dimension of the space. The
compression procedure of a state |ψ⟩ into its MPS representation |MPS[ψ,χ]⟩
is given by the black arrow.

I begin by reviewing separability and extant separability-based geometric mea-

sures of entanglement in Section 3.1.1. I then summarize some important details of

the MPS formalism in Section 3.1.2 before introducing my tensor network theoretic

entanglement-complexity geometric measure in Section 3.1.3. In Section 3.2 I ap-

ply my geometric measure to a wide array of condensed matter systems; namely the

J1−J2 model and three variations on the spin-1 Haldane chain. Here I directly con-

trast it to the conventional geometric measure of entanglement of Wei and Goldbart

introduced in Ref. [4]. This investigation reveals that different values of the bond

dimension χ reveal new phases or features of phase diagram which are invisible

to the conventional geometric entanglement. This establishes a class of measures
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which together form a set of highly tunable exploratory tools. Finally, I address mid-

sprectrum eigenstates in the context of many-body localization in Section 3.3, estab-

lishing the value of the measure away from ground-state phase transitions. Together,

this demonstrates a range of contexts in which the entanglement-complexity mea-

sure exhibits striking advantages; offering a novel approach by which systems with

limited but non-separable entanglement structures can be investigated using geo-

metric measures. Much of this chapter is based on the published work of Ref. [5].

3.1 Geometric Measures of Entanglement

The defining feature of a geometric measure of entanglement takes the form of

some set of states S which can be identified as being ‘not entangled’, and some

distance function f (ψ,φ) between the state |ψ⟩ that we are interested in and the

states |φ⟩ ∈ S. Minimizing f yields a quantity which is interpreted as a geometric

measure of entanglement: the distance between |ψ⟩ and the closest non-entangled

state. If the minimum value of f is zero then the state |ψ⟩ is not entangled; anything

otherwise heralds entanglement.

Conventional geometric measures of entanglement are defined as the distance

of the quantum state in question to its nearest counterpart in a set of separable or

k-separable states [6]. In essence directly conflating ‘entanglement’ with ‘separabil-

ity’. These measures have been exceedingly valuable when it comes to quantifying

entanglement. A significant advantage of geometric measures is that they confer on

us the ability to study bulk entanglement globally as opposed to measures which

impose physical cuts (see e.g. the half-chain entanglement entropy, Schmidt gap,

or negativity). They have seen widespread use in quantum information and in the

investigation of bi-partite and multi-partite entanglement structures [4, 7–10]. In-

deed the conventional definition of multi-partite entanglement is given in terms of

separability [11, 12]. However, many systems yield states which have interesting,

simple, entanglement structures that are not separable into any partitions of the sys-

tem into subsystems. For a salient example, see the AKLT state discussed in Sec-

tion 3.2.2. The rest of this section discusses separability, and then a reformulation
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of the geometric entanglement based on the MPS formalism which does not appeal

to separability in quantifying entanglement.

3.1.1 Separability and the Conventional Geometric Measures

Separability is an idea that is foundational to the definition of entanglement in many

contexts. A separable state of N parties is one which can be prepared by acting lo-

cally on each of the N parties - without requiring long-range operations [13]. The

eight cups of coffee I drink each day are separable; I prepare each one individu-

ally. This thesis is also separable. Despite the fact I have prepared each part in

reference to its neighbours and its purpose in the tapestry of the whole, anything

I want to change can be changed locally. Even if adding new information to the

third chapter necessitates my inclusion of appropriate definitions in the first, I can

simply make the changes sequentially and locally, mediating the relationship be-

tween the changes via classical communication (i.e. my personal notes). Quantum

mechanical systems, however, may exhibit non-separability; wherein they simply

cannot be prepared in this fashion. The canonical undergraduate examples are Bell

pairs, though many of the complicated states which arise in the natural evolution of

a quantum state under some Hamiltonian are in some way non-separable.

To be precise, the state of a system described in terms of N parties is called

N-partite. If the state of an N-partite system can be prepared by acting on only N

parties, then it is ‘fully separable’ or just ‘separable’2. Note that this definition is

subject to arbitrary re-partitioning, it is generally possible to divide a system into an

arbitrary quantity of parties. For example, my eight daily coffees from the example

above can be partitioned into ‘morning’ and ‘afternoon’ coffees (bi-partite descrip-

tion); or into my ‘wake up coffees’, ‘physics cafe chat coffees’, and ‘coffees I don’t

need, but want’ (tri-partite). Indeed I could subdivide the coffees further, each indi-

vidual coffee into a nice hot first half, and a dreadful cold second half (16-partite).

Quantum systems are the same and despite the fact that an obvious partitioning

2Much of the literature uses ‘separable’ and ‘fully separable’ interchangeably, as I do throughout
this thesis. When referring to states that are only partially separable into k < N partitions, I refer to
them using the phrase k-separable to avoid ambiguity.
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might represent itself3, separability remains an difficult thing to pin down without

choosing some a priori way of partitioning the system. Finally, if a state of N parties

can be partitioned into k < N parties wherein acting on these k parties locally pre-

pares the full state, then the state is said to be k-separable. These k-separable states

can be written as a product state of k parties which may be internally entangled but

do not share entanglement between them [14–16]. The above discussion of full and

k-separability becomes important later, where a poor choice of partitioning results

in an only slightly entangled system registering as highly non-separable.

Given the above notion of separability, it is natural to define a set states which

are fully separable S, and define a distance function between elements of this set

and the state in question |ψ⟩. As introduced by Wei and Goldbart in the seminal

publication of [4], when the distance measure is taken to be the state fidelity, this

quantity E is known as the geometric measure of entanglement or ‘geometric entan-

glement’ for short. It is defined as:

E = min
φ

[
1−|⟨ψ|φ⟩|2

]
(3.1)

wherein the minimization of the quantity over |φ⟩ ∈ S locates the state |φ⟩ which

is closest to |ψ⟩. The prevailing generalization of this quantity considers instead

minimization over |φ⟩ ∈ Sk where Sk the set of all k-separable states Sk.

These quantities have seen widespread success, notably in the identification

and analysis of bi-partite and genuine multi-partite entanglement [4, 7–10, 14, 17].

Despite this, Eq. (3.1) and its immediate generalization in terms of k-separability

have one major shortcoming: they cannot readily differentiate between simple and

complicated entanglement structures. A product state of entangled Bell pairs, for

example, will saturate Eq. (3.1) despite its trivial structure, and one can conceive

of states with which are entirely non-separable but have simple entanglement struc-

tures - e.g. the AKLT state [2, 18]. Thus, whilst a generalization of the geometric

entanglement from the perspective of separability is invaluable, there are contexts

3For example, N interacting fermions should almost always be partitioned into N parties, and not
3N/2 partitions wherein we have transformed half the fermions into Majorana fermions just for the
accursed fun of it.
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where a different generalization is more appropriate. I introduce just such a gener-

alization through the exploitation of matrix product state (MPS) representations in

the coming section.

3.1.2 The Matrix Product State Representation

The central object of the MPS formalism is the MPS itself: a representation of

an arbitrary pure state |ψ⟩ as a product of local tensors. This representation is

formed by repeated reshaping and decomposition of the original state until it has

been factorized into the MPS form, a process we briefly review here. For additional

details see Refs. [2, 3], and for a brief introduction to diagrammatic tensor notation4

see Appendix B. Starting from the generic pure state

|ψ⟩=
d

∑
{ j}

c j1, j2,··· , jN | j1, j2, · · · , jn⟩, (3.2)

where the j indices are ‘physical’ indices which account for physical degrees

of freedom, we combine the indices j2, j3 · · · , jN , reshape the tensor, and per-

form a singular value (Schmidt) decomposition across the physical indices j1 and

( j2, j3, · · · , jN):

c j1,( j2,··· , jN) = ∑
s2

U j1,s2Ss2,s2V
†
s2,( j2, j3,··· , jN). (3.3)

The matrix U is left-unitary, V † is right-unitary, and S is a diagonal matrix of the

descending singular values across the bi-partition, of which some may be degenerate

or exactly zero.

These singular values determine the quality of the decomposition: low singular

values contribute less to the decomposition and can be discarded without a signif-

icant decrease in the fidelity of our MPS representation. The bond dimension χ

is the positive integer number of these singular values that we choose to keep and

quantifies the amount of information retained by our MPS. In general, the more sin-

gular values we discard at every partition, the more compressed and less exact our

MPS representation becomes. It is here that the concept of entanglement complex-

4Also called ‘Penrose’ notation after it’s creator.
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ity becomes important: since the number of singular values across a bi-partition

is an entanglement measure in its own right, states with less entanglement have

more singular values equal or close to zero that can be readily discarded, and have

correspondingly good low-χ MPS representations [1, 19]. The more entanglement

there is in a system, and the more complicated its structure is, the higher the bond

dimension required to achieve a good MPS representation [3].

Returning to our derivation of the MPS representation we reshape and suppress

redundant rows and columns in the singular matrix and separate out the indices

( j1,s2) and (s2, j2, j3 · · · , jN):

c j1, j2,··· , jN = ∑
s2

U j1,s2Ss2,s2V
†
s2, j2, j3,··· , jN . (3.4)

We can now incorporate S into U j,s→ A[ j]
s and V †→ Ṽ † as is convenient, where we

have relabeled U in accordance with notational convention:

c j1, j2,··· , jN = ∑
s2

A[ j1]
s2 Ṽ †

s2, j2, j3,··· , jN . (3.5)

Repeating this procedure on Ṽ † across the next physical bi-partition using the com-

bined indices (s2, j2) and ( j3, j4, · · · , jN) yields

c j1, j2,··· , jN = ∑
s2,s3

A[ j1]
s2 A[ j2]

s2,s3Ṽ
†
s3, j3, j4,··· , jN . (3.6)

By continually decomposing the resulting Ṽ † we finally arrive at the MPS represen-

tation of our tensor c

c j1, j2,··· , jN = ∑
{s}

A[ j1]
s1,s2A[ j2]

s2,s3A[ j3]
s3,s4 · · ·A

[ jN ]
sN ,s1. (3.7)

The s indices are ‘auxiliary’ indices which connect neighbouring tensors and de-

scribe the internal degrees of freedom (thus they can be conveniently gauged). The

auxiliary index s1 connecting the first and final tensors has been inserted to account

for closed boundary conditions; in the case of open boundary conditions it can be
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safely suppressed such that the first and final A matrices become vectors.

The final state, by Eq. (3.2) and Eq. (3.7), is thus

|MPS[ψ,χ]⟩= ∑
{ j},{s}

A[ j1]
s1,s2A[ j2]

s2,s3 · · ·A
[ jN ]
sN ,s1| j1, j2, · · · , jn⟩ (3.8)

where the size of the A matrices is limited by the bond dimension χ which in

turn controls the fidelity of the MPS decomposition |⟨ψ|MPS[ψ,χ]⟩|. For clar-

ity we must forego the usual notation |ψ[A]⟩ for the MPS representation of a state

as a parametrization in terms of the A matrices, instead introducing new notation

|MPS[ψ,χ]⟩ which clearly displays the bond dimension χ (rather than leaving it

implicitly defined as the dimension of the A matrices) and reframes the decompo-

sition of a state into its MPS representation as a compression procedure rather than

an exact parametrization:

|ψ⟩ → |MPS [ψ,χ]⟩. (3.9)

In the case that (i) the original state |ψ⟩ has a low amount of entanglement, or

that (ii) the bond dimension χ of the MPS representation is sufficiently high, the

compression of Eq. (3.9) is close to lossless and the final MPS |MPS [ψ,χ]⟩ is close

to the initial state |ψ⟩.

I conclude this section with four pertinent parting notes. Firstly, that the de-

composition of Eq. (3.9) is not necessarily optimal in the sense that it minimizes the

distance between the initial state and its MPS representation. This is due to the fact

that different orderings of the decomposition over all physical bi-partitions do not

yield identical results. Generally however, the greedy approach I use - sweeping left

to right - is good enough. In addition, it is worth noting that once a state is in MPS

form (such as the output states of the DMRG algorithms that follow), truncating that

MPS can indeed be optimal. One simply discards the cached singular values [3].

Secondly, that the decomposition is not unique, as can be seen by simply gauging

the bonds e.g. A[ j1]A[ j2] = (A[ j1]X)(X−1A[ j2]) = Ã[ j1]Ã[ j2]; however this corresponds

to a local change of basis and does not affect the physical properties of the MPS.

Thirdly, that the number (and value) of the singular values across a bi-partition does
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not change under local operations, rendering it a genuine entanglement measure

[20]. Finally, that the manifold of MPS states of a fixed bond dimension χ contains

the manifolds of all MPS states of strictly lower bond dimension: with the χ = Ω

manifold being identical to the full Hilbert space and the χ = 1 manifold being iden-

tical to the set of all fully-separable states (no entanglement is present across any

physical cut). The restructuring of Hilbert space into these nested manifolds, and

the decomposition process of Eq. (3.9) on a generic state, are shown schematically

in panel b) of Fig. 4.1.

3.1.3 The Entanglement-Complexity Geometric Measure

In contrast to the separability-based generalization of the geometric measure dis-

cussed in Section 3.1 which involved a minimization over the set of k-separable

states, the generalization that I propose is the minimization of Eq. (3.1) over the

manifold of MPS of fixed bond dimension χ:

Eχ = 1−|⟨ψ|MPS[ψ,χ]⟩|2 (3.10)

and is shown in diagrammatic tensor notation in panel a) of Fig. 4.1. I have omit-

ted the minimization from our notation because, as discussed in Section 3.1.2 and

noted in Ref. [3], this minimization happens implicitly during the decomposition of

Eq. (3.9). The generalization Eq. (3.10) quantifies the representability of |ψ⟩ as an

MPS |MPS[ψ,χ]⟩ of bond dimension χ , and is geometric in that this representabil-

ity is quantified in terms of a distance function between |ψ⟩ and the closest (con-

strained) state to it |MPS[ψ,χ]⟩. I also note that, similarly to the (k > N)-separable

generalization for an N-partite system, Eχ>1 = 0 does not necessarily mean that

there is no entanglement; rather that the entanglement present is not sufficient

enough to frustrate representation as an MPS of bond dimension χ . Given these

two points, and the discussion of the role of the bond dimension χ in Section 3.1.2,

the generalization Eq. (3.10) can be interpreted as the geometric entanglement from

the perspective of entanglement complexity as opposed to k-separability.

Intuitively, rather than organizing the full Hilbert space into nested sets of k-
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separable states like existing generalizations of the geometric entanglement, the

MPS formalism organizes Hilbert space into nested manifolds of states with ex-

act fixed-χ MPS representations (see panel b) of Fig. 4.1). This picture moves us

away from separability and towards the alternative, nuanced understanding of en-

tanglement complexity given by the MPS formalism. This nested structure also

implies, as every MPS manifold contains the manifolds of strictly lower bond di-

mension within it, the hierarchy E1 ≥ E2 ≥ ·· ·EΩ where Ω is the total dimension of

the full Hilbert space. Definitionally, and conveniently, the geometric entanglement

of Eq. (3.1) and my generalization of Eq. (3.10) coincide E = E1 at χ = 1 which

defines a manifold of product states [2]; this has been noted in Ref. [21] which uses

the χ = 1 MPS representation to efficiently calculate the geometric entanglement -

though it lacks an extension to higher bond dimensions. The restructuring of Hilbert

space and interpretation of entanglement from the perspective of complexity rather

than separability results in a quantity which, when it is extended to higher bond

dimensions χ > 1, captures behaviour which the geometric entanglement cannot.

Finally I remark that whilst MPS have been used in conjunction with the

geometric entanglement before, these works focus on efficient calculation of ex-

isting measures, rather than in the construction of new measures. See e.g.

Refs. [7, 10, 21, 22]. The calculation of Eχ via the application of Eq. (3.10) to

a range of interesting condensed-matter systems is the subject of the rest of this

chapter.

3.2 Entanglement-Complexity as a Signature of

Ground State Phase Transitions
In this section, I apply the introduced entanglement-complexity geometric measure

Eχ to a range of different Hamiltonians of increasing complexity. These Hamiltoni-

ans undergo various ground state phase transitions as a function of the Hamiltonian

parameters, and serve to illustrate the capabilities of the measure Eχ . The first two

models are the J1-J2 model in Section 3.2.1 and the spin-1 Haldane chain in Sec-

tion 3.2.2 around the Majumdar-Ghosh and AKLT points respectively. These mod-
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els showcase the basic features of Eχ in very well-understood settings. I then discuss

an ansiotropic Haldane chain with a complicated phase diagram in Section 3.2.3,

which has seven different phases and exhibits critical behaviour belonging to sev-

eral different university classes. Finally I investigate an anisotropic Dzyaloshin-

skii–Moriya interacting spin chain in Section 3.2.4, the ground state phase diagram

of which is - to the best of my knowledge - not yet known.

The centrally important feature revealed by these analyses is that the quan-

tity Eχ for sufficient χ ≪ Ω is capable of detecting all phase boundaries for the

considered systems. Ultimately, this suggests that the entanglement-complexity ge-

ometric measure Eχ may be a powerful tool for the investigation of systems wherein

the phase diagram is not yet explicitly known.

3.2.1 Phase Diagram of the J1-J2 Chain around the Majumdar-

Ghosh Point

The first model of interest is the J1− J2 model around the Majumdar-Ghosh point.

At this point, for open boundary conditions, the unique ground state becomes a

product state of entangled singlets [23]. Such a ground state has an exact represen-

tation as an MPS of bond dimension χ = 2 and is N/2-separable, thus we would

expect E2 to identify the Majumdar-Ghosh point exactly. The J1− J2 model is de-

fined by the Hamiltonian

H = J1

n

∑
j

S⃗ j · S⃗ j+1 + J2

n

∑
j

S⃗ j · S⃗ j+2 (3.11)

where S⃗ j are vectors of standard spin-1/2 operators. The Majumdar-Ghosh point is

here found at J2 = J1/2.

Fixing J1 = 1, I evaluate the generalized geometric entanglements E1 and E2

across the Majumdar-Ghosh point using two-site DMRG implemented to reach

ground states of Eq. (3.11) for large system sizes (N = 256). These results are shown

in Fig. 3.2, from which we can see clearly that - despite an initial peak at small sys-

tem sizes - the conventional geometric entanglement completely fails to identify

the point in the thermodynamic limit, whilst the χ = 2 generalization successfully
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Figure 3.2: The (left) geometric entanglement E1 and (right) its first non-trivial general-
ization E2 of the J1−J2 ground state across the Majumdar-Ghosh point. Whilst
the conventional geometric entanglement initially shows a small peak at the
Majumdar-Ghosh point, only E2 successfully locates the ground state in the
thermodynamic limit.

captures the expected behaviour. Despite the clear advantage of E2 in this context,

existing generalizations of the geometric entanglement based on k-separability can

also detect the N/2-separable Majumdar-Ghosh ground state.

3.2.2 Phase Diagram of the Affleck-Kennedy-Lieb-Tasaki

Model

In contrast to the previous section, wherein the Majumdar-Ghosh ground state is

not fully separable but is N/2-separable and thus detectable via conventional gen-

eralizations of the geometric measure, here I demonstrate a situation where the

any kind of separability is entirely irrelevant. The Affleck-Kennedy-Lieb-Tasaki

(AKLT) ground state is a valence bond solid with an exact MPS representation of

bond dimension χ = 2 but which is at best 1-separable (i.e. not separable into sub-

systems) [2]. It can be prepared as the ground state of the spin-1 extended Haldane
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chain

H =
N

∑
j

S⃗ j · S⃗ j+1 +
JAKLT

3

N

∑
j

(
S⃗ j · S⃗ j+1

)2
(3.12)

where S⃗ j = (Sx
j,S

y
j,S

z
j)
⊤ are vectors of spin-1 operators. At the point JAKLT = 1, the

ground state of Eq. (3.12) becomes the AKLT ground state with MPS representa-

tion:

A[+] =

√
2
3

σ
+, A[0] =

1√
3

σ
z, A[−] =

√
2
3

σ
− (3.13)

where the σ± and σ z operators are the standard pauli ladder and z operators [2, 3,

18, 24]. In this setting it is clear that E2 should be able to detect the AKLT ground

state, whilst the geometric entanglement and its k-separable generalizations cannot.

