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Abstract: This paper is concerned with the multi-objective optimization of thickness-wise CNT
distribution in functionally graded porous CNT-reinforced composite (FG-porous CNTRC) beams.
The mechanical behaviors of FG-porous CNTRC structures are strongly influenced by the thickness-
wise distributions of CNTs and porosity. Nevertheless, several linear functions were simply adopted
to represent the thickness-wise CNT distribution without considering the porosity distribution, so
these assumed linear primitive CNT distribution patterns are not sufficient to respond to arbitrary
loading and boundary conditions. In this context, this study presents the multi-objective optimization
of thickness-wise CNT distribution in FG-CNTRC porous beams to simultaneously minimize the peak
effective stress and the peak deflection. The multi-objective function is defined by the larger value
between two normalized quantities and the design variable vector is composed of the layer-wise CNT
volume fractions. The constrained multi-objective optimization problem is formulated by making
use of the exterior penalty-function method and the aspiration-level adjustment. The proposed
optimization method is demonstrated through the numerical experiments, and the optimization
solutions are investigated with respect to the porosity distribution and the combination of aspiration
levels for two single-objective functions. It is found from the numerical results that the optimum
CNT distribution is significantly affected by the porosity distribution. Furthermore, the proposed
method can be successfully used to seek an optimum CNT distribution within FG-porous CNTRC
structures which simultaneously enhances the multi-objective functions.

Keywords: porous CNTRC beams; functionally graded; thickness-wise CNT distribution;
multi-objective optimization; deflection and effective stress; exterior penalty-function method

1. Introduction

Functionally graded carbon nanotube-reinforced composites have been spotlighted
as a state-of-the-art composite due to their excellent mechanical properties [1,2]. These
advanced composites were developed based on the excellence of carbon nanotubes (CNTs)
and the notion of functionally graded materials (FGMs) [3]. The mechanical strength
of polymer composites increases dramatically when only a small amount of CNTs are
inserted [4], so that CNT-reinforced composites (CNTRCs) can provide higher bending
stiffness and superior free vibration and buckling behaviors than the conventional polymer
composites [5–8]. In mechanical applications, CNTRCs have been produced in the form of
beams, plates, and shells which exhibit the thickness-wise variation in their mechanical
behaviors. Hence, the uniform distribution of CNTs through the thickness may not be ap-
propriate to respond to such thickness-wise variation. According to Seidel and Lagoudas [9]
and Qian et al. [10], it has been reported that the enhancement of mechanical properties of
CNTRCs is limited when CNTs are uniformly distributed through the thickness. To over-
come this limitation, Shen [11] and Ke et al. [12] proposed the purposeful thickness-wise
CNT distributions by utilizing the notion of FGM, which is characterized by the continuity
and functional tailoring of thickness-wise material composition distribution [13].
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Since then, functionally graded CNT-reinforced composites (FG-CNTRCs) have been
used to indicate the CNTRCs with purposeful thickness-wise CNT distributions. Among
the representative ones with such purposeful thickness-wise CNT distributions are FG-U,
FG-V, FG-O, and FG-X. Additionally, extensive research efforts have focused on investigat-
ing the mechanical behaviors of FG-CNTRCs, particularly to examine the characteristics of
such primitive CNT distribution patterns. The reader may refer to a paper by Liew et al. [14]
for a broad literature survey on the studies of FG-CNTRC structures. In the early studies
of FG-CNTRCs, the majority of research dealt with the FG-CNTRCs that do not include
porosity. However, it was revealed that the difference in solidification temperatures of
constituent materials during the fabrication may cause porosities [15,16]. So, more recently,
a number of attempts to model and investigate porous FG-CNTRCs have been presented.
The effective material properties of porous materials were predicted using a simplified
mixture rule, and Ji et al. [17] validated the simplified mixture rule such that the predicted
effective material properties coincide well with the experiment.

