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Abstract

INTRODUCTION: Cranial computed tomography (CT) is an affordable and widely

available imaging modality that is used to assess structural abnormalities, but not to

quantify neurodegeneration. Previously we developed a deep-learning–based model

that produced accurate and robust cranial CT tissue classification.

MATERIALSANDMETHODS:Weanalyzed 917CT and744magnetic resonance (MR)

scans from the Gothenburg H70 Birth Cohort, and 204 CT and 241 MR scans from

participants of theMemory Clinic Cohort, Singapore.We tested associations between

six CT-based volumetric measures (CTVMs) and existing clinical diagnoses, fluid and

imaging biomarkers, andmeasures of cognition.

RESULTS: CTVMs differentiated cognitively healthy individuals from dementia and

prodromal dementia patients with high accuracy levels comparable to MR-based

measures. CTVMs were significantly associated with measures of cognition and

biochemical markers of neurodegeneration.

DISCUSSION: These findings suggest the potential future use of CT-based volumetric

measures as an informative first-line examination tool for neurodegenerative disease

diagnostics after further validation.

KEYWORDS

brain segmentation, cognition, CSF biomarkers, CT, deep learning, dementia, plasma biomarkers

HIGHLIGHTS

∙ Computed tomography (CT)–based volumetric measures can distinguish between

patients with neurodegenerative disease and healthy controls, as well as between

patients with prodromal dementia and controls.

∙ CT-based volumetric measures associate well with relevant cognitive, biochemical,

and neuroimagingmarkers of neurodegenerative diseases.

∙ Model performance, in termsof brain tissue classification,was consistent across two

cohorts of diverse nature.

∙ Intermodality agreement between our automated CT-based and established mag-

netic resonance (MR)–based image segmentationswas stronger than the agreement

between visual CT andMR imaging assessment.

1 INTRODUCTION

Neurodegenerative diseases are characterized by a progressive loss

of neuronal integrity and function as well as by molecular abnormali-

ties, leading to cognitive decline and dementia.1,2 Themost established

biomarkers for neurodegenerative diseases include cerebrospinal fluid

(CSF) measures of neuronal injury,3 brain atrophy measured on struc-

tural MR images,4–8 and positron emission tomography (PET) imaging

of brain glucose metabolism, as well as disease-specific measures of

amyloid beta (Aβ) and tau.9,10 However, these methods are expen-

sive, invasive, or available only in specialized care centers. Brain

imaging modalities such as CT and recently established blood-plasma–

derived biomarkers11,12 can address the issue of cost and availability

to some extent. With increased diagnostic utility, CT and plasma

biomarkers may become scalable and cost–effective alternatives for

neurodegenerative disease diagnostics.

CT is a fast, low-cost, and widely available imaging modality and

an alternative for patients who cannot undergo a magnetic resonance

(MR) examination.13 CT-based visual ratings are comparable to those

obtained fromMR imaging with regard to certain pathomorphological

characteristics, and they are correlated significantlywith cognitive test

results.13,14 However, MR imaging (MRI) is extensively used for high-

resolution atrophy assessment and brain volumetry15–17 due to its

stronger soft-tissue contrast. Atrophy assessment in CT is conducted
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SRIKRISHNA ET AL. 3

through semi-quantitative visual ratings, a subjective, time-consuming

approach that requires a trained expert. Recent studies have explored

state-of-the-art techniques such as deep learning in automatic cra-

nial CT segmentation.18,19 We previously used MR-based tissue class

segmentations to train deep-learning models to perform tissue classi-

fication on cranial CT images.20 In that study, models based on deep

learning called U-Nets21 were trained to segment gray matter (GM),

white matter (WM), CSF, and intracranial volume (ICV) in cranial CT

images. Although the segmentation results agreed strongly with those

of the reference methods, the question of clinical utility was relegated

to future work.

In the present study, we assessed the diagnostic performance of

CT-based brain tissue classification by (1) obtaining volumetric mea-

sures from CT-based tissue class maps, (2) evaluating the ability of

these measures to distinguish patients with neurodegenerative disor-

ders from healthy study participants, and (3) exploring the relationship

between these measures and cognition, as well as relevant blood

and CSF biomarkers. The results will help to assess the potential

of automatic CT image analysis, along with other easily accessible

and scalable diagnostic tools such as blood biomarkers, for clinical

diagnostic applications.

