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Abstract

We present practical solutions to applying Gaussian-process (GP) methods to

calculate spatial statistics for grid cells in large environments. GPs are a data efficient

approach to inferring neural tuning as a function of time, space, and other variables.

We discuss how to design appropriate kernels for grid cells, and show that a varia-

tional Bayesian approach to log-Gaussian Poisson models can be calculated quickly.

This class of models has closed-form expressions for the evidence lower-bound, and

can be estimated rapidly for certain parameterizations of the posterior covariance.

We provide an implementation that operates in a low-rank spatial frequency sub-

space for further acceleration, and demonstrate these methods on experimental data.
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1 | INTRODUCTION

Grid cells in the hippocampal formation modulate their firing rates as

a periodic function of location (Hafting et al., 2005; Rowland

et al., 2016). Some grid cells are also modulated by head direction

(Sargolini et al., 2006; “conjunctive cells”), and recent studies have

found more subtle dependence on head direction (Gerlei et al., 2020)

and landmarks (Keinath et al., 2018; Krupic et al., 2018), even in non-

conjunctive cells. Exploring these relationships requires efficient sta-

tistical estimators to compare changes in the spatial dependence of

grid-cell activity across conditions.

Standard approaches to spatial statistics have limitations. Grid-

cell firing-rate maps are often estimated using a Gaussian kernel-

density smoother (e.g., Brandon et al., 2011; Hafting et al., 2005;

Killian et al., 2012; Langston et al., 2010). Naïve smoothing

approaches remain noisy when data are limited, do not provide a

quantification of uncertainty, cannot adapt to inhomogeneous spatial

sampling, and cannot take advantage of the periodic structure of grid-

cell firing. Conversely, approaches based on spatial autocorrelations

(e.g., Hafting et al., 2005, many others) reduce noise by averaging over

space, but cannot be applied to single grid fields. Gaussian-Process

(GP) estimators are a promising solution to these challenges. They

offer a principled, Bayesian approach to estimating firing-rate maps.

They incorporate assumptions to improve statistical efficiency, and

provide a posterior distribution that quantifies uncertainty.

However, open challenges remain in applying existing algorithms

to exploratory analysis of large grid-cell data sets. Bayesian priors suit-

able for grid cells have not been described in the literature, and
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existing implementations are either limited to specific kernels or are

too computationally intensive for large data sets. We resolve both of

these issues, and illustrate practical benefits of GP methods compared

to non-Bayesian estimators.

We briefly review GP methods in neuroscience, then present (1) a

tutorial on applying GPs to grid-cell data; (2) a technical review of

approximate inference algorithms; (3) applications of these methods

on example data.

2 | BACKGROUND

GPs generalize the multivariate normal distribution to a distribution

over functions (Keeley & Pillow, 2018; MacKay, 1998;

Rasmussen, 2003). They are a natural candidate for describing neuro-

nal tuning as a function of continuous variables, and have emerged as

the gold-standard for analyzing neuronal activity in the low-data

regime. Many algorithms have been developed for capturing the rela-

tionship between neural activity and other variables, or for inferring

latent neural states (Brandman et al., 2018; Duncker & Sahani, 2018;

Frigola et al., 2014; Jensen et al., 2020, 2021; Keeley et al., 2020; Park

et al., 2014; Rad & Paninski, 2010; Rule et al., 2019; Wu et al., 2017;

Yu et al., 2009; Zhao & Park, 2017).

Formally, a GP distribution is specified by its mean function μ xð Þ and
two-point covariance function Σ x,x0ð Þ, which are analogous to the

mean vector μ and covariance matrix Σ of the multivariate normal

distribution (see Keeley & Pillow, 2018; MacKay, 1998; Rasmussen,

2003 for a thorough introduction). In computation, however, GPs are

almost always represented in terms of a finite-dimensional approxima-

tion. We will use the finite-dimensional notation z�N μ,Σð Þ, with the

understanding that this represents a particular finite-dimensional pro-

jection of our GP model.

Previous works have described GP methods for place and grid

cells (e.g., Rad & Paninski, 2010; Savin & Tkacik, 2016; Wu

et al., 2017). However, we encountered practical challenges when

applying these methods to grid cells in large arenas. Computational

efficiency is paramount for exploratory analyses of large data sets.

While scalable solutions exist, the fastest methods require spatial

covariance priors that can be described in terms of nearest-neighbor

interactions (Cseke et al., 2016; Rad & Paninski, 2010) or a product

of rank-1 separable kernels (Savin & Tkacik, 2016). This is not ideal

for grid cells, which can display spatial correlations between

response fields separated by several centimeters, and which cannot

be decomposed into a product of 1D kernels. Recent works have

developed ways to approximate the GP covariances that support

fast calculations, while remaining expressive (Jensen et al., 2021).

We elaborate upon these ideas, with a particular focus on grid cells,

and introduce some new numerical approaches.

Specifically, the new contributions of this manuscript are (1) Tools

for designing GP priors that take advantage of the local spatial topog-

raphy of grid cells; (2) Efficient and expressive variational Bayesian

methods; (3) Numerical algorithms with good performance on

consumer-grade hardware; (4) A Python reference implementation

and example application to grid-cell data.

3 | RESULTS

We will first review log-Gaussian Poisson models of neural spiking in

the context of inferring a grid-cell firing-rate map. These combine a

Gaussian prior on (log) firing rate with a Poisson likelihood for spikes.

We review numerical approaches for finding Bayesian posterior, and

discuss suitable priors for grid cells, and finally demonstrate applica-

tions on example data.

3.1 | An example experiment

Throughout this text, we will demonstrate GP methods on data from

Krupic et al. (2018), which have also been presented in Chaudhuri-

Vayalambrone et al. (2023). Figure 1 illustrates a spatial-navigation

experiment (Krupic et al., 2018) in which a rat foraged in a 2 m � 1 m

environment (Figure 1a). Spike counts yt from a grid cell in entorhinal

cortex, along with position xt¼ x1;t,x2;tf g > , were recorded in 20ms

bins, yielding time series X¼ x1, ::,xTf g > and y¼ y1, ::,yTf g > with T

samples. Throughout this manuscript, we will denote scalars as lower-

case letters “x,” column vectors as bold lower-case letters “x,” and

matrices as bold capital letters “X.”
The resulting spatial data consists of a map of the number of times the

rat visited each location, and the number of spikes observed during each

visit. These can be summed on a spatial grid to form occupancy and spike-

count histograms, which can be combined to yield a firing-rate histogram

(Figures 1b and 4a). In Figure 1, we binned data on a 88�128 grid.

