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Abstract

An insult to the immune system is followed by a period of immune reconstitution. During recovery,
patients are immunocompromised and susceptible to infection, and routine blood tests are per-
formed for clinical monitoring. Children display heterogeneity in their recovery from such insults
due to ongoing development and maturation. Non-linear mixed effects (NLME) modelling is widely
used to fit a model to observed data (e.g., repeated measurements of a biomarker) related to co-
variates. In addition, NLME models can be made mechanistic by incorporating prior knowledge to
estimate biologically meaningful parameters.

In this thesis, mechanistic NLME models were constructed to quantify B cell reconstitution in
children after four insults to the immune system: haematopoietic stem cell transplantation (HSCT),
rituximab therapy for Epstein-Barr virus (EBV) reactivation post-HSCT, viral dynamics of EBV
reactivation and rituximab biosimilar therapy for rheumatological disease.

A novel model of CD19+ cell reconstitution post-HSCT was first constructed. To scale CD19+ cell
dynamics for age, prior biological knowledge was used to build a B cell maturation function. A
Hill-type function was included to estimate the time delay between HSCT and bone marrow output
of CD19+ cells. The drug effect of rituximab was then incorporated to create a kinetic pharma-
codynamic (K-PD) model to identify the pharmacodynamics of rituximab on B cell reconstitution
post-HSCT in patients with EBV reactivation. In addition, a simplified version of the K-PD model
was used to identify the pharmacodynamics of rituximab biosimilars on B cells. Finally, a modified
version of a published human immunodeficiency virus (HIV) model was integrated with the ritux-
imab K-PD model to create a new model quantifying the viral dynamics of EBV reactivation. Other
analyses included developing a Cox proportional hazards model for time to first EBV reactivation
event post-HSCT and sensitivity analysis of a previously reported EBV model.
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Impact Statement

After an insult to the immune system, it can take several years for immune system function to be
restored. In the meantime, patients are immunocompromised and susceptible to infection. This
research aimed to develop mathematical models to quantify B cell recovery in children following
HSCT, the administration of drugs affecting the immune response and EBV reactivation. Whilst
constructed using data from children, the scaling of age-related effects at the structural level of
these models widens their scope for application across the age range including extrapolation to
infants and adults. It is hoped that this work will ultimately contribute to the improvement of
patients’ health outcomes.

In Chapter 2, factors associated with CD19+ cell recovery in children after HSCT were identified,
which can inform the stratification of patients into those with good or poor CD19+ cell reconstitu-
tion to guide treatment decisions. Another application of the model could be as a tool to predict
individualised patient trajectories of CD19+ cell reconstitution based on these factors thereby hav-
ing implications for personalised medicine. For the models developed in Chapters 3, 4 and 5, their
impact centres on their ability to now be used to simulate different clinical scenarios to inform
optimal dosing for their respective indications. From the rituximab model developed in Chapter 3,
simulations of varying dosing regimens of rituximab would provide simulated profiles of CD19+ cell
suppression over time for EBV reactivation post-HSCT. Similarly, using the rituximab biosimilar
model in Chapter 5, simulations of varying dosing regimens of Truxima rituximab biosimilar can
be performed to inform dose bioequivalence with rituximab for rheumatology indications. Lastly,
simulations using the EBV viral dynamic model presented in Chapter 4 would reveal the interplay
between the profiles of CD19+ cell suppression and EBV VL over time.

In terms of disseminating research output, the results from the first part of Chapter 4, the Cox
proportional hazards model of time to EBV reactivation in the first 100 days post-HSCT as well as
the sensitivity analysis of a previously reported EBV viral kinetic model, have been published1. In
addition, this doctoral work has been selected for both oral and poster presentation at the following
conferences; the Lewis Sheiner Student Session at the Population Approach Group Europe meeting
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in 2022 (oral), the Pharmacokinetics UK meetings in 2019 (poster) and 2020 (oral), the inaugural
British Society for Immunology B Cell UK meeting in 2022 (poster) and the Great Ormond Street
Hospital (GOSH) Conference 2019 (digital poster). Lastly, to promote open access and encourage
further collaboration, model code will be made available on a suitable online platform.
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Chapter 1

Introduction

1.1 The Haematopoietic System

The haematopoietic system is comprised of the tissues and organs responsible for producing all the
blood and immune cells required by the human body. In a life-long process called haematopoiesis,
starting during embryonic development and continuing throughout adulthood, blood stem cells
known as haematopoetic stem cells (HSCs) proliferate and differentiate into a range of cellular
components that defend the body against infection and disease2. Haematopoiesis encompasses
the formation and maturation of HSCs, as well as their activation and proliferation. The major
sites of haematopoiesis are in the primary lymphoid organs, the bone marrow and the thymus,
in secondary lymphoid organs which include the spleen and lymph nodes, and peripheral organs
such as mucosa-associated lymphoid tissue (MALT)3. As well as providing the anatomical space
for the process, the specialised microenvironment of these sites make up the HSC niche, acting
as the “soil” for haematopoiesis4. Key components include cytokines such as growth factors, the
presence of various haematopoietic and non-haematopoietic cells in the stroma, blood vessels and
nerve fibres5,6. The two cornerstones of HSCs are their properties of self-renewal and multipotency7.
They differentiate in the bone marrow into multi-potent progenitor cells then into either common
myeloid progenitor cells or common lymphoid progenitor cells, which give rise to cells of myeloid
and lymphoid lineage respectively. Cells of myeloid lineage consist of erythrocytes, platelets and a
range of immune cells, which are described in the next section. Erythrocytes transport oxygen to
tissues and organs around the body, and platelets work with proteins in blood plasma to form blood
clots8. Cells of lymphoid lineage include natural killer cells, T lymphocytes and B lymphocytes
(more commonly known as T cells and B cells), which together provide cell-mediated immunity and
antibody-mediated immunity9.
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The cells formed downstream of the common myeloid and lymphoid progenitor cells, that make up
the immune system, are introduced below.

1.2 The Immune System

Myeloid cells constitute the innate arm of the immune system conferring short-term immunity,
as they respond quickly to provide a non-specific immune response against pathogens. These
include neutrophils and a range of other phagocytes such as basophils, eosinophils, mast cells and
macrophages10. These cell subsets can reside in tissue, circulate in the blood or circulate in the
lymphatic system8. In conjunction with the complement system, the primary role of myeloid cells
is to engulf and ingest antigens to kill them or process them for antigen presentation to T cells8.
Lymphoid cells make up the adaptive arm of the immune system responsible for conferring long-
term, or acquired, immunity against pathogens due to their unique ability to develop immunological
memory. This allows the adaptive immune system to mount a more specific and specialised immune
response against an antigen upon encountering it for a second or subsequent time9. Based on the
cell surface receptors they express, T cells can be categorised into Cluster of Differentiation 4
(CD4+) T cells and Cluster of Differentiation 8 (CD8+) T cells, also known as helper T cells and
cytotoxic T cells respectively. Both types of T cell express T cell receptors (TCR) that recognise
antigen, where the antigen is in the form of a peptide bound to one of the two classes of human
major histocompatibilty complex (MHC) proteins11. MHC proteins are expressed on the surface
of antigen presenting cells (APCs) such as dendritic cells, macrophages and B cells, and serve to
process and display antigen to the appropriate T cells to be killed, or to recruit or activate other
immune cells8,11. CD8+ T cells and CD4 + T cells recognise peptide bound to MHC Class I and
Class II molecules respectively8,10. With regards to their development, T cells undergo several
stages of differentiation starting in the thymus with TCR rearrangement followed by positive and
negative selection to ensure that TCRs recognise foreign peptide and not self-peptide. Mature T cells
migrate to the periphery where they are activated to proliferate by binding to foreign peptide. Each
TCR is composed of two polypeptide chains formed via a mechanism called DNA recombination in
the variable (V), diversity (D) and joining (J) genes in the TCR, known as VDJ recombination10.
This results in a diverse TCR repertoire able to recognise and respond to a wide range of antigens
originating from bacteria, viruses, parasites and fungi12. The same genetic mechanism also plays
a role in B cell development in the formation of immunoglobulins (Ig), more commonly known as
antibodies, found on the surface of B cells.

As B cells are the focus of this thesis, they will be discussed in greater detail in the next section.
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1.3 B Cells

B cells are so called as they were first discovered in an organ called the Bursa of Fabricius in
1965, the site of haematopoiesis in chickens13. In humans, B cells have a key function in adaptive
immunity through their roles as antibody-producing cells to neutralise antigens and as APCs in
association with T cells14. As with T cell development, B cell development requires many cytokines
and transcription factors. Starting in the bone marrow, the common lymphoid progenitor cell
gives rise to a pro-B cell and VDJ recombination occurs in the Ig molecule on its cell surface10.
In terms of its structure, the Ig molecule is made up of two types of protein chain, light chains
and heavy chains. On the pre-B cell, the pre-B cell receptor (BCR) is comprised of the heavy µ

chain expressed on the cell surface, as well as the surrogate light chain8. Rearrangement occurs
in the light chains. During this process, kappa-deleting recombination excision circles (KRECs),
DNA structures, are formed during VDJ recombination of the pre-BCR. Signalling through the
pre-BCR triggers proliferation and differentiation into immature B cells that express a functional
BCR with IgM, a subtype of Ig. At this stage, three mechanisms of central tolerance take place to
eliminate autoreactive B cells via receptor editing, clonal deletion and clonal anergy15. If B cells
have been positively selected, they emerge from the bone marrow into the periphery. In the absence
of survival signals, B cells will die soon after exiting the bone marrrow. In the absence of antigen,
they mature in the peripheral blood. Alternatively, on encountering antigen, they become activated
to differentiate in a germinal centre structure found in secondary lymphoid organs, which requires
the assistance of follicular T helper cells16,17. Here, the processes of clonal expansion, somatic
hypermutation, affinity maturation and class-switch recombination take place to produce memory
B and antibody-producing plasma cells with highly antigen-specific BCRs able to recognise a wide
range of epitopes18. Akin to the TCR repertoire, the formation of such a diverse BCR repertoire
allows for the production of antigen-specific antibody. Indeed, a simplified definition of B cells
is a population of cells with clonally diverse Ig on their cell surface18. As is the case for other
immune cells, the expression of specific molecules on the surface of B cells at different stages of
their development can be identified using flow cytometry to characterise different populations of B
cells, known as immunophenotyping19. Cluster of Differentiation 19 (CD19) is a protein expressed
continuously from the pro-B cell stage to the early stages of plasma cell differentiation while Cluster
of Differentiation 20 (CD20) is expressed from the pre-B cell stage to plasma cell stage; both are
cell surface markers used to confirm B cell lineage18,20. In addition, class-switched memory B cells
express CD27 whereas naive B cells do not. In the treatment of B cell disorders, immunotherapeutic
drugs can be targeted towards CD20 and CD19 such as the monoclonal antibodies rituximab and
blinatumomab respectively21–23.

In this thesis, we model the time course of B cell recovery following various insults to the immune
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system. These insults are explained in the sections below.

1.4 Insult to the Immune System

An insult to the immune system can be defined as an event that causes damage to the cells, tis-
sues or organs of the immune system. This could occur due to medical intervention by way of a
procedure or administration of drugs affecting the immune response such as immunosuppressants,
anti-lymphocyte monoclonal antibodies and other immunomodulating drugs24,25. In addition, the
biological mechanism of some infections cause insult to the immune system such as human im-
munodeficiency virus (HIV), which destroys CD4+ T cells, and Epstein-Barr virus (EBV), which
results in uncontrolled proliferation of B cells26,27. Following an insult to the immune system, an
individual is said to be immunosuppressed or immunocompromised, which refers to the weakened
state of their immune system rendering them more susceptible to infection and disease28.

The four insults to the immune system that we will focus on, corresponding to the following four
chapters of this thesis, are:

• Haematopoietic stem cell transplantation (HSCT) in children

• The administration of the monoclonal antibody rituximab for children with EBV reactivation
post-HSCT

• The viral dynamics of EBV reactivation after HSCT in children

• The administration of rituximab biosimilars for children with rheumatological disease.

As HSCT concerns three of the four chapters, it is explained below. Further details of the other
three insults (rituximab, EBV reactivation and rituximab biosimilars) are given in their respective
chapters.

1.5 Haematopoietic Stem Cell Transplantation

1.5.1 Indications

When HSCs are dysfunctional or cause disease, it is possible to replace them with healthy HSCs in
a procedure called haematopoietic stem cell transplantation (HSCT). As they are multi-potent and
self-renewing, the transplanted HSCs will go on to proliferate in the bone marrow of the patient
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to produce correctly functioning cells of the blood or immune system thereby repopulating the
haematopoietic system as a whole or in part29. Indications for HSCT include malignant haemato-
logical disorders such as leukaemia and lymphoma, non-malignant haematological disorders such as
anaemia, primary immunodeficiencies exemplified by severe combined immunodeficiency (SCID),
metabolic disorders such as Hurler’s syndrome and finally, autoimmune diseases such as systemic
lupus erythematosus30. Depending on the indication for HSCT, the biological mechanism by which
the HSCT is curative differs. For example, for a leukaemia patient undergoing HSCT, the donor’s T
cells recognise the patient’s malignant cells as foreign and mount an immune response against them
to destroy them. In addition, they receive high dose chemotherapy as part of their treatment before
HSCT to ablate the malignant cells. In contrast, for a SCID patient, the donor HSCs proliferate
to produce the missing or faulty cells to restore immune system function thereby correcting for the
underlying genetic defect.

1.5.2 Types of HSCT

A HSCT may be referred to as a bone marrow transplant (BMT), peripheral blood stem cell
transplant (PBSCT) or cord blood transplant (CBT) depending on the source of the healthy HSCs
from bone marrow, peripheral blood or umbilical cord blood respectively. The method used to
extract, or harvest, HSCs is contingent on the location of the healthy HSCs. For a BMT, a bone
marrow aspiration is performed, in which a needle is inserted directly into the bone marrow of
the iliac crest, a bone in the pelvis. In the case of a PBSCT, the patient is administered daily
subcutaneous injections of granulocyte-colony stimulating factor (G-CSF) for the period of 4-7
days pre-HSCT to stimulate the bone marrow to produce more HSCs and mobilise them to the
blood30. Blood is then passed through an apheresis machine, which separates out HSCs and removes
them from the circulation, and returns the remaining blood to the patient. Lastly, for a CBT, HSCs
are collected from the umbilical cord and placenta of a newborn baby, then frozen and stored in
blood banks for future use. A further important categorisation of HSCTs is determined by the
donor type. If autologous, the patient’s own HSCs are extracted, stored then re-infused on the
day of HSCT. In a syngeneic HSCT, HSCs from a patient’s identical twin are used. The third
and most common type of HSCT is with an allogeneic donor, who is related or unrelated to the
patient. The donor is matched to the patient using histocompatibility testing on the basis of the
human leukocyte antigen (HLA) system encoding for MHC molecules. While a matched sibling
donor (MSD), matched familial donor (MFD) or matched unrelated donor (MUD) are desirable
for optimal HLA matching, a mismatched familial donor (MMFD) or mismatched unrelated donor
(MMUD) can also be used29. In addition, there is the option to use a haploidentical donor, who
shares half the HLA genes as the patient. A recent study by the European Society for Blood and
Marrow Transplantation (EBMT) documented numbers of both allogeneic and autologous HSCTs
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continuing to increase, the number of CBTs gradually decreasing, and PBSC to be the preferred HSC
source31. On a national level, according to the British Society of Blood and Marrow Transplantation
and Cellular Therapy, 1397 first allogeneic HSCTs were performed in 2020 of which 292 (20.9%)
were in children32.

1.5.3 Pre-HSCT Conditioning

In the days and weeks leading up to HSCT, the patient will receive a combination of chemotherapy,
radiotherapy using total body irradiation and anti-lymphocyte antibodies, collectively known as a
conditioning regimen. If the conditioning regimen is well tolerated by the patient, this increases
the chance of the donor HSCs homing to the patient’s bone marrow to actively undergo successful
haematopoiesis, which is called engraftment33. The purpose of this is three-fold; to ablate malig-
nant cells to reduce risk of disease relapse, to suppress the patient’s immune system to counter
graft rejection and reduce the risk of Graft versus Host Disease (GvHD), and to make space in the
bone marrow for engraftment of the donor HSCs34,35. For some patients, conditioning may not be
administered such as patients with SCID36. There are various types of conditioning regimen, which
vary in their intensity and toxicity, namely myeloablative conditioning (MAC), minimal-intensity
conditioning (MIC) and reduced-intensity conditioning (RIC). The conditioning regimen for an in-
dividual child’s HSCT is chosen depending on factors such as their age and the HSCT indication35.
Typical components of a conditioning regimen include chemotherapeutic drugs such as cyclophos-
phamide, busulfan and fludarabine and anti-lymphocyte antibodies to deplete T and B lymphocytes
such as anti-thymocyte globulin (ATG) or alemtuzumab35. To complement a pre-HSCT condition-
ing regimen, a post-HSCT regimen prophylactic for GvHD can also be administered consisting of
drugs such as mycophenolate mofetil, ciclosporin and tacrolimus37. Similarly, pre-emptive treat-
ment strategies for other complications such as reactivation of EBV and cytomegalovirus (CMV)
may also be implemented for some patients featuring drugs such as rituximab and ganciclovir38,39.

1.5.4 Post-HSCT Clinical Outcomes

Improvements in clinical practice, specifically in conditioning regimen protocols, HLA typing, sup-
portive care and treatment of infections, have decreased the rates of mortality and morbidity post-
HSCT. Recent data from Great Ormond Street Hospital (GOSH) for Children for HSCTs under-
taken in 2020 demonstrate an overall survival rate of 83% (50/60) and a disease-free survival rate
of 78% (21/27) at one year post-HSCT for all HSCT indications40. HSCT is a safe and effective
procedure, presenting a curative treatment for many life-threatening diseases but the procedure is
not without its limitations. The most common complication following HSCT is the development
of acute or chronic GvHD, whereby the donor’s T cells attack the patient’s HSCs; 10% (6/60) of
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patients at GOSH experienced grade 3 or grade 4 GvHD, the most severe types, in 2020, in line
with published findings40–43. The greater the mismatch in HLA between the donor and recipi-
ent, the greater the chance that the recipient develops GvHD, which can occur in the skin, liver
and gut30. During the post-HSCT period while immune reconstitution occurs, patients remain
in an immunocompromised state and the type of opportunistic infections they encounter can be
characterised44,45. During the first 30 days post-HSCT before engraftment has occurred, low levels
of neutrophils allow the propagation of fungal infections such as Aspergillus and Candida46,47. In
the second phase, spanning from 30 to 100 days post-HSCT, bacterial infections from Staphylacoccus
and Gram negative Bacillus are more commonly encountered as well as the reactivation of latent
viruses such as EBV, CMV, adenovirus, human herpes virus 6 (HHV6) and Varicella zoster1,48–50.
In the third and final phase from 100 days post-HSCT onward, adaptive immune function is slowly
restored decreasing the overall incidence of infections but some viral infections are still seen at this
late stage such as Varicella zoster51,52.

1.6 Immune Reconstitution

The decline and subsequent recovery of the immune system after insult can be tracked by measuring
immune cell counts using flow cytometry in clinical laboratories using blood samples from routine
blood tests53–57. Concentrations of the different immune cell subsets must return to age-specific nor-
malised values in order to maintain and mount a protective response against pathogens58–60. This
recovery process is called immune reconstitution, and is typically quantified by either measuring the
time taken for lymphocyte subsets to reach pre-specified concentrations, i.e. the rate of reconstitu-
tion or measuring the concentration of lymphocyte subsets at specific time-points post-insult, i.e. the
extent of reconstitution61–63. In both of these approaches, we consider immune cells to be biomark-
ers indicating the health of the immune system, where a biomarker is defined as a “characteristic
that is measured and evaluated as an indicator of normal biologic processes, or pharmacological
responses to a therapeutic intervention”64,65. In the context of HSCT, reconstitution of the innate
immune system components, neutrophils and platelets, occurs in the short-term in the weeks to
several months following HSCT66,67. In contrast, the reconstitution of B cells and T cells takes
much longer and can last up to several years post-HSCT62,68. By its nature, the process of HSCT
gives rise to chimerism, defined as the biological phenomena of cells from two different organisms
co-existing simultaneously in the same body. Following allogeneic HSCT, measuring haematopoi-
etic host-donor chimerism indicates the extent to which the donor HSCs have replaced the patient’s
haematopoietic system69. The varying states of chimerism are microchimerism (less than 1% of
recipient’s cells detected), split chimerism (one or more recipient-derived cell lineages as well as
one or more donor-derived cell lineages), mixed chimerism (5-95% of cells are donor-derived) and
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lastly, complete chimerism (100% of cells are donor-derived), indicating complete haematopoietic
replacement70. Monitoring chimerism alongside immune reconstitution is instructive to clinicians,
allowing them to intervene accordingly in the management of post-HSCT patients, e.g. a drop in
donor chimerism may precede disease relapse, and could be prevented by modulating the treatment
strategy71,72.

We focus on B cell reconstitution in this thesis, which will be explained further in Chapter 2.

1.7 Mathematical Modelling

1.7.1 Concepts

Mathematical modelling is a process in which real-life systems and relations in these systems are
expressed using mathematics73. This allows the important aspects of the structure and behaviour
of a system to be quantified, with the aim of gaining insights into its key relationships. A math-
ematical model itself is typically comprised of equations where the different terms correspond to
the input(s) (also called independent variables), the output(s) (also called dependent variables) and
parameters, which are variables that are not directly measured but are estimated from observed
measurements74. Models are fitted to observed measurements of the system, along with measure-
ments of covariates. Covariates are factors specific to individuals of a population that influence
the observed data thereby explaining a large portion of their variability74,75. Parameter estimates
are values estimated from both the observed measurements as well as the covariates. An inherent
feature of observed data is the error generated when measuring them, commonly referred to as
‘noise’, arising from human error when recording the measurements and systematic error from the
equipment taking the measurements74. This error is accounted for in the equations of the math-
ematical model by including an error term. As all models generally oversimplify a system, they
are often caveated by assumptions to address the model’s limitations, and it is deemed that “all
models are wrong but some are useful”76,77. Therefore, a range of models are fitted to the data to
find which of them best describes the data. Coupled with mathematical modelling is simulation,
which is the imitation of the dynamics of a system over time78. While a model looks backward
in time, simulation looks forward in time74. After developing a mathematical model, it can be
used for simulation in various ways. For example, in model evaluation, data not used in model
development are generated, or simulated, using either interpolation or extrapolation with a view
to internal or external validation75. In addition, model-based inferences can be made by testing
a range of hypotheses and predicting future scenarios75. As modelling and simulation are both
performed by computers using statistical software, it is possible to extensively test the conditions
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and parameters of a system under real-world conditions to ensure that the mathematical model is
robust and has maximum impact when implemented in practice for its desired application(s).

1.7.2 Pharmacometrics

One of the major applications of mathematical modelling and simulation is in the area of clinical
pharmacology, where it is termed pharmacometrics, defined as the “branch of science concerned
with mathematical models of biology, pharmacology, disease, and physiology used to describe and
quantify interactions between xenobiotics and patients, including beneficial effects and side effects
resultant from such interfaces”79. In pharmacometrics, mathematical models are typically based
on ordinary differential equations (ODEs) that describe the relationship between observed data
(e.g. serum drug concentration) and covariates (e.g. timing and number of doses given), most com-
monly following drug administration74. These ODEs form the structural model, and compartments
are specified to represent physiological or abstract regions of tissues or cells into which the drug is
administered and has its effect, whether direct or indirect75. An important consideration in math-
ematical modelling is accounting for the difference between model-predicted data and observed
data, which is done by including a statistical model75. In addition, to intrinsically capture the in-
fluence of covariates on the parameters, a covariate model is developed75. The modelling technique
used widely in pharmacometric research, and in this thesis, is non-linear mixed effects (NLME)
modelling. It will be explained in greater detail in Chapter 2.

