
HEALING FAILURES AND IMPROVING
GENERALIZATION IN DEEP
GENERATIVE MODELLING

Mingtian Zhang

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Computer Science

University College London

October 7, 2023



Declaration

I, Mingtian Zhang, confirm that the work presented in this thesis is my own. Where

information has been derived from other sources, I confirm that this has been indi-

cated in the work.



Abstract

Deep generative modeling is a crucial and rapidly developing area of machine

learning, with numerous potential applications, including data generation, anomaly

detection, data compression, and more. Despite the significant empirical success of

many generative models, some limitations still need to be addressed to improve their

performance in certain cases. This thesis focuses on understanding the limitations of

generative modeling in common scenarios and proposes corresponding techniques to

alleviate these limitations and improve performance in practical generative modeling

applications. Specifically, the thesis is divided into two sub-topics: one focusing

on the training and the other on the generalization of generative models. A brief

introduction to each sub-topic is provided below.

Generative models are typically trained by optimizing their fit to the data

distribution. This is achieved by minimizing a statistical divergence between the

model and data distributions. However, there are cases where these divergences

fail to accurately capture the differences between the model and data distributions,

resulting in poor performance of the trained model. In the first part of the thesis, we

discuss the two situations where the classic divergences are ineffective for training

the models:

• KL divergence fails to train implicit models for manifold modeling tasks.

• Fisher divergence cannot distinguish the mixture proportions for modeling

target multi-modality distribution.

For both failure modes, we investigate the theoretical reasons underlying the failures

of KL and Fisher divergences in modelling certain types of data distributions. We



Abstract 4

propose techniques that address the limitations of these divergences, enabling more

reliable estimation of the underlying data distributions.

While the generalization of classification or regression models has been ex-

tensively studied in machine learning, the generalization of generative models is a

relatively under-explored area. In the second part of this thesis, we aim to address this

gap by investigating the generalization properties of generative models. Specifically,

we investigate two generalization scenarios:

• In-distribution (ID) generalization of probabilistic models, where the test data

and the training data are from the same distribution.

• Out-of-distribution (OOD) generalization of probabilistic models, where the

test data and the training data can come from different distributions.

In the context of ID generalization, our emphasis rests on the Variational Auto-

Encoder (VAE) model, and for OOD generalization, we primarily explore autoregres-

sive models. By studying the generalization properties of the models, we demonstrate

how to design new models or training criteria that improve the performance of prac-

tical applications, such as lossless compression and OOD detection.

The findings of this thesis shed light on the intricate challenges faced by gener-

ative models in both training and generalization scenarios. Our investigations into

the inefficacies of classic divergences like KL and Fisher highlight the importance

of tailoring modeling techniques to the specific characteristics of data distributions.

Additionally, by delving into the generalization aspects of generative models, this

work pioneers insights into the ID and OOD scenarios, a domain not extensively

covered in current literature. Collectively, the insights and techniques presented in

this thesis provide valuable contributions to the community, fostering an environment

for the development of more robust and reliable generative models. It’s our hope

that these take-home messages will serve as a foundation for future research and

applications in the realm of deep generative modeling.



Impact statement

The impact of the research presented in this thesis is significant as it contributes

to the field of machine learning by proposing novel techniques for improving the

training and generalization of generative models. Most parts of the thesis have been

published at prestigious machine learning conferences such as ICML and NeurIPS,

which demonstrates the impact and relevance of the research. For reference purposes,

we provide a detailed list of included publications and pre-prints below:

• Spread Divergences

Mingtian Zhang, Peter Hayes, Thomas Bird, Raza Habib and David Barber

International Conference on Machine Learning (ICML), 2020

• Towards Healing the Blindness of Score Matching

Mingtian Zhang, Oscar Keys, Peter Hayes, David Barber, Brooks Paige and

François-Xavier Briol

Workshop on Score-Based Methods, NeurIPS, 2022.

• Generalization Gap in Amortized Inference

Mingtian Zhang, Peter Hayes and David Barber

Neural Information Processing Systems (NeurIPS), 2022

• On the Out-of-Distribution Generalization of Probabilistic Image Modelling

Mingtian Zhang, Andi Zhang and Steven McDonagh

Neural Information Processing Systems (NeurIPS), 2021

• Parallel Neural Local Lossless Compression

Mingtian Zhang, James Townsend, Ning Kang and David Barber

Pre-print arXiv:2201.05213.



Abstract 6

There are other published works contributed over the course of the PhD that are

not included in this thesis are:

• Moment Matching Denoising Gibbs Sampling

Mingtian Zhang, Alex Hawkins-Hooker, Brooks Paige, David Barber

Neural Information Processing Systems (NeurIPS), 2023

• Spread Flows for Manifold Modelling

Mingtian Zhang, Yitong Sun, Steven McDonagh and Chen Zhang

Artificial Intelligence and Statistics (AISTATS), 2023

• Active Forgetting of Negative Transfer in Continual Learning

Liyuan Wang, Mingtian Zhang, Zhongfan Jia, Qian Li, Kaisheng Ma, Cheng-

long Bao, Jun Zhu and Yi Zhong

Neural Information Processing Systems (NeurIPS), 2021.



Acknowledgements

I would like to begin by expressing my deepest gratitude to my supervisor, David

Barber, for his unwavering support and invaluable guidance throughout my PhD

journey. Without his expertise, mentorship, and encouragement, I would not have

been able to undertake this ambitious endeavor and bring it to successful completion.

My heartfelt thanks go to Alex Botev, who patiently addressed my inquiries,

even those that might have seemed elementary during my PhD’s initial stages. I

would also like to express my sincere appreciation to my second supervisor, Brooks

Paige, for the stimulating discussions and invaluable feedback on research ideas

that have been instrumental in shaping my work. I have also learned a lot from

James Townsend and François-Xavier Briol on lossless compression and score-based

methods, respectively. I feel very fortunate to work with many brilliant collaborators:

Peter Hayes, Thomas Bird, Raza Habib, Alex Hawkins-Hooker, Andi Zhang, Tim

Xiao, and Oscar Keys. Special thanks to Peter Hayes, Tianlin Xu, Harshil Shah, and

Hippolyt Ritter for making the research life much more enjoyable.

I am also deeply grateful to Huawei for providing me with the opportunity to

pursue a part-time internship during my PhD studies. In particular, I would like to

extend my heartfelt thanks to my mentors and collaborators, Jun Yao, Zhengguo Li,

Wei Zhang, Yongxin Yang, Yitong Sun, Chen Zhang, Steven McDonagh, Shifeng

Zhang and Ning Kang, for their invaluable help and guidance. This experience has

exposed me to the practical challenges of real-world problems and has played a

significant role in shaping the direction of my research.

Lastly, my endless gratitude is for my parents and my girlfriend, Shuyi Huang.

Their unwavering love and support have been my bedrock throughout this journey.



Contents

1 Introduction 15

1.1 Probabilistic Modelling . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1.1 KL Divergence and Maximum Likelihood Estimation . . . . 16

1.1.2 Fisher Divergence and Score Matching . . . . . . . . . . . 20

1.2 Research Motivations and Thesis Structure . . . . . . . . . . . . . . 21

I Healing the Statistical Divergences 25

2 Healing the KL Divergence for Manifold Modelling 26

2.1 Implicit Models for Manifold Modelling . . . . . . . . . . . . . . . 26

2.1.1 Model Noise is Not Enough . . . . . . . . . . . . . . . . . 28

2.2 Spread Divergence . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.1 Stationary Spread Divergence . . . . . . . . . . . . . . . . 31

2.2.2 Spread Maximum Likelihood Estimation . . . . . . . . . . 34

2.2.3 Spread Evidence Lower Bound . . . . . . . . . . . . . . . 35

2.3 Comparisons with Other Divergences . . . . . . . . . . . . . . . . 38

2.4 Maximising Discriminatory Power . . . . . . . . . . . . . . . . . . 40

2.4.1 Learning the Gaussian Noise Covariance . . . . . . . . . . 41

2.4.2 Learning a Mean Transformation . . . . . . . . . . . . . . 42

2.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5.1 Deriving Deterministic PPCA . . . . . . . . . . . . . . . . 43

2.5.2 Training Degenerate Gauss-VAE . . . . . . . . . . . . . . . 44

2.5.3 Image Modelling with δ -VAE . . . . . . . . . . . . . . . . 46



Contents 9

2.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.6.1 Connection to Denoising Score Matching . . . . . . . . . . 50

2.7 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3 Healing the Fisher Divergence for Multi-Modality Modelling 54

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 Understanding the Blindness Problem . . . . . . . . . . . . . . . . 56

3.3 Healing the Blindness Problem with Mixture Fisher Divergence . . 57

3.4 Density Estimation with Energy-based Models . . . . . . . . . . . 58

3.5 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.6 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

II Generalizations of Generative Models 68

4 In-distribution Generalization of Variational Auto-Encoder 69

4.1 Introduction of Variational Auto-Encoder . . . . . . . . . . . . . . 69

4.2 Generalizations of VAEs . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.1 Visualizations of the Generalization Gaps . . . . . . . . . . 73

4.3 Consistent Amortized Inference . . . . . . . . . . . . . . . . . . . 75

4.3.1 Wake-Sleep Training . . . . . . . . . . . . . . . . . . . . . 76

4.3.2 Reverse Sleep Amortized Inference . . . . . . . . . . . . . 77

4.3.3 Reverse Half-asleep Inference with Imperfect Models . . . . 78

4.4 Generalization Experiments . . . . . . . . . . . . . . . . . . . . . . 80

4.4.1 Comparisons with Regularization Methods . . . . . . . . . 81

4.5 Application of Lossless Compression . . . . . . . . . . . . . . . . . 83

4.5.1 Introduction of VAE-based Lossless Compression . . . . . . 83

4.5.2 Improving the Generalization of VAE-based Compression . 85

4.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



Contents 10

5 Out-of-distribution Generalization of Probabilistic Image Modelling 92

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.1.1 Model-based Lossless Compression . . . . . . . . . . . . . 93

5.1.2 Likelihood-based OOD Detection . . . . . . . . . . . . . . 94

5.2 OOD Generalizations of Image Models . . . . . . . . . . . . . . . 95

5.2.1 Local Model Design . . . . . . . . . . . . . . . . . . . . . 97

5.2.2 Local Model Generalization . . . . . . . . . . . . . . . . . 98

5.3 OOD Detection with Non-Local Model . . . . . . . . . . . . . . . 100

5.3.1 Product of Experts and Non-Local Model . . . . . . . . . . 100

5.3.2 Connections to Related Methods . . . . . . . . . . . . . . . 101

5.3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4 Lossless Compression with Local Model . . . . . . . . . . . . . . . 105

5.4.1 NeLLoC Model . . . . . . . . . . . . . . . . . . . . . . . . 105

5.4.2 Properties of NeLLoC . . . . . . . . . . . . . . . . . . . . 106

5.5 Parallel Decoding of NeLLoC . . . . . . . . . . . . . . . . . . . . 109

5.5.1 Sheared Local Autoregressive Model . . . . . . . . . . . . 110

5.5.2 Demonstrations . . . . . . . . . . . . . . . . . . . . . . . . 111

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6 Conclusions 115

6.1 Summary of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . 116

6.3 Implications for the State of the Art . . . . . . . . . . . . . . . . . 117

Bibliography 119

Appendices 137

A Appendix of Chapter 2 138

A.1 Annealing the Noise . . . . . . . . . . . . . . . . . . . . . . . . . . 138

A.2 Noise Requirements for Discrete Distributions . . . . . . . . . . . . 140

A.3 Spread Noise Makes Distributions More Similar . . . . . . . . . . . 140



Contents 11

A.4 Mixture Divergence . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A.5 Statistical Properties of Spread MLE . . . . . . . . . . . . . . . . . 143

A.5.1 Existence of Spread MLE . . . . . . . . . . . . . . . . . . 143

A.5.2 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . 144

A.5.3 Asymptotic Efficiency . . . . . . . . . . . . . . . . . . . . 145

A.6 MNIST Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 147

A.7 CelebA Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 147

B Appendix of Chapter 3 150

B.1 Derivations and Proofs . . . . . . . . . . . . . . . . . . . . . . . . 150

B.1.1 Derivation of Equation 3.3 . . . . . . . . . . . . . . . . . . 150

B.1.2 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . 151

B.1.3 Proof of Theorem 3 . . . . . . . . . . . . . . . . . . . . . 152

B.1.4 Kernelized Stein Discrepancy Extensions . . . . . . . . . . 152

B.1.5 Proof of Theorem 4 . . . . . . . . . . . . . . . . . . . . . 153

B.2 Experiment Details . . . . . . . . . . . . . . . . . . . . . . . . . . 154

C Appendix of Chapter 5 155

C.1 Model-based Lossless Compression . . . . . . . . . . . . . . . . . 155

C.1.1 Information Theory of Lossless Compression . . . . . . . . 155

C.2 Tightness of the ELBO and IWAE Improvement . . . . . . . . . . 157

C.3 Amortized Posterior for Classification . . . . . . . . . . . . . . . . 158

C.4 Effects of the Latent Space Dimensionality . . . . . . . . . . . . . 159

D Appendix of Chapter 6 161

D.1 Experiments Details . . . . . . . . . . . . . . . . . . . . . . . . . . 161

D.1.1 Compute resources . . . . . . . . . . . . . . . . . . . . . . 161

D.1.2 Prepossessing of CelebA . . . . . . . . . . . . . . . . . . . 161

D.1.3 Model Architecture . . . . . . . . . . . . . . . . . . . . . . 161

D.2 Local Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

D.2.1 Effect of Horizon Size for Color Images . . . . . . . . . . 163

D.2.2 Samples from Local Model . . . . . . . . . . . . . . . . . . 164



List of Figures

1.1 Graphical visualizations of the autoregressive and latent variable

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 Visualization of a Manifold data distribution. . . . . . . . . . . . . 28

2.3 Learning the Covariance of the Gaussian spread noise. . . . . . . . 41

2.4 A mixture of two degenerated Gaussians. . . . . . . . . . . . . . . 45

2.5 Training loss and model samples comparisons. . . . . . . . . . . . . 46

2.6 MNIST samples comparison. . . . . . . . . . . . . . . . . . . . . . 47

2.7 CelebA samples comparison. . . . . . . . . . . . . . . . . . . . . . 47

3.1 Fisher divergence of two mixture of Gaussian distributions. . . . . . 56

3.2 Mixture Fisher divergence of two mixture of Gaussian distributions. 58

3.3 Density estimation comparisons between FD and MFD. . . . . . . . 61

3.4 FD with training data noise annealing. . . . . . . . . . . . . . . . . 65

3.5 Density Estimation with FD and MFD. . . . . . . . . . . . . . . . . 65

4.1 Visualization of the generalization gap in amortized inference. . . . 74

4.2 Comparison of different amortized inferences for a perfect model. . 77

4.3 Comparison of amortized inference with different α . . . . . . . . . 79

4.4 Generalization results with reverse half-asleep. . . . . . . . . . . . 82

4.5 Generalization comparison with denoising regularization. . . . . . . 83

4.6 Compression rate comparison of different inference methods. . . . . 88

5.1 Comparison of the likelihood histogram. . . . . . . . . . . . . . . . 96

5.2 Visualization of full vs local autoregressive models. . . . . . . . . . 98



List of Figures 13

5.3 histogram of unnormalized log-likelihood of non-local models. . . . 102

5.4 Samples from the local autoregressive model. . . . . . . . . . . . . 102

5.5 Topological decoding order of the local autoregressive model. . . . 109

5.6 Pixel dependency of the sheared local autogressive model. . . . . . 110

5.7 First convolution kernel in the original and sheared local models. . . 111

A.1 The expected log likelihood with different model noise levels. . . . 139

C.1 IWAE comparisons of different amortized inference methods. . . . . 158

C.2 Representation Learning for Down-Stream Classification. . . . . . . 159

C.3 Effects of different latent dimension. . . . . . . . . . . . . . . . . . 160

D.1 Large samples from a local autoregressive model. . . . . . . . . . . 164



List of Tables

2.1 CelebA FID scores comparison. . . . . . . . . . . . . . . . . . . . 49

4.1 Test BPD comparisons. . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2 Compression time comparison of different inference methods. . . . 89

5.1 Test BPD (Trained on Fashion MNIST) . . . . . . . . . . . . . . . 98

5.2 Test BPD (Trained on CIFAR10) . . . . . . . . . . . . . . . . . . . 98

5.3 OOD Generalization of local models on grey-scale images. . . . . . 99

5.4 OOD Generalization of local models on color images. . . . . . . . . 100

5.5 OOD detection AUROC comparisons. . . . . . . . . . . . . . . . . 104

5.6 Lossless Compression Comparisons. . . . . . . . . . . . . . . . . . 107

5.7 Decoding time comparisons. . . . . . . . . . . . . . . . . . . . . . 112



Chapter 1

Introduction

1.1 Probabilistic Modelling
Consider a finite set of training data, denoted as Xtrain = {x1,x2, . . . ,xN}, drawn from

an underlying and unknown data distribution Pd , where the subscript ’d’ represents

’data’. The primary objective of probabilistic modeling is to develop a model, Qθ ,

parameterized by θ , which closely approximates Pd . This modeling process can be

divided into two main phases:

1. Designing a Model Qθ to Represent Data Distribution Pd: Numerous

models have been proposed to encapsulate different data types, such as au-

toregressive models and latent variable models. Classic machine learning

textbooks offer an extensive introduction to these model designs [Bishop,

2006, Barber, 2012, Murphy, 2012].

In this thesis, our primary attention will be on three types of models: the

latent variable model, the autoregressive model, and the energy-based model.

These models have been remarkably successful in representing natural data,

especially images. We will delve deeper into the intricacies of these models

and their training methodologies in subsequent sections.

2. Defining a Criterion for Learning Model Parameter θ : To measure the

‘closeness’, we first need to define a divergence or distance between two

distributions P and Q, denoted as D(P||Q). A valid divergence should satisfy



1.1. Probabilistic Modelling 16

x[1] x[2] x[3]

(a) Aggressive Model

x[1] x[2] x[3]

z

(b) Latent Variable Model

Figure 1.1: Graphical visualizations of the autoregressive and latent variable models.

the following properties [Dragomir, 2005]1:

D(P||Q)≥ 0 and D(P||Q) = 0⇔ P=Q. (1.1)

Several divergences, like the f -divergence [Csiszár, 1972, 1967, Ali and Sil-

vey, 1966], Maximum Mean discrepancy [Gretton et al., 2012] (MMD) or

Wasserstein distance [Villani, 2009], have been utilized effectively in prob-

abilistic modeling. Among these, the KL divergence [Kullback and Leibler,

1951] stands out in machine learning literature, owing to its intrinsic connec-

tion with Maximum Likelihood Estimation [Casella and Berger, 2021] and

its significance in information theory [MacKay, 2003, Lehmann, 2004]. In

the following sections, we’ll delve into the use of KL divergence (or its upper

bounds) for training the autoregressive and latent variable models. Although

training energy-based models using KL divergence presents challenges, recent

innovations have highlighted the Fisher divergence [Aapo, 2005, Hyvärinen,

2007] as a promising approach, which we will discuss in due course.

1.1.1 KL Divergence and Maximum Likelihood Estimation

For absolutely continuous2(a.c.) (with respect to (w.r.t.) Lebesgue measure) or dis-

crete distributions P, Q with probability density functions3 (pdfs), the f -divergence

1Two distributions being equal P = Q can be interpreted to mean that the cdfs (cumulative
distribution functions) of the two distributions match.

2A distribution is a.c. if its cumulative distribution function (cdf) is a.c.. In this case, it has a
density function, see [Tao, 2011] for an introduction.

3For simplicity, we can also use the notation pd(x) to represent the probability mass function
(pmf) when Pd is a discrete distribution.



1.1. Probabilistic Modelling 17

is defined as

D f (P||Q)≡ D f (p||q) =
∫

f
(

p(x)
q(x)

)
q(x)dx, (1.2)

where f (x) is a convex function with f (1) = 0. When p and q have the same support,

the f -divergence is a valid divergence such that4,

D f (p||q) = 0⇔ p = q a.e.⇔ P=Q, (1.3)

see [Csiszár, 1967, Ali and Silvey, 1966]. A popular special case of f -divergence is

the Kullback-Leibler (KL) divergence with the convex function f (·) =− log(·). The

KL divergence is defined as follows

KL(p||q) =
∫

p(x) log p(x)dx−
∫

p(x) logq(x)dx. (1.4)

The KL divergence plays a key role in probabilistic modeling. Given a set of

training data Xtrain = {x1, · · · ,xN} ∼ Pd , we can fit a model by minimizing the KL

divergence between the data distribution Pd and the model Qθ to learn the model

parameter θ :

D(Pd||Qθ )≡ KL(pd||qθ ) =
∫

log pd(x)pd(x)dx−
∫

logqθ (x)pd(x)dx, (1.5)

where the first term in the KL divergence
∫

log pd(x)pd(x)dx is a constant and does

not depend on the model parameters. The second cross-entropy in the KL divergence

can be approximated by a Monte-Carlo estimation using Xtrain:

L N(θ)≡ 1
N

N

∑
n=1

logqθ (xn), (1.6)

which is also commonly referred to as Maximum Likelihood Estimation (MLE).

When N→ ∞, we have

L N(θ)
N→∞−−−→

∫
logqθ (x)pd(x)dx. (1.7)

4We use a.e. to represent ‘almost everywhere’, see Dempster et al. [2019, p. 18] for a definition.



1.1. Probabilistic Modelling 18

Therefore, learning a model by maximizing the likelihood can be viewed as min-

imizing the KL divergence between the model and the data distribution. We then

introduce how to use KL divergence to train autoregressive and latent variable

models.

Autoregressive Model

We assume each data point is a D-dimensional vector x = [x[1], · · ·x[D]], an autore-

gressive model can be written as

qθ (x) = qθ (x[1])
D

∏
d=2

qθ (x[d]|x[1:d−1]), (1.8)

where the conditional distribution qθ (x[d]|x[1:d−1]) can be parameterized by a deep

neural network, see Figure 1.1a for a graphical model illustration. Learning θ with

MLE is straightforward since the log-likelihood has a closed form

logqθ (x) = logqθ (x[1])+
D

∑
d=2

logqθ (x[d]|x[1:d−1]). (1.9)

Deep autoregressive models have achieved great success in modeling real-world data

like images [Van Oord et al., 2016, Salimans et al., 2017], audio [Oord et al., 2016]

or text [Radford et al., 2019, Brown et al., 2020].

Latent Variable Model

A latent variable model assumes the existence of an unobserved latent variable z that

captures the correlations between the different dimensions of the data x. Therefore,

given the latent variable, each dimension x[d] is conditionally independent of the

other dimensions. This property allows the latent variable model to be expressed as:

qθ (x) =
∫

p(z)qθ (x|z)dz =
∫

p(z)
D

∏
d=1

qθ (x[d]|z)dz. (1.10)

See Figure 1.1b for the conditional independence structure of the latent variable

model. The most simple latent variable model is the probabilistic principal com-

ponent analysis (PPCA) [Tipping and Bishop, 1999], where the prior is a standard



1.1. Probabilistic Modelling 19

Gaussian p(z) = N (0, Iz) and the observational distribution qθ (x|z) = N (Az,σ2
x Ix)

is also a Gaussian whose mean is a linear transformation of z. In this simple case,

the marginal distribution qθ (x) is also a Gaussian qθ (x) = N (0,AAT +σ2
x Ix) with

analytical likelihood evaluation, so the parameters can be directly learned by MLE.

However, for a latent variable model with a non-linear parameterization of pθ (x|z)

(e.g. a deep neural network), the log-likelihood involves an intractable integration

logqθ (x) = log
∫

qθ (x|z)p(z)dz (1.11)

In this case, instead of optimizing the log-likelihood, a lower bound of the log-

likelihood can be used to train the model, which is also referred to as the evidence

lower bound (ELBO)

logqθ (x)≥
∫

qφ(z|x) logqθ (x|z)dz−KL(qφ (z|x)||p(z))

≡ ELBO(x,θ ,φ), (1.12)

where the amortized variational posterior or qφ (z|x) is introduced to approximate the

true posterior pθ (z|x) ∝ qθ (x|z)p(z). The ELBO can also be written as

ELBO(x,θ ,φ) = logqθ (x)−KL(qφ (z|x)||pθ (z|x)). (1.13)

Therefore, maximizing the ELBO is equivalent to simultaneously maximizing the

log-likelihood and minimizing the KL divergence between the amortized posterior

and the true posterior. When the amortized posterior equals the true posterior

qφ (z|x) = pθ (z|x), the ELBO becomes equal to the log-likelihood. This type of latent

variable model, trained with amortized inference, is also known as the Variational

Auto-Encoder (VAE) [Kingma and Welling, 2014, Rezende et al., 2014].

If the log-likelihood or ELBO of an a.c. model qθ (x) is not tractable, but we

can access ∇x logqθ (x), an alternative divergence - the Fisher divergence, can be

used to train the model, we will provide a brief introduction in the next section.



1.1. Probabilistic Modelling 20

1.1.2 Fisher Divergence and Score Matching

Given two a.c. 1D distributions P and Q with differentiable densities p(x) and q(x)

with support R, the Fisher divergence [Johnson, 2004] is defined as

FD(P||Q)≡ FD(p(x)||q(x)) = 1
2

∫
p(x)||sp(x)− sq(x)||22dx, (1.14)

where we denote by sp(x)≡ ∇x log p(x) and sq(x)≡ ∇x logq(x) the score functions

of p and q respectively. For probabilistic modeling tasks with data density pd and

model density qθ , the score function of spd ≡ ∇x log pd(x) is unknown. We can

further assume qθ is twice differentiable and rewrite the FD using the following

score-matching formulation [Aapo, 2005]

FD(pd(x)||qθ (x)) =
1
2

∫
pd(x)||spd(x)− sqθ (x)||

2
2dx (1.15)

.
=

1
2

∫
pd(x)

(
s2

qθ
(x)−2spd(x)sqθ

(x)
)

dx, (1.16)

where we use .
= to denote the equivalence up to a constant term that is independent

of θ . Using the identity pd(x)∇x log pd(x) = ∇x pd(x), we have

∫
pd(x)spd(x)spθ

(x)dx =
∫

∇x pd(x)sqθ
(x)dx. (1.17)

For pd(x)spθ
(x) vanishes at −∞ and ∞, using integration by parts, we have

∫
∇x pd(x)sqθ

(x)dx = pd(x)sqθ
(x)
∣∣∣+∞

−∞︸ ︷︷ ︸
=0

−
∫

pd(x)∇xsqθ
(x)dx. (1.18)

Therefore, minimizing the FD is equivalent to minimize

FD(pd(x)||qθ (x))
.
=

1
2

∫
pd(x)

(
s2

qθ
(x)+2∇xsqθ

(x)
)

dx (1.19)

A similar form can also be derived for D-dimensional distributions [Aapo, 2005]

FD(pd(x)||qθ (x))
.
=

1
2

∫
pd(x)

(∥∥sqθ
(x)
∥∥2

2 +2Tr(∇xsqθ
(x))

)
dx, (1.20)



1.2. Research Motivations and Thesis Structure 21

where Tr(·) denote the trace operator. In both cases, the integration over pd can be

approximated by Monte-Carlo integration with the given training data{x1, · · · ,xN} ∼

pd(x). The Fisher divergence only depends on the score function, making it a useful

tool for training models with intractable likelihood evaluations, such as energy-based

models, which we will discuss below.

Energy-Based Model

An energy-based model [LeCun et al., 2006] usually has the following form

qθ (x) = e− fθ (x)/Z(θ), where Z(θ) =
∫

e− fθ (x)dx. (1.21)

For the MLE training, the evaluation of the log-likelihood

logqθ (x) =− fθ (x)− logZ(θ) (1.22)

requires the normalizer Z(θ), which is usually intractable and requires approximation

for a nonlinear fθ . There are many methods proposed to train the energy-based

model, we recommend [Song and Kingma, 2021] for a detailed overview of different

training methods. One of the neat training criteria is the Fisher divergence objective

described in Equation 1.19. This objective only requires the evaluations of

sqθ
(x) =−∇x fθ (x), ∇xsqθ

(x) =−Tr(∇2
x fθ (x)), (1.23)

which are tractable and independent of the normalizer Z(θ).

1.2 Research Motivations and Thesis Structure
Machine learning research has heavily revolved around model estimation and gen-

eralization. While training generative models are extensively studied, there remain

specific failure modes that require exploration and refinement. Additionally, while

generalization in classification tasks directly affects test accuracy, its definition and

implications in generative models are not explicitly clear. This thesis is structured to

address these gaps in two parts, we will start by introducing the research motivations



1.2. Research Motivations and Thesis Structure 22

of each part below.

Part 1: Healing the Divergences for Training Generative Models
We initiated our study by examining the training dynamics of latent variable models

using KL divergence. A significant limitation of the KL divergence (or ELBO) arises

when the distribution is supported on a lower-dimensional manifold and doesn’t

possess a valid density function. For instance, let’s consider a latent variable model,

represented as Qθ , with its density function having the density function represented

by qθ (x) =
∫

q(z)qθ (x|z)dz. In situations where Dim(z) < Dim(x), and upon sub-

stituting qθ (x|z) with a delta function δ (x−gθ (z)), the model Qθ is no longer a.c.

and lacks a density function [Arjovsky et al., 2017], making the the KL divergence

and the MLE undefined. This model is also known as the implicit latent variable

model [Ravuri et al., 2018], serving as the foundational model for the renowned

Generative Adversarial Net (GAN) [Goodfellow et al., 2014]. Consequently, there’s

a paradigm shift towards utilizing the Wasserstein distance [Arjovsky et al., 2017,

Gulrajani et al., 2017a] to train such implicit models, primarily because of its appli-

cability to non-a.c. distributions. Rather than overhauling the entire training process,

our goal is to refine the conventional KL divergence and the ELBO objective, ensur-

ing their applicability for training implicit models to fit non-a.c distributions.

Moreover, recent findings suggest that the Fisher divergence exhibits a "blind-

ness problem" in real-world applications where it fails to differentiate between two

mixture distributions with different mixture proportions [Wenliang and Kanagawa,

2020]. This motivates us to study the underlying properties of the Fisher divergence

and find solutions that can address this issue.

Part 2: Improve the Generalization of the Generative Models
In the second part of the thesis, we focus on the generalization properties of proba-

bilistic models. In this thesis, the generalization of probabilistic models is defined

as the log-likelihood evaluated on the test dataset. This definition has a practical

implication for lossless compression: given a trained model, the negative log2 like-

lihood evaluated on this model is approximately equal to the compression length

when using the same model for data compression.



1.2. Research Motivations and Thesis Structure 23

Given the practical significance of generative model generalization, we explore

factors influencing generalization and strategies to enhance it. Specifically, our study

entails:

1. In-distribution (ID) generalization: This involves scenarios where training and

test data hail from the same distribution and is the common assumption of the

model-based compression. We pay special attention to VAE models, renowned

for their practical utility in lossless compression [Hinton and Van Camp, 1993,

Townsend et al., 2019].

2. Out-of-distribution (OOD) generalization: Here, the training and test datasets

might originate from distinct distributions. This scenario also appears in prac-

tical compression use cases in the deployment of the compression algorithm

in the real world, the distribution of the target data is usually unknown.

By understanding these generalization attributes, we aim to design innovative models

and training methodologies that bolster lossless compression performance without

compromising on compression speed.

Finally, we delve into applications for Out-of-Distribution (OOD) detection. In

likelihood-based OOD detection, models trained on in-distribution datasets assess

test data. If the likelihood of this data falls below a certain threshold, it’s classified

as OOD. Unlike the aim of enhancing OOD generalization in lossless compression,

our objective is to diminish OOD generalization in OOD detection, enabling mod-

els to display lower likelihoods for OOD data, which in turn enhances detection

performance.

Summary
While at first glance the two parts of this thesis might appear as distinct domains of

investigation, they are, in fact, intertwined in their core objectives of advancing gen-

erative models. The training and effective estimation of these models, as discussed

in Part 1, lay the foundation for enhancing their generalization abilities, which is the

focus of Part 2. Without robust and efficient training methodologies, any pursuit to

enhance generalization would be inherently limited.



1.2. Research Motivations and Thesis Structure 24

One of the key takeaways is the criticality of understanding and addressing the

limitations of existing methodologies. By exploring the challenges of conventional

divergences and their inadequacy in certain scenarios, we were able to propose a

simple fix solution to the current method rather than completely shift away from the

conventional approach. Similarly, by uncovering the intricacies of generalization

in generative models, especially in the context of lossless compression and OOD

detection, we recognize the vast landscape of applications and implications these

models possess.

In essence, this thesis not only contributes specific techniques and insights to

individual challenges but also fosters an integrated perspective on the development

and application of generative models. As the field of machine learning contin-

ues to evolve, such a dual focus on foundational training and application-oriented

generalization will be indispensable.



Part I

Healing the Statistical Divergences

25



Chapter 2

Healing the KL Divergence for

Manifold Modelling

Using an f -divergence D f (P||Q) for model training requires (i) P and Q to have valid

probability densities p,q and (ii) p and q to have common support. However, these

requirements are not satisfied in some important machine learning applications like

modeling manifold data with implicit models. To heal this problem, we propose the

Spread Divergence D̃ f (P||Q) for distributions P,Q and describe sufficient conditions

for the existence of such a divergence. We also demonstrate how to maximize the

discriminatory power of a given divergence by parameterizing and learning the

spread. We apply the proposed spread divergence to train both linear and non-linear

implicit generative models and demonstrate the proposed divergence can significantly

improve the training stability and sample generation quality.

2.1 Implicit Models for Manifold Modelling
For many datasets of interest, e.g.natural images, the data distribution Pd is com-

monly believed to be supported on a lower dimensional manifold [Beymer and

Poggio, 1996]. We assume a data sample x ∼ Pd to be a DX dimensional vector

x ∈ RDX and define the ambient dimensionality of Pd , denoted by Amdim(Pd). We

also define the intrinsic dimension of Pd , denoted by Indim(Pd), to be the dimen-

sion of this manifold. Figure 2.1 shows an example of a manifold data distribution

Pd that has Amdim(Pd) = 3 and Indim(Pd) = 2. In this case, Pd is not a.c. (w.r.t.



2.1. Implicit Models for Manifold Modelling 27

Lebesgue measure) and doesn’t allow a density function.