3.2 | Estimating a smoothed log-rate map

Our approach will follow variational inference for GP generalized lin-

ear models as outlined in Challis and Barber (2013). We consider

“latent” GPs, whose values are observed through a firing-rate nonli-

nearity and neuronal spiking activity. We model the log-firing-rate

z xð Þ (Figure 4b) as a GP, and spiking events as conditionally Poisson

(Figure 2a). This model is sometimes called a log-Gaussian Cox pro-

cess, after David Cox (Cox, 1955). It captures both correlations and

over-dispersion in the covariance structure of z xð Þ.
We model spike counts within a small-time bin Δt as

λ xð Þ¼ exp z xð Þ½ �:
ðtþΔt
t

y tð Þdt�Poisson
ðtþΔt
t

λ tð Þdt
2
4

3
5: ð1Þ

The choice of an exponential firing-rate nonlinearity λ¼ exp zð Þ is use-
ful for obtaining closed-form solutions in variational inference. For

simplicity, we will choose time coordinates such that Δt¼1 and omit

it going forward. The log-likelihood of observing spike count y given

rate λ is then:

lnPr yjzð Þ¼ y ln λð Þ�λ� ln y!ð Þ: ð2Þ

The overall likelihood of all spiking observations y depends on the log-

firing-rate map z xð Þ, and the animal's trajectory over time x. We
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assume that the spiking observations are independent conditioned on

the log-rates z, so that the likelihood of the overall data set Pr y j z,Xð Þ
factors as

lnPr y j z,Xð Þ¼
XT
t¼1

lnPr ytjz xtð Þð Þ¼
XT
t¼1

ytz xtð Þ�ez xtð Þ þ ln yt!ð Þ
h i

: ð3Þ

For numerical implementations, we model the function z xtð Þ as a

vector z¼ z1, ::,zMf g, where each zm reflects the value of z xmð Þ at one
of M spatial locations. To make the notation easier to read in these deriva-

tions, we will interpret each location zm as a piecewise-constant model

of the firing-rate map in a small region of the environment with value

z xð Þ≈ zm if x� bm (in practice we use linearly interpolated binning for

improved resolution; see Section 5.8).

We aggregate time points that fall in the same spatial bin, since

these share the same log-rate zm (this is a form of pseudo-point

method; Quinonero-Candela & Rasmussen, 2005). We refer to indi-

vidual bins by a single index m ranging from 1 to M. We denote the

tallies of visits to each bin as n¼ n1, ::,nmf g > and the tallies of spikes

in each bin as k¼ k1, ::,kmf g > :

lnPr y j z,Xð Þ¼
XM
m¼1

X
t s:t: xt � bm

ytzm�ezm þ ln yt!ð Þ½ �

¼
XM
m¼1

kmzm�nme
zm½ �þconstant: ð4Þ

Since ln y!ð Þ does not influence the gradient of (4) with respect to

z, we ignore it when optimizing z. Having combined data from

repeated visits to the same location, the likelihood in Equation (4) can

then be written in vector notation as:

lnPr n,kjzð Þ¼ z > k�n > ezþconstant: ð5Þ

This is the log-likelihood of observations ðn,kÞ given z.

This observation model has the same form as a Point-Process

Generalized-Linear Model (PP-GLM; e.g., Paninski, 2004;

Truccolo, 2016; Truccolo et al., 2005). However, adjusting z to

maximize (5) alone will lead to over-fitting. Instead, one can obtain a

smoothed map by taking a Bayesian approach.

We can encode constraints like smoothness or periodicity in our

choice of the prior Pr zð Þ. We use a multivariate Gaussian prior

z�N μz,Σzð Þ, which has the log-probability density

lnPr zð Þ¼�1
2

lnj2πΣzjþ z�μzð Þ > Σ�1z z�μzð Þ
n o

: ð6Þ

Summing the log-likelihood (5) and log-prior (6) yields an expression

for the log-posterior of z (up to constant terms):

lnPr zjn,kð Þ¼�1
2

lnj2πΣzj þ z�μzð Þ > Σ�1z z�μzð Þ
n o

þz > k�n > ezþconstant: ð7Þ

When the dimension of z is large, estimating (7) via sampling or

evaluating it on a grid is infeasible. Instead, we approximate the poste-

rior as a multivariate Gaussian distribution.

3.3 | Covariance kernels for grid cells

Throughout this manuscript, we assume that the prior covariance

between two points Σz x1,x2ð Þ depends only on the displacement

between them. In this case, the prior covariance takes the form of a

convolution kernel. Since we evaluate our rate map on a rectangu-

lar grid, and since the prior covariance is a convolution, Σz is a circu-

lant matrix and products like Σ�1z z�μzð Þ can be computed using the

Fast Fourier Transform (FFT) in O Mlog Mð Þð Þ time. (Note: when

(a)

(b)

F IGURE 1 An example
experiment. (a) In this experiment, a
rat foraged in a 2 m � 1 m open
environment (left). The rat's position
over time “x” (right, top), as well as
spike counts “y” from a single
neuron in entorhinal cortex (right,
bottom) were recorded (data from
Krupic et al., 2018). (b) A firing-rate

histogram (right, k=n) can be
estimated by dividing the total
number of spikes tallied at each
location “k” (left) by the number of
visits to each location “n” (middle).
(Color scales are not quantitative.)

RULE ET AL. 3

 10981063, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hipo.23577 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [02/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



implementing convolutions via the FFT, it is important to add spatial

padding equal or larger than the kernel's radius, to avoid erroneous

correlations from the periodic boundary.)

How should one select Σz? In GP regression, the covariance

kernel describes how correlated (or anticorrelated) two points xi and

xj in the inferred rate map are expected to be, as a function of the dis-

placement between them: Σz½ �ij¼K xi�xj
� �

. For any collection of spa-

tial locations, the Σz induced by the kernel needs to be a valid

covariance matrix; Σz must be positive semidefinite: It should be sym-

metric, real valued, and have no negative eigenvalues. For our infer-

ence procedure to be sensitive to grid cell's periodicity, our kernel

needs a periodic structure. A hexagonal map with period P and orien-

tation θ0 can be defined as the sum of three cosine plane waves,

rotated at π=3 radians from each-other:

Kθ xð Þ¼
X

ℓ � 0,1,2f g
cos

2π
P

x1cos
π

3
ℓ�θ0

� �
�x2 sin

π

3
ℓ�θ0

� �h i� �
, ð8Þ

where x¼ x1,x2f g�ℝ2. The ideal grid (8) is a valid kernel function: It

is symmetric, and its Fourier transform consists of all nonnegative real

coefficients.