I take open boundary conditions, and fix the elements of S⃗1 and S⃗N (where N is

Figure 3.3: The (left) geometric entanglement E1 and (right) our generalized χ = 2 coun-
terpart E2 of the ground state of Eq. (3.12) across the AKLT point. Only our
generalization successfully locates the AKLT ground state.

the system size) as spin-1/2 operators to lift the fourfold ground state degeneracy

[25]. I then probe the system’s ground state using the geometric entanglement E1

and its first non-trivial generalization E2. I use two-site DMRG implemented to

access large system sizes up to N = 256 [2, 26, 27]. The results are shown in
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Fig. 3.3, from which we can see that the geometric entanglement E1 fails to detect

the AKLT point at all, even in small systems in which it hasn’t yet saturated to

unity, whilst our χ = 2 generalization E2 successfully identifies the ground state in

the thermodynamic limit.

3.2.3 Phase Diagram of the Anisotropic Haldane Chain

The fact that the toy problems of the previous sections are best captured by E2

instead of E1 is - whilst an excellent demonstration of why the entanglement-

complexity generalization is valuable - fairly obvious given the properties of the

Majumdar-Ghosh and AKLT ground states. In both of these cases, the exact MPS

representation is either well-known, or obvious. Now let us consider a case where

this no longer holds, wherein the optimal value of χ is not known a priori and may

in fact vary across the phase diagram. In this setting, higher generalizations χ ≥ 2

should gradually reveal more and more details about the known phase diagram of

the system in question.

The system I consider is the anisotropic Haldane chain

H = J
L−1

∑
j=0

S⃗ j · S⃗ j+1 +D
L

∑
j=0

(
Sz

j

)2
+E

L

∑
j=0

(
Sx

j
)2−

(
Sy

j

)2
(3.14)

where the parameter D tunes the strength of uniaxial anisotropies, and E tunes the

strength of rhombic anisotropies. The Hamiltonian of Eq. (3.14) is widely used,

albeit often with one of the anisotropic terms set to zero, in the modelling of realistic

spin systems [28, 29] (also see Ref. [30] and the references therein).

The ground state phase diagram of the system is shown in panel a) of Fig. 3.4.

There are seven distinct phases: the three Néel-like phases, the large-Ex/Ey/D

phases, and - most notably - the central gapped Haldane phase. We discuss these

where relevant throughout the rest of this section. There are a litany of associated

phase transitions in different universality classes, but we will only briefly mention

the three Gaussian transitions between the Haldane phase and the large-Ex/Ey/D

phases (marked as red dots with arrows through them in panel a) of Fig. 3.4) 5 [32].

5For a more detailed discussion of the phase transitions see Ref. [31] and the references therein.
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Figure 3.4: The ground state phase diagram of the anisotropic Haldane model of Eq. (3.14).
Panel a) shows the phase diagram as determined in Ref. [31] (reproduced with
permission). Panels b)-d) show Eχ of the ground state for χ = 2,3,6 respec-
tively. The ground states were calculated for a system of n = 512 sites using
two-site DMRG [2, 26, 27].

In this section, I consider an anti-ferromagnetic J > 0 coupling and so the ground

state prefers maximal values Sz
j =±1 everywhere, the different phases occur when

this antiferromagnetic coupling and the anisotropies tuned by D and E assist or

frustrate each other. The system is symmetric around E = 0 as a negative E simply

corresponds to an inversion of x and y axes on each site. The ground states of each

phase are best understood in terms of single-site ground states everywhere except

the Haldane phase around D = E = 0, and it is from this perspective that they are

discussed them below. The point D = E = 0 itself is adiabatically connected to

the AKLT ground state, as evidenced by the continuity of Fig. 3.3 across the inter-

val JAKLT ∈ [0,1], and thus the Haldane phase is best understood as having similar
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properties to the valence bond solid of the AKLT point.

As shown in panel a) of Fig. 3.5, the geometric entanglement E1 is close to sat-

uration across the entire region of phase space I investigate D ∈ [0,2] and E ∈ [0,2].

This is simply due to the fact that - even in regions where single-site terms begin

to dominate - the antiferromagnetic coupling still generates some entanglement. As

the single-site terms dominate fully D/J → ∞ or E/J → ∞, the geometric entan-

glement should once again become a useful investigative tool as the ground states

become products of single-site ground states.

In contrast to the geometric entanglement, my entanglement-complexity gen-

eralization Eχ reveal more and more features of the phase diagram as a function

of increasing χ; a feature related to the fact that the different phases have different

entanglement structures which are best captured by MPS of different bond dimen-

sions. This is shown in panels b)-d) of Fig. 3.4 where the phases of Eq. (3.14) are

captured by Eχ for χ = 2, 3, 6 respectively.

Panel b) shows the first non-trivial generalization E2 which successfully iden-

tifies states deep in the x/y/z-Néel phases. These phases occur when the system’s

ground state is close to a Néel state (χ = 1) of eigenstates |Sx/y/z
j = ±1⟩ respec-

tively. In the z-Néel phase this is assisted by low E which prefers |Sx
j = 0⟩ eigen-

states and the antiferromagnetic coupling J itself. In the x-Néel and y-Néel phases

this is assisted by positive D which prefers |Sz
j = 0⟩. As such all three Néel states

aren’t frustrated away from their respective phase boundaries and these regions are

revealed by low bond dimension χ = 2.

Panel c) shows E3 which reveals the full extent of the Néel phases and success-

fully identifies the large-Ex/Ey/D phases. The former is due to slight frustration

that each of the Néel phases experience close to their phase boundaries, an MPS

of bond dimension χ = 2 simply does not capture enough information near these

boundaries. The latter is due to the fact that each of the large-Ex/Ey/D phases is

frustrated. The large-Ex/Ey phases have ground states close to product states of

|Sx/y
j = ±1⟩ but this is frustrated directly by negative D and the antiferromagnetic

coupling J which prefer eigenstates |Sz
j = ±1⟩. The large-D phase experiences a
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similar frustration, but entirely between the antiferromagnetic coupling and large

positive D. We can also infer the existence of the Haldane phase around D = E = 0,

but not any of its properties or its phase boundaries.

Panel d) shows E6 which further narrows the phase boundaries and finally re-

veals the Haldane phase itself. A clear decrease of in E6 can be seen in the Haldane

phase indicating that it is area-law entangled; a feature of the fact that the ground

state at D = E = 0 is adiabatically connected to the area-law AKLT ground state.

In fact the AKLT ground state is a good approximation of the true ground state near

D = E = 0 in general [33, 34]. The reason the Haldane phase is only captured by a

slightly higher bond dimension χ = 6 compared to the other phases is simply due

to the fact that all the terms of the Hamiltonian are of the same order, the system is

thus highly frustrated, and is slightly more entangled - though it is still ultimately

a valence bond solid similar in structure to the AKLT ground state and can still be

represented efficiently as an MPS.

Investigation of this phase diagram at much higher values of χ = 8,16,32 is

shown in Fig. 3.5. Unlike in Fig. 3.4, the color scale is logarithmic to ensure visibil-

ity of Eχ even in the large-χ regime wherein the fidelity of the MPS representation

is very high almost everywhere. Panel b) of Fig. 3.5 shows E8 in which the Haldane

phase has become very clearly defined, reinforcing the idea that - whilst it is more

entangled than the other phases’ ground states and the AKLT state - it is still area-

law entangled and admits a low-χ MPS representation as expected. Panels c) and d)

show E16 and E32 respectively in which we see an exponential drop-off in the fidelity

loss due to high bond dimension MPS representations. The critical regions near the

Gaussian critical points from the Haldane phase to the large-Ex/Ey/D phases are

the brightest regions; this aligns with the understanding that - close to criticality -

low-χ MPS representations generally fail. An interesting aspect of these plots that

may warrant further research is that the phase diagram persists even at high bond

dimension, suggesting a potential scaling in bond dimension and fidelity.
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Figure 3.5: The ground state phase diagram of the anisotropic Haldane model of Eq. (3.14).
Panel a) shows the geometric entanglement E1. Panels b)-d) show Eχ of the
ground state for χ = 8,16,32 respectively. The ground state was calculated
for a system of n = 512 sites using two-site DMRG implemented using an
extension of quimb [35].

3.2.4 Phase Diagram of a Anisotropic Spin-1 Dzyaloshin-

skii–Moriya Interacting Chain

Concluding this section, I consider a novel model with a ground state phase dia-

gram that has not - to the best of my knowledge - been investigated in any detail.

Thus, unlike in all previous toy models of this section, neither I nor anyone else

have any idea what this ground state phase diagram is going to look like6. The

model in question is a hybrid of the scarred spin-1 chain with interactions that can

be tuned between XXZ and Dzyaloshinskii–Moriya interactions first introduced in

Section 2.3.1, and the rhombic anisotropy terms introduced in Section 3.2.3. It is

6It’s weird.
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(a) The geometric entanglement E1 across the
ground state phase diagram at various φ and
Ω. System size N = 50.

(b) The χ = 2 generalization of the geometric en-
tanglement E2 across the ground state phase
diagram. System size N = 50.

defined as follows:

H = J
N−1

∑
j

(
eiφ S+j S−j+1 +h.c.

)
+Ω

N

∑
j

(
Sx

j
)2−

(
Sy

j

)2
(3.15)

where Sα
j are standard spin-1 operators, and where I have taken open boundary

conditions. This model exhibits quantum scarring for Ω = 0 [36]. The ground state

phase diagram is determined using two-site DMRG for a system of N = 50 spins,

with results for the conventional geometric entanglement E1 shown in Fig. 3.6a and

for the χ = 2 generalization E2 in Fig. 3.6b.

The results of this blind, probative investigation are striking. The conventional

geometric entanglement E1 does successfully identify broad regimes and possible

novel phases in the model of Eq. (3.15). However, the entanglement-complexity

geometric measure E2 reveals a strange internal structure within those phases. The

striations that appear in the leftmost bright region are the most interesting feature

- the number of striations that appear is equal to the system size (other sizes not

shown). This may suggest the existence of an Lφ -dependence in the ground state

- though I defer an actual, detailed, investigation of this phase diagram to future

research. Ultimately this section, whilst a brief and cursory presentation of results,

demonstrates the potential value of Eχ as an exploratory tool for investigating sys-

tems which are not so thoroughly understood, e.g. in systems where optimal values

of χ are not known a priori.
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Figure 3.7: Geometric measures E1 and E2 of mid-spectrum eigenstates of Eq. (2.10) for
a range of disorder strengths h/J across the MBLT. Each column shows a dif-
ferent disorder strength: a),d) in the ergodic regime h/J = 1, b),e) near the
middle of the ergodic-MBL transition h/J = 3.5, and c),f) in the MBL regime
h/J = 8. Brighter yellow coloration indicates a higher density of states. The
dimensionless quantity µ ∈ [0,1] is the energy of the eigenstate relative to ex-
tremal eigenenergies, with µ = 0 corresponding to the ground state energy, and
µ = 1/2 to the middle of the spectrum.

3.3 Entanglement-Complexity of a Many-Body Lo-

calized System

As discussed in Section 1.3.2 many body localization (MBL) is one possible mech-

anism by which an interacting many-body quantum system fails to thermalize.

The precise definition of thermalization in this context is still debated (see Sec-

tion 1.3.1); but certain hallmarks of MBL have been well established. Notable

features of MBL include: the emergence of local memory, the breakdown of in-

ternal energy and particle transport, local integrals of motion, and mid-spectrum

eigenstates exhibiting area-law like entanglement entropy [37–39]. Whilst the first

feature was examined in the previous chapter, this chapter concerns itself with the

last. MBL states are area law entangled, exhibiting simple short-range entanglement

structures. Despite this, they are generally non-separable and exhibit limited gen-

uine multi-partite entanglement. Because of this, conventional geometric measures
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of entanglement are generally useless at diagnosing the onset of MBL. However,

area-law states admit efficient representations as low bond dimension MPS, and

hence my entanglement-complexity generalizations can meet considerably more

success in diagnosing MBL. It is worth explicitly noting here that the MBL transi-

tion takes place across the entire spectrum and is a departure from the ground state

transitions I have considered thus far in this chapter.

Figure 3.8: The difference ∆E1,2 = E1−E2 between the conventional E1 and generalized E2
geometric entanglements across the ergodic-MBL transition. Each data point
is over 512 disorder realizations and 10 mid-spectrum eigenstates per disorder
realization. Error bars shown where visible.

Once again, let us consider the prototypical Heisenberg Hamiltonian com-

prised of n spin-1/2 particles with quenched z-field disorder of Eq. (2.10). This

model is discussed in detail in Section 2.2.1. The ratio of disorder strength to

Heisenberg coupling h/J tunes the model and for large disorder h/J≫ 1, the system

is MBL. I consider systems of size up to n = 18 which, whilst too small to extract

reliable thermodynamic properties of MBL through e.g. conventional scaling anal-

yses (see Section 1.3.3.1 and Section 2.2.4), allows us to differentiate ergodic and

localized regimes [40, 41].
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I first investigate Eχ for individual mid-spectrum eigenstates across the MBL

transition using both the conventional geometric entanglement E1 in panels a)-c)

and the bond dimension χ = 2 generalization E2 in panels d)-f) of Fig. 3.7. Each

panel shows Eχ for 1024 samples of 100 mid-spectrum eigenstates, for a total of

102400 data points, these are then coloured according to a Gaussian kernel den-

sity estimation wherein brighter yellow coloration indicates a higher density of

states. From panels a) and d) we see that both E1 and E2 are high in the ergodic

regime h/J = 1, implying the well-known property that mid-spectrum eigenstates

of generic Hamiltonians are volume-law and thus have no efficient representation

as low bond dimension MPS. Panels b) and e) indicate that, close to the transition

point h/J = 3.5, E1 remains high, but the average value of E2 - despite the existence

of many individual eigenstates which have E2 far from zero - drops suddenly. This

implies that eigenstates are far from product states, but are starting to become area-

law entangled as low dimension MPS representations become increasingly viable.

Finally panels c) and f) show slightly lower values of E1 and near-zero values of E2

in the MBL regime h/J = 8. This indicates that, in addition to almost all the eigen-

states being area-law entangled with highly efficient MPS representations, many of

the states also have considerable overlap with product states. This suggests that we

are witnessing the onset of behaviour similar to the h/J→ ∞ case where all ground

states simply become product states of local Sz
j eigenstates.

Given the results of Fig. 3.7 and the associated discussion, notice that E1 and E2

coincide in the ergodic phase E1 = E2 = 1, diverge near the ergodic-MBL transition

point, and tend to coincide again deep in the MBL phase E1 = E2 = 0. This is

due to the fact that MPS of bond dimension χ = 1 and χ = 2 are both equally

bad representations of thermal states on the ergodic side of the transition, and both

equally exact representations of product states on the extreme h/J→ ∞ MBL side

of the transition. This behaviour is captured by the equation

∆Eχ1,χ2 = Eχ1−Eχ2, (3.16)
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which is strictly non-negative and bounded in the interval [0,1] for χ1 < χ2
7.

Quantitatively Eq. (3.16) captures how much the fidelity of the MPS representation

of a given state improves when we increase the bond dimension χ1→ χ2.

In the following analyses, I average ∆E1,χ = E1−Eχ ≥ 0 over 512 realizations

of the Hamiltonian and 10 mid-spectrum eigenstate samples for each of these real-

izations. The results of this analysis for ∆E1,2 are shown in Fig. 3.8 where we can

clearly see ∆E1,2→ 0 in the ergodic regime, climbing throughout the critical region,

and decreasing linearly towards zero deep in the localized regime. In the transi-

tion region we can see a crossover point around h/J ∼ 3.5 (considering the largest

three sizes available) indicating scale-invariant behaviour around the region where

the critical point hc ≥ 3.5 is usually found for similar small systems in this model

[42]. I also note a slight drift of this crossover which is not an atypical pathology

in extant analyses at similar scales. Whilst Eχ , and by extension Eq. (3.16) cannot

diverge by definition, its gradient can: a feature shown clearly in Fig. 3.8 close to

h/J = 3.5 with steeper gradients for larger system sizes.

I extend this study by considering ∆E1,χ for χ > 2 up to χ = 16. It is important

to note here that due to the restructuring of Hilbert space into a hierarchy of nested

manifolds of MPS with fixed bond dimension there is an associated hierarchy E1 ≥

E2 ≥ ·· · ≥ EΩ in the generalized geometric entanglement. Two corollaries to this

fact are: (i) that ∆E1,χ ≥ 0 with equality only when the state in question is a product

state or when χ = 1, and (ii) that there exists a similar hierarchy in ∆E1,χ :

∆E1,2 ≤ ∆E1,3 ≤ ·· · ≤ ∆E1,Ω. (3.17)

The hierarchy of Eq. (3.17) is shown in Fig. 3.9 for a system of size n = 18,

where one can also see a clear peak emerging in the critical region near h/J =

3.5 as the bond dimension is increased. Given that I consider considerable values

(relative to the low system size) of the bond dimension χ = 16; this result supports

the argument that all low or intermediate bond dimension MPS representations are

7A trivial feature of the nested structure of the variational manifolds shown in Fig. 3.1, i.e. that
increasing the size of the variational parameter space will never produce a worse representation of
the state.
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Figure 3.9: The relative generalized geometric entanglement ∆E1,χ across the ergodic-
MBL transition for different values of χ in a system of size n = 18.

equally poor in the ergodic regime, and become equally good in the MBL regime.

The similarity of the curves in Fig. 3.9 also suggests that the coarse-graining of

entanglement enforced by MPS representations of low bond dimension does not

erase the qualitative features of the transition. It does, however, suggest that the

exact quantitative features change considerably, as changing the bond dimension

seems to induce a logarithmic drift in the peak. This further supports the argument

that the quantity ∆E1,χ is not useful as a scaling quantity in the context of MBL8.

To capstone my investigation of MBL via the entanglement-complexity geo-

metric measure, I also present results for ∆E1,χ for a range of different values of χ

and different system sizes, the results of which are shown in Fig. 3.10. The main

features of all panels are similar to Fig. 3.8: a characteristic intersection of lines

that suggests scale-invariance close to h/J = 3.5, and the drift of this point with

increasing system size n. In essence, no new qualitative information is revealed by

accessing higher values of χ aside from a more pronounced critical peak in Fig. 3.9.

8Additionally, I personally could not find good data collapses in any of the ∆Eχ1,χ2 .
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Figure 3.10: The relative generalized geometric entanglement ∆E1,χ across the ergodic-
MBL transition for different values of χ and different system sizes.

This all indicates that the properties of E1 and E2 together suffice to characterize the

MBLT. Of course this may change at larger system sizes, or for systems that exhibit

different kinds of ergodicity-breaking.

3.4 Outlook
In this chapter I have introduced a scalable geometric measure of entanglement that

does not appeal to separability. Rather, through the MPS formalism and the bond

dimension χ , my approach focuses an alternative understanding of entanglement

in terms of entanglement complexity: the efficiency of state representation under

entanglement coarse-graining. This change in perspective yields a novel geomet-

ric measure of entanglement Eχ which succeeds in contexts where the conventional

geometric entanglement (coincident with E1) and its immediate k-separable gener-

alization cannot. I additionally note that, due to the advantageous fact that Eχ is still

derived from an overlap between two states, it may also retain the positive feature of
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being an experimentally measurable quantity through e.g. a SWAP test [43, 44] or

MPS tomography [45]. I have demonstrated the value of Eχ in a variety of different

contexts. Firstly, at the Majumdar-Ghosh and AKLT points, which can be detected

by my geometric measure E2 but not necessarily by the conventional geometric en-

tanglement E1. Secondly, I found that the known phases of the anisotropic Haldane

model, each having their distinct signature in entanglement-complexity, are grad-

ually revealed by Eχ as χ is varied; these phases are invisible to the conventional

geometric entanglement. Thirdly, in a more exploratory setting, I found several

interesting features of the phase diagram of a hitherto uninvestigated system - the

anisotropic DMI interacting spin-1 chain.