To model the manifold data distribution Pd , we requires the model Qθ to able

to learn to have Indim(Qθ ) = Indim(Pd). However, consider a classic latent

variable model with the model density

qθ (x) =
∫

qθ (x|z)p(z)dz, (2.1)

where qθ (x|z) is an a.c. Gaussian distribution with a latent dimension of Dim(z)<

Dim(x). In this case, the intrinsic dimension of the model is Indim(Qθ ) =

Indim(qθ (x|z)) = Dim(x). Therefore, the classic latent variable model cannot

converge to Pd in principle. Alternatively, the implicit model [Ravuri et al., 2018,

Goodfellow et al., 2014, Arjovsky et al., 2017] can be used to model the manifold

distributions, which takes the form of a latent variable model

Qθ (dx) =
∫

δ (x−gθ (z)) p(z)dz, (2.2)

where δ (x) is the Dirac delta function. To generate a sample from Qθ , one

can first sample z′ ∼ p(z) and then generate a sample x′ = gθ (z′). In the com-

mon setting where the latent dimension Dim(z) is lower than the observation

dimension Dim(x): Dim(z) < Dim(x), the model Qθ has an intrinsic dimension

Indim(Qθ )≤ Dim(z) [Arjovsky et al., 2017], where the equality is achieved when

gθ is an invertible function. Therefore, if we use a non-invertible function like a

neural network and a suitable latent space (e.g. Dim(z)≥ Indim(Pd)), the model

Qθ is flexible to learn have Indim(Qθ ) = Indim(Pd).

We can also generalize the implicit model to accommodate degenerated Gaus-

sian observation noise, represented as:

Qθ (dx) =
∫

Ng(gθ (z),Σθ (z))p(z)dz, (2.3)

Here, we use Ng to denote the ’generalized’ Gaussian distributions. These en-

compass the special case of a degenerated Gaussian covariance function. That is,



2.1. Implicit Models for Manifold Modelling 28

Pd

Figure 2.1: This figure shows a data distribution Pd that is supported on a 2d manifold
in a 3d space. In this case, the Pd is not a.c. and doesn’t have a density function.

when Σθ (z) has rank(Σ) < Dim(x), the Qθ is not absolutely continuous and can

flexibly have any arbitrary intrinsic dimension. This is what we refer to Qθ as the

’generalized implicit model’.

However, in both cases, gradient-based maximum likelihood learning is

problematic since L (θ) is typically not a continuous function of θ 1. Further-

more, the Expectation Maximisation (EM) algorithm [Dempster et al., 1977] is

not available for models of the form in Equation 2.2 since EM assumes that

logq(x|z) is well defined, which is not the case for singular conditional distribution

QX |Z(z,dx) = δ (x−g(z))[Bermond and Cardoso, 1999]. Equally, in Equation 1.4

the ratio p(x)/q(x) may represent a division by zero; the KL divergence between the

model and the data-generating process is thus ill-defined.

2.1.1 Model Noise is Not Enough

A common approach to enable maximum likelihood to be used to train implicit

generative models is to simply add noise to the model so that it has full support (and

a valid density), see for example [Wu et al., 2016]. However, this approach does not

guarantee a consistent estimator. To see this, consider the simple implicit generative

model Q

Qθ (dx) =
∫

δ
(
x− zθq

)
N (z 0,1)dz, (2.4)

1For a point xn that is not on the model manifold, q(xn) = 0. As we adjust θ such that xn becomes
on the manifold, q(xn) will typically increase to a finite non-zero value, meaning that the (log)
likelihood is discontinuous in θ .



2.1. Implicit Models for Manifold Modelling 29

where the latent Z is univariate and Dim(X) > 1. Here the vector θq defines a

one-dimensional line in the X space. For D-dimensional X , adding independent

Gaussian noise with mean zero and isotropic covariance σ2ID to X results in the

noised distribution with density

q̃θ (x) = N (x 0D,Σ) , Σ≡ θqθ
T
q +σ

2ID. (2.5)

For observed training data x1, . . . ,xN the log-likelihood under this model is

L (θq) =−
1
N

N

∑
n=1

xT
n Σ
−1xn− logdetΣ+ const. (2.6)

We assume that the training data xn is iid sampled from the distribution P with

generalized density

pd(x) =
∫

δ (x− zθp)N (z 0,1)dz. (2.7)

Hence P and Q are from the same parametric distribution but with different pa-

rameters. By the law of large numbers, in the large N limit, the log-likelihood

Equation 2.6 tends to

−θ
T
p Σ
−1

θp− logdetΣ+ const. (2.8)

which has an optimum when2 (see Appendix A.1)

θq =

√
θ 2

p −σ2

θ 2
p

θp. (2.9)

Thus adding noise to the model Q and training using maximum likelihood

does not form a consistent estimator; it has an optimum at θq ̸= θp, resulting in an

incorrect estimate of the data generating process. In Appendix A.1 we explain why

annealing the noise σ2 towards zero during numerical optimization will not directly

heal this problem.

2θ 2
p is shorthand for the squared length θ T

p θp = ||θp||22.



2.2. Spread Divergence 30

For this reason, alternative (non-likelihood, non-KL) approaches to measure the

difference between distributions are commonly used in training implicit generative

models (see for example [Mohamed and Lakshminarayanan, 2016]), such as Max-

imum Mean Discrepancy (MMD) [Gretton et al., 2012] and Wasserstein distance

[Arjovsky et al., 2017, Peyré and Cuturi, 2019]. In the next section, we introduce the

Spread Divergence, which is well-defined when the distributions do not allow a valid

density or the supports of the distributions do not match. As we will demonstrate,

the Spread Divergence allows one to use maximum likelihood-based approaches to

train implicit generative models, whilst resulting in a consistent estimator.

2.2 Spread Divergence

For distributions Q and P with generalised densities q(x) and p(x) we first need to

define q̃(y) and p̃(y) that (i) are valid probability density functions and (ii) have the

same support. In contrast to simply noising Q we define ‘noisy’ densities for both

distributions

p̃(y) =
∫

p(y|x)p(x)dx, q̃(y) =
∫

p(y|x)q(x)dx (2.10)

The ‘noise’ p(y|x) must ‘spread’ P and Q such that p̃(y) and q̃(y) satisfy the above

two reauirements. The choice of p(y|x) must also ensure that D(p̃||q̃) = 0⇔ P=Q.

If we can define the noise appropriately, this would allow us to define the Spread

Divergence

D̃(P||Q)≡ D(p̃||q̃) , (2.11)

which satisfies the divergence requirement D̃(P||Q)≥ 0 and D̃(P||Q) = 0⇔ P=Q.

In the following we discuss appropriate choices for the noise distribution p(y|x). We

focus on stationary spread noise p(y|x) = k(y− x) since this is simple to implement

by adding independent noise to a variable. Non-stationary spread distributions can

be easily constructed using a mixture of stationary noise distributions, or through

Mercer kernels – these are left for future study. The case of discrete X is discussed



2.2. Spread Divergence 31

(a) Two delta distributions. (b) Spreaded distributions. (c) Spread KL divergence

Figure 2.2: (a) Delta distributions p(x) = δ (x−µp), q(x) = δ (x−µq) where µp = 0,
µq = 1. (b) Spreaded distributions p̃(y) =

∫
p(y|x)p(x)dx, q̃(y) =

∫
p(y|x)q(x)dx,

where p(y|x) = N
(
y x,σ2 = 0.5

)
. (c) Spread KL divergence as a function of µq.

in Appendix A.2.

2.2.1 Stationary Spread Divergence

Given two random variables XQ and XP with distributions Q and P, respectively. Let

K be an a.c. random variable that is independent of XQ and XP and has density k(·).

We define

YP̃ = XP+K, YQ̃ = XQ+K, (2.12)

with distributions P̃ and Q̃ respectively. Then P̃ and Q̃ are a.c. with density functions

p̃(y) =
∫

x
k(y− x)dP, q̃(y) =

∫
x
k(y− x)dQ, (2.13)

see Theorem 2.1.16 in [Dempster et al., 2019] for a proof. We then define the

stationary spread f -divergence between P and Q as

D̃ f (P||Q)≡ D f
(
P̃||Q̃

)
≡
∫

f
(

p̃(y)
q̃(y)

)
q̃(y)dx. (2.14)

Theorem 1 (Validity of the Spread Divergence ). Let XP and XQ be two random

variables with Borel probability measure P and Q. Let the stationary spread noise

K be an a.c. random variable that is independent of XP and XQ and has support Rd .

We further denote the characteristic function of K as φK . Given φK ̸= 0 or φK > 0 on

at most a countable set, then the stationary spread f -divergence is a valid divergence



2.2. Spread Divergence 32

with the properties

D̃ f (P||Q)≥ 0, D̃ f (P||Q) = 0⇔ P=Q. (2.15)

Proof. The proof contains the following two steps.

First step: We show that if K is a.c. with support Rd , then D̃ f (P||Q) = 0⇔ P̃= Q̃.

Since YP̃ and YQ̃ are a.c. and allow density functions p̃(y) and q̃(y). Since pK has

support R, p̃(y) and q̃(y) will also have support Rd . The f -divergence between two

a.c. distributions with common support is equal to zero if and only if two distributions

are equal [Csiszár, 1967, 1972]. We have D f (p̃(y)||q̃(y)) = 0⇔ P=Q. Therefore,

D̃ f (P||Q) = 0⇔ P̃= Q̃.

Second step: We show that if the characteristic function of the spread noise

φK ̸= 0 or φK = 0 on at most a countable set then P̃= Q̃⇔ P=Q.

The characteristic function of a probability measure P is defined as φP(w) =∫
eiwxdP. Since a probability measure is uniquely determined by its characteristic

function [Kallenberg, 2006, Theorem 4.3], we have

P̃= Q̃⇔ φP̃ = φQ̃.

Using the fact that the characteristic function of the sum of two random variables is

equal to the product of their characteristic functions [Dempster et al., 2019, Theorem

3.3.2], we can write

φP̃ = φQ̃⇔ φPφK = φQφK.

When φK ̸= 0, we have φPφK = φQφK ⇔ φP = φQ.

When φK = 0 on at most a countable set C , we show that φPφK = φQφK ⇔

φP = φQ still holds. We prove this by contradiction: We assume there is a point

w0 ∈ C where φP(w0) ̸= φQ(w0). Without loss of generality, we assume φP(w0)−

φQ(w0) = δ > 0. For points w0 + h that are not in C , we have φK(w0 + h) ̸= 0,

so φPφK = φQφK implies φP(w0 + h)− φQ(w0 + h) = 0. Since the characteristic



2.2. Spread Divergence 33

function of a distribution is uniform continuous [Dempster et al., 2019, Theorem

3.3.1], we have δ = φP(w0 + h)−φQ(w0 + h)→ 0 when h→ 0, which leads to a

contradiction (since δ cannot be zero). Therefore, φPφK = φQφK⇔ φP = φQ. By the

uniqueness of the characteristic function [Kallenberg, 2006, Theorem 4.3], we have

φP = φQ⇔ P=Q.

Using the results of the two steps, we can conclude

D̃ f (P||Q) = 0⇔ P̃= Q̃⇔ P=Q.

Since the spread noise K is a.c, its characteristic function is equivalent to the

Fourier transform of the density function. Therefore, a set of simplified sufficient

conditions of a valid spread noise is (1) K has density function k(x) with support

Rd and (2) the Fourier transform of the k(x) is positive. As an example, consider

Gaussian additive spread noise k(x) = N
(
x 0,σ2), its Fourier transform is positive

F {k}(ω) = e−
σ2ω2

2 > 0. (2.16)

Similarly, for Laplace noise k(x) = 1
2be−

1
b |x|,

F {k}(ω) =

√
2
π

b−1

b−2 +ω2 > 0. (2.17)

In both cases k(x)>0 for x ∈ Rd and F {k}>0. Therefore, additive Gaussian

and Laplace noise can be used to define a valid Spread Divergence. This non-zero

requirement for the characteristic function is analogous to the characteristic condition

on kernels such that the Maximum Mean Discrepancy MMD(P,Q) = 0⇔ P=Q,

see [Sriperumbudur et al., 2011, 2012, Gretton et al., 2012]. As an illustration,



2.2. Spread Divergence 34

consider the extreme case of two delta distributions P and Q

P(dx) = δ (x−µp), Q(dx) = δ (x−µq). (2.18)

In this case KL(P||Q) is not well defined. For stationary Gaussian noise

k(x) = N
(
x 0,σ2), we can equivalent define a conditional distribution p(y|x) =

N
(
y x,σ2), so the ‘spreaded’ distributions P̃ and Q̃ are a.c. and have densities

p̃(y) =
∫

δ (x−µp)N
(
y x,σ2)dx = N

(
y µp,σ

2) , (2.19)

q̃(y) =
∫

δ (x−µq)N
(
y x,σ2)dx = N

(
y µq,σ

2) . (2.20)

For noise variance σ2 = 0.5 this gives:

K̃L(P||Q)≡ KL(p̃||q̃) = ||µp−µq||22. (2.21)

Hence K̃L(P||Q)⇔ P=Q. It is also worth noting that the spread KL divergence,

in this case, is equal to the squared 2-Wasserstein distance [Peyré and Cuturi, 2019,

Gelbrich, 1990]. Treating µq as a variable, Figure 2.2 illustrates the spread KL

divergence converging to 0 as µq tends to µp = 0.

This proposed spread KL divergence allows us to define a valid divergence

between manifold distributions. Therefore, an associated training algorithm can be

derived for learning manifold models, as we describe below.

2.2.2 Spread Maximum Likelihood Estimation

In Section 2.1.1 we noted that in the context of fitting an implicit generative model

Qθ to training data, simply using MLE will be problematic. We can instead minimize

the spread KL divergence between data distribution Pd and model Qθ :

K̃L(Pd||Qθ )≡ K̃L(p̃d(y)||q̃θ (y))

=
∫

log p̃d(y)p̃d(y)dy︸ ︷︷ ︸
const.

−
∫

log q̃θ (y)p̃d(y)dy. (2.22)



2.2. Spread Divergence 35

Given training data x1, . . . ,xN sampled i.i.d from Pd , we can define the spread

Maximum Likelihood Estimation (spread MLE) as

L̃ N(θ)≡ 1
N

N

∑
n=1

∫
p(y|xn) log q̃θ (y)dy. (2.23)

Using the law of large numbers, N→ ∞ (using ), we have

L̃ N(θ)
N→∞−−−→

∫
log q̃θ (y)p̃d(y)dy. (2.24)

In this case, the spread MLE has a maximum when the spread KL divergence has a

minimum. Hence, the spread MLE defines a consistent estimator.

The Maximum Likelihood Estimator (MLE) is a cherished approach due to

its consistency (convergence to the true parameters in the large data limit) and

asymptotic efficiency (achieves the Cramér-Rao lower bound on the variance of

any unbiased estimator) - see [Casella and Berger, 2021] for an introduction. An

interesting question is whether these properties also carry over to the spread MLE.

In Appendix A.5, we demonstrate, for a certain family of spread noise, the spread

MLE has weaker sufficient conditions than MLE for both consistency and asymptotic

efficiency. Furthermore, a sufficient condition for the existence of the MLE is that the

likelihood function is continuous over a compact parameter space Θ. We provide an

example in Appendix A.5.1 where the maximum likelihood estimator may not exist

(since it violates the compactness requirement), but the spread maximum likelihood

estimator still exists.

2.2.3 Spread Evidence Lower Bound

We are interested in training implicit latent variable model

Qθ (dx) =
∫

δ (x−gθ (z))p(z)dz, (2.25)



2.2. Spread Divergence 36

using the proposed Spread MLE. Therefore, the spreaded model q̃θ (y) with Gaussian

p(y|x) = N (y|x,σ2I) has the form

q̃θ (y) =
∫ ∫

p(y|x)δ (x−gθ (z))p(z)dzdx (2.26)

=
∫

N (y|gθ (z),σ2I)︸ ︷︷ ︸
qθ (y|z)

p(z)dz. (2.27)

A similar form can be derived for an implicit model with degenerate Gaussian noise

since p(y|x) will be a.c. Gaussian distribution.

For a linear parameterization decoder, e.g. gθ (z) = Fz with a linear matrice

F , the integration over z can be calculated in a closed form, see Section 4.4 for an

example. However, for non-linear gθ , the integration over the latent variable z is

usually intractable so we cannot directly evaluate log q̃θ (y). Similar to the Evidence

Lower Bound (ELBO) that is used in the Variational Auto-Encoder(VAE), we can

also derive a spread ELBO for the spread log-likelihood

log q̃θ (y)≥
∫

logqθ (y|z)qφ (z|y)dz−KL
(
qφ (z|y)||p(z)

)
, (2.28)

≡ ẼLBO(y,θ ,φ). (2.29)

where the amortized posterior qφ (z|y) is introduced to approximate the true posterior

pθ (z|y) ∝ pθ (y|z)p(z) and when qφ (z|y) = pθ (z|y), the spread ELBO is equal to the

spread log-likelihood. We refer to the implicit model with a variational posterior as

the ‘δ -VAE’. Different from the standard VAE, both the decoder and encoder in the

δ -VAE are operating on the noisy sample y rather than the clean data x.

Similarly, the spread ELBO can also be constructed for the generalized im-

plicit model with a generalized Gaussian observational distribution pθ (x|z) =

Ng(gθ (z),Σθ (z)), since for Gaussian spread noise p(y|x) = N (y|x,σ2I), pθ (y|z)

can be calculated in a closed-form:

pθ (y|z) =
∫

p(y|x)pθ (x|z)dz = N (y|gθ (z),σ2I +Σθ (z))dz. (2.30)



2.2. Spread Divergence 37

We thus refer to the generalized implicit model with a variational posterior as the

‘Degenerate Gauss-VAE’.

Given N training data sampled from the data distribution, the lower bound of

the spread MLE can also be derived

1
N

N

∑
n=1

∫
p(y|xn) log q̃θ (y)≥

1
N

N

∑
n=1

∫
p(y|xn)ẼLBO(y,θ ,φ)dy. (2.31)

In practice we typically cannot carry out the integral in Equation 2.23 exactly

and resort to a sample approximation, sampling L noisy versions yn,k, k = 1, . . . ,K

of each data point xn to give

1
N

N

∑
n=1

∫
p(y|xn)ẼLBO(y,θ ,φ)≈ 1

NK

N

∑
n=1

K

∑
k=1

ẼLBO(yn,k,θ ,φ). (2.32)

A lower simplified objective also exists for the spread ELBO with Gaussian p(y|x) =

N (x,σ2I). For a single xn, we notice that
∫

p(y|xn)ẼLBO(y,θ ,φ)dy is equal to

∫
p(y|xn) logqθ (y|z)qφ (z|y)dzdy−

∫
p(y|xn)KL

(
qφ (z|y)||p(z)

)
dy. (2.33)

For a Gaussian p(ε) = N (0, I), the first term can be further simplified using the

reparameterization trick:

− 1
2σ2I

∫
||xn + ε−gθ (z)||22qφ (z|xn + ε)p(ε)dzdε

=− 1
2σ2I

∫
||xn−gθ (z)||22qφ (z|xn + ε)p(ε)dzdε + const.. (2.34)

where the constant term has the following form

− 1
2σ2I

∫ (
||ε||22 +2ε(xn−gθ (z))

)
qφ (z|xn + ε)p(ε)dzdε =− 1

2σ2 . (2.35)

We observe that this simplified objective has less training variance in practice.

We have discussed how to train the model with spread MLE and fixed spread

Gaussian noise. In the next section, we discuss how to learn the noise distribution to



2.3. Comparisons with Other Divergences 38

maximize the discriminatory power of the spread divergence.

2.3 Comparisons with Other Divergences

Maximum Mean Discrepancy

In machine learning, convolving distributions using kernels is a widely adopted

technique. A particularly prominent application of this is the kernel mean embed-

ding [Berlinet and Thomas-Agnan, 2011, Smola et al., 2007], which represents a

distribution P as a mean function,

µP =
∫
X

k(x, ·)dP(x), (2.36)

where k : X ×X → R is a symmetric and positive definite kernel function, see

also [Muandet et al., 2017] for a review. The kernel mean embedding has also been

used to measure the difference between two distributions. For two distributions P

and Q, the maximum mean discrepancy [Borgwardt et al., 2006, Gretton et al., 2012]

(MMD) is defined as the distance in an RKHS H

MMDH (P,Q)≡ ∥µP−µQ∥H . (2.37)

The MMD has been used in training implicit latent variable model [Li et al., 2015,

Dziugaite et al., 2015, Li et al., 2017]. However, the efficacy of MMD is solely reliant

on kernel selection, which becomes challenging when dealing with high-dimensional

distributions. Therefore, it is necessary to introduce the dimension reduction or

adversarial kernel learning techniques even for learning the MNIST dataset [Li et al.,

2015, 2017]. As a result, it often necessitates the inclusion of dimension reduction

techniques or adversarial kernel learning, even for simpler datasets like MNIST [Li

et al., 2015, 2017]. In contrast, the spread KL divergence merges the advantages

of kernel convolution with efficient MLE training (or EM training when using the

ELBO), streamlining the process of training high-dimensional datasets.



2.3. Comparisons with Other Divergences 39

Wasserstein Distance

The Wasserstein distance, originally introduced by Kantorovich [Kantorovich, 1960],

is a metric especially suited for the comparison of manifold distributions. In recent

years, it has seen remarkable success across various machine learning contexts [Peyré

and Cuturi, 2019]. One notable application is its role in the training of the implicit

latent variable model, known as the Wasserstein Generative Adversarial Network

(WGAN) [Arjovsky et al., 2017]. Within the WGAN framework, the Kantorovich-

Rubinstein dual form of the Wasserstein distance [Villani, 2009] is employed, which

is represented as:

W (P,Q) = sup
∥ f∥L≤1

Ex∼P[ f (x)]−Ex∼Q[ f (x)]. (2.38)

Here, the supremum is taken over all 1-Lipschitz functions f : X→ R. In practical

implementations, a parameterized function, fw, is adopted. To approximate the

Lipschitz condition, techniques like gradient clipping [Arjovsky et al., 2017] or the

gradient penalty [Gulrajani et al., 2017a] are often used.

Considering an implicit model Qθ equipped with a prior p(z), a generator gθ (z),

and a target data distribution Pd , the training objective for gθ (z) is articulated as a

min-max problem:

min
θ

max
w

Ex∼Pd [ fw(x)]−Ez∼p(z)[ fw(gθ (z))]. (2.39)

In this equation, the maximum over w serves to approximate the sup operation in

Equation 2.38.

Despite the widespread praise for WGANs, various concerns have emerged

challenging whether their empirical success can be attributed to the advantageous

properties of the Wasserstein distance. One of the key issues is that the fw isn’t

optimally trained during each gradient step of the generative model. Therefore, the

WGAN is minimizing an approximate lower bound of the true Wasserstein distance,

which doesn’t necessarily minimize the Wasserstein distance. Additionally, research

has demonstrated that the incorporation of gradient penalty terms can enhance GAN



2.4. Maximising Discriminatory Power 40

generation regardless of the specific statistical divergence [Kodali et al., 2017,

Fedus et al., 2017, Stanczuk et al., 2021] and no singular GAN loss consistently

outperforms the others [Lucic et al., 2018]. More recently, paper [Stanczuk et al.,

2021] gives both theoretical and empirical evidence to show that the WGAN loss

is not a meaningful approximation of the Wasserstein distance and argues that the

Wasserstein distance is not a desirable loss function for deep generative models.

Thus, the actual effectiveness of the Wasserstein distance in training implicit models

remains an open problem.

In our approach, we aim to subtly adjust the traditional KL (ELBO) training

method to suit the training of implicit models to fit the manifold distributions, rather

than transitioning entirely to a different training paradigm. Moreover, the spread

ELBO objective minimizes a definitive upper bound of the spread KL divergence,

ensuring the training converges effectively.

2.4 Maximising Discriminatory Power

Intuitively, spreading out distributions makes them more similar. More formally,

from the data processing inequality (see Appendix A.3), using spread noise will

always decrease the f -divergence D f (p̃||q̃) ≤ D f (p||q) (when D f (p||q) is well

defined). If we use spread MLE to train a model, too much noise may make the

spreaded empirical and spreaded model distributions so similar that it becomes

difficult to numerically distinguish them. It is useful therefore to learn spread noise

pψ(y|x) (parameterised by ψ) to maximally discriminate between the distributions

maxψ D(p̃||q̃). In general, we need to constrain the spread noise to ensure that the

divergence remains bounded. The learned noise will discourage overlap between the

two spreaded distributions.

We discuss below two complementary approaches to adjust pψ(y|x). The first

adjusts the covariance for Gaussian p(y|x) and the second uses a mean transformation.

In principle, both approaches can be combined and easily generalised to other noise

distributions, such as the Laplace distribution. In Section 2.5.3, we empirically

investigate the benefit of these approaches when scaling the application of Spread



2.4. Maximising Discriminatory Power 41

a

b

A
a

b

A

u

Figure 2.3: Left: The lower dotted line denotes Gaussian distributed data p(x) with
support only along the linear subspace defined by the origin a and direction A. The
upper dotted line denotes Gaussian distributed data q(x) with support different from
p(x). Optimally, to maximise the Spread Divergence between the two distributions,
for fixed noise entropy, we should add noise that preferentially spreads out along the
directions defined by p and q, as denoted by the ellipses.

Divergence to complex high-dimensional problems.

2.4.1 Learning the Gaussian Noise Covariance

In learning Gaussian stationary spread noise p(y|x) = N (y x,Σ), the number of

parameters in the covariance matrix Σ scales quadratically with the data dimension

D. We therefore define Σ = σ2I +UUT where σ2 > 0 is fixed (to ensure bounded

Spread Divergence) and U is a learnable D×R matrix with R≪ D.

As a simple example that can be computed exactly, we consider implicit genera-

tive models P,Q that generate data in separated linear subspaces,

P(dx) =
∫

δ (x−a−Az) p(z)dz, Q(dx) =
∫

δ (x−b−Bz) p(z)dz, (2.40)

with p(z) = N (z 0, IZ). The spread densities are then

p̃(y) = N
(

y a,AAT +Σ

)
, q̃(y) = N

(
y b,BBT +Σ

)
. (2.41)

As Σ tends to zero, KL(p̃||q̃) tends to infinity. We therefore constrain Σ = σ2I+uuT,

where σ2 is fixed and uTu = 1. When A ̸= B, the optimal µ doesn’t have a simple

closed-form. Therefore, for calculational simplicity, we assume A = B. The Spread

Divergence KL(p̃||q̃) is then maximised for the noise direction u pointing orthogonal

to the vector
(
AAT +σ2I

)−1
(b−a). The noise thus concentrates along directions

defined by p and q, see Figure 2.3.



2.4. Maximising Discriminatory Power 42

2.4.2 Learning a Mean Transformation

Consider spread noise p(y|x) = k(y− f (x)) for injective3 f and stationary k, e.g.

p(y|x) = N (y| f (x),σ2I). Then for two distributions P and Q that are not a.c., we

can define two a.c. distributions P̃ and Q̃ with densities

p̃(y) =
∫

x
k(y− f (x))dP, q̃(y) =

∫
x
k(y− f (x))dQ. (2.42)

Therefore, the spread divergence D̃(P||Q) ≡ D(p̃(y)||q̃(y)) is a valid divergence

since

D̃(P||Q) = 0⇔ P̃= Q̃⇔ P f =Q f ⇔ P=Q, (2.43)

where we denote the distributions P f and Q f as the transformations of P and Q with

invertible function f 4 densities

P(ds) =
∫

δ (s− f (x))dP, Q(ds) =
∫

δ (s− f (x))dQ. (2.44)

Since injective f gives a different noise p(y|x) and hence we can then define a

family of f (e.g. parameterize f with a neural network) and search for the best noise

implicitly by learning f .

There are many invertible neural networks that can be used to parameterize

f (e.g. normalizing flows [Rezende and Mohamed, 2015]). In this work, we use

the invertible residual network [Behrmann et al., 2019] fψ : RD→ RD where fψ =

( f 1
ψ ◦ . . .◦ f T

ψ ) denotes a ResNet with blocks f t
ψ = I(·)+gψt (·). Then fψ is invertible

if the Lipschitz-constants Lip(gψt )<1, for all t ∈ {1, . . . ,T}. Note that when using

the Spread Divergence for training we only need samples from p̃(y) which can be

obtained by first sampling x′ from P and then y from p(y|x = x′) = k(y− f (x′)); this

does not require computing the Jacobian or inverse fψ
−1.

We then denote the spread divergence parameterized by fψ as K̃L fψ . To maxi-

3Since the co-domain of f is determined by its range, injective indicates invertible in this case.
4The invertible transformation defines a homeomorphism [Cornish et al., 2020], so P f and Q f

will not be a.c. if P and Q are not a.c..



2.5. Applications 43

mize the discriminatory power, we train ψ with the following objective

max
ψ

min
θ

K̃L f (Pd||Qθ ). (2.45)

In contrast to the min-max training technique employed in the Wasserstein GAN [Ar-

jovsky et al., 2017], where the maximum step serves to tighten the lower bound of

the Wasserstein divergence, our methodology is different. Here, every instance of ψ

establishes a valid divergence. Consequently, for each ψ , we can carry out a full max-

imization of θ without encountering any instability issues. In practice, we alternate

between one-step ψ training and multiple-epoch φ training. For a comprehensive

understanding of this process, please refer to the experimental section.

2.5 Applications

2.5.1 Deriving Deterministic PPCA

Our aim here is to show how the classical deterministic PCA algorithm can be derived

through a maximum-likelihood approach, rather than the classical non-probabilistic

least-squares derivation. This is remarkable since the likelihood itself is not defined

for this model.

For isotropic Gaussian observation noise with variance γ2, the Probabilistic

PCA (PPCA) model [Tipping and Bishop, 1999] for DimX -dimensional observations

and Z-dimensional latent is

x = Fz+ γε, z∼N (0, IZ), ε ∼N (0, IX),

qθ (x) = N
(

x 0,FFT + γ
2IX

)
. (2.46)

When γ = 0, the generative mapping from z to x is deterministic and the model qθ (x)

has support only on a subset of DX and the data likelihood is in general not defined

for DZ < DX .

In the following we consider general γ , later setting γ to zero throughout the

calculation. To fit the model to iid data {x1, . . . ,xN} using maximum likelihood, the

only information required from the dataset is the data covariance Σ̂. For γ > 0, the



2.5. Applications 44

maximum likelihood solution for PPCA is F = UZ
(
ΛZ− γ2IZ

) 1
2 R, where ΛZ , UZ

are the Z largest eigenvalues, eigenvectors of Σ̂; R is an arbitrary orthogonal matrix.

Using spread noise p(y|x) = N
(
y x,σ2IX

)
, the spreaded distribution is a Gaussian

q̃θ (y) = N
(
y 0,FFT +(γ2 +σ2)IX

)
. Thus, q̃θ (y) is of the same form as PPCA,

albeit with an inflated covariance matrix. Adding Gaussian spread noise to the data

also simply inflates the sample covariance to Σ̂′ = Σ̂+σ2IX .

Since the eigenvalues of Σ̂′ ≡ Σ̂+σ2IX are simply Λ′ = Λ+σ2IX , with un-

changed eigenvectors, the optimal deterministic (γ = 0) latent linear model has

solution F =UZ
(
Λ′Z−σ2IZ

) 1
2 R =UZΛ

1
2
Z R.

We have thus recovered the standard PCA solution; however, the derivation is

non-standard since the likelihood of the deterministic latent linear model γ = 0 is not

defined. Since classical deterministic PCA cannot normally be described in terms of

a likelihood, the usual derivation of PCA is to define it as the optimal least-squares

reconstruction solution based on a linear projection to a lower-dimensional subspace,

see for example [Barber, 2012]. Nevertheless, using the Spread Divergence, we learn

a sensible model and recover the true data-generating process if the data were exactly

generated according to the deterministic model.

2.5.2 Training Degenerate Gauss-VAE

We consider the data distribution Pd which is defined by the following data generation

process to sample x∼ Pd:

z∼B(0.5), a∼N (2z−1,0.1), x = (a,0), (2.47)

where B(0.5) is a Bernoulli distribution with mean 0.5. Therefore, the data distri-

bution Pd is a mixture of two degenerated Gaussian which is supported on a 1D

manifold in a 2D space, we visualize the data distribution in Figure 2.4.

We then learn Pd with a generalized implicit model with a discrete latent

Qθ (dx) =
∫

Ng(x|gθ (z),Σθ (z))p(z)dz, (2.48)



2.5. Applications 45

Figure 2.4: A mixture of two degenerated Gaussians.

where the prior p(z) is a 1D Bernoulli distribution and Ng(x|gθ (z),Σθ (z)) is a gener-

alized Gaussian with learnable mean and learnable diagonal variance [σ2
1 (z),σ

2
2 (z)],

both are parameterized by a neural network. We use a softplus activation func-

tion on the output of the variance network to allow both σ2
1 (z),σ

2
2 (z) to converge

to 0 so the Ng(x|gθ (z),Σθ (z)) can be a degenerate Gaussian distribution with

rank(Σθ (z))< Dim(x). Both encoder and decoder contain 2-layer neural networks

with ReLU as the activation function and 16 hidden units. We train the model using

both the classic ELBO and the proposed spread ELBO for 5k iterations with Adam

optimizer [Kingma and Ba, 2014] (with learning rate 1×10−3) and batch-size 100.

For the spread ELBO, we use the Gaussian spread noise p(y|x) =N (y|x,σ2I) where

σ = 0.02.

In Figure 2.5, we compare the training loss from two degenerated Gauss-VAEs

that are trained with the classic ELBO (Figure a) and the proposed spread ELBO

(Figure b) respectively. We can see for the classic ELBO training, the training loss

is not very smooth. This is because when the σ2(z) in the pθ (x|z) converges to 0,

the log-density log pθ (x|z) collapses to a δ distribution and the likelihood becomes

infinity, which impedes the training. On the other hand, the likelihood of the spread

model pθ (y|z) is always well-defined when the underlying pθ (x|z) becomes a δ

distribution, so the spread ELBO objective gives a smooth training curve. We also

visualize the samples from both models and find the one trained with the spread

ELBO successfully recovers the true data distribution whereas the one trained with

the classic ELBO fails to generate valid samples.



