
Bayesian hierarchical modelling of sparse

count processes in retail analytics

James Pitkin, Ioanna Manolopoulou and Gordon Ross

May 16, 2018

Abstract

The field of retail analytics has been transformed by the availability of rich data which

can be used to perform tasks such as demand forecasting and inventory management.

However, one task which has proved more challenging is the forecasting of demand for

products which exhibit very few sales. The sparsity of the resulting data limits the degree

to which traditional analytics can be deployed. To combat this, we represent sales data

as a structured sparse multivariate point process which allows for features such as auto-

correlation, cross-correlation, and temporal clustering, known to be present in sparse

sales data. We introduce a Bayesian point process model to capture these phenomena,

which includes a hurdle component to cope with sparsity and an exciting component

to cope with temporal clustering within and across products. We then cast this model

within a Bayesian hierarchical framework, to allow the borrowing of information across

different products, which is key in addressing the data sparsity per product. We conduct

a detailed analysis using real sales data to show that this model outperforms existing

methods in terms of predictive power and we discuss the interpretation of the inference.

1 Introduction

One of the main objectives of retail analytics is to build predictive demand forecasting mod-

els, for purposes such as inventory management, profit forecasting, assessing the impact of
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marketing to name but a few. Demand models have been extensively studied in the literature,

focusing on forecasting sales of high volumes [Seeger, Salinas, and Flunkert, 2016, Ferreira,

Lee, and Simchi-Levi, 2015, Sahu, Baffour, Harper, Minty, and Sarran, 2014]. However, these

forecasting models often struggle to capture the demand dynamics of products with low sales

volumes. Such products, known as slow-moving-inventory (SMI), are typically for sale the

entire year but are only purchased 1-5% of days, often with an intermittent pattern. They are

usually nonfood merchandise such as technology, fashion and general household items. The

resultant demand data of SMI take the form of a sparse count process per product, largely

populated with zeros, with auto-correlation and contemporaneous structure across different

products (due to seasonality, promotions and current trends).

There are three main aspects of a predictive model of SMI which are challenging. Firstly,

since these products have low sales volumes, this leads to an inflation of zeros (corresponding

to days with no sales), which makes it difficult to learn the effect of traditional variables used

in forecasting models (prices, promotions, seasonality). Secondly, SMI demand often occurs

in bursts across different products, indicating a dependency either between a product’s own

sales history and the history of other similar products, or on a common external factor that

cannot be accounted for by available covariates. Thirdly, SMI is often stocked and sold for

a relatively limited amount of time (short sales cycles), which results in little covariate and

demand history.

Previous research dealing with such zero-inflated bursty processes includes exponential

smoothing and related methodologies that attempt to forecast future observations as a weighted

moving average of past observations over time [Croston, 1972, Gardner, 2006]. Such ap-

proaches primarily focused on the temporal burstiness of demand and demonstrated initial

success, though lack an underlying stochastic process consistent with intermittent demand

and fail to provide a framework that naturally accounts for predictors, information borrowing

and uncertainty [Shenstone and Hyndman, 2005]. More recent developments have included

neural network approaches that show promise at finding the complex non-linear interdepen-

dencies across multiple intermittent demand series across but suffer from over-fitting issues and

lack an underlying interpretability [Kourentzes, 2013, Pour, Tabar, and Rahimzadeh, 2008,

Mishra, Yuan, Huang, and Duc, 2014]. The closest approach striving to accommodate the
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zero-inflation, demand clustering and information sparsity exhibited in intermittent demand

comes from Chapados [2014], who implement a Bayesian hierarchical zero-inflated count model

with time-varying regression parameters that shares information across intermittent demand

series. However, their approach limits the dependency on historical demand to an AR(1)

process in the mean of the count distribution and ignores the zero-process altogether, exclude

pricing information from their framework and without considering contemporaneous depen-

dence between intermittent demand series. Though existing approaches have demonstrated

a degree of success at forecasting the intermittent demand of SMI, none have developed a

unified model that incorporates excitation dynamics, covariates beyond just seasonality and

information pooling between the intermittent demand series in a way that sheds light into

additive benefits that each of these components has with respect to forecasting performance.

In this work, we develop modelling, inferential and predictive methods able to learn the dy-

namics of sparse count processes for SMI products with few to no sales. We flexibly introduce

covariates into the self-exciting model for sparse processes of Porter and White [2012]. We

extend the model to include a cross-excitation contribution that allows differing intermittent

demand series to excite one another, capturing the process of intertwined contemporaneous

excitation dynamics observed in SMI data. We overcome the lack of information for each prod-

uct by integrating individual products into a Bayesian hierarchical model that accommodates

shrinkage and information passing across differing sparse count process, without requiring the

data for each product to exist over the same time period.

The layout of this paper is as follows; section 2 describes the SMI demand data used in

this paper. Section 3 describes hurdle models and the Hawkes process. Section 4 outlines

our hierarchical Bayesian hurdle model with self and cross-excitation components to model

multiple sparse count processes simultaneously. Section 5 presents the results of our sparse

count process on the demand data of touchscreen tablets across five South London super-

markets. We conduct a detailed investigation to compare our model to its non-hierarchical

equivalent and models without the self and cross-excitation terms to highlight the benefits of

the information borrowing and excitation components and discuss the implications of these

results within the context of retail analytics. Section 6 concludes with a summary of our

contributions and a discussion of possible future developments.
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2 Data

We implemented our methods on a dataset recorded through electronic points of sale of a

leading UK supermarket retailer, anonymised for general research purposes and that no in-

dividual shoppers could be identified. Access to the anonymised dataset was provided by

dunnhumby ltd. The data consist of 17 longitudinal SMI sales processes over 464 days of

trading between the dates 1st October 2013 to 7th January 2015. For each product, the daily

count corresponds to the aggregated sales of a touchscreen tablet across five large supermar-

kets within south London. Daily prices as well as seasonality characteristics are available as

covariates during the 464 trading days, during which all of the 17 tablets were stocked and in

circulation. We split the data into training and test sets, the first 364 trading days between

1st October 2013 to 29th September 2014 (a full trading year excluding Christmas), and the

remaining 100 trading days between 30th September 2014 to 7th January 2015 kept as hold

out test set. These training and test split gives a balance between providing sufficient training

periods where we observe one full year to allow the learning of seasonal trends, whilst having

test sets of a reasonable size to allow meaningful forecasts. This dataset is challenging since we

only have one year to learn seasonality from and thus makes a hierarchical model formulation

particularly applicable.