According to our literature survey, Zhou et al. [18] numerically analyzed the effects
of the preload on the thermomechanical behavior and service reliability of the porous
FG bolted joint. Chen et al. [19] investigated the nonlinear free vibration behavior of
a functionally graded porous sandwich beam using Timoshenko beam theory and the
Ritz method. Yang et al. [20] investigated the buckling and free vibration behaviors of
FG-porous CNT-reinforced nanocomposite plates using the first-order shear deformation
theory and the Chebysheve–Ritz method. Dong et al. [21] investigated free vibration
characteristics of FG-graphene-reinforced porous nanocomposite shells with spinning
motion using the first-order shear deformation theory. Medani et al. [22] investigated
the static and dynamic behavior of FG-CNT-reinforced porous sandwich plates using
the first order shear deformation theory and Hamilton’s principle. Setoodeh et al. [23]
analyzed the free flexural vibration behavior of doubly curved sandwich shells with FG
porous core using the general higher-order shear deformation theory and the generalized
differential quadrature method. Polit et al. [24] presented the static bending and elastic
stability analyses of thick FG-porous CNTRC curved beams using a higher-order shear
deformation theory by considering the through-thickness stretching effect. Hamed et al. [25]
investigated and optimized critical buckling loads of sandwich FG beams with a porous core
by adopting the parabolic higher-order shear deformation theory. Anamagh and Bediz [26]
investigated the vibration and buckling behavior of FG-porous CNTRC plates using the
first shear deformation theory and spectral Chebyshev approach. Ebrahimi et al. [27]
investigated the free vibration response of sandwich plates with porous electro-magneto-
elastic FG facesheets and FG-CNTRC core using a four-variable shear deformation refined
plate theory. Madenci and Ozkili [28] explored the influence of porosity on free vibration
analysis of FG beams with different boundary conditions using different analytical and
numerical approaches. Babaei et al. [29] performed the dynamic analysis of FG-saturated
porous rotating thick truncated cones using the graded finite elements and Newmark
method. Dat et al. [30] numerically investigated the influence of CNTs, porosity, and
thermo-mechanical loading on the vibration and dynamic response of the sandwich FG-
CNTRC composite plates based on the higher-order shear deformation theory. For a more
detailed literature survey, refer to a review paper by Barbaros et al. [31].

In the open literature, most studies were concerned with the investigation of mechani-
cal behaviors of FG-porous CNTRC structures with respect to the major parameters such as
the CNT distribution pattern. These parametric studies are surely helpful in selecting an
appropriate one from the above-introduced primitive CNT distributions, but nevertheless,
this method can be only considered as a passive one because the suitability of CNT distri-
bution pattern is affected by the structure geometry and the loading/boundary conditions.
The reason is because such geometry and conditions definitely influence the mechanical
behavior of functionally graded structures [32]. Therefore, the development of an active
method for freely tailoring a best suitable CNT distribution pattern is a prerequisite for the
success of desired application of FG-CNTRCs. In this regard, this study aims at developing
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a multi-objective optimization method for seeking a best suitable thickness-wise CNT
distribution for FG-porous CNTRC structures.

As an extension of our previous work [33], the optimization problem is defined by
the minimization of the peak deflection and the peak effective stress of FG-CNTRC beams
at the same time by considering the porosity. The relatively larger values between these
two peak quantities are defined by the multi-objective function, and the thickness-wise
porosity distribution is modeled by adopting cosine functions. An FG-porous CNTRC
beam is uniformly divided into a finite number of sub-layers with layer-wise uniform
CNT volume fractions, in order to suppress the increase of design variable number and
maintain the CNT distribution flexibility at the same time. The CNT volume fractions of
sub-layers are defined as the design variables and subjected to the inequality and equality
constraints. The sensitivity analysis of the multi-objective function is explicitly carried out
by employing the central difference method (CDM), while the solution of the constrained
multi-objective optimization problem is sought by making use of the exterior penalty-
function method and the golden section method. The numerical experiments are carried
out to demonstrate the proposed optimization method and to investigate the optimization
results with respect to the porosity distribution pattern and the weighting factors for two
single-objective functions. The numerical results inform that the optimum CNT distribution
can be successfully sought by the proposed optimization method and the optimization
results are remarkably affected by the porosity distribution and the weighting factor.

2. Modeling of FG-Porous CNTRC Plate

A CNT-reinforced composite plate is shown in Figure 1a, where length, depth and
thickness of the plate are denoted by L, D, and h. Single-walled CNTs (SWCNTs) are aligned
along the x−axis and uniformly distributed in the thickness direction. The thickness-wise
distribution of CNTs may have a functional gradation as represented in Figure 1b, where
four primitive CNT distribution patterns showing different functional gradations are
denoted by FG-U, FG-V, FG-O, and FG-X, respectively. In FG-U, the CNT distribution is
uniform through the thickness, while the other three have linear variations such that zero
at the bottom and the peak at the top in FG-V, zero at the bottom and top and the peak
at the mid-surface in FG-O, and zero at the mid-surface and the peak at the bottom and
top in FG-X. Being considered as a sort of dual-phase composite material, the effective
material properties of FG-CNTRC plates can be predicted using either the modified linear
rule of mixture (LRM) or the Mori–Tanaka method [11,21] in which the CNT efficiency
parameters ηj(j = 1, 2, 3) are introduced. Usually, the modified LRM is widely adopted
due to its accuracy and easy application.
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functionally graded (FG) CNT distributions.
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The CNTRC plates are usually modeled as an orthotropic material, and their effective
elastic and shear modui are estimated by [11]:

E1 = η1VcntEcnt
1 + VmEm,

η2

E2
=

Vcnt

Ecnt
2

+
Vm

Em (1)