2 MATERIALS AND METHODS

2.1 Data sets

2.1.1 Gothenburg H70 Birth Cohort

The Gothenburg H70 Birth Cohort studies are a series of epidemi-

ological investigations carried out periodically since 1971 on large,

representative samples of those residents ofGothenburg, Swedenwho

turn 70 during a particular period.22 We used data from the 2014–

2016 iteration, which included n = 1203 participants in total. CT

images were available for n= 917 participants (Figure 1). As expected,

a largemajority of these (99%; n= 904) were cognitively normal.

Of these 917 participants, 79% (n = 744) underwent MR scanning

within a day of CT scanning. All imaging examinations were conducted

atAleris RöntgenAnnedal inGothenburg (AlerisGroupAB, Stockholm,

Sweden). A 64-slice Ingenuity CT system (Philips Medical Systems,

Best, The Netherlands) was used for CT acquisition, and an Achieva

system (3 Tesla; Philips Medical Systems) was used for MRI. Informed

consent had been obtained from the participants, and safety proce-

dures were conducted through interviews. An experienced radiologist

performed visual ratings of medial temporal atrophy (MTA) on all

available CT andMR scans.

Demographic data, past medical history, and neuropsychological

assessments were also obtained from all included individuals. CSF

biomarkers of neurodegeneration and Alzheimer’s disease (AD) patho-

physiology (neurofilament light [NfL], phosphorylated tau [p-tau],

Aβ40, and Aβ42) were available for 34% (n = 316) of participants

with CT. Details of CSF sampling and analyses are provided in Rydberg

Sterner et al.22–24 PlasmaNfL concentration wasmeasured at the Uni-

RESEARCH INCONTEXT

1. Systematic Review:We reviewed the literature using tra-

ditional sources (PubMed, Google Scholar). Automated

cranial computed tomography (CT) brain tissue classifica-

tion approaches for brain atrophy assessment and brain

volumetry are currently underexplored. The diagnos-

tic performance and association of CT-based volumetric

measures with existing biomarkers of neurodegenerative

diseases are yet to be evaluated. Previously, we devel-

oped a model based on deep learning to perform robust

cranial CT segmentation usingmagnetic resonance (MR)–

based labels.

2. Interpretation: Our study highlights the association of

CT-based volumetric measures with existing cognitive,

biochemical, and other neuroimaging markers. Our find-

ings suggest the potential application of CT-based vol-

umetric measures as a screening tool for patients with

dementia and prodromal dementia from cognitively nor-

mal individuals.

3. Future Directions: CT-based volumetric measures have

potential utility in neurodegenerative disease diagno-

sis. This potential should be explored further through

longitudinal studies.

versity of Gothenburg Clinical Neurochemistry Laboratory (Mölndal,

Sweden) using theNF-LightAdvantage kit on a SimoaHD-1 instrument

(Quanterix, Billerica, MA, USA).25,26

2.1.2 Memory clinic Cohort, Singapore

Furthermore, we included patients from the Memory Clinic Cohort of

the National University Hospital, Singapore (age 73.98 ± 8.2 years,

51% female), which comprised patients with dementia, patients with

prodromal dementia, and cognitively normal individuals (see Table 1

and Figure 1 for details).

We included 204 cranial CT images (dementia, n = 93; prodromal

dementia, n = 89; cognitively normal, n = 22) and 241 MR (demen-

tia, n = 109; prodromal dementia, n = 105; cognitively normal, n = 26)

images for our study. For all CT images, paired MR images were avail-

able. CT scans were performed using a 256 multislice CT scanner

(PhilipsMedical Systems; slice collimation: 30×0.625mm for CT brain,

kVp: 120, mAs: mA modulation with reference mAs of 300) at the

National University Hospital, Singapore. MR scans were performed

on a Magnetom Trio Tim scanner (3 Tesla; Siemens Healthineers

AG, Erlangen, Germany), using a 32-channel head coil, at the Clinical

Imaging Research Centre, National University of Singapore.