Table 1 provides summary statistics over the training set of the sale counts across the 17

tablet products. The demand across the category is primarily driven by one product, as it

accounts for 75% of sales. However, the remaining products are extremely slow moving as

indicated by the majority of them only having 0.5-5% non-zero sales days.
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Table 1: Summary statistics of SMI demand within tablet category on the training set. The

brands have been anonymised with fictitious names for privacy purposes.

Product Brand total sales % non-zero sale days

1 SPARK 1 0.27

2 TECHY 409 53.57

3 TECHY 36 4.12

4 GADGET 9 1.92

5 TECHY 5 1.37

6 TECHY 13 3.57

7 TECHY 13 3.57

8 GADGET 13 3.30

9 GADGET 2 0.27

10 GADGET 5 1.37

11 TECHY 1 0.27

12 TECHY 12 1.92

13 TECHY 2 0.55

14 TECHY 3 0.82

15 TECHY 9 0.82

16 TECHY 6 1.10

17 TECHY 3 0.82
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Figure 1: Plots of demand series (solid black line) for two tablets with their respective log

prices in £ (dashed blue) over 364 days of training data. The left panel is a high volume

tablet and the right panel is the demand of a low volume tablet. The shaded region is the

month prior to Christmas.

These data demonstrate many of the pertinent features of SMI sales processes. Figure 1

contrasts the sales and respective prices of one of the faster-selling tablets against a slower one.

The plots illustrate the zero-inflation, especially in relation to the length of the observed time

period and that the sales do not show a straightforward dependence on either the prices or

the seasonal effects, as indicated by the little movement in demand with respect to changes in

prices and season. A clustering effect in the succession of sales within their own demand series

is also evident. For example, sales of the right-hand plot in Figure 1 fall during the month

prior to the festive period, typically thought of as driving demand, but a quick succession

of sales follows shortly after this month. This suggests an excitation process not accounted

for by covariate information, as sales bursts occur outside the effects explained by covariate

data. Figure 2 provides plots suggesting the existence of possible contemporaneous excitation

of tablet sales within a particular brand. We see that sales of a tablet in a given brand are

often followed by a subsequent sale of another tablet of the same brand.
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Figure 2: Plots of tablet sales across two brands over portions of the training set. The left

plot corresponds to the GADGET brand and the right plot to the TECHY brand. For each

of the plots, the differing colours correspond to the sales of a particular product within the

given brand.

3 Background

Our aim is to develop a Bayesian hierarchical model for the sales of product i on day t, denoted

yit ∈ {0, 1, . . .}. We will decompose the model into a ‘zero’ (days with no sales) and ‘non-zero’

(days with non-zero sales) using a hurdle model to capture the zero-inflation in the count

processes, and will combine this with self- and cross-excitation components to account for the

clustering of events. To this end, we now review two main approaches used to handle the

inflation of zeroes in the sales process and the apparent excitation, namely hurdle regression

models to deal with the abundance of zeros exhibited in the count process and shot noise

processes to handle the dependency of sales on their immediate history.

3.1 Hurdle models

Mullahy [1986] introduced the hurdle regression model to handle an inflation of zeros in

count data that traditional count models (Poisson, negative binomial regression) could not

adequately account for. The hurdle model defines a distribution over the counts {0, 1, . . .} and
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assumes these counts can be split into two separate processes; a process accounting exclusively

for the 0’s (the hurdle), and a process accounting for non-zero counts. Hurdle models, unlike

their zero-inflated model counterpart [Lambert, 1992], assumes the zero and non-zero processes

are separable, as 0 observations arise exclusively from the degenerate 0 distribution and the

count distribution over {1, . . .}. We opt for a hurdle model over a zero-inflated model due to

the separability of the zero and count processes (that accommodates efficient inference) and

so that any occurrences of 0 can be directly linked to the zero process.

Within our context of SMI modelling, the inflation of zeros corresponds to days when we

observe zero sales, and the count process corresponds to days when we observe non-zero sales.

More concretely, given yt sales, the probability density function of the hurdle model given

covariates xt can be specified as:

p(yt | xt,θ) =

{
p(xzt ,θ

z), for yt = 0

(1− p(xzt ,θz))f(yt | xct ,θc), yt = 1, . . .
(1)

Here p(xzt ,θ
z) is the probability of observing a zero count at time t and f(· | xct ,θc) is a

probability mass function defined on the positive integers. The covariates for the zero process

xzt and count process xct may overlap. The θz,θc are parameters for the zero and count

processes respectively. For notational purposes, we let Et be the indicator for an event day

such that Et = 1 if yt ≥ 1 (a day t where at least one sales instance is observed) and Et = 0

if yt = 0 (a day t with no sales).