We also use a radially symmetric kernel (Figure 3a-3,4) for analyz-

ing grid-cell period in an orientation-agnostic manner. We can con-

struct a radial kernel by considering a ring of spatial-frequency

components ξ¼ ρeiω that match the spatial frequency ρ¼1=P of the

grid, or, equivalently, a radially averaged version of (8). In this spatial

domain, this kernel is the zeroth-order Bessel function of the

first kind,

Kr rð Þ¼ J0
2π
P
r

� 	
: ð9Þ

This kernel is more general: It does not require a fixed, global grid ori-

entation, and can be applied to cells with fields separated by a charac-

teristic distance, but no global lattice (as seen in the entorhinal cortex

of bats, Ginosar et al., 2021—although in 3D the radial kernel (9) takes

the form Kr rð Þ¼ sin 2π
P r

� �
= 2π

P r
� �

).

The zeros of (9) provide rule-of-thumb cutoff radii for various

degrees of spatial interaction: The first zero corresponds to single

fields, the second to an inhibitory surround, and the third to nearest-

neighbor interactions. In this work, we truncate kernels to nearest-

neighbor interactions at rc¼ k3P= 2πð Þ, where k3 ≈8:65 is the third

zero of J0. We apply a circular window W Δxð Þ¼ϑ jΔxj� rcð Þ (ϑ is the

Heaviside step function), remove high spatial frequencies from

the kernel by applying a 2D Gaussian-blur Kσ with radius σ¼P=π, and

finally truncate any resulting negative Fourier coefficients to zero.

This heuristic procedure provided good spatial locality while limiting

the kernel to the spatial frequencies of interest; we do not exhaus-

tively compare possible kernels here, but do provide other windowing

methods and options to control kernel anisotropy in the reference

implementation.

We introduce scale (σ20) and constant offset (c) parameters to con-

trol the kernel's marginal variance, and the variance assigned to the

mean-log-rate component, respectively. Using either a grid or radial

kernel as a base kernel (K0) we define the parameterized kernel

KΘ as:

KΘ ¼ σ20 Kσ � W �K0ð Þ½ �þc , ð10Þ

(a)

(b) (c)

F IGURE 2 A Bayesian model for
firing-rate maps with spiking
observations. (a) A graphical diagram
of the inference procedure. The
prior mean and kernel are set
externally. A log-Gaussian process
parameterizes the inferred firing-
rate map. Spiking observations are
explained in terms of spatial tuning

to location. (b) The posterior
distribution over the log-rate map z
is difficult to calculate directly. The
MAP (see Section 5.1) estimator
approximates Pr zð Þ as Gaussian,
with mean equal to the posterior
mode, and covariance taken from
the curvature at this mode (see
Section 5.3). (c) Variational Bayesian
inference finds a multivariate
Gaussian model for the posterior on
z by maximizing a lower-bound on
the model likelihood. This can be
more accurate when the posterior is
skewed, and the same lower bound
can be used to select
hyperparameters.
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where � denotes convolution and � pointwise multiplication. We

discuss hyperparameter selection in Section Optimizing kernel

hyperparameters.

Generally, one can construct suitable kernels by computing the

autocorrelation of a prototype firing-rate map, averaging to achieve

any desired symmetries, and applying desired spatial or spectral win-

dowing. If the kernel is defined as a convolution over a regular grid,

these operations can be computed quickly using the FFT. Since any

product, convolution, or nonnegative linear combination of positive-

semidefinite kernels is also positive semidefinite, complicated kernels

can be constructed out of simple primitives.

3.4 | Variational inference

One can optimize the log-posterior (7) in z to obtain a smoothed

firing-rate map. This is known as the maximum a posteriori

(MAP) estimator (Figure 2b; see Section 5.1). The MAP estima-

tor allows us to specify prior assumptions (e.g., smoothness and

periodicity) by selecting the appropriate prior covariance Σz.

However, it is important to assess our confidence in the resulting rate

map, and to have a formal way of checking whether our prior is rea-

sonable. Variational Bayesian methods provide a formal way to

approximate posterior uncertainty, in the form of a GP covariance

function.

In variational Bayesian inference (Figure 2c), we approximate the

true posterior with a simpler distribution “Qϕ zð Þ” defined by some

parameters ϕ. We use a multivariate Gaussian approximation here, so

ϕ¼ μ,Σð Þ and Qϕ has the log-probability density

lnQϕ zð Þ¼�1
2

lnj2πΣj� z�μð Þ > Σ�1 z�μð Þ
n o

: ð11Þ

Variational inference selects ϕ by maximizing a quantity called the

evidence lower bound. This is equivalent to simultaneously mini-

mizing the Kullback–Leibler divergence “DKL” from the prior to

the posterior, while maximizing the expected log-likelihood (5)

under Qϕ:

ϕ argmax
ϕ

�DKL Qϕ kPr zð Þ

 �þ lnPr n,kjzð Þh i� 


, ð12Þ

where �h i denotes expectation with respect to Qϕ.

