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Abstract
Given an articulatory-to-acoustic forward model, it is a priori
unknown how its motor control must be operated to achieve a
desired acoustic result. This control problem is a fundamental
issue of articulatory speech synthesis and the cradle of acoustic-
to-articulatory inversion, a discipline which attempts to address
the issue by the means of various methods. This work presents
an end-to-end solution to the articulatory control problem, in
which synthetic motor trajectories of Monte-Carlo-generated
artificial speech are linked to input modalities (such as natu-
ral speech recordings or phoneme sequence input) via speaker-
independent latent representations of a vector-quantized varia-
tional autoencoder. The proposed method is self-supervised and
thus, in principle, synthesizer and speaker model independent.
Index Terms: Acoustic-to-articulatory inversion, VQ-VAE

1. Introduction
Articulatory speech synthesis (ASS) aims to model the speech
production mechanism as it occurs in humans. This usually in-
volves the temporal control of individual articulators, which is
a challenging task that requires expert knowledge in order to
produce intelligible speech [1]. A fundamental problem in ASS
is that the acoustic consequences of potential motor actions are
unknown prior to synthesis. Modern articulatory synthesizers
such as VocalTractLab [2] (VTL) try to circumvent this prob-
lem by providing motor state presets that correspond to known
phonemes. By rule-based interpolation of these presets, intel-
ligible speech can be generated [1, 3]. However, such control
is very limited, because the corresponding motor state presets
must be found from articulatory measurements (e.g., magnetic
resonance imaging) and must be fine-tuned. Thus, the creation
of such presets is very costly and time-consuming. Further, ex-
panding the repertoire of speakers, languages, or phonemes re-
quires new measurements each time. This is not scalable and
undermines the potential advantage of articulatory synthesis as
a low-cost, low-resource alternative [4] to state-of-the-art sys-
tems. Therefore, the development of an automatic method for
the generation of motor trajectories is of central importance for
the further development of ASS. A natural modality from which
articulatory movements can be obtained are acoustic speech sig-
nals. The corresponding process is often referred to as acoustic-
to-articulatory inversion (AAI). While numerous works have
been published on AAI, studies are often either based on artic-
ulatory measurements [5–9], expert knowledge [10–12], more
concerned with articulatory representations [6] and the quality
of motor trajectory prediction [13, 14] and less concerned with
the actual control of a human vocal tract model, or, if unsuper-
vised, provide little detail on synthetic data generation and/or
insufficient evaluation in terms of intelligibility [12, 15, 16] or
provide no acoustic examples [12, 15, 16]. This paper extends
the state of research with the following contributions: (i) A deep
learning-based framework is presented that can control the ar-
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Figure 1: Schematic of the proposed model TensorTract.

ticulatory synthesizer VTL (version dev-2.4 using VTL-Python)
via AAI and phoneme-to-articulatory conversion. (ii) This work
provides a detailed description of the generation of synthetic
training data for such a model. (iii) Meaningful evaluations in
terms of intelligibility were carried out. Audio examples are
provided to demonstrate the capabilities and limitations of the
system1.

2. Methods
The proposed system, which is referred to as TensorTract, is
visualized in Figure 1. It consists of a vector-quantized vari-
ational autoencoder [17] (VQ-VAE), which uses TCN [18] -
based encoder and decoder networks with multihead-attention
[19] (MHA). Each TCN consists of a single stack of five non-
causal residual blocks with dilation rates of 1, 2, 4, 8, 16, re-
spectively. The number of filters in the convolutional layers is
80 and the kernel size is 16. Skip connections are used be-
tween the input and each residual block. The tanh function is
used for the activations. The model uses 80 dimensional log-
melspectrograms as input features, which are computed from
22 kHz audio signals with a window length of 1024 samples
and a hop length of 220 samples. Consequently, the feature and
latent sampling rates are 100Hz. Thereby, 10 dimensional la-
tent variables and 512 embeddings were used. The decoder was
conditioned on the original pitch contours and speaker identi-
ties of the input utterances, in order to achieve high reconstruc-
tion accuracy while keeping the latent representation maximally