Pharmacometrics is used to characterise the pharmacokinetics (PK) of a drug, defined as “what the
body does to the drug” or drug exposure, as well as pharmacodynamics (PD), defined as “what the
drug does to the body” or drug response80. The key processes determining the PK of a drug are
absorption, distribution, metabolism and excretion, and the therapeutic effect of a drug is governed
by its physico-chemical properties81. The PD of a drug is inherently linked to its PK. Modelling
both PK and PD using pharmacokinetic-pharmacodynamic (PK-PD) modelling remains the gold
standard to inform clinical trials and practice82–84. When PK data cannot feasibly be collected or
are absent, PD data can be modelled with a kinetic-pharmacodynamic (K-PD) approach, where
some assumptions are made regarding PK85,86. Where drug is not administrated into a system and
therefore no pharmacological effect is present, mechanistic PD models can be used to describe bio-
logical processes of normal physiology or of pathology such as cell turnover, homeostatic feedback,
disease activity and viral dynamics80,82,87–89. A typical PK dataset consists of drug concentrations
over time from which drug-related PK parameters are estimated such as clearance (CL), volume of
distribution (V ) and elimination half-life (t 1

2
). A PD dataset can comprise of longitudinal concen-

trations of a biomarker or measurements of a disease score reflecting clinical outcome, from which
system-specific PD parameters are estimated, e.g., the maximal drug effect (Emax), dose produc-
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ing 50% of maximal drug effect (ED50), production rate constant (kin) and death rate constant
(kout)80,81,89. Other types of pharmacometric approaches include physiologically-based PK (PBPK)
models, disease-progression models, Bayesian models and model-based meta-analysis75,90–92.

The methodology of pharmacometrics is employed across all stages of drug development from discov-
ery and pre-clinical studies to the three phases of clinical trials as well as post-marketing studies,
forming the so-called “learn-confirm” cycles of drug development93,94. As a result, pharmaco-
metrics informs clinical trial design, dose optimisation and determining off-label dosing in special
populations83.

1.8 Mathematical Modelling of Immune Reconstitution

To date, most studies of immune reconstitution use survival analysis, which measures the fraction of
a population that reach an endpoint, or outcome, over time90. The time period is the time between
a starting point, e.g. an insult to the immune system such as HSCT, and a terminating event,
e.g. immune reconstitution95. In its most simplest form, the impact of one predictor variable on
the outcome of interest is studied, often visualised by a Kaplan-Meier survival curve96. Predictor
variables that are commonly explored post-HSCT in relation to immune reconstitution are those
that contribute towards clinical outcomes such as donor type, stem cell source and conditioning
regimen66,97,98. In addition, the use of multivariable Cox proportional hazards models allows for
the adjustment of the effect of multiple predictor variables to identify factors that are more strongly
associated with immune reconstitution66,99.

While survival analysis is the gold standard in clinical practice to inform prognosis, it does not allow
for the interrogation of the biological mechanisms dictating immune reconstitution post-HSCT100.
Using a mechanistic mathematical modelling, by way of pharmacometrics, gives insight into the un-
derlying biological processes whilst considering additional aspects such as the non-linearity of these
processes, the covariates contributing to the heterogeneity of HSCTs and the variability in immune
reconstitution between different patients63,90. Indeed, one strand of pharmacometric research is its
application in the therapeutic areas of immunology and infectious diseases63,101,102. For example, it
has been used to model T cell reconstitution both post-HSCT and after HIV infection, the effects of
drugs commonly administered in the HSCT setting as part of conditioning and prophylactic GvHD
regimens and viral kinetics103–111.

As they are a specialised population displaying heterogeneity and variability in their response to
drugs, conducting pharmacometric studies in children, in particularly for drugs that are commonly
administered off-label, can inform the optimisation and personalisation of paediatric drug regimens
and therefore, improve efficacy of treatment.
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1.9 Research Aims

The overarching aim of the research detailed in this thesis was to use a mathematical modelling
approach to investigate the reconstitution of B cells in children following various insults to the
immune system. In the models presented in the following four chapters, retrospective electronic
data from children were used to construct models with an emphasis on scaling B cell dynamics for age
and incorporating prior knowledge to estimate biologically meaningful parameters. Measurements
of CD19+ cell counts were used as a biomarker to indicate recovery of B cells for Chapters 2, 3
and 5, while measurements of EBV viral load (VL) were used for Chapter 4 as a biomarker of
EBV reactivation. Chapter 2 describes a novel mechanistic NLME model to quantify CD19+ cell
reconstitution post-HSCT, incorporating prior biological knowledge to scale for age-related effects.
Building on this model, Chapter 3 presents a K-PD model to quantify the pharmacodynamics of
rituximab on CD19+ cell reconstitution in patients with EBV post-HSCT. The first part of Chapter
4 focusses on the development of a multivariable Cox proportional hazards model to assess time to
first EBV reactivation in the first 100 days post-HSCT. In the second part of Chapter 4, sensitivity
analysis of a previously reported mathematical model of EBV viral kinetics is performed and a
mechanistic NLME model of EBV viral kinetics is developed. Finally, Chapter 5 presents a K-PD
model to quantify the pharmacodynamics of rituximab biosimilars on CD19+ cell reconstitution in
children with rheumatological diseases.



Chapter 2

B Cell Reconstitution After HSCT

2.1 Introduction

2.1.1 B Cell Reconstitution

All cells of B lineage express CD19+ from pro-B to plasma cell stages of B cell development therefore
B cell reconstitution is monitored by measuring the number of CD19+ cells longitudinally20,21.
The period of B cell reconstitution post-HSCT can last up to three years34,112,113, with recovery
recapitulating ontogenic B cell maturation as seen by rising B cell numbers then a gradual decrease
to age-normalised values in peripheral blood114–116. The number of total B cells normalise in the
first six months after HSCT, comprised mostly of naive or transitional B cells, which are the first
B cell subset to emerge in the peripheral blood between one to two months post-HSCT117–119.
Despite being present in large numbers, they are functionally immature compared to memory
B cells, which have been demonstrated to be deficient for up to two years after HSCT120–122.
Functional B cell reconstitution is further delayed by poor T cell reconstitution post-HSCT, given
the requirement of T cell help to produce memory or plasma B cells123. This results in a lower
capacity of the remaining B cells to generate antigen-specific antibody leading to a global reduction
in immunoglobulin levels45,122,124.

Furthermore, the complexity of B cell reconstitution post-HSCT is an inherent product of the
numerous patient-, donor-, transplant-, disease- and drug-related factors at play including the age
of the patient, conditioning regimen received, stem cell source, serotherapy, and development of
GvHD125. Administration of alemtuzumab as prophylactic GvHD conditioning has been associated
with sometimes delaying B cell reconstitution98,122. With regards to conditioning, if the indication

37
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for HSCT is a malignant or non-malignant haematological disorder, a MAC regimen is favoured
over RIC for donor chimerism and increased likelihood of successful B cell reconstitution97,126,127.
There is also an association with GvHD, with patients with higher grades of acute GvHD or chronic
GvHD reported to experience significantly impaired B cell reconstitution121,128. With regards to
stem cell source, cord blood has been shown to result in the fastest B cell reconstitution compared
to peripheral blood and bone marrow in the short-term post-HSCT, in part explained by the greater
number of B cell progenitor cells62,66,129,130. In addition, B cell reconstitution is further exacerbated
by the administration of B cell depletive therapies such as rituximab for EBV reactivation.

2.1.2 Bone Marrow Output

As there is a degree of chimerism after HSCT, new B cells can originate from both the patient or
the donor, arising from either the production of naive B cells from HSCs in the bone marrow or
from expansion of mature B cells in the peripheral blood. Whilst the return of B cell counts to age-
normalised B cell values might suggest restoration of the B cell compartment, it does not guarantee
that bone marrow output of new B cells is restored131. To further interrogate the underlying biology
of B cell reconstitution with respect to bone marrow output, we must therefore consider more
direct measures of bone marrow output. Kappa-deleting recombination excision circles (KRECs)
are stable non-dividing DNA structures formed during VDJ recombination of the light chains in
the pre-BCR. Present in approximately 50% of newly produced B cells leaving the bone marrow,
KRECs have been quantified experimentally as a biomarker of de novo production of B cells in the
bone marrow132–134. Similarly, their T cell counterparts, TCR excision circles (TRECs), are formed
during recombination of TCRs and have been measured in relation to T cell reconstitution following
HSCT and HIV infection106,110,135,136. In addition, an assay to simultaneously quantify TRECs
and KRECs post-HSCT has been established and applied to both adults and children131,137, with
other studies using a similar experimental approach to study T and B cell reconstitution in various
disease settings138–142.

For successful regeneration of a functional B cell compartment, the production of new B cells in
the bone marrow must be complemented by the proliferation of these cells as well as the expansion
of mature B cells in peripheral blood. One marker of cell proliferation is Ki67, a protein found
in the nucleus of normal and leukaemic cells that is associated with the cell cycle143. In naive T
cells, quantification of Ki67 expression in adults and children has shown a decline with respect to
age135,144,145. Furthermore, Payne et al have recently reported a decrease in Ki67 levels in naive B
cells with increasing age in the context of HIV infection in children, with applicability to HSCT.
In this study, the authors observed a peak naive B cell output at one year of age then a decrease
thereafter to stable levels146.
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2.1.3 Scaling

The World Health Organisation has defined paediatric clinical pharmacology as a “scientific dis-
cipline that involves all aspects of the relationship between drugs and humans during growth,
development and maturation”81. In order to meet this goal, scaling is required, which is the pro-
cess of standardising PK and PD data between species and within humans using age and size147.
The paediatric population encompasses neonates, infants, children and adolescents, and within this
diverse age group, there is continual growth, development and maturation of organs, enzymes and
major body systems which affect PK and PD148,149. Furthermore, as with other special populations,
children are commonly administered medicines on an off-label basis, i.e. for indications they are not
licensed for150. Therefore, scaling is of particular importance in paediatric pharmacometric studies
to account for ontogeny, to help explain the heterogeneity and variability often observed in chil-
dren’s response to medication in comparison to adults, and to ultimately ensure that a safe, optimal
and efficacious dose is administered to a paediatric patient, no matter their age or size151–153.

In pharmocometric models, scaling is applied to individual PK and PD parameters using math-
ematical functions, often derived from biological prior information154,83. While scaling is more
commonly implemented in PK models153,155, it is increasingly being considered for PD, given its
key role in determining the potency, efficacy and therapeutic index of a drug80,156. Two frequently
used scaling approaches are maturation functions to account for the development of enzymes and
organs involved in drug metabolism and elimination, and allometric scaling to translate pre-clinical
PK data to humans or to extrapolate adult PK data to paediatrics157,158. In this thesis, the devel-
oping immune system was considered, to which mechanistic biological prior knowledge was applied
to scale PD parameters for age-related effects82,106,159,160.

2.1.4 Aim

This project aimed to develop a mechanistic NLME model to quantify CD19+ cell reconstitution
post-HSCT in children, scaling for age-related effects and estimating the time delay between HSCT
and CD19+ cell production by the bone marrow.

2.1.5 Objectives

• Clean patient electronic data of retrospective CD19+ cell counts and other covariates
• Use published prior biological knowledge to develop a B cell maturation function to allow

scaling of model parameters for age-related effects
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• Test appropriate mathematical functions to account for the time delay in CD19+ cell produc-
tion by the bone marrow after HSCT

• Construct NLME model of CD19+ cell reconstitution and identify factors that affect this
recovery

• Evaluate model by performing diagnostic checks to compare model-predicted and observed
data

2.2 Methods

2.2.1 Ethics Statement

Research conducted as part of this doctoral thesis involved human participants and was issued eth-
ical approval by the Great Ormond Street Hospital for Children (GOSH) NHS Trust for the project
“Extrapolation of haematopoiesis dynamics following cytotoxic insult to personalise paediatric drug
development” (original REC reference 17/LO/0008, later updated to 21/LO/0646 : Use of rou-
tine GOSH data for research, R&D reference 18IR20 ). In addition, this study utilised the GOSH
Digital Research Environment (DRE) with access to previously collected, non-identifiable clinical
information. This is covered under the ethical approval, 17/LO/0008 and 21/LO/0646. Written
informed consent from the participants’ legal guardian/next of kin was not required to participate
in this study in accordance with the national legislation and the institutional requirements.

2.2.2 Data

Retrospective electronic data from routine clinical practice were collected from children who un-
derwent HSCT at the Bone Marrow Transplant Unit at GOSH between 2000 and 2016. Three
inclusion criteria were used to identify patients; that they had:

• Measurements of CD19+ cell counts post-HSCT

• Undergone their first HSCT

• Not received rituximab for EBV reactivation post-HSCT (rituximab is a drug that depletes B
cells and would therefore confound attempts to build a model of ‘normal’ B cell reconstitution
post-HSCT in the absence of drugs affecting B cell dynamics).

The model-building dataset comprised CD19+ cell counts, measured in 106 cells/L of blood, from
359 children. A flow diagram of patients in the study is given in Figure 2.1. Data collected included
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patient-specific, donor-specific and transplant-specific variables as well as measurements of immune
cell subsets obtained by immunophenotyping using flow cytometry. Regarding sensitivity of the
assay to detect lymphocytes, 10,000 events were targeted in the lymphocyte gate. Data extraction
was performed by the GOSH DRE team and uploaded into the Aridhia DRE platform.

Figure 2.1: Flow diagram of study patients. GOSH, Great Ormond Street Hospital; BMT, Bone
Marrow Transplant; EBV, Epstein-Barr virus; HSCT, Haematopoietic stem cell transplant.

2.2.3 Non-linear Mixed Effects Modelling

Where data is in the form of repeated measurements from a group of individuals from a population
of interest, non-linear mixed effects (NLME) modelling allows the estimation of parameters both
at the population and individual levels75,161. Some key advantages of NLME models are their
ability to account for multiple levels of variability in a hierarchical framework and handle the often
challenging characteristic features of paediatric clinical data, which are its non-linearity, sparsity
and small sample sizes74.

The first component of an NLME model is the structural model, into which the effects of covariates
are incorporated, and the second component, the statistical model, accounts for sources of vari-
ability, of which there are two main types. Inter-individual variability (IIV), or between-subject
variability (BSV), is the difference between the mean population value of a parameter and the pa-
rameter value for an individual, and unexplained residual variability encompasses misspecification
errors, bias and noise161.
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To represent an NLME model in mathematical terms, let us consider a population NLME model
to describe the change in the dependent variable of interest, CD19+ cell count, y, with time.

yj = f(ϕ, tj) + ϵj , ϵj ∼ N (0, σ2), (2.1)

where yj is the jth observation of the CD19+ cell count y, f(ϕ, tj) is a non-linear differentiable
function based on the parameter vector ϕ and time tj , and ϵj is the residual error, normally
distributed with mean 0 and variance σ2.

The parameter vector ϕ refers to the fixed effects, i.e. parameters that have the same value for every
individual in the population. To allow for deviation of the individual parameter values from the
population parameter values (IIV), we can introduce random effects into the above model75. The
parameter vector for the ith individual, ϕi, is then given by

ϕi = µ + ηi, ηi ∼ N (0, Ω), (2.2)

where µ is the vector of fixed effects and ηi is the vector of random effect parameters for the ith
individual normally distributed as per the variance-covariance matrix, Ω. The diagonal elements of
Ω are the variances, and the off-diagonal elements are the covariances.

Combining the two equations above, the full mixed-effects model is then given by

yij = f(ϕi, tij) + ϵij , ϵij ∼ N (0, σ2), (2.3)

where the residual error is now ϵij , still normally distributed with mean 0 and variance σ2.

In pharmacometrics, various software are available to fit NLME models to data for parameter
estimation. In this thesis, we will use the Non-Linear Mixed Effects Modelling (NONMEM) software
version 7.4.3, which employs algorithms to maximise the likelihood function to provide estimated
values most likely to occur based on the observed data as well as their associated variability162.
When an algorithm is used to fit a model in NONMEM, an objective function value (OFV) is usually
provided as a measure of model fit, expressed as the -2 log likelihood. To instruct NONMEM to
perform parameter estimation, a control stream of commands must be supplied including details of
the model to be fitted and the model-building dataset. In line with the NLME framework described
above, some examples of labels used in a typical NONMEM control stream are θ (THETA) for the
fixed effects parameters, η (ETA) for the IIV, ω (OMEGA) for the variance of the IIV and σ

(SIGMA) for the variance of the residual error163,164.
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2.2.3.1 Covariate Model Building

To identify the factors influencing CD19+ cell reconstitution, the relationships between various
covariates and model parameters can be tested and quantified. Covariates can be categorical (di-
chotomous and polychotomous) or continuous, and can be parameterised using various functions.
If the number of covariates is low, they may be tested manually by adding a covariate to a param-
eter one at a time to see if there is a corresponding decrease in OFV. However, a more commonly
used automated method for covariate model-building is stepwise covariate modelling (SCM) imple-
mented in Perl-speaks-NONMEM (PsN)165. In the forward search of the SCM approach, covariates
are added into the base structural model one at a time to each parameter in a stepwise manner,
based on statistical significance (p < 0.05). This creates a new model for every parameter-covariate
relationship being tested. Each of these new models is tested in a univariate manner with the null
hypothesis that the covariate has no significant effect on the parameter. This continues until the
addition of further covariates does not result in a significant improvement in the fit. In this way,
the models are nested within the base model. During the subsequent backward elimination step,
covariates identified as significantly improving the model fit are tested again at a higher significance
level (p < 0.01) and excluded if they no longer significantly improve the fit.

2.2.3.2 Handling Data Below the Lower Limit of Quantification

Every assay has a lower limit of quantification (LLOQ) below which measurements cannot accurately
or precisely be recorded as the assay is no longer sensitive. The assays used in clinical laboratories
to measure CD19+ cell counts are no exception. When measurements are below the LLOQ, they are
recorded as below limit of quantification (BLQ) and various methods are available to appropriately
handle BLQ data. During immune reconstitution post-HSCT, BLQ measurements are common
for all immune cell subsets, especially in the early post-HSCT period. In total, seven methods of
dealing with BLQ data in pharmacometrics have been proposed166. During model-building, both
the M5 and M3 methods were tested. The M5 method replaces all BLQ observations by LLOQ/2
while with the M3 method, the probability that the BLQ observations are indeed BLQ is calculated
by integrating the probability density function between minus infinity and the LLOQ.

2.2.3.3 Model Evaluation

After building an NLME model, it is important to identify any model misspecification and biases.
This is done by comparing the observed data to the model-predicted data (goodness-of-fit), testing
assumptions made in the model-building process and simulating data using the final model. The
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most common method is to use graphical evaluation to produce a suite of prediction-based and
simulation-based diagnostic graphs167,168.

For the prediction-based diagnostic plots, a typical starting point is to plot the observed data (DV)
against both the population predictions (PRED) and individual predictions (IPRED). If the model
is an adequate description of the data, the data points should be scattered along the line of unity
for both graphs. To test the assumption that the residual error follows a normal distribution with a
mean of zero, the conditional weighted residuals (CWRES) are plotted against PRED or time, with
the majority of residuals expected to be dispersed between ±2 standard deviations of the mean and
to be independent of time. Similarly, the individual weighted residuals (IWRES) can be plotted
against IPRED to detect issues with the error model.

Regarding the simulation-based diagnostics, the most used graph of this type is the visual predictive
check (VPC)169. It is produced by using the model-estimated parameter values to simulate a
large number of datasets, followed by plotting the 95% prediction intervals around the simulated
percentiles (usually as shaded areas) and comparing these to the observed percentiles (usually as
lines). An alternative to the traditional VPC is the prediction-corrected VPC (pcVPC), which
scales the observations and simulations using the model predictions170.

To check the reliability of parameter estimates, their relative standard error (RSE) is calculated
and a bootstrap analysis can be performed. This technique samples the model-building dataset
many times with replacement then fits the model to each of the samples thereby producing many
parameter estimates. The median parameter estimate and its 95% confidence interval are then
reported and compared with the original model estimates.

2.2.4 Model Building

2.2.4.1 B Cell Maturation Function

The age distribution of the 359 patients in the model-building dataset spanned 0-17 years. In
addition to this inter-individual variability in age, the post-HSCT period when CD19+ cell re-
constitution occurs is parallel to the time period of ontogenic development and maturation of the
immune system in children. Therefore, the effect of age must be considered at the level of the
structural model to scale the observed CD19+ cell dynamics for age.

First, let us consider the change in CD19+ cell count (A) over time (t), which can be described by
a turnover model as follows;

dA

dt
= λ − µA, (2.4)
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where λ is the zero-order CD19+ cell proliferation rate and µ is the first-order CD19+ cell death
rate. Therefore at steady-state, when dA

dt = 0, the CD19+ cell count is given by

A = λ

µ
, (2.5)

according to which, the CD19+ cell count would be identical for all individuals irrespective of
their age. However, when looking to prior biological knowledge, this is not the case. Many stud-
ies have measured CD19+ cell counts in healthy adults and children, and described a decline in
the frequency and absolute number of total CD19+ cell counts with age that then stabilises in
adulthood54,58,59,119,171. In addition, quantification of the cell proliferation marker Ki67 in naive B
cells of healthy children has shown that Ki67 declines with age suggesting that CD19+ cell turnover,
µ, would also decrease with age thereby, in theory, increasing CD19+ cell count146. Therefore, it
can be deduced that the proliferation of CD19+ cells, λ, must also decrease with age for there to
be a net decrease in total CD19+ cell count.

Similar to CD19+ cells, CD4+ cell dynamics exhibit a relationship with age60,135,145. Bains et al
derived the following expression for the export of naive CD4+ T cells from the thymus per day for
a person at age t;

θ(t) = y(t)N(t)τ
∆(c − τ) , (2.6)

where θ(t) is the number of CD4+ cells exported by the thymus per day , y(t) is the fraction of naive
CD4+ cells expressing Ki67, N(t) is the total naive CD4+ cell population, △ is the duration of Ki67
expression, and c and τ are constants representing the average TREC content of the thymocytes
entering the peripheral naive pool and of the peripheral naive CD4+ cell pool respectively136. N(t)
is estimated from v(t)V (t)

0.02 , where v(t) is the naive CD4+ cell count per unit volume of blood and
V (t) is the blood volume, under the assumption that 2% of the cells circulating in the blood are
lymphocytes172.

From the equation above, omitting the constants gives the following expression:

θ(t) = y(t)N(t). (2.7)

Payne et al directly estimated the equivalent of the parameters described above for B cells by per-
forming flow cytometry on B cells from the peripheral blood of healthy and HIV-infected South
African children146. On the basis that B cell development shares similarities with T cell devel-
opment, they then applied Bains et al’s mathematical model for thymic export of naive CD4+
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cells to calculate naive B cell output from the bone marrow in HIV-uninfected and HIV-infected
children146. Based on Bains et al and the age-dependent nature of CD19+ cell dynamics, our aim
was to develop a B cell maturation function for the effect of age on naive CD19+ cell output from
the bone marrow just as Bains et al developed a T cell maturation function to allow for age to
affect the naive CD4+ cell output from the thymus. Ultimately, this would allow the scaling of the
rate constant of CD19+ cell proliferation, λ, and the rate constant of CD19+ cell death, µ for age.

Since CD19+ cells are being measured as a concentration, the units are in cells per unit volume of
blood, i.e. λ = o

V (t) , where o is the number of CD19+ cells exported by the bone marrow per day, λ

is the zero-order CD19+ cell proliferation rate and V (t) is the blood volume. As M(t) = w(t)V (t)
(where M(t) is the total naive CD19+ cell population and w(t) is the naive CD19+ cell count
per unit volume of blood), when we divide by V (t) to obtain cells/volume, we have the following
expression for λ:

λ(t) α z(t)w(t), (2.8)

where z(t) is the fraction of naive CD19+ cells expressing Ki67.

Regarding µ, it should be scaled for the fraction of naive B cells expressing Ki67 therefore it is
multiplied by z(t).

To build the B cell maturation function, expressions were derived for w(t), the naive B cell count
per unit volume of blood at age t, and z(t), the fraction of naive B cells expressing Ki67 at age t.
For w(t), data were extracted from a published figure illustrating change with age in the count of
naive (CD27− IgD+ ) B cells per µl of blood, seen in Figure 2.254.

Using the nls() function in the stats package in the R environment, non-linear least squares was
used to fit the data to three variations of an exponential decay model; mono-exponential decay

A(t) = β0exp{−β1t}, (2.9)

mono-exponential decay with constant

A(t) = β0exp{−β1t} + β2, (2.10)

and bi-exponential decay
A(t) = β0exp{−β1t} + β2exp{−β3t}. (2.11)

Model fit was assessed using the Akaike Information Criterion (AIC), and parameters from the



CHAPTER 2. B CELL RECONSTITUTION AFTER HSCT 47

Figure 2.2: Decrease in absolute number of CD27- IgD+ naive B cells (per microlitre blood) with
age. Data points extracted from Morbach et al54, blue line is the local regression curve and grey
area is the 95% confidence interval.
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model with the lowest AIC value were selected to form the following expression for change in naive
B cell concentration with age, w(t),

w(t) = 868 · e(−0.187·t) + 200
200 . (2.12)

For z(t), the fraction of naive B cells expressing Ki67 with age, experimental data were available
from Payne et al from quantification of Ki67 in naive B cells of healthy South African children
shown in Figure 2.3146.

Figure 2.3: Decline in fraction of naive B cells expressing Ki67 with age in healthy South African
children. Data from Payne et al146, blue line is local regression curve and grey area is 95% confidence
interval.