Demographic data, pastmedical history, and clinical diagnoseswere

obtained. Dementia diagnoses were based on results from clinical
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4 SRIKRISHNA ET AL.

F IGURE 1 Flowchart showing the details of (A) the Gothenburg H70 Birth Cohort and (B)Memory Clinic Cohort, Singapore. Aβ, amyloid beta;
CSF, cerebrospinal fluid; CT, computed tomography;MRI, magnetic resonance imaging;MTA, medial temporal atrophy; NfL, neurofilament light;
p-tau, phosphorylated tau (Color print).

assessment and neuropsychological tests. Plasma biomarkers (NfL,

p-tau181) were available for n= 189/241 and Aβ status based on PET-
based visual assessments was available for n = 96/241 participants

with available MR images. Plasma p-tau181 and NfL were measured

using the commercially available Simoa pTau-181 Advantage V2 kits

and Simoa NF-light Advantage kits, respectively, on the Simoa HD-

1 Analyser, per manufacturer’s instructions (Quanterix, Billerica, MA,

USA).

2.2 Image processing and analysis

2.2.1 Obtaining volumetric measures from CT
using models based on deep learning

Previously, we trained U-Net–based models to differentiate tissue

classes (GM,WM, CSF, and ICV) on cranial CT.20 For the present study,

we developed U-Net models to derive ventricular CSF (VCSF) maps

from cranial CT images. Please refer to Supplementary Material A1

for the summary of the model development. Altogether five classes

were derived from all CT scans using these models based on deep

learning: GM, WM, CSF, VCSF, and ICV. The models were deployed

using TensorFlow 2.0 andKeras 2.3.1 run onNvidia GeForce RTX 2080

Ti GPU. Tissue class volumes were determined from the segmenta-

tion maps obtained using deep learning. Total brain volume (BV) was

obtained by summation of GM and WM tissue class volumes. In addi-

tion, regression-based adjusted brain tissue volumetricmeasureswere

obtained by regressing out the effect of CSF/VCSF from GM/BV27,28

(Figure 2). Based on the previous literature,16,29,30 six volumetric mea-

sures were obtained from the CT segmentation maps: GM, WM, BV

adjusted for CSF, BV adjusted for VCSF, GM adjusted for CSF, and GM

adjusted for VCSF.

2.2.2 Obtaining volumetric measures from MRI

In the Singaporean Memory Clinic Cohort, we segmented 241 MRI

data sets into GM, WM, and CSF using the unified segmentation rou-

tine in SPM12 (https://www.fil.ion.ucl.ac.uk/spm/software/spm12).31

VCSF and medial temporal lobe (MTL) volumes were measured

using the multi-atlas-based segmentation tool MAPER,32 and

ICV was measured using Pincram.33 These analyses yielded

GM, WM, BV adjusted for CSF, BV adjusted for VCSF, GM

adjusted for CSF, GM adjusted for VCSF, and MTL from MR data

(Figure 2).

2.3 Statistical analyses

We compared the volumetric agreement of CT-based segmentations

with MR-based segmentations in the Singaporean Memory Clinic

Cohort using intraclass correlation tests. The volumetric similarity of

CT- andMR-based segmentations in theGothenburgH70BirthCohort

had been tested in our previous work.20

We further tested associations between the six CT-based volumet-

ric measures (CTVMs) and CSF biomarkers (NfL, p-tau, Aβ42/40, and
Aβ42) and plasma NfL in the Gothenburg H70 Birth Cohort, as well as

with plasma biomarkers (NfL, p-tau181) in the Singaporean Memory

Clinic Cohort. In both cohorts, we also tested the relationships of

CTVMs with measures of cognition (Mini-Mental State Examination

[MMSE] and Clinical Dementia Rating Sum of Boxes [CDR-SB]). The

Shapiro–Wilk test was used to examine the Gaussian distribution of

the continuous variables in our data (p value > 0.05). The cognition

measures (MMSE, CDR-SB), raw fluid biomarker concentrations,

and CTVMs were not normally distributed. Hence, the associations

between these variables were tested using non-parametric tests.
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SRIKRISHNA ET AL. 5

TABLE 1 Demographics of the individuals from the Gothenburg H70 Birth Cohort and SingaporeanMemory Clinic Cohort fromwhomCT
data sets were included.