1https://tensortract.github.io/
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Figure 2: Section of the area function of an implausible motor
state with two constrictions, one of which is a double closure.
Tokens corresponding to the individual segments are shown.

speaker and pitch independent. The output of the decoder can be
connected to a neural vocoder such as Hifi-Gan [20], which has
been done in this work for evaluation purposes only. The VQ-
VAE latent is connected to VTL motor trajectories via a forward
model (mappig to the latent) and an inverse model (mapping
from the latent). The motor-to-latent (M2L) mapping was es-
tablished using an MHA-RNN hybrid model (five BiGRU [21]
layers with 32, 64, 256, 256, 256 neurons and tanh activation,
respectively, followed by three dense layers with GeLu [22] ac-
tivation and a final dense layer with softmax activation). This
model essentially replicates the operation of VTL, but with the
distinct advantages of being fast and differentiable. Moreover,
since this model maps to the latent and not directly to the acous-
tic level, the speaker voice characteristic of this forward opera-
tion can easily be changed. The inverse latent-to-motor (L2M)
mapping was established using a similar network but with 256
neurons in each BiGRU layer and a tanh activation in the final
layer instead of softmax. The idea is to first train the VQ-VAE
model simultaneously on natural and synthetic data. Then, the
M2L and L2M models can be trained on the synthetic data alone
(theoretically an L2M model would be sufficient, but in reality
an additional forward model can penalize prediction errors of
the L2M model and thus better results can be achieved). This
creates a link between natural speech data and motor trajecto-
ries. In addition, phoneme annotations of the natural speech
data can be mapped to the latent (P2L), allowing a mapping
of phoneme sequences to articulatory trajectories. For the P2L
model, a TCN with MHA similar to the audio encoder network
was used.

Natural Speech Data

With the aim of comparing the results of latent inversion with
the rule-based (German) phoneme-to-speech functionality [3]
of VTL, German speech data was used in the training of the
VQ-VAE. For this purpose, the German part of the Multilin-
gual LibriSpeech [23] (MLS) corpus was used (approximately
2000 h of speech). In addition, the BITS unit selection cor-
pus [24] (BITS), version 1.7 and the PhonDat90 part of the Kiel
Corpus of Spoken German [25, 26], New Edition 2017 (KIEL)
were used. These data sets have much less speech material than
MLS, but provide high quality phoneme annotations, which are
useful for training the P2L model and for evaluation purposes.

Synthetic Speech Data

A central aspect of this work is the generation of meaningful
synthetic training data. If random motor states were concate-
nated into an infinite data set, any combination of phonemes,
and thus any word or phrase in any language, could be obtained.
In reality, however, the size of a data set must always be limited
due to hardware and time constraints. Therefore, it is important
to sample motor trajectories that are as meaningful as possi-

ble. As a matter of fact however, randomly sampled VTL motor
states are usually biologically implausible because the model
has few bio-mechanical constraints [27]. Consequently, exter-
nal articulatory constraints must be applied. The corresponding
process is described below and is based on the ideas of Van
Niekerk et al. [28] and Krug et al. [29].