Model fitting and selection was performed as described above for the Morbach data, providing the
expression below,

z(t) = 13.9 · e(−7.25·t) + 4.55
4.55 . (2.13)

While the product of both of these expressions form the complete B cell maturation function, the
two individual components, w(t) and z(t), can be thought of as maturation functions in their own
right. Of note, both of the maturation functions are relative to the constant count of naive B cells
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for adults and constant fraction of naive B cells expressing Ki67 for adults, and are therefore given
as a proportion of the adult model.

The different models fitted to both datasets and their AIC values are given in Table 2.1; the
mono-exponential decay model with a constant model best described the data for both maturation
functions.

Table 2.1: Models tested for B cell maturation function. w(t) is the
naive B cell count per µL blood at age t. z(t) denotes the fraction
of naive B cells expressing Ki67 at age t.

Models Tested AIC w(t) AIC z(t)

Mono-exponential decay 2610 1649
Mono-exponential decay with constant 2598 1581
Bi-exponential decay 2600 1583

2.2.4.2 Delay Function

Following HSCT, there is a delay before bone marrow output recovers and resumes de novo pro-
duction of B cells98,118. To represent this biological delay in the mathematical model, two functions
were considered, each introducing two new parameters. The first was a previously published sig-
moidal function by Hoare et al originally used in the context of post-HSCT recovery of thymic
output106and the second was a Hill equation. The equations of the functions and their associated
parameters are summarised in Table 2.2.

Table 2.2: Functions tested to estimate delay in recovery of bone
marrow output of CD19+ cells after HSCT.

Equation Parameters Description

y = 1−exp(−2t/λh)

1+exp(λr(1−t/λh)) λh (days)
λr

Time to recovery of bone marrow
output of CD19+cells
Rate of recovery in bone marrow
output of CD19+ cells
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Equation Parameters Description

y = tγ

tγ +T 50γ T50 (days)
γ

Time to half-maximal bone marrow
output of CD19+ cells
Steepness of slope of CD19+ cell
recovery

2.2.5 Software

Retrospective electronic data were extracted, anonymised and uploaded by the DRE team into
a secure online Aridhia workspace created specifically for this doctoral research on the Microsoft
Azure Cloud platform. Data cleaning, data exploration, data visualisation and model evaluation
were carried out using R statistical software173, version 4.2.0, namely using the tidyverse collection
of packages174 and the xpose4 package175,176. Models were implemented in NONMEM version
7.4.3, and details of subroutines and algorithms used are given in each chapter162. Perl speaks
NONMEM (PsN) version 4.8.1 was used for covariate model building, producing visual predictive
checks (VPCs) and performing non-parametric bootstrap for model evaluation165,177.

2.3 Results

2.3.1 Patient Characteristics

In total, 3126 measurements of CD19+ cell counts from 359 children (median age at HSCT, 3.02
years; range, 0.08-17 years) were used for model-building, as visualised in Figure 2.4. The study
period was for two years post-HSCT therefore a cut-off of 730 days post-HSCT was used for mea-
surements of CD19+ cell counts. The patients were representative of a typical paediatric HSCT
cohort, with a range of HSCT indications including malignant and non-malignant conditions, varied
sources of stem cells, and different types of donor and conditioning regimen. Patient characteristics
are summarised in Table 2.3.
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Table 2.3: Patient characteristics for model-building dataset for
CD19+ cell model. PID, primary immunodeficiency; NMH, non-
malignant haematological ; MH, malignant haematological; BM,
bone marrow; PBSC, peripheral blood stem cell; CB, cord blood;
MAC, myeloablative conditioning ; MIC, minimal intensity condi-
tioning; RIC, reduced intensity conditioning.

Total Patients (n = 359)

Age (years), median (range) 3.0 (0.08 - 17.0)
Gender, n (%)
Female 132 (36.7)
Male 227 (63.3)
Diagnosis, n (%)
PID 160 (44.6)
NMH/MH/Other 199 (55.4)
Donor Type, n (%)
Matched 259 (72.1)
Mismatched 100 (27.9)
Cell Source, n (%)
BM 167 (46.5)
PBSC 130 (36.2)
CB 62 (17.3)
Conditioning, n (%)
MAC 161 (44.8)
MIC/RIC/None 198 (55.2)
Serotherapy, n (%)
Yes 90 (25.1)
No 269 (74.9)

2.3.2 Structural Model

Upon incorporating the B cell maturation function and the delay function, the final structural
model was given by:

dA1

dt
= λ ·

(
T γ

T γ + T50γ

)
− µ(A1), (2.14)
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Figure 2.4: Raw data used for model-building. Each coloured line is an individual patient and the
black dotted line represents the LLOQ of the assay used to measure CD19+ cell counts (10 x 106

cells/L). The thick black line is the local regression curve, and the grey shaded area is the 95%
confidence interval.
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where λ = TVλ ·w(t) ·z(t) and µ = TVµ ·z(t), i.e. the B cell maturation function was applied a priori
to λ and µ. A1 represents the central B cell compartment. In total, there were four parameters to
be estimated: λ, CD19+ cell production rate constant; µ, CD19+ cell death rate constant; γ, Hill
exponent for steepness of slope of CD19+ cell recovery; and T50, time to half-maximal output of
CD19+ cells by the bone marrow. The model has been depicted as a schematic in Figure 2.5.

Figure 2.5: Schematic of final model of CD19+ cell reconstitution. The central compartment
represents the concentration of CD19+ cells as measured in the peripheral blood at time t (days)
after HSCT. New B cells produced by the bone marrow enter at zero-order rate λ and die at first-
order rate µ. The B cell maturation function was applied to λ and µ to scale for age-related effects,
and a sigmoidal Hill-type function was used to account for the delay in bone marrow output after
HSCT.

2.3.3 Model Fitting

The one compartment turnover model was fitted to untransformed CD19+ cell counts using the
Laplacian conditional estimation with interaction algorithm in NONMEM version 7.4.3, with the
ADVAN13 subroutine. The initial condition of the B cell compartment was set to 5 x 106 cells/L
(half of the LLOQ) on the day of HSCT. To handle the CD19+ cell counts that were BLQ (n
= 1111, 31.8%), both the M5 and M3 methods were tested, with the M3 method resulting in a
greater reduction in OFV. A combined additive and proportional model best described the residual
error. Both the Hill-type sigmoidal and Hoare functions were tested as possible mathematical rep-
resentations of the delay in bone marrow output post-HSCT, with the sigmoidal Hill-type function
producing a greater reduction in OFV.

2.3.4 Parameter Estimates

The parameter values estimated from the model-building dataset have been given in Table 2.4. Of
note, the setpoint parameter was not estimated from the data but derived by dividing λ by µ to
provide a measure of the number of CD19+ cells at steady-state. As another measure of CD19+

cell turnover, a half-life for CD19+ cells of 46.2 days was calculated using the estimate of µ (t1/2 =
ln2/µ), with considerable variability for individual patients (range, 3.2 - 359.6 days). The model
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predicted a mean delay of approximately two months for a child of median age 3.02 years to recover
their bone marrow output after HSCT to 50% of its maximum capacity.

Table 2.4: Estimated parameter values. Setpoint parameter de-
rived by dividing λ by µ. λ, CD19+ cell production rate constant;
µ, CD19+ cell death rate constant; γ, Steepness of slope of CD19+

cell recovery; T50, Time to half-maximal output of CD19+ cells
from bone marrow; RSE, relative standard error; BSV, between-
subject variability; CI, confidence interval.

Parameter (Units)
Estimate
(%RSE)

%BSV
(%RSE)

Shrinkage
(%)

Bootstrap Median
(95% CI)

Setpoint (x 106 cells/L) *112 (-) - - -
λ (x 106 cells/day) 1.68 (2.45) 115.76

(0.0011)
24.1 1.68 (1.36 - 2.05)

µ (cells/day) 0.015 (3.00) 113.58
(0.0061)

34.3 0.015 (0.013 - 0.018)

γ 4.17 (0.49) - - 4.17 (4.05 - 4.29)
T50 (days) 58.9 (1.07) 137.48

(0.0033)
32.1 58.3 (44.0 - 64.0)

The final parameter estimates tabulated above for the current model of CD19+ cell reconstitution
post-HSCT in children and the final parameter estimates from a published model of CD4+ cell
reconstitution post-HSCT in children106 were used to plot the Hill-type and Hoare delay functions
incorporated into these models respectively (Figure 2.6).

2.3.5 Covariate Effects

The covariates tested were a mixture of factors pertaining to the patient, donor, transplant, and drug
administrations. Continuous covariates considered were age and CD4+ T cell count. Categorical
covariates considered were HSC source, serotherapy, gender, diagnosis of primary immunodeficiency,
matched donor and myeloablative conditioning. All categorical covariates were dichotomous, with
values set to 0 for the reference classification and 1 for the other classification. All parameter-
covariate relationships were tested, and effects of covariates found to be significant were linearly
parameterised by multiplication of the parameter by (1 + effect size).

Three covariates were found to significantly affect T50 and were consequently incorporated into the
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Figure 2.6: Proportion of thymic output/bone marrow output with time since HSCT. Blue line
represents bone marrow output using Hill-type delay function in current model of CD19+ cell
reconstitution post-HSCT and red line represents thymic output using Hoare function in model of
CD4+ T cell reconstitution post-HSCT106.
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base structural model. The three covariates are summarised in Table 2.5, and elaborated in turn
below.

Table 2.5: Covariate effects identified using SCM. PID, primary
immunodeficiency; MAC, myeloablative conditioning; RSE, rela-
tive standard error; CI, confidence interval.

Parameter Covariate Effect Size (% RSE) Bootstrap Median (95% CI)

T50 PID -0.55 (0.16) -0.55 (-0.595 - to -0.147)
T50 MAC 0.17 (10.12) 0.17 (0.039 - 0.32)
T50 Matched Donor -0.001 (25.75) 0.007(-0.12 - 0.079)

PID

Of the 359 study patients, 160 (44.6%) had an HSCT indication of PID and were identified as having
a significantly different pattern of long-term CD19+ cell reconstitution compared to patients with
other diagnoses. While the bone marrow of the typical patient required 58 days to recover to 50%
of its maximum CD19+ cell production capacity, patients with PID required 32 days, i.e. a decrease
of 55%, to recover their bone marrow output to the same extent.

MAC

The time taken to recover 50% of bone marrow output was also affected by the type of conditioning
regimen. Patients who received a MAC regimen (n = 161, 44.8%) took approximately 68 days to
recover their bone marrow output to 50% capacity. This was a 17% increase compared to patients
who received either RIC, MIC or no conditioning regimens who took 58 days.

Matched Donor

More than two-thirds of the study patients received HSCs from a HLA-matched donor (n =259,
72.1%). These patients were found to have a statistically significant but biologically negligible
difference (an increase of 0.5 days) in the time taken to recover their bone marrow output to 50%
capacity.

2.3.6 Model Evaluation

The series of goodness-of-fit plots in Figure 2.7 and the age-stratified prediction-corrected visual
predictive checks (pcVPC) in Figure 2.8 were produced to evaluate the model. To construct the
pcVPC, 200 datapoints were simulated from the parameter values estimated by the model. The
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patients in the model-building dataset consisted of infants (< 2 years, n = 148), children (≥ 2 years
and < 12 years, n = 189), and adolescents (≥ 12 years, n = 22) therefore the pcVPC was stratified
by age to ascertain the performance of the B cell maturation function. The fraction of data that
were BLQ of 10 x 106/L are also visualised as part of the pcVPC.

In general, model evaluation indicated no discrepancies between the observed data and model-
predicted data. On first glance, the local regression curve of the plot of observed data against
population predictions may suggest refinement of the structural model, but can be explained by
the inclusion of the BLQ observations in the plot. The plot of observed data against individual
predictions demonstrated a good fit, with data clustering more along the line of unity. Regarding
the residual error model, the plot of the conditional weighted residuals (CWRES) against time
since HSCT showed a normal distribution with a mean of zero, with most of the data between ±2
standard deviations of the mean and no pattern developing with time since HSCT. In addition, the
plot of the absolute individually weighted residuals (IWRES) against individual predictions depicts
most of the data points scattered along a flat line, with some perturbations due to the inclusion of
the BLQ data.

The pcVPC demonstrates consistency between the observed data and simulated percentiles. There
is considerable variability observed for adolescents due to the low number of patients in this age
group compared to infants and children.

Lastly, the model parameter values were estimated with good precision, indicated by the low stan-
dard error. This was corroborated by performing a non-parametric bootstrap (n = 1000), which
generated median values comparable to the parameter estimates.
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Figure 2.7: Goodness-of-fit plots. A) Observed CD19+ cell counts vs Population Predicted CD19+

cell counts. B) Observed CD19+ cell counts vs Individual Predicted CD19+ cell counts. C) CWRES
vs Time. D) |IWRES| vs Individual Predicted CD19+ cell counts. Blue lines are the local regression
curves and red datapoints are those that were BLQ.
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Figure 2.8: Prediction-corrected Visual Predictive check for final model stratified by age groups in
order of infants, children and adolescents. Black dots are observed data and the solid red line is
the observed median. The dotted red lines are the observed 2.5th, 50th and 97.5th percentiles and
the grey shaded area are the 95% prediction intervals. The bottom part of the panel shows the
proportion of the total data that were BLQ.
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2.4 Discussion

The majority of previous studies of post-HSCT immune reconstitution have focussed on T cells
and adult patient cohorts therefore we aimed to address the need to better understand B cell
reconstitution in children post-HSCT using a modelling approach. To the best of the author’s
knowledge, this is the first mechanistic NLME model of CD19+ B cell reconstitution post-HSCT in
children. Prior biological knowledge was integrated into the model to scale for age-related effects
and to quantify the delay in recovery of bone marrow output following HSCT. In addition, the effect
of clinically relevant covariates was assessed, highlighting the model’s potential to be used in clinical
management as a tool to predict individualised patient trajectories of CD19+ B cell reconstitution.

In general, the model estimated mean parameter values that were biologically plausible. Previous
in vivo labelling studies have investigated B cell kinetics in humans in health and disease178,179.
Assuming zero-order proliferation and first-order death, when the mean proliferation and disappear-
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ance rates reported by Macallan et al for young healthy adults (35 years or younger) is multiplied
by the absolute CD19+ B cell count measured by Morbach et al for 19-25 year olds, we obtain av-
erage CD19+ B cell production and turnover rates of approximately 3.06 x 106 cells/day and 0.017
cells/day respectively for young healthy adults54,178. Notably, the derived turnover rate aligns with
the model estimate of 0.015 cells/day (95% CI:0.013-0.018) for µ, while the derived proliferation
rate is higher than the model-estimated value of 1.68 x 106 cells/L(95% CI:1.36-2.05) for λ. This
perceived difference may be an artefact of the modelling methodology employed, which the authors
indicated may result in higher proliferation rates, and the small sample size (n = 8) as well as
the lack of scaling of B cell proliferation and death rate parameters178. Similarly, Defoiche et al
did not observe a significant difference in B cell kinetics between young and elderly healthy adults,
again likely attributed to the absence of scaling to account for age-related effects179. Indeed, the
final NLME model estimated a mean parameter value of 4.55 x 106 cells/L for λ when the B cell
maturation function was omitted, highlighting its essential role in scaling B cell dynamics for age.
Interestingly, our estimate for µ of 0.015 cells/day in children falls at the lower end of a range of B
cell turnover rates measured in animals, namely sooty mangabeys (mean 0.018 cells/day)180, rhesus
monkeys (mean 1.8 cells/day)181, mice (0.032-0.4 cells/day)182 and sheep (0.09 cells/day)183, per-
haps suggesting that elements of the mechanisms governing B cell homeostasis may be conserved
across species. Furthermore, the assumption that CD19+ B cell turnover follows a pattern of first-
order kinetics is supported by both experimental and modelling studies184,185. In addition, the
derived mean turnover half-life for CD19+ B cells of 46.2 days (range, 3.2 - 359.9 days) is consistent
with several reports that observed a half-life ranging from 12 days to 9 weeks178,179,184.

Despite the paucity of modelling studies of B cell reconstitution post-HSCT in children, we build
on the recent findings of van der Maas et al, who used linear mixed effects modelling to identify
donor age, recipient age and time after HSCT as significantly influencing B cell reconstitution in
children post-HSCT186. With comparable inclusion criteria, the authors investigated the B cell
counts of children from 0-18 years for up to two years post-HSCT, also excluding patients who
received rituximab186. We have developed their work by including a B cell maturation function to
account for the effect of age, used a non-linear modelling approach on a larger paediatric cohort
(present model, n = 359; van der Maas et al, n = 233) and considered additional factors influencing
B cell reconstitution using covariate model building.

To construct the B cell maturation function, work by Payne et al was leveraged, who were the first
to quantify naive B cell output in HIV-uninfected and HIV-infected children by combining KREC
levels, Ki67 expression and measurements of naive B cell counts146. By applying the authors’
proposed model of naive B cell output to the post-HSCT setting, inferences on bone marrow output
post-HSCT could be made and related to CD19+ cell reconstitution, demonstrating its clinical
relevance in this context146. With respect to the NLME model, the T50 parameter, estimated to be



CHAPTER 2. B CELL RECONSTITUTION AFTER HSCT 63

58 days, represented the time taken for the bone marrow to recover to 50% of its maximal output
and is therefore a measure of long-term CD19+ B cell reconstitution. This finding is in line with
experimental studies that observed CD19+ transitional B cells first appearing in the peripheral
blood between one to two months post-HSCT98,118. Furthermore, the time delay of 58 days is
consistent with KRECs measurements that correlated with the appearance of transitional B cells,
indicative of B cell neogenesis at that timepoint137,139,187.

Using the SCM method, three covariates were identified as significantly affecting CD19+ B cell re-
constitution; PID diagnosis, MAC regimen and a matched donor. Patients with PID took 32 days
to recover 50% of their maximum bone marrow output while patients with other diagnoses took 58
days. This is largely explained by the difference in age between the two patient groups; non-PID
patients had a median age of 4.85 years at HSCT while PID patients had a much younger median
age at HSCT of 1.75 years, which coincides with the age when peak bone marrow output is expected
to occur in line with Payne et al146. Therefore, their much faster reconstitution can largely be at-
tributed to the established biological mechanism of increased bone marrow at younger ages54,119,171.
In addition, the majority of PID patients (n = 121, 75.6%) did not receive lymphocyte-depleting
serotherapy drugs, which have been reported to delay B cell reconstitution by 54 days98, most likely
due to their long half-lives188,189. Lastly, PID patients received either RIC, MIC or no conditioning,
which are collectively less toxic to the bone marrow than MAC. Taken together, this may result in
PID patients having a higher initial concentration of B cells at HSCT compared to their non-PID
counterparts.

Another significant covariate was having a MAC regimen, which marginally increased the time to
recover bone marrow output from 58 days to 68 days. A large proportion of patients who received
MAC also had a stem cell source of BM (n = 100, 62.1%), which has been shown in some studies
to result in slower B cell reconstitution compared to PBSC or CB seemingly corroborating our
finding62,66. In contrast, others have reported favourable B cell reconstitution with a MAC regimen
due to high donor chimerism therefore the interpretation of this result remains unclear126,127.

Covariate model building also revealed having a matched donor to be statistically significant, al-
though its biological significance requires further investigation, given the negligible increase of 0.5
days to recover bone marrow output. It does not seem to be a question of selection bias (72% of
patients had a matched donor, n = 259) but perhaps indicates that a more granular classification
of donor type beyond the dichotomous classification used would be warranted to correctly delineate
the effect of donor type190.

In summary, a novel mechanistic NLME model of CD19+ B cell reconstitution post-HSCT in
children has been developed. Using relevant prior knowledge of immunobiology, a B cell maturation
function was constructed to scale B cell dynamics for age, which enables the application of this
model to data across the human lifespan. In addition, the model has potential for use in other
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clinical scenarios where B cell recovery is expected after an insult to the immune system, for which
disease-specific or mechanism-specific parameters that are biologically relevant may be added in
place of the HSCT-related parameters. Despite being a single-centre study, the large paediatric
cohort and resulting rich dataset allowed the estimation of parameters and covariates involved in
CD19+ B cell reconstitution with good precision. Nonetheless, there are limitations to this work.
Although a portion of the data were BLQ (n = 1111, 31.8%), these were handled well using the M3
method. The model is yet to be validated using previously unseen patient data, whether internal
data from GOSH or external data from another HSCT centre, which is necessary to assess predictive
performance. The age-stratified pcVPC illustrates that the B cell maturation function accounts for
age differences and that the simulated data captures the overall trend of the observed data. Model
validation should help to reconcile the variability observed for the adolescent age group, of which
there were only 22 in the dataset. Another possible limitation arises from the data used to construct
the Ki67 component of the B cell maturation function, built using data from Ki67 quantification
in naive B cells of healthy South African children146. Recent evidence has suggested variation in
the maturation of the immune system depending on geographical location, attributed to differences
in environmental stimuli and pathogens191,192. This may result in healthy South African children
having more activated immune systems and could warrant further refinement of the maturation
function to ensure consistency with the naive B cell component built using naive B cell counts
measured in European children.



Chapter 3

Rituximab Pharmacodynamics in
EBV Reactivation

3.1 Introduction

3.1.1 Epstein-Barr Virus

First discovered in 1964 in lymphoma samples from children, Epstein-Barr virus (EBV), also known
as human herpesvirus 4, is a member of the Herpesviridae family of viruses well-known for their
propensity to establish lifelong infections in the host193. Other notable members include hu-
man CMV and Varicella zoster virus. In humans, EBV is transmitted via bodily fluids, blood
transfusions and organ transplantation, and is the cause of infectious mononucleosis, B cell lym-
phomas and leukaemias such as Burkitt lymphoma and epithelial cancers such as nasopharyngeal
carcinoma194–197. Its life cycle is characterised by lytic and latent phases of viral replication,
with 90% of adults harbouring an asymptomatic latent EBV infection, usually acquired during
childhood198. In terms of its genetic structure, an EBV virion has a double-stranded DNA genome
enclosed by a protein capsid, which is surrounded by a protein tegument199. The outermost struc-
tural features of the virion are the envelope proteins found on its surface, which are responsible
for attachment and entry into its target cells, epithelial cells and B cells, followed by uncoating,
replication, assembly and release of the virus to infect further host cells199. Examples of interations
between key viral envelope glycoproteins with surface proteins of B cells include gp350 with CD21
and gp42 with MHC Class II200,201. Upon primary infection, EBV activates the B cell growth
programme to trigger B cell proliferation, and immunocompetent hosts respond in parallel via the
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priming of naive T cells by APCs that recognise EBV antigen as foreign peptide198,202. As a result,
naive T cells differentiate into EBV-specific cytotoxic T cells and destroy the EBV-transformed
blasting B cells thereby containing further propogation of the virus. To evade the host immune
response and establish persistence, EBV expresses latency-associated genes to halt lytic replication
and allow the virus to reside in resting memory B cells in peripheral blood thus maintaining a stable
long-term viral reservoir27,199,203.

3.1.2 EBV Reactivation

In EBV-seropositive individuals, a circulating pool of EBV-specific cytotoxic T cells are sufficient
to control periodic reactivations204. However in immunocompromised patients, reduced immune
surveillance due to a reduced number of cytotoxic T cells leads to an opportunistic outgrowth of
blasting EBV-infected B cells and consequently, a reversion to lytic replication and therefore reacti-
vation of EBV. In the post-HSCT setting, EBV reactivation is the leading cause of post-transplant
lymphoproliferative disorder (PTLD), with patients at higher risk if they receive selective T cell
depletion with ATG, a RIC regimen, which usually incorporates ATG, or have low histocompat-
ibility with their donor205–207. For this reason, EBV is monitored on a regular basis during the
follow-up period post-HSCT, especially in the first three months when reactivation is most likely to
occur. In the case of PTLD, EBV DNA can exist in both cell-associated and cell-free forms there-
fore sampling peripheral whole blood ensures that both forms are captured to allow for accurate
measurement of EBV levels; EBV DNA is measured using quantitative real-time polymerase chain
reaction (qPCR)-based assays followed by quantification of viral load (VL) using cycle threshold
(Ct) values208.