2.5. Applications 46

(a) Degenerate Gauss-VAE with ELBO

(b) Degenerate Gauss-VAE with Spread ELBO

Figure 2.5: Training loss and model samples comparisons for the degenerated Gauss-
VAEs trained with the classic ELBO (Figure a) and the proposed spread ELBO
(Figure b) respectively We can see the one trained with spread ELBO (Figure b) has
smoother training curves and successfully recovers the underlying data distribution
whereas the classic ELBO training is unstable for this manifold model.

2.5.3 Image Modelling with δ -VAE

2.5.3.1 MNIST

We trained a δ -VAE with spread ELBO on MNIST [LeCun, 1998] with (i) fixed

Laplace spread noise, as in Equation 2.17, (ii) fixed Gaussian spread noise, as in

Equation 2.16 and (iii) Gaussian noise with learned covariance, as in Section 2.4.1,

with rank R = 20; gθ (·) is a neural network that contains 3 feed-forward layers.

Figures 2.6(a,b,c) show samples from pθ (x) for these models. Given that

MNIST is a comparatively simpler problem, it becomes challenging to differentiate

between the quality of fixed and learned noise samples. We speculate that the use

of Laplace noise enhances image sharpness. This is likely because the Laplace

distribution, being leptokurtic, inherently places more emphasis on discriminating

between points in close proximity to the data manifold. This is in contrast to the



2.5. Applications 47

(a) Fixed Laplace Spread Noise

(b) Fixed Gaussian Spread Noise

(c) Learned Gaussian Spread Noise

Figure 2.6: Samples from a deep implicit generative model trained using δ -VAE
with (a) Laplace spread noise with fixed covariance, (b) Gaussian spread noise with
fixed covariance and (c) Gaussian spread noise with learned covariance. We first
train with one epoch a standard VAE as initialization to all models and keep the
latent code z∼N (z 0, IZ) fixed when sampling from these models thereafter, so we
can more easily compare the sample quality.

(a) δ Fixed spread noise (b) δ Learned spread noise

Figure 2.7: Samples from a deep implicit generative model trained using δ -VAE
with (a) fixed and (b) learned spread with the mean transformation method. We
use a similar sampling strategy as in the MNIST experiment to facilitate sample
comparison between the different models – see Appendix A.7.

Gaussian distribution, which is less likely to generate points near the data manifold.



2.5. Applications 48

2.5.3.2 CelebA

We trained a δ -VAE with spread ELBO on the CelebA dataset [Liu et al., 2015] with

(i) fixed and (ii) learned spread using the mean transformation method as discussed

in Section 2.4.2. We compare to results from a standard VAE with fixed Gaussian

noise p(x|z) = N (x gθ (z),0.5IX) [Tolstikhin et al., 2017], where gθ (·) is a neural

network contains 4 convolution layers.

For (i) the fixed Spread Divergence uses Gaussian noise N (y x,0.25IX). For

(ii) we use Gaussian noise with a learned injective function in the form of a ResNet:

fψ(·) = I(·)+gψ(·) - see Appendix A.7 for details. Figure 2.7 shows samples from

our δ -VAE for (i) and (ii) (with gθ (z) initialised to the fixed-noise setting). It is

notable how the ‘sharpness’ of the image samples substantially increases when

learning the spread noise. Table 2.1 shows Frechet Inception Distance (FID) [Heusel

et al., 2017] score5 comparisons between different baseline algorithms for implicit

generative model training6. The δ -VAE significantly improves on the standard VAE

result. Learning the mean transformation improves on the fixed-noise δ -VAE. Indeed

the mean transformation δ -VAE results are comparable to popular GAN and WAE

models [Gulrajani et al., 2017a, Berthelot et al., 2017, Arjovsky et al., 2017, Kodali

et al., 2017, Mao et al., 2017, Fedus et al., 2017, Tolstikhin et al., 2017]. Whilst

the δ -VAE results are not state-of-the-art, we believe it is the first time that implicit

models have been trained using a principled maximum likelihood-based approach.

By increasing the complexity of the generative model gθ and injective function fψ ,

or using better choices of noise, the results may become more competitive with

state-of-the-art GAN models7.

5The FID score is a measure of similarity between two datasets of images. FID is calculated by
computing the Fréchet distance between two Gaussians fitted to feature representations of the dataset
and the samples from the model using an Inception network [Szegedy et al., 2017], see Heusel et al.
[2017] for a detailed introduction

6FID scores were computed using github.com/bioinf-jku/TTUR based on 10000 sam-
ples.

7We also tried learning the image generator using Laplace spread noise. However, the colour of
the sampled images becomes overly intense and we leave it to future work to address this.

github.com/bioinf-jku/TTUR


2.6. Related Work 49

Table 2.1: CelebA FID Scores. The δ -VAE results are the average over 5 inde-
pendent measurements. The scores of the GAN models are based on a large-scale
hyperparameter search and take the best FID obtained [Lucic et al., 2018]. The
results of the VAE model and both WAE-based models are from [Tolstikhin et al.,
2017].

Encoder-Decoder Models FID GAN Models FID

VAE 63.0 WGAN GP 30.0
δ -VAE with fixed spread 52.7 BEGAN 38.9

δ -VAE with learned spread 46.5 WGAN 41.3
DRAGAN 42.3

WAE-MMD 55.0 LSGAN 53.9
WAE-GAN 42.0 NS GAN 55.0

MM GAN 65.6

2.6 Related Work

Instance noise: The instance noise trick to stabilize GAN training [Roth et al., 2017,

Sønderby et al., 2016] is a special case of Spread Divergence using fixed Gaussian

noise. Whilst other similar tricks, e.g. [Furmston and Barber, 2009], have been

proposed previously, we believe it is important to state the more general utility of

the spread noise approach.

δ -VAE versus WAE: The Wasserstein Auto-Encoder [Tolstikhin et al., 2017]

is another implicit generative model that uses an encoder-decoder architecture. The

major difference to our work is that the δ -VAE is based on the KL divergence, which

corresponds to MLE, whereas the WAE uses the Wasserstein distance.

δ -VAE versus denoising VAE: The denoising VAE [Im Im et al., 2017] uses a

VAE with noise added to the data only. In contrast, for our δ -VAE, spread MLE adds

noise to both the data and the model. Therefore, the denoising VAE cannot recover

the true data distribution, whereas in principle the δ -VAE with spread MLE can.

MMD GAN with kernel learning: Learning a kernel to increase discrimination

is also used in MMD GAN [Li et al., 2017]. Similar to ours, the kernel in MMD GAN

is constructed by k̃ = k ◦ fψ , where k is a fixed kernel and fψ is a neural network. To

ensure the MMD distance Mk◦ fψ (p,q) = 0⇔ p = q, this requires fψ to be injective

[Gretton et al., 2012]. However, in this framework, fψ(x) usually maps x to a lower



2.6. Related Work 50

dimensional space. This is crucial for MMD because the amount of data required to

produce a reliable estimator grows with the data dimension [Ramdas et al., 2015] and

the computational cost of MMD scales quadratically with the amount of data. Whilst

using a lower-dimensional mapping makes MMD more practical it also makes it

difficult to construct an injective function f . For this reason, heuristics such as the

auto-encoder regularizer [Li et al., 2017] are considered. In contrast, for the δ -VAE

with spread MLE, the cost of estimating the divergence is linear in the number of

data points. Therefore, there is no need for fψ to be a lower-dimensional mapping;

guaranteeing that fψ is injective is straightforward for the δ -VAE.

Flow-based generative models: Invertible flow-based functions [Rezende and

Mohamed, 2015] have been used to boost the representation power of generative

models. Our use of injective functions is quite distinct from the use of flow-based

functions to boost generative model capacity. In our case, the injective function f

does not change the model - it only changes the divergence. For this reason, the

Spread Divergence doesn’t require the log determinant of the Jacobian, which is

required in [Rezende and Mohamed, 2015, Behrmann et al., 2019], meaning that

more general invertible functions can be used to boost the discriminatory power of a

Spread Divergence.

2.6.1 Connection to Denoising Score Matching

Recently, Energy-Based Models (EBMs) have gained significant traction within

generative model research [Ngiam et al., 2011, Xie et al., 2016, Du and Mordatch,

2019, Song and Ermon, 2019] and play a key role in the success of diffusion

models [Ho et al., 2020, Song and Ermon, 2019, 2020]. EBMs are a type of non-

normalized probabilistic model that determines the probability density function

without a known normalizing constant. For continuous data x, the density function

of an EBM is specified as

qθ (x) = exp(− fθ (x))/Z(θ), (2.49)



2.6. Related Work 51

where the fθ (x) is a nonlinear function with parameter θ and Z(θ) =∫
exp(− fθ (x))dx is the normalization constant that is independent of x. The

energy parameterization allows for greater flexibility in model parameterization and

the ability to model a wider range of probability distributions.

A popular method to train EBMs is Denoising score matching (DSM) [Vincent,

2011]. This method uses a noise distribution p(x̃|x) = N (x,σ2I) to construct a

noised data distribution p̃d(x̃) =
∫

pd(x)p(x̃|x)dx. Subsequently, DSM minimizes

the Fisher divergence between the noised data distribution p̃d(x̃) and an EBM

q̃θ (x̃) = exp(− fθ (x̃))/Z(θ), with

FD(p̃d||q̃θ ) =
1
2

∫
p̃d(x̃)||sp̃d(x̃)− sq̃θ

(x̃)||22 dx̃

.
=

1
2

∫∫
p(x̃|x)pd(x)||∇x̃ log p(x̃|x)− sq̃θ

(x̃)||22 dx̃dx

.
=

1
2

∫∫
p(x̃|x)pd(x)

∥∥∥∥ x̃− x
σ2 + sq̃θ

(x̃)
∥∥∥∥2

2
dx̃dx, (2.50)

where the last equation is due to ∇x̃ log p(x̃|x) being tractable for the Gaussian

distribution p(x̃|x). DSM can be extended to handle multi-level noise scenarios,

allowing the training of multiple energy-based models. With an amortized energy (or

score) network corresponding to each noise level, it is termed a score-based diffusion

model. A detailed discussion on this can be found in [Song and Ermon, 2019].

The DSM objective trains an EBM to align with the noisy data distribution the

noisy data distribution p̃d , rather than the true underlying distribution pd . In the

ideal scenario when q̃θ∗ = p̃d , there exists an underlying clean model q∗(x), such

that
∫

q∗(x)p(x̃|x)dx = q̃θ∗(x̃). This means the clean model would align with the

actual data distribution q∗(x) = pd(x). However, for an imperfect EBM q̃θ ̸= p̃d ,

the existence of the clean model is not guaranteed, see [Zhang et al., 2023a] for a

comprehensive discussion on the existence of the clean model.

In relating to the spread divergence, we posit that it’s possible to craft a function

family fθ ∈F such that there always exists an underlying clean model qθ (x) that

satisfies
∫

qθ (x)p(x̃|x)dx = exp(− fθ (x̃))/Z(θ), then training the DSM objective is



2.7. Discussions 52

equivalent to minimizing the Spread Fisher Divergence (F̃D), defined as

F̃D(pd(x)||qθ (x)) = FD
(∫

pd(x)p(x̃|x)dx||
∫

qθ (x)p(x̃|x)dx
)
. (2.51)

Designing such a functional family in practical terms continues to be a challenge;

however, this close relationship sheds light on the intricacies of DSM. This connec-

tion opens up a promising path for deeper exploration, both in understanding and

enhancing DSM training. We leave this for future investigations.

2.7 Discussions
In this chapter, we introduced the spread divergence as a solution to the shortcom-

ings of the KL divergence when the two distributions either lack valid probability

density functions or share the same support. We outlined a methodology employing

this proposed divergence for training implicit generative models, closely aligning

with traditional likelihood or ELBO maximization techniques. Additionally, we

explored the potential of learning spread noise to enhance discrimination between

two distributions, subsequently improving image generation results.

A central insight from our proposed method is the efficacy of introducing equal

noise to both data and model. This not only bolsters model training under specific

conditions but also ensures the estimator remains consistent. The innovative spread

divergence has paved the way for a slew of subsequent research, leading to the

development of new models and training methodologies aimed at refining manifold

modeling outcomes [Zhang et al., 2023b, Loaiza-Ganem et al., 2023, 2022]. A recent

paper [Graves et al., 2023] also uses a similar technique in building the generative

model, delivering state-of-the-art image generation results.

There are several potential directions for further exploration of spread diver-

gence. For instance, one might investigate the broader family of spread noise and

its associated properties, or determine the optimal noise type for various tasks. As

we discussed in Section 2.6.1, introducing noise to the data distribution has become

a pivotal technique in the realm of the diffusion model. An enticing avenue is to

comprehend and refine the diffusion model’s training from the vantage point of



2.7. Discussions 53

spread divergence, which holds the potential to further enhance its training.

We have addressed the issue of the KL divergence being unsuitable for manifold

distributions that lack density functions. Within Section 2.6.1, we touch upon

the score-based method employed in training the energy-based model, a pivotal

component of diffusion models. Additionally, there exists a notable failure mode in

the score-based approach to model multi-modal distributions. We will delve into this

failure mode and present a tailored solution in the next chapter.



Chapter 3

Healing the Fisher Divergence for

Multi-Modality Modelling

Score-based divergences have been widely used in machine learning and statistics

applications. Despite their empirical success, a blindness problem has been observed

when using these for multi-modal distributions. In this work, we discuss the blindness

problem and propose a new family of divergences that can mitigate the blindness

problem. We illustrate our proposed divergence in the context of density estimation

and report improved performance compared to traditional approaches.

3.1 Introduction
Score-based divergences such as the Fisher Divergence (FD; also known as score-

matching divergence) [Aapo, 2005, Hyvärinen, 2007] and Kernel Stein Discrepancy

(KSD) [Liu et al., 2016, Chwialkowski et al., 2016] are widely used in machine

learning and statistics [Anastasiou et al., 2021, Song and Kingma, 2021]. Their main

advantage is that the score function, a derivative of a log-density, can be evaluated

without knowledge of the normalization constant of the density and can be applied

to problems where other classical divergences (e.g. KL divergence) are intractable.

Unfortunately, this advantage can also be a curse in certain scenarios because the

score function only provides local information about the slope of a density, but

ignores more global information such as the importance of a point relative to another.

This has led to a blindness problem in many applications of score-based methods



3.1. Introduction 55

where the densities are multi-modal, including in density estimation [Wenliang

et al., 2019, Song and Ermon, 2019, Jolicoeur-Martineau et al., 2020], MCMC

convergence diagnosis [Gorham et al., 2019], Bayesian inference [Matsubara et al.,

2022, D’Angelo and Fortuin, 2021]; see [Wenliang and Kanagawa, 2020] for a

detailed discussion.

To illustrate this problem, we recall the definition of FD and an example from

[Wenliang and Kanagawa, 2020]. Given two distributions with differentiable densi-

ties p and q supported on a common domain X ⊆ Rd , the FD is

FD(p||q) = 1
2

∫
X

p(x)||sp(x)− sq(x)||22 dx. (3.1)

The classic sufficient conditions [Aapo, 2005, Barp et al., 2019] for the FD to be

a valid statistical divergence (i.e. FD(p||q) = 0⇔ p = q) are: (i) p and q are

differentiable with support X = Rd and (ii) sp,sq are square integrable, i.e. sp−

sq ∈ L2(p), where we denote f ∈ L2(p)≡
∫
X || f (x)||22 p(x)dx < ∞. The blindness

problem of the FD can be illustrated through the following example due to [Wenliang

and Kanagawa, 2020]. Let p and q be a mixtures with the same components but

different mixing weights:

p(x) = αpg1(x)+(1−αp)g2(x), q(x) = αqg1(x)+(1−αq)g2(x), (3.2)

where αp ̸= αp, and g1,g2 are Gaussian densities with variance σ2 and means −µ

and µ respectively. Then FD(p||q)→ 0 when µ/σ2→ ∞ regardless of the mixture

proportions αp and αq. To build intuition, we let µ = 5, σ = 1, αp = 0.2,αq = 0.8

and plot the densities and score functions of p,q in Figure 3.1a and 3.1b. We can

find the two distributions are very different but their scores are only different around

x = 0, which has a negligible density value under p. We then fix αp = 0.2 and plot

the FD(p||q) as a function of α in Figure 3.1c. Here we see the FD is 0 constant

function, which shows the FD is ‘blind’ to the value of the mixture weight. See

[Matsubara et al., 2022] for a similar example for discrete X .



3.2. Understanding the Blindness Problem 56

(a) Densities of p,q (b) Score functions of p,q (c) FD(p||q) with different αq

Figure 3.1: We plot the densities and score functions of distributions p and q in
Figure (a) and (b). Figure (c) shows FD(p||q) with αp = 0.2 and αq varies from
0.01 to 0.09 with a grid size 0.01.

3.2 Understanding the Blindness Problem
In the example above, blindness is a numerical problem since the problem occurs

despite the fact that the FD is a divergence in that case (i.e. FD(p||q) = 0⇔ p = q

since (i) and (ii) are satisfied). When µ/σ2→∞, although the Gaussian distributions

still have the same support, the regions that contain most of the mass of g1 and g2

tend to be disjoint, which creates numerical issues. However, the blindness problem

is not simply a numerical problem, as illustrated in the following example.

Consider the case where p and q are mixtures whose identical components have

disjoint supports. For example, let g1 and g2 in Equation 3.2 have disjoint support

sets X1,X2 ⊆ Rd respectively with X1∩X2 = /0. Then, g2(x′) = ∇xg2(x′) = 0 for

x′ ∈X1 and g1(x′) = ∇xg1(x′) = 0 for x′ ∈X2. In this case, the FD is independent

of αq (see Appendix B.1.1 for a derivation):

FD(p||q) = αp
2
∫
X1

g1(x)||sg1(x)− sg1(x)||22 dx+ 1−αp
2
∫
X2

g2(x)||sg2(x)− sg2(x)||22 dx = 0. (3.3)

Therefore, the FD is not a valid divergence here since FD(p||q) = 0 ⇏ p = q. This

example guides us to further study the topology properties of the distributions’

support required by the FD. We first extend the Fisher divergence to distributions

that have support on the connected space.

Theorem 2 (FD on a connected set). Assume two distributions (i) have differentiable

densities p and q with support on a common1 open connected set X ⊆ Rd and (ii)

1The common support condition can be relaxed to Xp ⊆Xq, where Xp,Xq are the support sets
of p and q.



3.3. Healing the Blindness Problem with Mixture Fisher Divergence 57

sp− sq ∈ L2(p). Then, the FD is a valid divergence i.e. FD(p||q) = 0⇔ p = q.

See Appendix B.1.2 for a proof. Theorem 2 generalizes the classic FD that

is defined on distributions with X = Rd [Aapo, 2005, Barp et al., 2019] (Rd is a

special case of the connected set). Secondly, Theorem 3 shows that connectedness

of the support is a necessary condition to define a valid FD.

Theorem 3 (FD is ill-defined on disconnected sets). Let X be a union of disjoint

sets, then the FD is not a valid divergence on X , i.e. there exist two different

distributions p ̸= q both supported on X but FD(p||q) = 0.

See Appendix B.1.3 for a proof. Intuitively, the score function only considers

the local derivatives and contains no information on the global normalization constant.

If the domain is disconnected, it cannot determine the mass allocation in different

domains. This observation can also be extended to the KSD by viewing KSD as a

kernelized FD [Liu et al., 2016, Chwialkowski et al., 2016], see Appendix B.1.4 for

a detailed discussion.

3.3 Healing the Blindness Problem with Mixture

Fisher Divergence
In this section, we propose a new variant of the FD which is well-defined in the

disconnected scenario. Consider a distribution with density m with support Xm =Rd

and define the mixtures

p̃(x) = β p(x)+(1−β )m(x), q̃(x) = βq(x)+(1−β )m(x), (3.4)

where 0 < β < 1. We then define the Mixture Fisher Divergence (MFD) as

MFDm,β (p||q)≡ FD(p̃||q̃). (3.5)

Theorem 4 shows the MFD is well-defined when p and q have support on a discon-

nected space.



3.4. Density Estimation with Energy-based Models 58

(a) Densities of p̃, q̃ (b) Score functions of p̃, q̃ (c) MFD(p||q) with diff. αq

Figure 3.2: We plot the densities (a) and the score functions (b) of p̃ and q̃. Figure
(c) shows MFD(p||q) with αp = 0.2 and αq varies from 0.0 to 1.0 with a grid size
0.01. The star mark shows the minima of the MFD is achieved when αq = αp = 0.2,
we also plot the original FD for a comparison.

Theorem 4 (Validity of the MFD). Consider two distributions with differentiable

densities p,q supported on Xp,Xq ⊆ Rd with sp,sq ∈ L2(p) and a differentiable

density m with support Xm = Rd,sm ∈ L2(p). Then MFD is a valid divergence, i.e.

MFD(p||q) = 0⇔ FD(p̃||q̃)⇔ p = q.

See Appendix B.1.5 for a proof. For MFD, we no longer require that p,q have

common connected support, since Xm =Rd results in p̃, q̃ having connected support

Rd2. The requirements of m(x) are mild and hold for simple choices of distribution

e.g. a Gaussian. To avoid the numerical problem mentioned in Section 1, m(x)

should be chosen to effectively connect the different component distributions. As an

example, for the toy problem described in Figure 1 with components N (−5,1) and

N (−5,1), we can choose β = 0.5 and m(x)=N (0,9) that covers both components.

Figure 3.2 shows the densities and their score functions for p̃, q̃. We see that the

score functions are different on the high-density region of p̃. Figure 3.2c also shows

the minimal value of the MFD(p||q) is attained when αq = αp, which indicates that

the proposed MFD heals the blindness problem in this example.

3.4 Density Estimation with Energy-based Models
Given a dataset Xtrain = {x1, · · · ,xN} sampled i.i.d. from a data distribution pd with

support Xpd ⊆ Rd , we would like to learn a model qθ to approximate pd . We are

interested in a family of models which can only be evaluated up to a normalization

2A weaker condition of m can be obtained by requiring the supports of p̃, q̃, which we denote as
Xp̃,Xq̃, to be connected and Xp̃ ⊆Xq̃. We here only study the stronger condition that m(x) has
support of Rd for simplicity.



3.4. Density Estimation with Energy-based Models 59

constant, e.g. an energy-based model qθ (x) = e− fθ (x)/Z(θ), where fθ is a neural

network and Z(θ) =
∫

e− fθ (x) dx. In this case, the standard Maximum Likelihood

Estimation (MLE) is not applicable (since Z(θ) cannot be evaluated during training)

and an alternative form of the FD [Aapo, 2005] can be applied

FD(pd||qθ ) =
1
2

∫
Xpd

pd(x)
(
||sqθ

(x)||22 +2Tr(∇xsqθ
(x))

)
dx+ const., (3.6)

where ∇xsqθ
(x) = ∇2

x logqθ (x) is the Hessian matrix and the constant represents

the terms that are independent of θ . The integration over pd can be approximated

by Monte-Carlo using Xtrain. Because both sqθ
and ∇xsqθ

only depend on fθ , the

normalizer Zq(θ) is not required during training and we only need to estimate Zq(θ
∗)

once after training. Therefore, density estimation with FD in this setting contains two

steps: (1) learn θ ∗ using Equation 3.6; (2) estimate Z(θ ∗) to obtain the normalized

density qθ (x). This scheme can result in blindness in practice [Wenliang et al., 2019].

To heal blindness, we can apply the proposed MFD. However, if we directly

minimize MFD in step (1), the score

sq̃θ
(x) = ∇x log

(
β exp(− fθ (x))/Zq(θ))+(1−β )m(x)

)
(3.7)

requires estimating Zq(θ). This negates the advantage of using score matching

because now Zq(θ) must be estimated for every gradient step during training (similar

to MLE). To avoid this, we propose to instead directly approximate p̃d with an

energy-based model q̃θ (x)≡ e− fθ (x)/Zq̃(θ) and q̃θ can then be trained using

FD(p̃d||q̃θ ) =
1
2

∫
Rd

p̃d(x)
(
||sq̃θ

(x)||22 +2Tr
(
∇xsq̃θ

(x)
))

dx+ const., (3.8)

where the integration over p̃d(x) can be approximated using the samples from the

mixture p̃d(x) = β pd(x)+(1−β )m(x). Therefore, the learning of θ is independent

of Zq̃(θ). Optimally we have q̃θ∗(x) = p̃d(x) = β pd(x)+ (1−β )m(x). To obtain

a model of the underlying true density q∗ = pd , we need to remove the mixture



3.4. Density Estimation with Energy-based Models 60

component from q̃θ∗ , which can be done through a ‘correction step’:

q∗(x) =
1
β
(q̃θ∗(x)− (1−β )m(x)) =

1
β
(q̃θ∗(x)− (1−β )m(x)) . (3.9)

This procedure for obtaining q∗ is equivalent to q∗(x) = argminq MFD(pd(x)||q(x))

and when MFD(pd(x)||q(x)) = 0, we have q∗(x) = pd(x). Therefore, density esti-

mation with MFD in this setting contains three steps: (1) learn θ ∗ by minimizing

Equation 3.8; (2) estimate Zq̃(θ
∗); and (3) apply the correction step (Equation

3.9) to obtain qθ∗ . Compared to FD, the additional correction step has negligible

computation cost.

In practice, for an imperfect model q̃θ (x) ̸= p̃d(x), q̃θ (x)− (1−β )m(x) might

take a negative value for certain x. To ensure a positive resulting density, We can

apply a max(·,0) operation, This yields the estimator:

q̂(x) =
1
β
(q̃θ (x)− (1−β )m(x)) =

1
β

max(q̃θ (x)− (1−β )m(x),0) , (3.10)

which is still a consistent estimator since q̃θ (x)→ p̃d(x)⇒ q̂(x)→ pd(x).

Choice of m and β

As we discussed in Section 3.3, the selection of the introduced m(x) distribution is

pivotal to our methodology. Ideally, a good m should be able to bridge disconnected

component distributions and has significant mass in the connected paths. For the

low-dimensional data distribution, we propose a heuristic solution to choose the m(x):

for a given set of data samples {x1, · · · ,xN} ∼ pd , we can simply choose m(x) =

N (µ̄, Σ̄), where µ̄ and Σ̄ are the empirical mean and covariance of the available

training data: µ̄ = 1
N ∑

N
n=1 xn, Σ̄ = 1

N ∑
N
n=1 xnxT

n . This construction corresponds to

an empirical moment matching approximation of pd which is known for its ‘mode

covering’ behavior [Bishop, 2006, Zhang et al., 2019b].

The β is treated as a hyper-parameter in our method. Intuitively, a large beta

means that the proportion of data points from pd is small, and the model is learning

m. On the other hand, a small value means we may still have the numerical version

of the blindness issue. In this experiment, we use β = 0.8 can find it can empirically



3.4. Density Estimation with Energy-based Models 61

(a) True (b) FD (c) MFD

(d) True (e) FD (f) MFD

Figure 3.3: Density estimation comparisons with FD and MFD for the energy-based
model. The KL(pd||pθ ) evaluations are 3.52/0.22 (b/e) for FD and 0.17/0.01 (c/f)
for MFD, lower is better.

heal blindness. We leave the theoretical study of choosing the β into future work.

Demonstrations

We apply the proposed method to train a deep energy-based model and examine

the performance against two target densities with multiple isolated components:

1) a weighted mixture of four Gaussians pd(x) = 0.1g1(x)+0.2g2(x)+0.3g3(x)+

0.4g4(x), where g1,g2,g3,g4 are 2D Gaussians with identity covariance matrix and

mean [−5,−5], [−5,5], [5,5], [5,−5] respectively; and 2) a mixture of 3 concentric

circles as proposed in [Wenliang et al., 2019]. We use Simpson’s rule for the

2D numerical integration to estimate the normalization constant for both methods.

The model specifications and training details can be found in Appendix B.2. In

Figure 3 we plot the ground truth and the estimated density with classic FD and the

proposed MFD methods. We also provide the corresponding KL evaluation (see

Appendix B.2) between the ground truth density pd and the estimated model pθ . We

find the proposed MFD method can significantly improve performance and heal the

blindness problem.



3.5. Related Works 62

3.5 Related Works
The issue of blindness is unique to score-based divergences like FD, KSD [Chwialkowski

et al., 2016, Liu et al., 2016], or Diffusion KSD [Barp et al., 2019]. Therefore, the

KL divergence (MLE) offers an alternative for training the EBMs, free from the

blindness issue [Kim and Bengio, 2016, Zhai et al., 2016]. However, employing

MLE necessitates estimating the normalization constant Z(θ) in every gradient step,

potentially introducing errors that result in biased gradients. Contrastingly, our

method mandates just a single estimation of the normalization constant post-training,

streamlining the training process.

Besides the KL divergence, the generative modeling domain also commonly

employs other metrics, including the f -divergence family, Wasserstein distance [Kan-

torovich, 1960], and MMD [Gretton et al., 2012]. However, training models using

these divergences often requires that gradients be back-propagated from samples to

model parameters, a step not directly feasible for energy-based models. This calls for

leveraging the REINFORCE gradient estimator [Williams, 1992], MCMC sampling,

and adversarial training at each optimization juncture; for more details, refer to [Yu

et al., 2020]. Our primary objective in this chapter is to refine score-based methods

rather than fully revamping training paradigms. Therefore, we’ll investigate alternate

score-based techniques, examining their potential to address the blindness issue.

Fisher Divergence with Normalizing Flow

Paper [Gong and Li, 2021] proposes to transform p and q with a common differen-

tiable invertible function before defining the FD. Specifically, for distribution p(x)

and q(x), we let p(y) =
∫

δ (y−g(x))p(x)dx and q(y) =
∫

δ (y−g(x))q(x)dx, where

g is a invertible function, e.g. a normalizing flow [Rezende and Mohamed, 2015].

The Fisher divergence is then defined in the transformed space and have

FD(p(y)||q(y)) = 0⇔ p(x) = q(x), (3.11)

which is also shown to be equivalent to the diffusion KSD [Barp et al., 2019].

However, since the invertible transformation is a homeomorphism and will not



3.5. Related Works 63

change the topology of its domain [Cornish et al., 2020, Zhang et al., 2023b], the

invertible transformation will not fix the blindness caused by the disconnected

support sets in principle.

Spread Fisher Divergence

In addition to the mixture construction, as we discussed in Chapter 2, conducting

a Gaussian convolution on both pd and qθ can also bridge the disjoint components

and define a valid. Specifically, for two distributions with densities pd(x) and qθ (x)

with supports Xpd ,Xqθ
⊆ Rd , we can choose k(x̃|x) = N(x,σ2) and let

p̃d(x̃) =
∫
Xpd

k(x̃|x)pd(x)dx q̃θ (x̃) =
∫
Xqθ

k(x̃|x)qθ (x)dx. (3.12)

We follow Equation 2.51 and define Spread Fisher Divergence(F̃D) as

F̃Dk(pd||qθ )≡ FD(p̃d||q̃θ ), (3.13)

The convolution transform makes p̃d and q̃θ have support Xp̃d = Xq̃θ
= Rd (which

is a connected space) and F̃Dk(pd||qθ ) ≡ FD(p̃d||q̃θ ) is a valid discrepancy, i.e.

F̃Dk(pd||qθ ) = 0⇔ p̃d = q̃θ ⇔ pd = qθ . Similar to the FD, we can rewrite the F̃D

as

F̃Dk(pd||pθ ) =
1
2

∫
Rd

p̃d(x̃)
∥∥sp̃d(x̃)− sq̃θ

(x̃)
∥∥2

2 dx̃ (3.14)

=
1
2

∫
Rd

p̃d(x̃)
(
s2

q̃θ
(x̃)+2∇x̃sq̃θ

(x̃)
)

dx̃+ const., (3.15)

where the constant terms are independent of the model parameters. However,

for an energy-based model qθ (x) = e− fθ (x)/Z(θ), the spread model q̃θ (x̃) =
1

Z(θ)
√

2πσ2

∫
e− fθ (x)− 1

2σ2 (x̃−x)2
dx has an intractable score, which makes the direct

training infeasible.



3.5. Related Works 64

Denoising Score Matching

Alternatively, one can directly parameterize q̃θ (x) to be an energy-based model

q̃θ (x̃) = exp(− fθ (x̃))/Z(θ), (3.16)

which leads to the denoising score matching (DSM) [Vincent, 2011] objective

introduced in Section 2.6.1:

FD(p̃d||q̃θ )
.
=

1
2

∫∫
p(x̃|x)pd(x)

∥∥∥∥ x̃− x
σ2 + sq̃θ

(x̃)
∥∥∥∥2

2
dx̃dx. (3.17)

where we use .
= to denote equivalent up to a constant that is independent of θ .

However, for a fixed σ > 0, the DSM objective is not a consistent objective to learn

the underlying data distribution pd since FD(p̃d||q̃θ ) = 0 =⇒ p̃d = q̃θ ̸= pd . A

common solution is to anneal σ → 0 during training. However, Equation 3.17 is

not defined when σ = 0 since the division in Equation 3.17 will make (x̃− x)/σ2

unbounded, which results in an inconsistent objective and annealing the noise won’t

fix the blindness problem.

To see this, we use a deep energy-based model with a 3-layer feedforward neural

network with 30 hidden units and a tanh activation function to learn the toy mixture

of two Gaussian distributions described in Section 1. We train the model with Adam

optimizer with a learning rate 3×e−4 for 10k iterations and batch size 300. We add

convolutional Gaussian noise to the data samples with a standard deviation of 3.0

and anneal to 0 by multiplying by 0.9999 at each iteration. The noise at the end of

training has a standard deviation of less than 0.001. In Figure 3.4 we plot the learned

density during training. We find that when the noise is big the model can identify

the correct mixture co-efficient, but when the noise is close to 0, the model fails to

capture the correct mixing proportions. We also plot the density estimation results

with vanilla FD and the proposed MFD in Figure 3.5a and 3.5b and we find that the

density estimation with MFD achieves the best performance.

Additionally, unlike the mixture construction, if we directly assume q̃θ (x̃) =

e− fθ (x̃)/Z(θ), the underlying ‘correct’ model qθ (x) can not be recovered from q̃θ (x̃)



3.6. Discussions 65

Figure 3.4: FD with training data noise annealing.

(a) FD (b) MFD

Figure 3.5: Density Estimation with FD and MFD.

even if we know Z(θ), so the DSM is also not directly applicable in this case. We

leave the investigation of how to sample from the clean model qθ (x), given the noisy

energy-based model q̃θ (x̃), for future work.

3.6 Discussions
In this chapter, we explored the nuances of the Fisher divergence and its shortcomings

in differentiating between mixture distributions with varying mixture proportions.