Prerequisites

Let Tmin be the minimum of the tube area function Tq(χ) re-
lated to a given vocal tract state q. Second, let C(Tmin) be a
function of Tmin that describes the degree of vocal tract con-
striction via a set of integers. Thereby, a value of C = 0
(Tmin ≥ 0.3 cm2) indicates an open vocal tract. Such a
state is likely to generate a vowel-like sound when synthe-
sized with a modal voice quality [27, 29]. A value of C = 2
(Tmin = 10−4 cm2) indicates a vocal tract closure, i.e. a con-
figuration as needed for plosive consonants. Values of C = 3
(Tmin = 0.15 cm2) and C = 4 (Tmin = 0.25 cm2) indi-
cate vocal tract constrictions that are necessary for fricatives
and lateral sounds, respectively. For other values of Tmin,
C = 1. Such states may sound vowel-like but with added frica-
tion noise. As a rule of thumb, such states often sound rather
unnatural and are not particularly desirable. Another impor-
tant technical observable is the critical articulator label, which
VTL assigns to each segment of the tube area function, see
Figure 2. These labels correspond to the tongue (T), lower in-
cisors (I), lips (L) and other articulators (O), respectively. The
large region covered by the tongue-related articulators was di-
vided into eight segments (T0 to T7). Articulator tokens within
a region of constriction are referred to as place of articula-
tion (POA). The length of a constriction is measured in terms
of number of tube segments within the region of constriction.
Thereby, LC denotes the length of a constriction (region with
Tq(χ) < 0.3 cm2), LTC denotes the length of a tight constric-
tion (Tq(χ) ∈ [0.15, 0.25] cm2) and LCC denotes the length of
a closure constriction (Tq(χ) = 10−4 cm2).

Generation of Vowel States

Vowel-related motor states were determined by unsupervised
random exploration. During this process, a number of 104

open states were sampled from uniform distributions between
the limits of the respective supraglottal VTL parameter ranges
as defined in [29]. The velum opening parameter VO was al-
ways set to -0.1 (i.e. closed velum), because VO controls the
nasality of a sound. However, during the vowel sampling phase
nasality is not desired. Subsequently, VTL was used to compute
the vocal tract transfer functions of the sampled motor states.
The first two tube resonances fR1 and fR2 were extracted from
each transfer function. These resonances are closely related to
the formants f1 and f2 that would occur if a respective vowel
state was synthesized. Hence, the scope of the explorable vowel
space is well characterized by the fR1-fR2 distribution, e.g. see
[27]. Krug et al. have shown that randomly sampled states do
not adopt a uniform density distribution in the fR1-fR2 space,
but that vowels of certain phonetic classes are overrepresented,
while the corner vowels /o, u/ are underrepresented [27]. This
is problematic because the central vowels can be generated by
concatenating vowel states through a coarticulation model and
thus, be learned in a subsequent step. Corner vowels, on the
other hand, cannot be generated by interpolating central vow-
els. This means that an extraction of the corner vowels is nec-
essary (and sufficient) for all vowels to be potentially present in
the training material. For this purpose, the convex hull of the
vowel distribution in fR1-fR2 space was computed and the mo-
tor states whose tube resonances lied on the convex hull were
stored. These data points were then removed from the distribu-
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tion and the convex hull was computed again. This procedure
was performed a total of five times, resulting in the extraction
of 120 vowel states in which all edge and corner vowels were
sufficiently represented.

Generation of Consonant States

Consonants are usually coarticulated differently depending on
context. To capture plausible coarticulation in the synthetic
speech, consonant-related motor states were generated in the
context of the previously determined vowel states. For this pur-
pose, the artificial vocal learning framework described by Krug
et al. [29] was used. The system has been adapted, because
the optimization of the motor states was based only on the tube
area function in this case, i.e. no synthesis was required. The
optimization was guided by two main principles: (i) A conso-
nant state should be as similar as possible to a previously spec-
ified vowel-like state. (ii) The consonant state should have a
constriction or closure at a specific location in the vocal tract.
The corresponding objective function is the sum of a similarity
loss LS and a constriction loss LC . The former is the cosine
similarity between a state to be optimized (q) and a vowel ref-
erence state (r). The latter is calculated from the sum of indi-
vidual components LCi. Thereby, the term LC0 = 100 is ap-
plied if C ̸= CExt. This strongly penalizes shapes whose area
function has a different constriction level than the externally set
reference CExt. This ensures a quick convergence to the de-
sired level of constriction. The term LC1 = 100 is applied if
NC ̸= NExt

C . This penalizes shapes whose number of con-
strictions NC is unequal to an externally set reference number
NExt

C . Here, NExt
C = 1, as shapes with multiple constrictions

are often implausible and may lead to unnatural coarticulation.