3.2 Self-exciting processes

Hawkes [1971] introduced a Hawkes process as a self-exciting temporal point process with

conditional intensity function

λ(t) = ϕ(t) +
∑
i:ti<t

ν(t− ti) (2)

where ϕ(t) is the background rate, ti are the times prior to time t when an event (i.e. non-

zero sales) occurred and ν(·) a continuous excitation function that controls the extent to

which events cluster together. This process effectively describes a count process where events
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increase the probability of further such events in the short term, leading to clustered events

(in our case, days with non-zero sales). In the discrete context, the above can be re-expressed

as:

λ(t) = ϕ(t) +
∑
j<t

κEjg(t− j) (3)

where ϕ(t) is, as before, the background rate, Et is a Boolean indicator indicating event days

(Et = 1 for an event day, i.e. a day with non-zero sales), g(·) ≥ 0 is the excitation kernel

(a probability mass function) that controls the extent to which events cluster together and

κ is some trigger constant that can be interpreted as the average number of triggered events

produced by each event. With a Hawkes process, instances of an event in turn increase (κ > 0)

or decrease (κ < 0) the probability of further such events occurring in the future. In this work

we focus on the case κ > 0 which represents excitation (rather than inhibition). We denote

the history of events up to but not including t as Ht−1 = (E1, . . . , Et−1). Figure 3 plots

two simulated series from a Bernoulli distribution with a Hawkes process term. It illustrates

the variation in Bernoulli samples depending on the parameters of the excitation kernel and

trigger constant. For example, the maroon curve with the higher excitation constant κ shows

much stronger excitation as exhibited by the densely clustered events dots, as opposed to the

blue which are mostly isolated events.

3.3 Cross-exciting processes

Various extensions to (3) have been made to include cross excitation across related spatial

or temporal processes. Lai et al. [2014] proposed a scheme allowing for inter-excitation and

inhibition across different social media events across both time and space domain. They

used a triggering kernel specified as exponential in time and Gaussian in space to capture

cross excitation and inhibition in tweets in different topics and geographies. Zhou et al. [2013]

used multi-dimensional Hawkes process (in the continuous space) to model information spread

across sparse low-rank social networks and a triggering function which incorporates excitation

from connected individuals in an additive form. Blundell et al. [2012] modelled interaction

between human relationships using linked Hawkes processes through a kernel trigger func-

tion for the cross entries, which are linked via a non-parametric Chinese restaurant process
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Figure 3: Simulated example. Two series of samples are generated from Et ∼ Bernoulli(pt),

with logit(pt) = θ+κ
∑

i<tEig(t− i | µ, τ) for t = 1, . . . , 364 where g(· | µ, τ) is the truncated

negative binomial density on the positive integers with mean and scale µ, τ . The blue dots

are Et samples generated from (θ, κ, µ, τ) = (−3.2, 3.1, 1.0, 5.0) and the solid blue line is the

corresponding pt. The maroon dots are Et samples generated from (θ, κ, µ, τ) = (−2.5, 5, 5, 60)

and the dashed maroon line is the corresponding pt. We observe how the differing (θ, κ, µ, τ)

lead to different clustering patterns and underlying shapes of the probability of events.

to determine the partitions amongst social groups. Although the aforementioned approaches

demonstrate a degree of success within their relevant contexts, they have not been applied to

sales forecasting before. In addition, multivariate Hawkes processes require specifying excita-

tion relationships between all events pairs of the multivariate point process, which increases

model complexity and can be computationally challenging to infer.

4 Model

We model the daily sales of SMI by explicitly modelling the absence of a sale (termed the

‘zero-process’), and the number of sales by the ‘count-process’. Our model uses a Bayesian

hierarchical version of the hurdle model of (1) with self and cross-excitation terms discussed in

section 4.2 in both the zero and count components. Our proposed model makes the following
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three extensions to existing models; firstly we use covariates beyond seasonal information, in

particular we use price along boolean seasonal variables to assist in forecasting sales. Secondly,

we use cross-excitation in the zero process of (1) that aims to capture the contemporaneous

nature of sales bursts across the SMI category. Thirdly, we build a Bayesian hierarchical model

across the sales yit (the sales at product i at time t) of a SMI category to allow information

borrowing which is key in addressing the sales sparsity per product.

4.1 Covariate data

In addition to the excitation exhibited in SMI sales, product level covariates may offer pre-

dictive power to SMI forecasting. We introduce covariate data into the model through the

background intensity function ϕ(t) of (3). In the supermarket sales context, this corresponds

to a product’s own price along with seasonal effects (which are common for all products). In

particular, these covariates for a product i at time t are logarithm of its price, along with the

indicator functions of week day, month and Christmas period. We summarise these covariates

as:

log(pit) = log(priceit) = logarithm price of SMI product i at time t,

st =
(
1(t∈Christmas),1(t∈Mon), . . . ,1(t∈Sat),1(t∈Jan), . . . ,1(t∈Nov)

)
.

Using boolean indicators allows for a natural interpretation in an information borrowing

scheme, and further avoids any explicit aggregation across the SMI product data, allowing us

to easily handle any issues relating to products coming in and out of circulation. We specify

the background intensities ϕzi (t), ϕ
c
i(t) of the zero and count processes of (3) as:

ϕzi (t) = θzi1 + θzi2 log(pit) +
18∑
k=1

θzi,k+2skt (4)

ϕci(t) = θci1 + θci2 log(pit) (5)

where {θzi1, . . . , θzi20} and {θci1, θci2} are the parameters associated with the zero and count pro-

cesses respectively for product i. The j index of θzij ranges from 1−20 to include the 1 additive

constant, 1 log price variable, 6 week day, 11 month and 1 Christmas indicators. Functions

(4) and (5) describe the background intensities of the processes absent of excitation. Thus,
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in the zero process, we expect the background intensity to depend on a linear combination of

log(price), seasonal effects and some additive constant through a given link function, whereas

in the count process, we expect the background intensity to depend on a linear combination

of log(price) and some additive constant through a given link function. We restrict the back-

ground intensity of the count process to exclude seasonal effects to reduce model complexity

and the possibility of over-fitting. It is important to note that, for a given product, the count

process only exists for t with Et = 1. This reduces the count process data compared to the

zero process. The link functions of (4) and (5) are context-specific and will be specified in the

data analysis sections. We now denote these covariates as xzit = (pit, st) and xcit = (pit) for

the zero and count processes respectively in line with notation of (1).