The first term in (12) reflects the information gained by revis-

ing our estimates of z compared to our prior beliefs. Since both

Qϕ zð Þ and Pr zð Þ are multivariate Gaussian, this term has the

closed form:

DKL Qϕ kPr zð Þ

 �¼1

2
μ�μzð Þ> Σ�1z μ�μzð Þþ tr Σ�1z Σ

� �þ ln jΣ�1Σz j �M
n o

:

ð13Þ

The second term in (12) is the expectation of our Poisson observation

model (5) with respect to Qϕ:

lnPr n,kjzð Þh i¼ μ> k�n> λh iþconstant, ð14Þ

where we abbreviate exp zð Þ as λ. We can write the overall objective

“L” to be maximized as:

ℒ ϕð Þ¼�1
2

μ�μzð Þ > Σ�1z μ�μzð Þþ tr Σ�1z Σ
� �þ ln Σ�1Σz

�� ��n o
þμ> k-n > λh iþconstant:

ð15Þ

(a)

(b)

F IGURE 3 Periodic priors to
infer grid-cell maps. (a) Periodic
kernels suitable for grid cells: Each
plot shows the kernel's 2D Fourier
spectrum (left), spatial domain
representation (center), and an
example rate map sampled from the
kernel (right). (1, 2): Oriented kernels
are selective for the grid cell's

preferred spatial orientation. (3, 4):
Radial kernels based on the Bessel
function include no prior
assumptions about grid orientation.
(b) Kernel parameters, like grid scale,
can be selected by choosing the
kernel that gives the best Evidence
Lower Bound (ELBO) after fitting
the posterior rate map. Shown here
are the loss functions for the period
and variance of an oriented grid
kernel (Figure 3a-2) for the cell in
Figure 1.
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The term “tr Σ�1z Σ
� �

” encourages the posterior covariance to be close

to the prior, and the term “� ln jΣ j” encourages the posterior to have

large entropy.

A convenient property of the log-Gaussian-Poisson model is

that the expected firing rate λh i (Figure 4c) required to calculate (15)

has a closed form. Since we have assumed a multivariate Gaussian dis-

tribution for z, and since λ¼ exp zð Þ, the firing-rate λ is log-normally

distributed. The expectation λh i is the mean of this log-normal distri-

bution, and has the closed-form expression

λh i¼ exp μþ1
2
diag Σ½ �

� 	
: ð16Þ

To simplify notation, we define “λ” as the expected rate (with depen-

dence on μ and Σ implicit), corrected for the number of visits in each

location, that is, λ¼ n ∘ λ zð Þh i. We discuss numerical approaches for

calculating (16) briefly in the next section, and in more detail in

Section 5.6.

3.5 | Optimizing the variational posterior

With these preliminaries out of the way, we now consider the deriva-

tives of (15) in terms of μ and Σ. These can be computed using modern

automatic differentiation tools (e.g., Jax; Bradbury et al., 2018). How-

ever, substantial speedups are possible by considering the analytic

forms of the derivatives, and identifying simpler ways to calculate them.

The gradient and Hessian of (15) with respect to μ are

rμL¼�Σ�1z μ�μzð Þþk�λ

andrμr>μ L¼�Σ�1z �diag λ

 �

,
ð17Þ

respectively. The derivative of (15) in Σ is more involved (see

Section 5.4, Equations 33–35):

∂Σ L½ �¼1
2

Σ�1�Σ�1z �diag λ

 �� 


: ð18Þ

Optimizing the full M�M posterior covariance is impractical. Typi-

cally, one chooses a simpler parameterization. Combinations of

low-rank factorizations and Toeplitz or circulant matrices are

common (Jensen et al., 2021). In our case, an exact low-

dimensional parameterization of the variational posterior covari-

ance is available (Challis & Barber, 2013; Seeger, 1999; Equa-

tion 10). Note that the stationary point of (18) occurs when

Σ�1¼Σ�1z þdiag λ

 �

. This means that all variational posterior

covariance matrices can be parameterized by a diagonal update

diag λ

 �

to the prior precision matrix Σ�1z . We parameterize this

update by the vector q¼ q1, ::,qMf g, and seek a self-consistent solu-

tion q¼ λ:

Σ�1¼Σ�1z þdiag q½ �: ð19Þ

This models the posterior precision as a sum of the prior precision,

plus information provided by observations at each location.

We obtain the gradient of L in q from (18) and (19) using the

chain rule (See Section 5.4, Equations 35–37):

rqL¼1
2
diag Σdiag λ�q


 �
Σ

� 

: ð20Þ

This gradient is zero when q¼ λ. If Σ is full rank, this zero is unique,

and one may optimize q by ascending the much simpler gradient λ�q,

which has the same fixed point.

(a) (b) (c) (d)

F IGURE 4 Inferring grid-cell firing-rate maps with LGCP regression. (a) Rate histograms from three example cells from Krupic et al. (2018).
(b) Posterior log-rate map from LGCP inference using the optimized grid-cell kernel (Figure 3a-2). (Background variations in log firing-rate not
included.) (c) Expected firing rate calculated using (16) from the variational posterior. (d) 95% confidence intervals for field location calculated
either using a locally quadratic approximation (purple) (26) or sampling (teal) within each grid-field's Voronoi region (all points closer to a given
field than any other, a no further away than 70% of the grid period), overlaid on the probability density of grid-field peaks (shaded).
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We maximize the evidence lower bound (15) by alternatively

updating μ and q. Updates to μ are similar to finding the MAP estima-

tor. We optimize the posterior covariance for fixed μ via an iterative

procedure that amounts to setting q λ repeatedly (see Section 5.7).

There is one remaining difficulty to address. Calculating the

expected firing rate (16) requires computing diag Σ½ �. These are the

marginal variances of the firing-rate at each location. For the parame-

terization in Equation (19), one must compute

diag Σ½ � ¼diag Σ�1z þdiag q½ �� ��1n o
: ð21Þ

We calculate this using a low-rank approximation of the posterior

covariance in Fourier space (See Section 5.5).

We summarize all steps of this iterative procedure in pseudo-

code in Algorithm 1. The key takeaways regarding the numeric

implementation are this: (1) The posterior mean can be optimized

readily using Newton–Raphson iteration, in much the same way as

one might estimate the posterior mode for a log-Gaussian-Poisson

generalized linear model; (2) The ideal parameterization of the varia-

tional posterior covariance takes the form of a diagonal update to

the precision matrix, which reflects the amount of information avail-

able at each spatial location. This can be updated by a straightfor-

ward fixed-point iteration reminiscent of the Laplace approximation

(See Section 5.3).

3.6 | Optimizing kernel hyperparameters

The prior covariance kernel in Equation (10) depends on unknown

hyperparameters Θ: period “P,” scale “σ20,” and mean offset “c” (and,

for grid kernels, orientation “θ0”). The variational Bayesian framework

provides a principled way to optimize these. To evaluate the quality of

hyperparameters, one first optimizes the variational posterior using

the kernel determined by Θ. At the optimized Qϕ zð Þ, Equation (12)

lower-bounds the likelihood of the data for the chosen hyperpara-

meters. This allows one to compare the quality of different choices of

Θ (e.g., Figure 3b). We optimized Θ using a hill-climbing grid search,

starting from a heuristic guess (see Section 5.9).