LC2 =

{
LI + LE + L̂C2 + L̂⋆

C2, if NC ̸= 0

50, if NC = 0

L̂C2 =

{
25, if LC ̸= LExt

C

0, otherwise

L̂⋆
C2 =





25, if CExt = 2 and LCC ̸= LExt
CC

25, if CExt ∈ [3, 4] and LTC ̸= LExt
TC

0, otherwise

(1)

The term LC2 introduces an articulator inclusion loss LI and
an exclusion loss LE . These losses are computed from 1− F1.
To calculate the F1 score in case of LE , articulator tokens
within a constriction, which are equal to externally set reference
tokens are counted as true positives, other cases are counted
as false positives. In case of LI , externally set reference to-
kens that are equal to articulator tokens within a constriction are
counted as true positives, other cases are counted as false posi-
tives. That means that LI penalizes the absence of the desired
tokens, while LE penalizes the presence of undesired tokens.
On the other hand, LC2 enforces specific constriction length
values via the terms L̂C2 and L̂⋆

C2. This is necessary because
the similarity loss minimizes the tube length associated with the
critical constriction. This is generally desirable, since too long
constrictions are often biologically implausible [28]. However,
too short critical constrictions lead to soft motor targets, e.g.
the tongue barely touching the palate. This is problematic, as it
means that the velocity of the critical articulator at the point of
contact with the vocal tract walls is not maximal, but rather min-
imal. For example, a VCV sequence such as /ada/ may sound
like /adZa/ because the articulators move too slowly through
the vocal tract region where the constriction may cause frica-
tion noise. In this work, a length of LExt

C = LExt
TC = LExt

CC = 3
was used. For each POA ∈ [T2,3, T3,4, T4,5, T5,6, T6,7, T3,

T4, T5, T6, T7, L] and for each vowel state, the vocal learn-
ing framework was used to find 3 consonant motor states. In all
cases the constriction constraint was set to CExt = 2, except
for POA = L, where both conditions CExt = 2 and CExt = 3
were used. This is because VTL has a specific mechanism that
turns tongue-related closures into fricatives on the level of the
tube area function if the tongue side elevation parameters adopt
specific values. Thus, finding tongue-related closures is suffi-
cient for the later generation of pseudo language. However, to
turn a labial closure into a labial fricative, several parameters
need to change simultaneously. It was easier to directly search
for both the labial closures and fricatives via state optimiza-
tion. A total number of 4320 consonant-related motor states
were generated. Each optimization ran for 5000 steps using the
same hyperparameters as in [29].

Monte-Carlo Generation of Pseudo Speech

Finally, the determined motor states were concatenated to form
continuous pseudo speech signals. Utterances were generated
as follows: For each utterance, a random number of motor state
units (NMS) was drawn, ranging from 1 to Nmax