4.2 Cross-excitation

SMI sales of different but comparable products may occur in contemporaneous ‘bursts’, in

that sales of a particular product may be followed by sales of a comparable product in the

immediate future; these bursts can be a result of external advertising campaigns or viral

dynamics, but importantly the apparent excitation not only happens auto-correlatively, but

also contemporaneously across products. In the SMI context, cross-excitation is suspected to

occur within brand, i.e. a sale for a product leads to a higher probability of a sale of a product

from the same brand over the subsequent days. Concretely, we define Ẽit as the indicator for a

cross event day of product i of some brand such that Ẽit = 1 if
∑

k∈B\{i} ykt ≥ 1, where B is the

set of indices corresponding to products of the brand, and Ẽit = 0 if
∑

k∈B\{i} ykt = 0. Thus

the indicator Ẽit is 1 if there is at least one sale within the brand at time t and 0 otherwise.

We denote the history of cross-events up to but not including t as H̃it−1 =
(
Ẽi1, . . . , Ẽit−1

)
.

The corresponding shot noise process with the self and cross-excitation of product i then

becomes:

Sit =
∑
j<t

κiEitg(t− j | ζi) (6)

S̃it =
∑
j<t

κ̃iẼitg(t− j | ζ̃i) (7)

where κi, κ̃i are the trigger constants for the self and cross-excitation respectively and g is
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some probability mass function parametrised by ζi and ζ̃i controlling the shape of future self

and cross-excitation respectively. Our cross-excitation formulation of (7) is closely related to

the multivariate Hawkes process [Hawkes, 1971], where we fix all cross-excitation kernels of

a given product to 0 that correspond to a different brand, and have shared cross-excitation

kernels with shared parameters for products corresponding to the same brand. We denote

these collections of self and cross-excitation parameters as γi = (κi, ζi) and γ̃i =
(
κ̃i, ζ̃i

)
respectively.

4.3 Self and cross exciting hurdle model

We formulate our SMI model by utilising the hurdle model specification of (1). In particular,

we use a logistic link function to model the zero-process, with a background intensity ϕz(t) (4)

including seasonal boolean covariates, logarithm of price, as well as self and cross-excitation

components ((6) and (7)). Similarly, for the count process we use a Negative Binomial dis-

tribution with a log-link mean intensity ϕc(t) (5) which includes logarithm of price as well as

the self excitation term of (6). Our model is indexed by 17 longitudinal sales series from the

tablets category over 464 (training+test) days of trading between the dates 1st October 2013

to 7th January 2015. We specify the probability mass function of the hurdle model as:

p(yit | xit, Hit, H̃it,θi) =

{
p(xzit, Hit, H̃it,θ

z
i ), for yit = 0

(1− p(xzit, Hit, H̃it,θ
z
i )f(yit | λ (xcit, Hit,θ

c
i) , φ), yit ∈ N+

(8)

where λ(·) represents a link function and f(yit|λ, φ) =
(
yik−2+φ
yik−1

) (
λ−1

λ−1+φ

)yik−1 ( φ
λ−1+φ

)φ
and

φ = 1 which is the probability mass function of the shifted negative binomial distribution

(NB) and Hit, H̃it, x
z
it and xci,t are as defined in sections 3.2, 4.2 and 4.1 respectively indexed

by product i. We specify the link functions as:

logit
(
p
(
xzit, Hit, H̃it,θ

z
i

))
= ϕzi (t) + Szit + S̃zit

log(λ(xcit, Hit,θ
c
i)) = ϕci(t) + Scit

ϕzi (t) and ϕci(t) are as defined from (4) and (5) respectively but indexed by product i. We

define Szit =
∑

s<t κ
z
iEitg(t − s | µzi , τ zi ) and S̃zit =

∑
s<t κ̃

z
i Ẽitg(t − s | µ̃zi , τ̃ zi ) similarly to

13



(6) and (7) respectively with g(t | µ, τ) =
(
t−2+τ
t−1

) (
µ−1

µ−1+τ

)t−1 (
τ

µ−1+τ

)τ
as the shifted NB

distribution. We similarly define Scit =
∑

s<t κ
c
iEitg(t− s | µci , τ ci ). We denote the collection of

shot parameters as γ̃zi = (κ̃zi , µ̃
z
i , τ̃

z
i ), γzi = (κzi , µ

z
i , τ

z
i ) and γi

c = (κci , µ
c
i , τ

c
i ) and collectively

denote θzi = (θzi1, . . . , θ
z
i20,γi

z, γ̃zi ) and θci = (θci1, θ
c
i2,γi

c).

During this work, special attention is paid to the specification of hierarchical priors over

the collection θzi and θci , as they are the mechanism through which we penalise complexity

and pool information to combat data sparsity. In particular, we specify θzij ∼ N(ρzj , (σ
z
j )

2) and

ρzj ∼ N(ϑzj , (ζ
z
j )2) and fix (σzj )

2 for j = 1, . . . , 20 and similarly specify θcij ∼ N(ρcj, (σ
c
j)

2) and

ρcj ∼ N(ϑcj, (ζ
c
j )

2) and fix (σcj)
2 for each j = 1, 2. For parameters of the shot function Szit, we

specify γzij ∼ Gamma(ηzj , ν
z
j ) with ηzj ∼ Gamma(αzj , δ

z
j ) and fix νzj for each j = 1, 2, 3. We

specify priors on γ̃zij and γcij similarly. The full details of hierarchical prior specification are

contained in appendix A.1.

5 Results

We fit variations of the model (8) to the 17 longitudinal SMI sales processes over 364 days of

trading between the dates 1st October 2013 to 29th September 2014. We denote time interval

over which we train our models as T train. A hold out test set over 100 trading days between

30th September 2014 to 7th January 2015 is used to evaluate the predictive performance of

the model variations for both the zero and count processes. We denote this test interval as

T test. As the zero and count processes are completely separable, we perform model inference

and analysis separately.

5.1 Zero process variations

To assess the predictive benefits of the additions of self-excitation, cross-excitation and hierar-

chical components to the zero process of the hurdle model of (1), we implement the following

cumulative variations of both the link functions as well as the hierarchical layering used in

the modelling for each i = 1, . . . , 17.
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• Baseline model (Basez1): We learn the zero process with link function

logit
(
p
(
xzit, Hit, H̃it,θ

z
i

))
= ϕzi ,

i.e. a constant probability per product. This is the Bayesian baseline model as it esti-

mates the zero-process independent of covariate information. The ϕzi is estimated using

vague priors. The performance of this model is used to verify the relative benefits that

covariate information brings to SMI zero-process modelling.