3.7 | Sampling spatial statistics

Once obtained, the GP posterior can be used to sample the distri-

bution of likely firing-rate maps. For example, one may wish to

obtain the probability distribution of the peaks of individual grid

fields (Figure 4d).

Given a Gaussian posterior z�N μ,Σð Þ, one can draw samples

as z μþΣ1=2ηM where ηM �N 0, IMð Þ is a vector of M Gaussian ran-

dom numbers with unit-variance and zero-mean. However, obtain-

ing Σ1=2 is impractical for large M. Sampling in the low-rank (D<M)

space ez�N eμ,eΣ� �
is efficient (See Section 5.5). Samples can be

drawn as

z eR eμþ eΣ1=2
ηD

� �
, ð22Þ

where eR maps samples from the low-rank subspace into the full (spa-

tial) representation, and is described in (41) and (42). The factor eΣ1=2

can be calculated as eΣ1=2¼ eRchol diag eξ�1h i
þXX >

h i�1
, where

X¼ eR >diag λ
1=2

h i
(see Section 5.6; (43)).

Figure 4d uses sampling to visualize uncertainty in grid-field

locations. We generated a peak-density map by plotting the frac-

tion of samples that contain a local maximum within a radius of

P=2, where P is the grid cell's spatial period. We segmented the

arena into Voronoi cells associated with each grid field (out to a

maximum radius of 70% P), and calculated 95% confidence ellipses

by fitting a 2D Gaussian to each segmented grid field's peak

distribution.

3.8 | Peak-location confidence intervals

For well-identified grid fields, one can calculate confidence

intervals from the posterior distribution using a locally quadratic

approximation. Consider a local maximum in the posterior mean μ xð Þ
at location x0. How much does x0 change if a perturbation

ε xð Þ�N 0,Σ x,x0ð Þ½ �, sampled from the posterior covariance, is added

to μ xð Þ?
This can be calculated via a Taylor expansion in Δx ¼ x�x0 of

μ xð Þ at x0. The slope at x0 is zero, since it is a local maximum, so a

Taylor expansion out to second order has only 0th- and 2nd-

order (curvature) terms. The curvature in x is defined by the

Hessian matrix Hz ≔rxμ x0ð Þr>x . Out to second order our grid-field

log-firing-rate is:

μ xð Þ≈ μ x0ð Þþ1
2
Δ >x HzΔx: ð23Þ

Now, add a first-order approximation ε xð Þ≈ ε x0ð Þþ J>ε Δx of the noise

(posterior uncertainty) to (23), where Jε ≔rxε x0ð Þ is the gradient of ε

at x0:

z xð Þ≈ z x0ð Þþε x0ð Þþ J >ε Δxþ1
2
Δ >x HzΔx: ð24Þ

Setting the derivative of 24ð Þ in Δx to zero and solving for Δx , we

find that:

Δx ¼�H�1z rxε x0ð Þ½ �: ð25Þ

We can construct a covariance matrix “ΣΔx ” for the location of the

peak using (25).

ΣΔx ¼ ΔxΔ >x
� �¼H�1z JεJ

>
ε

� �
H�1z ¼H�1z rxΣ x0,x0ð Þr>x H�1z : ð26Þ

We use the low-rank approximation Σ≈ eReΣeR > as in (22), whereeΣ�ℝD�D is the low-rank covariance and eR�ℝL2�D is a semi-

RULE ET AL. 7
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orthogonal operator defining our low-rank basis. We can use the Cho-

lesky decomposition to obtain Q�ℝD�X such that eΣ¼QQ > and cal-

culate (26) as

ΣΔx ¼BB >, where B¼H�1z rx
eRQh i

x0ð Þ: ð27Þ

Figure 4d compares field-location confidence intervals obtained

either by sampling, or quadratic approximation. These methods agree

for well-localized peaks.

3.9 | Head-direction dependence

In Figure 5, we show two ways to use LGCP regression to estimate

head-direction dependence in grid cells. First, we partitioned the

30-min recording session into subsets, with sample weights

(Figure 5a,b) defined as

w ϕ,ϕ0ð Þ¼ max 0, cos ϕ�ϕ0ð Þ½ �2: ð28Þ

ALGORITHM 1 : Iterative procedure for variational-Bayesian log-Gaussian Cox process regression; ∘ denotes element-

wise vector and matrix products, with u ∘A≔diag u½ �A and A ∘u≔Adiag u½ �, and �ð Þ ∘ � denotes element-wise power.

8 RULE ET AL.
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This weighting separates data from opposing head directions

ϕ1,ϕ2ð Þ¼ ϕ0,ϕ0þπð Þ into nonoverlapping subsets. Fitting the LGCP

estimator over a range of head-direction angles ϕ0 � 0,2π½ Þ reveals a

continuous and smooth dependence of grid field peaks on head direc-

tion (Figure 5c). Opposing directions (cardinal directions shown in

Figure 5d) show clear differences.

Second, we inferred position and head-direction tuning jointly by

adding head direction as a third axis to the LGCP regression. To facili-

tate comparison with Figure 5a–d, we used the same weighting func-

tion (28), adjusted to make it positive semi-definite “Kϕ” (see Section

5.10; Figure 5e). The full 2D+direction kernel was a tensor product

Kϕx ¼Kϕ
N

Kx with a position kernel Kx (an optimized version of

kernel; Figure 3a-2). The resulting posterior provides a joint distribu-

tion of 2D+ direction tuning curves, visualized qualitatively in

Figure 5f with head-direction mapped to hue. As in Figure 4d, one

can obtain the distribution of grid-field peaks—in this case conditioned

on head direction (see Section 5.10). This posterior peak-density map

(Figure 5g) recapitulates the head-direction dependence found from

applying separate regressions to sub-sampled data (Figure 5c).

3.10 | Estimator performance

We quantify the advantages of LGCP regression over naïve kernel

density estimators (KDEs) in Figure 6. We evaluated the estimator

performance on a simulated grid map and 30-min recording session

(Figure 6a) similar to Krupic et al. (2018). On simulated data, the LGCP

estimator (optimized grid kernel; Figure 3a-2) was more accurate than

the KDE for a given amount of training data, exhibited less bias than a

KDE with bandwidth matching the grid-field scale, and exhibited less

variance than a finer-scale KDE (Figure 6b–d; see Section 5.11).