η3

G12
=

Vcnt

Gcnt
12

+
Vm

Gm (2)

according to the modified LRM. Here, Vcnt and Vm = 1−Vcnt indicate the thickness-wise
volume fractions of CNTs and polymer. The material properties of the SWCNT and polymer
matrix are labeled by the scripts cnt and m, and it is further assumed that E3 = E2 and
G23 = G31 = G12. The scale effect of CNTs on the effective material properties of CNTRCs is
taken into consideration by the CNT efficiency parameters ηj [34], which were determined
by matching the effective CNTRC properties obtained by the molecular dynamics (MD)
simulation with those predicted by the LRM. Table 1 presents ηj for the CNTRCs composed
of Poly (methyl methacrylate) (PMMA) matrix and CNTs at room temperature.

Table 1. The CNT efficiency parameters ηj for three different values of V∗cnt (PMMA/CNT at T =

300 K).

V*
cnt η1 η2 η3

0.12 0.137 1.022 0.715
0.17 0.142 1.626 1.138
0.28 0.141 1.585 1.109

The volume fraction distributions of CNTs in the above four FG-CNTRCs through the
thickness are mathematically expressed by:

Vcnt(z) =


V∗cnt, FG−U
(1 + 2z/h)V∗cnt, FG−V
2(1− 2|z|/h)V∗cnt, FG−O
2(2|z|/h)V∗cnt, FG− X

(3)

with V∗cnt being the total volume fraction of CNTs contained within the polymer matrix.
Meanwhile, the effective Poisson’s ratios ναβ and the effective density ρ of CNTRCs are
determined in a similar manner:

ναβ = V∗cntν
cnt
12 + Vmνm, αβ = 12→ 23→ 31 (4)

ρ = Vcntρ
cnt + Vmρm (5)

Figure 2a represents an FG-porous CNTRC plate in which the porosity density varies
in the z−direction only. In the current study, three different porosity distributions are
considered: center-biased, lower-biased, and upper-biased, as depicted in Figure 2b. These
distributions are called sym, unsym-1, and unsym-2 in this paper, and those are mathemati-
cally repressed by [35]:

Sym : ψ(z) = ecos
[
π
( z

h

)]
(6)

Unsym− 1 : ψ(z) = ecos
[π

2

( z
h
− 0.5

)]
(7)

Unsym− 2 : ψ(z) = ecos
[π

2

( z
h
+ 0.5

)]
(8)
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with e(0 ≤ e ≤ 1) being the porosity parameter. For a given value of e, three porosity
distributions have the same porous volume. Owing to the porosity, the equivalent material
properties ℘e f f (z) of the homogenized material model of FG-porous CNTRC plates is
modified as:

℘e f f (z) = ℘e f f (z)(1− ψ(z)) (9)

by referring to Phani and Niyogi [36].
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Figure 2. FG-porous CNTRC plate: (a) thickness-wise porosity gradient, (b) three different
porosity distributions.

Viewing FG-porous CNTRC plates as a 3-D orthotropic body occupying a bounded
domain Ω ∈ <3, its displacement field u(x) = u(x, y, z) under the action of body force f

and external load
^
t is governed by the 3-D elasticity theory:

σij(u),j = fi in Ω, ij = x, y, z (10)

with the boundary conditions:

u =
^
u on ΓD (11)

σijnj = t̂i on ΓN (12)

Here, ΓD and ΓN stand for the displacement and force boundary regions, and σij and
nj indicate the stress components and the unit normal vector, respectively.

3. Analysis and Optimization
3.1. Analysis of Bending Deformation

The previous static equilibrium in Equation (10) is converted to the following varia-
tional form for solving the bending deformation field:∫

V
εij(v)σij(u)dV =

∫
S

vT^
t dS (13)

for every admissible displacement v. Using iso-parametric finite elements, both the trial
and test displacement fields u and v are approximated as:

u = [Φ]

{
¯
u
}

, v = [Φ]

{
¯
v
}

(14)

where [Φ] is a (3× 3N) matrix expressed in terms of FE basis functions and
{

¯
u
}

and
{

¯
v
}

denote the (3N × 1) vectors of nodal displacements.
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Next, two matrices [H] and [E] are introduced to compute the strain components
{

εij
}

and the stress components
{

σij
}

, respectively:

[H] =

∂/∂x 0 0 ∂/∂y 0 ∂/∂z
0 ∂/∂y 0 ∂/∂x ∂/∂z 0
0 0 ∂/∂z 0 ∂/∂y ∂/∂z

 (15)

[E] =
[

E1 0
0 E2

]
, [E1] =

C11 C12 C13
C21 C22 C23
C31 C32 C33

 (16)

with [E2] = diag[G12, G23, G31], where Cij indicate the orthotropic material constants [37]
expressed in terms of the effective elastic moduli Ei in Equation (1) and the effective
Poisson’s ratios νij in Equation (4). Then, both the strain and stress components are
approximated as: {