Building on our theoretical findings, we proposed the mixture Fisher divergence as a

preliminary remedy, which exhibited encouraging results in our toy experiments.

However, when transitioning from these elementary datasets to more intricate

high-dimensional distributions, such as natural images, a host of challenges emerge:

• The score-matching objective, as highlighted by Equation 3.6, necessitates the

computation of the Hessian’s trace. This becomes increasingly prohibitive,

both in terms of computational power and memory usage, especially for large

dimensional distributions.



3.6. Discussions 66

• The selection of m(x) is pivotal, requiring that m(x) should connect the discon-

nected regions of the target data distribution. For high-dimensional datasets,

such as images, the inherent structure often resides on a lower-dimensional

manifold within a vast dimensional space. This poses significant challenges in

devising an efficient m(x) that adeptly bridges diverse modes.

• The proposed methodology necessitates the estimation of the normalization

constant Z(θ) post-training to ascertain the distribution’s density. This estima-

tion proves to be daunting for expansive high-dimensional distributions.

Addressing these challenges are essential direction for future research in this

domain. We will leave a detailed exploration of how to practically apply and scale

this method for high-dimensional data to subsequent work.

End of Part I



3.6. Discussions 67

This marks the conclusion of the first segment of our thesis. In this part, we

have delved into the intricacies of the KL divergence, optimizing it for effective

training of implicit generative models tailored for non-a.c. distributions (Chapter 2).

We also addressed the critical challenges posed by the "blindness problem" inherent

to the Fisher divergence (Chapter 3). Our investigations in this section contribute to

enhancing the training methodologies for generative models across varied contexts.

In addition to model training, generalization is also a central theme in the realm

of classic machine learning research. However, this pivotal attribute is less explored

in the context of generative modeling. Moreover, both its definition and practical

implications remain somewhat nebulous. Thus, in the second segment of our thesis,

we will shift our focus from the theoretical frameworks of training techniques to

the pragmatic facets of model generalization. We will investigate the domains of in-

distribution and out-of-distribution generalizations, harnessing our research findings

to amplify practical applications, especially in the areas of lossless compression and

OOD detection.



Part II

Generalizations of Generative Models

68



Chapter 4

In-distribution Generalization of

Variational Auto-Encoder

In this Chapter, we study the generalization of a popular class of probabilistic model

- the Variational Auto-Encoder (VAE). We discuss the two generalization gaps that

affect VAEs and show that overfitting is usually dominated by amortized inference.

Based on this observation, we propose a new training objective that improves the

generalization of amortized inference. We demonstrate how our method can improve

performance in the context of image modeling and lossless compression.

4.1 Introduction of Variational Auto-Encoder

A popular type of probabilistic model is the Variational Auto-Encoder

(VAE) [Kingma and Welling, 2014, Rezende et al., 2014], which assumes a la-

tent variable model pθ (x) =
∫

pθ (x|z)p(z)dz. For a nonlinear parameterization of

pθ (x|z) (e.g. a deep neural network), the evaluation of log pθ (x) involves solving an

intractable integration over z. In this case, the evidence lower bound (ELBO) can be

used to side-step the intractability

∫
log pθ (x)pd(x)dx≥

∫∫ (
log pθ (x,z)− logqφ (z|x)

)
qφ (z|x)pd(x)dzdx (4.1)

≡
∫

ELBO(x,θ ,φ)pd(x)dx, (4.2)



4.1. Introduction of Variational Auto-Encoder 70

where qφ (z|x) is a variational posterior parameterized by a neural network with

parameter φ . The use of an approximate posterior of the form qφ (z|x) is called

amortized inference. To better understand this objective, we can rewrite the expected

ELBO as the following

∫
ELBO(x,θ ,φ)pd(x)dx =

∫ (
log pθ (x)−KL(qφ (z|x)||pθ (z|x))pd(x)

)
dx (4.3)

=
∫

log pθ (x)pd(x)dx︸ ︷︷ ︸
model learning

−
∫

KL(qφ (z|x)||pθ (z|x))pd(x)dx︸ ︷︷ ︸
amortized inference

, (4.4)

We denote the posterior family of qφ (z|x) as Q, which is indexed by a finite-

dimensional θ [Wang and Blei, 2019]. If Q is flexible enough such that the true

posterior pθ (z|x) ∈Q, where pθ (z|x) ∝ pθ (x|z)p(z), then in the optimum of Equa-

tion 4.3, we have KL(qφ (z|x)||pθ (z|x)) = 0⇒ qφ (z|x) = pθ (z|x) for x∼ pd(x) and

the ELBO will be equal to the log-likelihood ELBO(x,θ ,φ) = log pθ (x) [Kingma

and Welling, 2014, Blei et al., 2017]. Many methods have been developed to increase

the flexibility of Q, e.g. adding auxiliary variables [Agakov and Barber, 2004,

Maaløe et al., 2016] or flow-based methods [Challis and Barber, 2012, Rezende and

Mohamed, 2015], to obtain a tighter ELBO.

Recent works [Townsend et al., 2019, 2020, Kingma et al., 2019] have suc-

cessfully applied VAE style models to lossless compression realizing impressive

performance. In this setting, the average compression length on the test data set is

approximately equal to − 1
M ∑

M
m=1 ELBO(x′m,θ ,φ). Hence the better the test ELBO

indicates the better the compression performance. This motivates us to study the

factors that affect the generalization of VAEs and find practical ways to improve the

generalization of VAEs.

In the following section, we show the generalization of VAEs is affected by both

the generative model (decoder) and the amortized inference network (encoder); and

propose a new training objective that can improve the generalization of the amortized

inference without changing the model itself. Additionally, we demonstrate how to

improve the compression rate in a practical lossless compression system without

sacrificing any computation speed.



4.2. Generalizations of VAEs 71

4.2 Generalizations of VAEs

During training, we only have access to a finite dataset Xtrain, which leads to the

following empirical ELBO approximation:

∫
ELBO(x,θ ,φ)pd(x)dx≈ 1

N

N

∑
n=1

ELBO(xn,θ ,φ), (4.5)

which can be further represented as a combination of a model empirical approxima-

tion and an amortized inference empirical approximation:

1
N

N

∑
n=1

ELBO(x,θ ,φ) =
1
N

N

∑
n=1

log pθ (xn)−
1
N

N

∑
n=1

KL(qφ (z|xn)||pθ (z|xn)). (4.6)

Therefore, if either the decoder pθ (x|z) or the encoder qφ (z|x) is overly flexible,

it can cause the VAE to overfit to the training data. We then define the ELBO

generalization gap (EGG) as the difference between the training and test ELBO

EGG≡ 1
N

N

∑
N=1

ELBO(xn,θ
∗
N ,φ

∗
N)︸ ︷︷ ︸

Training ELBO

− 1
M

M

∑
m=1

ELBO(xm,θ
∗
N ,φ

∗
N)︸ ︷︷ ︸

Test ELBO

, (4.7)

where θ ∗N ,φ
∗
N are defined as the optimal parameters for training the empirical ELBO

θ
∗
N ,φ

∗
N = argmax

θ ,φ

1
N

N

∑
n=1

ELBO(xn,θ ,φ). (4.8)

By the decomposition in Equation 4.4, φ∗N is also the optimal parameter of the

empirical variational inference objective

φ
∗
N = argmin

φ

1
N

N

∑
n=1

KL
(

qφ (z|xn)||pθ∗N
(z|xn)

)
. (4.9)

For simplicity, considering a flexible amortized inference network, we can assume

that for any training data point xn ∈Xtrain

qφ∗N
(z|xn) = argmin

q∈Q
KL(qφ (z|xn)||pθ∗N

(z|xn))≡ q∗(z|xn), (4.10)



4.2. Generalizations of VAEs 72

where q∗(z|xn) is the realizable optimal posterior (in the Q family) for xn
1. However,

when qφ∗(z|xn) overfits to Xtrain, qφ∗(z|x′m) may not be a good approximation to

the true posterior pθ∗N
(z|x′m) for test data x′m ∈Xtest . This discrepancy can lead to a

suboptimal test ELBO.

To illustrate the generalization of the amortized inference, we denote the φ∗M as

the optimal realizable parameter of the amortized inference for the test dataset:

φ
∗
M = argmin

φ

1
M

M

∑
m=1

KL
(

qφ (z|x′m)||pθ∗N
(z|x′m)

)
. (4.11)

For a flexible qφ (z|x), we make a similar assumption to Equation 4.10, such that

qφ∗M
(z|x′m) can generate the optimal posterior within the variational family Q:

qφ∗M
(z|x′m) = argmin

q∈Q
KL(qφ (z|x′m)||pθ∗N

(z|x′m))≡ q∗(z|x′m), (4.12)

We then define the amortized inference generalization gap (AIGG) as the difference

between two averaged KL divergences

AIGG≡ 1
M

M

∑
m=1

KL(qφ∗N
(z|x′m)||pθ ∗N

(z|x′m))−
1
M

M

∑
m=1

KL(qφ∗M
(z|x′m)||pθ ∗N

(z|x′m)). (4.13)

Intuitively, AIGG assesses the proximity of the posterior qφ∗N
(z|x′m), — which is

derived from the amortized network trained on Xtrain — to the optimal realizable

posterior for x′m ∈Xtest . If the family Q is flexible enough such that pθ (z|x′m) ∈Q

for every x′m, then the AIGG simplifies to 1
M ∑

M
m=1 KL(qφ∗N

(z|x′m)||pθ∗N
(z|x′m)).

Equivalently, the AIGG can also be written as the difference between two

ELBOs with φ∗M and φ∗N respectively:

AIGG≡ 1
M

M

∑
M=1

ELBO(x′m,θ
∗
N ,φ

∗
M)− 1

M

M

∑
m=1

ELBO(x′m,θ
∗
N ,φ

∗
N), (4.14)

It is important to emphasize that this gap cannot be reduced by simply using a more

flexible variational family Q. While this might reduce the KL(qφ∗N
(z|xn)||pθ∗N

(z|xn))

1For a flexible amortized inference network, we assume that there is no amortization gap [Cremer
et al., 2018], which means qφ∗N

(z|x) can provide the optimal q∗(z|xn) for any training data xn ∈Xtrain
- see Section 4.6 for further discussion.



4.2. Generalizations of VAEs 73

for the training data xn ∈Xtrain, it would not explicitly encourage better generaliza-

tion performance on test data, see also [Shu et al., 2018].

The AIGG is caused by the overfitting of the amortized inference (encoder). To

understand the generalization property of the decoder, we can further rewrite the

EGG by subtracting and adding the term 1
M ∑

M
m=1 ELBO(x′m,θ

∗
N ,φ

∗
M):

EGG =
1
N

N

∑
n=1

ELBO(xn,θ
∗
N ,φ

∗
N)−

1
M

M

∑
m=1

ELBO(x′m,θ
∗
N ,φ

∗
M)

+
1
M

M

∑
m=1

ELBO(x′m,θ
∗
N ,φ

∗
M)− 1

M

M

∑
m=1

ELBO(x′m,θ
∗
N ,φ

∗
N)︸ ︷︷ ︸

AIGG

(4.15)

where the second row is the AIGG. Meanwhile, we define the expression in the

first row, which is the difference between the training and test ELBO using the

optimal amortized inference parameters φ∗N ,φ
∗
M respectively, as the Generative Model

Generalization Gap (GMGG)

GMGG =
1
N

N

∑
n=1

ELBO(xn,θ
∗
N ,φ

∗
N)︸ ︷︷ ︸

Training ELBO with optimal inference

− 1
M

M

∑
m=1

ELBO(x′m,θ
∗
N ,φ

∗
M)︸ ︷︷ ︸

Test ELBO with optimal inference

(4.16)

With this in perspective, we can express the EGG as a combination of both gaps:

EGG = GMGG+AIGG, (4.17)

This decomposition highlights that the VAE’s generalization performance is in-

fluenced by the generalization capabilities of both the generative model and the

amortized inference. To provide a more in-depth analysis, we’ll be illustrating these

gaps in the subsequent section.

4.2.1 Visualizations of the Generalization Gaps

The EGG can be easily visualized by plotting the difference between the training

ELBO and the test ELBO. To visualize the GMGG and the AIGG, we need to know



4.2. Generalizations of VAEs 74

the optimal amortized posterior qφ∗M
(z|x′m) for the test data x′m ∈Xtest , where

φ
∗
M = min

φ

1
M

M

∑
m=1

KL(qφ (z|x′m)||pθ∗N
(z|x′m)) (4.18)

= max
φ

1
M

M

∑
m=1

∫ (
log pθ∗N

(x′m,z)− logqφ (z|x′m)
)

qφ (z|x′m)dz. (4.19)

Adopting this optimal inference strategy effectively nullifies the impact of the AIGG.

This in turn allows us to separately assess the contributions of both the generative

model’s generalization gap and the amortized inference generalization gap, offering

insights into the nuances of model overfitting.

To visualize the generalization gaps, we trained a VAE on the Binary MNIST

training dataset over 1,000 epochs and we saved the encoder/decoder parameter

pair, denoted as (θ ,φ), every 100 epoch. Detailed model specifications and training

methods can be found in Section 4.4. Figure 4.1 shows the Bits-per-dimension

(BPD)2 of both training and testing dataset for every 100 epochs, the gap between

the training ELBO (blue) and test ELBO (purple) is the EGG. From the figure, it’s

evident that the VAE model starts to overfit the training dataset, and this overfitting

intensifies as the training duration extends.

AIGG

GMGG

EGG

Figure 4.1: BDPs vs epochs. Visualization
of the EGG = GMGG+AIGG.

Additionally, for each saved en-

coder/decoder parameters, we fix the de-

coder pθ (x|z) and only train qφ (z|x) for

1k epochs on the test data using Equa-

tion 4.19 to obtain the estimation of the

optimal amortized posterior qφ∗M
(z|x).

This process yielded the test BPD associ-

ated with the optimal inference strategy,

represented by the green line in Figure

4.1. The differential between the purple and green lines showcases the AIGG, while

the remaining gap between the green and blue lines is indicative of the GMGG.

2In the case of VAE, the BPD is defined as the negative ELBO (with a base 2 logarithm) normalized
by the data dimension, lower BPD indicates higher ELBO.



4.3. Consistent Amortized Inference 75

Utilizing the test ELBO with the test-time optimal inference strategy, the test

BPD (green) appears largely stable, showing just a minor increase during train-

ing. This pattern hints at the generative model’s (decoder’s) overfitting being less

pronounced compared to that of the amortized inference network (encoder). Conse-

quently, the primary source of significant overfitting is dominated by the overfitting

of the amortized inference network.

Although the optimal inference strategy (training the encoder on the test dataset

Xtest) can help reduce the EGG, but it will hinder the speed of both compression and

decompression processes, which is one of the central concerns in compression tasks.

Therefore, we now focus on improving the generalization of amortized inference

without access to the test data at training time.

4.3 Consistent Amortized Inference
We now propose an inference consistency requirement which, if satisfied, would

result in optimal generalization performance for amortized variational inference.

Specifically when pθ → pd , the amortized posterior should converge to the true

posterior qφ (z|x)→ pθ (z|x)3 for every x∼ pd(x). Although this requirement seems

natural for variational inference, the classic amortized inference training that is used

for VAEs [Kingma and Welling, 2014] doesn’t satisfy it. Recall the typical VAE

empirical ELBO training objective

1
N

N

∑
n=1

log pθ (xn)−KL(qφ (z|xn)||pθ (z|xn)). (4.20)

When the model is perfect pθ∗ = pd , the training criterion for qφ (z|x)

min
φ
− 1

N

N

∑
n=1

KL(qφ (z|xn)||pθ∗(z|xn)) (4.21)

can still result in the amortized posterior qφ (z|x) overfitting to the training data. In

principle, one could also limit the network capacity and/or add an explicit regularizer

to the parameters [Shalev-Shwartz and Ben-David, 2014] in an attempt to improve

3We assume the true posterior belongs to the variational family pθ (z|x) ∈Q.



4.3. Consistent Amortized Inference 76

the generalization. However, this still cannot satisfy the consistency requirement in

principle because it still only uses the finite training dataset. Alternatively, there is

another classic variational inference method that we now discuss, the wake-sleep

training algorithm [Dayan et al., 1995, Hinton et al., 1995], which does in fact satisfy

the proposed consistency requirement.

4.3.1 Wake-Sleep Training

Defining qφ (x,z) = qφ (z|x)pd(x) and pθ (x,z) = pθ (x|z)p(z), the two phases of the

wake-sleep training [Dayan et al., 1995, Hinton et al., 1995] can be written as

minimizing two different KL divergences in both x and z space:

Wake phase model learning: pθ (x|z) is trained by

min
θ

KL(qφ (x,z)||pθ (x,z)) = max
θ

∫
ELBO(x,θ ,φ)pd(x)dx+ const., (4.22)

where the integration over pd(x) is approximated with the training set. This is

referred to as the wake phase since the model is trained on experience from the ‘real

environment’, i.e. it uses true data samples from pd(x).

Sleep phase amortized inference: qφ (z|x) is trained by

minφ KL(pθ (x,z)||qφ (x,z)) = minφ

∫
KL(pθ (z|x)||qφ (z|x))pθ (x)dx (4.23)

Leaving out the terms that are irrelevant to φ , the objective can be estimated with

Monte-Carlo−
∫

logqφ (z|x′m)pθ (x,z)≈− 1
K ∑

K
k=1 logqφ (zk|xk), where zk ∼ p(z) and

xk ∼ pθ (x|zk). This is referred to as the sleep phase because the samples from the

model used to train qφ are interpreted as dreamed experience. In contrast, the

training criterion for the typical VAE amortized inference (Equation 4.6) uses the

true data samples from pd to train qφ (z|x), which we refer to as wake phase amortized

inference. We notice that if a perfect model pθ∗(x) = pd(x) is used in the sleep phase

amortized inference, then it is equivalent to minimizing

∫
KL(pθ (z|x)||qφ (z|x))pθ∗(x)dx =

∫
KL(pθ (z|x)||qφ (z|x))pd(x)dx. (4.24)



4.3. Consistent Amortized Inference 77

Therefore, the training of the inference network satisfies the inference consistency

requirement since we can access infinite data from pd by sampling from pθ∗ .

However, the wake-sleep algorithm presented lacks convergence guaran-

tees [Dayan et al., 1995] and minimizing KL(pθ (z|x)||qφ (z|x)) in the sleep phase

doesn’t necessarily encourage an improvement to the ELBO, which directly re-

lates to the compression rate in the lossless compression application [Townsend

et al., 2019]. Therefore, in the next section, we propose a new variational inference

scheme: reverse sleep amortized inference and demonstrate how it helps improve

the generalization of the inference network in practice.

4.3.2 Reverse Sleep Amortized Inference
In the inference time, we propose to fix θ and train φ using the reverse KL divergence

min
φ

∫
KL(qφ (z|x)||pθ (z|x)pθ (x)) = max

φ

∫∫
pθ (x)qφ (z|x) log

pθ (x,z)
qφ (z|x)

dzdx, (4.25)

where the integration over pθ (x) is approximated by Monte-Carlo using samples

from the generative model pθ (x). This reverse KL objective encourages improve-

ments to the ELBO. When we have a perfect model pθ∗(x) = pd(x) the reverse sleep

phase is equivalent to

min
φ

∫
KL(pθ ∗(z|x)||qφ (z|x))pθ ∗(x)dx = min

φ

∫
KL(pθ ∗(z|x)||qφ (z|x))pd(x)dx (4.26)

Figure 4.2: Test BPD vs epochs. We
compare the consistency property between
three amortized inference methods.

which satisfies the inference consistency

requirement.

The consistency requirement can

also be validated empirically when the

perfect model is known pθ∗(x) = pd(x).

This can be achieved by using a pre-

trained VAE as the true data generation

distribution. Therefore, our method has

two training stages:

1. Pre-train a VAE using Equation 4.2 to fit the training dataset.



4.3. Consistent Amortized Inference 78

2. Fix the decoder and train the encoder using Equation 4.25 and the samples

from the Pre-trained VAE.

Unlike the Wake-sleep training method, which alternates between two objectives in

each gradient step and lacks a guarantee of algorithmic convergence, our approach

optimizes a single divergence objective at each stage, which ensures algorithmic

convergence.

As a demonstration, we first train a VAE to fit the binary MNIST problem. The

VAE has the same structure as that used in Section 2 and is trained using Adam with

lr = 1×10−3 for 100 epochs. After training, we treat the pre-trained decoder pθ ′(x|z)

as the training data generator pd(x)≡
∫

pθ ′(x|z)p(z)dz. We then sample 10000 data

samples from pd to form a training set Xtrain and 1000 samples to form a test set

Xtest . We then train a new qφ (z|x) with 1) wake phase inference (VAE) 2) (forward)

sleep inference and 3) reverse sleep inference. The network is trained using Adam

with lr = 1×10−3 for 100 epochs. Figure 4.2 shows the test BPD calculated after

every training epoch. We can see the sleep phase outperforms the wake phase and

the reverse sleep inference achieves the best BPD. Intuitively, this is because both

the forward and reverse sleep inference use the true model to generate additional

training data whereas the wake inference only has access to the finite training dataset

Xtrain.

4.3.3 Reverse Half-asleep Inference with Imperfect Models

In practice, our model will not be perfect pθ ̸= pd . Empirically we find that samples

from even a well-trained model pθ may not always be sufficiently like the samples

from the true data distribution. This can lead to degradation in the performance of

the inference network when using the reverse-sleep approach. For this reason, we

propose to use a mixture distribution between the model and the empirical training

data distribution as follows

∫
KL
(
qφ (z|x)||pθ (z|x)

)
m(x)dx where m(x)≡ α pθ (x)+(1−α)p̂d. (4.27)



4.3. Consistent Amortized Inference 79

When α = 0, it reduces to the standard approach used in VAE training. When α = 1,

we recover the reverse sleep method (Equation 4.25). We find that a setting of

α = 0.5 works well in practice. This balances samples from the true underlying data

distribution with samples from the model.

We thus refer to this method as reverse half-asleep since it uses both data

and model samples to train the amortized posterior. Intuitively, we can rewrite the

Equation 4.27 as a sum of two positive terms

α
∫

KL
(
qφ (z|x)||pθ (z|x)

)
p̂(x)dx+(1−α)

∫
KL
(
qφ (z|x)||pθ (z|x)

)
pθ (x)dx. (4.28)

Therefore, the optimal of this objective will make the first term 0, which

is the same requirement as the classic amortized inference (Equation 4.6). The

second term, which is equivalent to the reverse sleep amortized inference (Equa-

tion 4.25), can encourage the inference consistency requirement: when pθ = pd ,

the optimal of the second term will set qφ (z|x) = pθ (z|x) for any x ∼ pd(x).

When pθ is not perfect, the second term can be seen as a regularizer added to

the classic amortized inference objective, which can be used to penalize the hy-

pothesis space of the amortized network [Shalev-Shwartz and Ben-David, 2014].

Figure 4.3: Test BPD comparisons of
Amortized inference with different α . We
find the Reverse Half-asleep method (α =
0.5) achieves the best BPD. The mean and
std are calculated with three random seeds.

To compare with different α , we

first fit a VAE (with the same struc-

ture as that used in Figure 2) to the Bi-

nary MNIST dataset, and then train the

amortized posterior using sleep infer-

ence (Equation 4.23) and three different

α for additional 100 epochs using Adam

with learning rate 3×10−4. Figure 4.3

shows the test BPD comparison. We find

the proposed reverse half-asleep method

(α = 0.5) outperforms the reversed sleep method (α = 1), whereas the standard

amortized inference training in VAE (α = 0) leads to overfitting of the inference



4.4. Generalization Experiments 80

network. We also plot the sleep inference curve, whose BPD is less competitive

since it does not directly optimise the ELBO.

4.4 Generalization Experiments

We apply the reverse half-asleep to improve the generalization of VAEs on

three different datasets: binary MNIST, grey MNIST [LeCun, 1998] and CI-

FAR10 [Krizhevsky et al., 2009]. For binary and grey MNIST, we use latent

dimension 16/32 and neural nets with 2 layers of 500 hidden units in both the

encoder and decoder. We use Bernoulli p(x|z) for binary MNIST and discretized

logistic distribution for grey MNIST. We train the VAE with the usual amortized

inference approach using Adam with lr = 3×10−4 for 1000 epochs and save the

model every 100 epochs. We then use the saved models to 1) evaluate the test data

sets, 2) conduct optimal inference by training qφ (z|x) on the test data and 3) run

the reverse half-asleep method before calculating the test BPD. For the reverse half-

asleep, we train the amortized posterior for 100 epochs with Adam and lr = 5×10−4.

To sample from pθ (x), we firstly sample z′ ∼ p(z) and sample x′ ∼ p(x|z = z′).

For the optimal inference strategy, we train the amortized posterior with the same

optimization scheme on the test data set for an additional 500 epochs to ensure the

same number of gradient steps are conducted (since the training set is 5 times as big

as the test set). Figure 4.4a and 4.4b show the test BPD comparisons of binary and

grey MNIST respectively and demonstrate that our approach does not require further

training on the test data to improve generalization performance.

For CIFAR10, we use the convolutional ResNet [He et al., 2016, Van Den Oord

et al., 2017] with 2 residual blocks and latent size 128. The observational distribution

is a discretized logistic distribution with linear autoregressive parameterization within

channels. We train the VAE for 500 epochs with Adam and lr = 5×10−4 and save the

model every 100 epoch. The pre-trained VAE achieves 4.592 BPD on the CIFAR10,

which is comparable with other single latent VAE models reported in [Van Den Oord

et al., 2017]: 4.51 BPD with a VAE with latent dimension 256 and 4.67 BPD with a

discrete latent VAE (VQVAE).



4.4. Generalization Experiments 81

Ideally, when the VAE model converges to the true distribution pθ → pd , the

aggregate posterior qφ (z) =
∫

qφ (z|x)pd(x)dx will match the prior p(z). However,

for a complex distribution like CIFAR10, a significant mismatch between qφ (z) and

p(z) is usually observed in practice [Zhao et al., 2017, Dai and Wipf, 2019]. In this

case, the sample x′ that is generated using a latent sample from the prior x′∼ pθ (x|z′),

where z′ ∼ p(z), may be blurry or invalid. A common solution is to train another

model, e.g. a VAE [Dai and Wipf, 2019] or a PixelCNN [Van Oord et al., 2016,

Van Den Oord et al., 2017] to approximate qφ (z). In our case, we instead directly

sample from qφ (z) rather than p(z) to generate samples in Equation 4.25, which can

be done by first sampling x′ ∼ pd(x) (from the training dataset) and then sample

z′ ∼ qφ (z|x = x′). This scheme still results in a consistent training objective since

qφ∗(z) = p(z) for the optimal posterior qφ∗(z|x). We use Adam with lr = 1×10−5

and train the reverse half-asleep inference for 100 epochs on the training data and

train the optimal inference strategy for 500 epochs on the test data, see Figure 4.4c

for the result. We find the proposed reverse half-asleep training approach (with

sampling from qφ (z)) consistently improves the generalization performance of the

amortized posterior. Conversely, our experiments revealed that when training the

encoder using samples generated from the prior p(z), the resulting BPDs consistently

exceed 5.0 across all tested epochs. This suggests that the quality of samples from

the generator plays a pivotal role in the efficacy of the proposed reverse-half-asleep

inference method.

Although the proposed method is still worse than the optimal inference, it has

the advantage of not requiring encoder fine-tuning on test data during test time. This

is particularly critical for applications prioritizing test-time inference speed, such as

lossless compression, which we will discuss in Section 4.5.

4.4.1 Comparisons with Regularization Methods

Recent work [Shu et al., 2018] proposed to alleviate overfitting of amortized infer-

ence by optimizing a linear combination between the traditional amortized inference



4.4. Generalization Experiments 82

(a) Binary MNIST (b) Grey MNIST (c) CIFAR10

Figure 4.4: We present test BPD comparisons across three inference methods:
amortized inference (VAE), the optimal inference strategy, and reverse half-asleep
inference, applied to three datasets. The x-axis indicates the number of training
epochs. For the MNIST experiments, as shown in Figures a and b, all samples
are derived from the predefined prior p(z). In contrast, for the CIFAR experiment,
samples are produced using the aggregate posterior qφ (z). Notably, when employing
p(z) as the prior in CIFAR, the BPD values for the Reverse-Half-Asleep method
consistently exceed 5. To maintain clarity, these results are omitted from Figure c.

(Equation 4.6) and a denoising objective

α

∫
KL(qφ (z|x+ ε)||pθ (z|x))p(ε)dε +(1−α)KL(qφ (z|x)||pθ (z|x)), (4.29)

where p(ε) =N (0,σ2I). We compare this regularizer to our method by training the

amortized posterior of VAEs for an additional 100, 300 and 100 epochs on Binary,

Grey MNSIT and CIFAR respectively. For the denoising regularizer, we use the

same linear combination weight α = 0.5 as that used in Equation 4.27 and vary

σ ∈ {0.1,0.2,0.4,0.6,0.8,1.0}, see Table 4.1 for the comparisons. For MNIST, we

find σ ∈ {0.1,0.2,0.4} improves the generalization but larger noise levels hurt the

performance. For CIFAR10, only σ = 0.1 can slightly improve the generalization

by 0.001 BPD. In contrast, our method consistently achieves better generalization

performance without tuning any hyper-parameters, see Figure 4.5 for the test BPD

(evaluated every training epoch, the mean/std are calculated with 3 random seeds).

Compared to the denoising approach, one limitation of our method is the requirement

of model samples, which is more computationally expansive during training.

Since the decoder is shared and fixed in all comparisons, better test ELBO indi-

cates the predicted qφ (z|x′) is closer to the true posterior pθ (z|x′) under the KL diver-

gence (see Equation 4.3, higher ELBO with fixed θ indicates KL(qφ (z|x)||pθ (z|x))

is smaller). Therefore, the proposed method can also benefit a range of tasks that



4.5. Application of Lossless Compression 83

require accurate prediction of the posterior on the test data. In Appendix C.2 and

C.3, we demonstrate our method can provide better proposal distributions for the

Importance Weighted Auto-Encoder (IWAE) [Burda et al., 2015] and also improve

the representation learning performance for down-stream classification tasks.

Table 4.1: Test BPD comparisons with Denoising Regularizer [Shu et al., 2018].

Methods VAE σ = 0.1 σ = 0.2 σ = 0.4 σ = 0.8 σ = 1.0 Ours
Binary MNIST 0.200 0.195 0.192 0.191 0.196 0.201 0.187
Grey MNIST 1.543 1.527 1.519 1.515 1.545 1.550 1.513

CIFAR10 4.592 4.591 4.598 4.614 4.651 4.667 4.572

(a) Binary MNIST (b) Grey MNIST (c) CIFAR 10

Figure 4.5: Test BPD evaluated after every training epoch. We find, compared to the
denoising regularizer, the proposed amortized inference training scheme consistently
achieves better generalization performance in all tasks.

4.5 Application of Lossless Compression
Lossless compression is an important application of VAEs where generalization

plays a key role in the compression rate. Given a trained VAE, a practical compressor

can be efficiently implemented using the Bits Back algorithm [Hinton and Van Camp,

1993, Townsend et al., 2019] with the ANS coder [Duda, 2013], see the next section

for a brief introduction.

4.5.1 Introduction of VAE-based Lossless Compression

Given a discrete Latent VAE model specified by the probability mass functions

(PMFs) {pθ (x|z),qφ (z|x), p(z)} and a target data x′ to compress. A naive strategy

is to first generate a sample z′ ∼ qφ (z|x′) and then encode x′ with pθ (x|z′). We also

encode z′ with distribution log p(z), so the total code length is then We also encode



4.5. Application of Lossless Compression 84

z′ with distribution log p(z), so the total code length is then

− log2 pθ (x′|z′)− log2 p(z′), (4.30)

which is larger than the optimal code length − log2 p(x′) by − log2 pθ (z′|x′) bits.

To achieve the optimal code length, a key observation is that the sampling process

z′ ∼ qφ (z|x′) can be done by decoding random bits using the distribution qφ (z|x′).

Specifically, we assume that we can access a message that already contains random

bits, which we visualize as the following figure4.
Initial random bits

In the encoding stage, we first sample z′ form qφ (z|x′) by decoding random bits with

distribution qφ (z′|x′), so the message length decreased by length − log2 qφ (z′|x′).
− log2 qφ (z′|x′)

decqφ (z|x′)(·)
−−−−−−−→ z′

We then encode x′ with distribution pθ (x′|z′), so the message is increased by length

− log2 pθ (x′|z′).
− log2 pθ (x′|z′)

encpθ (x|z′)(·)
←−−−−−−− x′

Finally, we encode z′ with distribution p(z) and the message is increased bylength

− log p(z′).
− log2 p(z′)

encp(z)(·)←−−−−− z′

In the decoding stage, we first decode z′ using p(z).
− log2 p(z′)

decp(z)(·)−−−−−→ z′

We then decode x′ with distribution pθ (x|z′).
− log2 pθ (x′|z′)

decpθ (x|z′)(·)
−−−−−−−→ x′

Finally, we encode the random bits ‘back’ to the stack to recover the initial message.

4The visualization is based on [Townsend et al., 2019].



4.5. Application of Lossless Compression 85

− log2 qφ (z′|x′)
encqφ (z|x′)(·)
←−−−−−−− z′

Therefore, the ‘net’ message length to compress data x′ with a VAE is

− log2 pθ (x|z′)− log2 p(z′)+ logqφ (z′|x′), (4.31)

which is a one-sample estimation of the ELBO and is optimal (equal to− log2 pθ (x′))

when the amortized variational posterior is equal to the true posterior qφ (z|x′) =

pθ (z|x′).

This scheme and also be extended to continuous latent z with negligible cost

by quantizing the PDF p(z) and qφ (z) into PMF to conduct the compression. See

[Townsend et al., 2019] for details. This ‘Bits Back’ coding method was first in-

troduced as a thought experiment in [Wallace, 1990, Hinton and Van Camp, 1993]

and was later implemented by [Frey and Hinton, 1996] with an AC coder. Recently,

[Townsend et al., 2019] proposed to implement the Bits Back with ANS [Townsend

et al., 2020] and a VAE model, which allows great improvement of both the com-

pression rate and the computational efficiency. We refer the reader to [Townsend

et al., 2019] for other practical considerations and implementation details.

4.5.2 Improving the Generalization of VAE-based Compression

In Algorithm 1, we summarize the Bits Back procedure with amortized inference to

compress/decompress a test data point x′ to a stack that contains bit string messages.