We tested the ability of LGCP regression to predict neuronal

activity under cross-validation (Figure 6e,f). We stress, however, that

the application of LGCP regression is not to predict neuronal activity

exactly, but rather to infer larger-scale features of the grid map by dis-

carding irrelevant fine-scale detail. Nevertheless, the calibrated LGCP

estimator consistently matched or exceeded the predictive perfor-

mance of a kernel-density estimator with bandwidth matched to the

grid scale (see Section 5.11).

We show two measures of performance in Figure 6e,f: The

expected log-likelihood of held-out test data under the regressed

LGCP posterior, relative to the log-likelihood of a KDE (Figure 6e),

and the same results in terms of normalized explained deviance (see

Section 5.12).

4 | DISCUSSION

We have introduced a variational Bayesian approach to analyzing data

from grid cells. We focused on challenges associated with working

(a)

(b)

(c)

(e)

(d)

(f) (g)

F IGURE 5 LGCP analysis of joint position–head-direction tuning. We examined head-direction tuning in a cell from Krupic et al. (2018) by
conditioning on subsets of the data (a–d), and via estimation of a joint log-rate posterior (e–f) (see Section 5.10). (a) The LGCP's efficiency makes
it practical to compare changes in the rate map between subsets of the experimental data. We separated opposing head directions into

nonoverlapping subsets weighted by cosine similarity between the rat's head direction and a reference direction. (b) The rat's smoothed head
direction, denoted via line segments (colored by nearest cardinal direction) stemming from the smoothed position trajectory (black). (c) In this cell,
the posterior rate-map peaks depend smoothly on head direction. (d) Comparing opposing head directions reveals directionality. (e) One can also
estimate position and head-direction tuning jointly. Here, we clipped negative Fourier components of the squared-cosine weighting in (a) to form
a positive-semidefinite head-direction kernel (shown; 24 direction bins). (f) The inferred 2D + heading rate map, depicted in a qualitative color
scheme, with preferred head-direction mapped to hue. (g) The peaks in the sampled 2D + heading posterior conditioned on each head direction
recapitulate the directional shifts seen in Figure 5c.
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with grid cells in larger environments, and prioritized computational

efficiency to facilitate exploratory analysis of large data sets. Our

method incorporates prior assumptions of grid-cell periodicity, is com-

putationally and statistically efficient, yields approximate confidence

intervals, and provides way to compare different prior assumptions

(i.e., optimize the kernel hyperparameters).

4.1 | Caveats

The posterior covariance of a GP regression is only interpretable if the

kernel is a true model for the data's correlation structure. To guard against

mis-specified kernels, we recommend robust controls for formal hypothe-

sis testing, such as shuffle tests that remove a purported effect form the

underlying data. These are computationally intensive but feasible, requir-

ing resources similar to shuffle controls for a large GLM regressions.

We have assumed that a single kernel captures the correlation struc-

ture at all locations, whereas grid cells are known to display subtle

changes, for example, near boundaries (Hägglund et al., 2019). While it is

possible to relax the assumptions encoded in the kernel (e.g., by summing

multiple angular/radial kernels to create orientation/period flexibility), a

spatially varying solution may be preferable. Research into non-stationary

(or spatially inhomogeneous) kernels is ongoing (e.g., Paun et al., 2023),

but we are aware of no suitable advances for the specific problem. In

principle, one could merge maps from different priors in different regions

of the arena post hoc. We leave such explorations for the future.

4.2 | Generality and applicability

The GP estimators described here combine aspects of traditional

kernel-density smothers and Poisson generalized linear models with a

principled (periodic) prior. The advantages of GP regression over the

KDE are that GP regression (1) adapts to smooth more where data are

limited (2) can be used to infer parameters of the spatial correlation

structure (e.g., identify grid period), and (3) can employ priors with a

smoothing radius that exceeds the size of a single grid field.

Our implementation is broadly applicable to problems that are large

enough for the cubic complexity of naïve GP estimators to become bur-

densome, but which are unsuitable for existing sparse or low-rank

(a) (b) (e)

(f)

(c)

(d)

F IGURE 6 Compared to kernel density estimators, LGCP regression is more efficient and exhibits a superior bias–variance trade-off. (a) We
sampled Poisson spiking activity from a synthetic grid cell (mean rate 1.2 Hz) throughout 30 min of simulated foraging in a square arena.
(b) Comparison between rate maps recovered via Log-Gaussian Cox Process (LGCP) regression (black, left), a Kernel Density Estimator (KDE) with
a kernel width matching the scale of a single grid field (red, middle), and a KDE estimate using a narrower kernel (blue, right). (c) The LGCP
estimate correlates well with the ground truth, exhibiting less bias than a scale-matched KDE estimator, and less variance than a narrow one.
(d) Comparison of accuracy (left; Pearson's correlation between the estimated and recovered rate), variance (middle), and bias (right), between the
LGCP and the two KDEs (λ0 = true rate, bλ= estimate). (e, f) We quantified cross-validated (10-fold) estimator performance on 15 randomly
selected cells with at least five grid fields from Krupic et al. (2018), and on the simulated data (black �). We estimated kernel parameters and the
posterior rate map, and measured the expected log-likelihood of held-out data. We compared performance to a KDE smoother matched to the
grid-field scale (Figure 6b, middle scenario). (e) Cross-validated LGCP expected log-likelihood (adjusted; see Section 5.11), relative to KDE log-
likelihood baseline. We explored three kernels: A Gaussian kernel (the same one used by the KDE), a radial kernel (kernel Figure 3a-4), and a grid
kernel (kernel Figure 3a-2). The grid kernel fared worse using heuristic hyperparameters (light bars), but had superior performance once optimized
(dark bars). (f) The same analysis as (e) reported in terms of % explained deviance (see Section 5.12).
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algorithms. It can be applied to intermediate-size spatiotemporal infer-

ence problems with kernels that are sparse in the frequency domain.

Although we focused on the Poisson observation model, our

approach generalizes to other observation models in the natural

exponential family. The main caveat is other observation models

may lack a convenient closed-form expression for the expected fir-

ing rate, and these terms may need to be approximated via

sampling.

4.3 | Future work

The methods we have described are suitable as a drop-in replacement

for the smoothing and KDEs currently used to analyze grid cell activity.