MS . Based on
a 50% chance, each unit was chosen to be a vowel or conso-
nant (except for NMS = 1, where the unit was automatically
declared to be a vowel). In the case of a consonant, it was cho-
sen to be a closure, fricative, lateral, or nasal based on a 25%
chance. With a 50% chance, closures or fricatives were chosen
to be unvoiced. For vowels, one of the vowel motor states was
selected; for consonants, one of the consonant states was se-
lected. To create a nasal, the VO parameter of the corresponding
shape was set to 0.5. To create fricatives for the front tongue-
related configurations with POA ∈ [T5,6, T6,7, T5, T6, T7],
the tongue tip side elevation parameter (TS3) was set to 1.0. For
lateral generation, it was set to -1.0. For the posterior tongue-
related configurations with POA ∈ [T2,3, T3,4, T4,5, T3, T4],
the corresponding central tongue-side parameter TS2 was set
to 1.0 to generate fricatives. Laterals were not generated with
these posterior configurations. To produce VTL compatible ar-
ticulatory trajectories, the 19 dimensional (supraglottal) motor
targets needed to be paired with 11 dimensional glottal targets.
In case of voiced units the modal voice setting from the stan-
dard speaker model was used. For unvoiced sounds, the up-
per and lower displacements of the vocal folds (XT and XB)
were changed from their modal values to 0.1 cm, the chink area
(CA) was set to 0.1 cm2 and the relative amplitude (RA) was
set to 0. A random duration value between 50 ms and 200 ms
was sampled for each unit. However, while voiced units may
have the same durations for the supraglottal and glottal parts
of the motor targets, the durations for unvoiced units should be
asynchronous to avoid implausible onset times or glottal arti-
facts [29]. For this reason, glottal onset times were shifted by
+50ms and −30ms relative to the supraglottal onset times for
targets following voiceless closures and fricatives, respectively.
Finally, the target sequences were turned into time-dependent
continuous articulatory trajectories by target interpolation via
the Target-Approximation-Model [30, 31]. Thereby, a target
time constant of 15ms was used. The trajectories were dis-
cretized at a rate of 100Hz and normalized to [−1, 1]. Thereby,
1.5 ·105 utterances were generated with Nmax

MS = 50 and 5 ·104
utterances were generated with Nmax

MS = 20, which means the
synthetic data set had a total duration of approximately 150 h.

Experiments

First, the full data set (natural + synthetic) was separated into a
training and validation part using a stratified split in the sense
that 90% and 10% of the speech material from each speaker
was in the training and validation part, respectively. Then, log-
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melspectrograms were extracted and standardized feature-wise.
The VQ-VAE was trained on the audio data set using the same
loss functions as in [17] and a learning rate (LR) of 10−4. Then,
the M2L forward model was trained on the synthetic data suc-
cessively for 25 epochs with LR’s of 10−3, 10−4, 10−5 (drop
every 10 epochs). Categorical-crossentropy was used as the
loss between the model’s output and the latent codebook in-
dices (latent loss), which were obtained from the VQ-VAE vec-
tor quantization layer. Further, an MSE loss was calculated
between the input melspectrograms and the respective acous-
tic output, obtained from decoding the predicted latent codes
using the frozen VQ-VAE decoder (acoustic loss). Then, the
L2M model was trained on the synthetic data. First, it was
trained successively for 5 and 5 epochs using LR’s of 10−3 and
10−4, respectively. Thereby, the MSE loss between the true
and predicted motor trajectories (motor loss) was used. Sub-
sequently, the model was trained for 20 epochs (LR of 10−4)
using the motor loss, the acoustic forward loss via the frozen
M2L model plus VQ-VAE decoder as well as the correspond-
ing latent loss. Finally, the model was tuned on the natural +
synthetic data set for 6 epochs, applying the motor loss only in
case of the synthetic samples and the latent loss in both cases.
The acoustic loss was not used in this case. The P2L model
was trained for 50 epochs (LR of 10−4) on the BITS phoneme
sequences using both the latent and acoustic losses. For the
evaluation, the Berlin part of the KIEL set was used. These are
100 short sentences, each of which was uttered by 12 speakers
(6 male/female). The natural samples were re-synthesized using
following configurations: VQ-VAE logmel reconstruction with
Hifi-Gan synthesis (VQV+H), L2M motor prediction with VTL
synthesis (L2M+V), L2M motor prediction with audio recon-
struction via M2L + VQ-VAE + Hifi-Gan synthesis (L2M+H).
For evaluation, the 1200 sentences were also synthesized via
the rule-base phoneme-to-speech functionality of VTL using
the natural phoneme segments. The resulting motor trajectories
were additionally synthesized with M2L + VQ-VAE + Hifi-Gan
(M2L+H). The original phoneme segments were also synthe-
sized using P2L with subsequent VTL synthesis. Resulting au-
dio samples were evaluated in terms word- and character-error-
rate (WER and CER), which were computed from the original
text and transcripts as returned by the Google speech to text
Web-API. Speech samples were also evaluated in terms of (ex-
tended) short time intelligibility (STOI [32] and ESTOI [33]).