Finally, in the context of MBL and away from ground state analyses, Eχ and

relative entanglements ∆Eχ1,χ2 provides a tunable quantification of the transition

between volume and area law entangled eigenstates across the spectrum. I do note

that the results of this paper rely on accurate generation of the target state |ψ⟩, which

may not always be possible for some systems e.g. an experimentally prepared state,

or a state obtained by some numerical procedure for which convergence is difficult.

The question of extending the measure Eχ to target states which are only partially

known is an interesting future topic of research.
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Chapter 4

Informational Aspects of Quantum

Simulators

“The Worldly Hope men set their Hearts upon Turns Ashes – or it prospers; and anon, Like

Snow upon the Desert’s dusty Face, Lighting a little hour or two – is gone.”

— Omar Khayyám

This chapter concerns itself with informational aspects of realistic current-

generation quantum simulators, namely quantum dot arrays and superconducting

quantum computers. Whilst previous chapters addressed informational ideas in the

context of abstract theoretical models, each model discussed in this chapter simu-

lates a real NISQ device. The devices considered are current generation or near-

future, and represent an oncoming frontier of tunable, controllable, many-body sys-

tems.

The specific ‘informational aspects’ I consider are incarnated as, inter alia,

widely-used canonical objects such as the von Neumann entropy and number en-

tropy, the statistics of singlet-triplet measurement outcomes, the fidelity suscep-

tibility1, the Holevo quantity, and Loschmidt echos. The chapter first addresses

the possibility of detecting MBL in one-dimensional quantum dot arrays in Sec-

tion 4.1. Twin-rail quantum dot arrays are then discussed in Section 4.2, with an eye

to detecting phase transitions via singlet-triplet measurements. Finally information
1The fidelity susceptibility is ‘informational’ in the sense that is is proportional to the quantum

fisher information which governs how precisely properties of the system can be determined from
measurements made on the system.
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scrambling in superconducting quantum computers (specifically IBM’s transmon

computing devices) is addressed in Section 4.3.

4.1 Identifying Many-Body Localization in Quantum

Dot Arrays
Many-body localization (MBL), the breaking of ergodicity and corresponding ar-

rest of transport in disordered strongly-correlated quantum systems [1–4], has be-

come increasingly accessible in a wide array of experimental systems. Devices in

which MBL has been experimentally realized include ultracold atoms and ions in

optical lattices [5–8], and superconducting qubits [9]. A natural, yet hitherto un-

realized, setting in which to explore MBL is that of semiconducting quantum dot

arrays (QDA). Such systems are promising simulators of fermionic systems in both

1D and 2D [10, 11], they are highly tunable and different lattice geometries can be

readily fabricated: in short an ideal testbed for MBL. Despite this, modern arrays

are realistically limited to few dots, readout can be noisy, and - as they are extremely

sensitive to environmental electrostatic discharge - they can be damaged during fab-

rication, handling, or general use during the experimental process. Thus, whilst the

detection of MBL in realistic current-generation quantum dot arrays is both a crucial

proof-of-concept for such arrays as generic quantum testbeds, it is also fraught with

difficulties. A number of questions naturally arise: can current-generation realistic

arrays access MBL regimes? How can we reliably identify MBL in such arrays?

And - given how fragile these systems are - what are the minimal measurements

required to do so?

In this section I address the above questions by first characterizing the double-

dot properties of a state-of-the-art device and extrapolating the rough parameter

ranges of an extended Fermi-Hubbard model that such a device can simulate. I

then analyze this model numerically, investigating a variety of quantities in both

bulk and local variants. These quantities require measurements that range from

density operator tomography of half the system to simple charge sensing on two

sites. Together, this comprehensively addresses the possibility of detecting MBL in
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Figure 4.1: (a) The six-dot design for the specific characterized experimental device. In
sec:qda-parameter I extract rough parameter ranges for the theoretical model
that the device simulates from the pair of dots defined by the gates G19−B15−
B13 − B11 and addressed by plunger gates P14 and P12 respectively. (b) An
SEM image of a fabricated array which is similar to the characterized design.
Slight blurring of the SEM image is due to a layer of protective PMMA with
an approximate thickness of 200 nm.

current generation QDA.

It is important to note here that research2 suggests that attempting to isolate

the ergodic-MBL transition in such small systems is prohibitively difficult - it is

hard to make declarative statements about the thermodynamic transition without

accessing both exponential time and length scales in microscopic analyses [12–14],

and the small-system transition may belong to a different universality class than the

transition in the thermodynamic limit [15]. Rather it is better to identify different

regimes and investigate their properties away from the ergodic-MBL critical line.

For this reason, and due to the fact that the size of modern QDAs are limited to up

to about eight dots, I do not attempt to systematically investigate criticality in this

2And my own up-close and personal experience.
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chapter. Rather I determine the conditions under which the different regimes can be

differentiated in realistic experimental quantum dot arrays.

In Section 4.1.2 I introduce and discuss the model that quantum dot arrays

simulate. In Section 4.1.4 I discuss the experimental device in question, namely

a one-dimensional lateral array of electrostatically defined quantum dots, and then

characterize such a device to extract rough ranges for the theoretical model param-

eters from experimental data. I define several quantities in both bulk and local vari-

ants in Section 4.1.5 which can be used to differentiate MBL from the other phases

of the model. Finally, in Section 4.1.6 I analyze the model across the extracted

parameter ranges and use the aforementioned quantities to develop a protocol for

identifying MBL with minimal measurements on a realistic device. This research

was carried out in conjunction with Dr. Jaliel and Prof. Smith at UCL and Cam-

bridge respectively [16]. The bulk of this section is based on the preprint of our

work in Ref. [17].

4.1.1 The Quantum Dot and Dot Arrays

The theoretical quantum dot is a highly confined system in which zero-dimensional

effects can be seen [18], often interpreted as an ‘artificial atom’ of sorts in which the

electronic properties of the system can be finely tuned and controlled [19]. As this

is such a general idea, actual experimental implementations of quantum dots are

numerous and varied. The physical quantum dots I will discuss are ‘lateral’ quan-

tum dots, named for their structure. They are constructed from careful depletion

of a two-dimensional electron gas (2DEG) formed by donor electrons introduced

by silicon doping at the interface of a GaAs/AlGaAs heterostructure. The electrons

in such a heterostructure are strongly confined to the boundary between the GaAs

and AlGaAs layers by the electronic properties of the two materials, and further

confinement is possible through judicial application of electromagnetic fields via

gating on the structure’s surface [20]. The dots are connected to each other by stan-

dard (screened) coulomb and exchange interactions between their electrons, and to

the outside world by ohmic contacts; the two most notable of which are the ‘source’

and ‘drain’ contacts, through which a current can be passed. The electronic prop-
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erties of these dots can be probed by charge sensing apparatus e.g. quantum point

contacts. Two schematics of such lateral quantum dots are shown in Fig. 4.2. The

precise details of dot fabrication is beyond the scope of this report; we will instead

concern ourselves with a condensed matter approach to quantum dots arrays as sim-

ulators of the Fermi-Hubbard model. Much of this theory is drawn from the work

of T. Hensgens (see Ref. [21]), who expanded on prior work by Yang et al. [22].

Figure 4.2: Schematics of lateral quantum dots. a) is a schematic of a lateral double-dot and
explicitly shows the GaAs/AlGaAs heterostructure, the 2DEG at its interface
(light grey region), top gating (dark grey regions), and the effect of gating in
depleting the 2DEG (white regions). b) shows an instructive schematic of a
lateral single dot. Both figures retrieved from Ref. [23].

The theory of quantum dot arrays starts with the features of an individual dot.

The addition of an electron to a dot can only occur after the energetic cost due to

coulomb interactions on that dot is surmounted. This is called ‘coulomb block-

ade’. In addition to the coulomb blockade there is a quantum effect due to the tight

confinement, wherein Pauli exclusion gives rise to a discrete (0D) energy spectrum

[24]. Tunnelling through a single isolated dot depends solely on these two effects,

the voltages Vg1 applied to the dot itself, and the voltages Vs and Vd applied to the

source and drain contacts. The unimpeded motion of an electron through the sys-

tem, i.e. motion free of coulomb blockading effects, is only possible at certain gate

voltages. This is illustrated in the schematic of Fig. 4.2(b).

The immediate extension of the above idea is to consider a pair of coupled

quantum dots, a quantum ‘double-dot’ system. The electrons in these two adjacent

dots interact via (screened) coulomb and exchange interactions [20, 23]. The dots
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may also experience cross-talk, in which voltages applied to specific dots or con-

tacts can affect the other dots and contacts. These effects must be characterized for

each double-dot system, and are extremely sensitive to the environment, damage

sustained during use, and the precise fabrication of the system.

Figure 4.3: The charge-stability diagram of an experimentally realized lateral double-dot
system. The conductivity peaks at phase boundaries between different equilib-
rium configurations, giving rise to the signature ‘honeycomb’ lattice. Analysis
of this lattice allows us to characterize physical properties of the dots; from
charging to interaction energies. When compared to the ground state occupancy
diagrams of Fig. 4.5, it is clear that we can also determine many parameters of
the Fermi-Hubbard model that this experimentally realized dot system simu-
lates.

The de facto standard for characterizing these properties is by investigating

stable, static, configurations of electrons on each dot. These configurations - the

ground state of the combined double-dot system - can be altered by applying poten-

tials Vg1 and Vg2 which induce local chemical potentials on each dot individually.

The stable configurations are typically labelled by the number of electrons in each

dot, e.g. (0,1) or (2,4). Hence, by scanning Vg1 and Vg2 and performing local

charge sensing, these stable configurations can be found. The resulting diagram of

stable regions as a function of the applied voltages, called the ‘charge-stability’ dia-

gram is formed by a honeycomb of stable hexagonal regions in which small changes

in Vg1 and Vg1 do not alter the ground state. The triple points where three of these
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regions meet are where the double-dot system becomes conductive, and are the ori-

gin of the well-known ‘conductance peaks’3. It is worth noting here that quantum

tunnelling and thermal fluctuations can render the interface between two regions

conductive as well, which registers on experimental charge-stability diagrams as

visible boundaries between ground states. In practice the charge-stability regions

are probed by applying a small potential difference across the system and measur-

ing the current that flows through it; revealing the conductive corners (and edges)

of the stable regions. The result of this process for an experimental realization of

a double-dot in the middle of a larger array is shown in Fig. 4.3 [16]. The shape

and size of these honeycombs are ultimately governed by cross-talk between the

dots, the on-site coulomb and 0D effects, and the two-site coulomb and exchange

interactions. Adding more quantum dots makes these effects more interrelated and

harder to characterize, but does not change their essential nature.

4.1.2 Quantum Dot Arrays as Fermi-Hubbard Simulators

In the discussion of the previous section, we can see the shadow of the Fermi-

Hubbard model as cast by experimentally realizable quantum dot arrays. There is

a discrete lattice defined by the geometry of the quantum dot array itself, on-site

fermionic exclusion laws, tunnelling between sites, and coulomb and exchange in-

teractions. In essence, all the ingredients of the Fermi-Hubbard model are latent in

quantum dot arrays; and it makes sense that such an array could simulate the theo-

retical model well. If we assume a single active energy level per site (an assumption

we justify and discuss in more detail at the end of this section), the full extended

3The mechanism that causes this is an incredibly elegant bit of physics which is unfortunately
irrelevant to this thesis. Nevertheless, I summarize it in this paean of a footnote. The triple point is
where three stable configurations which differ from each other by at most one electron meet - con-
sider e.g. (0,0), (0,1), and (1,0). At the triple point, all three are degenerate and so moving between
these configurations costs no energy. This means that processes are allowed here which are forbid-
den at all other points. One such process might be (0,0)→(1,0)→(0,1)→(0,0), which corresponds
to an electron entering on the left, then travelling to and exiting on the right. This process, and the
reverse process (0,0)→(0,1)→(1,0)→(0,0), are respectively forwards and backwards tunnelling of
electrons through the double-dot, i.e. a flow of current. This is typically represented in literature by
little circular arrows around the triple points, with the direction of current denoted by the direction
of the arrow. Hence, conductance is only non-zero at the triple points, where such cyclical flows can
occur.
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Fermi-Hubbard model that such devices simulate is as follows:

H = ∑
⟨i, j⟩,σ

τi, j,σ

(
c†

i,σ c j,σ +h.c.
)
+ ∑
⟨i, j⟩

Vi, jnin j +
L

∑
j=1

U jn j,↑n j,↓+
L

∑
j=1

h jn j (4.1)

with open boundary conditions, and where ⟨i, j⟩ runs over all nearest neighbours.

The index σ ∈ ↑,↓ labels spin. The operator n j,σ = c†
j,σ c j,σ is the number operator

for site j in the spin sector σ , and n j = ∑σ n j,σ is the total number operator for

site j. The parameters of the model τi, j,σ , Vi, j, U j, and h j are dependant on the

physical features of the quantum dot array, and are related to the typical tools used

to characterize interacting quantum dots: namely charge-stability diagrams [10].

In general this model admits no easy analytic solution. Despite conservation of

total spin and charge numbers it exhibits no translational invariance and is strongly

interacting; though for a spin-polarized system, imposed e.g. by a weak magnetic

field, the U j terms vanish entirely. This model is entirely a function of the number

operators for τi, j,σ = 0, and as such is trivially diagonalizable (in the number basis

of n j) at this point; this corresponds to the ’classical’ picture of quantum dots in the

constant interaction model, wherein the system’s ground states are classical ground

states of charges on a network [20]. For a brief overview of the theory of classical

conductor networks and the constant interaction model, see Appendix C).

As I show later in Section 4.1.4, and as summarized in Table 4.1, the on-site in-

teraction energy U for the systems I consider ends up being significantly larger than

all other energy scales. This suppresses any process which results in more than one

excess electron per site4. Thus, provided the disordered chemical potential energies

h j do not exceed U , the spin degrees of freedom do not enter into the dynamics

and can be safely neglected. This can also be artificially enforced by polarizing

the electrons such that only a single spin species persists; by e.g. applying a global

magnetic field to the system. Thus, for sufficiently high U≫ τ , U≫V , and U≫ h,

the theoretical model which our experimental quantum dot array simulates reduces

4In the corresponding t− J model, any effects that rely on spin degrees of freedom are second
order and their energies end up being about an order of magnitude lower than all others.
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Figure 4.4: (a) A typical experimental honeycomb cell of the charge-stability diagram ob-
tained by differential conductance measurements on the two dots defined by
the gates G19−B15−B13−B11 in the middle of a device similar to that shown
in Fig. 4.1. Bright (dark) regions indicate higher (lower) measured values of
thhe differential conductance as a function of the two local plunger gate volt-
ages P14 and P12. (b) A Gaussian smoothing of the raw data shown in panel (a)
with a schematic overlay of how the parameters of the theoretical model that
the device simulates are extracted from the geometry of the honeycomb cell.

from Eq. (4.1) to the spinless Fermi-Hubbard model of

H = τ

L−1

∑
j

(
c†

jc j+1 +h.c.
)
+V

L−1

∑
j

n jn j+1 +
L

∑
j

h jn j, (4.2)

where n j = c†
jc j is the number operator at site j. The parameters τ and V are the

tunnelling and nearest-neighbour coulomb interaction energies respectively, and the

h j are random energies drawn uniformly from the interval [−h,h]; with h tuning the

overall disorder strength. To be completely clear, we have assumed (i) a single

active energy level per site in constructing Eq. (4.1) and (ii) an (effective) single
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species of electron in deriving Eq. (4.2) from Eq. (4.1).

I note here several features of the Hamiltonian of Eq. (4.2) which are of di-

rect relevance. The system maps directly onto an extended XXZ model (see Ap-

pendix E) via the Jordan-Wigner transformation, and so inherits an insulating phase

at V/τ = 2. For V/τ = 0 the system is non-interacting and, in the thermodynamic

limit, should localize for all h/τ > 0; this is Anderson localization [25] - which

we do not further consider here. For 0 < V/τ < 2 the system is conducting and

interacting and so should many-body localize for sufficient h/τ , whilst at V/τ > 2

the system is insulating. For these reasons, the ergodic-MBL transition can only be

meaningfully discussed in the regime 0 < V/τ < 2, and the ability to differentiate

the ergodic regime, interaction-induced insulation due to high V/τ , and disorder-

induced MBL becomes critically important when we seek to definitively identify the

last in an exploratory experimental context. The systems I consider are also very

small, as they are realistic models of fully tunable experimental quantum dot arrays.

Thus the system is suspect to a range of pathologies. Edge effects are non-trivial,

the phase transitions are expected to smear out - with e.g. Anderson localization

visible for small, non-zero, V/τ - and the nature of the MBL transition being gen-

erally suspect, potentially not reflecting behaviour in the thermodynamic limit at

all.

4.1.3 Mapping Between Experimental Charge-Stability Dia-

grams and Theoretical Hamiltonian Parameters

Let us now turn our attention to how the model parameters map onto an experimen-

tal charge-stability diagram. To facilitate this process, I preempt the proceeding

section by introducing Fig. 4.4 - an experimentally determined charge-stability dia-

gram of a real current generation quantum dot array [16]. Overlaid onto this diagram

are visual indicators of how the Hamiltonian parameters map onto the experimental

diagram - I discuss these below. I also provide the theoretical charge-stability dia-

gram by calculating exact ground states of the Hamiltonian Eq. (4.1) - where each

row corresponds to a different value for the tunnelling term τi, j,σ = τ = const., and

where the rightmost two columns are the results of two edge detection algorithms
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from which one can extract precise regions of charge-stability.

The energy U is the simplest parameter to consider, it is simply the cost of

adding a new electron to the dot, including both charging and zero-dimensional en-

ergies [20]. This can be determined from the charge-stability diagram by measuring

the vertical distance between two classical ground state electron configurations, i.e.

the potential we need to overcome to add a single electron to a single site [10]. In

Fig. 4.4, I have selected an example honeycomb cell without a contribution from the

zero-dimensional level spacing; thus this article works with a ‘worst case’ scenario

where U/τ is not strengthened by zero-dimensional effects.

The nearest-neighbour Coulomb repulsion V is related to the shortest distance

between two phases which differ by a single additional electron on both sites, i.e.

the energy required to add two electrons to neighbouring sites after overcoming the

necessary on-site energy requirements. Due to additional hybridization caused by

τ , this distance is actually proportional to V +2τ [21].

Unfortunately, whilst this simple kind of numeromancy works well for the part

of the Hamiltonian diagonal in number operators, the effect of the tunnelling - typ-

ically weak - is slight and subtle. The effect of the tunelling energy on the shape of

the charge-stability diagram is mediated through the hybridization of neighbouring

classical ground states of identical total electron number. This in turn broadens the

distance between triple points and phase boundaries, and causes rounding of the

phase boundaries near the classical triple points. This is shown in Fig. 4.5, wherein

each row corresponds to a different tunnelling energy τ , and where the deformation

of the charge-stability diagram as a function of τ is clearly visible. This is espe-

cially true when looking at the boundaries of the stable regions after appropriate

post-processing and edge-detection. From the leftmost column of Fig. 4.5, we can

see the blurring of the phase boundaries between adjacent stable regions of constant

total number. This is a manifestation of the hybridization between neighbouring

τ = 0 ground (Fock) states into new ground states of the τ > 0 system. This in turn

manifests as phase boundaries becoming conductive, and can be seen experimen-

tally as the broadening of the characteristic conductance peaks.
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Figure 4.5: a), d), g) show ground state occupancy numbers for a two-site Fermi-Hubbard
model with U j = U = 5, Vi. j = V = 1, in the a) no tunnelling τi, j,σ = 0, d)
weak tunnelling τi, j,σ = 1/4, g) strong tunnelling τi, j,σ = 2 parameter regimes
respectively. Each tuple shows the number configuration deep in each phase.
The column b), e), h) shows the results of naı̈ve edge detection on respective
occupancy diagrams, and the column c), f), i) shows the results Canny edge
detection [26].