While it is widely appreciated that elevated EBV VL is informative in diagnosing PTLD, there is
no international agreement on the threshold of EBV VL that must be exceeded to begin treatment
and it continues to be debated what order of magnitude of elevation in EBV VL is clinically
meaningful209,210. VLs are not a direct measure of the amount of virus in the blood at any one time-
point, as they are calculated indirectly from Ct values from qPCR assays which may be sufficiently
reliable to monitor viral trends over time but may be inaccurate for accurately detecting PTLD
onset208. In addition, there is no clear consensus on when, how often or which blood component
is best to monitor such that VL measurements from two different laboratories cannot be compared
due to inter-laboratory technical differences such as the viral reference strain used to generate
standards or the DNA extraction method used210. In light of this, the World Health Organisation
published the first International Standard for Epstein-Barr virus for Nucleic Acid Amplification
Techniques to aid standardisation of assay results211. The predictive value of EBV viral loads is
improved when considered in conjunction with cut-off thresholds for circulating T cells and absolute
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lymphocyte count therefore they remain a mainstay of current treatment schema for the diagnosis
and clinical management of EBV-related PTLD. No antiviral drugs or vaccines are available to cure
EBV. Anti-inflammatory drugs can be prescribed to alleviate symptoms of pain and fever, and in
patients with significant EBV viraemia post-HSCT, therapy is usually a combination of rituximab
administration and reduction of immunosuppression, with EBV-specific CTLs or chemotherapeutic
drugs considered in progressive cases208.

3.1.3 Rituximab

Rituximab is a chimeric monoclonal antibody that interacts with the CD20 transmembrane protein
on the surface of B cells and targets it for depletion212. Originally approved in 1997 for the treat-
ment of Non-Hodgkin’s B cell lymphoma, rituximab was the first anti-cancer therapeutic antibody
licensed by the Food and Drug Administration (FDA) in the United States, and was licensed a
year later by the European Medicines Agency (EMA)213. It is now widely prescribed for a range of
other conditions including B cell leukaemias and autoimmune diseases, and was recently approved
for selected paediatric indications for the first time214. In addition, rituximab is commonly and
increasingly prescribed for indications not covered by its licence, i.e. on an off-label basis215,216,
including for EBV reactivation post-HSCT in both adults and children217–224. Manufactured by
Roche, rituximab is marketed as MabThera in Europe and as Rituxan in the United States, China
and Japan. The current licensure for rituximab has been summarised in Table 3.1.

Table 3.1: Current licensure for rituximab. EMA, European
Medicines Agency; FDA, Food and Drug Administration. NHL,
Non-Hodgkin’s B cell lymphoma; CLL, Chronic lymphocytic
leukaemia; RA, Rheumatoid arthritis; MPA, Microscopic polyan-
gitis; GPA, Granulomatosis with polyangitis; PV, Pemphigus vul-
garis; DLBCL, Diffuse large B cell lymphoma; BL, Burkitt’s lym-
phoma; BAL, B-cell acute lymphoma.

EMA Approval -
Patent Expiry

FDA Approval -
Patent Expiry Target Population Indications

1998 - 2013 1997 - 2016 Adult NHL, CLL, RA, MPA, GPA,
PV
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EMA Approval -
Patent Expiry

FDA Approval -
Patent Expiry Target Population Indications

2020 - 2019 - Paediatric MPA, GPA; previously
untreated advanced stage
CD20+ DLBCL, BL, BAL,
BLL ( ≥ 6 months to <18
years)

Following the expiration of rituximab’s patent in 2013 and 2016 in Europe and the United States
respectively, biosimilars of rituximab are emerging in clinical use225. A biosimilar is defined as a
biological product that is highly similar to and has no clinically meaningful differences from an
existing approved ‘reference’ product226. The administration of rituximab biosimilars for children
with rheumatological disease will be explored in Chapter 5. Details of the PK and PD of rituximab
are given below.

3.1.3.1 Pharmacokinetics

The structure of rituximab is comprised of a human-derived immunoglobulin G-1 (IgG-1) constant
region and a murine-derived variable region, which has the capacity to bind specifically to two
CD20+ antigens via its antigen-binding domains (Figure 3.1). The baseline B cell count determines
the level of circulating target CD20+ antigen available to bind to rituximab hence greatly influences
its efficacy. Given its chimeric nature, rituximab has the potential to trigger production of anti-drug
antibodies227although this remains as a low risk, with immunogenicity reported as <1% to 10%
in the majority of cases228. It is usually administered via intravenous infusion, with a single dose
constituting 375mg/m2 and a typical regimen consisting of up to four doses given on a weekly basis.
Regarding its absorption, rituximab is absorbed through lymph and blood vessels due to its size
of 150kDa229 and is transported via convection to its pharmacological target, the CD20+ antigen
on the surface of B cells230. Circulating B cells are therefore targeted directly. The volume of
distribution of rituximab at steady-state has been reported to range from 6.62 - 9.6L suggesting a
greater distribution in plasma than in tissue231,232, specifically in the blood and interstitial space233.
Rituximab usually exhibits linear PK elimination but target-mediated drug disposition (TMDD)
has been reported, and modelled, for rituximab in specific oncology indications and anti-neutrophil
cytoplasmic antibody (ANCA)-associated vasculitis (AAV)234,235. This may be due to retention
of rituximab by non-depleted B cells, such as those present in metabolic tumour volume, and
different rates of rituximab clearance from different tissues234,236. The metabolism and elimination
of rituximab is determined by a combination of specific binding to its target receptor, CD20+,
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and non-specific binding, mediated by Fcγ receptors, which can give rise to a biphasic PK profile
displaying both linear and non-linear behaviour237. Metabolism of rituximab to peptides and amino
acids is attributed to its non-specific binding pathway238. Specific binding of rituximab to CD20+

takes place until saturation is reached leading to a high initial time-dependent clearance and non-
linear elimination followed by a second phase of non-specific binding of rituximab mediated by Fcγ

receptors resulting in slower time-independent clearance and linear elimination237,239,240. TMDD
combined with phagocytosis via the reticuloendothelial system are thought to make up the routes of
elimination239. The long elimination half-life observed for rituximab, which can be up to 4 weeks, is
explained by its binding to the neonatal Fc receptor (FcRn), which serves as a protective mechanism
against lysosomal degradation241.

Figure 3.1: Chimeric structure of rituximab. CD20+, cluster of differentiation 20; IgG, immunoglob-
ulin G.

3.1.3.2 Pharmacodynamics

The primary PD effect of rituximab is depletion of all B cells expressing the CD20+ antigen, which
includes pre-B cells, early immature B cells, naive B cells and mature memory B cells, whether they
are malignant or not242. The mechanisms of B cell lysis are a combination of direct induction of
apoptosis, antibody-dependent cellular cytoxicity and complement-dependent cytotoxicity243. The
resulting B cell suppression is profound and can last up to 6 months after cessation of therapy
although B cell counts recover to normal levels in the long-term244. Variability in the clinical and
biological response to rituximab with regards to extent and duration of B cell depletion has been
documented due to disease activity, co-medications, variable dosing regimens, patient factors and
biological mechanisms of resistance to rituximab245.

Given its mechanism of action, a common side-effect of rituximab administration is hypogamma-
globulinaemia resulting from a reduced capacity for antibody production pertaining to the global
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reduction in B cell counts. This is clinically managed by the administration of intravenous im-
munoglobulin (IVIg) to supplement or replace immunoglobulins246,247. Reconstitution of the B cell
compartment following rituximab therapy is driven by pro-B cells and HSCs, which are both subsets
of B cell precursors that do not express CD20+ and are therefore not depleted by rituximab213.
Similar to B cell reconstitution following HSCT118,248, ontogenic B cell reconstitution has been
reported after rituximab administration driven by production of naive B cells from HSCs in the
bone marrow249. This has even been observed in neonates whose mothers received rituximab before
and during pregnancy for multiple sclerosis and related conditions250.

In recent years, confounding factors in the analysis of the exposure-response relationship have
been recognised and characterised for monoclonal antibodies in immuno-oncology252, together with
mitigation strategies. This may have relevance for rituximab gives its complex PK.

3.1.3.3 Pharmacometric Models

A number of population PK models of rituximab have been developed to date, mainly for oncology
and autoimmune disease. The majority of these were built using adult data, with a handful focussed
on paediatrics185,214,253,254.

The first pharmacometric model of rituximab was the two compartment linear PK model reported
by Ng et al in adult rheumatoid arthritis patients231, in which rituximab was dosed intravenously
into the central compartment and had its effect in the peripheral compartment. Parameterised
by clearance, volume and distribution rate constants between the two compartments, the authors
found significant covariate effects of body surface area and gender on both clearance and volume.

Subsequent studies reported rituximab PK models for B cell leukaemias and lymphomas, in which
rituximab was adminstered in combination with chemotherapy regimens such as the cyclophos-
phamide, doxirubicin, vincristine and prednisolone (CHOP) regimen232,255–257 and fludarabine and
cyclophosphamide258. With the exception of Muller et al who investigated elderly patients with
DLBCL232, most study populations had a median age of approximately 50 years. All models used
a two-compartment model structure, sometimes estimating additional PK parameters such as vol-
ume of distribution and reporting other covariate effects such as gender, body-mass index and body
size232,240. Gibiansky et al characterised rituximab PK for patients administered a subcutaneous
formulation in addition to the usual intravenous infusion240. Several models related rituximab PK
to clinical outcomes such as tumour burden255,257. To represent the TMDD of rituximab, some
models included a specific time-dependent clearance to account for TMDD, i.e., non-linear PK, as
well as a non-specific time-independent clearance term to reflect linear PK240,256,258.

Rituximab PK models in the paediatric population are scarce with only two published models
reported to date. Chen et al studied patients with nephrotic syndrome who were prescribed rit-
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uximab off-label254, and Jamois et al conducted a Phase 2 study to determine dosing regimens of
rituximab in paediatric patients with GPA/MPA, which ultimately led to regulatory approval of
rituximab in paediatrics for the first time for these indications214. Whilst they did not develop a
model, Barth et al described rituximab PK in children and adolescents with mature B-NHL using
non-compartmental analysis253.

Of note, there are a distinct lack of rituximab PD models in the current literature, with no published
adult models and one pediatric model by Pan et al185. To the best of the author’s knowledge, there
are no published adult or paediatric models for rituximab PD in post-HSCT patients with EBV
reactivation.

PBPK approaches for modelling the PK of monoclonal antibodies such as rituximab have also been
studied259,260, alongside the PK and PD studies described above.

In general, most previous pharmacometric models of rituximab have noted high interindividual
variability in clinical response to rituximab.

3.1.4 Aim

This project aimed to develop a mechanistic NLME model to quantify the pharmacodynamics of
rituximab on CD19+ cell reconstitution in children with EBV reactivation post-HSCT.

3.1.5 Objectives

• Clean patient electronic data of retrospective CD19+ cell counts, rituximab dosing and other
covariates

• Incorporate mathematical function into Chapter 2 mechanistic NLME model of CD19+ cell
reconstitution post-HSCT to quantify rituximab drug effect

• Evaluate model by performing diagnostic checks to compare model-predicted and observed
data

3.2 Methods

3.2.1 Data

Retrospective electronic data from routine clinical practice were collected from children who under-
went HSCT at the Bone Marrow Transplant Unit at GOSH between 2000 and 2016. Patients who
received rituximab for EBV reactivation were identified as shown in the flow diagram in Figure 3.2.
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Figure 3.2: Flow diagram of study patients. Box in blue represents patients considered for current
study (n = 59). GOSH, Great Ormond Street Hospital; BMT, Bone Marrow Transplant; EBV,
Epstein-Barr virus; HSCT, Haematopoietic stem cell transplant.

Three inclusion criteria were applied; that patients had:

• Measurements of CD19+ cell counts post-HSCT

• Undergone their first HSCT

• Not received rituximab for indications other than for EBV reactivation

Data comprised CD19+ cell counts from immunophenotyping prior to and following rituximab
administration, measured in 106 cells/L of blood from immunophenotyping using flow cytome-
try, as well as measurements of other immune cell subsets and patient-specific, donor-specific and
transplant-specific variables. Regarding sensitivity of the assay to detect lymphocytes, 10,000 events
were targeted in the lymphocyte gate.

3.2.2 Rituximab Therapy

Rituximab was administered via intravenous infusion at a dose of 375 mg/m2 weekly, with patients
receiving a single dose on a conservative regimen or four doses on a pre-emptive regimen. Patients
administered a single rituximab dose underwent HSCT during the years 2011-2016 whereas patients
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who received four rituximab doses were from a historical cohort transplanted in the period 2005-2009
treated using a pre-emptive strategy, originally studied by Worth et al38.

3.2.3 Incorporating Rituximab Effect

As the model-building dataset was constructed using retrospective data from routine clinical prac-
tice, serum drug concentrations of rituximab over time were not measured hence rituximab PK
data were not collected. Therefore, to model the effect of rituximab on CD19+ cell reconstitution
post-HSCT, a kinetic-pharmacodynamic (K-PD) modelling approach was used, utilising the ritux-
imab dose amount and the number of doses (either one or four), which were known. Rituximab
was administered by intravenous infusion, with a single dose constituting 375mg/m2. Doses were
converted to absolute doses using body weight and the Boyd formula prior to modelling261.

The mechanistic NLME model of CD19+ cell reconstitution post-HSCT in Chapter 2, as given
below, was used as the basis of model development,

dA1

dt
= λ ·

(
T γ

T γ + T50γ

)
− µ(A1), (3.1)

where A1 represents the central B cell compartment, λ is the CD19+ cell production rate constant,
µ is the CD19+ cell death rate constant, γ is the Hill exponent for steepness of slope of CD19+

cell recovery and T50 is the time to half-maximal output of CD19+ cells by the bone marrow. In
addition, the B cell maturation function was applied a priori to λ and µ to scale them for age as
follows,

λ = TVλ · w(t) · z(t), (3.2)

µ = TVµ · z(t), (3.3)

where TVλ is the typical value of λ for an adult scaled for age by w(t) and z(t), z(t) is the fraction
of naive B cells expressing Ki67 with age, w(t) is the naive B cell count per unit volume blood with
age and TVµ is the typical value of µ for an adult scaled for age by z(t).

The Emax model is the most frequently used model for describing drug effect in humans and has
its foundation in receptor theory, based on the concentration of a drug-receptor complex leading to
the effect of a drug262. The mathematical equation for the Emax model is as follows;

E =
(

Emax · C

EC50 + C

)
(3.4)
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where E is the drug effect, Emax is the maximal drug effect, C is the drug concentration and EC50

is the drug concentration at which E is 50% of the Emax. Under the assumption that rituximab
increases the death rate of CD19+ cells, i.e., has a stimulatory effect on µ, the Emax model was
applied to µ to incorporate the drug effect of rituximab. This assumption was also made in previous
rituximab PK models185,255.

As rituximab concentration data were not available, the rituximab dose required to produce 50% of
Emax, ED50 was considered instead of EC50. The expected response when no rituximab is present
on µ is zero therefore 1 was added to the Emax model to allow µ to revert to itself.

The equations for the final structural model of the rituximab K-PD model were as follows, with the
addition of a dosing compartment,A2, and the model now estimating three additional parameters
related to rituximab; apparent elimination rate constant (ke), apparent maximum killing effect of
rituximab on CD19+ cells (Emax), and the rituximab dose required to produce 50% of the apparent
maximum killing effect (ED50).

dA1

dt
= −ke · (A1), (3.5)

dA2

dt
= λ ·

(
T γ

T γ + T50γ

)
− µ ·

(
1 + Emax · A1

ED50 + A1

)
· A2 (3.6)

Three assumptions were made regarding rituximab; that none was present in the dosing compart-
ment on the day of HSCT, that its elimination followed first-order kinetics and that it increased
µ.

3.3 Results

3.3.1 Patient Characteristics

The model was constructed with 619 measurements of CD19+ cell counts from 55 children (median
age at HSCT, 3.0 years; range, 0.6-14.5 years); the raw data used for model-building is shown in
Figure 3.3. The study period was for two years post-HSCT therefore a cut-off of 730 days post-
HSCT was used for measurements of CD19+ cell counts. In general, the patients were representative
of a typical paediatric HSCT cohort and their characteristics are summarised in Table 3.2.
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Table 3.2: Patient and transplant characteristics for model-building
dataset for rituximab model. ∗ denotes one patient who did not
receive serotherapy.

Total Patients (n = 55)

Age (years), median (range) 3.0 (0.6 - 14.5)
Diagnosis, n (%)
PID 18 (32.7)
NMH 12 (21.8)
MH 15 (27.3)
Other 10 (18.2)
Donor Type, n (%)
MSD 5 (9.1)
MFD 4 (7.3)
MUD 28 (50.9)
MMFD 2 (3.6)
MMUD 15 (27.3)
Haplo 1 (1.8)
Stem Cell Source, n (%)
BM 31 (56.4)
PBSC 24 (43.6)
Conditioning, n (%)
MAC 30 (54.5)
MIC 3 (5.5)
RIC 22 (40.0)
Serotherapy∗, n (%)
Alemtuzumab 39 (70.9)
ATG 15 (27.3)
Rituximab, n (%)
One dose 39 (70.9)
Four doses 16 (29.1)
Rituximab dose (mg), median (range) 221.25 (127.5 - 675)
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3.3.2 Model Fitting

The two compartment turnover model was fitted to untransformed CD19+ cell counts using the
Laplacian conditional estimation with interaction algorithm in NONMEM version 7.4.3, with the
ADVAN13 subroutine. The initial condition of the B cell compartment was set to 5 x 106 cells/L
(half of the LLOQ) on the day of HSCT. To handle the CD19+ cell counts that were BLQ (n =
335, 54.1%), both the M5 and M3 methods were tested, with the M3 method resulting in a greater
reduction in OFV. A combined additive and proportional model best described the residual error.
A schematic of the K-PD model is given in Figure 3.4.

Figure 3.3: Raw data used for model-building (n = 55). Each coloured line is an individual patient
and the black dotted line represents the LLOQ of the assay used to measure CD19$ˆ+$ cell counts
(10 x 106 cells/L). The thick black line is the local regression curve, and the grey shaded area is
the 95% confidence interval
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Figure 3.4: Schematic of kinetic-pharmacodynamic model of rituximab. First compartment repre-
sents the serum compartment for rituximab dosing by intravenous infusion, where rituximab decays
at rate ke and is assumed to increase CD19+ cell death rate, µ, denoted by ‘+’ sign. Second com-
partment represents CD19+ cells produced by the bone marrow at zero-order rate λ and dying at
first -order rate µ. A B cell maturation function was applied to λ and µ to scale for age-related
effects, and a sigmoidal Hill-type function was used to account for the delay in bone marrow output
after HSCT.

3.3.3 Parameter Estimates

The parameter values estimated from the model-building dataset have been summarised in Table
3. The setpoint parameter was derived by dividing λ by µ to provide a measure of the number
of CD19+ cells at steady-state in the absence of rituximab. A delay of 44 days after HSCT was
estimatedfor a child of median age 3.00 years to recover their bone marrow output to 50% of its
maximum capacity with the administration of rituximab. Elimination half-lives for CD19+ cells
and rituximab were calculated from µ (t1/2 = ln2/µ) and ke (t1/2 = ln2/ke) as 40.8 days and 6.36
days respectively. Regarding rituximab, the model estimated an apparent ED50 value of 0.921 mg,
an apparent Emax value of 84.4 and an elimination rate of 0.109 per day.
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Table 3.3: Estimated parameter values. Setpoint parameter was
derived by dividing λ by µ. λ, CD19+ cell production rate con-
stant; µ, CD19+ cell death rate constant; γ, Steepness of slope of
CD19+ cell recovery; T50, Time to half-maximal output of CD19+

cells from bone marrow; ke, Rituximab elimination rate constant;
Emax, Apparent maximum killing effect of rituximab on CD19+

cells; ED50 , Rituximab dose producing 50% of apparent maximum
killing effect; RSE, relative standard error; BSV, between-subject
variability; CI, confidence interval.

Parameter
(Units)

Estimate
(%RSE) %BSV (%RSE) Shrinkage (%)

Bootstrap
Median (95% CI)

Setpoint (x 106

cells/L)
79.5 (-) -

λ (x 106

cells/day)
1.40 (19.70) 126.10 (60.87) 71.7 1.37 (0.852 -

1.98)
µ (cells/day) 0.018 (22.76) 98.60 (90.84) 30.1 0.018 (0.00910 -

0.0252)
γ 3.18 (8.83) - - 3.40 (2.91 - 4.07)
T50 (days) 44.8 (22.35) 96.07 (85.86) 1 x 10−10 49.2 (31.3 - 71.8)
ke (/day) 0.109 (12.74) - - 0.0926 (0.0619 -

0.121)
Emax 84.4 (26.79) - - 78.3 (46.1 -

130.3)
ED50 (mg) 0.921 (20.36) - - 0.933 (0.622 -

1.40)

3.3.4 Covariate Effects

The covariate model from the mechanistic NLME model of CD19+ cell reconstitution post-HSCT
in Chapter 2 was used, with effects of covariates linearly parameterised by multiplication of the
parameter by (1 + effect size). Covariate effects are summarised in Table 3.4, and elaborated in
turn below.
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Table 3.4: Covariate effects identified using SCM. T50, Time to
half-maximal output of CD19+ cells from bone marrow; PID, pri-
mary immunodeficiency; MAC, myeloablative conditioning; RSE,
relative standard error; CI, confidence interval.

Parameter Covariate Effect Size (% RSE) Bootstrap Median (95% CI)

T50 PID -0.47 (25.82) -0.469 (-0.687 to -0.130)
T50 MAC 0.954 (28.69) 0.954 (0.393 - 1.48)
T50 Matched Donor -0.47 (197.7) -0.449 (-0.628 to -0.228)

PID

Of the 55 study patients, 18 (32.7%) had an HSCT indication of PID and were identified as having
a significantly different pattern of long-term CD19+ cell reconstitution following rituximab admin-
istration compared to patients with other diagnoses. While the bone marrow of the typical patient
required 44.8 days to recover to 50% of its maximum CD19+ cell production capacity, patients with
PID needed 23.7 days, i.e. a decrease of 53%, to recover their bone marrow output to the same
extent.

MAC

The time taken to recover 50% of bone marrow output was also affected by the type of conditioning
regimen. Patients who received a MAC regimen (n = 30 , 54.5 %) took approximately 87.5 days to
recover their bone marrow output to 50% capacity. This was nearly double the the mean estimated
T50 value for patients who received either RIC or MIC regimens who took 44.8 days.

Matched Donor

Two-thirds of the study patients received HSCs from a HLA-matched donor (n = 37, 67.3%). These
patients were found to have a statistically significant difference in the time taken to recover their
bone marrow output to 50% capacity, a 53% decrease from 44.8 days to 23.7 days.

3.3.5 Model Evaluation

The model was evaluated using goodness-of-fit plots (Figure 3.5) and a pcVPC (Figure 3.6). Model
evaluation demonstrated a good fit of the observed data to the model-predicted data, with most
of the data clustering along the line of unity in the plots of the observed data against both the
population predictions and individual predictions. In addition, the residual error was well described
by the combined error model as shown in the plot of CWRES against time since HSCT, which
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suggested a normal distribution with mean zero, with most of the data between between ±2 standard
deviations of the mean and no pattern developing with time since HSCT. For the plot of IWRES
against individual predictions, there are visible perturbations to an otherwise flat line due to the
BLQ data and some individuals with high individual predictions. Lastly, the pcVPC illustrated
consistency between the observed data and simulated data, with the observed percentiles falling
within the 95% prediction intervals. The prediction intervals are wider at later timepoints post-
HSCT due to fewer data. As seen by the lower part of the pcVPC, the M3 method worked well in
capturing the proportion of data that were BLQ.

Figure 3.5: Goodness-of-fit plots. A) Observed CD19+ cell counts vs Population Predicted CD19+

cell counts. B) Observed CD19+ cell counts vs Individual Predicted CD19+ cell counts. C) CWRES
vs Time. D) |IWRES| vs Individual Predicted CD19+ cell counts. Black lines are lines of unity,
blue lines are the local regression curves and red datapoints are those that were BLQ.
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Figure 3.6: Visual predictive check of final rituximab model. Black dots are observed data and the
solid red line is the observed median. The dotted red lines are the observed 2.5th, 50th and 97.5th
percentiles and the grey shaded area are the 95% prediction intervals. The bottom panel shows the
proportion of total data that were BLQ.
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3.4 Discussion

In this chapter, a novel two-compartment K-PD model was constructed to quantify the pharmaco-
dynamics of rituximab on CD19+ cells in a paediatric post-HSCT cohort with EBV reactivation.
Rituximab effect was incorporated into the mechanistic PD model of CD19+ cell reconstitution
post-HSCT of Chapter 2 therefore the rituximab model exemplifies a clinical scenario in which
drug insult further perturbs the recovery of B cells post-HSCT. Regarding its clinical utility, the
model has the potential to inform rituximab dosing in this cohort via model-based simulations and
to predict individualised patient trajectories of CD19+ cell reconstitution after rituximab adminis-
tration.