εij(v)
}
= [B]

{
¯
v
}

, [B] = [H][Φ] (17)

and {
σij(u)

}
= [E][B]

{
¯
u
}

(18)

Plugging Equations (17) and (18) into the variational form (13), one can derive the
simultaneous equation system for solving the plate bending deformation:

[K]

{
¯
u
}

= {F} (19)

where the stiffness matrix [K] and the load vector {F} are calculated as:

[K] =
∫

V

[
BT
]
[E][B] dV (20)

{F} =
∫

S

{
ΦT
}^

t dS (21)

3.2. Multi-Objective Optimization of CNT Distribution

For the effective numerical optimization with a reasonable number of design variables,
an FG-porous CNTRC beam is divided into (NDV) numbers of uniform homogenized
sub-layers, as shown in Figure 3. Then, the CNT volume fractions (Vcnt)I of each sub-layer
constitutes the design variable vector X such that:

X = {(Vcnt)1, (Vcnt)2, . . . , (Vcnt)NDV} (22)
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Owing to the physical constraint, each sub-layer-wise CNT volume fraction (Vcnt)I
should obey the following lower and upper bounds:

0 ≤ (Vcnt)I ≤ 1, I = 1, 2, . . . , NDV (23)

and their arithmetic average should be equal to the preset volume fraction V∗cnt of CNTs:

(Vcnt)1 + (Vcnt)2 + · · ·+ (Vcnt)NDV = NDV ×V∗cnt (24)

Letting the vertical displacement u3 be w, two single-objective (SO) functions f1(x, X)
are f2(x, X) are defined by:

f1(X) = max
x∈Ω

∣∣∣σe f f (x; X)
∣∣∣, f2(X) = max

x∈Ω
|w(x; X)| (25)

with Ω being the entire material domain of the FG-porous CNTRC beam. Then, the
multi-objective (MO) function F(X) defined by:

F(X) = max


∣∣∣ f1(x, X)− f̂1

∣∣∣∣∣∣ f̂1 − f ∗1
∣∣∣ ,

∣∣∣ f2(x, X)− f̂2

∣∣∣∣∣∣ f̂2 − f ∗2
∣∣∣

 (26)

in terms of the ideal levels f ∗I (I = 1, 2) and the aspiration levels f̂ I of two so functions. The
ideal level is the optimum solution obtained by the SO optimization, and the aspiration
level indicates the level to be reached by the MO optimization. In the current study, the
aspiration level is set by:

f̂ I = a · f ∗I , 1.0 < a < a0, I = 1, 2 (27)

with a0 = f 0
I / f ∗I , where f 0

I denote the values obtained by the initial design variable

vector X0. Note that the relative weights w f
I of each SO function is automatically determined

such that w f
I = 1/

∣∣∣ f̂ I − f ∗I
∣∣∣ once both the ideal and aspiration levels are given. For a

detailed explanation, refer to reference [38].
Then, the constrained MO optimization problem of thickness-wise CNT distribution

is formulated as follows:

Find X = {XI}NDV
I=1 , XI = (Vcnt)I (28)

Minimize F(X) (29)

Subjectto [K]

{
¯
u
}

= {F} (30)

h(X) : ∑ ND
I=1(Vcnt)I − NDV ×V∗cnt = 0 (31)

gJ
(
XJ
)

: − (Vcnt)J ≤ 0, J = 1, 2, . . . , NDV (32)

gJ
(
XJ−ND

)
: (Vcnt)J−NDV − 1 ≤ 0, J = NDV + 1, . . . , 2 ∗ NDV (33)

It is worth noting that Equation (31) indicates the equality constraint in Equation (24),
while Equations (32) and (33) present the inequality constraints in Equation (23), respectively.
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The above weighted constrained optimization problem is solved by the exterior
penalty-function method (EPFM) [39], which converts the objective function F(X) subject
to the constraints to an unconstrained pseudo-objective function Φ

(
X; rp

)
given by:

Φ
(
X; rp

)
= F(X) + rpc1

{
h2(X)

}
+ rpc2

2∗NDV

∑
J=1

max
[
0, g2

J (X)
]

(34)

by introducing the exterior penalty parameters rp. Here, c1 and c2 are the normalization
factors to keep the balance between the magnitudes of the objective function F(X) and the
constraints, which are calculated according to:

c1 =
max |∇F(X)|
max |∇h(X)| , c2 =

max |∇F(X)|
max

J

∣∣∇gJ
(
XJ
)∣∣ (35)

Here, the inequality constraints given in Equations (32) and (33) leads to:∣∣∇gJ(XI)
∣∣ = ∣∣∂gJ/∂XI

∣∣ = ∣∣±δJ I
∣∣ ≤ 1 (36)