As such, a non-zero τ has a wide range of effects, all of which are rather

subtle and which are difficult to isolate in experimental charge-stability diagrams.

Such identification requires both an experimental resolution orders of magnitude

higher than those typically accessible, as well as some way of turning off τ , and

only τ , completely. Ultimately, there are three prevailing ways of extracting τ from

experimental data. Firstly, by analyzing the extent to which phase boundaries are

curved [27] - clearly an impossibility for the noisy data of Fig. 4.4. Secondly,

by extracting the tunnelling rate from Larmor oscillations observed over time as in

[28, 29] - impossible given the static nature of our charge-stability diagram. Thirdly,

by numerically fitting a line cut of the charge-stability diagram along a detuning axis
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V1−V2 (the red double-headed arrow in Section 4.1.6) to the analytic form of the

steady-state conductance through an open double-dot model, or the response of a

sensing dot; both of which should broaden with increasing τ [10, 11, 20]. This last

approach has been met with considerable success, but requires a characterization of

the leads. However, when characterizing a pair of dots in the middle of an array,

it becomes much less tractable. Despite this, it is the prevailing method among the

three suggested ones that may be possible in future work. As such I discuss it in

more detail in Appendix D.

I note here that I am only considering rough parameter ranges, with an eye to

addressing whether or not accessing MBL is even possible in current-generation or

near-future devices. Thus I sidestep the delicate issue of extracting τ precisely, by

instead roughly estimating the range of possible values it can take. As noted above,

triple points are separated by a distance proportional to V + 2τ . Thus I estimate

rough ranges on this broadening (and thus τ) by estimating the maximum and min-

imum radii of the smeared-out triple points (shown as black rings in Section 4.1.6).

Whilst a detailed characterization of τ is desirable, these rough estimates are suf-

ficient to give us the range of possible τ values across which we must understand

MBL in order to determine its accessibility in QDA 5.

4.1.4 Accessible Parameter Ranges in a Current-Generation

Quantum Dot Arrays

Clearly our ability to freely simulate the theoretical Fermi-Hubbard model is

savagely curtailed by the limitations of current-generation quantum simulators.

Namely, given a specific characterization of a quantum dot array, only a few of

the phases detailed at the end of the preceding section may be accessible. In this

section I introduce and detail an experimental realization current-generation quan-

tum dot array. I then extrapolate just such a characterization of a pair of sites in the

middle of the device into limitations on the regimes that such a device may access.

5Moreover, τ can be directly controlled by tuning the voltages applied to the barrier gates which
separate dots, as evidenced by the ability to ‘pinch off’ a dot (isolate it) before e.g. a measurement.
This makes τ the parameter which is easiest to control in situ - without having to fabricate a new
device.
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The experimental devices I consider are lateral arrays of electrostatically de-

fined quantum dots formed by selectively depleting electrons using nano-fabricated

gate electrodes on the surface of a GaAs/AlGaAs heterostructure. The specific de-

vice used as a benchmark has a gate pattern which defines a linear array of six

quantum dots, the design of which is shown in Fig. 4.1(a). A scanning electron mi-

croscope (SEM) image of a similar (eight-dot) device that was fabricated is shown

in Fig. 4.1(b), where the positions of the quantum dots are illustrated by red cir-

cles. These are both simply larger versions of the designs often used in multi-dot

experiments (see e.g. Refs. [10, 30]).

Tunnelling rates between adjacent dots are controlled through the voltages ap-

plied to the barrier gates B j between neighbouring dots, where j is the gate number.

On-site chemical potentials are controlled by voltages applied to the plunger gates

Pj. The leftmost and the rightmost dots are also tunnel-coupled to the left and right

reservoirs, respectively. The long middle bar gate, labelled G19 in Fig. 4.1(a)), is the

top barrier for all wire gates below; and the three sensing gates, labelled S1(2)(3) in

Fig. 4.1(a), are quantum point contact charge detectors. The non-linear conductance

characteristics of these detector gates can be used as a sensitive probe of the local

electrostatic environment [31], which in turn can be used to measure local charge

fluctuations. In practice, individual gate voltages affect not only the parameters they

are designed to control but, through capacitive cross-talk, also affect other electro-

chemical potentials and tunnel barriers. However, this effect can be compensated

for by using virtual gates: linear combinations of multiple gate voltages chosen such

that only a single electrochemical potential or tunnel barrier is addressed [10, 32].

The design of the specific six-dot device from which model parameters will

eventually be extracted is shown in Fig. 4.1(a). The fabrication of this device uses a

Si-doped GaAs/AlxGa1−xAs heterostructure, with a two-dimensional electron gas

90nm below the surface, a mobility of 9×105 cm2/Vs, and an electron concentra-

tion of 1.62× 1011cm−2. All gates are fabricated in a layer of Ti/Au of thickness

5/20nm, evaporated on the bare substrate. The device was cooled in a dilution

refrigerator with a base temperature of T ∼ 70mK. The electron temperature, how-
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ever, is estimated to remain at ∼ 100mK. Extracted from their individual Coulomb

diamonds (not shown), the on-site charging energy EC is estimated to be∼ 1.3meV,

and the zero-dimensional level spacing of an individual dot to be ∼ 400µeV.

Charge-qubit coherence times were not characterized, but I take them to be

approximately 1−10ns, which is in conservatively line with other characterizations

in similar systems [33, 34]. Though it is worth noting here that silicon-based devices

and spin-qubits have coherence times orders of magnitude greater [35–38], and may

be a lucrative setting in which to investigate MBL as well.

Characterization of two dots in the middle of the array, defined by the gates

G19−B15−B13−B11, is carried out by scanning the applied plunger gate voltages

P12 and P14 across a range of values and measuring the differential conductance

across the double-dot system. This yields a charge-stability diagram comprised of

‘honeycomb’ cells wherein the boundaries between stable electronic configurations

admit the flow of current and appear as bright regions (high differential conduc-

tance). A typical example of the honeycomb cells obtained from this analysis is

shown in Fig. 4.4 (a), which I will use to determine accessible parameter ranges as

per Section 4.1.3.

Parameters Minimum τ Maximum τ

V/τ 3.727 0.603

U/τ 12.941 4.792

Table 4.1: Table of upper and lower bounds on the considered parameter ranges for
Eq. (4.2) extrapolated from the features of the experimental charge stability dia-
gram of Fig. 4.4.

Over Fig. 4.4(b), a Gaussian kernel-density smoothing of the raw experimen-

tal data in Fig. 4.4(a), I have manually identify suspected triple points - denoted by

black crosses. I have then taken minimum (inner) and maximum (outer) broadening

radii - denoted by the inner and outer black circles respectively. The phase bound-

aries are derived from lines connecting these triple points and - in conjunction with

the range of the radii - yields ranges of values for τ , V + 2τ , and U as annotated,

and as discussed in Section 4.1.3. The resulting estimated ranges are summarized
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in Table 4.1. In each case, the on-site Coulomb interaction U is found to be much

larger than both τ and V , justifying the assumptions that (i) there is a single active

energy level per site and (ii) the system is effectively spinless. These estimated

ranges encompass extant characterizations of multi-dot arrays in e.g. Ref. [10]. Fi-

nally, I note that the h/τ is freely tunable by altering the on-site chemical potentials

by changing plunger gate voltages, and is thus only limited by the restriction that

U ≫ h.

4.1.5 Probing Quantities

It is now time to turn our attention to actually identifying the MBL regime in realis-

tic QDA systems. To this end, I introduce here three quantities which will be used to

probe the phase diagram of Eq. (4.2) across the parameter ranges of Table 4.1. Two

of these quantities I have introduced before in Chapter 2; they are the von Neumann

entropy S and the widely-used imbalance I, both of which I briefly reintroduce here.

The last quantity of interest is the number entropy SN , which I discuss here in more

detail. All quantities vary first in their experimental accessibility and secondly - as

I show in Section 4.1.6 - their capability when it comes to differentiating regimes in

the phase diagram of Eq. (4.2).

The von Neumann entropy when applied to a bi-partite pure state unambigu-

ously quantifies the entanglement across the bi-partition. It has been used exten-

sively in the context of MBL theory and experiment, including in Chapter 2 of this

very thesis, and serves here as a benchmark for the other quantities [39–43]. Here,

it takes the form of an entropy density: S(ρ(t)) = −Tr[ρ(t) log2 ρ(t)]/Lρ , where

Lρ is the size of the subsystem ρ(t). In experiment, observation of the von Neum-

man entropy would require full tomography of the density operator of the region

of interest - a prohibitively expensive and difficult task - but it serves as a crucial

benchmark nonetheless.

The imbalance, widely used in MBL [5, 44–46], is used to determine how

much a system has deviated from an initial charge configuration. It is directly re-
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lated to standard auto-correlation functions. Here, I define it as

I(ρ(t)) = 2
Lρ

∑
j

Tr
[
ρ(0)n j

]
Tr
[
ρ(t)n j

]
(4.3)

where j runs over the physical sites of the subsystem ρ(t) and where - in the case

of an initial charge density wave state such that n j has ρ(0) as an eigenstate - it

reduces to the conventional statement of the imbalance as the difference between

occupancy numbers on odd and even sites. If the charge configuration of |ψ(t)⟩

becomes uncorrelated to the initial configuration of |ψ(0)⟩ then the imbalance satu-

rates to zero I(t) = 0, whereas if they remain (anti-)correlated it persists as a finite

non-zero value I(t) > 0 (I(t) < 0). In experiment I(ρ(t)) requires only charge

sensing on the relevant sites, which is significantly easier than the state tomography

required by the von Neumann entropy.

The number entropy is a curious quantity which has seen some use in MBL

[42, 47, 48], and which is simply the entropy of the discrete probability distribution

p(ρ(t),n) of finding n particles in the subsystem ρ(t). It is defined as

SN(t) =−
1

Lρ
∑
N

p(ρ(t),n = N) log2 p(ρ(t),n = N). (4.4)

This quantity is directly related to the von Neumann entropy by S = SN +SC where

SC is the configurational entropy: the contribution to the entanglement due to cor-

relations between different configurations of a fixed number of constituent parti-

cles. We can compute the distributions from the density operator by constructing

projectors PN = ∑r |Nr⟩⟨Nr| where |Nr⟩ are the N-particle states in the number ba-

sis that span the reduced Hilbert space of ρ(t). The probability is then given by

p(ρ(t),n = N) = Tr[ρ(t)PN ]. I calculate an ergodic limit of the number entropy

here, which I use to benchmark numerical results.

I start by assuming that, given L sites populated by N0 electrons, the computa-

tional microstates which conserve N0 are equally probable i.e. that the microcanon-

ical ensemble gives the correct physical description of the equilibrated system at

late time [49]. The problem of deriving the probability distribution pk(n) of observ-
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ing n electrons within k selected sites becomes straightforward. The probability

pk(n = N) is simply the probability of detecting N occupied sites and k−N empty

sites, multiplied by the multiplicity
(k

N

)
of such microstates:

pk(n = N) =

(
k
N

)[N−1

∏
j=0

n0− j
L− j

]
︸ ︷︷ ︸

occupied

[
k−N−1

∏
j=0

1− n0−N− j
L−N− j

]
︸ ︷︷ ︸

empty

(4.5)

The number entropy SN of such an infinite-temperature subsystem is then read-

ily calculated according to Eq. (4.4) of the main text with ρ(t)→ ρth. This quantity

serves - in a similar capacity as the page entropy - as a thermal limiting case for the

number entropy [50].

I also consider both bulk and local variants of the quantities by considering

three different subsystems, the full system ρf(t) = |ψ(t)⟩⟨(t)ψ|, half of the system

ρhc(t), and two sites in the middle of the system ρ2(t). The quantities are com-

puted using the equations in Section 4.1.5 using the bulk or local reduced density

operators according to Table Table 4.2. Experimentally, the imbalance and number

entropy require identical local charge-sensing measurements only, and are highly

experimentally tractable.

Quantity Bulk Local

VN Entropy S(b)(t) = S(ρhc(t)) S(l) = S(ρ2(t))

Imbalance I(b)(t) = I(ρf(t)) I(l)(t) = I(ρ2(t))

Number Entropy S(b)N (t) = SN(ρhc(t)) S(l)N (t) = SN(ρ2(t))

Table 4.2: Summary of bulk and local variants of the quantities discussed in Section 4.1.5.
Bulk quantities are calculated over the state of the full system ρf(t) or half the
chain ρhc(t), local quantities are calculated over two sites in the middle of the
device ρ2(t).

The number entropy requires the same charge sensing measurements as the

imbalance, but - as shown later in Section 4.1.6 - yields signatures similar to the

von Neumann entropy. This becomes useful in that the number entropy can identify

phases that the imbalance cannot without requiring the prohibitively difficult state

tomography of the full von Neumann entropy. Moreover, the local variants of the
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quantities shown in the last column of Table 4.2, require measurements only on two

sites; making their calculation even simpler in experiment.

4.1.6 Results and Outlook

Here I investigate the phase diagram of Eq. (4.2) at time tf after initialization in a

charge density wave state wherein every other site is occupied at time t = 0. I vary

V/τ and h/τ , and analyze the quantities (both bulk and local variants) discussed

in Section 4.1.5. Given the upper and lower bounds extracted in Section 4.1.4, I

investigate the phase diagram across the intervals V/τ ∈ [0,4] and h/τ ∈ [0,6]. I

consider both ‘realistic’ and ‘ideal’ versions of the same system.

The ‘realistic’ system addresses sizes of L= 8 sites, intermediate time scales of

τtf/h = 150 which (for reasonable tunnelling energies τ ∼ 50−100µeV ) are within

typical charge-qubit coherence times for these systems (tf ∼ 1−10ns) [33, 34], no

time-averaging - just using the result at the final time tf - and the number of disorder

samples limited to 50 realizations. Additionally, I introduce large absolute ±0.1

and relative ±5% uncertainties (box-distributed) in the parameters h/τ and V/τ

such that the couplings are non-isotropic and random for each disorder realization.

This accounts for small changes in these couplings due to cross-talk, and errors in

the fabrication and characterization of the device.

The results of this analysis are shown in Section 4.1.6, wherein panels (a),

(b), and (c) show the bulk von Neumann entropy, Imbalance, and Number entropy

at tf respectively, and panels (d), (e), and (f) show the local variants. Red dashes

lines indicate the expected transition at V/τ = 2 and an ergodic-MBL crossing at

h/τ ∼ 3. The phase diagrams of the von Neumann entropy and number entropy

are qualitatively similar, with a build-up of both entropies in the thermal regime

that falls off as h/τ or V/τ increase. Surprisingly, the imbalance doesn’t seem

to register the metallic-insulator transition at V/τ = 2, instead staying close to its

thermal value of zero for all values of V/τ for sufficiently low disorder strength h/τ .

This suggests that the imbalance alone cannot unambiguously detect the presence

of the MBL regime: if a transition is seen in h/τ , it is entirely possible that the

system is already in an insulating regime that the imbalance is simply agnostic to.
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(a) Bulk VN Entropy (b) Bulk Imbalance (c) Bulk Number Entropy

(d) Local VN Entropy (e) Local Imbalance (f) Local Number Entropy

Figure 4.6: Disorder-averaged late-time quantities across the full V −h phase diagram for
the realistic system; initialized in a charge-density wave configuration. The
realistic system consists of L = 8 sites, total evolution times of τt f = 150, no
time-averaging (the final value at t f is simply read out), and disorder-averaging
over only 50 samples per (V,h) coordinate.

As such, differentiation between the thermal, MBL, and insulating regimes requires

a different quantity. The number entropy requires the same measurements as the

imbalance (i.e. charge sensing as opposed to full state tomography) but is also

sensitive to the transition in V/τ . Thus by post-processing the results of a large

number of charge measurements in two different ways, the imbalance and number

entropy can both be calculated and compared, with the former sensitive only to the

MBL transition, and the latter sensitive to both the MBL and insulating transition.

Perhaps the most striking feature of Section 4.1.6 is that the qualitative fea-

tures of the bulk and local phase diagrams for individual quantities are consistent.

For the purpose of differentiating the thermal, MBL, and insulating regimes, local

measurements on a few sites seem to suffice. In conjunction with the above discus-

sion, this leads to a simple protocol for detecting MBL in realistic QDA: perform

charge-sensing measurements on a few dots in the middle of the array, then post-

process these measurements differently to construct the local imbalance and local
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(a) Bulk Imbalance and Number Entropy
against h/τ

(b) Bulk Imbalance and Number Entropy
against V/τ

(c) Local Imbalance and Number Entropy
against h/τ

(d) Local Imbalance and Number Entropy
against V/τ

Figure 4.7: Slices of the phase diagrams of Section 4.1.6 (the realistic L = 8 model) for
(a) and (c) fixed values of V/τ on both sides of the transition point between
thermal and insulating phases at V/τ = 2, and (b) and (d) fixed values of h/τ

on both sides of the crossover from thermal to MBL regimes at h/τ = 3.5; error
bars shown where visible.

number entropy. Reapeating this protocol as we scan h from a low to a high value

will show a transition in both the number entropy and imbalance if the system is

MBL, and only the imbalance if the system is insulating.

I also examine individual slices of the phase diagrams of Section 4.1.6 in Sec-

tion 4.1.6, to emulate the kind of results one would expect to see from an experiment

which scans h/τ or V/τ whilst holding the other constant. Such an experiment is

far simpler (especially in the case of scanning h/τ which can be freely tuned by

modifying plunger gate voltages) than determining the full phase diagram. Panels

(a) and (b) of Section 4.1.6 show the bulk imbalance and number entropy as we hold

either V/τ and h/τ fixed on both sides of the MBL and metal-insulator transition

and scan the other parameter respectively. Panels (c) and (d) of Section 4.1.6 show

the local variants. The black dashed line in each panel shows the thermal value of
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(a) Bulk von Neumann En-
tropy (b) Bulk Imbalance (c) Bulk Number Entropy

(d) Local von Neumann En-
tropy (e) Local Imbalance (f) Local Number Entropy

Figure 4.8: Time and disorder-averaged steady-state quantities across the full V −h phase
diagram for the ideal system; initialized in a charge-density wave configuration.
The ideal system consists of L = 10 sites, exponential total evolution times of
τt f = 1010, time-averaging over the final third of the total evolution time, and
disorder-averaging over 512 samples per (V,h) coordinate.

the number entropy, a benchmark of ergodicity in the system, which I introduced at

the end of Section 4.1.5.

The form of the imbalance is agnostic to changes in the interaction strength

V/τ; with each pair of imbalance curves in each panel having similar functional

forms. The only difference is in panels (b) and (d) in which the imbalance is

significantly higher for high h/τ and easily differentiated from the low h/τ case;

though they are roughly invariant as V/τ is scanned. The number entropy is clearly

sensitive to both parameters, staying fixed for sufficiently high V/τ or h/τ as the

other parameter is scanned; but showing a clear decrease with increasing V/τ or

h/τ as the other is held at a low constant value. Panel (b) shows this difference

in the behaviour of the number entropy for different values of V/τ most clearly.

The high-h/τ number entropy curve is roughly constant, whilst the low-h/τ curve

shows a decrease with increasing V/τ . Moreover, the number entropies are most
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readily differentiated in the thermal regime where they diverge, meeting again for

sufficiently h/τ . Importantly, this difference in behaviour becomes much harder to

distinguish in (c); in which both number entropy curves are much closer together

and their functional forms are harder to differentiate. This means that fixing V/τ

and extracting local imbalance and number entropy values for different h/τ may be

- by itself - insufficient to differentiate between MBL and insulating behaviour. The

experimentalist may have to supplement this analysis by either considering bulk

quantities instead, or by finding a way to vary V/τ such that the imbalance and

number entropy curves in panels (b) or (d) can be directly differentiated instead.