The resulting code length for data x′ is approximately equal to the negative ELBO

− log2 pθ (x′|z′)− log2 p(z′)+ log2 qφ (z′|x′). (4.32)

We have shown that qφ (z|x) may overfit the training data, degrading compres-

sion performance. To improve the compression BPD, the optimal inference strategy

can also be applied in the Bits Back algorithm. In the compression stage, we can



4.5. Application of Lossless Compression 86

Algorithm 1 Bits Back with Amortized Inference.
Comp./decomp. stages share {pθ (x|z),qφ (z|x), p(z)}.

Compression
Draw sample z′ ∼ qφ (z|x′) from the stack.
Encode x′ ∼ pθ (x|z′) onto the stack.
Encode z′ ∼ p(z) onto the stack.

Decompression
Decode z′ ∼ p(z) from the stack.
Decode x′ ∼ pθ (x|z′) from the stack.
Encode z′ ∼ qφ (z|x′) onto the stack.

train φ by

φ
∗ = argmax

φ
ELBO(x′,θ ,φ). (4.33)

When the qφ (z|x′) is parameterized to be a Gaussian, we can just take φ to be

the mean and standard deviation N (φµ ,φ
2
σ ), which only contains two training

parameters. In the decompression stage, we observe that the compressed data x′

is recovered before the qφ (z|x′) is used to encode z′. Therefore, we can also train

the qφ (z|x′) using the recovered x′ to maximize the test ELBO. If the optimization

procedure is the same as that used in the compression stage, we will get the same

qφ∗(z|x′). In practice, we need to pre-specify the number of gradient descent steps K.

When K is large, we recover the optimal inference strategy and the code length is

approximately

− log2 pθ (x′|z′)− log2 p(z′)+ log2 qφ∗(z′|x′). (4.34)

This observation was initially introduced in the paper [Hinton and Van Camp,

1993] and then applied in the context of both lossy [Yang et al., 2020] and lossless

compression [Ruan et al., 2021]. Furthermore, by varying the optimization steps K

in the optimal inference, we can trade-off between the speed and the compression

rate. This is valuable for practical applications with different speed/rate requirements.

See Algorithm 2 for a summary of the Bits Back algorithm with K-step optimal

inference.



4.5. Application of Lossless Compression 87

Algorithm 2 Bits Back with K-step Optimal Inference
Comp./decomp. stages share {pθ (x|z),qφ (z|x), p(z)} and the optimization procedure
of Equation 4.33.

Compression
Take K gradient steps φ → φ K with Equation 4.33.
Draw sample z′ ∼ qφ K(z|x′) from the stack.
Encode x′ ∼ pθ (x|z′) onto the stack.
Encode z′ ∼ p(z) onto the stack.

Decompression
Decode z′ ∼ p(z) from the stack.
Decode x′ ∼ pθ (x|z′) from the stack.
Take K gradient steps φ → φ K with Equation 4.33.
Encode z′ ∼ qφ K(z|x′) onto the stack.

Although the optimal inference strategy can be used in lossless compression,

it requires extra run-time for training at the compression stages. In contrast, our

proposed reverse half-asleep inference scheme can improve the compression rate

without sacrificing any speed. Additionally, our method can also provide a better

initialization for the optimal inference strategy to allow a better trade-off between

compression rate and speed.

We implement Bits Back with ANS [Duda, 2013] and compare the compression

among four inference methods:

1. Baseline: This is the classic VAE-based compression introduced by

[Townsend et al., 2019]. For binary and grey MNIST, both the encoder and de-

coder contain 2 fully connected layers with 500 hidden units and latent dimension

10. The observation distributions are Bernoulli and discretized Logistic distribution

respectively. For CIFAR10, we use fully convolutional ResNets [He et al., 2016]

with 3 residual blocks in the encoder/decoder, latent dimension 128 and discretized

Logistic distribution with channel-wise linear autoregressive[Salimans et al., 2017]

as the observation distribution. We train both the amortized posterior and the decoder

by maximizing the ELBO (Equation 4.2) using Adam with lr = 3×10−4 for 100,

100 and 500 epochs (for Binary MNIST, Grey MNIST and CIFAR10 respectively),

and then apply Algorithm 1 to conduct compression.

2. Reversed Half-asleep: we do amortized inference using Equation 4.27 for



4.5. Application of Lossless Compression 88

100 and 300 epochs with Adam optimizer (lr = 3×10−4) for binary and grey MNIST

respectively, and lr = 1×10−5 for 100 epochs for CIFAR10. Other training details

are the same as the baseline method.

3. Optimal Inference: we take the amortized posterior (encoder) and decoder

from the baseline and apply the K-step optimal inference strategy described in

Algorithm 2 to do compression. We use Adam optimizer and vary the K from 1 to

10 to achieve a trade-off curve between compression rate and speed. We actively

choose the highest learning rate that can make the BPD consistently improve with

the increment of K: lr = 5×10−3 for binary and grey MNIST and lr = 1×10−3 for

CIFAR10.

4. Reversed Half-asleep + Optimal Inference: We take the encoder in method

2 and decoder from the baseline and conduct K-step optimal inference. All other

training details are as per method 3.

(a) Binary MNIST (b) Grey MNIST (c) CIFAR10

Figure 4.6: We plot the comparisons for different methods. The y-axis is the BPD
and the x-axis represents the K gradient steps in the optimal inference. The baseline
and our R-Half-sleep can be seen as special cases of optimal inference with K = 0.
We find that given a fixed computational budget, our method achieves a lower BPD
than one using traditional amortized inference training.

In Figure 4.6, we plot test BPD comparisons for the different methods outlined.

We can see if optimization is not allowed at compression time, the use of our

reverse-half-asleep method achieves a better compression rate with no additional

computational cost. If we allow K-step optimization during compression, for a given

computational budget, the amortized posterior initialized using our reverse-half-

asleep method also achieves lower BPD, which leads to a better trade-off between

the time and compression rate. Table 4.2 also reports the average time improvements

of our method to compress a single MNIST and CIFAR10 image respectively, which



4.6. Related Work 89

Baseline Ours K=7
BPD 0.185 0.179 0.179

Com. Time 0.006 0.006 0.013
Dec. Time 0.006 0.006 0.013
Time Cost - 0% 116.7%

(a) MNIST

Baseline Ours K=8
BPD 4.602 4.585 4.585

Com. Time 0.27 0.27 0.38
Dec. Time 0.26 0.26 0.38
Time Cost - 0% 46.2%

(b) CIFAR10

Table 4.2: Compression (Com.) and decompression (Dec.) time comparison. We
show that to achieve the same BPD as our method, the K-step optimal inference
strategy that initializes the amortized posterior needs K = 7 (binary MNIST) and
K = 8 (CIFAR10) steps for each test datapoint, which will cost an additional 116.7%
and 46.2% of time respectively during compression.

shows the effectiveness of our method.

4.6 Related Work
A different perspective on generative models’ generalization is proposed in paper

[Zhao et al., 2018] where the generalization is evaluated by testing if the model can

generate novel combinations of features. However, the generalization defined in our

work is purely measured by the test likelihood, which is a different perspective and

more relevant for the application of lossless compression.

Recent work [Zhang et al., 2021] first studies the likelihood-based generalization

for lossless compression. They focus on the test and train data that are from different

distributions whereas we assume they follow the same distribution. Additionally,

their model has a tractable likelihood and relates to the generative model-related

generalization, whereas we focus on inference-related generalization in VAEs.

Previous work [Cremer et al., 2018] studied the amortization gap in amortized

inference, which is caused by using qφ∗(z|xn) to generate posteriors for each input xn

rather than learning a posterior q∗n(z) for xn individually. This gap can be alleviated

using a larger capacity encoder network. This amortization gap is fundamentally

different from the inference generalization gap we discuss in this work since the

latter focuses solely on test time generalization but the former problem also exists at

training time.

Recent work [Ruan et al., 2021] proposes a compression scheme based on

the IWAE [Burda et al., 2015] bound, which is tighter than the ELBO and thus



4.7. Conclusions 90

improves the compression rate. However, this method has to compress/decompress

multiple latent samples, which requires extra time and computational cost. On the

other hand, we focus on improving the ELBO-based compression that only needs

to compress one single latent sample. Nevertheless, similar to the K-step optimal

inference strategy, our amortized training objective can also be used in the IWAE-

based method, which gives a better proposal distribution for importance sampling,

see Appendix C.2 for a demonstration.

Paper [Cemgil et al., 2020] considers the following data generation procedure

x1 ∼ pd(x), z1 ∼ pθ (z|x1), x2 ∼ pθ (x|z1) and propose to enforce latent consistency

between qφ (z|x1) and qφ (z|x2) for paired data (x1,x2) to encourage the robustness of

the learned representation. This procedure is close to the self-supervised contrasting

learning method [Chen et al., 2020] where the augmented data is the reconstruction

of the training data using the VAE model. In our method, we want to encourage

the sample from the model x′ ∼
∫

pθ (x|z)p(z)dz to have high ELBO under the

model (Equation 4.25) to improve the generalization of the amortized inference

and no paired data is required in our procedure. Therefore, both motivations and

methodologies are different from our method.

4.7 Conclusions

In this chapter, we’ve explored the generalization gap of VAEs, delineating how

both the amortized inference (encoder) and the generative model (decoder) influence

it. Our findings illuminate the considerable impact of the amortized inference

network on VAE generalization. To address this, we introduced a novel variational

inference method, which, as evidenced by the lossless compression application,

offers enhanced generalization.

Looking ahead, there’s an exciting opportunity to delve deeper into the gener-

alization attributes of the decoder model, with the aim of further optimizing VAE

performance.

For this chapter, our discussion has revolved around scenarios where both

training and testing data come from an identical distribution. As we transition to



4.7. Conclusions 91

the next chapter, our lens will shift towards the out-of-distribution (OOD) setting.

Here, testing data deviates from the training data’s distribution. We will investigate

strategies to improve model generalization in this OOD context, ultimately enhancing

applications such as OOD lossless compression and OOD detection.



Chapter 5

Out-of-distribution Generalization of

Probabilistic Image Modelling

Out-of-distribution (OOD) detection and lossless compression constitute two prob-

lems that can be solved by the training of probabilistic models on a first dataset with

subsequent likelihood evaluation on a second dataset, where data distributions differ.

By defining the generalization of probabilistic models in terms of likelihood we

show that, in the case of image models, the OOD generalization ability is dominated

by local features. This motivates our proposal of a Local Autoregressive model

that exclusively models local image features towards improving OOD performance.

We apply the proposed model to OOD detection tasks and achieve state-of-the-art

unsupervised OOD detection performance without the introduction of additional data.

Additionally, we employ our model to build a new lossless image compressor: NeL-

LoC (Neural Local Lossless Compressor) and report state-of-the-art compression

rates and model size.

5.1 Introduction
Probabilistic modelling has achieved great success in the modelling of images. Like-

lihood based models, e.g. Variational Auto-Encoders (VAE) [Kingma and Welling,

2014], Flow [Kingma and Dhariwal, 2018], Pixel CNN [Van Oord et al., 2016,

Salimans et al., 2017] are shown to successfully generate high-quality images, in

addition to estimating underlying densities.



5.1. Introduction 93

The goal of probabilistic modelling is to use a model pθ to approximate the

unknown data distribution pd using the training data {x1, . . . ,xN} ∼ pd . A common

method to learn parameters θ is to minimize some divergence between pd and pθ ,

for example, a popular choice is the KL divergence

KL(pd||pθ ) =−H(pd)−
∫

log pθ (x)pd(x)dx, (5.1)

where the entropy of the data distribution is a constant. Since we only have access to

finite pd data samples x1, . . . ,xN , the second term is typically approximated using a

Monte Carlo estimation

KL(pd||pθ )≈−
1
N

N

∑
n=1

log pθ (xn)− const.. (5.2)

Minimizing the KL divergence is therefore equivalent to Maximum Likelihood

Estimation. A typical evaluation criterion for the learned models is the test likelihood
1
M ∑

M
m=1 log pθ (xm), with test set {x1, . . . ,xM} ∼ pd . We refer to this evaluation as

in-distribution (ID) generalization, since both training and test data are sampled

from the same distribution pd . However, in this work, we are interested in out-of-

distribution (OOD) generalization such that the test data are drawn from po, where

po ̸= pd . To motivate our study of this topic, we firstly introduce two applications:

lossless compression and OOD detection, that both can make use of the OOD

generalization property.

5.1.1 Model-based Lossless Compression

Lossless compression has a strong connection to probabilistic models [MacKay,

2003]. Let {x1, . . . ,xM} be test data to compress, where xm is sampled from some

underlying distribution with probability mass function (pmf) pd . If pd is known, we

can design a compression scheme to compress each data xm to a bit string with length

approximately − log2 pd(xm)
1. As M→ ∞, the averaged compression length will

approach the entropy of the distribution pd , that is; 1
M ∑

M
m=1− log2 pd(xm)→ H(pd)

1For a compression method like Arithmetic Coding [Witten et al., 1987], the message length is
always within two bits of − log2 pd(xm) [MacKay, 2003], also see Section 5.4.1.



5.1. Introduction 94

where H(·) denotes entropy. In this case, the compression length is optimal under

Shannon’s source coding theorem [Shannon, 2001], i.e. we cannot find another

compression scheme with compression length less than H(pd). In practice, however,

the true data distribution pd is unknown and we must use a model pθ ≈ pd to build the

lossless compressor. Recent work successfully apply deep generative models such as

VAEs [Townsend et al., 2019, 2020, Kingma et al., 2019], Flow [Hoogeboom et al.,

2019, Berg et al., 2020] to conduct lossless compression. We note that the underlying

models are designed to focus on test data that follows the same distribution as the

training data, resulting in test compression rates that depend on the ID generalization

ability of the model.

However, in practical compression applications, the distribution of the incoming

test data is unknown, and is usually different from the training distribution pd:

X o
test = {x′1, . . . ,x′M}where x′∼ po ̸= pd . To achieve good compression performance,

a lossless compressor model should still be able to assign high likelihood for these

OOD data. This practical consideration motivates encouragement of the OOD

generalization ability of the model.

Empirical results [Townsend et al., 2020, Hoogeboom et al., 2019] have shown

that we can still use model pθ (trained to approximate pd) in order to compress test

data X o
test with reasonable compression rates. However, the phenomenon that these

models can generalize to OOD data lacks intuition and key components, affecting this

generalization ability, remain underexplored. Consideration of recent advances in

likelihood-based OOD detection next allows us to further investigate these questions

and lead to our proposal of a new model that can encourage OOD generalization.

5.1.2 Likelihood-based OOD Detection

Given a set of unlabeled data, sampled from pd , and a test data x′ then the goal of

OOD detection is to distinguish whether or not x′ originates from pd . A natural

approach [Bishop, 1994] involves fitting a model pθ to approximate pd and treat sam-

ple x′ as in-distribution if its (log) likelihood is larger than a threshold; log pθ (x′)> ε .

Therefore, a good OOD detector model should assign low likelihood to the OOD

data. In contrast to lossless compression, this motivates discouragement of the



5.2. OOD Generalizations of Image Models 95

OOD generalization ability of the model.

Surprisingly, recent work [Nalisnick et al., 2019a] report results showing that

popular deep generative models, including e.g. VAE [Kingma and Welling, 2014],

Flow [Kingma and Dhariwal, 2018] and PixelCNN [Salimans et al., 2017], can

assign OOD data higher density values than in-distribution samples, where such

OOD data may contain differing semantics, c.f . the samples used for maximum

likelihood training. We demonstrate this phenomenon using PixelCNN models,

trained on Fashion MNIST (CIFAR10) and tested using MNIST (SVHN). Figure 5.1

provides histograms of model evaluation using negative bits-per-dimension (BPD),

that is; the log2 likelihood normalized by data sample dimension (larger negative

BPD corresponds to larger likelihood). We corroborate previous work and observe

that tested models assign a higher likelihood to the OOD data, in both cases. It’s

noteworthy to mention a peculiar observation: this phenomenon is not symmetrical.

For instance, models trained on MNIST and SVHN typically yield a reduced average

likelihood when evaluated on Fashion MNIST and CIFAR10, see [Nalisnick et al.,

2019a] for an example. This counterintuitive phenomenon suggests that likelihood-

based approaches may not make for a good OOD image detection criterion, yet

encouragingly also illustrates that a probabilistic model, trained using one dataset,

may be employed to compress data originating from a different distribution with

a potentially higher compression rate. This intuition builds a connection between

OOD detection and lossless compression. Inspired by this link, we next investigate

the underlying latent causes of image model generalizability, towards improving

both lossless compression and OOD detection.

5.2 OOD Generalizations of Image Models

Previous work studies the potential causes of the surprising OOD detection phe-

nomenon: OOD data may have a higher model likelihood than ID data. For example,

[Nalisnick et al., 2019b] used a typical set to reason about the source of the ef-

fect, while the work of [Ren et al., 2019] argues that likelihoods are significantly

affected by image background statistics or by the size and smoothness of the back-



5.2. OOD Generalizations of Image Models 96

−6 −4 −2 0

FMNIST

MNIST

(a) Fashion vs MNIST

−6 −4 −2

CIFAR

SVHN

(b) CIFAR10 vs SVHN

Figure 5.1: Left: log-likelihood of FashionMNIST, MNIST test data using a full
PixelCNN model, trained on FashionMNIST training set. Right: log-likelihood of
CIFAR10, SVHN test data using a PixelCNN model, trained on CIFAR10 training
set. The x-axis indicates the value of the log-likelihood (negative BPD), the y-axis
provides data sample counts.

ground [Krusinga et al., 2019]. In this work, we alternatively consider a recent

hypothesis proposed by [Schirrmeister et al., 2020] (also implicitly discussed in

[Kirichenko et al., 2020] for a flow-based model): low-level local features, learned

by (CNN-based) probabilistic models, are common to all images and dominate the

likelihood. From the perspective of OOD generalization, we can restate the hypothe-

ses as: 1. Models can generalize to OOD images as local features are shared between

image distributions, and 2. Models can generalize well to OOD images since local

features dominate the likelihood.

In the work of [Schirrmeister et al., 2020], the authors investigated their orig-

inal hypothesis by studying the differences between individual pixel values and

neighbourhood mean values and additionally considered the correlation between

models trained on small image patches and trained, alternatively, on full images.

To further investigate this hypothesis, we rather propose to directly model the in-

distribution dataset, using only local feature information. If the hypothesis is true,

then the proposed local model alone should generalize well to OOD images. By

contrasting such an approach with a standard full model, that considers both local

and non-local features, we are also able to study the contribution that local features

make to the full model likelihood. We first discuss how to build a local model for the

image distribution and then use the proposed model to study generalization on OOD

datasets.



5.2. OOD Generalizations of Image Models 97

5.2.1 Local Model Design

Autoregressive models have proven popular for modeling image datasets and com-

mon instantiations include PixelCNN [Van Oord et al., 2016, Salimans et al., 2017],

PixelRNN [Van Oord et al., 2016] and Transformer based models [Child et al., 2019].

Assuming data dimension D, the Autoregressive model p f (x) can be written as

p f (x) = p(x[1])
D

∏
d=2

p(x[d]|x[1:d−1]), (5.3)

informally we refer to this type of model as a “full model” since it can capture

all dependencies between each dimension (pixel). Similarly, we can define a local

autoregressive model pl(x) where pixel xi j, at image row i column j, depends on

previous pixels with fixed horizon h:

pl(x) = ∏
i j

p(x[i j]|x[i−h:i−1, j−h: j+h],x[i, j−h: j−1]), (5.4)

with zero-padding used in cases where i or j are smaller than h. Figure 5.2b illustrates

the resulting local autoregressive model dependency relationships. We implement

this model using a masked CNN [Van Oord et al., 2016], with kernel size k=2×h+1

in our first network layer, to mask out future pixel dependency. A full PixelCNN

model would then proceed to stack multiple masked CNN layers, where increasing

kernel depth affords receptive field increases. In contrast, we employ masked CNN

with 1×1 convolutions in subsequent layers. Such 1×1 convolutions can model the

correlation between channels, as in [Kingma and Dhariwal, 2018], and additionally

prevent our local model from obtaining information from pixels outwith the local

feature region, defined by h. Pixel dependencies are therefore defined solely using

the kernel size of the first masked CNN layer, allowing for easy control over model’s

local feature size. We note that the proposed local autoregressive model can also be

implemented using alternative backbones e.g. Pixel RNN [Van Oord et al., 2016] or

Transformers [Child et al., 2019]. We plot local model samples in Figure 5.4. Unlike

full autoregressive models [Van Oord et al., 2016, Salimans et al., 2017], which can

be used to generate semantically coherent samples, we find the samples from the



5.2. OOD Generalizations of Image Models 98

local model are locally consistent yet have no clear semantic meaning.

(a) Full Autoregressive Model

xi j

(b) Local Autoregressive Model

Figure 5.2: (a) full autoregressive model pixel dependencies; the distribution of the
current pixel (blue) depends on all previous pixels (red); (b) local autoregressive
model dependencies, with h = 2. The distribution of xi j (blue) depends on only the
pixels in a local region (red).

5.2.2 Local Model Generalization

To investigate the generalization ability of our local autoregressive model, we fit the

model to Fashion MNIST (grayscale) and CIFAR10 (color) training datasets and test

using in-distribution (ID) images (respective dataset test images) and additional out-

of-distribution (OOD) datasets: MNIST, KMNIST (grayscale) and SVHN, CelebA2

(color). Both models use the discretized mixture of logistic distributions [Salimans

et al., 2017] with 10 mixtures for the predictive distribution and a ResNet archi-

tecture [Van Oord et al., 2016, He et al., 2016]. We use a local horizon length

h=3 (kernel size k=7) for both grayscale and color image data. We compare our

local autoregressive model to a standard full autoregressive model (i.e. a standard

PixelCNN), with additional network architecture and training details found in Ap-

pendix D.1. Tables 5.1, 5.2 report comparisons in terms of BPD (where lower values

Table 5.1: Test BPD (Trained on Fashion
MNIST)

Test Dataset Full Local

Fashion MNIST (ID) 2.78 2.89
MNIST (OOD) 1.50 1.49
KMNIST (OOD) 2.48 2.44

Table 5.2: Test BPD (Trained on CI-
FAR10)

Test Dataset Full Local

CIFAR10 (ID) 3.12 3.25
SVHN (OOD) 2.13 2.13
CelebA (OOD) 3.33 3.35

entail higher likelihood) for Fasion MNIST and CIFAR10, respectively. We observe

that for in-distribution (ID) data, the full model has better generalization ability c.f .

2We down-sample the original CelebA to 32×32×3, see Appendix A.7 for details.



5.2. OOD Generalizations of Image Models 99

Table 5.3: Generalization of local model with different horizon sizes. The model is
trained on FashionMNIST dataset.

Method h=1 h=2 h=3 h=4 h=5

(ID) Fashion 3.17 2.93 2.89 2.88 2.88

(OOD) MNIST 1.54 1.48 1.49 1.50 1.51
(OOD) KMNIST 2.54 2.43 2.44 2.46 2.47

the local model (0.11 and 0.13 BPD, respectively). This is unsurprising as training

and test data originate from the same distribution; both local and non-local features,

as learned by the full model, help ID generalization. For OOD data, we observe

that the local model has generalization ability similar to the full model, exhibiting

very small empirical gaps (only ≈ 0.02 BPD on average), showing that the local

model alone can generalize well to OOD distributions. We thus verify the hypothesis

considered at the start of Section 5.2.

For simple datasets containing gray-scale images, the PixelCNN model is

flexible enough to capture both local and global features. We notice that, in Table

5.1, our local model exhibits even better OOD generalization than the full model.

This drives us to further study the role of non-local features for generalization.

When the local horizon size increases, the model will be able to learn features with

greater non-locality. We thus vary the local horizon size to study generalization

ability under this property, see Table 5.3. We find the model has poor generalization

performance when local features are too small and increasing the horizon size helps

ID generalization but decreases the OOD generalization. A consistent phenomenon is

observed when considering color images, see Appendix D.2.1. We can thus conclude:

non-local features are not shared between images distributions, overfitting

to non-local features will hurt generalization. These hypotheses indicate two

opposing strategies for the considered tasks:

OOD detection: distributions are distinguished by dataset-unique features, thus

building non-local models, able to discount common local features, improves the

detector distinguishability power.

Lossless compression: OOD generalization is possible due to the sharing of



5.3. OOD Detection with Non-Local Model 100

Table 5.4: The generalization ability of local models with increasing horizon size.
All models have residual block number r=1 and are trained on CIFAR10. The
reported BPDs have standard deviation 0.02 across multiple random seeds.

Method h=2 h=3 h=4 h=5

(ID) CIFAR 3.38 3.28 3.26 3.25

(OOD) SVHN 2.21 2.16 2.15 2.15
(OOD) CelebA 4.08 4.07 4.07 4.07

local features between distributions. Employing only a local model can encourage

OOD generalization, by preventing the model from over-fitting to dataset-unique

features, specific to the training distribution. Sections 5.3 and 5.4 will further

demonstrate how contrasting modeling strategies can benefit these tasks.

5.3 OOD Detection with Non-Local Model
As was discussed in Section 5.1.2, local image features are observed to be largely

common across the real-world image distribution and can be treated as a domain-

prior. Therefore, in order to detect whether or not an image is out-of-distribution,

we can stipulate a non-local model able to discount local features of the image

distribution; denoted here pnl(x). It is however not easy to build such a non-local

model directly, since the concept of “non-local” lacks a mathematically rigorous

definition. However, we propose that a non-local model can be considered to be

the complement of a local model, from a respective full model. In the following

section, we therefore propose to use a product of experts to indirectly define pnl(x),

and demonstrate how this may be used for OOD detection.

5.3.1 Product of Experts and Non-Local Model

As demonstrated in Section 5.2.2, the full model p f (x) and the local model pl(x)

can be easily built for the image distribution, e.g. a full autoregressive model and a

local autoregressive model. We further assume the full model allows the following

decomposition:

p f (x) =
pl(x)pnl(x)

Z
, (5.5)



5.3. OOD Detection with Non-Local Model 101

where Z =
∫

pl(x)pnl(x)dx is the normalizing constant. This formulation can also be

thought of as a product of experts (PoE) model [Hinton, 2002] with two experts; pl

(local expert) and pnl (non-local expert). An interesting property of the PoE model

is that if a data sample x′ has high full model probability p f (x′), it should possess

high probability mass in each of the expert components3. Therefore, the PoE model

assumption is consistent with our image modelling intuition: a valid image requires

both valid local features (e.g. stroke, texture, local consistency) and valid non-local

features (semantics).

By our model assumption, the density function of the non-local model can be

formally defined and is proportional to the likelihood ratio:

pnl(x) ∝
p f (x)
pl(x)

≡ p̂nl(x), (5.6)

where p̂nl(x) denotes the unnormalized density. For the OOD detection task, we

require only p̂nl(x) in order to provide a score classifying whether or not test data x is

OOD and therefore do not require to estimate the normalization constant Z. We also

note that as we increase the local horizon length for pl , the local model will converge

to a full model pl→ p f , and p̂nl(x) = 1 becomes a constant and inadequate for OOD

detection. This further suggests the importance of using a local model. Figure 5.3

shows histograms of p̂nl(·) for both ID and OOD test datasets. We observe that the

majority of ID test data obtains higher likelihood than OOD data, illustrating the

effectiveness of non-local models.

5.3.2 Connections to Related Methods

We highlight that the score p̂nl(x) that we use to conduct OOD detection allows a

principled likelihood interpretation: the unnormalized likelihood of a non-local

model. We believe this to be the first time that the likelihood of a non-local model

3This PoE property differs from a Mixture of Experts (MoE) model that linearly combines experts.
If data x′ has high probability in the local model (e.g. pl(x′) = 0.9) but low probability in the non-local
model (e.g. pnl(x′) = 0.1), the probability in the full PoE model p f (x′) ∝ 0.9∗0.1 is also small. On
the contrary, if we assume p f is a MoE: p f =

1
2 pl +

1
2 pnl , then pl(x′) = 0.9 and pnl(x′) = 0.1 results

in a high full MoE model p f (x′) value i.e. p f (x′) = 0.5∗0.9+0.5∗0.1 = 0.5. We refer to [Hinton,
2002] for additional PoE model details.



5.3. OOD Detection with Non-Local Model 102

−0.2 0 0.2 0.4 0.6

FMNIST

MNIST

0 0.2

CIFAR

SVHN

Figure 5.3: Unnormalized log likelihood of the non-local
model p̂nl(x)=

p f (x)
pl(x)

for both ID test datasets (FashionM-
NIST, CIFAR10) and OOD datasets (MNIST, SVHN). ID
test datasets obtain significantly higher likelihoods, on
average, in each case.

Figure 5.4: Samples
from the local autore-
gressive model, see Ap-
pendix D.2.2 for details.

is considered in the literature. However, other likelihood ratio variants have been

previously explored for OOD detection. We briefly discuss related work and highlight

where our method differs from relevant literature.

In [Ren et al., 2019], it is assumed that each data sample x can be factorized

as x = {xb,xs}, where xb is a background component, characterized by population

level background statistics: pb. Further, xs then constitutes a semantic component,

characterized by patterns belonging specifically to the in-distribution data: ps. A full

model, fitted on the original data, (e.g. a flow-based model) can then be factorized as

p f (x) = p f (xb,xs) = pb(xb)ps(xs) and the semantic model can correspondingly be

defined as a ratio: ps(x) =
p f (x)
pb(x)

, where p f (x) is a full model. In order to estimate

pb(xb), the authors of [Ren et al., 2019] design a perturbation scheme and construct

samples from pb(xb) by adding random perturbation to the input data. A further

full generative model is then fitted to the samples towards estimating pb. In our

method, both pl(x) and pnl(x) constitute distributions of the same sample space (that

of the original image x) whereas ps and pb in [Ren et al., 2019] form distributions

in different sample spaces (that of xs and xb, respectively). Additionally, in com-

parison with our local and non-local experts factorization of the model distribution,

their decomposition of an image into ‘background’ and ‘semantic’ parts may not be

suitable for all image content and the construction of samples from pb(xb) (adding

random perturbation) lacks principled explanation. In [Serrà et al., 2019, Schirrmeis-

ter et al., 2020], the score for OOD detection is defined as s(x) = p f (x)
pc(x)

where p f



5.3. OOD Detection with Non-Local Model 103

is a full model and pc is a complexity measure containing an image domain prior.

In practice, pc is estimated using a traditional compressor (e.g. PNG or FLIF), or

a model trained on an additional, larger dataset in an attempt to capture general

domain information [Schirrmeister et al., 2020]. In comparison, our method does

not require the introduction of new datasets and our explicit local feature model, pl ,

can be considered more transparent than PNG of FLIF. Additionally, our likelihood

ratio can be explained as the (unnormalized) likelihood of the non-local model for

the in-distribution dataset, whereas the score described by [Schirrmeister et al., 2020,

Serrà et al., 2019] does not offer a likelihood interpretation. In Section 5.4, we

discuss how the proposed local model may be utilized to build a lossless compressor,

further highlighting the connection between our OOD detection framework and

traditional lossless compressors (e.g. PNG or FLIF). In Table 5.6, we report experi-

mental results showing that a lossless compressor based on our model significantly

improves compression rates c.f . PNG and FLIF, further suggesting the benefits of

the introduced OOD detection method.

5.3.3 Experiments

We conduct OOD detection experiments using four different dataset-pairs that are

considered challenging [Nalisnick et al., 2019a]: Fashion MNIST (ID) vs. MNSIT

(OOD); Fashion MNIST (ID) vs. OMNIGLOT (OOD); CIFAR10 (ID) vs. SVHN

(OOD); CIFAR10 (ID) vs. CelebA (OOD). We actively select not to include dataset

pairs such as CIFAR10 vs. CIFAR100 or CIFAR10 vs. ImageNet since these contain

duplicate classes and cannot be treated as strictly disjoint (or OOD) datasets [Serrà

et al., 2019]. Additional experimental details are provided in Appendix D.1. In

Table 5.5 we report the ‘area under the receiver operating characteristic curve’ (AU-

ROC), a common measure for the OOD detection task [Hendrycks and Gimpel,

2016]. We compare against methods, some of which require additional label infor-

mation4, or datasets. Our method achieves state-of-the-art performance in most cases

4In principle methods that require labels correspond to classification, task-dependent OOD
detection, which may be considered fundamentally different from task-independent OOD detection
(with access to only image space information), see [Ahmed and Courville, 2020] for details. We
compare against both classes of method, for completeness.



5.3. OOD Detection with Non-Local Model 104

Table 5.5: OOD detection AUROC comparisons. Higher values indicate better
performance, results are rounded to three decimal places. Results are reported in
each case directly using the original references except in the cases of ODIN [Ren
et al., 2019, Lee et al., 2018] and VIB [Choi et al., 2018]. Results for the typicality
test are from [Serrà et al., 2019], corresponding to batches of two samples of the
same type. (a) The Mahalanobis method requires knowledge of the validation data
(OOD distribution). (b) A full PixelCNN (see Appendix D.1) is trained on the ID
dataset and its likelihood evaluations are then used to calculate AUROC.

ID dataset: FashionMNIST CIFAR10
OOD dataset: MNIST Omniglot SVHN CelebA

Using Labels

ODIN [Liang et al., 2017] 0.697 - 0.966 -
VIB [Alemi et al., 2018] 0.941 0.943 0.528 0.735
Mahalanobisa [Hendrycks et al., 2018] 0.986 - 0.991 -
Gram-Matrix [Sastry and Oore, 2019] - - 0.995 -

Using Additional Datasets

Outlier Exposure [Hendrycks et al., 2018] - - 0.758 0.615
Glow/Tiny-Glow [Schirrmeister et al., 2020] - - 0.939 -
PCNN/Tiny-PCNN [Schirrmeister et al., 2020] - - 0.944 -

Not Using Additional Information

WAIC (ensemble) [Choi et al., 2018] 0.766 0.796 1.000 -
Glow/PNG [Schirrmeister et al., 2020] - - 0.754 -
PCNN/PNG [Schirrmeister et al., 2020] - - 0.823 -
Likelihood Ratio in [Ren et al., 2019] 0.997 - 0.912 -
MSMA KD Tree [Mahmood et al., 2020] 0.693 - 0.991 -
S using Glow/FLIF [Serrà et al., 2019] 0.998 1.000 0.950 0.736
S using PCNN/FLIF [Serrà et al., 2019] 0.967 1.000 0.929 0.535
Full PixelCNN likelihoodb 0.074 0.361 0.113 0.602
Our method 1.000 1.000 0.969 0.949

without requiring additional information. We observed that the model-ensemble

methods, WAIC [Choi et al., 2018] and MSMA [Mahmood et al., 2020] can achieve

higher AUROC in the experiments involving color images yet are significantly out-

performed by our approach in the case of grayscale data. We thus evidence that our

simple method is consistently more reliable than alternative approaches and that our

score function allows a principled likelihood interpretation.