So, Equation (33) ends up with:

c3 = max|∇F(X)| (37)

The optimization iteration starts with a guessed initial design variable X0. At each
iteration step, the sensitivity analysis is performed, and the convergence is checked using
the convergence criterion defined by:∣∣∣F(Xk

)
− F

(
Xk−1

)∣∣∣/∣∣∣F(Xk
)∣∣∣ ≤ εT (38)

The iteration is terminated when the convergence tolerance εT is satisfied; otherwise,
it moves to the next iteration by updating the exterior penalty parameter:

rk+1
p = γ · rk

p (39)

where an iteration-independent update constant γ (γ > 1) uniformly increases the penalty
parameter rp along the optimization iteration. Figure 4 represents the flowchart of the
present optimization process.

3.3. Sensitivity Analysis

The searching of optimization direction is essential in the mathematical optimization,
and it is accomplished by computing the direction vector S of the design variables through
the sensitivity analysis. The sensitivity of the pseudo-objective function Φ

(
X; c, rp

)
with

respect to the I − th design variable XI is mathematically expressed by:

∂Φ
(
X; c, rp

)
∂XI

=
∂F(X)

∂XI
+ 2c1rph(X) + 2c2rp[(Vcnt)I − 1], I = 1, 2, . . . , NDV (40)

according to Equations (25) and (31)–(33). This direct mathematical derivation may be
adopted when the thickness-wise CNT distribution is assumed such that the objective
function F(X) can be explicitly expressed in terms of design variables (Vcnt)I . However,
even though it can be assumed, the mathematical derivation of the first term on the right-
hand side of Equation (40) is highly painstaking.
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This direct method can be effectively replaced with the finite difference method (FDM)
when the problem size is not so large. In the finite difference method, the direction vector
Sk =

{
Sk

1, Sk
2, . . . , Sk

ND

}
at the kth iteration is calculated as:

Sk =
Φ
(

Xk−1 + δX; ck−1
1 , ck−1

2 , rk−1
p

)
−Φ

(
Xk−1; ck−1

1 , ck−1
2 , rk−1

p

)
δX

, k = 1, 2, . . . (41)

with the initial exterior penalty parameter r0
p. Once the direction vector is calculated, the

design variable vector is updated according to:

Xk = Xk−1 + ∆Xk, ∆Xk = βkSk (42)

where βk is the iteration-dependent parameter to determine the magnitude of Sk, and it is
calculated by the golden section method [39], which always guarantees the local minimum
with respect to the design variable vector X.

4. Results and Discussion

Figure 5a shows a simply supported FG-porous CNTRC beam under a uniform vertical
distributed load q = 0.1 MPa. The beam length L is 0.1 m and the width a and the thickness
h are equally 0.01 m, respectively. The porosity parameter e of three cosine-type porosity
distributions shown in Figure 2b is set by 0.2. The beam is manufactured with isotropic
matrix of Poly (methyl methacrylate) (PMMA) and orthotropic (10,10) single-walled CNTs
(SWCNTs). The material properties of constituent materials are given in Table 2, where 1, 2,
and 3 indicate x, y and z, respectively. Figure 5b represents ten uniform sub-layers which
are divided to suppress the increase of total design variable number by maintaining the
flexibility of thickness-wise CNT distribution at the same time. Here, V I

cnt indicates the
volume fraction of the I−th sub-layer so that the total number of design variables becomes
ten. Each sub-layer is uniformly discretized using 100× 10 4-node cubic finite elements
such that 100 along the x-axis and 10 along the y-axis. So, the whole FG-porous CNTRC
beam is uniformly discretized by 10,000 finite elements, and the FE static analysis was
carried out by commercial FEM code midas NFX [40].
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Figure 5. A simply supported FG-porous CNTRC beam: (a) dimensions and loading/boundary
conditions, (b) uniform sub-layers.

Table 2. Material properties of SWCNT and matrix (PMMA) [41].

Materials

Young’s Modulus
(GPa) Poisson’s Ratio Shear Modulus

(GPa)
Density
(kg/m3)

E1 E2 E3 ν12 ν23 ν31 G12 G23 G31 ρ

SWCNT 5646.6 7080.0 - 0.175 - - 1944.5 - - 1400
PMMA 2.5 0.34 0.9328 1150

First, the single-objective optimization for minimizing the peak effective stress is
performed with the symmetric porous distribution, for which the initial CNT distribution
pattern and the initial CNT volume fractions V I

cnt of ten sub-layers are set by FG-U and
0.12. The values of simulation parameters εT , r0

p and γ are set by 1.0× 10−3, 1.0 and 2.0,
respectively. The beam bending shown in Figure 5a exhibits the edge effect in the stress
field near the left and right ends of the beam. Thus, the peak value of stress is extracted
from the thickness-wise stress distribution at the mid-span of the beam. The optimization
process is terminated in five iterations, as given in Table 3, where the objective function
shows a uniform convergence. The peak effective stress occurs simultaneously at the beam
top and bottom, and a total of 232 FEM analyses were performed, mostly for the sensitivity
analyses. The initial peak effective stress 7.859 MPa is reduced to 5.985 MPa at the final
stage, and the reduction amount is 1.874 MPa, which corresponds to 23.8% of the initial
peak effective stress.