In addition to providing a principled smoother that is aware of a grid cell's

spatial scale, our approach provides approximate confidence intervals.

These algorithms have considerable potential, and could be extended, for

example, to incorporate tuning to additional behavioral covariates, or

additional latent rate fluctuations that are correlated in time.

We plan to apply these methods in our own work. We hope that

others will as well, in addition to building upon these approaches to

design new algorithms for spatiotemporal statistics in the study of

spatial navigation.

5 | METHODS

5.1 | Finding the posterior mode

One approach to estimating the firing rate map is to find the z that

maximizes the log-posterior (7). This is the MAP estimator, and can be

solved via gradient ascent. The gradient of (7) in z is:

rz lnPr zjn,kð Þ¼�Σ�1z z�μzð Þþk�eλ, ð29Þ

where we have defined eλ≔ n ∘λ as the vector of estimated firing-rates

weighted by the number of visits to each location n ( ∘ denotes ele-

ment-wise multiplication).

The (negative) log-posterior (7) is convex, and well approximated

as locally quadratic. The Newton–Raphson method is applicable, and

much faster than gradient descent. This uses the curvature (Hessian,

“rzr>z ”) of (7) in z:

rzr>z lnPr zjn,kð Þ¼�Σ�1z �diag eλh i
: ð30Þ

On each iteration, Newton–Raphson must solve the update

ẑtþ1 ẑt�H�1ẑ Jẑ, where

Jẑ ≔rẑ lnPr ẑjn,kð Þ and

Hẑ ≔rẑr>ẑ lnPr ẑjn,kð Þ:
ð31Þ

The Hessian and Jacobian for the MAP estimator are the same as

those for the variational posterior mean (17), but with the expected

rate λ replaced by the point estimate eλ. To compute H�1ẑ Jẑ quickly in

high dimensions, we used an inexact Newton–Raphson method

(Dembo et al., 1982) that approximates H�1ẑ Jẑ each iteration of (31)

via a preconditioned Krylov method (see Section 5.2).

5.2 | Newton-Krylov methods

Naïve algorithms for multiplying or inverting dense matrices have

cubic complexity, making expressions such as (31) computationally

prohibitive in higher dimensions (c.f. Liu et al., 2020). Thankfully,

modern Krylov-subspace algorithms for solving large linear systems

A�1v only require a function that can compute the matrix–vector-

product u 7!Au. This can be computed quickly if our matrix A has spe-

cial structure (Brown & Saad, 1990; Chan & Jackson, 1984; see

Knoll & Keyes, 2004 for review). Fast solutions exist if the covariance

kernel (or its inverse) is sparse (e.g., Cseke et al., 2016; Gal

et al., 2014; Kiiveri & De Hoog, 2012; Luttinen & Ilin, 2009) or Toe-

plitz/circulant (e.g., Jensen et al., 2021).

Algorithms combining Newton–Raphson iteration with Krylov

methods were first developed for very large, sparse, GP models (Cseke

et al., 2016; Kiiveri & De Hoog, 2012), but apply to any problem where

Au can be computed quickly but A�1u is impractical. In our case, our

prior covariance Σz is a convolution, and we calculate Σ�1z u quickly as

point-wise multiplication in in the spatial-frequency domain (see Sec-

tion 5.5). We can therefore calculate the Hessian-vector product Hẑu

quickly, which allows us to expediently calculate H�1ẑ Jẑ using a Kry-

lov-subspace solver.

In our tests, we found that Scipy's (Virtanen et al., 2020) imple-

mentation of the minimum residual Krylov-subspace algorithm

(MINRES; Paige & Saunders, 1975) provided the best balance of

speed and stability. To make complex-valued spatial-frequency com-

ponents compatible with Krylov solvers designed for real-valued

matrices, we used the Hartley transform rather than the Fourier trans-

form (see Section 5.5).

Krylov-subspace algorithms benefit from a preconditioner “M” that

approximates the inverse (H�1ẑ in our case). We used the prior covari-

ance kernel for this, M¼Σz, also computed as a convolution via point-

wise multiplication in a low-rank spatial-frequency domain (see

Algorithm 1).

5.3 | Connection to the Laplace approximation

The Laplace approximation (Figure 2b) models the posterior uncer-

tainty in the MAP-estimated log-rate bz as a Gaussian centered at

μ¼bz, and with the covariance equal to the negative-inverse of the

Hessian (30) evaluated at bz:

Pr bzð Þ ≈N μ¼bz,bΣ� �
bΣ�1¼Σ�1z þdiag eλ bzð Þh i

:
ð32Þ
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Intuitively, (32) says that the Laplace approximation models the pos-

terior precision as a sum of the prior precision and a diagonal matrix

representing information from spiking observations.

Note the similarity between the derivatives of the variational

mean (17) and those of the MAP estimator (29) and (30), and the

similarity between the Laplace-approximated posterior variance

(32) and the covariance update for variational Bayes (19) and (45).

Optimizing the variational mean is tantamount to calculating the

MAP estimator using the expected rate λh iz rather than a point esti-

mate λ. Likewise, updating the posterior covariance is tantamount to

applying the Laplace approximation at the variational mean, again

using the expected rate rather than a point estimate.

5.4 | Derivatives

In this section, we derive the gradients of the evidence lower bound

(15) with respect to Σ and q (Equations (18) and (20) in the main text,

respectively).

First, we obtain the derivative of the evidence lower bound (15)

with respect to the posterior covariance matrix Σ. Consider the deriva-

tive of the term n > λh i with respect to individual elements Σij. We use

Einstein summation notation, wherein sums over repeated indices are

implied:

∂Σij n
> λh i
 �¼ ∂Σij nk λkh i½ �

¼ nk∂Σij
λkh i

¼ nk∂Σij exp μkþ
1
2
Σkk

� 	

¼ nk exp μkþ
1
2
Σkk

� 	
∂Σij μkþ

1
2
Σkk

� 	

¼1
2
nk λkh i∂Σij

Σkk

¼1
2
nk λkh iδikδjk

¼1
2
ni λih iδij

) ∂Σ n > λh i
 �¼1
2
diag n ∘ λh i½ �,

ð33Þ

where δab is the Kronecker delta (1 if a¼ b and 0 otherwise).