• Hierarchical Bayesian (HBz): We learn the zero process with link function

logit
(
p
(
xzit, Hit, H̃it,θ

z
i

))
= ϕzi (t),

with the hierarchical prior formulation discussed in section 4.3. This model is imple-

mented to establish a benchmark of the simplest regression model, i.e. a model that

excludes information of previous events and is used to verify the relative benefits of self

excitation and cross-excitation.

• Bayesian with self-excitation (BEz): We learn the zero process of the hurdle model

with link function:

logit
(
p
(
xzit, Hit, H̃it,θ

z
i

))
= ϕzi (t) + Szit,

but exclude the hierarchical prior formulation shown in section 4.3. More concretely,

we fix the parameters ρzj , (σ
z
j )

2 and ηzj , ν
z
j across all j. This model is implemented to

establish a benchmark of a model with excitation but without information borrowing

between products and is used to verify the relative benefits of information borrowing

between products.

• Hierarchical Bayesian with self-excitation (HBEz): We learn the zero process

with link function

logit
(
p
(
xzit, Hit, H̃it,θ

z
i

))
= ϕzi (t) + Szit,

with the hierarchical prior formulation discussed in section 4.3. This model is imple-

mented to demonstrate the possible benefits of self-excitation in the standard zero in-

flated regression model.
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• Bayesian with self and cross-excitation (BECz): We learn the zero process with

link function

logit
(
p
(
xzit, Hit, H̃it,θ

z
i

))
= ϕzi (t) + Szit + S̃zit,

but exclude the hierarchical prior formulation shown in section 4.3. Prior specification

is similar to that of BEz but extended to include γ̃zi . This is a benchmark of a model

with self and cross-excitation but without an information borrowing scheme.

• Hierarchical Bayesian with self and cross-excitation (HBECz): This is the full

model discussed in the section 4.3. We learn the zero process with link function

logit
(
p
(
xzit, Hit, H̃it,θ

z
i

))
= ϕzi (t) + Szit + S̃zit,

with the hierarchical prior formulation discussed in section 4.3. The hyper-priors are

selected to balance borrowing across products and penalising complexity.

Parameter inference is performed by Hamiltonian Monte Carlo sampling algorithm and

is implemented using the rstan library [Stan Development Team, 2016]. Convergence was

confirmed by Heidelberger Welch statistic across all models and parameters [Heidelberger

and Welch, 1981]. The specification of hyper-priors is included in appendix A.1. For further

MCMC implementation details, as well as additional model comparisons and discussion, refer

to the supplementary materials.

5.2 Zero process fits

The predictive performance of models Basez1, HBz, BEz, HBEz, BECz and HBECz is assessed

by calculating how capable each model is at predicting the probability of a sale occurring on

a given day over the test interval T test (30th September 2014 to 7th January 2015) for each

i = 1, . . . , 17 given the history of self and cross events Hit, H̃it, covariate information xzit and

posterior samples. We denote the sth posterior sample of θzi of the ith product as θzis. The

sales occurrence probabilities are based on the posterior samples θzis inferred from the training

interval T train (between 1st October 2013 to 29th September 2014). More precisely, we apply

the following methodology over the test interval:
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1. On given day t on the test interval and sth posterior sample, we compute the full pre-

dictive posterior distribution of the probability of a sale occurring based conditioned on

xzit, Hit, H̃it,θ
z
is for each product i = 1, . . . , 17.

2. We observe yit+1 (the number of sales of product i on day t + 1) for each i = 1, . . . , 17

and update the self and cross event histories Hit+1, H̃it+1 for i = 1, . . . , 17.

3. Repeat steps for each t, for each sample s and i over the test period of 30th September

2014 to 7th January 2015.

This builds up a set of daily predictive posterior probabilities pits for each s = 1, . . . , S for

the probability of a sale on a given day over T test for each i = 1, . . . , 17 based on posterior

samples inferred from T train conditioned on xzit, Hit, H̃it,θ
z
i .

To evaluate the predictive performance of the models for the zero process we use the log

posterior predictive density [Gelman, Hwang, and Vehtari, 2014], denoted lppdz, given by:

lppdzi =
∑
t∈T

log

(
1

S

S∑
s=1

pEit
its (1− pits)(1−Eit)

)

where pits is the prediction probability of a sale occurring for product i from posterior sample

s for some model of interest. Table 2 provides the lppdz scores across products and models.

Table 2 reveals some interesting findings. Firstly, we observe the model HBz, the zero

process model with covariate information, provides a significant improvement in predictive

performance compared to baseline model Basez1 without covariate information. We further

see that inclusion of a self-excitation component in (1) provides a marked improvement over

the model HBz without self-excitation. Figure 4 demonstrates an example of the benefit of

self-excitation inclusion by comparing the event day prediction performance between models

HBEz and HBz over a portion of the test set. We observe inclusion of self-excitation produces

a 95% credibility interval of model HBEz that captures a subsequent sale that model HBz

does not immediately after the first sale at t = 382.

Table 2 further indicates the predictive benefits that hierarchical extensions provide over its

non-hierarchical equivalents. Figure 5 illustrates an example of the benefit of these hierarchical
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Table 2: lppdz,testi and lppdz,traini scores of the zero process fits for the models Basez1, HBz,

BEz, HBEz, BECz and HBECz and each product. The final two rows show the total lppdz

across all products in the test and train sets, respectively.