Table 3. Variation of the objective function to the iteration (sym).

Iteration Objective Function σmax
eff Location (z)

Initial 7.85894 ×106 Pa ±5.0
2 6.53026 ×106 Pa ±5.0
3 6.06824 ×106 Pa ±5.0
4 5.92605 ×106 Pa ±5.0
5 5.98457 ×106 Pa ±5.0

Total number of FEM analyses 232

Figure 6a comparatively represents the initial and optimum CNT distributions, where
the optimum CNT distribution for a non-porous (i.e., dense) CNTRC beam is added for
comparison purposes. The arithmetic average of layer-wise CNT volume fractions V I

cnt is
found to be 0.1208 so that the equality constraint in Equation (31) is strictly satisfied. One
can see the difference in CNT distributions between porous and non-porous cases, and the
difference becomes more apparent at the central region. This is because the porosity in the
symmetric porosity distribution is dominated in the central region, as depicted in Figure 2b.
Figure 6b comparatively represents the thickness-wise effective stress distributions of
initial and optimum CNT distributions. The initial one is symmetric and shows a linear
variation from zero at the mid-surface to the peak value at the beam bottom and top. In
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the bending of a homogeneous beam, the linearly varying bending strain produces the
linear bending stress distribution through the thickness. Meanwhile, the optimal CNT
distribution also leads to a symmetric effective stress distribution with zero at the mid-
surface, but its distribution is not linear anymore and its peak is smaller than that of
the initial CNT distribution. This is because the parabolic-type distribution of CNTs and
porosity leads to the parabolic distribution of elastic modulus, which leads to the non-linear
stress distribution with smaller peak effective stress. The difference in the effective stress
distribution between porous and non-porous cases is not so remarkable.
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Figure 6. Comparison of initial and final distributions through the thickness: (a) the CNT volume
fraction V∗cnt, (b) the effective stress σe f f .

The numerical optimization was also performed for two different porosity distribu-
tions, unsym-1 and unsym-2, and the optimization results are summarized in Table 4. The
total numbers of iteration and FEM analyses of unsym-1 and 2 are smaller than those of sym,
but unsym-1 and 2 show the same total numbers in iteration and FEM analyses. The peak
effective stress occurs at the top of the beam for unsym-1 while at the bottom for unsym-2,
but its magnitude is shown to be the same for both cases. When compared with the case
of sym, unsym-1 and 2 lead to smaller initial and final effective stresses. Thus, it is found
that there exists a remarkable difference in the CNT distribution between symmetric and
unsymmetric porous distributions, but two unsymmetric porous distributions show the
difference only in the location of peak effective stress.

Table 4. The optimization results for three different porosity distributions (e = 0.2).

Items
CNT Volume Fractions V*

cnt

Sym unsym-1 unsym-2

Initial, σmax
e f f (X0) (MPa) 7.85894 8.06819 8.06819
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Table 4. Cont.