I repeat the above analysis for an ‘ideal’ system by lifting the conservative con-

straints placed on evolution times, number of disorder realizations, and parameter

characterization errors. I consider a system of L = 10 sites, exponential time scales

of τtf = 1010, late-time time-averaging - wherein I average over the final third of the

evolution time to eliminate remaining fluctuations - and 512 disorder realizations.

Additionally, there are no absolute and relative uncertainties in the parameters h/τ

and V/τ .

The results of this analysis of an ideal system are shown in Section 4.1.6, and

are qualitatively similar to the corresponding results for the realistic system. Again,

the imbalance is agnostic to changes in V/τ and cannot detect the insulating regime

at V/τ > 2, again in contrast to the von Neumann and number entropies which iden-

tify both this transition and the ergodic-MBL crossover at h/τ ∼ 3.5. Strikingly, the

local variants which use measurements on only two sites in the middle of the array

are qualitatively similar to the bulk variants, indicating that local measurements are

enough to identify the different regimes.

Individual slices of the phase diagrams of Section 4.1.6 are shown in Sec-

tion 4.1.6, wherein we fix V/τ or h/τ and scan the other respectively. The be-

haviours noted in the discussion of Section 4.1.6 are much clearer in the larger,

ideal system. The imbalance is clearly agnostic to changes in V/τ , as evidenced

by its constancy in panels (b) and (d) of Section 4.1.6. Moreover, the imbalance

curves in panels (a) and (c) respectively are almost identical. This supports the
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(a) Bulk Imbalance and Number Entropy
against h/τ

(b) Bulk Imbalance and Number Entropy
against V/τ

(c) Local Imbalance and Number Entropy
against h/τ

(d) Local Imbalance and Number Entropy
against V/τ

Figure 4.9: Slices of the phase diagrams of Section 4.1.6 (the ideal L = 10 model) for (a)
and (c) fixed values of V/τ on both sides of the transition point between thermal
and insulating phases at V/τ = 2, and (b) and (d) fixed values of h/τ on both
sides of the crossover from thermal to MBL regimes at h/τ = 3.5; error bars
shown where visible.

protocol we propose which requires different post-processing on charge measure-

ments to construct both the imbalance and number entropy in tandem. The number

entropy has clearly different behaviour as both V/τ and h/τ vary, staying fixed for

sufficiently high V/τ or h/τ . Panel (b) shows this behaviour most clearly, with both

the imbalance and number entropy constant with increasing V/τ for high disorder,

and with imbalance constant but number entropy decreasing with increasing V/τ

for low disorder.

I note here that the decision to restrict the analysis to a small number of dis-

order realizations, and the use of large absolute and relative uncertainties in all

parameters, represents a worst-case scenario. Thus, experimental results are likely

to be clearer than those presented in this article. The results of Section 4.1.6 for an

ideal system and above discussion show that differentiating between the MBL and
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insulating regimes is a much easier task with these worst-case restrictions lifted.

Despite this, differentiation between these regimes is possible even in the conserva-

tive realistic model. Provided that the charging energies are high enough that h/τ

can be freely tuned, local charge sensing is enough to identify MBL, and unam-

biguously differentiate it from insulating behaviour due to strong electron-electron

interactions, in current-generation QDA.

I suggest that both the sensitivity of the number entropy and insensitivity of

the imbalance to the transition in V/τ can be explained by a type of ‘rolling’ be-

haviour, in which the charge-density wave moves coherently through the system. In

essence, V/τ is so strong that excitations cannot exist in neighbouring sites (similar

to Rydberg-blockaded systems [51–53]) and due to the fact that total particle num-

ber is conserved: the dynamical state of the system oscillates between the states

|◦,•,◦· · · ⟩ and |•,◦,•· · · ⟩ (where ◦ corresponds to an empty dot, and • to an occu-

pied dot). This would register an imbalance which looks thermal, but a probability

distribution p(ρ(t),n = N) sharply peaked around N = Lρ/2 - and thus a near-zero

number entropy. I support this suggestion with a brief numerical analysis in which

I investigate the overlap of a dynamical state in a single, typical, disorder profile,

with both charge-density wave states. Interestingly, see similar behaviour can also

be found in systems with an odd number of sites, suggesting a more slightly more

complicated explanation which I defer to future study.

First I initialize a system in the charge-density wave |ψ(0)⟩ = |•,◦,•, · · · ⟩

(where ◦ corresponds to an empty dot, and • to an occupied dot) and select a typical

disorder profile of strength h/τ = 1. In Fig. 4.10 I then investigate the overlap of

the state |ψ(t)⟩ with |ψ(0)⟩ (Loschmidt echo) in panel (a) and its overlap with the

complementary charge-density wave state |◦,•,◦, · · · ⟩ in panel (b). I compute the

overlap as the expectation value squared: |⟨ψ(t)|ψtarget⟩|2. For low V/τ (thermal

regime), both curves drop rapidly to low values and remain there. But as V/τ is in-

creased we can see sharp revivals in the overlap of |ψ(t)⟩ with both charge-density

wave states. The first peak in panel (a) (after t = 0) occurs after the first peak in

panel (b) and at approximately the same time difference as the first peak in panel



144 Chapter 4. Informational Aspects of Quantum Simulators

Figure 4.10: Numerical evidence of a coherent oscillation of a charge-density wave be-
tween two configurations as V/τ is varied. For a system initialized in the state
|•,◦,•, · · · ⟩ (a) shows overlap with the initial state and (b) shows the overlap
with the inverted state |◦,•,◦, · · · ⟩. System hamiltonian is a typical disorder-
realization of strength h/τ = 1.

(b) does from t = 0. This suggests that the ‘rolling’ behaviour explanation may be

a good approximation to the dynamics of the state; and thus a more detailed investi-

gation is warranted. Such an investigation is, however, beyond the immediate scope

of this thesis.

The findings of this section show that MBL is accessible in state-of-the-art

QDA, but that its identification is not a simple task. The key limitation to detecting

MBL in modern quantum dot arrays is ensuring high enough on-site charging en-

ergies such that they cannot be surmounted by the large applied random chemical

potentials required to localize the system. This may be improved by e.g. decreasing

τ , but that requires a corresponding increase in charge-qubit coherence times such

that total evolution times are large enough to see localization. This could perhaps

be achieved by designing free-standing dots that isolate the system from phonons.

Working within these limitations I first characterized an experimental device and

extrapolated that characterization into a worst-case model. I then numerically de-
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termined the phase diagram of the device as a function of disorder and interaction

strength; identifying an insulating regime which may be mistaken for MBL. Finding

that the widely-used imbalance is agnostic to this phase, I then proposed an alterna-

tive protocol based on the number entropy - which requires the same measurements

as the imbalance - and which successfully differentiates MBL from the thermal and

insulating regimes. This protocol relies only on local charge-sensing measurements,

which are readily accessible in modern quantum dot experiments. In addition. we

find that performing these measurements on two sites in the middle of the system

yields qualitatively similar results as bulk analyses, drastically reducing the number

and complexity of measurements required.

4.2 Statistical Properties of Twin-Rail Quantum Dot

Arrays

In addition to strictly one-dimensional settings like that of the previous section,

quantum dot arrays (QDAs) naturally provide an experimental setting in which to

investigate quasi-one-dimensional, or even two-dimensional, behaviour. The prop-

erties of true two-dimensional QDAs of any considerable size is beyond the scope of

this thesis, and indeed requires a technological finesse beyond the grasp of current

experimental capabilities. However, twin-rail QDAs do exist, and provide a fertile

ground for the simulation of quasi-one-dimensional systems [54]. In this section, I

introduce and investigate the critical properties of a spin-ladder description of such

twin-rail QDAs.

I start by introducing the experimental system in Section 4.2.1 and the antifer-

romagnetic Heisenberg ladder that simulates it in Section 4.2.2. I then introduce

several quantities of interest, including singlet-triplet profiles and the fidelity sus-

ceptibility, in Section 4.2.3. The results of applying these quantities to the system

are discussed in Section 4.2.4, wherein I interrogate their ability to reliably detect

the system’s phase crossover.
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4.2.1 The Experimental Twin-Rail Quantum Dot Array

Here I briefly give an overview of the kind of experimental setup available to us

in the context of twin-rail QDAs. I also briefly discuss the motivations behind

this section. Much of what follows is drawn from ongoing research and private

communication with Liza Morozova and Dr. Zhang in Prof. Vandersypen’s group

at TU Delft Ref. [55].

The QDAs in question are ‘twin-rail’, i.e. 2× L arrays, which are driven

through two broad operating regimes6, a ‘working’ regime wherein the dots in-

teract, and a ‘measurement’ regime wherein pairs of dots are isolated from each

other. In the working regime, the energy scales of longitudinal and transverse

nearest-neighbour interactions are isotropic up to some - potentially significant -

uncertainties, and are tuned to be within an order of magnitude of each other. These

energies (in units of ℏ = 1) can be freely tuned in the interval of 10−100MHz. In

the measurement regime, longitudinal couplings are pinched off over a duration of

a few nanoseconds such that only transverse couplings remain. The state of these

isolated transverse double-dots, called ‘rungs’, can then be measured via singlet-

triplet measurements; a process that takes place sequentially over rungs in a time

of approximately 20µs. Nearest-neighbour SWAP gates may also be enacted dur-

ing the measurement regime by carefully turning on and off specific transverse and

longitudinal couplings.

This setup introduces two major restrictions which inform my theoretical anal-

ysis. Firstly, only singlet-triplet measurements are allowed; though we may use

short range SWAP gates to post-process the final state. Secondly, any results must

be robust to the quenching of the longitudinal couplings during the few nanosec-

onds over which the system is driven from the working to the measurement regime.

This manifests as a question of adiabaticity - if the quench is diabatic then the state,

and thus the information encoded in it, is preserved.

6There is technically a third ‘initialization’ regime wherein certain states are prepared and the
couplings tuned, but it doesn’t factor into my theoretical and numerical analysis.
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4.2.2 The Antiferromagnetic Heisenberg Ladder

The QDAs discussed in the preceding section define a series of spin qubits that can

be modelled by a twin-rail antiferromagnetic Heisenberg ladder (AFHL),

H = J∥ f (t)
L−1

∑
j=1,α

η j,αS j,α ·S j+1,α + J⊥
L

∑
j=1

η
′
jS j,A ·S j,B (4.6)

where the S j,α = (Sx
j,α ,S

y
j,α ,S

z
j,α)
⊤ are vectors of standard spin-1/2 operators Sx/y/z

j,α

acting on site j and rail α ∈ {A,B}. The parameter J∥ tunes the strength of the

intra-rail couplings, and J⊥, j tunes the inter-rail couplings. The smooth function

f (t) = [1− tanh((t − t f /2)/tw)]/2 is used to quench the intra-rail couplings from

their maximum value to zero as the system is driven from the working regime to the

measurement regime, where t f is the total time taken to quench the couplings and

we take tw = t f /5 as the quench width throughout. This limits most of the quench’s

effect to the interval t f /4 < t < 3t f /4, as can be seen in Fig. 4.12(d). The η j,α and

η ′j are uniformly distributed in the interval η j,α ,η
′
j ∈ [1−η ,1+η ] and account for

experimental inaccuracies that may lead to anisotropic couplings. As indicated by

the name, we take all couplings as antiferromagnetic J⊥,J∥ ≥ 0 and 0≤ η ≤ 1.

For antiferromagnetic couplings, each neighbouring pair of sites energetically

prefers to anti-align and thus form singlet states - as such the overall ground state is

generally a resonating valence bond state of all such possible singlet configurations

[56]. Clearly, when one term dominates (and assuming isotropic couplings), sin-

glets tend to accumulate along a single axis - either between the rails for J⊥≫ J∥ or

along the rails for J∥≫ J⊥. In the former case the ground state is a unique product

state of singlets |ψs
j⟩= (| ↑⟩ j,A| ↓⟩ j,B−| ↓⟩ j,A| ↑⟩ j,B)/

√
2 on each site j distributed

across the rails A and B, |ψGS
J⊥≫J∥(t)

⟩ = ∏ j |ψs
j⟩, whilst in the latter case the ground

state is simply a product of the Heisenberg chain groundstates along each rail.

In actuality, this model exhibits a phase transition at precisely J⊥ = 0. We

can understand this as a function of the Haldane conjecture, i.e. that the excitation

spectra of antiferromagnetic Heisenberg chains with half-integer spin are gapless,

and that of chains with integer spin are gapped [57, 58]. At J⊥ = 0 the ground state
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· · ·

· · ·

· · ·

J⊥/J∥ = 0

J⊥/J∥ = 1

J⊥/J∥→ ∞

∑

Decoupled

RVB

VBS

Figure 4.11: Schematic of the ground states of the antiferromagnetic Heisenberg ladder.
As J⊥/J∥ increases, the state interpolates from a product state of Heisenberg
ladders, through an RVB state of possible singlet-triplet configurations, to a
VBS state comprised of singlets along the rungs. The specific RVB state
shown occurs at exactly J⊥ = J∥, and has high overlap with the states that
have singlets distributed across next-nearest neighbours.

becomes a product state of two half-integer chains and so the system is gapless;

deviating from J⊥= 0 results in an effective integer-spin ladder which is gapped. As

the degeneracy of the ground state has changed, the system must have definitionally

passed through some ground-state phase transition.

In practice, the J⊥ > 0 regime exhibits a very notable crossover. Firstly, the

ground state is close to a product state of two antiferromagnetic Heisenberg chain

ground states at small J⊥ > 0. Secondly, a resonating valence bond (RVB) state

similar to the Haldane phase of a spin-1 Haldane chain for large J⊥, and finally the

dimerized phase discussed above at J⊥→ ∞. In this intermediate regime, centred

around J⊥ = J∥, all spins prefer to anti-align with their nearest-neighbours, with

neither transverse nor longitudinal interactions dominating. This frustration results

in spins aligning with next-nearest neighbours, resulting in a state which is very

close to a simple product state of triplets across next-nearest neighbours7. The

structure of these ground states across the phase crossover are schematically shown

in Fig. 4.11.

7Rewriting this state in terms of singlets and triplets over nearest-neighbours again recovers the
RVB picture of the ground state in this regime.
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4.2.3 Singlet-Triplet Measurements and Fidelity Susceptibility

Given that they are the only kind of measurements immediately available to us in

experiment, it is worth discussing singlet-triplet measurements in detail here. In

particular I discuss a method of compressing measurement outcomes into a singlet-

triplet ‘profile’, a statistical distribution which may be more amenable in experi-

ment after averaging over many experimental rungs. The singlet-triplet measure-

ment basis and these compressed statistics have seen use in quantum dot arrays

before, specifically in characterizing the Heisenberg chain ground state [59]. I char-

acterize these statistics by considering the Kullback-Liebler divergence of the deter-

mined probability distribution and the theoretical distribution given by the system

at J⊥ = 0. This gives us a concrete way to investigate the transition and crossover

regions discussed previously. I also introduce the fidelity susceptibility, widely used

to herald phase transitions, as a diagnostic tool. The fidelity susceptibility is func-

tionally useless in experiment - it is near impossible to measure - but is invaluable

in theory.

The core of singlet-triplet profiles are simple projective measurements made

onto singlet or triplet states across each rung:

Ps
j = |ψs

j⟩⟨ψs
j |, Pt

j = 1−Ps
j. (4.7)

The action Tr[Ps(t)
j ρ] = ps(t)

j on some state ρ yields the probability of finding the

pair of sites ( j,A) and ( j,B) in a singlet (triplet) state. We can thus build up a

profile of measurement outcomes by considering products of all possible strings

of the projectors of Eq. (4.7). Each possible outcome string x = x1x2 · · ·xL where

x j ∈ {s, t} corresponds to an operator Px =∏ j Px j
j . Partitioning strings with an equal

number M of triplet outcomes into the sets XM, and aggregating the corresponding

projectors yields

P(mt = M) = ∑
x∈XM

Px. (4.8)

The projectors defined in Eq. (4.8), when applied to a given state, yield a discrete

probability distribution p(mt) describing the probability of measuring mt triplets in
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Figure 4.12: Panels (a)-(c) show singlet-triplet profiles for a system of L = 8 rungs without
disorder η = 0, with varying J∥/J⊥ and quench times t f . The binomial distri-
bution describing the profile deep in the J∥/J⊥→ ∞ regime is centred around
3L/4 and is shown as red circles. Panel (d) shows the shape of the quench
f (t) for t f = 1. The characteristic energy scale is taken as J⊥ = 100 MHz, and
evolution times are calculated accordingly.

total across all L rungs in the system.

Clearly as J∥/J⊥→ 0, singlets accumulate on the rungs, and the singlet-triplet

profile becomes increasingly peaked around mt , with the distribution becoming a

Kronecker delta distribution p(mt)→ δmt ,0 in the extreme limit. For a system in-

stead dominated by intra-rail couplings J∥/J⊥→ ∞, the resulting probability distri-

bution closely follows a thermal distribution which yields a binomial distribution

centred around 3L/4.

The fact that the singlet-triplet profile probability distributions of the system

deep within specific regimes are exactly known is extremely useful here. It allows

us to define a distance of the system from those regimes in terms of the Kullback-
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Liebler divergence

DKL [p(mt)∥ fB(mt)] =
L

∑
M=0

p(M) log
[

p(M)

fB(M)

]
, (4.9)

where fB(mt) ≡ fB(L,mt ,q = 3/4) is the binomial distribution describing L trials

yielding exactly mt successes with success probability q = 3/4.

I also consider the fidelity susceptibility χF which is, though far less exper-

imentally tractable, a quantum geometric quantity that allows us to probe generic

phase transitions without appealing to a specific order parameter [60]. The fidelity

susceptibility has also found use in the context of quantum sensing, as it is pro-

portional to the quantum fisher information, an intrinsic property of a system which

limits the precision of measurements that said system can be used to make [61]. The

fidelity susceptibility gives us a direct quantity with which to compare our analyses

of the singlet-triplet measurement statistics. The fidelity susceptibility is the co-

efficient of the second order term in the Taylor expansion of the logarithm of the

quantum fidelity, defined as

χF(λ ) = −2
∂ 2 lnF(λ ,ε)

∂ε2

∣∣∣∣
ε=0

(4.10)

where F(λ ,ε) = |⟨ψGS(λ )|ψGS(λ +ε)⟩| is the fidelity between the ground state of

the system |ψGS(λ )⟩ and the ground state of the system |ψGS(λ + ε)⟩ after some

small perturbation8 of the driving parameter λ . The fidelity itself spans a range

of orders of magnitude, a behaviour which is captured by use of the logarithm. In

our case, the driving parameter λ = J∥/J⊥ carries us across a crossover between

two different regimes with two very different ground states. Thus, in the crossover

region the ground state should change rapidly for small perturbations ε; this will

register a rapid growth of χF(λ ) around the critical value of λ = λc. Thus, as we

address larger systems, a diverging fidelity susceptibility serves as evidence of a

quantum crossover.

8Note that the first derivative of the fidelity vanishes as F(λ ,0) is a maximum.
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Figure 4.13: Results for exact ground states (no transport) of the antiferromagnetic Heisen-
berg ladder as a function of J∥/J⊥ at varying length scales. Solid lines show
exact results, dotted lines show DMRG results. Panel (a) shows the Kullback-
Liebler divergence of the singlet-triplet profile to the binomial distribution
centred around 3L/4. Panel (b) shows the fidelity susceptibility.

4.2.4 Results and Outlook

The results of applying the singlet-triplet profile projectors of Eq. (4.8) to the ground

states of the antiferromagnetic Heisenberg ladder Hamiltonian of Eq. (4.6) for zero

disorder η = 0 and a range of coupling ratios J∥/J⊥ and quench times t f are shown

in Fig. 4.12(a)-(c). Results for exact ground states are shown as black crosses, and

the binomial distribution which the system follows in the extreme limit J∥/J⊥→ ∞

are shown as red circles.