3. Results
The experimental results are shown in Table 1. Apparently, the
VQV model allows a relatively good reconstruction of the in-
put signal. The fact that the error rates are somewhat higher
than with the Hifi-Gan re-synthesis of the original signals may
be due to the fact that a pre-trained Hifi-Gan was used, which
was not conditioned on the reconstructed audio features. This
gives the synthesized utterances a somewhat metallic sound,
which has a negative effect on the naturalness of the speech.
The mean Pearson correlation coefficient between motor tra-
jectories predicted by the L2M model from natural utterances
and the motor trajectories obtained with rule-based VTL syn-
thesis is ρ = 0.93 ± 0.09. Despite the high correlation, mo-
tor trajectories estimated from the natural utterances tend to be
non-smooth, see Figure 3. This is because there is no loss dur-
ing optimization that stops the inverse model from exploiting
the forward model in a way to obtain the desired spectrograms.
However, when such trajectories are synthesized with VTL, ar-
ticulatory artifacts and noises occur frequently, since VTL does
not simulate fast moving articulators very well. As a conse-
quence, the WER values for L2M+V are rather high as this type
of noisy speech may be challenging for ASR systems. Still,
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Figure 3: The sentence ”Überquere die Straße vorsichtig”
(Cross the road carefully) as uttered by a male speaker from
the KIEL data set (top). The upper and lower mid plots show
the L2M+V imitation of the natural utterance and the VTL rule-
based re-synthesis, respectively. The bottom plot shows the cor-
responding trajectories of the VTL parameter TCX.

previous supervised attempts, e.g. by Gao et al. [11] are out-
performed in terms of ASR accuracy. It was also observed that
the P2L model was basically on a par with the rule-based VTL
synthesis in terms of intelligibility.

Table 1: Results on speech intelligibility. WER and CER values
are separately reported for male (female) input data. † and ⋆

mean the values were computed using the natural samples and
Hifi-Gan re-syntheses as references, respectively.

WER ↓ CER ↓ STOI ↑ ESTOI ↑
Natural 0.04 (0.03) 0.02 (0.02)
Nat.+H 0.05 (0.03) 0.03 (0.02)
VQV+H 0.08 (0.07) 0.04 (0.04) 0.90⋆ 0.81⋆

L2M+V 0.56 (0.52) 0.37 (0.32) 0.71† 0.51†

L2M+H 0.24 (0.21) 0.12 (0.11) 0.84⋆ 0.73⋆

V-ID 0.45 (0.37) 0.26 (0.21) 0.78⋆ 0.64⋆

P2L+V 0.28 (0.25) 0.16 (0.14) 0.68† 0.51†

VTL 0.25 (0.25) 0.14 (0.12) 0.63† 0.47†

M2L+H 0.46 (0.35) 0.25 (0.19) 0.66⋆ 0.50⋆

V-ID 0.53 (0.42) 0.31 (0.22) 0.63⋆ 0.45⋆

4. Conclusion
This work proposes a self-supervised and scalable solu-
tion to the control problem of articulatory speech synthesis
that enables speaker-independent acoustic-to-articulatory inver-
sion, phoneme-to-articulatory conversion, and articulatory-to-
acoustic neural synthesis. Due to the self-supervision, large
amounts of data can potentially be obtained for training. It is
expected that with larger networks and larger data sets, the for-
ward direction can be better approximated, which would also
improve the inverse control. However, future work should fo-
cus in particular on eliminating noise induced by fast moving
articulators. This may involve a generative adversarial network
that could discriminate between smooth and non-smooth move-
ments. However, it may also require the improvement of the
aero-acoustic simulation itself. In the supplementary material,
examples are shown where the noises have been removed by
post processing, which in some cases greatly increases the in-
telligibility and naturalness of the synthetic speech.
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