Items
CNT Volume Fractions V*

cnt

Sym unsym-1 unsym-2

Optimum, σmax
e f f
(
Xopt

)
(MPa) 5.98457 6.01258 6.01258

Location (z) ±0.5 +0.5 −0.5

Iterations 5 4 4
FEM analyses 232 151 151

Figure 7a,b comparatively represent the optimum CNT distributions between unsym-1
and unsym-2 porosity distributions. It is observed that both distributions of unsym-1 and 2
are exactly anti-symmetric with respect to the mid-surface. This anti-symmetry is solely
owing to the anti-symmetry in their porosity distributions. When compared with the
optimum CNT distribution of sym, unsym-1 shows a slightly larger difference in the lower
beam region while unsym-2 leads a slightly larger difference in the upper beam region. This
is because the porosity in unsym-1 is dominated in the lower region but that in unsym-2 is
dominated in the upper region, as depicted in Figure 2b.
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Figure 8a compares the effective stress distributions of three porosity distributions
for the optimal CNT distribution. The zero line in the effective stress distribution of
unsym-1 moves slightly upwards, and vice versa for unsym-2. This is because the porosity
dominance in the lower beam region for unsym-1 gives rise to higher elastic modulus in
the upper beam region, and vice versa for unsym-2. However, it is seen that the relative
difference in the magnitudes of effective stress is not remarkable. Figure 8b represents the
dependence of iteration history of objective function on the porosity distribution. unsym-1
and 2 show exactly the same iteration history because both porosity distributions produce
exactly anti-symmetric stress distributions through the thickness. Except for the relative
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difference in the effective stress magnitude, both symmetric and unsymmetric porosity
distributions show rapid and stable convergence.
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Next, the multi-objective optimization for minimizing the peak effective stress and
the peak deflection was performed for the sym porosity distribution using the same FG-
porous CNTRC beam shown in Figure 5a. The aspiration levels in Equation (27) for two
SO functions f1 and f2 were set by s1 = s2 = 1.2, while the other simulation parameters
were kept the same with the previous single-objective optimization. For the sym porosity
distribution, the ideal levels f ∗1 and f ∗2 were 5.98457 MPa and 0.03174 mm which were
obtained by SO optimization for the peak effective stress and for the peak deflection, respec-
tively. Thus, the values taken for two aspiration levels become f̂1 = s1 f ∗1 = 7.18148 MPa
and f̂2 = s2 f ∗2 = 0.03809 mm, respectively. As will be presented later in detail, the SO
optimization for minimizing the peak deflection was terminated in five iterations, and the
initial peak deflection of 0.05229 mm was reduced to 0.03174 mm.

Table 5 presents the variation of MO function F(X) to the iteration, where the objective
function decreases with small fluctuation and the optimization terminates in six iterations
with a total of 271 FEM analyses. The peak effective stress occurs initially at the beam top
and bottom, but the peak location moves to the inside of the beam during the next three
iterations, and thereafter the peak effective stress occurs again at the beam top and bottom.
The optimal CNT distribution is represented in Figure 9a, where those obtained by two SO
optimizations are also given for comparison purposes. Here, SO−σ and SO−w denote the
SO optimizations for the peak effective stress and for the peak deflection, respectively. It
is clearly observed that SO−σ and SO−w lead to the optimal CNT distributions showing
the opposite thickness-wise variations. The former leads to smaller CNT volume fraction
at the beam top and bottom to decrease the peak effective stress by decreasing the elastic
modulus, while the latter leads to larger CNT volume fraction at the beam top and bottom
to decrease the peak deflection by increasing the beam bending stiffness. Meanwhile, MO
leads to the optimal CNT distribution which is placed between those of SO−σ and SO−w.
This result was obtained because MO tries to minimize the peak effective stress and the
peak deflection at the same time. This trend of MO is also observed from Figure 9b, where
the thickness-wise effective stress distribution of MO is placed between those of SO−σ and
SO−w. Note that the order in the magnitude of peak effective stress is SO−w > MO > SO−σ,
which is consistent with the minimization goals of SO−w, MO, and SO−σ.
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Table 5. Variation of MO function to the iteration (sym, s1 = s2 = 1.2 ).

Iteration Multi-Objective Function
F(X) Location (z) of σmax

eff

Initial 3.23855 ±5.0
2 0.80688 ±3.0
3 0.88217 ±3.0
4 1.03030 ±4.0
5 1.10915 ±5.0
6 1.09947 ±5.0

Total number of FEM analyses 271
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The iteration histories of σmax
e f f and wmax between MO and SO optimizations are com-

pared in Table 6 and represented in Figure 10. First of all, it is found that σmax
e f f and wmax

obtained by the MO optimization are larger than those obtained by the SO optimizations.
This is consistent with the fact that the optimum solution of MO optimization is always
larger than the optimum solution of SO optimization. The total number of iterations of MO
is longer than one of SO because the MO optimization exhibits larger fluctuation than the
SO optimization, as can be realized from the comparison of Tables 3 and 5.

Table 6. Comparison of iteration histories between MO and SO optimizations.

Methods Objective
Functions

Iteration

1 2 3 4 5 6

MO
optimization

σmax
e f f (MPa) 7.85894 6.45611 6.34687 6.31065 6.19077 6.18648

wmax(mm) 0.05229 0.03686 0.03734 0.03828 0.03878 0.03872
SO

optimization
σmax

e f f (MPa) 7.85894 6.53026 6.06824 5.92605 5.98457 -
wmax(mm) 0.05229 0.02675 0.03097 0.03204 0.03174 -