Product i lppdz,testBase1,i
lppdz,testHB,i lppdz,testBE,i lppdz,testHBE,i lppdz,testBEC,i lppdz,testHBEC,i

1 -0.37 -3.16 -0.32 -2.04 -0.32 -1.97

2 -73.47 -65.66 -60.85 -55.87 -60.42 -55.18

3 -7.33 -6.81 -6.18 -5.56 -6.23 -5.59

4 -29.44 -28.27 -29.30 -28.54 -29.00 -28.35

5 -14.16 -13.09 -10.46 -12.12 -10.27 -11.81

6 -3.67 -5.80 -2.55 -3.63 -2.54 -3.63

7 -6.92 -7.42 -5.91 -5.98 -6.00 -6.07

8 -6.74 -8.95 -6.47 -6.91 -6.42 -6.77

9 -5.97 -7.27 -5.68 -5.98 -5.69 -5.93

10 -9.91 -11.30 -10.76 -10.45 -10.60 -10.22

11 -17.16 -11.48 -14.01 -11.79 -13.97 -11.80

12 -9.80 -11.86 -10.48 -10.53 -10.30 -10.27

13 -15.84 -15.25 -9.75 -9.99 -9.81 -9.91

14 -10.34 -8.66 -11.15 -9.93 -11.11 -9.95

15 -10.36 -11.15 -10.78 -10.49 -10.83 -10.52

16 -5.61 -7.47 -6.12 -6.60 -6.19 -6.61

17 -15.01 -15.23 -13.60 -13.09 -13.66 -13.07

lppdz,testmodel -242.10 -238.82 -214.37 -209.50 -213.35 -207.65

lppdz,trainmodel -708.26 -699.89 -609.45 -662.65 -608.48 -662.84
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extensions by comparing event day prediction performance between models HBEz and BEz

over a portion of the test set. We observe that by information pooling across the intermittent

demand series produces a 95% credibility interval of model HBEz that captures a sale at

t = 446 (during the Christmas period). This is despite the absence of sales over the Christmas

period of the previous year for this product. In this way, the hierarchical model benefits from

inferring parameter values of other intermittent demand series which have observed sales over

the previous the Christmas period.

Finally, Table 2 indicates that the cross-excitation expositions of models BECz and HBECz

offer an improvement in event day prediction over the test set compared to their non cross-

excitation counterparts (i.e. BEz and HBEz). Interestingly, cross-excitation does not offer any

benefits in terms of the training set; but shows significant predictive gains in the test set.
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Figure 4: Plots of the predictive models HBz (left) and HBEz (right) for product i = 13

over a portion of the test set. The blue and magenta dots represent self and cross event days

respectively (i.e. Eit and Ẽit). The black line is the estimated posterior mean of an event day

observation (i.e. pit) and the shaded region is the 95% credible interval of these estimates.
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Figure 5: Plots of the predictive models BEz (left) and HBEz (right) for product i = 11 over

a portion of the test set. The blue and magenta dots represent self and cross event days

respectively (i.e. Eit and Ẽit). The black line is the estimated posterior mean of an event day

observation (i.e. pit) and the shaded region is the 95% credible interval of these estimates.

5.3 Count process variations

Similarly to section 5.2, the benefits of the excitation and hierarchical component to the count

process of hurdle model (1) are verified by implementing the following cumulative variations

in the link functions and hierarchical layerings of the model for each i = 1, . . . , 17. These

model variations follow the same rationale as with the zero process.

• Baseline model (Basec1): We learn the count process with link function

log(λ(xcit, Hit,θ
c
i)) = ϕci ,

i.e. a constant rate per product. This is the Bayesian baseline model as it estimates

the zero-process independent of covariate information. The ϕci is estimated using vague

priors.

• Hierarchical Bayesian (HBc): We learn the count process with link function

log(λ(xcit, Hit,θ
c
i)) = ϕci(t),

with the hierarchical prior formulation discussed in section 4.3.
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• Bayesian with self-excitation (BEc): We learn the count process with link function

log(λ(xcit, Hit,θ
c
i)) = ϕci(t) + Scit,

but exclude the hierarchical prior formulation shown in section 4.3.

• Hierarchical Bayesian with self-excitation (HBEc): This is the full model dis-

cussed in the section 4.3. We learn the count process with link function

log(λ(xcit, Hit,θ
c
i)) = ϕci(t) + Scit,

with the hierarchical prior formulation discussed in section 4.3.

Parameter inference is performed by Hamiltonian Monte Carlo sampling algorithm and

is implemented using the rstan library [Stan Development Team, 2016]. Convergence was

confirmed by Heidelberger Welch statistic across all models and parameters [Heidelberger and

Welch, 1981]. The specification of these hyper-priors and constant of models HBc, BEc and

HBEc is included in appendix A.1. For further MCMC implementation details, as well as

additional model comparisons and discussion, refer to the supplementary material.

5.4 Count process fits

Similarly to the zero processes outlined in section 5.2, we test the performance of the count

variation models Basec1, HBc, BEc and HBEc by calculating how capable each model is of

predicting the volume of sales on event days (i.e. days when sale has been observed) over the

test interval T test (between 30th September 2014 to 7th January 2015) for each i = 1, . . . , 17

given the history of self events Hit, covariate information xcit and posterior samples. We apply

the same methodology over the test interval as with the zero process:

1. On event day t (i.e. Et = 1) on the test interval and sth posterior sample, we compute

the full predictive posterior distribution of the volume of sales occurring conditioned on

Hit,x
c
it,θ

c
is for each i = 1, . . . , 17.
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2. We observe yit+1 (the volume of sales of product i on day t + 1) for each i = 1, . . . , 17

and update the self event histories Hit+1 for i = 1, . . . , 17.

3. Repeat steps for each t, for each sample s and i over the test period of 30th September

2014 to 7th January 2015.

This builds up a set of posterior rates λits for samples s = 1, . . . , S for the probability of the

number of sales on a given event day over T test for each i = 1, . . . , 17 based on our posterior

sample fits inferred from T train conditioned on xcit, Hit,θ
c
i .