The system unilaterally exhibits adiabatic transport towards the J∥/J⊥ = 0

ground state for large quench times. This is manifested as a drift of the singlet-

triplet profile towards a Kronecker delta function as t f increases. For short quench

times, this drift is negligible and the system remains close to the true ground state.
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In practice, as the experimental device is limited to frequencies of up to 100MHz

for J∥ and J⊥; the real quench times for J∥/J⊥ = 10 are ten times lower than the

effective quench times shown in the legend of Fig. 4.13. This is important as the

red 20ns line in Fig. 4.13(c), which would correspond to a 2ns quench in the real

system, suffers slightly from the adiabatic drift discussed above. Thus, for extreme

values of J∥/J⊥, the quench in the experimental twin-rail device may be adiabatic;

and the resulting state after the quench is not a reliable copy of the true ground

state. Despite the fact that I do consider the effects of adiabatic transport in this

section, much of the interesting crossover behaviour is actually restricted to the

regime where the transverse and longitudinal couplings are roughly commensurate

J∥ ∼ J⊥. Thus, it is reasonable to state that the experimental device is capable of

reliably producing ground states within the regime of interest.

I next consider the gradient of the Kullback-Liebler divergence defined in

Eq. (4.9), and the fidelity susceptibility defined in Eq. (4.10). I use exact diago-

nalization to retrieve exact ground states of small systems L < 16, and use two-site

DMRG to determine ground states of larger systems L ≥ 16. The fidelity suscepti-

bility is computed using a small but finite value for ε = 10−4 and a discretized ver-

sion of Eq. (4.10): χF =−2lnF(λ ,ε)/ε2. The Kullback-Liebler divergence is cal-

culated for small systems L < 16 according to Eq. (4.9). For larger systems L≥ 16

where the enumeration of all possible strings x is impossible, I instead calculate the

probability of measuring a triplet state pt
j on each rung j, and construct a binomial

distribution from the average ∑ j pt
j/L. This determined distribution is then substi-

tuted into Eq. (4.9) as p(mt). In practice, the probabilities pt
j are relatively uniform

across the system, and this approach is justified. After normalizing both quantities

by system size L, the results of these calculations are shown in Fig. 4.13.

From Fig. 4.13(a) we can see that the gradient of the Kullback-Liebler di-

vergence peaks in the region 0 < J∥/J⊥ < 1, indicating that the statistics of the

ground state are rapidly changing in this region. The fidelity susceptibility shown in

Fig. 4.13(b) also peaks in this region, supporting the existence of a rapidly changing

ground state and thus a quantum crossover between the two regimes in this region.
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Figure 4.14: Results for ground states subject to significant preparation errors η = 0.2, and
transport during a quench time t f as a function of J∥/J⊥. Panel (a) shows
the gradient of the Kullback-Liebler divergence of the singlet-triplet profile to
the binomial distribution centred around 3L/4. Panel (b) shows the fidelity
susceptibility.

The most interesting features of these graphs are that both are clearly extensive in

L, both have crossing points at different but close values of J∥/J⊥, and they are

qualitatively very similar to each other. The first two facts, that they are exten-

sive in L and exhibit scale invariance at very specific points, may suggest a kind of

scaling behaviour. However, I was unable to find any meaningful data collapse us-

ing the continuous phase transition finite size scaling approach (see Section 1.3.3.1

and Section 2.2.4). Whilst this does not preclude the existence of some kind of

phase transition in this region, it does support the supposition that the system is in

fact undergoing a crossover through ground states of similar structure rather than a
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Figure 4.15: Probability of measuring next-nearest-neighbours in singlet states, averaged
over the entire system. Overall ground states are exact (no transport).

true quantum phase transition. The last fact, that the two graphs are qualitatively

very similar, suggests that the measurable Kullback-Liebler divergence is a good

experimental replacement for the fidelity susceptibility in this system. They both

intuitively address the same underlying thing, a rapidly changing ground state, and

produce a similar characteristic signature of the crossover behaviour.

Moreover, when I consider a realistic experimental system of L = 4 rungs with

variable quench times and anisotropic disorder η > 0, the results for the Kullback-

Liebler divergence do not significantly change. This is constrast to the fidelity sus-

ceptibility results which - whilst initially well-behaved for short quench times and

low values of J∥/J⊥ - become erratic and unpredictable as both increase. These

behaviours are shown in Fig. 4.14 for significant disorder strengths η = 0.2 and

512 sample realizations of Eq. (4.6), corresponding to errors of up to 20% in the

preparation of J∥ and J⊥ in each sample. The Kullback-Liebler divergences and

fidelity susceptibilities are calculated individually and the results are then averaged.

The gradient of the Kullback-Liebler divergence is computed after this averaging.

Remarkably, even for the significant 20% error in array preparation, the crossover

is still clearly visible in Fig. 4.14. This suggests that, for realistic quench times and
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errors in Hamiltonian perparation, quantum dot arrays are still highly reliable sim-

ulators of the antiferromagnetic Heisenberg ladder and present a promising avenue

to the experimental investigation of ground states thereof.

Finally, given the possibility of experimentally enacting nearest-neighbour

SWAP gates after the quench, it may be possible to directly investigate the state

of the system around J∥/J⊥ = 1 which should be close to a valence bond solid

of triplets distributed across next-nearest-neighbours [56]. This is schematically

shown in Fig. 4.11. Post-quench, one could simply enact SWAP gates between dis-

joint pairs of sites along one of the rails; concentrating the entangled states of half of

the L next-nearest-neighbour pairs into L/2 of the rungs. These L/2 rungs can then

be measured in the singlet-triplet basis to come up with an average system-wide

probability p(mNNN
s ) of measuring next-nearest-neighbours in a singlet state. At

J∥/J⊥ = 1, this average probability should be at a minimum. The result of explic-

itly calculating p(mNNN
s ) for a range of system sizes is shown in Fig. 4.15, wherein

this behaviour is seen exactly. Again, exact diagonalization for small systems is

shown as solid lines, and two-site DMRG for large systems is shown as dotted lines;

calculation of p(mNNN
s ) in both cases is carried out by computing the outcome of

few-site next-nearest-neighbour projectors. As system size L increases, the curves

collapse into a single line suggesting that this crossover persists in the thermody-

namic limit. A key feature of this approach is that the measurement outcomes for

individual strings x do not need to be experimentally calculated. Indeed if the out-

come of one next-nearest-neighbour measurement is typical, then p(mNNN
s ) can be

determined by the application of a single SWAP gate and subsequent measurement.

In systems which have high readout errors, this may present an even more promis-

ing method of investigating ground state phase transitions than the singlet-triplet

profile and quantities derived thereof.
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4.3 Information Leakage in Transmon-Based Quan-

tum Computers

The foundational idea of this section is that quantum computers must necessarily

trace a razor’s edge between localization and chaos [62, 63]. This makes intuitive

sense. If it is too difficult to change the internal state of a highly localized system

then the system is useless for the purposes of computation. If the system is too delo-

calized then control is an issue, and the underlying natural dynamics may push the

system into states that are undesirable. Thus, modern quantum computing devices

must necessarily thread this needle. Burdened by this narrative, a natural follow-up

question to ask is how much information exactly is lost due to the underlying dy-

namics. As I showed in Chapter 2, the internal dephasing that occurs in even highly

localized systems can erase the information encoded within. Can this be leveraged

into a quantitative analysis of how much information a quantum computer bleeds

over time whilst idle?

Much of what follows is drawn from ongoing research and private communica-

tion with Dr. Dooley at Prof. Goold’s group at Trinity College Dublin Ref. [64]. In

Section 4.3.1 I introduce the model which simulates IBM’s devices: the transmon

array, and discuss some of its features. In Section 4.3.2 I introduce the specific IBM

device in question, and analyse information loss in said device by comparing the

informational quantities with calibration data taken directly from IBM.

4.3.1 The Transmon Array Hamiltonian

The gold standard of modern quantum computation takes the form of arrays of

superconducting qubits: nanoscale or mesoscale solid-state electrical circuits that

can occupy discrete quantum states. The basic building block of such a circuit is

the Josephson junction which, at different regimes of operation, can form different

kinds of effective qubit. For the purposes of this chapter, each Josephson junction

can be abstracted into a box through which a certain number n̂ j of quasi-particles

(Cooper pairs) are flowing, and the Josephson phase φ̂ j. The Hamiltonian of an
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array of such junctions can be written as

H = 4∑
j

EC
j n̂2

j −∑
j

EJ
j cos φ̂ j +T ∑

⟨i, j⟩
n̂in̂ j (4.11)

where EC is the charging energy, EJ is the Josephson energy, and T is a capaci-

tive coupling between neighbouring junctions. For low EJ
j , this model is almost

diagonal in the basis of the number operators n̂ j. For high EJ
j the model is instead

diagonal in the basis of the phase operators φ̂ j. This latter regime is used by IBM

in their quantum computers, which are readily accessible to the wider scientific

community.

I here derive a more useful form of Eq. (4.11) in terms of these flux qubits.

Assuming for a moment that T = 0, one can diagonalize the first two terms of

Eq. (4.11) by taking n̂ j = inzpf
j (ĉ†

j − ĉ j) and φ̂ j = φ
zpf
j (ĉ†

j + ĉ j). The ĉ(†)j opera-

tors describe ‘transmon’ quasi-particles satisfying standard bosonic commutation

relations, and the numbers φ
zpf
j =

√
⟨0|φ̂ 2

j |0⟩ and nzpf
j =

√
⟨0|n̂2

j |0⟩ are zero-point

fluctuation frequencies for each individual transmon. Expanding the cosine, trun-

cating at fourth order in the ĉ(†)j operators, and defining a total transmon number

â j = ĉ†
j ĉ j yields

H = ∑
j

[
EJ

j φ
zpf2

j +8EC
j nzpf2

j n− 1
2

EJ
j φ

zpf4

j

](
â j +

1
2

)
− 1

2
EJ

j φ
zpf4

j â2
j (4.12)

where I have neglected the fast-oscillating terms that don’t conserve total transmon

number. The zero-point fluctuations satisfy nzpf
j φ

zpf
j = 1/2 (in units of ℏ = 1) and

are given by [65]:

nzpf
j =− 1√

2

(
EJ

j

8EC
j

) 1
4

, φ
zpf
j =− 1√

2

(
8EC

j

EJ
j

) 1
4

. (4.13)

Inserting these into Eq. (4.12), reintroducing the nearest-neighbour coupling term

proportional to T , and neglecting constant contributions to the energy, yields the
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Hamiltonian

H = ∑
j

(
ω j +

δ j

2

)
â j +

δ j

2
â2

j + ∑
⟨i, j⟩

τi j

(
ĉ†

j ĉ j +h.c.
)

(4.14)

where ω j =
√

8EJ
j EC

j are the harmonic frequencies and δ j =EC
j are the anharmonic

frequencies. The tunnelling frequencies τi j are readily computed as:

τi j =
T

4
√

2

[
EJ

i EJ
j

EC
i EC

j

] 1
4

. (4.15)

The Hamiltonian of Eq. (4.14) governs the underlying natural dynamics of an

array of transmon qubits in the low-energy regime for EJ
j ≫ EC

j ≫ T . In particular,

the main IBM devices operate around the regime of EJ
j ∼ 10GHz, EC

j ∼ 250−

300MHz, and T ∼ 3−6MHz; with typical gate times of around tG = 400−600ns

and readout lengths of tR = 650−700ns. In the context of the working Hamiltonian

of Eq. (4.14), this corresponds to a parameter regime around ω j ∼ 5GHz, δ j ∼

250−300MHz, and τi, j ∼ 5−10MHz. Of these parameters, IBM characterises two

of them ω j and δ j every few days for most devices. Values for τi, j are, to the best

of my knowledge, not publicly available. Though they are back-calculable from

CNOT gate times, I find that in literature a fixed value of T around the range given

is simply imposed.

As a final note, the model of Eq. (4.14) is clearly MBL, as site-to-site local

disorder far exceeds all other energy scales. Recent works have investigated this

property in the specific context of IBM’s quantum computing devices, and have

found that such devices tread a careful line between localization and chaos [62, 63,

66].

4.3.2 Idle Information Loss in Quantum Computers

The specific device I will be investigating here is IBM’s publicly available seven-

qubit Perth device. The architecture forms a kind of H-junction wherein two parallel

rails of three qubits are connected by a single qubit. This is schematically shown in

Fig. 4.16. The table of Fig. 4.16 shows the frequencies ω j and anharmonicities δ j of
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Figure 4.16: (left) Schematic figure of IBM’s Perth device with qubit labels. Brighter
(darker) node colours correspond to higher (lower) values of the frequencies
ω j which are the main values driving localization in the device. (right) Table
of qubit frequencies ω j and anharmonicities δ j as per calibration data retrieved
from IBM’s Perth device on 08/06/2023. Rounded to six significant figures.

each qubit as per calibration data retrieved from IBM’s Perth device on 08/06/2023.

After back-calculating the energies EC
j and EJ

j , and given a fixed value for the raw

tunnelling rate T , the renormalized tunnelling rates τi j can be calculated according

to Eq. (4.15). These derived τi j for intermediate T = 4MHz and for the device in

question are shown in Fig. 4.17(a) and all fall in the region of 4−5MHz, in line with

extant analyses. Two-qubit gate times tG
i j for the device are shown in Fig. 4.17(b)

and vary drastically, suggesting a range of underlying values of τi j. However, the

results of each of these panels do not nicely line up - this may be due to the fact that

CNOT gate times are generally a complicated function of the τi j or that Eq. (4.15)

does not account for e.g. the physical distance between qubits. Improvements are,

however, difficult without knowing more about the exact physical architecture of

IBM’s devices, or about the intricate details regarding how CNOT gates are actually

enacted 9.

Ultimately, all these parameters can all be fed into Eq. (4.14) to simulate an

isolated version of IBM’s Perth device. This model remains an accurate simulator

of IBM’s device as long as evolution times are restricted to be much smaller than the

corresponding dephasing times. On the device in question, these times are on the

9This seems to be proprietary information, or information that is deliberately obfuscated. After
contacting several people affiliated with IBM Quantum, I have received no concrete response to
queries on this matter.
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Figure 4.17: Panel (a) shows the derived tunnelling rates between nearest neighbour qubits,
and (c) shows the CNOT gate times as per calibration data retrieved from
IBM’s Perth device on 08/06/2023. Panel (b) shows successful per-qubit read-
out probabilities (red crosses) and the time-averaged Holevo quantity (blue
triangles with error bars). Panel (d) shows per-qubit identity fidelities (red
circles) and the per-qubit colorred Loschmidt echo (black squares with er-
ror bars). Time-averaged quantities are calculated over typical readout times
650− 700ns, which correspond to extremely long gate times. Numerical re-
sults calculated for 4 active transmon levels.

order of a hundred microseconds. In the schematic, brighter (darker) node colours

correspond to higher (lower) values of the frequencies ω j. It is mainly the values of

ω j that drive localization in the device.

The main advantage of this architecture is that - after truncating the local

Hilbert space to a few levels - the corresponding Hamiltonian admits fast brute-

force exact diagonalization. This is important, as readout and gate times of∼ 700ns

are difficult to numerically integrate given the high frequencies ω j. In principle

IBM’s larger arrays could be accessed by e.g. time-evolving block decimation or

other tensor network treatments, but there are more immediate extensions of my

treatment that I cover in detail at the end of this section.

To characterize information loss I again invoke the Holevo quantity C(t): the
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classical capacity of a quantum channel, as defined in Section 2.1.2. The states

|m(k)
j ⟩ of the j-th qubit initialized in the k-th input state are initialized in the com-

putational state m(k)
j ∈ {0,1}, wherein I assume preparation does not involve the

levels above this. I also utilize the simple fidelity between the initial state of each

individual qubit and their final states ρ
(k)
j (t) = Tri ̸= j[|m(k)(t)⟩], obtained by trac-

ing out the qubits i ̸= j after unitary time evolution. These two quantities together

should intuitively place constraints on two critical characterizing features of IBM’s

devices: the readout assignment error and the identity fidelity respectively.

The readout assignment error ηR - also referred to as the ‘state preparation and

measurement’ or ‘SPAM’ error - is the error involved preparing a state then immedi-

ately measuring it. It is characterised by averaging the probabilities of preparing the

state |0⟩ and measuring it in the state |1⟩, and that of preparing |1⟩ and measuring

|0⟩. This is clearly a classical message transmitted via a quantum channel, and hence

- if there are absolutely no preparation and measurement errors - its value is limited

by the Holevo quantity. More specifically, for each individual qubit, C(tR)≥ 1−ηR

where tR = 675ns is the readout length for the Perth device. To determine C(tR), I

average C(tR) = C(t) over the interval 650−700ns, as high values of the frequen-

cies induce rapid oscillations which cause fast fluctuations in all quantities.

The identity gate error ηI for the j-th qubit is the deviation from unity of the

fidelity of that qubit with its initial state after natural evolution over a single gate

time tG. This quantity for the j-th qubit should be bounded by the Loschmidt echo

F(t)=Tr[ρ(k)
j (t)|m(k)

j ⟩⟨m
(k)
j |] = 1−ηI . In real devices, ηI is actually determined via

randomized benchmarking [67–71]. I also average F(tG) = F(t) over the interval

650−700ns which corresponds to extreme gate times; thus the results for F(t) are

very conservative - as some gate times are as low as ∼ 300ns.

The results of this analysis are shown in Fig. 4.17(b) for the time-averaged

Holevo quantities C(t) and readout errors ηR and Fig. 4.17(d) for the time-averaged

Loschmidt echo F(t) and identity fidelity 1−ηI . Again, ηI and ηR are directly re-

trieved from the calibration data of IBM’s Perth device on 08/06/2023. As expected,

in Fig. 4.17(b) the readout errors are consistent with the inequality C(tR)≥ 1−ηR.
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The same cannot be said of Fig. 4.17(d), wherein the inequality F(tG) ≥ 1−ηI is

satisfied only be the qubits 0, 2, 4, and 6. In fact in both panels, the values of C(t)

and F(t) for qubits 0, 2, 4, and 6, are significantly higher than the corresponding

quantities for the qubits 1, 3, and 5. IBM’s data does not reveal a similar structure -

with the central qubit 3 actually having the lowest errors ηI and ηR in the entire de-

vice. Interestingly, the qubits 0, 2, 4, and 6, are edge qubits: having at most a single

nearest-neighbour. This restricts their dynamics and reduces the rate at which in-

formation can leak from them. This confluence of this fact with the fact that IBM’s

data does not have a similar issue suggests several possibilities.

Firstly, IBM may characterize its qubits individually by isolating them from

the rest of this device. If this is true, then the actual errors ηR and ηI that afflict

the device during the runtime of a real many-body program may be significantly

higher than IBM’s characterizations. Secondly, that there exist some meaningful

long-distance interactions that the model of Eq. (4.14) doesn’t account for. If so,

then characterizing these long-distance interactions is necessary as they clearly have

an impact on the dynamics of at least the edge qubits over short timescales of a sin-

gle gate time. Finally, the values of the τi j, or the way in which they enter into the

dynamics of the device, are incorrect - and off by as much as an order of magni-

tude10. This represents a problem for a lot of extant literature and ongoing research,

as the interplay between τi j and the other parameters in Eq. (4.14) is precisely what

makes these computers quantum. This can be addressed by IBM providing direct

characterizations of the τi j along with the rest of the publicly available device pa-

rameters.