CT datasets

SingaporeanMemory Clinic Cohort

Variable

H70 Birth

Cohort

CN

n= 917

Dementia

n= 93

Prodromal

dementia

n= 89

CN

n= 22

Age (years) 70.46 ± 2.34 76 ± 7.7 74 ± 8.6 68 ± 6.4

Gender, female (n) 484 55 37 8

Education (years) 13 ± 4.3 7.3 ± 2.6 7.1 ± 4.5 9.52 ± 4.49

ICV (liters) 1.66 ± 0.21 1.82 ± 0.41 1.76 ± 0.47 1.69 ± 0.46

MMSE 28.9 ± 1.85 15.13 ± 4.21 23.52 ± 3.39 27.05 ± 2.08

GM (liters) 0.77 ± 0.03 0.69 ± 0.06 0.75 ± 0.07 0.79 ± 0.07

WM (liters) 0.59 ± 0.03 0.66 ± 0.08 0.69 ± 0.07 0.69 ± 0.06

GM adjusted for CSF 0.77 ± 0.07 0.67 ± 0.09 0.76 ± 0.11 0.85 ± 0.12

GM adjusted for VCSF 0.78 ± 0.09 0.66 ± 0.09 0.75 ± 0.12 0.83 ± 0.11

BV adjusted for CSF 1.36 ± 0.14 1.16 ± 0.15 1.28 ± 0.15 1.38 ± 0.14

BV adjusted for VCSF 1.36 ± 1.7 1.15 ± 0.16 1.29 ± 0.14 1.36 ± 0.13

Biochemical markers

Gothenburg H70 Birth Cohort SingaporeanMemory Clinic Cohort

Variable n= 316 Variable

Dementia

n= 70

Prodromal

dementia n= 72

CN

n= 14

PlasmaNfL (pg/mL) 25.12 ± 25.57 PlasmaNfL (pg/mL) 46.08 ± 47.15 28.84 ± 16.29 27.43 ± 30.71

CSFNfL (pg/mL) 906.3 ± 952.5 Plasma p-Tau 181 (pg/mL) 3.86 ± 2.23 3.29 ± 1.99 2.62 ± 1.22

CSF p-tau (pg/L) 334.04 ± 49.6

CSF Aβ40 (pg/mL) 6208.6 ± 1383.47

CSF Aβ42 (pg/mL) 715.44 ± 225.559

Note: All values aremean± SD.

Abbreviations: Aβ, amyloid beta; BV, brain volume; CN, cognitively normal; CSF, cerebrospinal fluid; ICV, intracranial volume; MMSE, Mini-Mental State

Examination; NfL, neurofilament light; p-tau, phosphorylated tau.

Partial Spearman correlations between CTVMs and other markers

of neurodegeneration were employed after adjustment for ICV, age,

education, and gender. In the Singaporean Memory Clinic Cohort,

we compared CTVMs between diagnoses using Kruskal–Wallis tests.