As a whole, the estimated parameter values of the rituximab K-PD model were biologically valid
and the values estimated for the B-cell related parameters λ, µ, γ and T50 could be compared
to the estimated values from the CD19+ cell model built for non-rituximab patients. For the
CD19+ cell proliferation rate, λ, the K-PD model estimated a value of 1.4 x 106 cells/L (95%
CI: 0.852 - 1.98), which was 22% lower than estimated in the absence of rituximab (1.68 x 106

cells/L; 95% CI, 1.36 - 2.05). As the drug effect of rituximab was applied to µ, this finding was not
expected and may suggest that the Emax model may not be fully capturing the rituximab effect.
When categorised into age groups for infants, children and adolescents, λ estimates decreased with
increasing age as follows; 4.34 x 106 cells/L for infants, 3.58 x 106 cells/L for children and 2.47 x 106

cells/L for adolescents. This was expected and aligned with the established biological mechanism of
increased bone marrow output at younger ages accounted for by the B cell maturation function146,
even after rituximab administration. Of note, this finding contradicts Jamois et al, who did not
observe any age-related effect in reconstituting CD19+ cell counts in paediatric patients aged 6-17
years administered rituximab for MPA and GPA214. In contrast, our result was corroborated by a
study in children following renal transplantation, which noted quicker repopulation of B cells after
rituximab administration for children under 10 years263. However, this age-related effect did not
hold when patients were stratified by the number of rituximab doses administered. The single-dose
patients (median age, 3.44 years) and four-dose patients (median age, 2.46 years ) had median λ

estimates of 4.06 x 106 cells/L and 2.38 x 106 cells/L respectively, a 41% decrease with four doses
which suggested possible dose dependency of CD19+ cell proliferation on rituximab despite the
four-dose patients being a year younger than the single-dose patients. Taken together, this may
suggest that in addition to rituximab stimulating µ, rituximab may also be inhibiting λ to some
extent thereby affecting bone marrow output of new B cells.

Several studies both in adults and children support the hypothesis that a lower rituximab dose
may suffice to suppress B cell levels sufficiently. For example, Delapierre et al observed that a
lower rituximab dose than normal, 100 mg/m2 compared to the standard 375 mg/m2 achieved
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B cell suppression lasting 6 months and control of EBV viral load in 16 adults as a pre-emptive
regimen post-HSCT264. Similarly, a single rituximab dose of 375 mg/m2 cleared EBV viraemia in
19 paediatric patients (median age, 5 years) in a study by Kim et al265 and Wennmann et al showed
one dose to be sufficient to drop EBV viral load to below the LLOQ in 25 paediatric patients266. In
addition, simulations performed by Pan et al in a paediatric population with autoimmune disease
demonstrated that a single infusion of 750 mg/m2 resulted in comparable CD19+ cell depletion
lasting 6 months to the standard regimen of four doses of 375 mg/m2185. Furthermore, in a study
in healthy volunteers, an extremely low rituximab dose of 1 mg/m2 resulted in the depletion of 97%
of all B cells267. To ascertain whether a lower rituximab dose may suffice to suppress B cell levels
sufficiently to maintain EBV VL below the LLOQ, simulations of the time course of CD19+ cells
with different rituximab dosing regimens using this K-PD model are now required.

The estimated value of 0.018 cells/day (95% CI: 0.00910 - 0.0252) for µ was comparable to the
estimate of 0.015 cells/day (95% CI: 0.013 -0.018) without rituximab, and was also equivalent
between one-dose and four-dose patients. This finding is corroborated by literature values; the
estimated µ of 0.018 cells/day aligns with the CD19+ cell death rate, kout, of 0.02/day estimated in
paediatric patients administered rituximab for rheumatological disease (n = 39)185 and with the B
cell turnover rate of 0.012 cells/day derived using the mean B cell disappearance rate of 2.29%/day
previously reported for adults with chronic lymphocytic leukaemia (n = 7) and the absolute CD19+

cell count measured by Morbach et al for 26-50 year olds54,179. Therefore, while λ seems sensitive to
rituximab in a dose-dependent manner, there appears to be relative consistency of µ across various
disease settings, including in the present study of rituximab, as well as across species as detailed in
the Discussion of Chapter 2. Taken together, this suggests that the mechanisms of B cell turnover
may remain robust despite B-cell disease or administration of B cell-depleting therapy. This may
suggest that the Emax model is not appropriately capturing the totality of the rituximab effect on
µ.

Some previous rituximab models have either estimated the baseline CD19+ cell count as a
parameter185 or investigated it as a covariate on PK parameters231,257, while studies in the context
of B cell lymphomas have related rituximab effect to tumour burden and baseline CD19+ cell
count268,269. To capture baseline CD19+ cell count, the model-estimated parameter mean values
for λ and µ were divided to derive a setpoint parameter representing the number of CD19+ cells at
steady-state in the absence of rituximab, which can be interpreted as the baseline CD19+ cell count.
Rituximab patients had 29% fewer CD19+ cells at baseline prior to rituximab administration (79.5
x 106 cells/L) as opposed to non-rituximab patients (112 x 106 cells/L), and the setpoint was
comparable when stratified by the number of doses. It could be speculated that processes occuring
during EBV transformation of B cells may impact the level of CD19+/CD20+ expression on B
cells resulting in fewer B cells with detectable CD20+ and thereby a reduced number of target
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CD20+ antigen in rituximab patients infected with EBV, hence a lower baseline CD19+ cell count,
than in the rituximab-naive post-HSCT patients. There is some clinical evidence to support this
such as Starr et al, who noted that a decrease in CD20+ expression has been observed in some B
cell lymphomas270, Hiraga et al, who saw downregulation of CD20+ expression in 30% of adult
patients with B cell lymphoma271 and several others272–275. Although the majority of these cases
were in the context of lymphoma, such findings suggest that EBV-related epigenetic modifications
may affect expression of B cell markers276, which in turn, may impact baseline CD19+ cell count
in patients receiving rituximab for EBV reactivation post-HSCT. In particular, Mrozek-Gorska et
al demonstrated experimentally that EBV locks human naive B cells in a stage of differentiation
resembling plasma cells, which usually do not express CD20+277. Another explanation for the
lower baseline CD19+ cell count observed in rituximab patients could be resistance to rituximab,
which has long been documented in the literature245,278,279 or changes in levels of target CD20+

expression with time240. However, a parallel line of evidence in the literature suggests that
EBV reactivation post-HSCT occurs in memory B cells due to disruption of the germinal centre
post-HSCT280, which is corroborated by Leandro et al who observed cells of a memory B cell
phenotype that were not depleted by rituximab249. Therefore, the exact mechanisms underlying
the lower baseline CD19+ cell count at steady-state in patients prior to rituximab administration
remain to be elucidated.

The model-estimated value for the rituximab elimination rate constant, ke, of 0.109 per day (95%
CI: 0.0619 - 0.121) aligned well with a previous model estimate of 0.143 per day (95% CI: 0.0478 -
0.418) in adults with no disease progression of B cell lymphoma256. From ke, an elimination half-life
of 6.36 days was calculated, which was consistent with the half-life of 4.85 days observed by Rozman
et al in adult patients with no disease progression256 and with early studies in adult lymphoma
patients that reported 5.3-20 days after subsequent infusions281, 3-33 days282 and mean terminal
half-lives of 3.2 days and 8.6 days after the first and fourth rituximab infusions268. However,
in general, the estimated apparent half-life of 6.36 days was also considerably lower than other
estimated half-lives in the literature, which fell within the range of 17-29 days185,231,240,253,283,284 .
The lower half-life could suggest that saturation of the CD20-mediated pathway was not achieved
resulting in higher clearance of rituximab and lower exposure in patients with EBV reactivation.
As IIV on ke has not yet been tested, the relationship between rituximab dose and half-life could
not be distinguished. As for other monoclonal antibodies, some variability in rituximab elimination
is expected and several PK models have parameterised clearance to reflect this, including a non-
specific time-independent clearance term to represent catabolic clearance, and hence linear aspects
of rituximab PK, and a specific time-dependent clearance to account for TMDD, i.e., non-linear
PK240,256,258.

Another consideration in interpreting the rituximab parameters are confounding factors in the anal-
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ysis of the exposure-response relationship such as baseline target expression of CD20+, biology of
EBV reactivation post-HSCT, progression of EBV infection and resistance to rituximab. Differ-
ences in PD of rituximab between adults and paediatric patients could be due to differences in the
concentration, expression and availability of the target CD20+ or binding affinity, resulting from
differences in disease activity or maturation processes285.

In general, the lack of published PD models of rituximab limited our ability to contextualise the
estimates of the PD parameters, ED50 and Emax, with the exception of two studies, Pan et al
and Schoergenhofer et al185,267. The model estimated apparent Emax value of 84.4 (95% CI: 46.1-
130.3) is relatively high in patients with EBV reactivation post-HSCT compared to the estimate
of 35.2 in Pan et al in paediatric autoimmune patients, which may be related to the difference in
disease between the two patient cohorts and the younger median age of the HSCT patients (present
model, 3.00 years; Pan et al, 13.2 years). In contrast, the model-estimated apparent ED50 value
of 0.921 mg was comparable to the 0.81 mg estimated by Pan et al. Schoergenhofer et al reported
a much lower ED50 value of 0.1 mg/m2 measured in healthy volunteers after a single infusion267.
The clinical utility of Emax and ED50 would be demonstrated when model-based simulations are
performed to inform optimal dosing regimens of rituximab.

The slope of B cell recovery was captured by the Hill-coefficient, γ, which decreased from 4.17 to
3.18 in the presence of rituximab, consistent with the delayed rate of CD19+ cell reconstitution
after rituximab. Similarly, long-term reconstitution of CD19+ cells, parameterised by T50, was
estimated to be 14 days quicker in rituximab patients (44.8 days; 95% CI: 31.3 - 71.8 days) than in
non-rituximab patients (58.9 days; 95% CI: 44.0 - 64.0 days). Ontogenic B cell reconstitution occurs
after rituximab administration driven by naive B cells in the bone marrow, the same process that
follows HSCT118,249, which results in a large proportion of transitional B cells dominating the B cell
compartment early after HSCT. This has been observed in several studies including Stocker et al
, who observed more transitional B cells in post-HSCT paediatric patients who received rituximab
than those who did not receive rituximab223, a case report by Defilipp et al, who documented
an increase in transitional B cells in a 19 year-old post-HSCT patient who received rituximab for
GVHD286 and Sarantapolous et al , who observed a greater total number and frequency of naive and
transitional B cells in adult post-HSCT patients with chronic GvHD287. Collectively, the presence
of increased transitional B cells following rituximab in these findings indicate that these cells have
differentiated from HSCs in the bone marrow, suggesting the possibility of faster recovery of bone
marrow output after rituximab adminstration post-HSCT. Therefore, the T50 parameter seemed
to better reflect the regenerative capacity of the bone marrow than λ.

In general, the effect sizes of the covariates estimated for the rituximab K-PD model were markedly
greater than for the model of CD19+ cell reconstitution post-HSCT in Chapter 2, suggesting the
exacerbation of CD19+ cell reconstitution post-HSCT in the presence of rituximab. In addition, this
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demonstrates the ability of the covariate model to capture the impact of drug insult via rituximab,
highlighting their clinical relevance. The PID sub-group of patients was estimated to take 23.7 days
to recover 50% of their maximum bone marrow output compared to patients with other diagnoses
who took 44.8 days. This difference could not be explained by age-related differences in bone marrow
output, as the median ages of the PID and non-PID patients were comparable, but may in part be
explained by the majority of PID patients (n = 15, 83%) also having received alemtuzumab as part
of pre-HSCT conditioning. Whilst ATG administered as pre-HSCT conditioning is a recognised
risk factor for EBV reactivation post-HSCT due to its selective depletion of T cells, the broader
lymphodepletive effect of alemtuzumab on both T and B cells could result in the inadvertent killing
of EBV-infected B cells, as well as uninfected B cells98,207,218,288. Therefore, EBV viral load would
decrease as well as the number of B cells available for EBV transformation, which may aid faster
recovery of bone marrow output.

In contrast to the negligible increase of 0.5 days in the T50 estimate for non-rituximab patients
with a matched donor, the effect of having a matched donor was more pronounced in rituximab
patients, decreasing T50 by 53% from 44.8 days to 23.7 days. Several studies corroborate this
such as Jain et al, who observed a higher percentage of patients with unmatched HSCTs (16%)
with EBV reactivation compared to patients with matched HSCTs (9%)222. Similarly, Salas et al
reported increased incidence of EBV reactivation in patients with mismatched or matched unrelated
HSCT donors289. Therefore, the finding that patients with matched donors had better prognosis is
expected, as patients with HLA-mismatched donors have long been known to be at higher risk of
EBV reactivation205–207 and experience delayed immune reconstitution290,291.

While a PID diagnosis and having a matched donor decreased T50, patients who received a MAC
regimen (n = 30 , 54.5 %) were estimated to recover half-maximal bone marrow output at 87.5
days post-HSCT, nearly double the 44.8 days taken for patients with RIC or MIC regimens. For
non-rituximab patients, an increase in T50 of 10 days from 58 days to 68 days was observed for
MAC patients, highlighting the greater covariate effect of MAC in the presence of rituximab. This
finding is in line with previous reports of conditioning regimens featuring total body irradiation to
be risk factors for EBV reactivation and PTLD292,293. A possible reason for this observation could
be the higher degree of bone marrow toxicity conferred by MAC compared to RIC or MIC, which
may delay the restoration of bone marrow output post-HSCT and thereby B cell reconstitution.

Building on work by Pan et al, who developed the first paediatric PD model for rituximab185, the
K-PD model developed in this chapter quantified the effect of rituximab in a post-HSCT paediatric
population with EBV reactivation. Despite the relatively small sample size of 55 patients, strengths
of the present K-PD model include the incorporation of the previously developed B cell maturation
function to account for age-related effects, and its ability to detect covariate effects that aligned
with biological mechanisms. Nonetheless, there were also several limitations to this work. Due
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to the nature of the retrospective data used, rituximab PK was not fully captured in the model.
It could be possible that age effects on rituximab PK may contribute to differences seen in PD
between an adult and paediatric population. To address this, published rituximab PK data could be
considered from the literature. A useful exercise would be to scale a published adult rituximab PK
model using allometry to see if it predicts published paediatric rituximab PK parameters. Efforts
of future work will focus on the above. Following refinement of the model, performing simulations
of varying dose regimens as tested before in paediatric patients185would allow identification of
the optimal rituximab dose required to clear EBV viraemia in this post-HSCT cohort with EBV
reactivation, the prognostic value of which has been noted in previous studies222. Furthermore, the
need to individualise rituximab dosing has been suggested for a range of B cell lymphoproliferative
disorders294, where high PK IIV was observed. Going forward, this model may also have potential
to inform dosing of rituximab biosimilars, which are now routinely administered following expiry
of rituximab’s patents.



Chapter 4

Dynamics of EBV Reactivation
After HSCT

4.1 Introduction

4.1.1 Viral Dynamic Models

Since the 1990’s, mathematical modelling has been used to describe lytic viral replication in vivo in
order to quantify underlying within-host and immune mechanisms as well as the effect of anti-viral
treatment87,103. The first viral dynamic model was developed to better understand HIV infection
in relation to its host cells, CD4+ cells295, centred on three populations; free virus particles, that
drive infection of uninfected host cells, which produce infected host cells, which in turn burst to
produce more free virus thereby propogating infection. Still regarded today as the original viral
dynamic model, there have been since been several iterations of the model over the years to further
study HIV296,297, and it has also formed the basis of models for other viruses such as human T cell
leukaemia virus (HTLV-1)298, hepatitis C (HCV)299,300 and cytomegalovirus (CMV)301. More re-
cently, viral dynamic models have been employed to characterise aspects of severe acute respiratory
syndrome-coronavirus 2 (SARS-CoV-2) infection in response to the ongoing pandemic302,303. In
general, viral dynamic models vary in their level of complexity, ranging from the simple target cell-
limited model304 to more intricate mechanistic models305. Models that integrate PK and PD with
viral kinetics (VK) and viral dynamics (VD), so-called PK-VK models for example, have proven
instrumental in studying the effects of anti-viral therapy for infectious diseases306–308.

88
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4.1.2 EBV Dynamic Models

To the best of the author’s knowledge, there are currently no published viral dynamic models for
EBV reactivation post-HSCT. Nevertheless, mathematical models have previously been developed
to study EBV biology and viral dynamics of EBV infection in other settings therefore these were
reviewed for their relevance and potential application to our data.

The earliest mathematical models used agent-based modelling and simulation to investigate within-
host dynamics of EBV infection309,310. Agent-based models focus on biological entities of inter-
est, agents, and their interactions within a virtual anatomical space according to a rule-based
framework311. When compared to ODE-based models, the rules governing agent-based models can
be likened to the assumptions of an ODE model, while the virtual environment is similar to the
compartments that represent an abstract region of tissues or cells in an ODE model.

PathSim, an agent-based model and simulation tool developed by Duca et al , comprised a virtual
site of EBV infection and persistence, the tonsils and adenoids, where the agents, cells or free virus,
could interact309. Two key findings from the simulations were the identification of a switch in
the course of EBV infection from persistence to clearance upon reactivation of latently infected B
cells, and the necessity of the peripheral memory B cell compartment for persistence. In addition,
simulation output broadly resembled the dynamics observed in in vivo data from patients with
glandular fever including distinct acute and persistent phases of infection and exponential decay of
infected B cells. However, the model was not itself fitted to in vivo data from immunocompromised
hosts therefore its ability to describe observed clinical data in the context of EBV reactivation
remains unclear. In addition, the model had 33 biological parameters, most of which were fixed to
values based on previous literature, suggesting that the model parameters might not be identifiable.
Furthermore, the peripheral blood was not represented in the virtual environment, which was the
site of blood sampling used to measure EBV VL in the post-HSCT patient cohort. Shapiro et al
extended the findings of Duca et al by performing additional PathSim simulations to investigate
key parameters, identifying the reactivation rate of latently infected B cells into lytically infected B
cells as the most sensitive parameter310. Another observation was the occurrence of viral clearance
in the event of a small viral burst size. Two authors from these studies went on to detail the
mathematical rationale of a differential equation model, the cyclic pathogen model, constructed in
line with the multiple life cycle stages of EBV regulated by the host immune response312. This
model was later used to illustrate that the cyclic behaviour of EBV as it exploits B cell biology is
sufficient to induce persistent infection313.

Another class of rule-based models that have been explored for EBV are discrete computer models
and simulations known as cellular automata, exemplified by Castiglione et al314. Similar to Path-
Sim, the authors built a tool, C-ImmSim, to simulate the host immune response to EBV infection,
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introducing a blood compartment. Some important results were the similarity of the simulated
peak number of B cells with the peak B cell number observed in patients with glandular fever
(approximately 35 days post infection), the difference in EBV kinetics between persistent infection
(characterised by periodic reactivations, low VL and viral spikes) and acute infection (which fea-
tured high VL and a more “clean” profile), and that the latently infected B cells escaped immune
surveillance by CTLs by residing in the blood compartment to establish persistence. Again, the
model was neither fitted to nor used to predict clinical data.

Some of the drawbacks of these earlier models have since been addressed by ODE models for EBV.
Huynh and Adler proposed a 10-ODE model of within-host dynamics of EBV infection of both
B cells and epithelial cells, including the host immune response from CTLs315. Upon performing
simulations using many of the PathSim parameters reported in Shapiro et al, they identified similar
dynamics for B cells and EBV as seen previously, in addition to a higher number of CTLs specific
for latently infected B cells than for lytically infected B cells after infection. The authors extended
this model by introducing additional parameters for the host immune response, namely antibodies
and cross-reactive CTLs, and suggested the importance of the number and efficiency of CTLs in
the clinical outcome of glandular fever316.

A study by Huynh and Rong described a 3-ODE model for the dynamics of viral shedding into
saliva developed from data from three EBV seropositive adults reported by Hadinoto et al317,318.
Stochastic simulation was performed after introducing random variation to the number of epithelial
cells susceptible to EBV originating from B cells or from epithelial cells respectively, as well as the
probability of CTLs encountering and killing infected cells. Albeit with few patients, this was the
first study to fit a model to clinical EBV data, with resulting parameter values estimated with good
precision. A limitation preventing its application to our data are its structure designed more to
capture the dynamics of the natural history of EBV infection rather than reactivation in a post-
HSCT cohort receiving anti-viral therapy. In addition, VL from EBV shedding measured from
saliva samples may differ to VL measured from peripheral blood samples, and the site of infection
in the tonsils in relation to epithelial cells is inherently different to reactivation in the peripheral
blood with respect to B cells.

Another study of interest was that of Byrne et al , who recently developed a mechanistic model
of EBV shedding dynamics from saliva samples from 85 Ugandan adults with and without HIV-1
co-infection319. Informed by sensitivity analysis, six parameters were fixed and two parameters
were fitted, the rate of B cell reactivation resulting in new lytic epithelial infection and the rate of
CTL proliferation dependent on number of infected epithelial cells. Regarding covariates, graphical
evaluation illustrated a negative correlation of CD4+ T cell counts with EBV VL and a positive
correlation of HIV-1 RNA loads with EBV VL in individuals co-infected with HIV-1, while levels
of the B cell activation factor BAFF were not correlated with EBV VL. Whilst this was a com-
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prehensive study, it shares the same limitations as described above for Huynh and Rong’s model,
precluding its application to our dataset.

To date, the only model available for EBV reactivation post-HSCT is that reported in the doc-
toral thesis of Akinwumi320. A 9-ODE 25 parameter model was developed based on EBV biology,
and treatment parameters were integrated to model effects of immunosuppressive drugs commonly
administered pre- and post-HSCT including tacrolimus and rabbit ATG, as well as the anti-viral
drug valganciclovir. Simulations demonstrated that ATG increased peak infected memory B cells,
peak free EBV, setpoint of infected memory B cells as well as the time taken to reach these three
points. In contrast, valganciclovir decreased both the peak infected memory B cells and peak free
EBV. Despite being a complex model and not having been fitted to clinical data, the model has
relevance in that it was developed for the post-HSCT setting and considers the drug effect of agents
administered to patients in our study cohort.

In the absence of established in vivo animal models of EBV, the models and simulations described
above have advanced quantitative understanding of EBV dynamics. However, they do possess
limitations affecting their usefulness. These include their overparameterised nature, main focus
on glandular fever as the manifestation of EBV and largely not accounting for the effects of anti-
viral therapy. In addition, none of the previous studies were conducted in children, necessitating
the use of age and size scaling given our paediatric study cohort. Furthermore, most previous
models have been developed with immunocompetent hosts in mind whereas the study patients are
immunocompromised post-HSCT. Finally, with the exception of Byrne et al and Huynh and Rong,
the majority of previous EBV models were not fitted to or validated using clinical data to estimate
parameters related to EBV kinetics and dynamics318,319.

4.1.3 Aims

This project aimed to develop a mechanistic NLME model to quantify EBV reactivation dynamics
post-HSCT in children.

4.1.4 Objectives

• Clean patient electronic data of retrospective EBV VL measurements and other covariates
• Identify factors associated with EBV reactivation
• Review previously published models of EBV dynamics for their suitability to fit EBV VL

measurements from study cohort
• If found unsuitable, construct NLME model of EBV reactivation dynamics post-HSCT
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• Evaluate model by performing diagnostic checks to compare model-predicted and observed
data

4.2 Methods

4.2.1 Data

Retrospective electronic data from routine clinical practice were collected from children who under-
went HSCT at the Bone Marrow Transplant Unit at GOSH between 2005 and 2016, and had EBV
reactivation post-HSCT. Patients were identified as shown in the flow diagram below (Figure 4.1).

Figure 4.1: Flow diagram of study patients. Box in blue represents patients in current study (n =
59). GOSH, Great Ormond Street Hospital; BMT, Bone Marrow Transplant; EBV, Epstein-Barr
virus; HSCT, Haematopoietic stem cell transplant.

The final dataset for development of a Cox proportional hazards (Cox-PH) model comprised data
from 56 patients, on account of the following inclusion criteria - that patients had:

• Not received rituximab pre-HSCT

• Not received rituximab for indications other than for EBV reactivation

• Undergone their first HSCT
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• Measurements of EBV VL collected post-HSCT

Of those 56 patients, the model-building dataset for the viral dynamic model comprised only those
patients who had EBV reactivation in the first 100 days post-HSCT.

Data comprised longitudinal measurements of EBV VL (copies/mL whole blood), immune cell
subsets including CD19+ cells and CD4 + cells, demographic variables, and transplant variables.
Regarding sensitivity of the assay to detect lymphocytes, 10,000 events were targeted in the lym-
phocyte gate. Details of monitoring for EBV viraemia and treatment for EBV reactivation are
given below.