The preliminary work of this section can be readily extended by investigat-

ing the possible avenues detailed above. Direct extensions also include addressing

the larger IBM devices using tensor network treatments, including noise and mov-

ing to open-system dynamics to study the interplay between internal information

scrambling and information loss to the environment, and incorporating long-range

10Indeed, a conversation I had with Oliver Dial - CTO at IBM Quantum - suggests that this may
be the case; he suggested values of τi j ∼ 1− 2MHz as opposed to the value of τi j ≥ 5MHz often
cited in literature.
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or higher order effects into the model. However, I also mention an interesting idea

that warrants further study. The most obvious way by which localization can be

strengthened and thus information leakage reduced in the system is by lowering

the tunnelling rate relative to some other parameter, e.g. τi j/ω j. However, a lower

tunnelling rate corresponds to higher gate times - it takes longer to enact two-qubit

gates because the interaction that mediates those gates has been reduced in strength.

This is an example of the notion of it being ‘hard to change the internal state of a

localized system’ that I discussed in the introductory paragraphs of this section. An

interesting question takes the form of balancing these two effects. Higher τi j mean

more information loss, but faster programs, and the burgeoning question of ‘balance

between localization and chaos’ becomes clearer once we view it as an optimization

over τi j for different problems. This may present a potential avenue for optimizing

quantum computers on a per-program basis, or as a general informational frame-

work for balancing localization and chaos.

4.4 Outlook

In this chapter, I have investigated informational aspects of various current genera-

tion or near-future NISQ devices. These analyses suggest additional ways in which

condensed matter and quantum information theory can be connected. Firstly, in

Section 4.1, I analysed the dynamics of a one-dimensional lateral array of quantum

dots using the von Neumann entropy, number entropy, and conventional imbalance.

The objective was to determine whether MBL is accessible in modern QDAs, with

model parameters informed by actual experiment in Section 4.1.4. Quantum dot

arrays are highly tunable, and thus represent a potentially lucrative testbed for quan-

tum simulation; a detection of MBL would evidence this fact with a concrete case

study. Using these quantities I identified a ‘frozen’ insulating phase which similar

to but distinct from MBL. Any identification of MBL in QDAs would require dis-

ambiguation from this phase. The findings of Section 4.1.6 show that the number

entropy and von Neumann entropy yield similar results, and that - in concert with

the imbalance - the number entropy can be used to disambiguate the frozen and
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MBL phases. This result persists when considering measurements on only a few

sites in the middle of the system. My results for this device altogether suggest that

MBL is indeed accessible in near-future quantum dot arrays with only few-site local

charge sensing measurements.

Secondly, I consider a twin-rail QDA that realizes an AFHL in Section 4.2.

Another potential use of QDAs is the preparation and analysis of ground states.

To that end I determine the effect of a diabatic quench on the ground state of the

AFHL over a crossover between a two phases. By exploiting the known statistics

of singlet-triplet measurement outcomes in an extreme limit, I define a Kullback-

Liebler divergence between those statistics and the statistics determined by exper-

iment. I also investigate the fidelity susceptibility which is suspected to act as a

general indicator for phase transitions. I find that the divergence yields similar re-

sults to the fidelity susceptibility - with both clearly capable of detecting the phase

crossover. By incorporating realistic disorder and quench times, again informed by

discussions with an experimental group, I find that the divergence remains a use-

ful and manifestly measurable signature of ground state phase transitions in current

generation twin-rail QDAs.

Finally, in Section 4.3, I have investigated idle information loss in transmon ar-

rays like those which comprise the architecture of IBM’s superconducting quantum

computers. Again, my model parameters are all informed by actual characteriza-

tions of IBM’s Perth device. By invoking the Holevo quantity as introduced in

Section 2.1.2 of Chapter 2 and the state fidelity, I quantity how accurately classi-

cal information encoded within, and the quantum state of, individual qubits is pre-

served over gate and readout times. The results of this inquiry place constraints on

how much information a transmon-based quantum computer can preserve over time

even when isolated from an environment. I find that identity fidelities and readout

errors are close to these absolute limits, and suggest that IBM’s devices (and those

similar) can be improved by strategically strengthening the localizing effects that

limit this idle information loss. Given the results of this section, I also contend

that IBM should provide characterizations of tunnelling rates alongside the other
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parameters.

Ultimately, the results of this chapter form case studies for how to apply

information-theoretic ideas to realistic modern NISQ devices. These case studies

have in turn revealed several interesting features regarding MBL, the statistics of

measurement outcomes, and information leakage in modern quantum computers.
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Chapter 5

Conclusions and Outlook

“It is good to see that in the end, when all is said and done – love prevails.”

— bell hooks

“You’re Sougato’s new student? Welcome to the family!”

— Anonymous

Said to me by a stranger,

whose name I have forgotten,

on my first day as a physicist.

In this thesis, I have forged several new interdisciplinary connections between

the fields of quantum information theory and condensed matter physics. These con-

nections have, in turn, yielded insight into how information in many-body quantum

systems can be stored, tracked, manipulated, and lost.

The work of Chapter 2 places the notion of memory in many-body quan-

tum systems on a firm quantitative footing. Whereas memory has heretofore been

probed implicitly, my provision of a set of criteria, a few exemplary quantifiers of

memory, and concrete case studies in non-ergodic MBL and scarred settings re-

spectively, lay the groundwork for future investigation of memory effects. This

work also sheds some light on the potential structure of the MBL phase. Future

research in this field could involve a more detailed examination of memory in non-

ergodic systems: now that we know information can be stored in these systems, can
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it be manipulated. This could pave the way for the integration of condensed matter

systems into existing quantum computational architectures.

Chapter 3 exploits the idea of compression that is latent in the matrix prod-

uct state representation of many-body quantum state. I use this to develop a novel

geometric measure of entanglement in many-body quantum which is highly suc-

cessful at detecting ground state phase boundaries. By investigating the ergodic-

MBL transition, I also find it to be a valuable tool in analysing phase transitions

that occur across the whole spectrum. Interpreting this measure as a quantification

of entanglement-complexity, my work demonstrates its value in condensed matter

systems where ground states may not be separable but still have simple area-law en-

tanglement structures. This work represents a step forward in terms of which tools

are available to the theoretical physics community when probing unknown ground

state phase diagrams. Future work could delve deeper into compressability, the ten-

sor network description of quantum states may admit e.g. information bottleneck

bounds which limit how easily certain states can be compressed and decompressed

using a fixed network. Not only would such an analysis yield more insight into

tensor networks themselves, but it could lead to advanced quantum compression al-

gorithms - quantum versions of the algorithms that laid the foundation for modern

computation.

The concluding Chapter 4 addresses informational aspects of realistic current

or near-future NISQ devices. The work in this section reveals an insulating phase

of matter in quantum dot arrays, and exploits information-theoretic quantities to

differentiate this phase from MBL. This paves the way for near-future detection of

MBL in quantum dot arrays using local charge sensing measurements. I also exam-

ine twin-rail quantum dot arrays realizing an antiferromagnetic Heisenberg ladder;

revealing that by exploiting the Kullback-Liebler divergence, an experimentally ac-

cessible probe of ground state crossovers in the array can be constructed. Additional

numerical evidence suggests that the preparation of ground states and the probing of

ground state crossovers is a realistic possibility in current generation quantum dot

arrays. Finally I examine information loss in transmon arrays which simulate the
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natural underlying dynamics of IBM’s superconducting quantum computers. This

examination reveals that internal idle information loss - where information is not

lost to the environment, but instead becomes distributed non-locally - is significant.

This kind of idle information loss would occur even if the device were fully isolated

from the environment, and so characterizing it provides an upper limit on how re-

liable these devices are. The sum total of the results of this chapter demonstrates

the value of the informational approach in practical, realistic, experimental settings.

Future work could include more detailed analysis of information loss in quantum

computers, as well as potentially novel error-correcting codes that exploit the pre-

cise features of the underlying many-body quantum dynamics of the device.

Ultimately, this thesis has taken the form of fugues: varied related investiga-

tions surrounding the same broad themes that connect condensed matter and quan-

tum information theory. Themes of memory, compression, probability, the non-

local distribution of information, and information leakage. Taken in concert, the

results of this thesis paint a picture of how to reliably analyze the flow of informa-

tion in condensed matter systems, and present concrete case studies in how to do

so. The concluding exploratory parts of each chapter demonstrate how rich and full

of additional questions these themes are. With quantum computers still in their in-

fancy, and the many-body quantum frontier as wide and exciting as ever; the nature

and role of information in these systems seems, to me, increasingly relevant. My

concluding contention is simple: to talk about information in condensed matter sys-

tems requires us to reach beyond the basic language of correlation functions, von

Neumann entropies, and OTOCs. To paraphrase Claude Shannon for the final time:

how much richer a source is Finnegan’s Wake than Basic English [1]. And how

much richer then must the informational universe be than the small fragment that I

have studied here.

References
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Appendices

A Derivation of the Hierarchy of Memory Quanti-

fiers

Here I derive the first two inequalities in the memory hierarchy 1− S(t) ≥C(t) ≥

Ic(t) ≥ Is(t) discussed in Section 2.2.3. I also discuss a few technical nuances and

justifications for the construction of Is(t). I derive the inequalities for a single en-

semble of initial probabilities {pk} and final quantum states {ρ(k)(t)}. Clearly, if

it holds for each individual ensemble, it holds for the disorder and environment

(channel) average over those ensembles as well. I denote each quantity for a single

channel realization using the index r, e.g. S(t) = 1
Nr

∑r Sr(t) where Nr is the num-

ber of samples. I suppress this index on the density operators ρ(k)(t) themselves

for readability. Thus, the hierarchy derived here for the largest three quantities is

stricter than that stated in the main text: 1−Sr(t)≥Cr(t)≥ Ir
c(t).

The first inequality 1−Sr(t)≥Cr(t) trivially follows from the definition of the

normalized von Neumann entropy over the ensemble:

Sr(t) =
1
l ∑

k
pkS(ρ(k)(t)) (1)

where S(ρ) =−Trρ log2 ρ; and the definition of the Holevo quantity:

Cr(t) =
1
l

S

(
∑
k

pkρ
(k)(t)

)
− 1

l ∑
k

pkS(ρ(k)(t)). (2)

By taking the difference of the two quantities ∆r
SC(t) and noting that the second term
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in the Holevo quantity is just Sr(t), it follows:

∆
r
SC(t) = 1−Sr(t)−Cr(t) = 1− 1

l
S

(
∑
k

pkρ
(k)(t)

)
(3)

where the second term clearly saturates to its maximum value of unity as

∑k pkρ(k)(t) approaches the identity. As such ∆r
SC(t) ≥ 0 and the inequality

1− Sr(t) ≥ Cr(t) follows. This provides an intuitive understanding of the Holevo

quantity as a modification to 1− Sr(t); accounting for how much information is

accessible at time t rather than how useful the ρ(k)(t) are as an instantaneous

alphabet.

The derivation of the second inequality is slightly more involved, first requiring

that the CMI Ir
c(t) is shown to be a fully decohered version of the Holevo quantity

Cr(t). This is covered in the discussion and derivation preceding Eq. (2.24) in the

main text, but I will repeat it here for completeness. I will carry out the derivation in

the computational basis, but in principle any suitable basis can be used instead. In

the computational basis, and given the {pk} a priori, the joint probability p(k,k′, t)

of sending the state k and measuring the state k′ at time t is determined entirely by

the diagonal elements of ρ(k)(t):

p(k,k′, t) = pkρ
(k)
k′k′(t) (4)

the classical mutual information can be then computed according to the well-known

formula

Ir
c(t) =

1
l ∑

kk′
p(k,k′, t) log2

p(k,k′, t)
∑s p(k,s, t)∑s′ p(s′,k′, t)

(5)

where the first marginal distribution ∑s p(k,s, t) resolves trivially to pk by the unit-

trace condition (see Eq. (4)). The second marginal distribution ∑s′ p(s′,k′, t) in-

volves all message states and is generally non-trivial. Evaluating the first marginal
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distribution, splitting up the logarithm, and cancelling relevant terms yields:

Ir
c(t) =

1
l ∑

kk′
pkρ

(k)
k′k′(t) log2 ρ

(k)
k′k′(t)

− 1
l ∑

kk′
pkρ

(k)
k′k′(t) log2 ∑

s′
ps′ρ

(s′)
k′k′ (t)

where I note that, by constructing an operator with the ρ
(k)
k′k′(t) as eigenvalues, the

sums over k′ can be replaced with appropriate traces and some terms will take the

form of von Neumann entropies. A naturally suitable operator is the fully decohered

(in the computational basis) operator ρ
(k)
D (t), defined as the leading diagonal of

ρ(k)(t):

ρ
(k)(t) → ρ

(k)
D (t) = diag

(
ρ
(k)
11 (t),ρ(k)

22 (t), · · · ,ρ(k)
2l2l(t)

)
(6)

which trivially has the ρ
(k)
k′k′(t) as eigenvalues. I can then recast Ir

c(t) in terms of

traces as follows:

Ir
c(t) =

1
l ∑

k
pkTr

[
ρ
(k)
D (t) log2 ρ

(k)
D (t)

]
− 1

l
Tr

[(
∑
k

pkρ
(k)
D (t)

)
log2

(
∑
s

psρ
(s)
D (t)

)]

which, when rewritten in terms of the von Neumann entropy S(ρ) = −Trρ log2 ρ ,

yields the Holevo quantity over decohered states ρ
(k)
D (t):

Ir
c(t) =

1
l

S

(
∑
k

pkρ
(k)
D (t)

)
− 1

l ∑
k

pkS(ρ(k)
D (t)). (7)

demonstrating, by analogy to Eq. (2), that the configurational mutual information

is just the Holevo quantity with all states fully decohered in the computational ba-

sis. Though I have chosen the computational basis for the derivation, any suitable

(orthonormal) basis can be used. One can intuit that different choices of basis yield

different diagonal elements in the ρ
(k)
D (t), and act as effective modifications to the

eigenvalues of all the ρ(k)(t) at once. The Holevo quantity is ‘optimal’ in the sense

that it uses the true eigenvalues of the ρ(k)(t), equivalent to performing measure-
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ments in the eigenbasis of each individual ρ(k)(t).

I now derive the second strict inequality Cr(t) ≥ Ir
c(t) by defining the differ-

ence:

l∆r
CI(t) = lCr(t)− lIr

c(t) (8)

where I have multiplied by l to suppress the normalization constants and avoid

notational clutter in the derivation to come. Inserting the Holevo quantity of Eq. (2)

and the dephased Holevo form of the CMI of Eq. (7), and fully expanding the von

Neumman entropies yields:

l∆r
CI(t) =−Tr

[(
∑
k

pkρ
(k)(t)

)
log2

(
∑
k

pkρ
(k)(t)

)]
+∑

k
pkTr

[
ρ
(k)(t) log2 ρ

(k)(t)
]

+Tr

[(
∑
k

pkρ
(k)
D (t)

)
log2

(
∑
k

pkρ
(k)
D (t)

)]
−∑

k
pkTr

[
ρ
(k)
D (t) log2 ρ

(k)
D (t)

]
.

I now remark that the operators log2 ρ
(k)
D (t) and log2 ∑k pkρ

(k)
D (t) are diagonal by

definition, so any matrix multiplication between them and another operator will only

involve the diagonal elements of both. Thus, all the ρ
(k)
D (t) outside those logarithms

can be replaced by the corresponding original operators ρ(k)(t). I perform this

replacement, collect like terms, and manipulate l∆r
CI(t) into a revealing form:

l∆r
CI(t) =−Tr

[(
∑
k

pkρ
(k)(t)

)(
log2

(
∑
k

pkρ
(k)(t)

)
− log2

(
∑
k

pkρ
(k)
D (t)

))]
+∑

k
pkTr

[
ρ
(k)(t)

(
logρ

(k)(t)− logρ
(k)
D (t)

)]
in which both terms clearly take the form of quantum relative entropies S(ρ||σ) =

Tr[ρ(log2 ρ− log2 σ)]. Explicitly, one can rewrite ∆r
CI(t) as follows (re-introducing
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the normalization factor):

∆
r
CI(t) =−

1
l

S

(
∑
k

pkρ
(k)(t)

∣∣∣∣∣
∣∣∣∣∣∑k

pkρ
(k)
D (t)

)
+

1
l ∑

k
pkS
(

ρ
(k)(t)

∣∣∣ ∣∣∣ρ(k)
D (t)

)
in which, by the joint convexity of the quantum relative entropy, the second term is

greater than or equal to the first. As such, ∆r
CI(t)≥ 0 and the Holevo quantity upper

bounds the CMI Cr(t)≥ Ir
c(t). This can be understood in two highly intuitive ways:

(i) the CMI is ‘suboptimal’ with respect to the Holevo quantity in the sense that it

uses a single, fixed, measurement basis (ii) decoherence and measurements cannot

increase the information accessible in a system.

I conclude with a brief discussion of the single-site mutual information (SSMI)

Is(t). The final inequality Ic(t)≥ Is(t) can be intuitively understood as follows: the

SSMI is constructed using repeated partial traces and projections on the systems

used in the construction of the CMI. Such operations cannot increase the informa-

tion in a system, and so we expect the CMI to systematically upper-bound the SSMI.

This has been convincingly verified numerically in Section 2.2.4. Finally, in the def-

inition of the SSMI in Eq. (2.16), I average over individual sites and messages in

an order that may appear arbitrary: taking the site average at the level of individual

probabilities, and the message average at the level of disorder/environment (chan-

nel) averaging. My justifications follow four ideas: (i) an average must be taken,

without averaging the protocol sends a single message with probability unity, and

as such cannot bear information. This can be verified by inspection of the definition

of Is(t) in the main text (ii) For a given site, the rest of the message forms part of

the environment (iii) I define the SSMI analogously to the conventional imbalance

which averages over each site per realization (iv) results (not shown) for taking the

combined order - with both site and message averaging at the level of individual

probabilities - yield no scaling results, and show an overall decrease in informa-

tional content with increasing system size; indicating that this decoding protocol is

essentially useless.
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B Diagrammatic Tensor Notation
Diagrammatic tensor notation, alternatively named Penrose notation for its origina-

tor Roger Penrose in Ref. [1], is a visual depiction of tensors and tensor networks.

The mathematical rules of tensor manipulation have corresponding diagrammatic

representations and so the tedious process of calculation and tally-keeping of in-

dices is abstracted away into doodles that are readable at a glance.

The basic object, the tensor itself, is represented as a blob with legs attached:

each leg corresponds to an index of that tensor. Legs going up correspond to con-

travariant indices (up indices), and legs going down correspond to covariant indices

(down indices); though this is often ignored for indices that are contracted over or in

situations where the difference is irrelevant. The tensor Aµ

νη for example is shown

in panel a) of Fig. B.1. Contractions over pairs of indices are drawn simply by con-

necting the indices in question; the tensor network Bµ

ν Cη
µ for example is shown in

panel b) of Fig. B.1.

Figure B.1: Schematics showing the basics of diagrammatic ‘Penrose’ notation for tensor
networks. Panel a) shows the diagrammatic representation of the tensor Aµ

νµ ,
and b) shows the diagrammatic representation of the contraction Bµ

ν Cη
µ .

The standard tensor manipulations then become simple diagrammatic tricks.

For example, raising or lowering an index via the metric tensor corresponds to ex-

tending the corresponding leg until it points upwards or downwards. More compli-

cated algorithms can also be readily represented, consider the singular value decom-

position of Eq. (3.4) (in which I have omitted any notion of upper or lower indices),

which has been drawn diagrammatically in Fig. B.2. Note that the contraction over
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Figure B.2: A diagrammatic version of the singular value decomposition of Eq. (3.4).

the single index s2 is represented by two contractions over the same index s2 going

into and out of S, this can be understood either as equivalent to the promotion of S

to a diagonal tensor of increased rank, or as notational convenience in representing

a contraction over three indices.

C The Constant Interaction Model and Semi-Classical

Conductor Networks

The celebrated constant interaction model is the de facto starting point for analy-

ses of quantum dot systems. The two core assumptions of the constant interaction

model are as follows: (i) the quantized energy levels are unaffected by, and mani-

fest as simple energetic contributions to, the classical Coulomb interactions between

electrons. It is in this sense that the model is semi-classical. (ii) the Coulomb in-

teractions between a single electron on the j-th dot and all other electrons in the

system are parametrized by a constant capacitance c j [2]. We can thus determine

the ground state properties of the classical (t = 0) dot array by considering the

electrostatics problem of minimizing the total energy of a network of capacitively

coupled conductors.