Diagnostic accuracy was assessed by measuring the area under the

receiver-operating characteristic (ROC) curve (AUC) along with a 95%

bootstrap confidence interval.34 In addition, we computed the AUC

of predicted probabilities from a logistic-regression-based combined

model of all six CTVMs. For comparison in the same cohort, we also

tested the relationship between MR-based volumetric measures and

clinical diagnoses, using the same tests and analytic procedures that

were used for evaluating CTVMs. After conducting the Kruskal–Wallis

tests and AUC analysis on MR-based volumetric measures, the diag-

nostic performance of CT- and MR-based volumetric measures was

compared. In addition, to understand the relationship betweenCTVMs

and visual atrophy assessments in the Gothenburg H70 Birth Cohort,

we tested the conformity of (1) CT-GMwithMR-GMandMR-MTA and

(2) CT-MTA with MR-MTA and MR-GM using intraclass correlation

tests (conformity was calculated from a single measurement and by

using a two-way model). The statistical significance threshold was set

at p = 0.05. All statistical analyses were performed using IBM SPSS

Statistics 27 (IBMCorp, Armonk, NY, USA) or R version 4.0.3 (2021).35

3 RESULTS

Table 1 lists demographic information, CTVMs, and biochemical

biomarker data for all participants from both cohorts. In the Singa-

porean Memory Clinic Cohort, mean age and education levels were

comparable among diagnostic groups. As expected, patients with

dementia performed worse on the MMSE than healthy participants

(15.13 ± 4.21 vs 27.05 ± 2.08), and mean plasma NfL levels were

higher in patients with dementia than in cognitively normal individu-

als (46.08± 47.15 pg/mL vs 27.43± 16.29 pg/mL) or Gothenburg H70

Birth Cohort cognitively normal participants (46.08 ± 47.15 pg/mL vs

25.12± 25.57 pg/mL).

CTVMs were derived from segmentation maps obtained from brain

tissue classification of CT images usingmodels based on deep learning.
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6 SRIKRISHNA ET AL.

F IGURE 2 Imaging-based volumetric measures. The CT-based GM,WM, CSF, ICV and VCSFmaps were automatically segmented using
deep-learning techniques. TheMR images were automatically segmented to GM,WM, and CSFmaps using SPM12, ICVmap using Pincram, and
VCSFmap usingMAPER. Six volumetric measures were determined from these segmentationmaps. CSF/VCSF adjusted BV/GM volumetric
measures were obtained using regression-based adjustment of the respective brain tissue volumes. CSF, cerebrospinal fluid; CT, computed
tomography; ICV, intracranial volume; GM, graymatter; MRI, magnetic resonance imaging;WM, white matter; VCSF, ventricular cerebrospinal
fluid (Color print).

The models segmented CT images in GM, WM, CSF, VCSF, and ICV in

less than 1 minute. In the Singaporean Memory Clinic Cohort, CT vol-

umes correlated strongly with corresponding MR volumes (intraclass

correlation coefficient [ICC] of 0.93, 0.86, and 0.81 for GM, WM, and

CSF tissue classes, respectively; Figure S1) indicating that CT-based

volumesare comparable toMR-basedvolumesdetermined fromestab-

lished segmentation algorithms. In the Gothenburg H70 Birth Cohort,

the inter-modality kappa coefficient between visual ratings of MTA

from CT and MR scans performed by a trained rater was 0.40 for the

right hemisphere and 0.43 for the left. It is notable that the conformity

between CT- and MR-based GM volumes (ICC = 0.93, p < 0.001) was

stronger than the conformity between CT- andMR-basedMTA scores

(ICC = 0.53, p < 0.001 [left hemisphere], ICC = 0.48, p < 0.001 [right

hemisphere]) (Table S1).

3.1 CT-based volumetric measures across
diagnostic groups

In the Singaporean Memory Clinic Cohort, we found that CTVMs

could distinguish dementia patients from cognitively normal subjects

(CT-GM adjusted for CSF: AUC = 0.87, 95% confidence interval [CI]:

0.79, 0.96; Figure 3A) yielding AUC values that were equal to or

slightly lower thanMR-basedmeasurements (MR-BVadjusted forCSF,

AUC: 0.91, 95% CI: 0.85, 0.96). CT-based GM volume also yielded

AUCvalues comparable toMR-basedMTL volumewhendistinguishing

patients with dementia from cognitively normal individuals (CT-GM:

AUC= 0.86, MR-MTL: AUC= 0.86; Figure S2). Predicted probabilities

from logistic-regression–based combined models of various CT volu-

metric measures yielded higher AUC values in comparison individual

CTVMs (for combinedmodel with all CTVMS, AUC: 0.95, 95%CI: 0.91,

0.99, Figure 3) and comparable AUCs from logistic-regression-based

combinedmodels of variousMR volumetric measures (AUC: 0.95).