Similarly to the zero process, we evaluate the predictive performance by calculating the log

posterior predictive density for each of the products i = 1, . . . , 17. The log posterior predictive

density lppdc for the count process is given by:

lppdci =
∑
t∈Ti

log

(
1

S

S∑
s=1

(
yik − 2 + φ

yik − 1

)(
λits − 1

λits − 1 + φ

)yik−1( φ

λits − 1 + φ

)φ)

where φ = 1 and λits is the prediction mean of count sales occurring for product i from the

sth posterior sample for some model of interest and Ti = {t|yit > 0}, i.e. Ti are the set time

indices corresponding to sales days for product i over some interval of time. Table 3 provides

the lppdc scores for across products and models.

Table 3 reveals some interesting findings. Firstly, we observe that the model variations

of HBc, BEc and HBEc perform significantly better than the Baseline model Basec1 with no

covariates. Similarly to the zero process, Table 3 indicates the count process uniformly benefits

from the inclusion of self-excitation in the model variations outlined in 5.3.

We further see that the count process benefits more from the hierarchical borrowing across

the intermittent demand series. This is understandable given the level of sparsity in the count

process. As Table 1 indicates, the order of sales that the each intermittent demand series has

is very small (typically in the order 3-20 sales), and thus it may be expected that information

borrowing would particularly benefit the individual models. An example of this additive

strength of the hierarchical exposition of the count model variations is illustrated by Figure

6. This plot shows a histogram of yit against the sum of
∑

t:yit=k
yit (for product 12) with
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Table 3: lppdci scores of the count process fits for the models Basec1, HBc, BEc and HBEc for

each product and fitted model. The final two rows show the total lppdc across all products in

the test and train sets, respectively.

Product i lppdc,testBase0,i
lppdc,testHB,i lppdc,testBE,i lppdc,testHBE,i

1 0.00 0.00 0.00 0.00

2 -18.10 -18.78 -13.59 -14.18

3 -0.91 -0.55 -0.62 -0.48

4 -1.60 -1.78 -1.66 -1.77

5 -0.08 -0.07 -0.08 -0.66

6 0.00 0.00 0.00 0.00

7 -0.01 -0.00 -0.04 -0.22

8 -4.99 -4.16 -7.92 -3.17

9 -2.54 -1.40 -1.50 -1.60

10 -3.98 -3.98 -3.80 -2.04

11 -7.05 -7.07 -7.45 -10.95

12 -1.02 -1.09 -1.03 -0.68

13 -3.46 -3.47 -3.47 -2.33

14 -6.19 6.46 -6.48 -5.23

15 -2.04 -2.05 -1.95 -0.66

16 -1.57 -2.64 -1.63 -1.80

17 -0.10 -0.08 -0.09 -0.55

lppdc,testmodel -53.64 -53.60 -51.32 -46.33

lppdc,trainmodel -336.81 -335.21 -308.58 -325.15
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Figure 6: Histograms of observed
∑

t:yit=k
yit with corresponding 95% credible intervals of the

posterior predictive distributions for models BEc (left) and HBEc (right) for product i = 12.

The lower of 2.5% credible interval (the lower bound of the whisker bars) for
∑

t:yit=1 ỹit will

at best be
∑

t:yit=1 1, since the count distribution is lower bounded by 1.

corresponding 95% credibility intervals of posterior predictive distributions for the models

HBc and BEc. We observe that the hierarchical model variation (even without the excitation)

produces much tighter credibility intervals around the observed data than the model without

information borrowing.

However, the best performing models are ones with both information borrowing and self-

excitation. Figure 7 illustrates the optimal performance of HBEc over HBc. In this plot, we

see the 95% credibility intervals produced from model HBEc for the higher count instances

(7+) capture the observed aggregated count instances, whereas the HBc credibility intervals

fail to do so. We further see the aggregate log posterior predictive density of
∑17

i=1 lppdc,trainmodel,i

of Table 3 provides more evidence that model HBEc is the best fitting model.

5.5 Retail analytics discussion

The output of models outlined in sections 5.1 and 5.3 provides interesting interpretations

from a retail analytics perspective. Firstly, we observe that covariate data xzit,xit as specified

in 4.1 improves forecasting performance for the intermittent demand series of SMI products.

This is indicated in both HBc and HBz - models with regression parameters and no form of

excitation - outperforming their baseline counterparts on both the training and test sets. This
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Figure 7: Histograms of observed
∑

t:yit=k
yit with corresponding 95% credible intervals of

the log of the posterior predictive distributions of
∑

t:yit=k
ỹit (sale counts) for models HBEc

(left) and HBc (right) for product i = 2.

importantly sheds light into the intermittent demand of SMI, in that it demonstrates covariate

data such as prices and seasonality ought to be incorporated into training forecasting models

as it seems predictions are improved from their inclusion.

Our findings further support the hypothesis that intermittent demand forecasting is im-

proved when excitation dynamics are incorporated into models. This supports the findings

of Snyder et al. [2012] and Chapados [2014] where they establish that models incorporating

the recent sales history outperform temporally static models. This is important because it

ultimately allows retailers to circumvent over-stocking that typically results from inaccurate

forecasting [Ghobbar and Friend, 2003]. However, our findings reveal some aspects of inter-

mittent demand forecasting that goes beyond the work of Snyder et al. [2012] and Chapados

[2014]. Namely, we establish that the temporal excitation exists even if you condition on

the seasonal trends and pricing information of xit. This suggests that temporal excitation

is systematic and occurs beyond the variables traditionally utilised in forecasting models.

We furthermore find that temporal excitation is manifested at lags greater than 1. Figure 8

demonstrates that µzi (the mean of excitation function of g(· | µ, τ)) is approximately 2 across

the majority of products, which implies that 2/3 of the probability mass of g(· | µ, τ) is placed

on lags greater than or equal to 2. This is crucially important, as it indicates that a simple

AR(1) (or similar) is possibly not enough compared to the Hawkes process that incorporates

the entire history of events.
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Figure 8: Box plots of the posterior distribution of µci across all products for model HBEz.

The µci estimates being greater than 2 indicates the temporal excitation exhibited in that data

typically occurs at lags greater than 1.