4.2.2 EBV Viraemia and Rituximab Therapy

In line with GOSH guidelines, EBV VL was monitored weekly by qPCR, using whole blood samples,
from the start of conditioning until the CD4+ T cell count exceeded 300 cells per µL of blood. If
EBV DNA was detected via a positive qPCR result in the first three months post-HSCT, qPCR
was carried out twice weekly to quantify VL until treatment was given or VL declined. The lower
and upper limits of quantification of the assay for EBV VL measurements were 200 and 20,000,000
copies/mL respectively. The EBV VL threshold to treat with rituximab was 40,000 copies/mL in
whole blood on two consecutive occassions within the first three months of HSCT, with the following
additional criteria; having a donor different from matched sibling donor (MSD) and a CD3+ T cell
count < 300 cells per µL of blood. Rituximab was administered via intravenous infusion at a dose of
375 mg/m2 weekly, with patients receiving a single dose on a conservative regimen or four doses on
a pre-emptive regimen. Patients administered a single rituximab dose underwent HSCT during the
years 2011-2016 whereas patients who received four rituximab doses were from a historical cohort
transplanted in the period 2005-2009 treated using a pre-emptive strategy, originally studied by
Worth et al38.

4.2.3 Cox Proportional Hazards Model

Many covariates contribute to the risk that a patient will experience an EBV reactivation event post-
HSCT, related to the patient, donor, transplant, and drug administrations. In order to identify and
quantify the impact of these covariates on EBV reactivation in the study cohort, a Cox proportional
hazards (Cox-PH) model was developed using R version 4.2.0 (survminer (version 0.4.9), survival
(version 3.3-1) packages) to assess the time to the first EBV reactivation event in the first 100 days
post-HSCT173.
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Previous studies have reported early reconstitution of immune cell subsets to be a predictor of
improved outcomes post-HSCT, including less severe viral reactivation, increased overall survival
and decreased non-relapse mortality49,66,321,322. To determine if such a relationship was present
in our data, the threshold of early immune reconstitution defined in these studies, ≥ 50 x 106

CD4+ cells/L in two consecutive measurements within 100 days post-HSCT, was utilised to stratify
patients. In addition, this definition was also applied to the measurements of ALC, CD3+ cells,
CD8+ cells and CD19+ cells to assess if this threshold could be meaningfully extended to other
immune cell subsets. As an alternative method of evaluating the extent of immune reconstitution,
the trapezoidal rule was used to calculate the cumulative area under the cell-time curve (AUC)
from the day of HSCT (day 0) to the end of the study period (100 days) for ALC, CD3+ cells,
CD8+ cells and CD19+ cells for all patients. To illustrate this, an example of the calculation of
AUC0−100 CD19 for a patient can be seen in Figure 4.2.

Figure 4.2: AUC0−100 for CD19+ cells for one patient. Black dots represent measurements of
CD19+ cells at 21, 43 and 78 days post-HSCT. Zero CD19+ cells were assumed to be present at
day 0 (day of HSCT). Pink shaded region is the AUC calculated using the trapezoidal rule.

Given that multiple ways of accounting for similar variables could result in correlation between
covariates, the collinearity between covariates was evaluated prior to building the Cox-PH model.
This revealed collinearity for the covariate pairs outlined in Table 4.1.
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Table 4.1: Collinearity diagnostics for covariates during Cox-PH
model building. ATG, anti-thymocyte globulin; AUC, area under
the curve; ALC, absolute lymphocyte count; IR, immune recon-
stitution, RTX, rituximab. Early IR of all immune cell subsets
was calculated using previously defined threshold of early immune
reconstitution, ≥ 50 x 106 cells/L66.

Covariate Pair Correlation Co-efficient

ATG, Alemtuzumab 0.96
AUC0−100 CD8, AUC0−100CD3 0.90
early CD8 IR, early, CD3 IR 0.72
AUC0−100 CD4, AUC0−100CD3 0.59
AUC0−100 CD4, AUC0−100ALC 0.58
early CD4 IR, early CD3 IR 0.57
AUC0−100CD3, AUC0−100ALC 0.52
early ALC IR, early CD4 IR 0.49
early ALC IR, early CD3 IR 0.49
early CD8 IR, early CD4 IR 0.48
RTX doses, early CD4 IR 0.45

The highest correlation was observed between ATG and alemtuzumab, while the remainder were
mainly between T cell-related covariates. As a result, CD3+ cell counts were dropped given that
T cells were accounted for in the CD4+ cell and CD8+ cell variables, ATG and alemtuzumab were
collapsed into a dichotomous serotherapy covariate, and the AUC0−100 for the various immune cell
subsets were chosen given that we were not confident in the validity of extending the threshold of
early immune reconstitution to immune cell subsets other than CD4+ cells.

Therefore, the final covariates included in the model were the following; type of donor, HSC source,
whether the patient had an HSCT indication of PID, EBV serostatus of both donor and recipient,
type of conditioning regimen, administration of alemtuzumab or ATG as serotherapy pre-HSCT,
age, number of rituximab doses, and AUC0−100 for ALC, CD19+ cells, CD4+ cells and CD8+

cells. Variables significant in univariate analysis (p < 0.05) were taken forward to a multivariable
analysis. All categorical covariates were dichotomous, and the biological rationale for the reference
classification and other classification were determined in conjunction with the GOSH BMT clinical
team.
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4.2.4 Sensitivity Analysis

In the Introduction to this chapter in section 4.1, a literature review was performed to assess
the suitability of existing EBV models to fit patients’ EBV reactivation VL measurements. The
mechanistic model of EBV viral kinetics by Akinwumi was considered to be the most relevant
starting point of all the previous reported EBV models, as it was developed for the post-HSCT
setting320. The model describes the key stages of the EBV infection cycle based on the germinal
centre theory of EBV biology, and is visualised schematically in Figure 4.3.

Figure 4.3: Schematic of Akinwumi model of EBV kinetics320. Blue boxes are B cell compartments,
orange boxes are CTL compartments. CTL, cytotoxic T cell.

It is comprised of nine variables related to the processes of latent and lytic EBV infection, as well as
the various types of B cell and CTL involved in the host immune response, totalling 25 parameters to
be estimated or fixed. Free EBV virions, E, infect naive B cells, Bn, of which a fraction transforms
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into infected B cells, Bg, expressing the growth programme. The remainder proliferate into infected
B cells that undergo the default programme in the germinal centre, Bd. Some of the default B cells
become latently infected memory B cells, Bm, which can reactivate to become lytically infected B
cells, Bl. CTLs specific to the Bg, Bd and Bl infected B cell populations are included by way of
the Tg, Td and Tl populations respectively. The model equations are given below:

dE

dt
= nδlBl − δE , (4.1)

dBn

dt
= λn − µeEBn − δnBn, (4.2)

dBg

dt
= (1 − β)µeEBn + (rg − ωg − δg)Bg − δ1TgBg, (4.3)

dBd

dt
= ωgBg + (rd − δd − ωd)Bd − δ2TdBd, (4.4)

dBm

dt
= ωdBd + (rm − δm − ωm)Bm, (4.5)

dBl

dt
= ωdBd + (rm − δm − ωm)Bm, (4.6)

dTg

dt
= r1TgBg − d1Tg, (4.7)

dTd

dt
= r2TdBd − d2Td, (4.8)

dTl

dt
= r3TlBl − d3Tl. (4.9)

The model was implemented in R version 4.2.0 using the deSolve (version 1.28) package173, with
all 25 parameters fixed to published values to obtain a reference fit of the model (Table 4.2). The
latently infected memory B cell compartment, Bm, was taken as a proxy for EBV VL. The VL
sensitivity to each of the 25 parameters was determined by setting each in turn through a range of
values (0.00001-1000) to simulate the EBV VL trajectory. The root mean squared distance (RMSD)
was calculated for each parameter for the range of parameter values tested to provide a comparison
between the reference fit and each of the simulated fits.

Table 4.2: Parameter values used to obtain reference fit of Akin-
wumi model. a Assumption; parameters are measured per week
expect for n and β that are dimensionless.

Parameter Description Value Reference

n Viral burst size 1.00 x 105 310,315
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Parameter Description Value Reference

δl Death rate of lytically infected cell
due to viral burst

2.32 x 10−4 310,315

δe Death rate of EBV 2.33 310

λn Production rate of naive B cells 5.04 x 105 310,315

β NK cell effect on EBV infection 0.80 a

µe EBV infection rate per B cell virus 3.30 x 10−8 315

δn Death rate of naive B cells 1.68 315

rg Proliferation rate of infected B cells
expressing growth programme

37.8 310,315

ωg Transit rate from growth
compartment to default compartment

4.90 315

δg Death rate of infected B cells
expressing growth programme

0.88 310,315

δ1 CTL killing rate of infected B cells
expressing growth programme

3.83 x 10−4 315

rd Proliferation rate of infected B cells
expressing default programme

38.81 323

ωd Transit rate from default compartment
to memory compartment

10.08 315,323

δd Death rate of infected germinal B cells
expressing the default programme

10.08 315,323

δ2 CTL killing rate of infected B cells
expressing default programme

3.83 x 10−4 315

rm Proliferation rate of infected memory
B cells

0.00 310,315

ωm Reactivation rate of infected memory
B cells into lytically infected B cells

0.84 310,315

δm Death rate of infected memory B cells 0.00 310,315,323

δ3 CTL killing rate of lytically infected B
cells

7.66 x 10−4 310,315

r1 CTL activation rate against infected B
cells expressing the growth programme

1.40 x 10−3 310,315

r2 CTL activation rate against infected B
cells expressing the default programme

2.10 x 10−3 310,313,315
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Parameter Description Value Reference

r3 CTL activation rate against lytically
infected B cells

4.90 x 10−3 310,315

d1 CTL death rate responding to growth
compartment

6.46 x 10−2 310,313

d2 CTL death rate responding to default
compartment

6.46 x 10−2 310,313

d3 CTL death rate responding to lytic
compartment

6.46 x 10−2 310,313

4.2.5 Viral Dynamic Model Building

In the event that a simplified version of the Akinwumi model could not be fitted to the patient
EBV VL data, a viral dynamic model of EBV reactivation dynamics post-HSCT was constructed
using a NLME approach. The K-PD model developed in Chapter 3 for rituximab PD on CD19+

cells was leveraged by combining it with a viral dynamic model reported by Wang et al324. The
authors extended the classical viral dynamic model to include a CTL compartment to incorporate
drug effects of antiretroviral therapy for HIV infection of CD4+ cells. The equations for the 4 ODE
model of Wang et al were as follows;

dT

dt
= λ − dT − kV T, (4.10)

dT ∗

dt
= kV T − δT ∗ − qT ∗C, (4.11)

dV

dt
= NδT ∗ − cV, (4.12)

dC

dt
= pT ∗C − dcC, (4.13)

where T , T ∗, V and C represent the uninfected CD4+ cells, infected CD4+ cells, HIV virions
and CTLs respectively324. The thymus produces CD4+ cells with rate λ, which die with rate d.
Uninfected CD4+ cells become infected by HIV with rate k to produce infected CD4+ cells, which
die with rate δ or are killed by CTLs with rate q. Regarding HIV, it is produced by the bursting of
infected CD4+ cells with burst size N , the total number of HIV virions an infected CD4+ cell can
produce in its lifetime, resulting in their death with rate δ while HIV is cleared with rate c. CTLs
proliferate with rate p upon encountering an infected CD4+ cell and die with rate dc.
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Integrating the above model with the K-PD model for rituximab PD on CD19+ cells, we therefore
have the following 5 ODE model incorporating the drug effect of rituximab, now in terms of CD19+

cells and EBV in place of CD4+ cells and HIV;

dA1

dt
= −ke · A1, (4.14)

dA2

dt
= λ ·

(
T γ

T γ + T50γ

)
− µ ·

(
1 + Emax · A1

ED50 + A1

)
A2 − kA4A2, (4.15)

dA3

dt
= kA4A2 − δ ·

(
1 + Emax · A1

ED50 + A1

)
· A3 − qA3A5, (4.16)

dA4

dt
= NδA3 − cA4, (4.17)

dA5

dt
= rA3A5 − dA5, (4.18)

where A1, A2, A3 and A4 are now compartments representing the serum into which rituximab
is dosed, uninfected CD19+ cells, infected CD19+ cells and EBV virions respectively. Rituximab
is eliminated with rate ke from the serum, and is assumed to increase the death rates of both
uninfected and infected CD19+ cells. Following a delay due to HSCT, the bone marrow produces
CD19+ cells with rate λ, which die with rate µ, enhanced by the B-cell killing effect of rituximab.
Uninfected CD19+ cells become infected by EBV with rate k to produce infected CD19+ cells,
which die with rate δ, enhanced by the B-cell killing effect of rituximab, or are killed by CTLs
with rate q. Regarding EBV, it is produced by the bursting of infected CD19+ cells with a fixed
burst size N , the total number of EBV virions an infected CD19+ cell can produce in its lifetime,
resulting in their death with rate δ while EBV is cleared with rate c. CTLs proliferate with rate
r upon encountering an infected CD19+ cell and die with rate d. All parameters in the rituximab
K-PD model were fixed to their final parameter estimates, as reported in Chapter 3. The viral
burst size, N was fixed to 1000 in line with published values310.

Several assumptions were made when applying the model. Regarding rituximab, it was assumed
that; none was present in the dosing compartment at time zero, that its elimination followed
first-order kinetics and that it increased µ. The initial condition of the uninfected CD19+ cell
compartment, A2, was set to 5 x 106 cells/L (half of the LLOQ of the assay) at time of HSCT. For
the infected CD19+ cell compartment, A3, 0.05 x 106 cells/L at time of HSCT was set as the initial
condition, assuming that 1% of uninfected CD19+ cells become infected by EBV in line with a
previous study of patients with glandular fever, in which 0.1-1% of B cells expressed EBV-encoded
nuclear antigen325. The initial condition of the EBV compartment, A4, was set to 100 copies/mL
of whole blood (half of the LLOQ of the assay) and for the CTL compartment, A5, an initial T cell
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concentration of 168 cells/µL was set as estimated in post-HSCT paediatric patients by Hoare et
al106.

The model was tested with and without the −kA4A2 term in compartment A2. If the −kA4A2

term was omitted, the assumption was made that there was negligible loss of CD19+ cells from
compartment A2 due to EBV infection given the following biological rationale; that EBV does not
destroy CD19+ cells but transforms them as part of its biological mechanism, and that the total
proportion of CD19+ cells infected by EBV is very small325.

4.3 Results

4.3.1 Patient Characteristics

The model-building datasets for the Cox-PH model and the viral dynamic model comprised 56
children (median age at HSCT, 3.02 years; range, 0.3 - 14.0 years) and 30 children (median age at
HSCT, 2.81 years; range, 0.7 - 14.5 years) respectively. Patients characteristics are summarised in
Table 4.3. Although patients were followed up for up to three years after HSCT, the study period
focussed on the first 100 days post-HSCT as EBV reactivation most commonly occurs in the first
three months following HSCT.

Table 4.3: Patient and transplant characteristics for model-building
datasets for Cox-PH model and NLME Model.∗ denotes one patient
who did not receive serotherapy in the dataset for the Cox-PH
model. Of the 38 patients who had EBV reactivation in the first
100 days post-HSCT, eight patients were excluded from the viral
dynamic model dataset as they did not receive rituximab in the
first 100 days post-HSCT.

Cox-PH Model (n = 56) Viral Dynamic Model (n = 30)

Age (years), median (range) 3.0 (0.3 - 14.0) 2.8 (0.7 - 14.5)
Diagnosis, n (%)
PID 19 (33.9) 5 (16.7)
NMH 12 (21.4) 6 (20.0)
MH 15 (26.8) 13 (43.3)
Other 10 (17.9) 6 (20.0)
Donor Type, n (%)
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Cox-PH Model (n = 56) Viral Dynamic Model (n = 30)

MSD 6 (10.7) 3 (10.0)
MFD 4 (7.1) 1 (3.3)
MUD 28 (50.0) 20 (66.7)
MMFD 1 (1.8) 0
MMUD 15 (26.8) 6 (20.0)
Haplo 2 (3.6) 0
Stem Cell Source, n (%)
BM 32 (57.1) 20 (66.7)
PBSC 24 (42.9) 10 (33.3)
Conditioning, n (%)
MAC 22 (39.3) 15 (50.0)
MIC 1 (1.8) 0
RIC 32 (57.1) 15 (50.0)
None 1 (1.8) 0
Serotherapy∗, n (%)
Alemtuzumab 40 (72.7) 16 (53.3)
ATG 15 (27.3) 14 (46.7)
Recipient EBV Serostatus, n
(%)
Positive 26 (46.4) 18 (60.0)
Negative 30 (53.6) 12 (40.0)
Donor EBV Serostatus, n (%)
Positive 52 (92.9) 29 (96.7)
Negative 4 (7.1) 1 (3.3)

4.3.2 Clinical Outcomes

Of the 56 patients in the Cox-PH model, 38 (67.9%) had an initial EBV reactivation in the first 100
days since HSCT, with a median time to EBV reactivation of 40 days (range, 14-97 days) and a
median peak EBV VL of 255,000 copies/mL (range, 403-32,479,800 copies/mL). Forty-one patients
received a single dose of rituximab on a conservative regimen whilst 15 patients received four doses
on a pre-emptive regimen. There were no deaths due to EBV reactivation, or any other reasons, in
the study period. Although they did not have EBV reactivation in the study period, one patient
progressed to PTLD 168 days post-HSCT and started rituximab treatment the following day. This
patient was 7.83 years at HSCT, and had the following features predisposing to EBV: diagnosis
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of X-linked lymphoproliferative disease; received RIC regimen of alemtuzumab, fludarabine and
melphalan; the HSC source was PBSC; had a mismatched unrelated donor. A violin plot of the
median peak EBV VL stratified by number of rituximab doses has been plotted in Figure 4.4, and
EBV VL against time since EBV reactivation stratified by early CD4+ T cell reconstitution has
been plotted in Figure 4.5.

Figure 4.4: Violin plot of median peak EBV VL stratified by number of rituximab doses received.
Black horizontal line represents median peak EBV VL for the dose number and box represents
interquartile range. Black dots represent median peak EBV VLs lying outside the interquartile
range and coloured shape represents the distribution of the data.

4.3.3 Cox-PH Model

Univariate and multivariate Cox-PH modelling results are shown in Tables 4.4 and 4.5 respectively.
In univariate analysis, a PID diagnosis, AUC0−100 of CD8+ T cells, serotherapy with ATG, HSC
source of peripheral blood and EBV seropositivity of HSCT recipient were significantly associated
with increasing the risk of EBV reactivation. Of these, two covariates were found to significantly
increase risk of EBV reactivation in multivariable analysis; EBV seropositivity of the HSCT recip-
ient and pre- HSCT administration of ATG (adjusted hazard ratio (HR) = 2.32, p = 0.02; AHR =
2.55, p = 0.04). Kaplan-Meier curves of the cumulative fraction of patients with EBV reactivation
stratified by these two covariates have been visualised in Figure 4.6.
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Figure 4.5: EBV VL against time since EBV reactivation, stratified by early CD4 T cell reconstitu-
tion, as defined by Admiraal et al49. Curves are from spline regression (2df) of EBV VL with time,
with VL measurements normalised to two weeks before EBV reactivation. Points are an individual
patient’s measured VL and grey shaded region signifies VL measurements below 40,000 copies/mL,
the threshold to treat with rituximab.
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Table 4.4: Univariate Cox-PH model for time to first EBV reactiva-
tion in first 100 days post-HSCT. PID, primary immunodeficiency;
HSC, haematopoietic stem cell; PBSC, peripheral blood stem cell;
BM, bone marrow; EBV, Epstein-Barr virus; AUC0−100, area un-
der the curve from day of HSCT to 100 days post-HSCT; ALC,
absolute lymphocyte count; MSD, matched sibling donor; MFD,
matched familial donor; MUD, matched unrelated donor; MMFD,
mismatched familial donor; MMUD, mismatched unrelated donor;
Haplo, haploidentical donor; MAC, myeloablative conditioning;
MIC, minimal-intensity conditioning; RIC, reduced-intensity con-
ditioning; ATG, anti- thymocyte globulin. HR, hazard ratio; CI,
confidence interval. – denotes a continuous variable.

Covariate Term (Reference) P Value HR 95% CI

PID Diagnosis Yes (No) 0.01 0.37 0.17 - 0.82
HSC Source PBSC (BM) 0.02 0.44 0.22 - 0.87
Age - 0.41 1.03 0.95 - 1.12
Rituximab Doses - 0.25 0.86 0.67 - 1.11
Donor EBV
Serostatus

Seropositive
(Seronegative)

0.83 1.17 0.28 - 4.87

Recipient EBV
Serostatus

Seropositive
(Seronegative)

0.003 2.67 1.39 - 5.12

AUC0−100 ALC - 0.90 0.99 0.83 - 1.18
AUC0−100 CD19 - 0.65 0.99 0.95 - 1.03
AUC0−100 CD4 - 0.77 0.99 0.96 - 1.03
AUC0−100 CD8 - 0.005 1.02 1.01 - 1.04
Donor Type MMFD/MMUD/Haplo

(MFD/MSD)
0.11 0.43 0.16 - 1.21

MUD (MFD/MSD) 0.27 1.58 0.71 - 3.56
Conditioning
Regimen

RIC
(MIC/MAC/None)

0.46 0.78 0.41 - 1.50

Serotherapy ATG (Alemtuzumab) 0.0001 3.74 1.90 - 7.36
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Table 4.5: Multivariate Cox-PH model for time to first reactiva-
tion in first 100 days post-HSCT. PID, primary immunodeficiency;
HSC, haematopoietic stem cell; PBSC, peripheral blood stem cell;
BM, bone marrow; EBV, Epstein-Barr virus; AUC0−100, area un-
der the cell-time curve from 0-100 days post-HSCT; ATG, anti-
thymocyte globulin. HR, hazard ratio; CI, confidence interval. –
denotes a continuous variable.

Covariate Term (Reference) P Value HR 95% CI

PID Diagnosis Yes (No) 0.10 0.48 0.20 - 1.14
HSC Source PBSC (BM) 0.48 0.74 0.32 - 1.70
Recipient EBV
Serostatus

Seropositive
(Seronegative)

0.02 2.33 1.15 - 4.73

AUC0−100 CD8 - 0.20 1.01 0.99 - 1.03
Serotherapy ATG (Alemtuzumab) 0.04 2.55 1.07 - 6.11
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Figure 4.6: Kaplan-Meier curves of cumulative fraction of patients with EBV reactivation in first
100 days post-HSCT stratified by type of serotherapy (ATG or alemtuzumab) and EBV serostatus
of recipient (negative or positive). P values were calculated using the log-rank test and denote the
difference between the two subgroups. Shaded regions show 95% confidence interval.
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4.3.4 Sensitivity Analysis

Of the 25 parameters in the model, 13 parameters were found to be sensitive on account of an
RMSD value greater than zero. In Figure 4.7, an inverted plot of the log of the RMSD against
the parameters in the model of Akinwumi is shown for a single parameter value of 10. In addition,
simulated EBV VL trajectories have been visualised against time since reactivation for parameter
values in the range 1 x 10−5 - 1 x 103, using the Bm compartment as a proxy for EBV VL (Figure
4.8). Parameters identified as key determinants of EBV VL were those related to latently infected
memory B cells and CTLs, as follows: δ2, CTL killing rate of infected B cells expressing the default
programme; rm, the proliferation rate of latently infected memory B cells; ωm, the reactivation
rate of latently infected memory B cells into lytically infected memory B cells; δm, the death rate
of latently infected memory B cells and r2, the rate of CTL activation against infected B cells
expressing the default programme.

4.3.5 Viral Dynamic Model

4.3.5.1 Model Fitting

The five-compartment model was fitted to 613 log-transformed EBV VL measurements from 30
children, with the Laplacian conditional estimation with interaction algorithm and the ADVAN13
subroutine. An additive model was used to describe the residual error, and the M5 method was
implemented to handle the EBV VL measurements that were BLQ (n = 323, 52.7%). A schematic
of the model for EBV dynamics and CD19+ cell dynamics is shown in Figure 4.9, plots of all raw
EBV VLs used for model-building are shown in Figures 4.10 and 4.11, and a subset of individual
plots of EBV VLs with rituximab dosing, CD19+ cells and CD4+ cells are depicted in Figure 4.12.

Regarding the initial conditions of the compartments, the following assumptions were made; that
no rituximab was present in A1, 5 x 106 CD19+ cells/µL (half of the LLOQ) were present on day
zero (the day of HSCT) in A2, 0.05 x 106 CD19+ cells/µL , i.e. 1% of the B cells, were infected
with EBV in A3 on day zero, a EBV VL of 100 copies/mL of whole blood (half of the LLOQ) was
present in A4 and the initial CD8+ cell concentration was 168 cells/µL on day zero (the day of
HSCT) in A5

106.