5.4. Lossless Compression with Local Model 105

5.4 Lossless Compression with Local Model
Recent deep generative model based compressors [Townsend et al., 2019, Berg

et al., 2020, Kingma et al., 2019, Ho et al., 2019] are designed under the assump-

tion that data to be compressed originates from the same distribution (source) as

model training data. However, in practical scenarios, test images may come from

a diverse set of categories or domains and training images may be comparatively

limited [MacKay, 2003]. Obtaining a single method capable of offering strong com-

pression performance on data from different sources remains an open problem and

related study involves consideration of “universal” compression methods [MacKay,

2003]. Based on our previous intuitions relating to generalization ability; to build

such a “universal” compressor in the image domain, we believe a promising route

involves leveraging models that only depend on common local features, shared

between differing image distributions. We thus propose a new “universal” lossless

image compressor: NeLLoC (Neural Local Lossless Compressor), built upon the

proposed local autoregressive model and the concept of Arithmetic Coding [Witten

et al., 1987]. In comparison with alternative recent deep generative model-based

compressors, we find that NeLLoC has competitive compression rates on a diverse

set of data, yet requires significantly smaller model sizes which in turn reduces

storage space and computation costs. We further note that due to our design choices,

and in contrast to alternatives, NeLLoC can compress images of arbitrary size.

In the remaining parts of this section, we first discuss NeLLoC model structure

and then provide important resulting properties of the method.

5.4.1 NeLLoC Model

Our NeLLoC model uses the same network backbone as that of our OOD detection

experiment (Section 5.3): a Masked CNN with kernel size k = 2×h+1 (h is the

horizon size) in the first layer and followed by several residual blocks with 1×1

convolution, see Appendix D.1 for the network architecture and training details. To

realize the predictive distribution for each pixel, we propose to use a discretized

Logistic-Uniform mixture distribution, which we now introduce.

Discretized Logistic-Uniform Mixture Distribution The discretized logistic



5.4. Lossless Compression with Local Model 106

mixture distribution, proposed by [Salimans et al., 2017], has shown promising re-

sults for the task of modeling color images. In order to ensure numerical stability, the

original implementation can provide only an (accurate) approximation and therefore

cannot be used for our task of lossless compression, which requires exact numerical

evaluation. We, therefore, propose to use the discretized Logistic-Uniform Mixture

distribution, which mixes the original discretized logistic mixture distribution with a

discrete uniform distribution:

x∼ (1−α)

(
K

∑
i=1

πiLogistic(µi,si)

)
+αU(0, . . . ,255), (5.7)

where U(0, . . . ,255) is the discrete uniform distribution over the support {0, . . . ,255}.

The proposed mixture distribution can explicitly avoid numerical issues and its

pmf and cdf can be easily evaluated without requiring approximation. We can

then use this cdf evaluation in relation to Arithmetic Coding. In practice; we set

α = 10−4 to balance numerical stability and model flexibility. We use K = 10

(mixture components) for all models in the compression task.

5.4.2 Properties of NeLLoC

Universal Image Compressor As discussed previously, the motivation for designing

NeLLoC is to realize an image compressor that is applicable (generalizable) to

images originating from differing distributions. Towards this, NeLLoC conducts

compression depending on local features which are shown to constitute a domain

prior for all images. We next discuss other important aspects towards making

NeLLoC practical when considering real applications.

Arbitrary Image Size Common generative models, e.g. VAE or Flow, can only

model image distributions with fixed dimension. Therefore, lossless compressors

based on such models [Townsend et al., 2019, Hoogeboom et al., 2019, Berg et al.,

2020, Ho et al., 2019, Kingma et al., 2019] can only compress images of fixed size.

Recently, HiLLoC [Townsend et al., 2020] explore fully convolutional networks,

capable of accommodating variable size input images, yet still requires even height



5.4. Lossless Compression with Local Model 107

Table 5.6: Lossless Compression Comparisons. We compare against traditional
image compression and neural network-based models. For neural models, we report
results where models are trained on CIFAR10 or ImageNet32 and tested on other
ID or OOD test datasets. We use † to represent the best ID generalization and ⋆ to
represent the best OOD generalization. (a) We down-sample CelebA to 32×32, see
Appendix D.1.2. (b) The BPD 3.15 reported in [Townsend et al., 2020] is tested on
2000 random samples from the full ImageNet test set, whereas we test HiLLoC on
the whole test set with 49032 images. The reported BPD of NeLLoC has a standard
deviation ∼0.02 across multiple random seeds.

Method Size(MB) CIFAR SVHN CelebAa IN32 IN64 IN

Generic

PNG [Boutell and Lane, 1997] N/A 5.87 5.68 6.62 6.58 5.71 5.12
WebP [Lian and Shilei, 2012] N/A 4.61 3.04 4.68 4.68 4.64 3.66
JPEG2000 [Rabbani, 2002] N/A 5.56 4.10 5.70 5.60 5.10 3.74
FLIF [Sneyers and Wuille, 2016] N/A 4.19 2.93 4.44 4.52 4.19 3.51

Train/test on one distribution ID ID ID

LBB [Ho et al., 2019] - 3.12† - - 3.88 3.70 -
IDF++[Berg et al., 2020] - 3.26 - - 4.12 4.81 -

Trained on CIFAR ID OOD OOD OOD OOD OOD

IDF [Hoogeboom et al., 2019] 223.0 3.34 - - 4.18 3.90 -
Bit-Swap [Kingma et al., 2019] 44.7 3.78 2.55 3.82 5.37 - -
HiLLoC [Townsend et al., 2020] 156.4 3.32 2.29 3.54 4.89 4.46 3.42
L3C [Mentzer et al., 2019] 19.11 3.39 3.17 4.44 4.97 4.77 4.88
NeLLoC (r = 0) 0.49 3.38 2.23 3.44 4.20 3.86 3.30
NeLLoC (r = 1) 1.34 3.28 2.16 3.37 4.07 3.74 3.25
NeLLoC (r = 3) 2.75 3.25 2.13⋆ 3.35⋆ 4.02⋆ 3.69⋆ 3.24⋆

Trained on ImgNet32 OOD OOD OOD ID OOD OOD

IDF [Hoogeboom et al., 2019] 223.0 3.60 - - 4.18 3.94 -
Bit-Swap [Kingma et al., 2019] 44.9 3.97 3.00 3.87 4.23 - -
HiLLoC [Townsend et al., 2020] 156.4 3.56 2.35 3.52 4.20 3.89 3.25⋆b

L3C [Mentzer et al., 2019] 19.11 4.34 3.21 4.27 4.55 4.30 4.34
NeLLoC (r = 0) 0.49 3.64 2.38 3.54 3.93 3.63 3.37
NeLLoC (r = 1) 1.34 3.56 2.26 3.47 3.85 3.55 3.31
NeLLoC (r = 3) 2.75 3.51⋆ 2.21 3.43⋆ 3.82† 3.53⋆ 3.29

and widthe. L3C [Mentzer et al., 2019], based on a multi-scale autoencoder, can

compress large images yet also requires height and width to be even. NeLLoC is able

to compress images with arbitrary size based on an alternative and simple intuition:

eFor images with odd height or width, padding is required.



5.4. Lossless Compression with Local Model 108

we only model the conditional distribution, based on local neighbouring pixels. We

thus do not model the distribution of the entire image and can therefore, in contrast

to HiLLoC and L3C, compress arbitrary image sizes without padding requirements.

To validate method properties, we compare the compression performance of

NeLLoC with both traditional image compressors and recently proposed generative

model based compressors. We train NeLLoC with horizon length h = 3 on two

(training) datasets: CIFAR10 (32×32) and ImageNet32 (32×32) and test on the

previously introduced test sets, including both ID and OOD data. We also test

on ImageNet64 with size 64×64 and a full ImageNetf test set (with average size

500×374). Table 5.6 provides details of the comparison. We find NeLLoC achieves

better BPD in a majority of cases. Exceptions include LBB [Ho et al., 2019] having

better ID generalization for CIFAR and HiLLoC [Townsend et al., 2020] having

better OOD generalization in the full ImageNet, when the model is trained on

ImageNet32.

Small Model Size In comparison with traditional codecs such as PNG or FLIF,

one major limitation of current deep generative model based compressors is that

they require generation and storage of models of very large size. For example,

HiLLoC [Townsend et al., 2020] contains 24 stochastic hidden layers, resulting

in a capacity and parameter size of 156 MegaBytes (MB) using 32-bit floating

point model weights. This poses practical challenges relating to both storage and

transmission of such models to real, often resource-limited, edge devices. Since

NeLLoC only models the local region, a small network of three Residual blocks

with 1×1 convolutions (except the first layer) is enough to achieve state-of-the-art

compression performance with parameter size 2.75 MB. We also investigate the

compression task under NeLLoC with 1 and 0 residual blocks, which have parameter

sizes of 1.34 and 0.49 MB respectively, and yet still observe respectable performance.

We report model size comparisons in Table 5.6. In principle, NeLLoC can also be

combined with other resource-saving techniques such as weight quantization [Bird

et al., 2020], which we consider a promising line of future investigation.

fImages with height or width greater than 1000 are removed, resulting in a total of 49032 test
images.



5.5. Parallel Decoding of NeLLoC 109

5.5 Parallel Decoding of NeLLoC

In contrast to full autoregressive models, where pixels must be decoded sequentially,

there exist pixels that can be independently decoded in a local autoregressive model.

Figure 5.5 gives the topological order of parallel decoding, for a 5×5 image, using a

local autoregressive model with h = 1. The number in each pixel indicates the time

at which the pixel can be decoded. For example, the two red pixels marked with time

6 can be decoded in parallel since they are independent under the model.

1 2 3 4 5

3 4 5 6 7

5 6 7 8 9

7 8 9 10 11

9 10 11 12 13

Figure 5.5: Topological de-
coding order. Pixels with the
same number are parallel de-
coded.

In general, for an image with size D×D, on

a machine with ⌊D+h
h+1 ⌋ parallel processing units, the

total decoding time T = D+(D−1)×(h+1). Since

h is a small constant h≪D, the decoding time scales

with O(D), which is a significant improvement over

the O(D2) of full autoregressive models. In the exam-

ple in Figure 5.5, for a 5×5 image with dependency

length h = 1, the decoding time is T = 13 whereas in

a full autoregressive model, T = 25. In the next sec-

tion, we discuss how to implement the parallelization

scheme in practice.

We observe that for fixed h, the positions of pixels decoded at each time step do

not change. We can thus pre-compute the topological ordering and save the locations

the pixels computed at each time step. At each time step in the decoding stage, we

just load the saved positions of the independent pixels to be decoded and collect the

image patches on which they depend into a batch. For example, for the pixel x33 in

Figure 5.6a, the relevant patch is a 3×3 square marked in red, the redundant pixels

{x33,x34,x42,x43,x44} will be masked out in the local autoregressive model. One

can also take a rectangle patch that contains {x22,x23,x24,x32,x33,x34} to reduce the

computation and {x33,x34} will be masked out in this case. We pad the patches with

0 for the pixels near the boundary, to make sure all the patches have the same size.

The parallel decoding procedure is summarized in Algorithm 3.



5.5. Parallel Decoding of NeLLoC 110

Algorithm 3 Parallel Decoding Procedure of Local Autoregressive Models
1: for t = 1 to T do
2: Load the positions of independent pixels to be decoded at time t.
3: Gather the relevant patches based on the loaded positions to form a batch.
4: In parallel, compute the predictive distributions for those pixels using the

batch.
5: Decode the pixel values using the predictive distributions.

5.5.1 Sheared Local Autoregressive Model

We notice that in Algorithm 3, the conditionally independent pixels in each step are

located in nonadjacent positions. For example, the dependent areas (green) of the

two red pixels in Figure 5.5 are not aligned in memory. This requires extra indexing

time when reading/writing their values. To alleviate the speed limitation, we propose

to transform the model such that the conditionally independent pixels are aligned.

Specifically, for a local autoregressive model with dependency horizon h, we shear

both the model and image, with offset o = h+ 1. Figure 5.6 shows an example

where the local autoregressive model with h = 1 (Figure 5.6a) is sheared with offset

o = 2. We observe that in the sheared model, the conditionally independent pixels

are aligned in memory, allowing significantly faster parallel reading/writing of those

pixels. The sheared model has length L = D+(D− 1)× o for a D×D images,

which is equal to the decoding steps T in pNeLLoC since o = h+1. Therefore, the

inference time scales with O(D) on parallel processing units.

x11 x12 x13 x14 x15

x21 x22 x23 x24 x25

x31 x32 x33 x34 x35

x41 x42 x43 x44 x45

x51 x52 x53 x54 x55

(a) Local model with h = 1

x11 x12 x13 x14 x15 0 0 0 0 0 0 0 0

0 0 x21 x22 x23 x24 x25 0 0 0 0 0 0

0 0 0 0 x31 x32 x33 x34 x35 0 0 0 0

0 0 0 0 0 0 x41 x42 x43 x44 x45 0 0

0 0 0 0 0 0 0 0 x51 x52 x53 x54 x55

(b) Sheared model with offset o = 2

Figure 5.6: Pixel dependency after the shear operation. The red pixels in the same
column in the sheared image (b) are conditionally independent given the green pixels
and are aligned in memory.

As discussed in Section 2, the pixel dependency structure of the local autore-



5.5. Parallel Decoding of NeLLoC 111

Algorithm 4 Parallel Decoding Procedure of Sheared Local Autoregressive Models
1: Shear the image based on the dependency horizon.
2: for t = 1 to T do
3: In parallel, compute the predictive distributions for those pixels in each

column.
4: Decode the pixel values using the predictive distributions.
5: Undo the shear operation for the decoded image.

gressive model only depends on the first convolution kernel. Therefore, to shear

the model, we only need to shear the first convolution kernel. Figure 5.7 visualizes

the sheared convolutional kernel for two local autoregressive models with h = 1

and h = 2. After shearing the model, we also need to shear the images to conduct

compression and decompression, see Algorithm 4 for a summary of the decoding

procedure. We refer to compression with the sheared model as Sheared Local

Lossless Compression (ShearLoC).

w11 w12 w13

w21 0 0

(a) NeLLoC (h = 1)

w11 w12 w13

0 0 w21

(b) ShearLoC (h = 1)

w11 w12 w13 w14 w15

w21 w22 w23 w24 w25

w31 w32 0 0 0

(c) NeLLoC (h = 2)

w11 w12 w13 w14 w15 0 0 0

0 0 0 w21 w22 w23 w24 w25

0 0 0 0 0 0 w31 w32

(d) ShearLoC (h = 2)

Figure 5.7: Convolution kernel weights in the first layer
of the local models and the corresponding sheared lo-
cal models. We show two examples with dependency
horizons: h = 1 (a,b) and h = 2 (c,d).

5.5.2 Demonstrations

We use the three pre-trained (on CIFAR10) models (with 0, 1 and 3 ResNet blocks)

for all the experiments. During encoding, since all pixels are observed, the statistics

of all the pixels can be computed in parallel. However, we have found that on CPU

the computations may not be deterministic when using different batch sizes during

the encoding and decoding. Therefore, we instead use the an identical inference

procedure in both the encoding and decoding stages. Other details can be found in

the provided repository. All the experiments are conducted on a MacBook Air (2020)

with M1 chip and 8GB memory, the results are averaged over 10 images from the



5.5. Parallel Decoding of NeLLoC 112

ImageNet [Deng et al., 2009] dataset.

We compare parallel NeLLoC (pNeLLoC) and ShearLoC with the original

sequential NeLLoC (sNeLLoC) implementation. Since all algorithms use the same

underlying pre-trained model, they have the same compression BPD. Table 5.7a

shows the decompression time comparison using three models on images with side

length 32. We find pNeLLoC is 2x faster than sNeLLoC with the 0 ResNet block

model, and the improvement increases for larger models. Compared to pNeLLoC,

ShearLoC achieves a further speed improvement, with a more significant advantage

in larger models.

We also compare the decompression time on square images with increased

side lengths: [32,64,128,1024]g. Table 5.7b shows the improvement percentage

from using pNeLLoC grows when we increase the size of the test images. This is

consistent with the theoretical argument that the proposed parallelization scheme

improves the computation complexity from O(D2)→ O(D) on parallel units. Simi-

larly, additional improvements can be achieved when using ShearLoC, which shares

the same complexity with pNeLLoC but has more efficient memory access.

Table 5.7: Decoding time (s) comparisons. We show the improvement of
pNeLLoC (in green) and ShearLoC (in red) comparing to using sNeLLoC.

(a) Different model sizes, the image has size 32×32.

Res. Num. 0 1 3

BPD 3.39 3.32 3.29

sNeLLoC 0.460 (-) 0.578 (-) 0.774 (-)
pNeLLoC 0.223 (2.06x) 0.277 (2.09x) 0.335 (2.31x)
ShearLoC 0.218 (2.11x) 0.222 (2.60x) 0.245 (3.16x)

(b) Different image sizes, the model has 0 ResNet blocks.

Side len. 32 64 128 1024

BPD 3.39 3.05 2.93 2.22

sNeLLoC 0.460 (-) 1.879 (-) 7.574 (-) 475.9 (-)
pNeLLoC 0.223 (2.06x) 0.757 (2.48x) 2.217 (3.42x) 100.0 (4.58x)
ShearLoC 0.218 (2.11x) 0.612 (3.07x) 1.683 (4.60x) 73.00 (6.52x)

gThe 1024×1024 images are provided in the repository, the corresponding result is averaged over
3 images.



5.6. Conclusions 113

5.6 Conclusions
In this work, we propose the local autoregressive model to study OOD generalization

in probabilistic image modelling and establish an intriguing connection between two

diverse applications: OOD detection and lossless compression. We verify and then

leveraged a hypothesis regarding local features and generalization ability in order to

design approaches towards solving these tasks.

One major challege of the proposed techniques is to with our proposed methods

lies in selecting the appropriate size for the local window, a crucial hyper-parameter.

In practice, local window size can be decided on a validation dataset and then subse-

quently applied to in the test dataset. However, comprehending the relation between

the local window size and the OOD generation behavior for images necessitates an

understanding of the manifold image distribution. Given the complexity of this task,

we earmark it for future research directions.

For parallel decoding using NeLLoC, several methods have been proposed to

improve the sampling runtime in autoregressive models. For example, [Reed et al.,

2017, Razavi et al., 2019] explore the multi-scale structure in the image domain, and

design models that allow parallel generation of pixels in higher resolution samples

conditioned on low-resolution samples. In contrast to previous works, the parallel

method proposed in this paper is specially designed for local autoregressive models,

with the flexibility to handle images of arbitrary size. Local autoregressive models

can also be combined with latent variable models to generate semantically-coherent

images [Gulrajani et al., 2017b, Zhang et al., 2022]. In this case, the proposed

parallelization schemes can be also used to improve the sampling efficiency, which

we leave to future work.

End of Part II



5.6. Conclusions 114

As we conclude the second part of the thesis, we’ve traversed the landscape

of generalization properties of the generative models. In Chapter 5, we discussed

the generalization attributes of VAE, introducing a method aimed at amplifying the

in-distribution generalization performance for lossless compression tasks through

improved amortized inference. Chapter 6 pivoted to the out-of-distribution (OOD)

generalization for image modeling. Within this context, we crafted both a local

and a non-local model, each designed to bolster performance for OOD lossless

compression and OOD detection respectively.

In the upcoming concluding chapter, we’ll weave the threads of our discussions

together, highlighting the interrelation of the various topics and how they coalesce

into a unified narrative. We’ll reflect on the implications of our findings, discuss the

limitations inherent to our current approach, and chart possible trajectories for future

research in this domain.



Chapter 6

Conclusions

In this chapter, we offer a comprehensive reflection on our research journey, high-

lighting its core contributions, potential constraints, and broader implications within

the evolving landscape of machine learning and generative modeling. Through

introspection and contextualization, we provide readers with a holistic understanding

of our work’s impact and the promising pathways it paves for future exploration.

6.1 Summary of the Thesis
Improving the training and generalization have always been the most important

topics in classic machine learning research. The thesis delves into these two critical

aspects respectively related to probabilistic models to enhance their effectiveness and

reliability. Firstly, it focuses on identifying the failure modes of training-specific data

distribution with common statistical divergences and proposes principled healing

techniques to address these failures, thereby improving the training of the proba-

bilistic models. Secondly, we study the generalization ability of likelihood-based

generative models and discuss the generalization in both in-distribution and out-of-

distribution settings. This aspect has significant implications for applications such as

lossless compression and out-of-distribution (OOD) detection.

Our exploration into the nuances of machine learning revolves around the

interconnected themes of training and generalization. Addressing training failures

using statistical divergences ensures our probabilistic models are built on a solid

foundation. Furthermore, a well-trained model’s true test is in its ability to generalize,



6.2. Limitations and Future Work 116

especially in unpredictable out-of-distribution scenarios. This thesis bridges these

two pivotal aspects: the initial act of robust training and the subsequent challenge

of reliable generalization. In tandem, they outline our comprehensive effort to craft

probabilistic models that excel both in theory and practice.

6.2 Limitations and Future Work

Throughout this thesis, we have delved deep into various facets of probabilistic mod-

eling and machine learning. Our endeavors have unveiled innovative methodologies

and insightful revelations. Yet, in the spirit of comprehensive research, it’s imper-

ative to discuss the limitations of our work and chart out potential future research

directions.

Spread Divergence (Chapter 1): Our introduction of the spread divergence

addresses certain shortcomings of the KL divergence. However, the choice of

the noise distribution might not always be in perfect alignment with specific data

distributions or characteristics. Potential future exploration in this area includes

diving deeper into the wide spectrum of spread noise and its inherent properties,

pinpointing the most suitable noise types for distinct tasks, and leveraging the

principles of spread divergence to enhance the training of different models in addition

to the implicit latent variable model.

Mixture Fisher Divergence (Chapter 2): While our findings in this chapter

provide a promising foundation, they come with various challenges when applying

the method for high-dimensional distributions. Determining an effective m(x) for

vast datasets poses a significant hurdle, and the post-training estimation of Z(θ)

for expansive distributions remains intricate. Looking ahead, there is a need to

devise efficient algorithms for high-dimensional computations, strategize methods to

identify a suitable m(x) for vast datasets, and find innovative methods to precisely

estimate Z(θ) for intricate distributions.

Generalization Gap of VAEs (Chapter 3): Our exploration was centered

predominantly around the inference network, leaving the nuanced generalization

characteristics of the decoder relatively uncharted. A prospective area of focus is



6.3. Implications for the State of the Art 117

delving deeper into the generalization attributes of the decoder to enhance the overall

VAE performance.

Local/Non-local Image Models (Chapter 4): A salient limitation we encoun-

tered here is the critical yet challenging task of choosing the optimal local window

size. The correlation between this local window size and out-of-distribution general-

ization remains enigmatic. Future studies might venture into exploring the manifold

image distribution intricacies, aiming to decipher the subtle relation between local

window size and OOD generalization.

In conclusion, our research has marked significant milestones, but it’s evident

that there are several frontiers yet to be explored. The limitations and potential

avenues highlighted here provide a roadmap for subsequent scholarly endeavors in

the domain.

6.3 Implications for the State of the Art

Recent advancements in Stable Diffusion [Rombach et al., 2022] and Chapt-

GPT [Vaswani et al., 2017, Radford et al., 2019, Brown et al., 2020] have revolu-

tionized generative modeling applications and research, particularly in text-to-image

generation and text generation. This section delineates how our thesis contributes to

a deeper understanding and potential enhancement of state-of-the-art applications in

these domains.

Diffusion models [Song and Ermon, 2019, Ho et al., 2020] have been excep-

tionally performant in image generation. One can interpret the diffusion model as an

energy-based model trained by denoising score matching (DSM) with varied noise

levels [Vincent, 2011, Song and Ermon, 2019]. As explored in Section 2.6.1, DSM’s

central idea is to introduce convolutional noise to the data, subsequently instructing

an EBM to adapt to the noised data distribution. While minor noise introduction may

have a negligible impact on the visual generation of natural images, the DSM may

fall short in tasks demanding precision and noise-free data modeling. An intriguing

insight derived from the spread divergence is the potential to introduce equivalent

noise amounts to both a pristine and a noisy model. The noisy model can then be



6.3. Implications for the State of the Art 118

adjusted to align with the noisy data distribution, indirectly ensuring the pristine

model adapts to the clean distribution. Extending this concept to enhance diffusion

model training remains an exciting area for future work. Consequently, theories and

methods developed within the spread divergence paradigm can potentially be applied

to the diffusion model. This offers prospects for exploring its attributes further and

enhancing its configuration, potentially leading to more proficient and precise image

generation. Such advancements hold relevance for numerous applications spanning

computer vision, graphics, and multimedia.

Autoregressive modeling forms the cornerstone of GPT-style models [Vaswani

et al., 2017, Radford et al., 2019, Brown et al., 2020]. These models have exhibited

remarkable generalization in language tasks, underscoring the enigmatic nature of

generalization within language models. A recent talk [Sutskever, Year of publication]

and a paper [Delétang et al., 2023] both endeavor to unpack the generalization

properties of language models, viewing them through a lossless compression lens.

This viewpoint aligns with the themes presented in the second part of our thesis.

By leveraging both local and global observations, as suggested in our research, we

might gain insights into the generalization of syntactic and semantic attributes in

expansive language models, marking a promising avenue for future exploration.

In concluding this section, it’s evident that our research presented in this thesis

not only aligns with, but also strengthens the contemporary advances in genera-

tive modeling, setting the groundwork for potential future breakthroughs in both

theoretical and practical domains.



Bibliography

Hyvärinen Aapo. Estimation of non-normalized statistical models by score matching.

Journal of Machine Learning Research, 6(4), 2005.

Felix V Agakov and David Barber. An auxiliary variational method. In International

Conference on Neural Information Processing, pages 561–566. Springer, 2004.

Faruk Ahmed and Aaron Courville. Detecting semantic anomalies. In Proceedings

of the AAAI Conference on Artificial Intelligence, volume 34, pages 3154–3162,

2020.

Alexander A Alemi, Ian Fischer, and Joshua V Dillon. Uncertainty in the variational

information bottleneck. arXiv preprint arXiv:1807.00906, 2018.

Syed Mumtaz Ali and Samuel D Silvey. A General Class of Coefficients of Diver-

gence of one Distribution from Another. Journal of the Royal Statistical Society:

Series B (Methodological), 28(1):131–142, 1966.

Andreas Anastasiou, Alessandro Barp, François-Xavier Briol, Bruno Ebner, Robert E

Gaunt, Fatemeh Ghaderinezhad, Jackson Gorham, Arthur Gretton, Christophe

Ley, Qiang Liu, et al. Stein’s method meets statistics: A review of some recent

developments. arXiv preprint arXiv:2105.03481, 2021.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative

adversarial networks. In International conference on machine learning, pages

214–223. PMLR, 2017.

David Barber. Bayesian Reasoning and Machine Learning. Cambridge University

Press, 2012.



BIBLIOGRAPHY 120

Alessandro Barp, Francois-Xavier Briol, Andrew Duncan, Mark Girolami, and Lester

Mackey. Minimum stein discrepancy estimators. Advances in Neural Information

Processing Systems, 32, 2019.

Jens Behrmann, Will Grathwohl, Ricky TQ Chen, David Duvenaud, and Jörn-Henrik

Jacobsen. Invertible residual networks. In International Conference on Machine

Learning, pages 573–582. PMLR, 2019.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A

review and new perspectives. IEEE transactions on pattern analysis and machine

intelligence, 35(8):1798–1828, 2013.

Rianne van den Berg, Alexey A Gritsenko, Mostafa Dehghani, Casper Kaae Søn-

derby, and Tim Salimans. Idf++: Analyzing and improving integer discrete flows

for lossless compression. arXiv preprint arXiv:2006.12459, 2020.

Alain Berlinet and Christine Thomas-Agnan. Reproducing kernel Hilbert spaces in

probability and statistics. Springer Science & Business Media, 2011.

Olivier Bermond and Jean-François Cardoso. Approximate likelihood for noisy

mixtures. In Proc. ICA, volume 99, pages 325–330. Citeseer, 1999.

David Berthelot, Thomas Schumm, and Luke Metz. Began: Boundary equilibrium

generative adversarial networks. arXiv preprint arXiv:1703.10717, 2017.

David Beymer and Tomaso Poggio. Image representations for visual learning.

Science, 272(5270):1905–1909, 1996.

Thomas Bird, Friso H Kingma, and David Barber. Reducing the computational

cost of deep generative models with binary neural networks. arXiv preprint

arXiv:2010.13476, 2020.

Christopher M Bishop. Novelty detection and neural network validation. IEE

Proceedings-Vision, Image and Signal processing, 141(4):217–222, 1994.



BIBLIOGRAPHY 121

Christopher M Bishop. Pattern recognition and machine learning, volume 4.

Springer, 2006.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A

review for statisticians. Journal of the American statistical Association, 112(518):

859–877, 2017.

Karsten M Borgwardt, Arthur Gretton, Malte J Rasch, Hans-Peter Kriegel, Bernhard

Schölkopf, and Alex J Smola. Integrating structured biological data by kernel

maximum mean discrepancy. Bioinformatics, 22(14):e49–e57, 2006.

Thomas Boutell and T Lane. Png (portable network graphics) specification version

1.0. Network Working Group, pages 1–102, 1997.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Pra-

fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,

et al. Language models are few-shot learners. Advances in neural information

processing systems, 33:1877–1901, 2020.

Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoen-

coders. arXiv preprint arXiv:1509.00519, 2015.

George Casella and Roger L Berger. Statistical inference. Cengage Learning, 2021.

A Taylan Cemgil, Sumedh Ghaisas, Krishnamurthy Dvijotham, Sven Gowal, and

Pushmeet Kohli. Autoencoding variational autoencoder. Neural Information

Processing Systems, 2020.

Edward Challis and David Barber. Affine independent variational inference. Ad-

vances in Neural Information Processing Systems, 25:2186–2194, 2012.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple

framework for contrastive learning of visual representations. In International

conference on machine learning, pages 1597–1607. PMLR, 2020.



BIBLIOGRAPHY 122

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long

sequences with sparse transformers. arXiv preprint arXiv:1904.10509, 2019.

Hyunsun Choi, Eric Jang, and Alexander A Alemi. Waic, but why? generative

ensembles for robust anomaly detection. arXiv preprint arXiv:1810.01392, 2018.

Kacper Chwialkowski, Heiko Strathmann, and Arthur Gretton. A kernel test of

goodness of fit. In International conference on machine learning, pages 2606–

2615. PMLR, 2016.

Rob Cornish, Anthony Caterini, George Deligiannidis, and Arnaud Doucet. Re-

laxing bijectivity constraints with continuously indexed normalising flows. In

International conference on machine learning, pages 2133–2143. PMLR, 2020.

Harald Cramér. Mathematical methods of statistics, volume 26. Princeton university

press, 1999.

Chris Cremer, Xuechen Li, and David Duvenaud. Inference suboptimality in vari-

ational autoencoders. In International Conference on Machine Learning, pages

1078–1086. PMLR, 2018.

Imre Csiszár. Information-type Measures of Difference of Probability Distributions

and Indirect Observation. studia scientiarum Mathematicarum Hungarica, 2:

229–318, 1967.

Imre Csiszár. A Class of Measures of Informativity of Observation Channels.

Periodica Mathematica Hungarica, 2(1-4):191–213, 1972.

Bin Dai and David Wipf. Diagnosing and enhancing vae models. arXiv preprint

arXiv:1903.05789, 2019.

Francesco D’Angelo and Vincent Fortuin. Annealed stein variational gradient

descent. arXiv preprint arXiv:2101.09815, 2021.

Peter Dayan, Geoffrey E Hinton, Radford M Neal, and Richard S Zemel. The

helmholtz machine. Neural computation, 7(5):889–904, 1995.



BIBLIOGRAPHY 123

Grégoire Delétang, Anian Ruoss, Paul-Ambroise Duquenne, Elliot Catt, Tim Ge-

newein, Christopher Mattern, Jordi Grau-Moya, Li Kevin Wenliang, Matthew

Aitchison, Laurent Orseau, et al. Language modeling is compression. arXiv

preprint arXiv:2309.10668, 2023.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum Likelihood from

Incomplete Data via the EM algorithm. Journal of the Royal Statistical Society:

Series B (Methodological), 39(1):1–22, 1977.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Probability: Theory and

Examples, volume 49. Cambridge university press, 2019.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A

large-scale hierarchical image database. In 2009 IEEE conference on computer

vision and pattern recognition, pages 248–255. Ieee, 2009.

Sever S Dragomir. Some General Divergence Measures for Probability Distributions.

Acta Mathematica Hungarica, 109(4):331–345, Nov 2005. ISSN 1588-2632. doi:

10.1007/s10474-005-0251-6.

Yilun Du and Igor Mordatch. Implicit generation and modeling with energy based

models. Advances in Neural Information Processing Systems, 32, 2019.

Jarek Duda. Asymmetric numeral systems: entropy coding combining speed of

huffman coding with compression rate of arithmetic coding. arXiv preprint

arXiv:1311.2540, 2013.

Gintare Karolina Dziugaite, Daniel M Roy, and Zoubin Ghahramani. Training

generative neural networks via maximum mean discrepancy optimization. arXiv

preprint arXiv:1505.03906, 2015.

William Fedus, Mihaela Rosca, Balaji Lakshminarayanan, Andrew M Dai, Shakir

Mohamed, and Ian Goodfellow. Many Paths to Equilibrium: GANs Do Not Need

to Decrease a Divergence at Every Step. arXiv:1710.08446, 2017.



BIBLIOGRAPHY 124

Thomas S Ferguson. An Inconsistent Maximum Likelihood Estimate. Journal of the

American Statistical Association, 77(380):831–834, 1982.

Gerald B Folland. Advanced calculus. Pearson, 2001.