Next, the multi-objective optimization was performed by changing the aspiration
levels s1 and s2 for two single-objective functions f1 and f2. The optimization results of two
combinations of aspiration levels, which are (s1 : s2) = (1.3:1.1) and (1.1:1.3), are presented
in Table 7, where the results of the previous case (1.2:1.2) are also given for the purpose of
comparison. The case of (1.3:1.1) shows the total numbers of iteration and FEM analyses
which are similar to those of the case of (1.2:1.2), but the case of (1.1:1.3) leads to smaller
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total numbers in the optimization iteration and FEM analyses. Meanwhile, it is found
that the case of (1.3:1.1) leads to the optimum solution equal to F(X) = 0.66486, which
is smaller than those of (1.2:1.2) and (1.1:1.3). This is because the case of (1.3:1.1) places
more weight on the reduction of peak deflection, and the optimum value of F(X) was
determined from the relative reduction in the peak deflection, as given in Equation (26).
This can be confirmed from the fact that the case of (1.3:1.1) leads to smaller peak deflection
wmax = 0.03248 mm but larger peak effective stress σmax

e f f = 7.17380 MPa compared with
the previous case of (1.2:1.2). On the other hand, the case of (1.1:1.3) places more weight
on the reduction in the peak effective stress, so that it leads to smaller peak effective stress
σmax

e f f = 6.08067 MPa but larger peak deflection wmax = 0.04219 mm compared with the case
of (1.2:1.2). Thus, it has been justified that the trade-off between the peak effective stress
and the peak deflection is successfully accomplished by adjusting the aspiration levels (i.e.,
the combination of (s1 : s2)).
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Figure 10. Comparison of iteration histories: (a) peak effective stress σmax
e f f , (b) peak deflection wmax.

Table 7. The optimization results for three different combinations of aspiration levels.

Items
Combinations of Aspiration Levels (s1:s2)

(1.2:1.2) (1.3:1.1) (1.1:1.3)

F(X) 1.09947 0.66486 1.09756
f1(X) = σmax

e f f (MPa) 6.18648 7.17389 6.08067
f2(X) = wmax(mm) 0.03872 0.03248 0.04219

Iterations 6 6 5
FEM analyses 271 270 193

Figure 11a comparatively represents the optimal CNT distributions for three different
combinations of aspiration levels. When compared with the case of (1.2:1.2), the case of
(1.1:1.3) leads to the distribution in which the CNT volume fraction Vcnt is high in the
central region while low in the vicinity of top and bottom. This is because the peak effective
stress occurring at the beam top and bottom can be effectively reduced by reducing the
elastic modulus of the beam in the vicinity of the beam top and bottom, and the reduction
of elastic modulus can be made by decreasing the CNT volume fraction. Meanwhile, the
case of (1.3:1.1) leads to the optimum CNT distribution which is almost opposite to that of
the case of (1.1:1.3). This is because the beam deflection can be reduced by increasing the
bending flexural rigidity, and the flexural rigidity can be effectively increased by placing
more CNTs in the vicinity of the beam top and bottom. Figure 11b compares the thickness-
wise effective stress distributions, where the case of (1.3:1.1) shows the highest level while
the case of (1.1:1.3) leads to the lowest level. Meanwhile, the effective stress distribution
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of the case of (1.2:1.2) passes through between those of the cases of (1.1:1.3) and (1.3:1.1).
This comparison justified again the trade-off between σmax

e f f and wmax according to the
adjustment of aspiration levels.
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5. Conclusions

The multi-objective optimization of FG-CNTRC porous beams was presented to si-
multaneously minimize the peak effective stress and the peak deflection. An FG-CNTRC
porous beam was divided into uniform sub-layers, and the layer-wise uniform CNT vol-
ume fractions were chosen as the design variables. The peak effective stress and the peak
deflection were normalized using their ideal and aspiration levels which were obtained by
the single-objective optimization and set by the designer’s decision making. The maximum
value between two normalized quantities was defined as the multi-objective function, and
it was minimized by making use of the exterior penalty-function method and the trade-off
process. The proposed method was demonstrated and verified through the benchmark
experiment, and the optimization solutions were investigated with respect to the porosity
distribution pattern and the combination of aspiration levels. The numerical results provide
the following major observations:

• The proposed MO optimization method successfully seeks the optimum CNT distri-
bution, which simultaneously reduces the peak effective stress and the peak deflection
with the stable convergence.

• The optimal CNT distribution of a porous beam is different from that of a non-porous
beam, and the difference is apparent in the region where the porosity is dominant.
However, the effect of porosity on the optimum effective stress distribution is not
so remarkable.

• The porosity distribution pattern significantly affects the optimum CNT distribution
but its effect on the optimum effective stress distribution is insignificant. unsym-1
and 2 porosity distributions lead to the optimum CNT distributions, which are anti-
symmetric to each other.

• The MO optimization leads to the optimal CNT distribution and the optimal effective
stress distribution, which are placed between those of SO−σ and SO−w. The order in
the magnitude of σmax

e f f is SO−w > MO > SO−σ, and that of wmax is SO−σ> MO > SO−w.

• The trade-off between the peak effective stress and the peak deflection can be suc-
cessfully accomplished according to the adjustment of aspiration levels such that the
decrease of sI places more weight on the corresponding SO function f I .
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• Regarding the trade-off between two SO functions, the case of (1.1:1.3) leads to the low-
est peak effective stress while the case of (1.3:1.1) provides the smallest peak deflection.
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