4.3.5.2 Parameter Estimates

The parameter estimates estimated from the viral dynamic model-building dataset have been given
in Table 6. Parameters related to infected CD19+ cells, EBV and CTLs were estimated while
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Figure 4.7: Plot to show sensitivity of parameters when parameter value is set to 10, evaluated
using RMSD. Log RMSD has been plotted for presentation purposes. RMSD, root mean squared
distance.
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Figure 4.8: Simulated EBV VL trajectories, using Bm compartment as a proxy for EBV VL.
Sensitivity of EBV VL shown for the variation of six parameters over the range of values 0.00001-
1000, where β parameter represents reference model fit and all other parameters are sensitive
parameters. B, one billion; M, one million; K, 1000.

Figure 4.9: Schematic of model of EBV dynamics and CD19+ cell dynamics post-HSCT.
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Figure 4.10: Raw EBV VL measurements in viral dynamic model-building dataset (n = 30). Each
coloured line represents EBV VL trajectory for an individual patient. The black dotted line is the
LLOQ of the assay used to measure EBV VL (200 copies/mL). The thick black line is the local
regression curve, and the grey shaded area is the 95% confidence interval. X-axis shows time since
HSCT (days).
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Figure 4.11: Raw data used for building viral dynamic model. Each coloured line is an individual
patient and the black dotted line represents LLOQ of the EBV VL assay (200 copies/mL). The
thick black line is the local regression curve, and the grey shaded area is the 95% confidence interval.
X-axis shows time since EBV reactivation, where each patient’s VL measurements were normalised
to the start of their reactivation event. time since EBV reactivation, where each patient’s VL
measurements were normalised to the start of their reactivation event.
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Figure 4.12: Individual trajectories of EBV VL, CD19+ cell and CD4+ cell counts and rituximab
dosing for 16 patients. Black line is EBV VL, blue line is CD19+ cell count, brown line is CD4+ cell
count and black dots indicate rituximab administrations. Dotted black line represents the lower
limit of detection of the EBV VL assay (200 copies/mL). CD4+ cell counts were predicted using a
published PD model for CD4+ cell reconstitution post-HSCT in children106 and CD19+ cell counts
were predicted using the Chapter 3 K-PD model for the effect of rituximab on CD19+ cell recon-
stitution post-HSCT in children. For EBV VL, observed measurements spanning from three weeks
pre- to seven weeks post-HSCT were plotted, and were linearly interpolated to obtain a continuous
range of data points for 0-100 days post-HSCT. In the absence of a published mathematical model
for CD8+ cell reconstitution post-HSCT and a sparsity of observed CD8+ cell counts disabling
linear interpolation, CD8+ cell counts were not visualised.
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uninfected CD19+ cell and rituximab parameters were fixed to the parameter estimates of the final
K-PD model from Chapter 2. In addition, the EBV viral burst size was fixed to a literature value310.
From the EBV clearance rate, c, the half-life of an EBV virion was calculated (ln2 /c) as 10.06
days.

Table 4.6: Estimated parameter values from EBV viral dynamic
model. λ, CD19+ cell production rate constant; µ, CD19+ cell
death rate constant; γ, Steepness of slope of CD19+ cell recovery;
T50, Time to half-maximal output of CD19+ cells from bone mar-
row; ke, Rituximab elimination rate constant; Emax, Maximum
killing effect of rituximab on CD19+ cells; ED50 , Rituximab dose
producing 50% of maximum killing effect; k, Infected CD19+ cell
production rate constant; δ, Infected CD19+ cell death rate con-
stant; q, CTL killing rate of infected cells; N , Viral burst size; c,
Viral clearance rate; r, CTL proliferation rate constant; d, CTL
death rate constant; RSE, relative standard error; BSV, between-
subject variability; CI, confidence interval.

Parameter
(units)

Estimate
(%RSE)

%BSV
(%RSE) Shrinkage (%)

Bootstrap Median (95%
CI)

λ (x 106

cells/day)
1.40 (fixed) 92.36 (14.07) 59.7 -

µ (cells/day) 0.018 (fixed) 117.05 (19.93) 27.7 -
γ 3.18 (fixed) - -
T50 (days) 44.80 (fixed) 147.65 (46.79) 48.6 -
ke (/day) 0.109 (fixed) - - -
Emax 84.40 (fixed) - - -
ED50 (mg) 0.921 (fixed) - -
k (x 106

cells/day)
0.112 (28.75) 12.00 (22.78) 83.7 0.112 (0.0961 - 0.134)

δ (cells/day) 5.86 x
10−5(23.72)

14.93 (64.13) 87.7 5.86 x 10−5 (5.18 x 10−5

- 9.86 x 10−5)
q (cells/day) 2.30 x 10−3

(20.65)
0.62 (984.38) 99.1 2.32 x 10−3 (2.10 x 10−3

- 3.14 x 10−3)
N 1000 (fixed) - - -
c (virions/day) 0.0829 (20.27) 1.64 (462.69) 97.0 0.0842 (0.0788 - 0.107 )
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Parameter
(units)

Estimate
(%RSE)

%BSV
(%RSE) Shrinkage (%)

Bootstrap Median (95%
CI)

r (cells/day) 3.26 x 10−6

(24.14)
24.54 (135.88) 66.2 3.26 x 10−6 (3.12 x 10−6

- 3.81 x 10−6)
d (cells/day) 1.23 x 10−4

(983.74)
155 (829.88) 99.0 1.23 x 10−4 (1.08 x 10−4

- 1.25 x 10−4)

4.3.5.3 Model Evaluation

Goodness-of-fit plots, seen in Figure 4.13, and a pcVPC, seen in Figure 4.14, were produced to
evaluate the model. For the pcVPC, 200 datapoints were simulated from the parameter values
estimated by the model and the fraction of data that were BLQ were included in the bottom
panel. In general, model evaluation suggested adequate comparability between the observed data
and model-predicted data. The plots of the observed data against population predictions and
individual predictions respectively demonstrated a reasonable fit, with the overall trend of the data
clustering along the line of unity. For the residual error model, the plot of the conditional weighted
residuals (CWRES) against time since HSCT showed a normal distribution with a mean of zero
and most of the data between ±2 standard deviations of the mean. However, there appears to be
a slight pattern developing with time since HSCT. Regarding the plot of the absolute individually
weighted residuals (IWRES) against individual predictions, most of the data are scattered along a
flat line with a trough at 100 copies/mL, half of the LLOQ, due to the BLQ data. The pcVPC
demonstrates some consistency between the observed data and simulated percentiles. There is
variability observed at the lowest and highest EBV VL measurements, with a wide 95% prediction
interval for the 97.5th percentile. The proportion of the BLQ data are well-captured by the model
using the M5 method with the exception of early post-HSCT timepoints. In general, all CTL-related
parameters were estimated with high relative standard error.

4.4 Discussion

In this chapter, the dynamics of EBV reactivation post-HSCT have been methodically studied in
a paediatric cohort. A multivariate Cox-PH model was first developed, and identified pre-HSCT
ATG administration and EBV seropositivity of the HSCT recipient as significant risk factors for
an initial EBV reactivation event in the first 100 days post-HSCT. In addition, to the best of the
author’s knowledge, sensitivity analysis was performed for the first time on a previously reported
mechanistic mathematical model of EBV viral kinetics to detect key parameters driving EBV VL320.
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Figure 4.13: Goodness-of-fit plots for EBV viral dynamic model. A) Observed EBV VL vs Popu-
lation Predicted EBV VL. B) Observed EBV VL vs Individual Predicted EBV VL. C) CWRES vs
Time after HSCT. D) |IWRES| vs Individual Predicted EBV VL. Blue lines are the local regression
curves and red data points are EBV VL measurements that were BLQ.
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Figure 4.14: Prediction-corrected Visual Predictive check for viral dynamic model. Black dots
are observed EBV VLs and the solid red line is the observed median. The dotted red lines are
the observed 2.5th, 50th and 97.5th percentiles and the grey shaded area are the 95% prediction
intervals. The bottom panel shows the proportion of total data that were BLQ.
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Furthermore, the previously developed rituximab K-PD model in Chapter 3 was leveraged by
integrating it with a published viral dynamic model324 to construct a novel mechanistic NLME
model of EBV viral dynamics and CD19+ cell dynamics under the influence of rituximab.

ATG has been widely reported to be associated with a higher incidence of EBV reactivation post-
HSCT therefore the result that pre-HSCT ATG significantly increases the risk of EBV reactivation
corroborates these previous findings207,289,326,327. Even though it is administered as part of the
conditioning regimen for GvHD prophylaxis in the weeks pre-HSCT, ATG’s T-cell depletive effect
lasts well into the early post-HSCT period due to its long half-life of 29.8 days326. This exacerbates
the reconstituting CD8+ T cell compartment including the already reduced CTL-mediated immune
surveillance of EBV post-HSCT. In the study, 100% (15 of 15) of patients who received ATG
had EBV reactivation in the first 100 days post-HSCT while only 57.5% (23 of 40) of patients
who received alemtuzumab had EBV reactivation, a finding comparable with previous studies,
most probably attributed to alemtuzumab’s broader lymphocyte depletion of B cells, including
those that are EBV-infected98,205,207,218. Although the historical consensus is that EBV serological
donor/recipient mismatch increases risk of EBV reactivation, most studies ascribe EBV-associated
PTLD to donor-derived EBV288,328. This contradicts our finding that EBV seropositivity of the
HSCT recipient is a risk factor for EBV reactivation, which has been observed previously in another
paediatric post-HSCT study329. As the focus of the current study was on the first EBV reactivation
event post-HSCT, a study period of the first 100 days post- HSCT was chosen when reactivation is
most likely to occur. In contrast, many studies of EBV reactivation have much longer study periods
spanning from six months to nearly five years post-HSCT38,49,330–332. At these later timepoints post-
HSCT, there would be more donor-derived cells due to increased chimerism, which we might not have
been able to capture in the study period of 100 days post-HSCT. This is also evident when looking
at the EBV serological donor/recipient combinations in the patient cohort; in EBV seropositive
donors with EBV seronegative recipients, 55.2% (16 of 29) of patients had an EBV reactivation
while 87.0% (20 of 23) of patients who were EBV-seropositive and had EBV-seropositive donors
experienced an EBV reactivation event. There were only three patients who were EBV seropositive
and had EBV seronegative donors, of which two had EBV reactivation. Having access to chimerism
data at post-HSCT timepoints for the study patients might help to shed further light on this result.

The incidence of EBV reactivation of 67.9% was high but similar to that observed in some previous
studies333,334. The first 100 days post-HSCT is when EBV reactivation, or indeed viral reactivation
in general, is most likely to occur335, therefore a higher incidence may be expected compared to
lower incidences observed across much longer study periods. In addition, it is recognised that the
incidence of EBV reactivation post-HSCT varies depending on the transplant type, sensitivity of the
EBV quantification assay, definitions of thresholds of EBV viraemia and timing of reactivation219.
Regarding the onset of the EBV reactivation event, the median time of reactivation in the patient
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cohort was 40 days post-HSCT, which aligned well with previously reported times ranging from
34-45 days222,336,337.

In general, highly variable EBV VL dynamics were exhibited by the post-HSCT patients in the
model-building dataset, typical of acute infection, as documented before209,338. Although some
patients experienced multiple reactivation events over the course of their recovery post-HSCT, the
study period of the first 100 days post-HSCT was chosen to focus on the first EBV reactivation event
encountered. The visualised trajectories of EBV VL, CD19+ cells and CD4+ cells in response to
EBV and rituximab for individual patients in Figure 4.12 illustrated the complexity and variability
of EBV dynamics between patients. A decrease in CD19+ cell count occurred shortly after the first
rituximab dose was administered, as per the B-cell depleting mechanism of action of rituximab and
was coupled with a contemporaneous decrease in EBV VL in all patients. Conversely, CD4+ cell
counts remained stable in most patients during the reactivation, in line with a previous study which
reported no increase in CD4+ cell counts after viral reactivation49. Patterns of EBV dynamics
demonstrated slow and rapid growth as well as partial and complete clearance in response to
rituximab, as observed for other post-HSCT viral reactivations such as CMV339. In addition, it can
be inferred from Figure 4.12 that subsequent rituximab doses in patients may not further decrease
CD19+ cell count and consequently EBV VL, as suggested by patients 45, 52 and 54. To produce
Figure 4.12, previously developed mathematical models by our group for CD4+ cell reconstitution
post-HSCT in children106 and the Chapter 3 K-PD model for the effect of rituximab of CD19+ cell
reconstitution post-HSCT in children were utilised to predict CD4+ cell and CD19+ cell counts
respectively for the first 100 days post-HSCT, as there were limited observed immune cell counts
from patients due to lymphopenia in the early post-HSCT period.

Upon conducting a literature review of previously published models of EBV dynamics, the mech-
anistic viral kinetic model reported by Akinwumi was deemed to be the most applicable to the
patient cohort as it was the only model developed for the post-HSCT setting320. The major finding
from sensitivity analysis of this model was that parameters related to latent memory B cells and
CTLs determined changes in EBV VL, which aligned with the well-established role that these two
cell types have in the biological mechanism of EBV reactivation. In addition, the relevance of these
parameters have been demonstrated by experimental studies. For example, Burns et al observed
an increase in the number and proportion of CD27+ memory B cells in peripheral blood samples
of post-HSCT patients that were latently infected with EBV and expressed the cell proliferation
marker Ki67, highlighting the importance of the rm (proliferation rate of infected B cells), ωm (reac-
tivation rate of latently infected B cells into lytically infected B cells) and δm (death rate of infected
B cells ) parameters280. Regarding δ2 (CTL killing rate of infected B cells) and r2 (rate of CTL ac-
tivation against infected B cells), such CTL parameters have long featured in viral dynamic models
since the earliest characterisation of the host immune response against virus-infected cells295,296.
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The pivotal role of CTLs in reducing EBV VL continue to be demonstrated in the prevention and
treatment of EBV-associated PTLD, both experimentally and clinically340–343. Informed by the
sensitivity analysis, these five parameters then formed a simplified version of the original model of
Akinwumi. However, attempts to fit this simplified model to the patient EBV VL measurements
proved unsuccessful, even when most parameters were fixed to published literature values and one
parameter was estimated at a time. There are several possible explanations for this. Firstly, the
initial parameter estimates were based on literature values that were all derived from agent-based
simulation and not from clinical data from patients. In the absence of other estimated literature
values, these were used but their biological plausibility remained unconfirmed. Another setback
encountered during implementation was failure of the model to converge for a range of estimation
algorithms in NONMEM, suggesting model instability or parameters not being identifiable. Similar
issues were recently documented by Margetts in his pursuit to construct a viral kinetic model for
post-HSCT CMV dynamics344.

In light of these challenges, the rituximab K-PD model developed in Chapter 3 was combined with
a published viral dynamic model to build a pharmacometric model for EBV reactivation dynamics
post-HSCT. There were several rationale for this. Firstly, the patients in the model-building dataset
for the rituximab K-PD model were the same patients whose data were used to build the EBV Cox-
PH model and viral dynamic model therefore we built on prior knowledge gained of the system.
This meant that scaling for age-related effects and HSCT-specific parameters were already present
at the structural level of the model, as well as the the drug effect of rituximab, the treatment for
EBV reactivation post-HSCT. Lastly, the inclusion of the model by Wang et al introduced a virus
compartment and CTL compartment. Taken together, these features resulted in the compartments
of the final viral dynamic model encompassing the relevant viral, drug, host cell and host immune
response aspects of the biological mechanism of EBV reactivation. Also of note, several of the
sensitive parameters in the Akinwumi model were present in the EBV viral dynamic model thereby
incorporating the knowledge gained from the sensitivity analysis (k represents rm, δ represents δm

and q represents δ2).

In general, the viral dynamic model adequately described aspects of the EBV VL patient profiles
observed in the post-HSCT cohort, with most parameters estimated with reasonable precision. The
estimated value of 0.112 x 106 cells/day (95% CI: 0.0961 x 106 - 0.134 x 106)for the proliferation rate
of infected CD19+ cells, k, was 12.5-fold larger than for uninfected CD19+ cells, 1.4 x 106 cells/day
(95% CI, 0.852 x 106 - 1.98 x 106). While there are no published proliferation rates for EBV-
infected CD19+ cells, to the best of the author’s knowledge, and given that CD19+ cells include
naive, memory and EBV-induced blasting plasma cells, this increased rate could be attributed to the
uncontrolled proliferation of B cells induced by EBV transformation compared to the normal levels
of proliferation expected for uninfected B cells in the absence of EBV. This finding also aligns with
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a study by Burns et al, who observed an increase in the number and proportion of CD27+ memory
B cells in peripheral blood samples of post-HSCT patients that were latently infected by EBV
and expressed the cell proliferation marker Ki67280. Furthermore, it has been demonstrated that
memory B cells are the site of EBV persistence both in healthy immunocompetent individuals and
immunocompromised post-HSCT patients in vivo27,280 and a higher proliferation rate for CD27+

memory B cells than for CD27− naive B cells has previously been reported178. The derived half-life
for infected CD19+ cells of 32 years, whilst not biologically plausible in children, is consistent with
the range of 31-41 years observed by Hoshino et al in healthy adults345. Regarding the estimated
death rate for infected CD19+ cells (δ), 5.86 x 10 −5 cells/day (95% CI: 5.18 x 10−5 - 9.86 x 10−5),
this was 4-fold lower than the published value generated from simulation by Shapiro et al, 2.32
x 10−4cells/day, and 1000-fold lower than the death rate of 0.06 cells/day derived from Macallan
et al’s reported half-life of 11 days for memory B cells178,310. With regards to the death rate
derived from Macallan et al , this death rate could be higher as it applies to all memory B cells,
including uninfected memory B cells, whereas only a very small proportion of the total memory
B cell compartment become infected by EBV hence the lower death rate estimated by the model.
Another possible explanation for this discrepancy could be related to the viral burst size, N . Despite
being fixed to 1000 in line with literature values317,318, this value was based on healthy adults, who
are inherently different to the immunocompromised post-HSCT paediatric patient cohort under
study. In addition, a model assumption made when setting the initial condition of the infected B
cell compartment was that 1% of all B cells are infected by EBV, supported by a study conducted
in patients with glandular fever325.

In contrast, the model estimated value for the EBV clearance rate (c), 0.0829 virions/day, and the
derived EBV half-life of 8.36 days, were in reasonable agreement with published values for patients,
albeit marginally higher. Previously reported EBV half-lives were in the range of 0.9-5.4 days for
post-HSCT patients treated with rituximab209, a mean of 3.2 days calculated by Funk et al from
four historic studies in transplant patients338,340,346,347, in the range of 0.51-1.97 days for post-
HSCT rituximab-treated patients and 2.5-12.6 days for non-rituximab patients288 and lastly, 1.85
-28.29 days for patients with nasopharyngeal carcinoma348.

With regards to the CTL killing rate, q, this was estimated as 2.3 x 10−3/day (95% CI: 2.10 x
10−3 - 3.14 x 10−3), three-fold higher than the simulated value of 7.66 x 10−4 /day for lytically
infected B cells310 and 0.6 times higher than the simulated value of 3.83 x 10−4/day for latently
infected B cells, the only other CTL killing rates reported for EBV. Whilst the CTL killing rate for
various viruses are available, many were quantified in mice349 and those quantified in humans were
variable depending on the method of quantification and model, for example, 1.6/day for HTLV-
1350, 0.1- 9.8/day for HIV351 and 0.1/day for CMV301, which made comparison, and therefore the
interpretation of this result, difficult. Similarly, the value of 3.2 x 10−6 cells/day (95% CI: 3.12 x
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10−6 - 3.81 x 10−6) estimated by the model for the CTL proliferation rate, r, was a derivation of the
simulated value of 3.25 x 10−5 cells/day, which served as its initial estimate310. For the final CTL
parameter, the CTL death rate, d, the model estimate of 1.23 x 10−4 cells/day (95% CI: 1.08 x 10−4

- 1.25 x 10−4), was more than 75-fold lower than a previously reported estimate of 9.5 x 10−3318,352

and significantly lower than the simulated value of 6.46 x 10−2310. In addition, the derived half-life
for EBV-specific CTLs of 15 years is most likely not biologically plausible for a paediatric cohort,
given that most patients were less than 15 years old and would be experiencing EBV reactivation
event post-HSCT as a primary infection, decreasing the likelihood of such a long-lived EBV-specific
CTL pool.

The usefulness and applicability of a mathematical modelling approach to quantify the dynamics of
EBV reactivation in this patient cohort has been demonstrated, but there are several limitations to
be noted. The small sample sizes of 56 patients for the Cox-PH model and 30 patients for the viral
dynamic model were characteristic of the study being retrospective and based at a single centre
as well as the outcome of interest, EBV reactivation in children post-HSCT, being uncommon.
Nevertheless, other authors have also conducted multivariable analysis on data from a comparable
number or fewer patients in the context of EBV reactivation218,353,354. In addition, whilst the
dataset represented a typical HSCT cohort, there were no patients who underwent HSCT using
cord blood. The pattern of EBV reactivation for such patients may differ considerably to patients
transplanted using PBSCs or BM, as their T cell reconstitution has been reported to be much
faster, attributed to CBT patients receiving ATG-free pre-HSCT conditioning regimens and being
of younger age at HSCT62,97,106. Regarding the viral dynamic model, the lack of previous NLME
models of EBV reactivation post-HSCT greatly limited our ability to contextualise and interpret
the results of the estimated parameter values, relying heavily on simulated values. Some estimates
appeared more biologically plausible than others, and several parameters were estimated with high
standard error and between-subject variability, in particular for the CTL-related parameters. This
may be explained in part by the current lack of covariate model. Given the numerous covariates
that can potentially contribute to the risk of EBV reactivation post-HSCT, the development of the
Cox-PH model served as a preliminary evaluation of covariates355. The covariate-model building
process for the viral dynamic model should now be informed by the identification of pre-HSCT ATG
and EBV seropositivity of the recipient as significant covariates from the Cox-PH model. These
covariates should be graphically evaluated to determine their relationship with EBV VL and clinical
outcome339 thereby justifying their incorporation into the base structural model of the NLME model
to help explain the variability seen in the EBV VL trajectories of individual patients. Following
further refinement of the model as outlined above, model-based simulations can be performed to
demonstrate the effect of various rituximab dosing regimens on the trajectories of CD19+ cells and
EBV VL. This would reveal the true prognostic value of this EBV viral dynamic model in terms
of its ability to inform rituximab dosing to improve clinical outcomes for post-HSCT patients with
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EBV reactivation.



Chapter 5

Rituximab Biosimilar
Pharmacodynamics in
Rheumatology

5.1 Introduction

5.1.1 Biosimilars

A biosimilar is defined as a biological product that is highly similar to and has no clinically meaning-
ful differences from an existing approved ‘reference’ product226. With the help of PKPD studies,
purity, chemical identity and bioactivity are assessed to ensure safety, efficacy and quality. To
support biosimilar development, additional studies deemed appropriate such as clinical immuno-
genicity may also be performed226. After the patent for a reference product expires, exclusivity is
lost, allowing generic drugs, and biosimilar drugs, to be marketed. While both are cheaper than
the brand-name reference drug, generic drugs are chemically identical to the reference whereas
biosimilars are highly similar. The first biosimilar drugs to be approved were filgrastim-sndz by
the FDA in 2015, a granulocyte colony-stimulating factor agent356, and somatropin by the EMA
in 2006, growth hormone357. Following the approval of biosimilars, the act of switching refers
to the prescriber exchanging one medicine for another, e.g. a biosimilar product for the reference
product, and vice versa, with the same therapeutic intent358. Such switching studies were recently
reviewed by Barbier et al to assess the impact of switching on efficacy, safety and immunogenicity
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outcomes for a range of biosimilars across various therapeutic areas359. In addition to biosimilars,
there are interchangeable products, which satisfy regulatory requirements for biosimilars as well as
additional requirements360. Whilst biosimilars bring significant benefits such as improved patient
access, increased treatment options and lower healthcare costs, challenges in their adoption into
clinical practice include reluctance of patients and healthcare providers, lack of financial incentives
for healthcare providers and regulatory policies225,361.

5.1.2 Rituximab Biosimilars

Following the expiration of rituximab’s patent in 2013 and 2016 in Europe and the United States
respectively, biosimilars of rituximab have emerged in clinical use225. The current licensure for
rituximab biosimilars has been summarised in Table 5.1. To date, there are four licensed rituximab
biosimilars approved for all indications that the reference is licensed for.