Of interest, CTVMs and regression-based predicted probabilities of

CTVMs could distinguish patients with prodromal dementia (CT-GM:

AUC= 0.7, 95%CI: 0.57, 0.81) from cognitively normal individuals rea-

sonably well (Figure 3B, Figure 4), with performance comparable to

MR-based volumetric measures (MR-BV adjusted for CSF, AUC: 0.71,

95% CI: 0.60, 0.81). Figure 3 and Figure S2 show the ROC curves of

various measures for distinguishing between diagnostic groups.

Overall, CTVMs differentiated robustly and significantly between

the various diagnostic groups, with mean CTVMs being lowest in

patients with dementia, followed by prodromal dementia and highest

in the cognitively normal group (Figure 4). The distribution of CTVMs

across various diagnostic groups was comparable to that of MR-based

volumetric measures (Figure 4).

3.2 CT-based volumetric measures and cognition

In the Singaporean Memory Clinic Cohort, CTVMs were significantly

associated with measures of cognitive impairment as indicated on

CDR-SBandMMSEscores (Table S2).HigherCDR-SBand lowerMMSE

correlatedwith smallerGMvolumes (ρ=−0.44, p<0.001 and ρ=0.42,
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SRIKRISHNA ET AL. 7

F IGURE 3 ROC curves for (A) dementia versus CN and (B) prodromal dementia versus CN using CT- andMR-based volumetric measures in
theMemory Clinic Cohort, Singapore (n= 204). All volumes were adjusted for intracranial volume. The ROC curves of variables with AUC above
0.6 are shown. AUC, area under the curve, BV, brain volume; CSF, cerebrospinal fluid; CN, cognitively normal; GM, graymatter; ROC,
receiver-operating characteristic (Color print).

p < 0.001, respectively; Figure 5). In the cognitively normal individuals

from the Gothenburg H70 Birth Cohort, CTVMswere significantly, yet

more weakly, correlated with CDR-SB andMMSE scores (Table S3).

3.3 CT-based volumetric measures and their
association with biochemical disease markers in
plasma and CSF

In the Singaporean Memory Clinic Cohort, CTVMs were significantly

associated with plasma-based NfL and p-tau181 (Table S2, Figure 5).

The strongest correlations were seen with plasma NfL (ρ = −0.33,

p < 0.001, using CT-BV adjusted for VCSF). In the cognitively normal

individuals from theGothenburgH70BirthCohort, CTVMsweremod-

erately correlatedwith plasma levels ofNfL (ρ=−0.09, p=0.004, using

GM), and CSF levels of NfL, Aβ42, t-tau, p-tau, and notably, Aβ42/40
(ρ= 0.18, p= 0.002, using CT-BV adjusted for VCSF).

4 DISCUSSION

Cranial CT images contain valuable information for characterizing

neurodegenerative disease that can be extracted quantitatively with

automatic image analysis. The present study is the first to demonstrate

comprehensively that quantitative imaging markers automatically

obtained from CT images corroborate the results of standard diagnos-

tic methods used in clinical research and practice. The measurements

were enabled by training a dedicated deep neural network with

suitable data sets (CT images plus tissue class maps obtained through

classicalMR image analysis). Once trained, themodelworks effectively

on pure CT data, enabling quantitative assessment of structural brain

integrity in persons who have not undergone MR scanning. Although

runtime behavior was not assessed systematically, the results suggest

that processing time does not pose an obstacle to clinical use. We

demonstrated this effectiveness on CT images of 1121 participants in

two distinct cohorts, one sampled from an elderly population (n= 917)
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8 SRIKRISHNA ET AL.

F IGURE 4 Distribution of CT- andMR-based volumetric measures across diagnostic groups in theMemory Clinic Cohort, Singapore (n= 204).
***p< 0.001, **p< 0.01, *p< 0.05; uncorrected p-values derived fromKruskal–Wallis test. All volumes were adjusted for intracranial volume. BV,
brain volume; CN, cognitively normal; CSF, cerebrospinal fluid; GM, graymatter (Color print).

and one from individuals consulting amemory clinic (n=204). Enabling

CT-based assessment of neurodegeneration has important clinical

potential, as CT scanners are more widely available than MR equip-

ment, and CT is often suitable even for patients with contraindications

forMR scanning.