Brendan J Frey and Geoffrey E Hinton. Free energy coding. In Proceedings of Data

Compression Conference-DCC’96, pages 73–81. IEEE, 1996.

Thomas Furmston and David Barber. Solving Deterministic Policy (PO)MPDs using

Expectation-Maximisation and Antifreeze. In First international workshop on

learning and data mining for robotics (LEMIR), pages 56–70, 2009. In conjunction

with ECML/PKDD-2009.

Matthias Gelbrich. On a Formula for the L2 Wasserstein Metric Between Measures

on Euclidean and Hilbert Spaces. Mathematische Nachrichten, 147(1):185–203,

1990.

Sebastien Gerchinovitz, Pierre Ménard, and Gilles Stoltz. Fano’s Inequality for

Random Variables. arXiv, 2018. doi: arXiv:1702.05985v2.

Wenbo Gong and Yingzhen Li. Interpreting diffusion score matching using normal-

izing flow. In ICML Workshop on Invertible Neural Networks, Normalizing Flows,

and Explicit Likelihood Models, June 2021.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversarial Nets.

In Advances in Neural Information Processing Systems, pages 2672–2680, 2014.

Jackson Gorham, Andrew B Duncan, Sebastian J Vollmer, and Lester Mackey.

Measuring sample quality with diffusions. The Annals of Applied Probability, 29

(5):2884–2928, 2019.

Alex Graves, Rupesh Kumar Srivastava, Timothy Atkinson, and Faustino Gomez.

Bayesian flow networks. arXiv preprint arXiv:2308.07037, 2023.



BIBLIOGRAPHY 125

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and

Alexander Smola. A Kernel Two-Sample Test. Journal of Machine Learning

Research, 13(Mar):723–773, 2012.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C

Courville. Improved Training of Wasserstein GANs. In Advances in Neural

Information Processing Systems, pages 5767–5777, 2017a.

Ishaan Gulrajani, Kundan Kumar, Faruk Ahmed, Adrien Ali Taiga, Francesco Visin,

David Vazquez, and Aaron Courville. Pixelvae: A latent variable model for natural

images. International Conference on Learning Representations, 2017b.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 770–778, 2016.

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-

of-distribution examples in neural networks. arXiv preprint arXiv:1610.02136,

2016.

Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep anomaly detection

with outlier exposure. arXiv preprint arXiv:1812.04606, 2018.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp

Hochreiter. GANs Trained by a Two Time-Scale Update Rule Converge to a

Local Nash Equilibrium. In Advances in Neural Information Processing Systems,

pages 6626–6637, 2017.

Geoffrey E Hinton. Training products of experts by minimizing contrastive diver-

gence. Neural computation, 14(8):1771–1800, 2002.

Geoffrey E Hinton and Drew Van Camp. Keeping the neural networks simple by

minimizing the description length of the weights. In Proceedings of the sixth

annual conference on Computational learning theory, pages 5–13, 1993.



BIBLIOGRAPHY 126

Geoffrey E Hinton, Peter Dayan, Brendan J Frey, and Radford M Neal. The"

wake-sleep" algorithm for unsupervised neural networks. Science, 268(5214):

1158–1161, 1995.

Jonathan Ho, Evan Lohn, and Pieter Abbeel. Compression with flows via local

bits-back coding. arXiv preprint arXiv:1905.08500, 2019.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models.

Advances in Neural Information Processing Systems, 33:6840–6851, 2020.

Emiel Hoogeboom, Jorn WT Peters, Rianne van den Berg, and Max Welling. Integer

discrete flows and lossless compression. arXiv preprint arXiv:1905.07376, 2019.

Aapo Hyvärinen. Some extensions of score matching. Computational statistics &

data analysis, 51(5):2499–2512, 2007.

Daniel Im Im, Sungjin Ahn, Roland Memisevic, and Yoshua Bengio. Denoising Cri-

terion for Variational Auto-Encoding Framework. In Thirty-First AAAI Conference

on Artificial Intelligence, 2017.

Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep

Network Training by Reducing Internal Covariate Shift. arXiv:1502.03167, 2015.

Oliver Johnson. Information theory and the central limit theorem. World Scientific,

2004.

Alexia Jolicoeur-Martineau, Rémi Piché-Taillefer, Ioannis Mitliagkas, and Remi Ta-

chet des Combes. Adversarial score matching and improved sampling for image

generation. In International Conference on Learning Representations, 2020.

Olav Kallenberg. Foundations of Modern Probability. Springer Science & Business

Media, 2006.

Leonid V Kantorovich. Mathematical methods of organizing and planning produc-

tion. Management science, 6(4):366–422, 1960.



BIBLIOGRAPHY 127

Taesup Kim and Yoshua Bengio. Deep directed generative models with energy-based

probability estimation. arXiv preprint arXiv:1606.03439, 2016.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

Diederik P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible

1x1 convolutions. arXiv preprint arXiv:1807.03039, 2018.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. International

Conference on Learning Representations, 2014.

Friso Kingma, Pieter Abbeel, and Jonathan Ho. Bit-swap: Recursive bits-back

coding for lossless compression with hierarchical latent variables. In International

Conference on Machine Learning, pages 3408–3417. PMLR, 2019.

Polina Kirichenko, Pavel Izmailov, and Andrew Gordon Wilson. Why normalizing

flows fail to detect out-of-distribution data. arXiv preprint arXiv:2006.08545,

2020.

Naveen Kodali, Jacob Abernethy, James Hays, and Zsolt Kira. On Convergence and

Stability of GANs. arXiv:1705.07215, 2017.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from

tiny images. 2009.

Ryen Krusinga, Sohil Shah, Matthias Zwicker, Tom Goldstein, and David Jacobs. Un-

derstanding the (un) interpretability of natural image distributions using generative

models. arXiv preprint arXiv:1901.01499, 2019.

Solomon Kullback and Richard A Leibler. On information and sufficiency. The

annals of mathematical statistics, 22(1):79–86, 1951.

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun.

com/exdb/mnist/, 1998.



BIBLIOGRAPHY 128

Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, and Fujie Huang. A tutorial

on energy-based learning. Predicting structured data, 1(0), 2006.

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework

for detecting out-of-distribution samples and adversarial attacks. In Advances in

Neural Information Processing Systems, pages 7167–7177, 2018.

Erich Leo Lehmann. Elements of Large-sample Theory. Springer Science & Business

Media, 2004.

Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang, and Barnabás Póczos.

MMD GAN: Towards Deeper Understanding of Moment Matching Network. In

Advances in Neural Information Processing Systems, pages 2203–2213, 2017.

Yujia Li, Kevin Swersky, and Rich Zemel. Generative moment matching networks.

In International conference on machine learning, pages 1718–1727. PMLR, 2015.

Li Lian and Wei Shilei. Webp: A new image compression format based on vp8

encoding. Microcontrollers & Embedded Systems, 3, 2012.

Shiyu Liang, Yixuan Li, and Rayadurgam Srikant. Enhancing the reliability of out-of-

distribution image detection in neural networks. arXiv preprint arXiv:1706.02690,

2017.

Qiang Liu, Jason Lee, and Michael Jordan. A kernelized stein discrepancy for

goodness-of-fit tests. In International conference on machine learning, pages

276–284. PMLR, 2016.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face

attributes in the wild. In Proceedings of International Conference on Computer

Vision (ICCV), December 2015.

Gabriel Loaiza-Ganem, Brendan Leigh Ross, Jesse C Cresswell, and Anthony L

Caterini. Diagnosing and fixing manifold overfitting in deep generative models.

arXiv preprint arXiv:2204.07172, 2022.



BIBLIOGRAPHY 129

Gabriel Loaiza-Ganem, Brendan Leigh Ross, Luhuan Wu, John Patrick Cunningham,

Jesse C Cresswell, and Anthony L Caterini. Denoising deep generative models.

In Proceedings on, pages 41–50. PMLR, 2023.

Mario Lucic, Karol Kurach, Marcin Michalski, Sylvain Gelly, and Olivier Bous-

quet. Are GANs Created Equal? A Large-Scale Study. In Advances in Neural

Information Processing Systems, pages 700–709, 2018.

Lars Maaløe, Casper Kaae Sønderby, Søren Kaae Sønderby, and Ole Winther. Auxil-

iary deep generative models. In International conference on machine learning,

pages 1445–1453. PMLR, 2016.

David JC MacKay. Information theory, inference and learning algorithms. Cam-

bridge university press, 2003.

Ahsan Mahmood, Junier Oliva, and Martin Styner. Multiscale score matching for

out-of-distribution detection. arXiv preprint arXiv:2010.13132, 2020.

Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and Stephen

Paul Smolley. Least Squares Generative Adversarial networks. In Proceedings of

the IEEE International Conference on Computer Vision, pages 2794–2802, 2017.

Takuo Matsubara, Jeremias Knoblauch, François-Xavier Briol, and Chris Oates. Gen-

eralised Bayesian inference for discrete intractable likelihood. arXiv:2206.08420,

2022.

Fabian Mentzer, Eirikur Agustsson, Michael Tschannen, Radu Timofte, and Luc Van

Gool. Practical full resolution learned lossless image compression. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

10629–10638, 2019.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral

Normalization for Generative Adversarial Networks. arXiv:1802.05957, 2018.

Shakir Mohamed and Balaji Lakshminarayanan. Learning in Implicit Generative

Models. arXiv, 2016. doi: arXiv:1610.03483.



BIBLIOGRAPHY 130

Krikamol Muandet, Kenji Fukumizu, Bharath Sriperumbudur, Bernhard Schölkopf,

et al. Kernel mean embedding of distributions: A review and beyond. Foundations

and Trends® in Machine Learning, 10(1-2):1–141, 2017.

Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, and Balaji Lakshmi-

narayanan. Do deep generative models know what they don’t know? International

Conference on Learning Representations, 2019a.

Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, and Balaji Lakshminarayanan.

Detecting out-of-distribution inputs to deep generative models using a test for

typicality. arXiv preprint arXiv:1906.02994, 5, 2019b.

Jiquan Ngiam, Zhenghao Chen, Pang W Koh, and Andrew Y Ng. Learning deep

energy models. In Proceedings of the 28th international conference on machine

learning (ICML-11), pages 1105–1112, 2011.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol

Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu.

Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499,

2016.

Gabriel Peyré and Marco Cuturi. Computational Optimal Transport. Foundations

and Trends® in Machine Learning, 11(5-6):355–607, 2019.

Majid Rabbani. Jpeg2000: Image compression fundamentals, standards and practice.

Journal of Electronic Imaging, 11(2):286, 2002.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,

et al. Language models are unsupervised multitask learners. OpenAI blog, 1(8):9,

2019.

Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation func-

tions. arXiv preprint arXiv:1710.05941, 2017.



BIBLIOGRAPHY 131

Aaditya Ramdas, Sashank Jakkam Reddi, Barnabás Póczos, Aarti Singh, and Larry

Wasserman. On the Decreasing Power of Kernel and Distance Based Nonparamet-

ric Hypothesis Tests in High Dimensions. In Twenty-Ninth AAAI Conference on

Artificial Intelligence, 2015.

Suman Ravuri, Shakir Mohamed, Mihaela Rosca, and Oriol Vinyals. Learning Im-

plicit Generative Models with the Method of Learned Moments. In Proceedings

of the 35th International Conference on Machine Learning, ICML 2018, Stock-

holmsmässan, Stockholm, Sweden, July 10-15, 2018, pages 4311–4320, 2018.

URL http://proceedings.mlr.press/v80/ravuri18a.html.

Ali Razavi, Aaron van den Oord, and Oriol Vinyals. Generating diverse high-fidelity

images with vq-vae-2. In Advances in neural information processing systems,

pages 14866–14876, 2019.

Scott Reed, Aäron Oord, Nal Kalchbrenner, Sergio Gómez Colmenarejo, Ziyu Wang,

Yutian Chen, Dan Belov, and Nando Freitas. Parallel multiscale autoregressive

density estimation. In International Conference on Machine Learning. PMLR,

2017.

Jie Ren, Peter J Liu, Emily Fertig, Jasper Snoek, Ryan Poplin, Mark Depristo, Joshua

Dillon, and Balaji Lakshminarayanan. Likelihood ratios for out-of-distribution

detection. In Advances in Neural Information Processing Systems, pages 14707–

14718, 2019.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows.

In International conference on machine learning, pages 1530–1538. PMLR, 2015.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backprop-

agation and variational inference in deep latent gaussian models. In International

Conference on Machine Learning, volume 2, page 2. Citeseer, 2014.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn

Ommer. High-resolution image synthesis with latent diffusion models. In Pro-

http://proceedings.mlr.press/v80/ravuri18a.html


BIBLIOGRAPHY 132

ceedings of the IEEE/CVF conference on computer vision and pattern recognition,

pages 10684–10695, 2022.

Kevin Roth, Aurelien Lucchi, Sebastian Nowozin, and Thomas Hofmann. Sta-

bilizing Training of Generative Adversarial Networks through Regularization .

arXiv:1705.09367, 2017.

Yangjun Ruan, Karen Ullrich, Daniel Severo, James Townsend, Ashish Khisti, Ar-

naud Doucet, Alireza Makhzani, and Chris J Maddison. Improving lossless com-

pression rates via monte carlo bits-back coding. arXiv preprint arXiv:2102.11086,

2021.

Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P Kingma. Pixelcnn++:

Improving the pixelcnn with discretized logistic mixture likelihood and other

modifications. arXiv preprint arXiv:1701.05517, 2017.

Chandramouli Shama Sastry and Sageev Oore. Detecting out-of-distribution

examples with in-distribution examples and gram matrices. arXiv preprint

arXiv:1912.12510, 2019.

Robin Tibor Schirrmeister, Yuxuan Zhou, Tonio Ball, and Dan Zhang. Under-

standing anomaly detection with deep invertible networks through hierarchies of

distributions and features. arXiv preprint arXiv:2006.10848, 2020.

Joan Serrà, David Álvarez, Vicenç Gómez, Olga Slizovskaia, José F Núñez, and Jordi

Luque. Input complexity and out-of-distribution detection with likelihood-based

generative models. arXiv preprint arXiv:1909.11480, 2019.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From

theory to algorithms. Cambridge university press, 2014.

Claude Elwood Shannon. A mathematical theory of communication. ACM SIGMO-

BILE mobile computing and communications review, 5(1):3–55, 2001.

Rui Shu, Hung H Bui, Shengjia Zhao, Mykel J Kochenderfer, and Stefano Ermon.

Amortized inference regularization. Neural Information Processing Systems, 2018.



BIBLIOGRAPHY 133

Alex Smola, Arthur Gretton, Le Song, and Bernhard Schölkopf. A hilbert space

embedding for distributions. In International conference on algorithmic learning

theory, pages 13–31. Springer, 2007.

Jon Sneyers and Pieter Wuille. Flif: Free lossless image format based on maniac

compression. In 2016 IEEE International Conference on Image Processing (ICIP),

pages 66–70. IEEE, 2016.

Casper Kaae Sønderby, Jose Caballero, Lucas Theis, Wenzhe Shi, and Ferenc Huszár.

Amortised Map Inference for Image Super-Resolution. arXiv:1610.04490, 2016.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of

the data distribution. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-

Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing

Systems, volume 32, 2019.

Yang Song and Stefano Ermon. Improved techniques for training score-based

generative models. Advances in neural information processing systems, 33:12438–

12448, 2020.

Yang Song and Diederik P Kingma. How to train your energy-based models. arXiv

preprint arXiv:2101.03288, 2021.

Bharath K Sriperumbudur, Kenji Fukumizu, and Gert RG Lanckriet. Universality,

Characteristic Kernels and RKHS Embedding of Measures. J. Mach. Learn. Res.,

12:2389–2410, July 2011. ISSN 1532-4435.

Bharath K Sriperumbudur, Kenji Fukumizu, Arthur Gretton, Bernhard Schölkopf,

and Gert RG Lanckriet. On the Empirical Estimation of Integral Probability

Metrics. Electronic Journal of Statistics, 6:1550–1599, 2012.

Jan Stanczuk, Christian Etmann, Lisa Maria Kreusser, and Carola-Bibiane Schönlieb.

Wasserstein gans work because they fail (to approximate the wasserstein distance).

arXiv preprint arXiv:2103.01678, 2021.



BIBLIOGRAPHY 134

Ilya Sutskever. An observation on generalization, Year of publication. URL https:

//www.youtube.com/watch?v=AKMuA_TVz3A. YouTube video.

Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander Alemi.

Inception-v4, inception-resnet and the impact of residual connections on learning.

In Proceedings of the AAAI conference on artificial intelligence, volume 31, 2017.

Terence Tao. An Introduction to Measure Theory. 2011.

Terence Tao. Analysis ii, texts and readings in mathematics, 2015.

Michael E Tipping and Christopher M Bishop. Probabilistic Principal Component

Analysis. Journal of the Royal Statistical Society, Series B, 21/3:611–622, January

1999.

Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, and Bernhard Schoelkopf. Wasser-

stein Auto-Encoders. arXiv:1711.01558, 2017.

James Townsend. A tutorial on the range variant of asymmetric numeral systems.

arXiv preprint arXiv:2001.09186, 2020.

James Townsend, Tom Bird, and David Barber. Practical lossless compression with

latent variables using bits back coding. arXiv preprint arXiv:1901.04866, 2019.

James Townsend, Thomas Bird, Julius Kunze, and David Barber. Hilloc: Loss-

less image compression with hierarchical latent variable models. International

Conference on Learning Representations, 2020.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning.

Advances in neural information processing systems, 30, 2017.

Aaron Van Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural

networks. In International conference on machine learning, pages 1747–1756.

PMLR, 2016.

https://www.youtube.com/watch?v=AKMuA_TVz3A
https://www.youtube.com/watch?v=AKMuA_TVz3A


BIBLIOGRAPHY 135

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances

in neural information processing systems, 30, 2017.

Cédric Villani. Optimal transport: old and new, volume 338. Springer, 2009.

Pascal Vincent. A connection between score matching and denoising autoencoders.

Neural computation, 23(7):1661–1674, 2011.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy,

David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan

Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman,

Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson,

C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde,

Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R.

Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van

Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms

for Scientific Computing in Python. Nature Methods, 17:261–272, 2020. doi:

10.1038/s41592-019-0686-2.

Abraham Wald. Note on the Consistency of the Maximum Likelihood Estimate. The

Annals of Mathematical Statistics, 20(4):595–601, 1949.

Chris S Wallace. Classification by minimum-message-length inference. In In-

ternational Conference on Computing and Information, pages 72–81. Springer,

1990.

Yixin Wang and David M Blei. Frequentist consistency of variational bayes. Journal

of the American Statistical Association, 114(527):1147–1161, 2019.

Li Wenliang and Heishiro Kanagawa. Blindness of score-based methods to isolated

components and mixing proportions. arXiv preprint arXiv:2008.10087, 2020.

Li Wenliang, Danica J Sutherland, Heiko Strathmann, and Arthur Gretton. Learning



BIBLIOGRAPHY 136

deep kernels for exponential family densities. In International Conference on

Machine Learning, pages 6737–6746. PMLR, 2019.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist

reinforcement learning. Machine learning, 8:229–256, 1992.

Ian H Witten, Radford M Neal, and John G Cleary. Arithmetic coding for data

compression. Communications of the ACM, 30(6):520–540, 1987.

Yuhuai Wu, Yuri Burda, Ruslan Salakhutdinov, and Roger Grosse. On the quantitative

analysis of decoder-based generative models. arXiv preprint :1611.04273, 2016.

Jianwen Xie, Yang Lu, Song-Chun Zhu, and Yingnian Wu. A theory of generative

convnet. In International Conference on Machine Learning, pages 2635–2644.

PMLR, 2016.

Yibo Yang, Robert Bamler, and Stephan Mandt. Improving inference for neural

image compression. arXiv preprint arXiv:2006.04240, 2020.

Lantao Yu, Yang Song, Jiaming Song, and Stefano Ermon. Training deep energy-

based models with f-divergence minimization. In International Conference on

Machine Learning, pages 10957–10967. PMLR, 2020.

Shuangfei Zhai, Yu Cheng, Rogerio Feris, and Zhongfei Zhang. Generative adver-

sarial networks as variational training of energy based models. arXiv preprint

arXiv:1611.01799, 2016.

Mingtian Zhang, Thomas Bird, Raza Habib, Tianlin Xu, and David Barber. Varia-

tional f-divergence minimization. arXiv preprint arXiv:1907.11891, 2019a.

Mingtian Zhang, Thomas Bird, Raza Habib, Tianlin Xu, and David Barber. Varia-

tional f-divergence minimization. arXiv preprint arXiv:1907.11891, 2019b.

Mingtian Zhang, Andi Zhang, and Steven McDonagh. On the out-of-distribution gen-

eralization of probabilistic image modelling. In Advances in Neural Information

Processing Systems, 2021.



BIBLIOGRAPHY 137

Mingtian Zhang, Tim Z Xiao, Brooks Paige, and David Barber. Improving vae-based

representation learning. arXiv preprint arXiv:2205.14539, 2022.

Mingtian Zhang, Alex Hawkins-Hooker, Brooks Paige, and David Barber. Moment

matching denoising gibbs sampling. Advances in Neural Information Processing

Systems, 2023a.

Mingtian Zhang, Yitong Sun, Chen Zhang, and Steven Mcdonagh. Spread flows for

manifold modelling. In International Conference on Artificial Intelligence and

Statistics, pages 11435–11456. PMLR, 2023b.

Shengjia Zhao, Jiaming Song, and Stefano Ermon. Infovae: Information maximizing

variational autoencoders. arXiv preprint arXiv:1706.02262, 2017.

Shengjia Zhao, Hongyu Ren, Arianna Yuan, Jiaming Song, Noah Goodman, and

Stefano Ermon. Bias and generalization in deep generative models: An empirical

study. arXiv preprint arXiv:1811.03259, 2018.



Appendix A

Appendix of Chapter 2

A.1 Annealing the Noise
In section(2.1.1) we discussed the common approach to first adding noise to a model

Q in order to define a proper density and then using maximum likelihood to fit that

‘noised model’ to data. We can use standard Woodberry identities to rewrite the

expected log-likelihood equation 2.8 as

−
θ 2

p

σ2 +

(
θ T

p θq
)2

σ2
(
σ2 +θ 2

q
) − log

(
1+

θ 2
q

σ2

)
−D logσ

2. (A.1)

where D is the dimension of θp.

Differentiating wrt θq, we note that the optimal solution is given when

θq = γθp, (A.2)

for scalar γ . Plugging this form back into equation A.1 we find that the optimum is

obtained when

θq =

√
θ 2

p −σ2

θ 2
p

θp. (A.3)

For finite Gaussian noise σ2 > 0 the resulting estimator for the toy model in

section(2.1.1) is therefore not consistent.

A natural question is what would happen if one uses a numerical optimisation

of equation A.1 but anneals the noise σ2 to zero during the optimisation process?



A.1. Annealing the Noise 139

As σ2 tends to zero, the expression equation A.1 blows up. This means that a

naive approach to annealing σ2 towards zero whilst using a standard optimisation

technique is unlikely to result in θq converging to θp. However, if one considers

removing the additive constant D logσ2 and multiplying the remaining objective by

σ2, the resulting quantity

(
θ T

p θq
)2(

σ2 +θ 2
q
) −σ

2 log

(
1+

θ 2
q

σ2

)
, (A.4)

is well-behaved as σ2→ 0, as plotted in figure(A.1).

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
2

0.0

0.2

0.4

0.6

0.8

1.0

2 = 0.2
2 = 0.1
2 = 0.05
2 = 0.01
2 = 0.001

Figure A.1: The (modified) expected log likelihood equation A.4 when adding noise
σ2 to the model only and for unit length true data generating parameter θ 2

p = 1. The
x-axis is the value γ2 assuming that the optimal θq is of the form θq = γθp. As we
see, as σ2→ 0 the scaled objective becomes flat around the optimum point γ2 = 1.

Nevertheless, the objective equation A.4 becomes flat (with respect to θq)

around the optimum as σ2 → 0. In figure(A.1) we plot the scaling behaviour of

the objective equation A.4, assuming θq = γθp, showing how it becomes flat with

respect to γ as σ2 is annealed towards zero. This means that a standard first-order

numerical optimisation approach, even for this modified objective, will result in

a ‘critical slowing down’ phenomenon, leading to θq not updating. This might be

fixable by taking the curvature of the objective into consideration.

However, addressing all the above issues requires an understanding of the

small σ2 behaviour of the original objective; dealing with arbitrarily large constants,



A.2. Noise Requirements for Discrete Distributions 140

arbitrarily large scaling and loss of curvature. In general, such insight is unlikely

to be available for any given implicit generative model. Thus, we are doubtful that

it will be possible to find an annealing schedule and associated general numerical

optimisation procedure that will result in a consistent estimator.

A.2 Noise Requirements for Discrete Distributions

Our main interest is to define a new divergence in situations where the original

divergence D(p||q) is itself not defined. For discrete variables x ∈ {1, . . . ,n}, y ∈
{1, . . . ,n}, the spread Pi j = p(y = i|x = j) must be a distribution; ∑i Pi j = 1, Pi j ≥ 0,

and

p̃i ≡∑
j

Pi j p j = ∑
j

Pi jq j ≡ q̃i ∀i (A.5)

⇒ p j = q j ∀ j, (A.6)

which is equivalent to the requirement that the matrix P is invertible. In addition, for

the Spread Divergence to exist in the case of f -divergences, p̃ and q̃ must have the

same support. This requirement is guaranteed if

∑
j

Pi j p j > 0, ∑
j

Pi jq j > 0 ∀i, (A.7)

which is satisfied if Pi j>0. Therefore, in general, there is a space of spread distribu-

tions p(y|x) that define a valid Spread Divergence in the discrete case.

A.3 Spread Noise Makes Distributions More Similar

The data processing inequality for f -divergences [Gerchinovitz et al., 2018] states

that D f (p̃(y)||q̃(y)) ≤ D f (p(x)||q(x)). For completeness, we provide here an el-

ementary proof of this result. We consider the following joint distributions with

densities

q(y,x) = p(y|x)q(x), p(y,x) = p(y|x)p(x), (A.8)



A.4. Mixture Divergence 141

whose marginals are the spreaded distributions

p̃(y) =
∫

p(y|x)p(x)dx, q̃(y) =
∫

p(y|x)q(x)dx. (A.9)

The divergence between the two joint distributions is

D f (p(y,x)||q(y,x)) =
∫

q(y,x) f
(

p(y|x)p(x)
p(y|x)q(x)

)
dxdy = D f (p(x)||q(x)) . (A.10)

More generally, the f -divergence between two marginal distributions is no

larger than the f -divergence between the joint [Zhang et al., 2019a]. To see this,

consider

D f (p(u,v)||q(u,v)) =
∫

q(u)
∫

q(v|u) f
(

p(u,v)
q(u,v)

)
dydu (A.11)

≥
∫

q(u) f
(∫

q(v|u) p(u,v)
q(v|u)q(u)

dv
)

du (A.12)

=
∫

q(u) f
(

p(u)
q(u)

)
du = D f (p(u)||q(u)) . (A.13)

Hence,

D̃ f (q(x)||p(x))≡D f (p̃(y)||q̃(y))≤D f (p(y,x)||q(y,x)) = D f (p(x)||q(x)) . (A.14)

Intuitively, spreading two distributions increases their overlap, reducing the diver-

gence. When the distributions P and Q are absolutely continuous and their densities

p and q have the same support, the spread f -divergence is always a lower bound

of f -divergence. When the densities do not have the same support or are not well

defined, then D f (P||Q) is not well-defined.

A.4 Mixture Divergence
We motivated the Spread Divergence between distribution P and Q by the require-

ment to produce a divergence that satisfying D̃(P||Q) = 0⇒ P = Q, where the

original D(P||Q) does not exist. We briefly discuss the case that P and Q are ab-

solutely continuous but their density functions p and q have different supports, so



A.4. Mixture Divergence 142

f -divergence D f (P||Q) = D(p||q) is still not defined. For example, P and Q can be

two uniform distributions with different supports. We mention here an alternative

divergence that also can be used , namely a mixture divergence, and discuss why

we focus on the Spread Divergence thereafter. Specifically, we can define a mixture

model with density p̃(x) of the original distribution and a ‘noise’ distribution with

density function n(x):

p̃(x) = α p(x)+(1−α)n(x) (A.15)

for 0 < α < 1. Provided n(x) is non-zero, then p̃(x) has support everywhere. Simi-

larly, we can define

q̃(x) = αq(x)+(1−α)n(x). (A.16)

As with the Spread Divergence formulation presented previously, this will usually

enable us to define a divergence D(p̃||q̃) when supp p ̸= suppq. Furthermore, pro-

vided the divergence between p̃ and q̃ is zero, then the two distributions p̃ and q̃

match, as do the original distributions p and q since

p̃(x) = q̃(x)⇔α p(x)+(1−α)n(x) =αq(x)+(1−α)n(x)⇔ p(x) = q(x). (A.17)

Therefore, creating a mixture model in this way also allows us to define a divergence

between absolutely continuous distributions that otherwise would not have an appro-

priate divergence. However, in contrast to the Spread Divergence formulation, we

cannot use this approach for distributions that are not absolutely continuous, which

for many applications of interest cannot be achieved. As a simple example, consider

generalised densities p(x) = δ (x−µp), q(x) = δ
(
x−µq

)
with

p̃(x)=αδ (x−µp)+(1−α)n(x), q̃(x)=αδ
(
x−µq

)
+(1−α)n(x). (A.18)

In this case, the divergence D(p̃(x)||q̃(x)) is not defined since neither p̃(x) nor q̃(x)

is a valid probability density. A similar issue arises in training implicit generative

models in which a value cannot be feasibly computed for p̃ or q̃; see section(2.5.3).

Hence, for implicit models in, we cannot feasibly assign a value to this mixture



A.5. Statistical Properties of Spread MLE 143

divergence. As such it appears to have only limited value in training continuous

variable models.

One can combine the spread and the mixture approaches to produce a more

general affine divergence

p̃(y) = α

∫
p(y|x)p(x)dx+(1−α)n(y), (A.19)

for spread p(y|x) and (generalised) density p(x). It follows for this case that

D(p̃||q̃) = 0⇔P=Q; however, the benefit of the mixture noise over the spread noise

is not clear. Our central interest in this work is to train implicit models and, as such,

we focus interest only on the first ‘spread’ term
∫

x p(y|x)p(x) in equation A.19 and

leave the study of the potential additional benefits of including a mixture component

n(y) for future work.

A.5 Statistical Properties of Spread MLE

A.5.1 Existence of Spread MLE

In some situations there may not exist a Maximum Likelihood Estimator (MLE) for

p(x|θ), but there can exist a MLE for the spread model p(y|θ) =
∫

p(y|x)p(x|θ)dx.

For example, suppose that X ∼ N (µ,σ2) (µ,0 < σ2 < ∞). So θ = (µ,σ2) ∈

R×R+. Assume we only have one data point x. Then the log-likelihood function

is L(x;θ) ∝ − logσ − 1
2σ2 (x−µ)2. Maximising with respect to µ , we have µ = x

and the log-likelihood becomes unbounded as σ2→ 0. In this sense, the MLE for

(µ,σ2) does not exist, see Casella and Berger [2021] for more discussions.

In contrast, we can check whether the MLE for p(y|θ) exists. We assume

Gaussian spread noise with fixed variance σ2
f . Since we only have one data point x,

the spread data distribution becomes p(y|x)=N (y|x,σ2
f ), and the model is p(y|θ)=

N (y|µ,σ2 +σ2
f ). We can sample N points from the spread model, so the spread

log likelihood function is (neglecting constants) L(y1, . . . ,yN ;θ) = −N
2 log(σ2 +

σ2
f )−

1
2(σ2+σ2

f )
∑

N
i=1(yi−µ)2. The MLE solution for µ is µ = 1

N ∑
N
i=1 yi; the MLE

solution for σ2 is σ2 = 1
N ∑i(yi−µ)2−σ2

f , which has bounded spread likelihood



A.5. Statistical Properties of Spread MLE 144

value. Note that in the limit of a large number of spread samples N→ ∞ , the MLE

σ2 = 1
N (yi− µ)2 → σ2

f tends to 0. Throughout, however, the (scaled by N) log

likelihood remains bounded.

A.5.2 Consistency

Consistency of an estimator is an important property that guarantees the validity of

the resulting estimate at convergence as the number of data points tends to infinity.

In what follows, we outline the sufficient conditions for a consistent MLE estimator,

before addressing the question of whether using spread MLE is also consistent and

under what conditions.

A.5.2.1 Consistency for MLE

Sufficient conditions for the MLE being consistent and converging to the global

maximum are given in Wald [1949]. However, they are usually difficult to check even

for some standard distributions. The sufficient conditions for MLE being consistent

and converging to a local maxima are given in Cramér [1999] and are more straight

forward to check:

C1. (Identifiable): p(x|θ1) = p(x|θ2)→ θ1 = θ2.

C2. The parameter space Θ is an open interval (
¯
θ , θ̄), Θ :−∞≤

¯
θ < θ < θ̄ ≤ ∞.

C3. p(x|θ) is continuous in θ and differentiable with respect to θ for all x.

C4. The set A = {x : pθ (x)> 0} is independent of θ .

Let X1,X2, . . . be i.i.d with density p(x|θ0) (θ ∈Θ) satisfying conditions C1–C4,

then there exists a sequence θ̂n = θ̂n(X1, ...,Xn) of local maxima of the likelihood

function L(θ0) = ∏
n
i=1 p(xi|θ0) which is consistent:

θ̂
p−→ θ0 for all θ ∈Θ.

The proof can be found in Lehmann [2004] or Cramér [1999].



A.5. Statistical Properties of Spread MLE 145

A.5.2.2 Consistency of spread MLE

We provide the necessary conditions for Spread MLE being consistent.

C1. (Identifiable): p(x|θ) is identifiable. From section(2.2.1) it follows immedi-

ately that p(y|θ1) = p(y|θ2)→ p(x|θ1) = p(x|θ2)→ θ1 = θ2, where the final

implication follows from the assumption that p(x|θ) is identifiable. Hence if

p(x|θ) is identifiable, so is p(y|θ).

C2. The parameter space Θ is an open interval (
¯
θ , θ̄), Θ :−∞≤

¯
θ < θ < θ̄ ≤ ∞.

This condition is unchanged for p(y|θ).

C3. On p(y|θ), we require the same condition on p(x|θ) as in MLE; p(y|θ) is

continuous in θ and differentiable with respect to θ for all y.