Table 5.1: Current licensure for rituximab biosimilars. EMA, Eu-
ropean Medicines Agency; FDA, Food and Drug Administration.
NHL, Non-Hodgkin’s B cell lymphoma; CLL, Chronic lymphocytic
leukaemia; RA, Rheumatoid arthritis; MPA, Microscopic polyan-
gitis; GPA, Granulomatosis with polyangitis; PV, Pemphigus vul-
garis.

Name Manufacturer
FDA
Approval

EMA
Approval Population Indications

Truxima Celltrion
Healthcare

2018 2017 Adult,
Paediatric

NHL, CLL,
RA, MPA,
GPA, PV

Rixathon Sandoz
GmbH

Pending 2017 Adult,
Paediatric

NHL, CLL,
RA, MPA,
GPA, PV

Ruxience Pfizer Europe 2019 2020 Adult,
Paediatric

NHL, CLL,
RA, MPA,
GPA, PV

Riabni Amgen Inc 2020 Pending Adult,
Paediatric

NHL, CLL,
RA, MPA,
GPA

At GOSH, the rituximab biosimilar Truxima was introduced in October 2017. Regarding the rollout
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of rituximab biosimilars, Cheesman gave an insight into the strategies taken to achieve complete
adoption at a haematology department of a major tertiary hospital362. As the uptake of rituximab
biosimilars increases, clinical studies have been increasingly conducted on their use in recent years,
including randomised controlled trials, switching studies, real-world evidence studies and PKPD
studies.

For the indication of rheumatoid arthiritis, several switching studies have been performed in
adult patients comparing safety and efficacy of biosimilars Truxima and Rixathon to reference
rituximab363–365. In terms of their design, these studies consisted of a maintenance group, who
received either reference or biosimilar from the start of treatment, and a switch group, who were
switched from reference to biosimilar. No clinically meaningful differences were reported with re-
gards to safety, efficacy, PD and immunogenicity, with a range of endpoints investigated including
percentage of anti-drug antibodies, European League Against Rheumatism (EULAR) response363,
Disease Activity Score using 28 joints (DAS28)364 and hypersensitivity reactions365. In CLL and
NHL patients, Urru et al studied two switch groups, from one biosimilar to another biosimilar (ei-
ther Truxima or Rixathon) or to either reference or biosimilar different to that received before the
study, and a no-switch group, with comparable endpoints observed in terms of adverse events366.
In addition, Cohen et al investigated patients who received Ruxience with or without switch from
reference367 whilst the biosimilar Riabni was shown to be PKPD equivalent to reference in patients
with moderate to severe arthritis in work by Burmester et al368.

Another major contribution to the biosimilars literature is that from real-world evidence studies361.
Leveraging electronic patient health record data, Otremba et al described growing administration of
rituximab biosimilars Rixathon and Truxima for extrapolated oncology indications NHL and CLL
in Germany369. In the context of rheumatoid arthritis, Melville et al conducted a single-centre
observational study to assess the effects of a treatment switch from reference to Truxima370. The
authors additionally explored predictive factors for biosimilar discontinuation post-switch, which
was mainly attributed to loss of effectiveness, adverse events, contraindication and patient choice.
Alongside rituximab biosimilars approved by the EMA and FDA, other national health authorities
have also granted licences. For example, HLX01, the first rituximab biosimilar approved in China by
the National Medical Products Administration, was evaluated against reference in a study by Deng
et al for B-cell lymphoma371. In addition, Riva et al investigated the biosimilar Novex licensed by
the Argentinean Health Authority against reference rituximab in paediatric patients with complex
diseases372. This observational single-centre study was one of the few paediatric studies of rituximab
biosimilars. Furthermore, approved in India in 2007, the activity of the biosimilar Reditux against
reference was investigated by Roy et al in a retrospective study in B-cell lymphoma patients, with
no significant differences reported in terms of toxicity and clinical outcomes373.

Some of the more recent randomised controlled trials of rituximab biosimilars have compared their
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safety, efficacy and PK with reference rituximab for follicular lymphoma. Rixathon and Trux-
ima combined with a cyclophosphamide, doxirubicin, vincristine and prednisolone (CHOP) reg-
imen was compared to reference combined with a CHOP regimen in Jurczak et al and Kim et
al respectively374,375. Both studies reported equivalence of overall response and PK as well as
comparable clinical outcomes. In Ogura et al, patients were randomly assigned to monotherapy
with Truxima or reference, with therapeutic equivalence achieved between both treatment arms376.
The PK of a candidate rituximab biosimilar, IBI301, was compared against reference in treatment
for CD20+ B cell lymphoma patients in Jiang et al , and was shown to be bioequivalent, with
comparable PD, safety, immunogenicity profiles377. The same biosimilar was later administered in
combination with a CHOP regimen for a similar patient cohort, compared against reference plus
a CHOP regimen, and demonstrated non-inferior safety and efficacy378. Similarly, Reditux, was
tested in combination with a CHOP regimen by Menon et al, who performed non-compartmental
analysis to calculate PK parameters379.

To the best of the author’s knowledge, two population PK models of rituximab biosimilars to date
have been published in adult patients with B cell lymphoma380,381 and none for paediatric patients.

5.1.3 Aim

This project aimed to develop a mechanistic NLME model to quantify the pharmacodynamics of a
rituximab biosimilar on CD19+ cell reconstitution in children with rheumatological conditions.

5.1.4 Objectives

• Clean patient electronic data of retrospective CD19+ cell counts and rituximab biosimilar
dosing

• Modify Chapter 3 rituximab K-PD model for clinical setting of rheumatology indications
• Evaluate model by performing diagnostic checks to compare model-predicted and observed

data

5.2 Methods

5.2.1 Data

Using the Epic Electronic Health Record system, retrospective electronic data from routine clinical
practice were collected from paediatric patients who had CD19+ cell counts and drug adminstrations
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at GOSH in the period 19/04/2019 to 14/01/2021. A series of inclusion criteria were implemented
to identify study patients, as shown in the flow diagram in Figure 5.1, namely that patients had:

• Drug administrations of rituximab or rituximab biosimilars for rheumatology diagnoses

• A minimum of 2 CD19+ cell counts each

• Not received fludarabine post-HSCT after receiving rituximab or rituximab biosimilars

• Had their baseline CD19+ cell count ≤ 7 days before the first dose of rituximab or rituximab
biosimilars

Figure 5.1: Flow diagram of study patients. EBV, Epstein-Barr virus; HSCT, Haematopoietic stem
cell transplant; mAb, Monoclonal antibody.

The model-building dataset comprised CD19+ cell counts, measured in 106 cells/L of blood, from
25 children. Data collected included demographic variables as well as measurements of immune cell
subsets obtained by immunophenotyping using flow cytometry. Regarding sensitivity of the assay
to detect lymphocytes, 10,000 events were targeted in the lymphocyte gate.
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5.2.2 Rituximab and Biosimilar Administration

Patients were administered rituximab and the rituximab biosimilar, Truxima according to insti-
tutional protocols. The following formulations were used: MabThera 100mg/10mL concentrate
for solution for infusion, MabThera 500mg/50mL concentrate for solution for infusion, Truxima
100mg/10mL concentrate for solution for infusion and Truxima 500mg/50mL concentrate for so-
lution for infusion. Administration was via intravenous infusion, with a single dose constituting
375mg/m2. The dosing regimen varied depending on the rheumatological indication being treated,
with up to four doses administered, and dosing frequencies included once only, every 48 hours, every
7 days and every 14 days.

5.2.3 Model

The mechanistic K-PD model developed in Chapter 3 to quantify rituximab PD in post-HSCT
patients was used as the starting point. To ensure that the model would be able to describe CD19+

cell reconstitution in non-HSCT rheumatology patients, the HSCT-specific parameters, γ and T50
were removed. In addition, the covariate model was omitted as it was constructed using HSCT-
specific covariates such as donor, conditioning regimen and HSC source, which were not applicable
for the rheumatology patient cohort. Therefore, the equations for the structural model of the
rituximab and rituximab biosimilars K-PD model was as follows.

dA1

dt
= −ke · (A1), (5.1)

dA2

dt
= λ − µ ·

(
1 + Emax · A1

ED50 + A1

)
· A2 (5.2)

The model-building assumptions made for rituximab were also made for the rituximab biosimilar;
that none was present in the dosing compartment on day zero, that its elimination followed first-
order kinetics and that it increased µ.

5.3 Results

5.3.1 Patient Characteristics

The model was constructed using 139 measurements of CD19+ cell counts from 25 children (median
age, 12.8 years; range, 1.7 - 17.8 years). All patients received the rituximab biosimilar Truxima,
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and four patients also received reference in addition to Truxima. Over a third of patients had
a diagnosis of systemic lupus erythematosus. The raw data used for model-building is shown in
Figure 5.2, and patient characteristics are summarised in Table 5.2.

Table 5.2: Patient characteristics for model-building dataset for rit-
uximab biosimilars model. All patients received rituximab biosim-
ilar. * denotes 4 patients who received reference rituximab as well
as rituximab biosimilar.

Total Patients (n = 25)

Age (years), median (range) 12.8 (1.7 - 17.8)
Diagnosis, n (%)
Juvenile arthritis 3 (12)
Arteritis 3 (12)
Localised scleroderma 1 (4)
Osteoporosis 1 (4)
Raynaud’s syndrome 1 (4)
Spondyloepiphyseal dysplasia 1 (4)
Systemic lupus erythematosus 9 (36)
Granulomatosis with polyangitis 2 (8)
Renal osteodystrophy 1 (4)
Osteochondrodysplasia 1 (4)
Juvenile dermatomyositis 2 (8)
CD19 + cell count (106/L) 10 (10 - 1150)
Baseline CD19 + cell count (106/L) 330 (10 - 1150)
Rituximab Formulation, n (%)
Reference MabThera 4* (16)
Biosimilar Truxima 25 (100)
Rituximab dose (mg), median (range) 1000 (165 - 1000)

5.3.2 Model Fitting

The two compartment turnover model was fitted to untransformed CD19+ cell counts using the
Laplacian conditional estimation with interaction algorithm in NONMEM version 7.4.3, with the
ADVAN13 subroutine. The initial condition of the B cell compartment was set to 5 x 106 cells/L
(half of the LLOQ) on day zero. A proportion of the dataset were BLQ (n = 98, 70.5%) and these
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Figure 5.2: Raw data used for model-building (n = 25). Each coloured line is an individual patient
and the black dotted line represents the LLOQ of the assay used to measure CD19+ cell counts (10
x 106 cells/L). The thick black line is the local regression curve, and the grey shaded area is the
95% confidence interval.
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observations were handled using the M3 method. A combined additive and proportional model best
described the residual error.

5.3.3 Parameter Estimates

The parameter values estimated from the model-building dataset have been summarised in Table
5.3. The setpoint parameter was derived by dividing λ by µ to provide a measure of the number of
CD19+ cells at steady-state in the absence of rituximab or rituximab biosimilar. Elimination half-
lives for CD19+ cells and rituximab biosimilar were calculated from µ (t1/2 = ln2/µ) and ke (t1/2

= ln2/ke) as 47.8 days and 6.08 days respectively. Regarding the rituximab biosimilar, the model
estimated an apparent ED50 value of 1.04 mg, an apparent Emax value of 79.6 and an elimination
rate of 0.114 per day.

Table 5.3: Estimated parameter values. Setpoint, number of
CD19+ cells at steady state in absence of rituximab biosimilar de-
rived by λ divided by µ; λ, CD19+ cell production rate constant;
µ, CD19+ cell death rate constant; ke, elimination rate constant of
rituximab biosimilar; Emax, maximum killing effect of rituximab
biosimilar on CD19+ cells; ED50, rituximab biosimilar dose pro-
ducing 50% of maximum killing effect.

Parameter
(units)

Estimate
(%RSE) %BSV (%RSE) Shrinkage (%)

Bootstrap
Median (95% CI)

Setpoint (x 106

cells/L)
206.21 - - -

λ (x 106 cells/L) 2.99 (1.92) 88.83 (1.39) 55.0 2.58 (0.69 - 5.14)
µ (cells/day) 0.0145 (0.68) 111.36 (5.02) 49.9 0.0141 (0.00488 -

0.0414)
ke (/day) 0.114 (2.84) 248.80 (26.33) 55.0 0.0919 (0.0275 -

0.159)
Emax 79.6 (0.89) - - 72.2 (33.7 -

182.49)
ED50 (mg) 1.04 (4.13) - - 0.907 (0.288 -

2.24)
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5.3.4 Model Evaluation

The model was evaluated using goodness-of-fit plots (Figure 5.3) and a pcVPC (Figure 5.4). Model
evaluation demonstrated a good fit of the observed data to the model-predicted data, with data
clustering along the line of unity in the plots of the observed data against both the population
predictions and individual predictions. In addition, the residual error was well described by the
combined error model as shown in the plot of CWRES against time after dose/observation, which
suggested a normal distribution with mean zero, with most of the data between ±2 standard
deviations of the mean and no pattern developing with time after dose/observation. For the plot
of IWRES against individual predictions, there is a visible perturbation to an otherwise flat line
at early timepoints due to the BLQ data. Lastly, the pcVPC illustrated consistency between the
observed data and simulated data, with the observed percentiles falling within the 95% prediction
intervals. In general, the prediction intervals were wide due to sparse data. As seen by the lower
part of the pcVPC, the M3 method worked well in capturing the proportion of data that were BLQ.

5.4 Discussion

In this chapter, a two-compartment model was used to quantify the pharmacodynamics of the
rituximab biosimilar Truxima in a paediatric population with rheumatological indications. Taking
the rituximab model developed in Chapter 3 as a starting point, the HSCT-related parameters
were removed to accommodate the clinical setting of rheumatology. As the administration of
rituximab biosimilars is now commonplace, the clinical utility of such a model includes informing
dose establishment and dose bioequivalence of rituximab biosimilars with the reference rituximab
using the PD endpoint, CD19+ cells, or using PK, if serum concentrations of rituximab biosimilars
over time were available.

In general, the model estimated mean parameter values that were biologically plausible and with
good precision. Of note, the estimate for λ, 2.99 x 106 cells/L (95%CI: 0.69 x 106 - 5.14 x 106),
was 78% higher and 113% higher than estimated for the post-HSCT patients studied in Chapter
2 (1.68 x 106 cells/L; 95% CI, 1.36 x 106- 2.05 x 106) and the post-HSCT patients who received
rituximab studied in Chapter 3 (1.4 x 106 cells/L; 95% CI, 0.852 x 106 - 1.98 x 106) respectively.
This resulted in a higher derived setpoint parameter value of 206 x 106 cells/L in rheumatology
patients, i.e. a higher baseline count of peripheral CD19+ cells than in post-HSCT patients. For
comparison, a reference value for the absolute CD19+ cell count in healthy adolescents aged 11-18
years is 304 cells/µL (range, 226 - 370 cells/µL) therefore the derived setpoint value of 206 x 106

cells/L in rheumatology patients was marginally lower than the lower end of the healthy range54.
This aligned with the mechanism that HSCT confers an insult to the bone marrow thus decreasing



CHAPTER 5. RITUXIMAB BIOSIMILAR PHARMACODYNAMICS IN RHEUMATOLOGY134

Figure 5.3: Goodness-of-fit plots. A) Observed CD19+ cell counts vs Population Predicted CD19+

cell counts. B) Observed CD19+ cell counts vs Individual Predicted CD19+ cell counts. C) CWRES
vs Time after first dose/observation. D) |IWRES| vs Individual Predicted CD19+ cell counts. Black
lines are lines of unity, blue lines are the local regression curves and red datapoints are those that
were BLQ.
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Figure 5.4: Prediction-corrected Visual predictive check of rituximab biosimilars model. Black
dots are observed data and the solid red line is the observed median. The dotted red lines are
the observed 2.5th, 50th and 97.5th percentiles and the grey shaded area are the 95% prediction
intervals. The bottom panel shows the proportion of total data that were BLQ.
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the capacity for CD19+ cell proliferation in post-HSCT patients, resulting in a lower setpoint CD19+

cell count compared to rheumatology patients. This suggests that the difference in derived setpoint
values between the the two patient groups could be due to biological or physiological differences.

The estimate for µ was 0.0145 cells/day (95% CI: 0.00488 - 0.0414), comparable to 0.015 cells/day
(95% CI: 0.013 - 0.018) estimated in the non-rituximab post-HSCT patients and 0.018 cells/day
(95% CI: 0.00910 - 0.0252) estimated in rituximab post-HSCT patients. The continued similarity
of µ, despite a difference in patient cohort between post-HSCT and rheumatology patients and
a difference in age range between mainly children in the post-HSCT cohorts and older adoles-
cent patients in the rheumatology cohort, strongly supports the notion that mechanisms of B cell
turnover remain robust following administration of B cell-depletive therapies such as rituximab and
rituximab biosimilars, as well as after the insult of HSCT.

For ke, the model estimated value of 0.114 per day was in line with the estimate of 0.109 per day
by the Chapter 3 rituximab K-PD model but almost three-fold higher than estimated by Pan et
al for rheumatology patients with a comparable median age of 13.2 years185. This difference could
be linked to the marked difference in baseline CD19+ cell count between the two study cohorts.
Whereas the present study cohort had a median baseline CD19+ cell count of 330 x 106 cells/L,
the study by Pan et al had a median baseline count of 170 x 106 cells/L, nearly 50% lower. It
could be hypothesised that the higher baseline count in patients in the present study may lead to
saturation of the CD20+ target-specific binding pathway, which could result in increased clearance
via the much slower non-specific binding, causing a higher ke estimate. Interestingly, the apparent
half-life of 6.08 days is in the region of the 10.9 ± 8.6 days reported in B cell lymphoma patients
who received Reditux biosimilar379.

Regarding apparent Emax, this was estimated to be 79.6 (95% CI: 33.7 - 182.49), in line with that
estimated by the rituximab K-PD model, 84.4, but more than two-fold higher than estimated by
Pan et al, 35.2185. A possible explanation for this discrepancy could be the incorporation of the
B cell maturation function in the biosimilars model, which scaled the λ and µ parameters with
respect to age before they were multiplied by the Emax model. In contrast, the effect of age was
not accounted for in the model of Pan et al, which may elucidate the disagreement between the
estimated and derived values for kin and kout in Pan et al of 5.32 x 106 cells/L and 0.02 per day
respectively and the estimated values for λ and µ in the biosimilars model of 2.99 x 106 cells/L and
0.0145 per day respectively.

The apparent ED50 parameter estimate of 1.04 mg (95% CI:0.288 - 2.24) was in good agreement
with the estimates of 0.81 mg by Pan et al185 and 0.921 mg estimated by the rituximab K-PD model
in Chapter 3. The corroboration of a low ED50 value from three models indeed suggests that a
lower dose of rituximab and rituximab biosimilars can be as efficacious with regards to sufficient
B cell suppression to control disease. It is important to note that both the rituximab K-PD model
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and rituximab biosimilars K-PD model were fitted to B cell counts from peripheral blood only,
therefore a higher rituximab dose may be required to achieve B cell depletion in solid tissue185.

While promising that the current biosimilar model could fit the data reasonably well, there are
several improvements to be made to the model before it can be clinically useful. Firstly, a covariate
model is yet to be developed to accompany the structural model. Clinically relevant covariates to
be tested should include diagnosis, gender, and comedications such as methotrexate, hydrocortisone
and mycophenolate mofetil, in line with previous work by Pan et al185. Secondly, to quantify the
effect of formulation and to be able to inform bioequivalence, the model-building dataset for the
biosimilar model can be merged with the historic dataset from the study by Pan et al to create a
joint dataset representative of patients who received both the rituximab biosimilar and reference
rituximab. Finally, simulations should be performed to test various dose regimens of the rituximab
biosimilar to assess the resulting impact on patients’ CD19+ cell trajectories.



Chapter 6

Conclusions

Whilst they offer substantial therapeutic benefits, medical interventions such as HSCT and the
administration of drugs affecting the immune response are also associated with high mortality and
morbidity, largely due to adverse effects on the immune system. Therefore, it is necessary to better
understand the recovery of the immune system after such insults in order to better inform the
clinical management of patients. In particular, the paediatric population displays heterogeneity
and variability in their recovery from these insults, highlighting the importance of considering
development and maturation in delineating the patterns of recovery. In addition, the off-label
administration of drugs affecting the immune response in paediatrics necessitates studies to optimise
dosing regimens of these agents to improve treatment efficacy.

The first of the models constructed, detailed in Chapter 2, was a one-compartment mechanistic PD
model to quantify CD19+ cell reconstitution following paediatric HSCT. With reference to previous
modelling work done for CD4+ cell reconstitution following paediatric HSCT106and by considering
relevant prior knowledge of immunobiology54,146, a B cell maturation function was developed to
scale for age-related effects and a delay function was incorporated to account for the time delay
between HSCT and bone marrow output. A PID diagnosis, receiving MAC and having a matched
donor were identified as significant covariates impacting the time taken to recover half-maximal
bone marrow output post-HSCT.

Building on this CD19+ cell model, an Emax model was then incorporated to create a two-
compartment K-PD model in Chapter 3, to identify the pharmacodynamics of rituximab on B
cells for the off-label indication of EBV reactivation post-HSCT. In general, greater effect sizes
were estimated for the covariates in the rituximab K-PD model than for the CD19+ cell model
in Chapter 2, highlighting the exacerbation of CD19+ cell reconstitution post-HSCT in the pres-

138
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ence of rituximab. In Chapter 5, a simplified version of this rituximab K-PD model was used to
quantify the pharmacodynamics of the Truxima rituximab biosimilar in children with rheumatolog-
ical indications, demonstrating the application of the core model structure to a non-HSCT clinical
setting.

In Chapter 4, the viral dynamics of EBV reactivation post-HSCT was investigated using several
modelling approaches. Firstly, a multivariate Cox proportional hazards model identified pre-HSCT
ATG administration and EBV seropositivity of the HSCT recipient as significant risk factors for an
initial EBV reactivation event in the first 100 days post-HSCT1. In addition, sensitivity analysis
of a previously reported mechanistic mathematical model of EBV viral kinetics found parameters
related to latently infected memory B cells and CTLs to be key drivers of EBV VL320. This complex
model proved challenging to fit to the clinical patient data therefore the rituximab K-PD model
developed in Chapter 3 was integrated with a modified version of a published viral dynamic model
for HIV324 to construct a novel mechanistic five-compartment model of EBV viral dynamics and
CD19+ cell dynamics under the influence of rituximab.

6.1 Future Work

Efforts of future work should focus on further refinement of the models developed, performing
model-based simulations and performing internal and/or external validation to assess predictive
performance of the models on unseen patient data. This could be done using internal data from pa-
tients who underwent HSCT at GOSH after 2016 or using external data from patients transplanted
at other HSCT centres.

Regarding the Chapter 2 CD19+ cell model, a future direction is to leverage it as a Bayesian tool
to predict individual patients’ long-term CD19+ cell reconstitution trajectories post-HSCT using
CD19+ cell counts from the early post-HSCT period as well as relevant covariate data. As post-
HSCT patients undergo routine clinical monitoring, such a tool could be automatically updated as
patients’ CD19+ cell counts are collected.

For the rituximab K-PD model, model-based simulations of various rituximab dosing regimens
should be performed, e.g. ranging from a quarter of the usual dose, 94 mg/m2 to double the dose,
750 mg/m2 , to provide simulated profiles of CD19+ cell suppression over time. Another direction of
future work could be to convert the K-PD model into a full PK-PD model by integrating rituximab
PK data from the literature. In terms of the EBV viral dynamic model, conducting model-based
simulations would help identify the optimal rituximab dose at which the extent of CD19+ cell
depletion would be sufficient to suppress EBV VL to a sub-clinical level.

As for the rituximab biosimilar model, a covariate model should first be developed. Covariates tested



CHAPTER 6. CONCLUSIONS 140

should include diagnosis, gender, and comedications in line with previous work by Pan et al185.
Secondly, to quantify the effect of formulation and to be able to inform bioequivalence, the model-
building dataset for the biosimilar model can be merged with the historic dataset from the study
by Pan et al to create a joint dataset representative of patients who received both the rituximab
biosimilar and reference rituximab. Finally, model-based simulations should be performed to test
various dose regimens of the rituximab biosimilar to assess the resulting impact on patients’ CD19+

cell trajectories.

Collectively, the research presented in this thesis aimed to use mathematical modelling to investigate
the reconstitution of B cells in children following various insults to the immune system. Four novel
mechanistic NLME models of CD19+ cell reconstitution encompassing immunology, viral infection
and pharmacology were developed using retrospective real-world electronic health record data from
children transplanted and treated at GOSH. New insights have been gained into the biological
mechanisms governing B cell reconstitution and factors affecting it have been identified. This is the
first time that B cell reconstitution has been quantified in children using NLME models, and there
is great potential to continue this work to further expand our understanding of B cell reconstitution,
and of immune reconstitution as a whole.
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