We investigated the association of CT-based volumetric measures

with established markers of neurodegenerative diseases. Our main

findings are that CT imaging biomarkers obtained through volumet-

ric analysis based on deep learning (1) differentiate between patients

and healthy controls, with similar performance as when using MR-

based measures; and (2) strongly correlate with relevant cognitive,

biochemical, andneuroimagingmarkersof neurodegenerativediseases

associated with dementia. Together, these findings indicate that CT-

based volumetric measures are promising imaging markers for the

primary assessment of neurodegenerative diseases.

The first key finding of this study is that CTVMs differentiated

between various diagnostic groups with high accuracy. The distribu-

tion pattern of CTVMs across various diagnostic groups is consistent

with findings from previous studies.16,36,37 In the patients with pro-

dromal dementia, we measured volumes that were larger than those

of the dementia groups, but smaller than those of the cognitively

normal group. An interesting finding is that CTVMs differentiated

between prodromal dementia and cognitively normal groups (AUC:

0.70, Figure 3b, Figure 4), indicating a potential application in the

screening of dementia andneurodegeneration. Among the six volumet-

ricmeasures derived from the five direct CT volumetricmeasures, GM,

GM adjusted for CSF, and BV adjusted for CSF showed the strongest

performance in differentiating between diagnostic groups. Predicted

probabilities from logistic-regression–based combined models of var-

ious CTVMs yielded the highest AUCs values in comparison individual

CTVMs in distinguishing both dementia and prodromal dementia from

cognitively normal individuals.

The second key finding of our study is that CTVMs are associated

with cognition and biochemical markers of neurodegenerative disor-

ders. In both cohorts, lower CT-based volumes were associated with

lower MMSE scores and with higher levels of CDR-SB. Other studies

have shown that higher levels of plasma and CSF NfL correlate with

lower MMSE scores, decreased brain volume, and reduced cortical
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SRIKRISHNA ET AL. 9

F IGURE 5 CT- andMR-based volumes with other neurodegenerative disease biomarkers. Correlation of CT- andMR-based GMvolumes with
(A)MMSE, (B) CDR-SB, (C) plasmaNfL, and (D) plasma p-tau181 in theMemory Clinic Cohort, Singapore (n= 204). The correlation values (ρ) were
obtained from partial rank correlation analysis between CT-based volumetric measures and other biomarkers controlled for intracranial volume,
age, gender and education. CDR-SB, Clinical Dementia Rating Sum of Boxes; GM, graymatter; MMSE,Mini-Mental State Examination;MR,
magnetic resonance; NfL, neurofilament light; p-tau, phosphorylated tau (Color print).

thickness.38,39 We found significant indirect correlations between

levels of plasmaNfL and CTVMs. In the Gothenburg H70 Birth Cohort,

higher levels of CSF NfL were correlated with lower levels of CTVMs.

Studies byKarikari et al.,40 Moscoso et al.,41 andWang et al.42 similarly

showed inverse correlations between plasma p-tau181 and smaller

brain volumes. In the SingaporeanMemory Clinic Cohort, higher levels

of plasma p-tau181 were correlated with lower CTVMs. Together,

our findings suggest that CTVMs correlate well with clinical and bio-

chemical measures. Among the six CT-based volumetricmeasures GM,

GM adjusted for CSF, BV adjusted for VCSF, and GM correlated VCSF

correlated with most biochemical markers of neurodegeneration in

the Singaporean Memory Clinic Cohort (Table S2), as did GM adjusted

for VCSF, GM adjusted for CSF, BV adjusted for VCSF, and BV adjusted

for CSF in the Gothenburg H70 Birth Cohort (Table S3).

We further found that CT-based volumetric measures correlate

strongly with MR-based measures and display comparable diagnos-

tic performance, notably also compared with MR-MTL (Figure S2),

the most established quantitative measure of medial temporal lobe

atrophy.43–45 Atrophy of theMTL is an important diagnostic biomarker

of many neurodegenerative disorders, most specifically in AD.44,46,47

Furthermore, we found that the intermodality agreement between

our automated CT- and established MRI-segmentations was distinctly

stronger than the agreement between visual CT and MRI assessment.