Finally, Figure 9 shows the sales forecasts of two slow-moving-inventory products using

the combined zero and count models. Despite the severe lack of data within each of the time

series, our model is able to produce meaningful predictions in the test set, including prediction

intervals, capturing several of the observed sales.

6 Conclusion

In this work we introduced a hierarchical model for the sales of the slow-moving-inventory

category of touchscreen tablets across five large supermarkets in south London. We modelled

the sales process as a Bayesian hierarchical zero-inflated hurdle regression model with self and

cross-excitation components. Our model specification is interpretable and allows a deeper

understanding of the role that covariates, self-excitation and cross-excitation play in the sales

process of slow-moving-inventory and further provides a fully specified predictive distribution

over this process. We demonstrated that the hierarchical structure as well as the self and
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Figure 9: Plots of the combined models HBEz and HBEc for product i = 4 (left) and product

i = 12 (right) over the entire training and test sets. The blue solid lines correspond to the

observed time series, whereas the shaded region and corresponding dashed black lines to 95%

prediction intervals. The vertical line at t = 365 represents the end and start of the training

and test sets respectively.

cross-excitation additions offer a significant improvement in the predictive accuracy of this

SMI sales process.

This model has important implications to the challenging issues that retail analytics face

when developing SMI models. Firstly, it offers utility in terms of demand and profit forecasting

that will allow retailers more accurate predictions of the sales distributions to aid with the

issue of inventory management as well as price optimisation over short term horizons. It

helps to explain the sources of variation and uncertainty that is exhibited in intermittent

demand processes that previously was not well understood. The model also reveals a strong

excitation component to these sales which could warrant further investigation into potential

underlying factors that could explain the observed excitation (e.g. marketing campaigns). We

further note that, though there are many other approaches of specifying the cross-excitation

relationship between pairwise products, our adopted approach of cross-excitation within brand

provides an intuitive and computationally simple method of expressing the suspected temporal

cross-correlation.

This work could be extended in many different directions. For example, a variable selec-

tion methodology could be introduced into the covariate predictors for each of the regression
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models. Our approach specified a priori the cross-excitation structure by defining an excita-

tion event as an a sale occurring within the same brand; it could also be interesting to assess

whether the excitation structure could be inferred from the data.
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A Appendix

A.1 Prior formulation

Table 4 specifies the prior structure of the zero process models models Basez1, HBz, BEz,

HBEz, BECz, and HBECz. Table 5 specifies the prior structure of the count process models

Basec1, HBc, BEc and HBEc.
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Table 4: Prior formulation of models Basez1, HBz, BEz, HBEz, BECz and HBECz. We abbre-

viate Normal(µ2, σ) and Gamma(α, β) to N(µ, σ2) and G(α, β) respectively.

Parameter Basez1 HBz BEz HBEz BECz HBECz

ϕi ∼ N(−3, 3)

θzi1 ∼ N(µz1, 0.05) N(−3, 0.75) N(µz1, 0.05) N(−3, 0.75) N(µz1, 0.05)

θzi2 ∼ N(µz2, 0.05) N(0, 0.75) N(µz2, 0.05) N(0, 0.75) N(µz2, 0.05)
...

...
...

...
...

...

θzi20 ∼ N(µz20, 0.05) N(0, 0.75) N(µz20, 0.05) N(0, 0.75) N(µz20, 0.05)

γzi1 ∼ G(5, 1) G(ηz1, 1) G(5, 1) G(ηz1, 1)

γzi2 ∼ 1 + G(1, 2) 1 + G(ηz2, 2) 1 + G(1, 2) 1 + G(ηz2, 2)

γzi3 ∼ G(10, 2.5) G(ηz3, 2.5) G(10, 2.5) G(ηz3, 2.5)

γ̃zi1 ∼ G(2, 8) G(η̃z1, 8)

γ̃zi2 ∼ 1 + G(1, 2) 1 + G(η̃z2, 2)

γ̃zi3 ∼ G(10, 2.5) G(η̃z3, 2.5)

ρz1 ∼ N(−3, 0.75) N(−3, 0.75) N(−3, 0.75)

ρz2 ∼ N(0, 0.75) N(0, 0.75) N(0, 0.75)
...

...
...

...

ρz20 ∼ N(0, 0.75) N(0, 0.75) N(0, 0.75)

ηz1 ∼ G(50, 10) G(50, 10)

ηz2 ∼ G(10, 10) G(10, 10)

ηz3 ∼ G(500, 50) G(500, 50)

η̃z1 ∼ G(30, 15)

η̃z2 ∼ G(10, 10)

η̃z3 ∼ G(500, 50)
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Table 5: Prior formulation of models Basec1, HBc, BEc and HBEc.

Parameter Basec1 HBc BEc HBEc

ϕci ∼ N(−4, 4)

θci1 ∼ N(µc1, 1) N(1, 0.75) N(µc1, 0.05)

θci2 ∼ N(µc2, 1) N(−1, 0.75) N(µc2, 0.05)

γci1 ∼ G(1, 5) G(ηc1, 5)

γci2 ∼ 1+G(3, 1) 1+G(ηc2, 1)

γci3 ∼ G(4, 1) G(ηc3, 1)

ρc1 ∼ N(1, 0.5) N(1, 0.75)

ρc2 ∼ N(−1, 0.5) N(−1, 0.75)

ηc1 ∼ G(5, 5)

ηc2 ∼ G(15, 5)

ηc3 ∼ G(40, 10)

33


	1 Introduction
	2 Data
	3 Background
	3.1 Hurdle models
	3.2 Self-exciting processes
	3.3 Cross-exciting processes

	4 Model
	4.1 Covariate data
	4.2 Cross-excitation
	4.3 Self and cross exciting hurdle model

	5 Results
	5.1 Zero process variations
	5.2 Zero process fits
	5.3 Count process variations
	5.4 Count process fits
	5.5 Retail analytics discussion

	6 Conclusion
	A Appendix
	A.1 Prior formulation