I consider just such a network of N classical conductors henceforth, with each

conductor capacitively coupled to all the others and to ground. These conductors

each describe a single conducting element of the entire quantum dot system: gates,

leads, and dots. At electrostatic equilibrium, the charge Q j on a given conductor j
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must be balanced with the charge in every capacitor to which it is coupled:

Q j =
N

∑
k=0

c jk(Vj−Vk) (9)

where c jk is the capacitive coupling between conductors j and k, and where Vj is

the electric potential on the j-th conductor. I fix V0 = 0 as the potential of the

ground j = 0. One can see quite clearly that Eq. (9) is some weighted linear sum

of the potentials Vj where the weights can be extracted by explicitly separating the

potential differences and the k = j terms:

Q j = c j j (Vj−Vj)︸ ︷︷ ︸
=0

+

 N

∑
k=0
k ̸= j

c jk

Vj−
N

∑
k=0
k ̸= j

c jkVk (10)

= c jVj−
N

∑
k=0
k ̸= j

c jkVk (11)

where I have defined c j = ∑
N
k=0,k ̸= j c jk. This c j is a constant for each conductor in

the network, and is the eponymous ‘constant’ capacitance discussed in the opening

paragraph of this section. We can now rewrite Eq. (9) as a matrix equation:

Q⃗ =CV⃗ (12)

where the elements of the vectors Q⃗ and V⃗ are the Q j and Vj as defined above. The

elements of the matrix C are given by Eq. (11) with diagonal elements c j and off-

diagonal elements −c jk. Finally, the total electrostatic energy U of this network is

given by the sum of the electrostatic energies U j of each individual node:

U j =
1
2

N

∑
k=0

c jk(Vj−Vk)
2 (13)

in the expansion of the squared binomial (Vj−Vk)
2, one can notice that k = j terms

are zero and that cross terms of the form VjVk cancel as we evaluate the sum over

all N nodes. This leaves us exclusively with terms proportional to the V 2
j , and by
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a similar method as employed in Eq. (11) gives us a familiar equation for the total

electrostatic energy U :

U = V⃗ ·CV⃗ = Q⃗ ·C−1Q⃗ (14)

where the final step follows from Eq. (12) and the commutativity of the dot prod-

uct. In a physical quantum dot array, we can assuredly characterise all the relevant

capacitances; though the other quantities are not necessarily all known. The po-

tentials of voltage sources such as plunger and barrier gates are well-controlled,

but the charge on each dot is given by a self-consistent electrostatics problem in-

volving these controlled voltages. I henceforth call the nodes with known applied

voltages ‘voltage sources’ and all other nodes ‘charge nodes’. The incorporation

of such a voltage source essentially corresponds to a node with a large charge on it

Q j→ ∞ and an equivalently large capacitive coupling to ground C0→ ∞ such that

Vj→ Q j/C0 is fixed. We can then reformulate Eq. (12) as:

Q⃗c

Q⃗v

=

Ccc Ccv

Cvc Cvv

V⃗c

V⃗v

 (15)

where Q⃗c and Q⃗v are vectors of charges on the conductors which are charge nodes

and voltage sources respectively. The V⃗c and V⃗v are vectors of the electrostatic

potentials on charge nodes and voltage sources respectively. The Ccc, Ccv, Cvc,

and Cvv matrices contain the capacitive couplings between charge-charge, charge-

voltage, and voltage-voltage conductors respectively.

This gives us a rather convenient method for extracting the electrostatic energy

of an array of classically interacting quantum dots, given the capacitances of all

couplings and all the voltages applied to source/drain leads, and the plunger gates.

We simply consider the electrostatic energy equation Eq. (13) as applied to the part

of Eq. (15) corresponding to the vector of charge node charges Q⃗c. The voltages on

the charge nodes can be computed as:

V⃗c =C−1
cc

(
Q⃗c−CcvV⃗v

)
(16)
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and thus the total electrostatic energy of just the charge nodes (the quantum dots)

as:

Uc =
1
2

V⃗c ·CccV⃗c (17)

If we then rewrite the charge on each charge node Q j =−N j|e| as some number N j

of fundamental charges e, we find:

Q⃗c =−|e|N⃗ =−|e| [N1,N2,N3, · · · ,Nn]
⊤ (18)

where n is the number of charge nodes, i.e. the number of quantum dots in an array.

Given a known set of applied voltages V⃗v, characterizable inter-dot capacitances

which are the elements of Ccc, and capacitances between dots and the gates and

leads which are the elements of Ccv, we can always solve Eq. (17) as a function of

the dot occupancies {N j} using Eq. (16) and Eq. (18),

Uc(N⃗) =
1
2

C−1
cc

(
−|e|N⃗−CcvV⃗v

)2
. (19)

We can then find the classical equilibrium states of such a system by - for a fixed set

of voltage source potentials and capacitances - finding the values {N j} which max-

imize the electrostatic energy Uc without exceeding zero. Transition lines which

demarcate different equilibrium states as a function of gate voltages yield the well-

known classical ‘honeycomb’ charge stability diagrams. These classical diagrams

can be readily obtained by constructing chemical potential objects:

µ j(N⃗, N⃗′) =Uc(N⃗)−Uc(N⃗′) (20)

where N⃗ and N⃗′ are two different number configurations. At phase boundaries this

quantity should vanish for N⃗ ̸= N⃗′.

For a double quantum dot system coupled in series to leads to the left L and

right R, and to plunger gates g1 and g2 on each dot 1 and 2 respectively, we have four
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voltage sources: L,R,g1,g2 with a corresponding voltage source potential vector:

V⃗v = [VL,Vg1,Vg2,VR]
⊤ (21)

and two charge nodes 1,2 with a corresponding charge node charge vector:

Q⃗c =−|e|[N1,N2]
⊤ (22)

our capacitance matrices are given by:

Ccv =C[cv] =−

cL,1 cg1,1 cg2,1 cR,1

cL,2 cg1,2 cg2,2 cR,2

 (23)

and

Ccc =

 C1 −c1,2

−c2,1 C2

 (24)

where cα,β is the capacitance between node α and node β , and C1(2) = ∑α cα,1(2)

is the sum of all capacitances coupled to dot 1(2). In this case:

C1 = cL,1 + cg1,1 + cg2,1 + cR,1 (25)

C2 = cL,2 + cg1,2 + cg2,2 + cR,2 (26)

We also note that Eq. (24) is trivially invertible:

C−1
cc =

1
C1C2− c1,2c2,1

C2 c2,1

c1,2 C1

=

 C̃2 c̃2,1

c̃1,2 C̃1

= C̃[cc] (27)

Substitution of the above equations into Eq. (19), explicitly writing out the

matrix multiplications, and collecting terms gives us a tensor representation of the

full form for the total classical electrostatic energy of a double dot:

U(N1,N2)=
1
2

[
|e|2C̃[cc]

αβ
NαNβ + |e|C̃[cc]

αβ
C[cv]

βγ
VγNα + |e|C̃[cc]

βα
C[cv]

βγ
VγNα +C̃[cc]

αβ
C[cv]

βγ
C[cv]

αδ
VγVδ

]
(28)
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where I have implied Einstein’s summation convention. Note that the two terms pro-

portional to |e| are identical if we make the reasonable assumption that c1,2 = c2,1 =

Cm. Numerical contraction of the above network can be used to readily find elec-

trostatic energies of a characterized quantum double dot at any occupancy (N1,N2).

I conclude by noting that this is all straightforwardly generalizable for larger dot

arrays, and that the costly matrix inversion C−1
cc need only be performed once if the

capacitances are independent of applied gate voltages.

D The Lorentzian Tunnelling Curve for Quantum

Double-Dots
Evaluation of the steady-state rate equations ρ̇ = 0 for a double-dot system yields

coefficients which can then be used to evaluate the steady-state current at resonance

(the conductance peak) through said system. Such a current can then be fitted to

experimental data to determine the value of parameters in the theoretical model of

the experimental system. I will go through this process in detail for the two-site

extended Fermi-Hubbard model, showing that the current through a double-dot at

resonance takes a Lorentzian form [3, 4].

Consider a quantum double-dot system occupied by a single species of

fermion. The system can either be empty | ◦ ◦⟩, left-occupied | ◦ •⟩, right-occupied

| • ◦⟩, or fully-occupied | • •⟩. The extended Fermi-Hubbard Hamiltonian incor-

porating a nearest-neighbour interaction V and on-site chemical potentials ε1 =

δε,ε2 =−δε then reads as follows:

H =−τ(| ◦ •⟩⟨•◦ |+h.c.)+V | • •⟩⟨•• |+δε| • ◦⟩⟨•◦ |−δε| ◦ •⟩⟨◦• | (29)

which can be represented in the above basis as the following matrix:

H =


0 0 0 0

0 −δε −τ 0

0 −τ δε 0

0 0 0 V

 (30)
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Figure D.1: The Lorenztian function of Eq. (46) for three different parameter regimes. Blue
crosses indicate Γ = τ = 1, the reference regime. Orange circles indicate an
increase just in Γ = 2, and a dramatic rise in the Lorenztian’s height, but not
its width. Green squares indicate an increase just in τ = 2, and a broadening
of the peak without much extra height. Altogether, this suggests that Γ mostly
tunes the height of the Lorenztian, and τ the width; allowing us to easily fit the
Lorenztian to any set of data points.

and where I also define two jump operators as follows:

L1 =
1√
2
(| • ◦⟩⟨◦◦ |+ | • •⟩⟨◦• |)

L2 =
1√
2
(| ◦ ◦⟩⟨◦• |+ | • ◦⟩⟨•• |)

with equivalent matrix representations:

L1 =
1√
2


0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

 L2 =
1√
2


0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

 (31)

with the identity condition ∑ j L†
jL j = I resolved by some other jump operators
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{L j>2} which will carry no weighting in the eventual construction of the Lindblad

equation. The two jump operators L1 and L2 respectively correspond to tunnelling

from the left lead into the left dot, and from the right dot to the right lead. The rates

of the reverse processes are assumed to be negligible (see schematic b) of Fig. 4.2).

By assuming that the tunnelling rates into Γ1 and out of Γ2 the double-dot

system are equal Γ1 = Γ2 = Γ and construct the Lindblad equation as follows:

ρ̇(ρ) = i[ρ,H]+Γ

(
L1ρL†

1 +L2ρL†
2−

1
2

(
L†

1L1ρ +ρL†
1L1 +L†

2L2ρ +ρL†
2L2

))
.

(32)

Explicit evaluation of the steady-state equation ρ̇(ρ) = 0 on the general density

matrix:

ρ =


ρ◦◦,◦◦ ρ◦◦,◦• ρ◦◦,•◦ ρ◦◦,••

ρ◦•,◦◦ ρ◦•,◦• ρ◦•,•◦ ρ◦•,••

ρ•◦,◦◦ ρ•◦,◦• ρ•◦,•◦ ρ•◦,••

ρ••,◦◦ ρ••,◦• ρ••,•◦ ρ••,••

 (33)

subject to hermiticity ρ = ρ† and normalization Tr[ρ] = 1 conditions yields a system
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of seventeen linear equations, of which only ten are linearly independent:

ρ̇◦◦,◦◦ = 0 =
Γ

2
ρ◦•,◦•−

Γ

2
ρ◦◦,◦◦ (34)

ρ̇◦◦,◦• = 0 =

(
−3Γ

4
− iδε

)
ρ◦◦,◦•− iτρ◦◦,•◦ (35)

ρ̇◦◦,•◦ = 0 =

(
−Γ

4
+ iδε

)
ρ◦◦,•◦+

Γ

2
ρ◦•,••− iτρ◦◦,◦• (36)

ρ̇◦◦,◦• = 0 =

(
iV − Γ

2

)
ρ◦◦,•• (37)

ρ̇◦•,◦• = 0 =−Γρ◦•,◦•− iτρ◦•,•◦+ iτρ•◦,◦• (38)

ρ̇◦•,•◦ = 0 =

(
−Γ

2
+2iδε

)
ρ◦•,•◦− iτρ◦•,◦•+ iτρ•◦,•◦ (39)

ρ̇◦•,•• = 0 =

(
−3Γ

4
+ iV + iδε

)
ρ◦•,••+ iτρ•◦,•• (40)

ρ̇•◦,•• = 0 =
Γ

2
ρ◦◦,◦•+

(
−Γ

4
+ iV − iδε

)
ρ•◦,••+ iτρ◦•,•• (41)

ρ̇••,•• = 0 =
Γ

2
ρ◦•,◦•−

Γ

2
ρ••,•• (42)

Tr[ρ] = 1 = ρ◦◦,◦◦+ρ◦•,◦•+ρ•◦,•◦+ρ••,•• (43)

from which one can immediately note, through Eq. (37), that ρ◦◦,•• = 0. The next

thing to note is that the equations Eq. (35), Eq. (36), Eq. (40), and Eq. (41)) form

an independent subsystem of equations in ρ◦◦,◦•, ρ◦◦,•◦, ρ◦•,••, and ρ•◦,•• which

can be mutually solved without invoking the normalization condition Eq. (43). As

such, no term can enter this subsystem of equations which is not proportional to

one of these elements. This essentially means that this subsystem of equations is

eventually reducible to:

ρ◦◦,•◦ ∝ ρ◦◦,◦• ∝ ρ◦•,•• ∝ ρ•◦,•• ∝ 0

Hence, all of the involved matrix elements (and their hermitian conjugate counter-

parts) are equal to zero as well.

We can now explicitly solve the remaining equations to determine the non-zero

elements of the steady-state density operator. Noting from Eq. (34), Eq. (42), and
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Figure D.2: Differential conductance of a quantum double-dot in a parameter regime close
to a pair of triple points. a) shows the experimental data which, despite clear
triple points, is too noisy to extract anything except a rough estimate of the
avoided crossing energy gap V + 2τ (the length of the red line with crossed
ends). b) is the same data, but smoothed by a radially symmetric gaussian
kernel, from here it is possible to estimate τ by extracting the coulomb peak
across the stable regions with same total number (the data points that fall on
the red line with circle ends) and fitting it to the Lorenztian of Eq. (46). c)
Sobel edge detection of the smoothed data, may provide a more accurate value
of the avoided crossing energy gap V +2τ .

Eq. (43) that:

ρ◦◦,◦◦ = ρ◦•,◦• = ρ••,•• =
1
3
(1−ρ•◦,•◦) (44)

which we can use, along with the fact that ρ◦•,•◦ = ρ∗•◦,◦• = α + iβ , to solve the two

remaining equations Eq. (38) and Eq. (39). Using Eq. (39) we find:

ρ•◦,•◦ = 1− 6βτ

Γ
(45)

and using Eq. (38), by setting the real part to zero separately, we find:

α =−4δεβ

Γ
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which we then use in conjunction with setting the imaginary part of Eq. (38) to zero

to find:

β =
2Γτ

Γ2 +16(δε2 + τ2)
.

We can now construct a simple steady-state current Iss =−iτ(ρ•◦,◦•−ρ◦•,•◦) = 2βτ

from the forwards and backwards tunnelling rates between the dots, which gives us

a steady-state current through the dot of:

Iss =
4Γτ2

Γ2 +16(δε2 + τ2)
. (46)

Figure D.3: Optimal fit (blue line) of the Lorenztian function of Eq. (46) to the data points
(red crosses) extracted along the red line of Fig. D.2. The x-axis is Vsweep−
Vbias, which, assuming that cross-talk is negligible at resonance, is the energy
difference δε between the two dots.

The form of the steady-state current Iss is a Lorentzian function of the level

gap δε , and its shape for various choices of the parameters Γ and τ are shown in

Fig. D.1. This current is conceptually equivalent to the conductance of the system

against bias voltage and thus the signature conductance peaks of a double dot should

be fitted nicely by an appropriately scaled Lorentzian function. Successful fitting
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of such a function, and its comparison to Eq. (46), should allow us to extract values

of Γ and τ . In fact, this fitting process is made relatively simple due to the feature,

as is clearly shown in Fig. D.1, that τ mostly controls the width of the Lorentzian

and Γ mostly controls the peaks’ height. Intuitively, this is just a restatement of the

well-known fact that larger lead couplings Γ allow more current to flow through the

system, and that larger inter-dot couplings τ cause the two dots to hybridize.

E Mapping the Fermi-Hubbard Model to the XXZ

Spin Chain

The spinless Fermi-Hubbard model of Eq. (4.2) can be mapped onto an spin-1/2

XXZ model by means of a standard Jordan-Wigner transformation. I start by iden-

tifying the two states of each site - occupied or unoccupied - with the two spin-1/2

states - spin-up and spin-down. I then relate the fermionic creation and annihilation

operators with the spin-1/2 raising and lowering operators c†
j → S+j and c j → S−j ,

and impose the standard fermionic anti-commutators by applying highly non-local

Jordan-Wigner string operators such that the final transformation takes the form:

c†
j =

(
∏
k< j

σ
z
j

)
S+j (47)

c j =

(
∏
k< j

σ
z
j

)
S−j (48)

where the σ
z
j is the standard Pauli Z operator. In practice, due to the fact that (σ z

j )
2 =

1, many of these Jordan-Wigner strings cancel and one can often manipulate the

final Hamiltonian into a local form. Substituting Eq. (47) and Eq. (48) into the

Hamiltonian Eq. (4.2), and simplifying the Jordan-Wigner strings, yields the model

H = τ

L−1

∑
j

(
S+j σ

z
j S
−
j+1 +h.c.

)
+V

L−1

∑
j

S+j S−j S+j+1S−j+1 +
L

∑
j

h jS+j S−j
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which we can simplify further by noting that S+j S−j = Sz
j +1/2, that S+j σ

z
j = −S+j ,

and by invoking the definition of S±j = Sx
j± iSy

j; where Sα
j are the standard spin-1/2

operators. Under these simplifications, the model now takes the form

H =−2τ

L−1

∑
j

(
Sx

jS
x
j+1 +Sy

jS
y
j+1

)
+V

L−1

∑
j

(
Sz

jS
z
j+1 +Sz

j +Sz
j+1 +1

)
+

L

∑
j

h j

(
Sz

j +1/2
)

wherein the negative overall phase of the tunnelling term proportional to t is ir-

relevant to the physics of the system: we can e.g. simply relabel every other site

such that, for odd j, Sx/y
j →−Sx/y

j , and Sz
j is left unchanged. I eliminate all con-

stant terms which do not contribute to the physics of the system, and note that

- since the Hamiltonian conserved total particle number, its Jordan-Wignerization

equivalently conserves total spin. Thus we can neglect all terms proportional to

∑
L
j Sz

j, which appear in the sum over single-site operators proportional to V such

that ∑
L−1
j Sz

j + Sz
j+1 = −Sz

1− Sz
L +∑

L
j Sz

j. Collecting terms, and performing these

substitutions gives us an extended XXZ Hamiltonian

H = 2τ

L−1

∑
j

(
Sx

jS
x
j+1 +Sy

jS
y
j+1 +

V
2t

Sz
jS

z
j+1

)

−V
(
Sz

1 +Sz
L
)
+

L

∑
j

h jSz
j

which exhibits an XXZ transition at V = 2τ , makes clear the importance of edge

effects in small systems by explicit inclusion of the dangling Sz
1 and Sz

L operators.

F Colophon

The numerical tools used throughout this thesis are modifications and extensions

of several important python packages. First and foremost is quimb, a package for

simulating many-body quantum systems and managing tensor networks [5]. Other
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crucial packages include tenpy, another package for managing tensor networks [6],

and pyfssa, a package for carrying out data collapse and finite size scaling analyses

[7, 8]. This document was set using LATEXand BibTEX, and composed with the

Overleaf online text editor.
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