In the Gothenburg H70 Birth Cohort, the intermodality kappa coeffi-

cient between visual ratings of MTA from CT andMR scans performed

by a trained rater was 0.40 for the right hemisphere and 0.43 for the

left hemisphere, and the ICC between CT-MTA andMR-MTAwas 0.48

and 0.53 for the right hemisphere and left hemisphere, respectively.

The volumetric ICC between CT-GM and MR-GM obtained from our

automated and established MR-based methods was 0.93 for the same

data sets. Currently, brain structure integrity in CT is evaluated pre-

dominantly using visual assessments, whereas MRI is preferred for
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10 SRIKRISHNA ET AL.

differential diagnosis and atrophy assessment. Our findings empha-

size that with further validation, automatic CT image analysis could

be used potentially for the evaluation of brain structure integrity in

the first-line examination of cognitive decline, with faster and more

reproducible results than visual ratings, while showing performance

comparable to that of MRI. Our deep-learning models perform tissue

classification on head CT images in less than 1minute.

A major aspect of our study is that we investigated the association

of CT-based volumetric measures with established and novel markers

of neurodegenerative diseases (blood- and CSF-based as well as mea-

sures of cognition) in two large, well-characterized cohorts for which

paired CT andMRI data were available. The first cohort consisted pre-

dominantly of cognitively normal participants, and the other consisted

of various diagnosis groups of dementia. This allowed us to train our

deep-learning models on the predominantly healthy cohort and vali-

date the models on both cohorts. By having access to both CT andMR

scans of the same subjects, wewere able to validate the structural sim-

ilarity of CT-based segmentation maps and compare the classification

performance of CTVMs in both cohorts. Of interest, the deep-learning

models developed in our previous study17 worked well on the Sin-

gaporean Memory Clinic Cohort without reference to MRI data and

without further training. One of the widely discussed limitations of

deep-learning models is the relative lack of reproducibility.48 In our

study, the trained model was remarkably successful when applied to

previously unseen data sets acquired on other scanners.

Limitations of our study include that we had amyloid status (96

of 241) available only for a fraction of the Memory Clinic Cohort.

Hence, the clinical diagnosesof patients reported in this studyare likely

a reflection of cognitive status and associated underlying pathology

rather than diagnoses based on biomarker evidence of a specific etiol-

ogy. In addition, our deep-learning models were trained on MR-based

labels only; therefore, our study cannot answer whether alternative

means of generating training labels on CT images (manual or other)

would have been beneficial. Furthermore, we explored the diagnos-

tic performance of CT-based volumetric measures on cross-sectional

data. The diagnostic performance of CTVMs on longitudinal data is

yet to be explored. In the future we plan to conduct prospective

studies to study the impact of longitudinal effects of neurodegenera-

tion on CTVMs. Along with the diagnostic performance, we evaluated

the association between CTVMs and other imaging, cognitive, and

biochemical markers of neurodegenerative diseases in this study.

Recently few studies have explored multimodal data integration for

the prediction, early detection, and assessment of neurodegenerative

diseases—especially AD.49–51 In the future we plan to explore the

role of CTVMs in multimodal data analysis for the early detection of

neurodegeneration, especially the role of CTVMs in combination with

plasma and cognition-basedmarkers.

In summary, CT imaging biomarkers obtained through volumet-

ric analysis based on deep learning are associated with relevant

imaging, cognitive, and biochemical markers of neurodegenerative

diseases. These volumetric measures differentiate between patients

with dementia diagnoses (even at early disease stages) and cogni-

tively healthy individuals, offering diagnostic performance comparable

to established MR-based markers of neurodegenerative diseases. We

propose our automatedmethod to produce CT-based volumetric mea-

sures that can support clinical dementia diagnostics, even in early

disease stages. Together with novel blood biomarkers, CT-based quan-

titative measures could be useful tools for the first-line examination of

individuals presenting with cognitive decline.
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