C4. For spread noise p(y|x) who has full support on Rd (for example Gaussian

noise), p(y|θ) is greater than zero everywhere and hence the original condition

C4 is automatically guaranteed.

The conditions that guarantee consistency for spread MLE are weaker for the spread

model p(y|θ) than for the standard model p(x|θ), since C4 is automatically satisfied.

[Ferguson, 1982] gives an example for which MLE exists but is not consistent by

violating condition C4, whereas spread MLE can be used to obtain a consistent

estimator.

A.5.3 Asymptotic Efficiency

A key desirable property of any estimator is that it is efficient. The Cramer-Rao

bound places a lower bound on the variance of any unbiased estimator and an

efficient estimator must reach this minimal value in the limit of a large amount of

data. Under certain conditions (see below) the Maximum Likelihood Estimator

attains this minimal variance value meaning that there is no better estimator possible

(in the limit of a large amount of data). This is one of the reasons that the maximum

likelihood is a cherished criterion.



A.5. Statistical Properties of Spread MLE 146

A.5.3.1 Asymptotic Efficiency for MLE

Building upon conditions C1-C4, additional conditions on p(x|θ) are required to

show MLE is asymptotical efficient:

C5. For all x in its support, the density pθ (x) is three times differentiable with

respect to θ and the third derivative is continuous.

C6. The derivatives of the integral
∫

pθ (x)dx respect to θ can be obtained by

differentiating under the integral sign, that is: ∇θ

∫
pθ (x)dx =

∫
∂θ pθ (x)dx.

C7. There exists a positive number c(θ0) and a function Mθ0(x) such that

∣∣∣∣ ∂ 3

∂θ 3 log pθ (x)
∣∣∣∣≤Mθ0(x) for all x ∈ A, |θ −θ0|< c(θ0),

where A is the support set of x and Eθ0

[
Mθ0(x)

]
< ∞.

Let X1, ...,Xn be i.i.d with density pθ (x) and satisfy conditions C1-C7, then any

consistent sequence θ̂ = θ̂n (X1, ...,Xn) of roots of the likelihood equation satisfies

√
n(θ̂ −θ0)

d−→N
(
0,F(θ0)

−1) , (A.20)

where F−1(θ0) is the inverse of Fisher information matrix (also called Cramér-

Rao Lower Bound, which is a lower bound on variance of any unbiased estimators ).

The conditions and proof can be found in [Lehmann, 2004].

A.5.3.2 Asymptotic Efficiency for MLE

As with MLE above, we require further conditions on p(y|θ) for ensuring spread

MLE is asymptotically efficient:

C5. On p(y|θ), we require the same condition as applied to p(x|θ) in the MLE

case; for all y in its support, the density pθ (y) is three times differentiable with

respect to θ and the third derivative is continuous.

C6. For spread noise p(y|x), which has full support on Rd (for example Gaussian



A.6. MNIST Experiment 147

noise), the support of y is independent of θ . Leibniz’s rulea allows us to

differentiate under the integral: ∇θ

∫
pθ (y)dy=

∫
∂θ pθ (y)dy, so this condition

is automatically satisfied.

C7. On p(y|θ), we require the same condition as applied to p(x|θ) in the MLE

case; There exist positive number c(θ0) and a function Mθ0(y) such that

∣∣∣∣ ∂ 3

∂θ 3 log pθ (y)
∣∣∣∣≤Mθ0(y) for all y ∈ A, |θ −θ0|< c(θ0),

where A is the support set of y and Eθ0

[
Mθ0(y)

]
< ∞.

Thus the conditions that guarantee asymptotic efficiency for the spread model p(y|θ)

are weaker than for the standard model p(x|θ), since C4 and C6 are automatically

satisfied.

A.6 MNIST Experiment
We first scaled the MNIST data to lie in [0,1]. We use Laplace spread noise with

σ = 0.3 and Gaussian spread noise with σ = 0.3 for the δ -VAE case. Both the

encoder and the decoder networks contain 3 feed-forward layers, each layer has

400 units and use ReLu activation functions. The latent dimension is Z = 64. The

variational inference network qφ (z|y) = N (z|µφ (y),σ2
φ

IZ) has a similar structure

for the mean network µφ (y). For fixed spread δ -VAE , learning was done using the

Adam [Kingma and Ba, 2014] optimizer with learning rate 5e−4 for 200 epochs. For

δ -VAE with learned spread (learned covariance), we interleave 2 covariance training

epochs with 10 model training epochs (using the Adam optimizer with learning rate

5e−5).

A.7 CelebA Experiment
We pre-processed CelebA images by first taking 140x140 centre crops and then

resizing to 64x64. Pixel values were then rescaled to lie in [0,1]. For the learned

aLeibniz’s rule tells us: d
dθ

∫ b(θ)
a(θ) p(x,θ)dx =

∫ b(θ)
a(θ) ∂θ p(x,θ)dx + p(b(θ),θ) d

dθ
b(θ) −

p(a(θ),θ) d
dθ

a(θ), so if a(θ) and b(θ) are independent of θ , then d
dθ

∫ b
a p(x,θ)dx =

∫ b
a ∂θ p(x,θ)dx.



A.7. CelebA Experiment 148

spread we use Gaussian noise with a learned injective function ResNet fψ(·) =

I(·)+ gψ(·), where gψ(·) is a one layer convolutional neural net with kernel size

3× 3, with stride length 1. We use spectral normalization [Miyato et al., 2018]

to satisfy the Lipschitz constraint. That is, we replace the weight matrix w of the

convolution kernel by wSN(w) := c×w/σ(w), where σ(w) is the spectral norm of

w and c ∈ (0,1). This guarantees that fψ is invertible - see Behrmann et al. [2019].

The encoder and decoder are 4-layer convolutional neural networks with batch

norm [Ioffe and Szegedy, 2015]. Both networks use a fully convolutional architecture

with 5x5 convolutional filters with stride length 2 in both vertical and horizontal

directions, except the last deconvolution layer where we use stride length 1. Convk

represents a convolution with k filters and DeConvk represents a deconvolution with

k filters, BN for the batch normalization [Ioffe and Szegedy, 2015], Relu for the

rectified linear units, and FCk for the fully connected layer mapping to Rk.

x ∈ R64×64×3→ injective f (·) ∈ R64×64×3

→ Conv128→ BN→ Relu

→ Conv256→ BN→ Relu

→ Conv512→ BN→ Relu

→ Conv1024→ BN→ Relu→ FC100

z ∈ R100→ FC10×10×1024

→ DeConv512→ BN→ Relu

→ DeConv256→ BN→ Relu

→ DeConv128→ BN→ Relu→ DeConv3→ sigmoid(·)

→ injective f (·) ∈ R64×64×3

We use batch size 100 and latent dimension 100 in all CelabA experiments.

For the δ -VAE with fixed spread, we use the fixed Gaussian noise with 0 mean and



A.7. CelebA Experiment 149

(0.5)2I covariance. We train the model for 500 epochs using Adam optimizer with

learning rate 1e−4. We decay the learning rate with scaling factor 0.9 every 100000

iterations.

For the δ -VAE with learned spread we first train a δ -VAE with fixed f (x) = x

and fixed Gaussian noise with 0 mean and (0.5)2I diagonal covariance for 300

epochs. We decay the learning with scaling factor 0.9 every 100000 iterations.

We start iterative training by doing one step inner maximisation over the Spread

Divergence parameters ψ using Adam optimizer with learning rate 1e−5 and one step

minimization over the model parameter’s (θ ,φ) using Adam optimizer for additional

200 epochs. We can share the first 300 epochs between the two models. When we

sample form two models, we first sample from a 100 dimensional standard Gaussian

distribution z ∼N (0, I) and use the same latent code z to get samples from both

δ -VAE with fixed and learned spread, so we can easily compare the sample quality

between two models.



Appendix B

Appendix of Chapter 3

B.1 Derivations and Proofs

B.1.1 Derivation of Equation 3.3

Let two differentiable densities g1 and g2 have disjoint supports X1∩X2 = /0 and

p(x) = αpg1(x)+(1−αp)g2(x), q(x) = αqg1(x)+(1−αq)g2(x). (B.1)

The FD between p and q can be written as

FD(p||q) =
αp

2

∫
X1

g1(x)||sp(x)− sq(x)||22 dx+
1−αp

2

∫
X2

g2(x)||sp(x)− sq(x)||22 dx.

(B.2)

Since g1 and g2 has disjoint support, so g2 will be a zero function on the support of

g1, so g2(x′) = ∇xg2(x′) = 0 for x′ ∈X1. We then have

sp(x′) =
αp∇g1(x′)+(((((((((

(1−αp)∇g2(x′)
αpg1(x′)+((((((((1−α)g2(x′)

=
αp∇xg1(x′)

αpg1(x′)
= sg1(x

′), (B.3)

and

sq(x′) =
αq∇g1(x′)+((((((((

(1−αq)∇g2(x′)
αqg1(x′)+((((((((1−α)g2(x′)

=
αq∇xg1(x′)

αqg1(x′)
= sg1(x

′), (B.4)



B.1. Derivations and Proofs 151

Similarly, for x′ ∈ X2 we have sp(x′) = sq(x′) = sg2(x
′). Therefore, the FD is

equivalent to

FD(p||q) = αp
2
∫
X1

g1(x)||sg1(x)− sg1(x)||22 dx+ 1−αp
2
∫
X2

g2(x)||sg2(x)− sg2(x)||22 dx = 0, (B.5)

which is independent of αq.

B.1.2 Proof of Theorem 2

The following two lemmas can be found in Folland [2001, Corollary 2.41 and

Theorem 2.42]. For completeness, we also provide simplified proofs.

Lemma 5. Suppose f : X → R is differentiable on an open convex set X ⊆ Rd

and ∇x f (x) = 0 for all x ∈X , then f is a constant on X .

Proof. For any two points x1,x2 ∈X , we denote the the line segment that connects

a,b as Lx1,x2 . Since X is a convex set, then Lx1,x2 ⊆ X . By the Mean Value

Theorem (see Folland [2001, Theorem 2.39]), there exists a point x3 ∈ Lx1,x2 such that

f (x2)− f (x1) = ∇x f (x3)(x2−x1). Since x3 ∈ S, so ∇x f (x3) = 0 thus f (x2) = f (x1).

Therefore, f has to be a constant function.

Lemma 6. Suppose f : X → R is differentiable on a connected open set X ⊆ Rd

and ∇x f (x) = 0 for all x ∈X , then f is a constant on X .

Proof. For any point a ∈X , we define X1 = {x ∈X : f (x) = f (a)} and X2 =

{x ∈X : f (x) ̸= f (a)}, so X = X1∪X2 by construction. For every x ∈X1, there

is a ball B ∈ S centred at x. Since B is convex, we have B ∈X1 by Lemma 5.

Therefore, every point x ∈X1 is an interior point of X1, so X1 is an open set. The

image of X2 under f : R \ { f (a)} is an open set, so X2 is a open set since f is a

continuous function (see Folland [2001, Theorem 1.33]). We thus have both X1

and X2 are open sets and X1 is non-empty (it contains a). Since any connected

space cannot be written as an union of two disjoint non-empty sets (see Tao [2015,

Definition 2.4.1]), so X = X1∪X2 indicates X2 = /0. Therefore, f is a constant

function.



B.1. Derivations and Proofs 152

We can then prove the Theorem 2. For two a.c. distributions that are supported

on a connected space X ⊆Rd with differentiable density p and q. Then FD(p||q) =

0 ⇔ ∇x log p(x) = ∇x logq(x) for x ∈ S. We define function f (x) = log p(x)−

logq(x), so f (x) differentiable on X and ∇x f (x) = 0. By Lemma 6, we have f as

a constant function (we denote as c) so we have p = qexp(c). Since p and q are

densities, we have
∫

q(x)exp(c)dx = 1⇔ c = 0. Therefore, FD(p||q) = 0⇔ p = q.

B.1.3 Proof of Theorem 3

Since we can always represents a distribution with disjoint support set as a mixture

distribution with components supported on several connected subsets, we can then

prove the theorem by Proposition 1.

Proposition 1 (FD is ill-defined on disconnected sets). Let a set of a.c. distributions

have differentiable densities {g1, · · · ,gK}with mutual disjoint (disconnected) support

sets {X1, · · · ,XK}: Xi
⋂

X j = /0 for any i ̸= j and each support Xi is connected.

Let two densities p = ∑k αk
pgk and q = ∑k αk

qgk with positive coefficients ∑k αk
p = 1

and ∑k=1 αk
q = 1. Then FD(p||q) = 0⇔ αk

p = αk
qeck , where {c1, · · · ,cK} is a set of

constants with constraints ∑k eck = 1.

We can decompose FD(p||q) = 1
2 ∑

K
k=1 αk

p
∫
Xk

gk(x)||sp(x)− sq(x)||22 dx. Since

αk
p and gk are positive, FD(p||q) = 0⇒

∫
Xk

gk(x)||sp(x)− sq(x)||22 dx = 0 for any k,

so ∇x log p(x) = ∇x logq(x) for x ∈
⋃K

k=1 Xk. Since Xk is connected, by Lemma

6, we have for x ∈ Xk, log p(x)− logq(x) = ck ⇔ p(x) = q(x)eck ⇔ αk
pgk(x) =

αk
qgk(x)eck ⇔ αk

p = αk
qeck , where {c1, · · · ,cK} is a set of constants. Since ∑k αk

p =

∑k αk
qeck = 1 and ∑k αk

q = 1, we then have the constrain ∑k eck = 1.

B.1.4 Kernelized Stein Discrepancy Extensions

For two a.c. distributions p and q, the Kernelized Stein Discrepancy Liu et al. [2016],

Chwialkowski et al. [2016] can be defined as (see [Liu et al., 2016, Definition 3.2])

KSD(p||q) = Ex,x′∼p
[
(sp(x)− sq(x))k(x,x′)(sp(x′)− sq(x′))

]
, (B.6)



B.1. Derivations and Proofs 153

where k is an integrally strictly positive kernel (see [Liu et al., 2016, Definition

3.1]) and x,x′ are i.i.d. samples from p(x). The KSD(p||q) = 0 if and only if

sp = sq (see Liu et al. [2016], Chwialkowski et al. [2016]). Therefore, when p and

q are supported on a connected open set, by Lemma 6, we have KSD(p||q) = 0⇔

sp = sq⇔ p = q. When p and q are supported on a disconnected space, we have

KSD(p||q) = 0 ⇏ p = q. This is because the KSD can be upper bounded by a

(positively) scaled FD [Liu et al., 2016, Theorem 5.1]:

|KSD(p||q)| ≤
√
Ex,x′∼p[k(x,x′)2]×FD(p||q), (B.7)

we then have FD(p||q) = 0⇒ KSD(p||q) = 0. When p and q are supported on a

disconnected space, we have FD(p||q) = 0 ⇏ p = q (Theorem 3), so KSD(p||q) =

0 ⇏ p = q.

B.1.5 Proof of Theorem 4

Since the support of m as Xm = Rd then p̃ and q̃ have the same support X = Rd .

For the score functions, we also have

∫
X
||sp̃(x)||22 p̃(x)dx =

∫
X
∥∇x log(β p(x)+(1−β )m(x))∥2

2 p̃(x)dx (B.8)

=
∫
X

∥∥∥∥β∇x p(x)+(1−β )∇xm(x)
β p(x)+(1−β )m(x)

∥∥∥∥2

2
p̃(x)dx (B.9)

≤
∫
X

∥∥∥∥ β∇x p(x)
β p(x)+(1−β )m(x)

∥∥∥∥2

2
p̃(x)dx+

∫
X

∥∥∥∥ (1−β )∇xm(x)
β p(x)+(1−β )m(x)

∥∥∥∥2

2
p̃(x)dx

(B.10)

≤
∫
X
||sp||22 p̃(x)dx+

∫
X
||sm||22 p̃(x)dx≤

∫
X
||sp||22 p(x)dx+

∫
X
||sm||22 p(x)dx < ∞,

(B.11)

so sp̃ ∈ L2(p̃) and similarly sq̃ ∈ L2(p̃). Therefore, the FD between p̃ and q̃ is a

valid divergence i.e. FD(p̃||q̃) = 0⇔ p̃ = q̃⇔ β p(x)+(1−β )m(x) = βq(x)+(1−

β )m(x)⇔ p(x) = q(x), thus MFD(p||q) = 0⇔ FD(p̃||q̃) = 0⇔ p = q.



B.2. Experiment Details 154

B.2 Experiment Details
For both experiments, we sample 100k data from pd as our training datasets. The

energy network fθ (x) is a 3-layer feedforward network with 200 hidden units and

swish activation functions Ramachandran et al. [2017]. We train the model for 30k

iterations with the Adam optimizer Kingma and Ba [2014] and batch-size 300. For

the numerical integration we use Simpson’s rule provided in the package Virtanen

et al. [2020]. We use a Monte-Carlo approximation to estimate the KL divergence

evaluations K̂L(pd(x)||qθ (x)) = 1
K ∑

K
k=1 log pd(xk)− log pθ (xk), where we use K =

10000.



Appendix C

Appendix of Chapter 5

C.1 Model-based Lossless Compression
Lossless compression aims to create an invertible mapping from real-world data

(e.g. image, audio, video) to binary strings with the lengths of the strings as short as

possible. We then briefly introduce how to design an optimal lossless compressor in

practice.

C.1.1 Information Theory of Lossless Compression

Let X be a discrete random variable that taking values from a finite countable set X

and has a probability mass function (PMF) p : X → R such that ∀x ∈X , p(x)> 0

and ∑x p(x) = 1.

Definition 1. The Shannon information content of a sample x∼ p(x) is defined as

hp(x)≡− log2 p(x). (C.1)

Definition 2. The Shannon Entropy of a distribution p is defined as

H(p)≡−∑
x

p(x) log2 p(x). (C.2)

We then give the informal statement of the Shannon Source Coding Theo-

rem [Shannon, 2001], the detailed statement and the proof can be found in Chapter 4

of [MacKay, 2003].



C.1. Model-based Lossless Compression 156

Theorem 7 (Shannon’s Source Coding Theorem (informal)). Given N i.i.d samples

form the data generation distribution with PMF pd(x) can be losslessly compressed

into more than NH(pd) bits when N → ∞. Conversely, they cannot be losslessly

compressed into fewer than NH(pd) bits.

To obtain a ‘near-optimal’ lossless compression scheme in practice, one strategy

is to compress each data x∼ pd(x) into a binary string with length equal to hpd(x)+ε ,

where h(x) is the Shannon information content and ε represents a small coding

overhead. Therefore, given N i.i.d samples {x1, · · · ,xN} ∼ pd(x), the averaged

compression length is

− 1
N

N

∑
n=1

log2 pd(xn)+ ε
N→+∞−−−−→−∑

x
pd(x) log2 pd(x)+ ε = H(pd)+ ε, (C.3)

which is close to optimal when ε is small.

Different coders are proposed to make the overhead ε for different types of

data. For multi-dimensional data, there exits two methods that can provide us

‘near-optimal’ lossless compression: Arithmetic Coding (AC) [Witten et al., 1987]

and Asymmetric Numeral System (ANS) [Duda, 2013], we recommend Chapter

6 of [MacKay, 2003] and [Townsend, 2020] for detailed introductions of the two

methods respectively. Weuse the ANS coder in this paper since it has a faster speed

comparing to AC. For simplicity, we abstract an ANS coder as an invertible function

encp(·) that maps a given data x′ ∈X to a binary string message m′ with length

len(m′) =− log2 p(x′)+ ε , where ε is a negligible coding overhead. We also denote

the decoding function as decp(·) = enc−1
p (·) and have decp(m′)→ x′.

We have introduced how to optimally compress the data when we know the

true data generation distribution pd(x). However, the distribution pd(x) is usually

unknown in practice, we would like to learn a model pθ (x) to approximate the

underlying data distribution p(x) and then use the learned model pθ (x) to con-

duct lossless compression. In this case, the averaged data compression length for



C.2. Tightness of the ELBO and IWAE Improvement 157

{x1, · · · ,xN} ∼ pd(x) is (ignoring the coding overhead ε):

− 1
N

N

∑
n=1

log2 pθ (xn)
N→+∞−−−−→−∑

x
p(x) log2 pθ (xn). (C.4)

The difference between the model compression length and the optimal compression

length is

− 1
N

N

∑
n=1

(
log2 pθ (xn)− log2 pd(xn)

)
N→+∞−−−−→ KL(pd(x)||pθ (x)) . (C.5)

C.2 Tightness of the ELBO and IWAE Improvement
In this section, we want to verify the tightness of the ELBO as a lower bound of the

log-likelihood. Consider the likelihood for a single data point x′, we have

log pθ (x′)≥ ⟨log pθ (x′|z)⟩qφ (z|x′)−KL(qφ (z|x′)||p(z))≡ ELBO(x′,θ ,φ). (C.6)

To evaluate log pθ (x′), we can use an importance weighted estimation (IWAE Burda

et al. [2015]), which can be rewritten as

log pθ (x′) = log
〈 pθ (x′|z)p(z)

qφ (z|x)

〉
qφ (z|x)

≈ log
1
K

K

∑
k=1

pθ (x′|zk)p(zk)

qφ (zk|x′)
≡ IWAEk(x′,θ ,φ),

(C.7)

where zk ∼ qφ (z|x′). The accuracy of the importance sampling heavily depends on

the proposal distribution qφ (z|x′) and will be poor if qφ (z|x′) underestimates the high

density region of pθ (z|x) Burda et al. [2015]. For the ELBO with optimal inference,

we can assume the approximate posterior is close to the true posterior, so if the lower

bound is tight, we will observe that the ELBO is approximately equal to the IWAE. In

Figure C.1 we compare the ELBO and IWAE using classic amortized inference and

optimal inference respectively (we use k = 10 in all cases). We find that the IWAE

can improve the ELBO for the traditional amortized inference and is approximately

equivalent to the ELBO using the optimal inference strategy. Therefore, we can

conclude that the ELBO with the optimal inference strategy is tight to log pθ (x).



C.3. Amortized Posterior for Classification 158

(a) Tightness (b) IWAE Improvement (c) All Comparisons

Figure C.1: IWAE comparisons on Binary MNIST. The x-axis indicates the training
epoch and the y-axis is the Bits-per-dimension, which corresponds to the negative
ELBO or IWAE with log 2 base and normalized by data dimension, lower is better.
In Figure a, we see that IWAE improves the ELBO when using classic amortized
inference but is approximately equal to the ELBO when using optimal inference,
which indicates the bound is tight. In Figure b, we compare the IWAE with classic
amortized inference, optimal inference and the the proposed reverse half-asleep
(RHS) inference. Here we find the proposed method can also improve the classic
IWAE estimation without training on the test data. In Figure 3, we plot the ELBO
and IWAE for all three amortized inference methods.

We also estimate the IWAE using the proposal posterior learned by the proposed

reverse half-asleep inference and find that our method can also improve the IWAE

result, see Figure C.1 for details. This is intuitive since our method can provide a

better proposal distribution for importance sampling.

C.3 Amortized Posterior for Classification
In Section 4, we discussed that the proposed reverse half-asleep method can improve

the posterior prediction for the test data. One direct application is to use the learned

amortized posterior qφ (z|x) for down-stream tasks, e.g. image classification, where

the samples z′ ∼ qφ (z|x′) can be treated as the ‘stochastic representation’ Zhang

et al. [2022], Bengio et al. [2013] of the given data point x′. Given a labeled

dataset {(x1,y1), · · · ,(xN ,yN)} and a trained amortized posterior (encoder) qφ (z|x),

we can then train a classifier pη(y|z) that maps from the latent space z to the label

y. After training the classifier, for a given test set of unlabelled data {x′1, · · · ,x′M},

the predictive distribution can be written as p(y|x) =
∫

pη(y|z)qφ (z|x)dz and can be

approximated by Monte-Carlo: p(y|x) ≈ 1
K ∑

K
k=1 p(y|z′k), where z′k ∼ qφ (z|x). We

train a classifier with 2 layer feed-forward neural network with hidden size 200,

RelU activation and dropout with rate 0.1 on two datasets: binary MNIST and grey



C.4. Effects of the Latent Space Dimensionality 159

MNIST. The models are trained for 10 epochs with Adam optimizer and learning

rate 3×10−4. During training, we randomly sample one z′ for each data point x and

we use k = 100 in the testing stage to estimate the predictive distribution. Figure

C.2 shows the comparisons between the posterior trained by the classic amortized

inference and the proposed reverse half-asleep method respectively. We can see our

method consistently improves the classification accuracy performance.

(a) Binary MNIST (b) Grey MNIST

Figure C.2: Representation Learning for Down-Stream Classification. We train
the VAE for 1000 epochs and evaluate the classification accuracy (y-axis, higher is
better) on the down-stream classification task every 100 epochs (x-axis). The results
are averaged over 3 random seeds and we also plot the standard deviation.

C.4 Effects of the Latent Space Dimensionality
We study the effect of the latent dimension size on the generalization of the amor-

tized inference. We use the VAE described in Section 4 with different latent size

[16,64,128] on Binary MNIST, see Figure C.3 for the result. We find the overfit-

ting of amortized inference happens in all cases regardless of the latent size. We

also apply the proposed reverse half-asleep training method to the saved model

every 100 epoch and found our method can consistently improve the generalization

performance.



C.4. Effects of the Latent Space Dimensionality 160

(a) Dim(z) = 16 (b) Dim(z) = 64 (c) Dim(z) = 128

Figure C.3: Effects of different latent dimension. The y-axis is the BPD and x-axis
is the training epochs. We find the amortized inference generalization gap exits in all
cases.



Appendix D

Appendix of Chapter 6

D.1 Experiments Details

D.1.1 Compute resources

All models were trained using an NVDIA GeForce RTX 2080 Ti and an NVDIA

GeForce V100 GPU.

D.1.2 Prepossessing of CelebA

We first perform a central crop with edge length 150px and then resize to 32×32×3.

We select the first 10000 images as our CelebA test set.

D.1.3 Model Architecture

This section provides additional details concerning the model building blocks used

in our experiments. All models share a similar PixelCNN Van Oord et al. [2016]

architecture, which contains a masked CNN as the first layer and multiple Residual

blocks as subsequent layers, we next provide further details on both components.

Masked CNN structure is proposed in Van Oord et al. [2016]. For our local

model with dependency horizon h, one kernel of the CNN has size k× k with

k = 2×h+1. The masked CNN contains masks to zero out the input of the future

pixels. There are two types of Masked CNN, which we refer to as mask A (zero out

the current pixel) and mask B (allow connections from a color to itself), see Van Oord

et al. [2016] for further details. The first layer of our model utilizes mask A and the

residual blocks use mask B.



D.1. Experiments Details 162

Residual Block Each residual Block Van Oord et al. [2016] contains the fol-

lowing structure. We use MaskedCNNB to denote a Masked CNN using mask

B.

Algorithm 5 Residual Block
Input: xinput
h = MaskedCNNB(xinput)
h = ReLU(h)
h = MaskedCNNB(h)
h = ReLU(h)
h = MaskedCNNB(h)
h = ReLU(h)
Return : xinput +h

Pixel CNN Our full Pixel CNN and local pixel CNN shares the same backbone.

The difference between the two models is that the full model has kernel size 3×3 for

the second masked CNN layer in the Residual Block and, in contrast, the local model

uses a kernel size of 1×1 for each of the masked CNN layers, in the Residual block.

Crucially, this difference results in the receptive field of the full model increasing

when stacking multiple Residual blocks whereas the receptive field of the local

model does not increase. A Pixel CNN with N residual blocks has the following

structure:

Algorithm 6 Pixel CNN
Input: xinput
h = MaskedCNNA(xinput)
h = ReLU(h)
for i from 1 to N:
h = ResBlocki(h)
h = MaskedCNNB(h)
h = ReLU(h)
h = MaskedCNNB(h)
Return : h

D.1.3.1 OOD detection

Gray images For gray images, our full Pixel CNN model has five residual blocks

and channel size 256, except the final layer which has 30 channels. The kernel size

is 7 for the first Pixel CNN and the kernel size is [1×1,3×3,1×1] for three masked



D.2. Local Model 163

CNNs in the residual blocks. Our local Pixel CNN model has one residual block and

channel size 256, except the final layer which has 30 channels. The kernel size is

7 for the first Pixel CNN and the kernel size is [1×1,1×1,1×1] for three masked

CNNs in the residual blocks. We use the discretized mixture of logistic distribution

Salimans et al. [2017] with 10 mixture components. The models are trained using

the Adam optimizer Kingma and Ba [2014] with learning rate 3×10−4 and batch

size 100 for 100 epochs.

Color images For color images, our full Pixel CNN model has 10 residual

blocks and channels size 256, except the final layer which has 100 channels. The

kernel size is 9 for the first masked CNN and the kernel size is [1×1,3×3,1×1]

for three masked CNNs in the residual blocks. Our local Pixel CNN model has

10 residual blocks and channels size 256, except for the final layer which has

100 channels. The kernel size is 7 for the first Pixel CNN and the kernel size

is [1×1,1×1,1×1] for three masked CNNs in the residual blocks. We use the

discretized mixture of logistic distribution Salimans et al. [2017] with 10 mixture

components. The models are trained using the Adam optimizer Kingma and Ba

[2014] with learning rate 3×10−4 and batch size 100 for 1000 epochs.

D.1.3.2 Lossless compression

The NeLLoC is based on a Pixel CNN. Since it is a local model, the kernel size is

1×1 for all the kernels in the Residual block. Additional details regarding the first

layer kernel size and number of residual blocks are found in the main text, Section

4. All models are trained using the Adam optimizer Kingma and Ba [2014] with

a learning rate of 3×10−4 and batch size 100 for both the CIFAR dataset (1000

epochs) and the ImageNet32 dataset (400 epochs).

D.2 Local Model

D.2.1 Effect of Horizon Size for Color Images

In Section 5.2.2 of the main manuscript we show that, for a simple gray-scale dataset,

the model can overfit to non-local features that are specific to the training distribution

and thus degrade OOD generalization performance. For a more complex training



D.2. Local Model 164

distribution, e.g. CIFAR, we find that a model with limited capacity is less susceptible

to overfit to non-local features. However, as observable in Table 5.4, when the local

horizon size increases, the ID generalization continues to improve, whereas the

OOD generalization remains stable. This is consistent with our hypothesis: local

features are not shared between distributions and cannot significantly aid OOD

generalization. We conjecture that, with the use of a more flexible base model e.g.

PixelCNN++ Salimans et al. [2017], over-fitting to the non-local features will occur

and thus result in familiar degradation of OOD generalization abilities.

D.2.2 Samples from Local Model

We show samples from a local model with h=3, trained on CIFAR 32×32×3, in

Figure D.1. It can be observed in Figure D.1a that the samples are locally consistent

yet images do not possess much in the way of recognizable and meaningful global

semantics. Figure D.1b shows an example image of size 100×100×3. This is made

possible since the local model does not require sampled images to have a fixed size,

i.e. size is not required to be consistent with the training data.

(a) 16 samples with size 32×32×3 (b) One sample with size 100×100×3

Figure D.1: Samples from a local autoregressive model.


	Introduction
	Probabilistic Modelling
	KL Divergence and Maximum Likelihood Estimation
	Fisher Divergence and Score Matching

	Research Motivations and Thesis Structure

	I Healing the Statistical Divergences
	Healing the KL Divergence for Manifold Modelling
	Implicit Models for Manifold Modelling
	Model Noise is Not Enough

	Spread Divergence
	Stationary Spread Divergence
	Spread Maximum Likelihood Estimation
	Spread Evidence Lower Bound

	Comparisons with Other Divergences
	Maximising Discriminatory Power 
	Learning the Gaussian Noise Covariance 
	Learning a Mean Transformation 

	Applications 
	Deriving Deterministic PPCA
	Training Degenerate Gauss-VAE
	Image Modelling with -VAE

	Related Work 
	Connection to Denoising Score Matching 

	Discussions

	Healing the Fisher Divergence for Multi-Modality Modelling 
	Introduction
	Understanding the Blindness Problem
	Healing the Blindness Problem with Mixture Fisher Divergence
	Density Estimation with Energy-based Models
	Related Works
	Discussions


	II Generalizations of Generative Models
	In-distribution Generalization of Variational Auto-Encoder
	Introduction of Variational Auto-Encoder
	Generalizations of VAEs
	Visualizations of the Generalization Gaps

	Consistent Amortized Inference
	Wake-Sleep Training
	Reverse Sleep Amortized Inference
	Reverse Half-asleep Inference with Imperfect Models

	Generalization Experiments
	Comparisons with Regularization Methods

	Application of Lossless Compression
	Introduction of VAE-based Lossless Compression
	Improving the Generalization of VAE-based Compression

	Related Work
	Conclusions

	Out-of-distribution Generalization of Probabilistic Image Modelling
	Introduction
	Model-based Lossless Compression
	Likelihood-based OOD Detection

	OOD Generalizations of Image Models
	Local Model Design
	Local Model Generalization

	OOD Detection with Non-Local Model
	Product of Experts and Non-Local Model
	Connections to Related Methods
	Experiments

	Lossless Compression with Local Model
	NeLLoC Model
	Properties of NeLLoC

	Parallel Decoding of NeLLoC
	Sheared Local Autoregressive Model
	Demonstrations

	Conclusions

	Conclusions
	Summary of the Thesis
	Limitations and Future Work
	Implications for the State of the Art

	Bibliography
	Appendices
	Appendix of Chapter 2
	Annealing the Noise
	Noise Requirements for Discrete Distributions
	Spread Noise Makes Distributions More Similar
	Mixture Divergence
	Statistical Properties of Spread MLE
	Existence of Spread MLE
	Consistency
	Asymptotic Efficiency

	MNIST Experiment
	CelebA Experiment

	Appendix of Chapter 3
	Derivations and Proofs
	Derivation of Equation 3.3 
	Proof of Theorem 2
	Proof of Theorem 3 
	Kernelized Stein Discrepancy Extensions
	Proof of Theorem 4 

	Experiment Details

	Appendix of Chapter 5
	Model-based Lossless Compression
	Information Theory of Lossless Compression

	Tightness of the ELBO and IWAE Improvement 
	Amortized Posterior for Classification
	Effects of the Latent Space Dimensionality 

	Appendix of Chapter 6
	Experiments Details
	Compute resources
	Prepossessing of CelebA 
	Model Architecture

	Local Model
	Effect of Horizon Size for Color Images 
	Samples from Local Model