The derivative of the term tr Σ�1z Σ
� �

in (15) is given by identity

(100) in The Matrix Cookbook (Petersen & Pedersen, 2008), and is

Σ�1z . The derivative of the term ln jΣ j is given by identity (57) in The

Matrix Cookbook (Petersen & Pedersen, 2008), (assuming jΣ j ≠0),

and is Σ�1. Overall, then, the derivative of (15) in Σ is:

∂ΣL¼ ∂Σ
1
2

lnjΣj� tr Σ�1z Σ
� �
 ��n > λh i

� �

¼1
2

Σ�1�Σ�1z �diag n ∘ λh i½ �� 

:

ð34Þ

Let λ¼ n ∘ λh i. For the parameterization Σ�1¼Σ�1z þdiag q½ �, (34) sim-

plifies to:

∂ΣL¼1
2

Σ�1�Σ�1z �diag λ

 �� 


¼1
2

Σ�1z þdiag q½ �� ��Σ�1z �diag λ

 �� 


¼1
2

diag q½ ��diag λ

 �� 


¼1
2
diag q�λ


 �
:

ð35Þ

We can now obtain the derivative of the evidence lower bound (15) in q

via the chain rule, ∂qkL¼ ∂ΣijL

 �

∂qkΣij


 �
. To obtain ∂qkΣij, we will need

identity (59) in The Matrix Cookbook (Petersen & Pedersen, 2008),

which provides the chain rule for the derivative of the inverse of a

matrix, ∂x A xð Þ�1
h i

¼�A�1 ∂xA½ �A�1. We will let A¼Σ�1:

∂qkΣij ¼ ∂qk A�1
h i

ij

¼ �A�1 ∂qkA
� �

A�1
h i

ij

¼� Σ ∂qkΣ
�1� �

Σ

 �

ij

¼� Σ ∂qk Σ�1z þdiag q½ �
 �� �
Σ


 �
ij

¼�Σia ∂qkdiag q½ �� �
abΣbj

¼�Σia δkaδkbð ÞΣbj

¼�ΣikΣkj:

ð36Þ

Combining (35) and (36) gives:

∂qkL¼�
1
2
diag q�λ


 �
ijΣikΣkj

¼�1
2
Σkidiag q�λ


 �
ijΣjk

¼�1
2

Σdiag q�λ

 �

Σ

 �

kk

) ∂qL¼�12diag Σdiag q�λ

 �

Σ
� 


:

ð37Þ

5.5 | Working in a low-rank subspace

Working in a low-rank subspace can make large problems tractable.

We first find a low-rank approximation of the prior covariance Σz, and

then perform inference within this subspace.

The prior covariance Σz is defined by a convolution kernel. The

components of this kernel “ξ” in spatial-frequency (Fourier) space are

the eigenvalues of Σz:

Σz ¼Fdiag ξ½ �F†, ð38Þ

where F is the unitary Fourier transform and † denotes the conjugate

(Hermitian) transpose.

In practice, many spatial frequency components will be close to

zero. These are frequencies where the prior assigns very little proba-

bility. We work in a low-rank space consisting only of those directions

in Σz where the prior has assigned non-negligible variance. We retain

the D≤ L2 components “eξ” whose magnitude in the prior covariance

kernel is at least 10% of the eigenvalue of the prior covariance with

the largest magnitude “ξmax”:

eξ¼ ξm such that jξmj>0:1jξmax jf g: ð39Þ
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The low-rank approximation to the posterior covariance can then be

calculated as

Σ ¼ Σ�1z þdiag λ

 �� ��1

¼ Fdiag ξ�1

 �

F†þdiag λ

 �� ��1

¼F diag ξ�1

 �þF†diag λ


 �
F

� ��1
F†

≈F diag eξ�1h i
þF†diag λ


 �
F

� ��1
F†,

ð40Þ

where F is the (unitary) Fourier transform retaining only the non-negli-

gible components eξ. F is not invertable, but since it is semi-orthogonal,

F† is its pseudoinverse.

Note that the Kullback–Leibler divergence contribution to the evi-

dence lower bound (13) contains a constant factor �1
2M that depends

on the number of dimensions M¼ L2 in the our multivariate-Gaussian

prior. When working in a low-rank D<M subspace, this term should be

replaced by �1
2D to ensure that the evidence lower-bound can be

compared between models with low-rank subspaces of different

ranks.

Fourier coefficients can take on complex values. This creates

compatibility and performance issues with standard numerical linear

algebra software. To address this, we use a real-valued relative of the

Fourier transform called the Hartley transform (Hartley, 1942).

We denote the Hartley transform as R, and the transform with neg-

ligible frequencies discarded as eR. The Hartley transform is calculated

by summing the real and imaginary components of the Fourier

transform

R¼ℜ Fð Þþℑ Fð Þ: ð41Þ

If F is the unitary Fourier transform, then R is also unitary.

Equations in (38)–(43) work similarly with the Hartley transform,

replacing F with R, and replacing Hermitian transposes with ordinary

transposes. Since the (circulant) prior Σz is symmetric, its Fourier coef-

ficients ξ are real-valued, and the Hartley-transform coefficients for

the prior are identical to the Fourier coefficients. We can write (40)

using the Hartley transform as

Σ≈R diag eξ�1h i
þ eR > diag λ


 �eR� ��1
R > : ð42Þ

We denote this approximation as eΣ. During inference, only N<M bins

with nonzero observations (nm >0) contribute to the expected log-

likelihood, and we can further truncate eR to an N�D matrix for

efficiency.

The frequency-subspace representation simplifies some of the

matrix calculations. Let L be the size of the environment, and L2 be

the total number of spatial bins. A L�L array can be converted into

frequency space using the 2D fast Fourier transform, which costs

O L2log Lð Þ
� �

. If we retain only D components, the relevant transform

has dimensions L2D and the cost is O L2D
� �

. Ordinary matrix multipli-

cation can outperform the FFT when D�O log Lð Þð Þ. Since grid cells

display only a narrow range of spatial scales, D can be small, and the

complexity of each optimization iteration is competitive with simpler

estimators.

We perform most calculations in this low-rank space, and never

explicitly construct the posterior covariance. The only calculation that

cannot be performed in the low-rank space is the calculation of the

expected firing-rates at each location, λ, which we address in Sec-

tion 5.6. This has complexity O D2NþD3
� �

, where N is the number of

spatial bins containing observations.

When operating in a low-rank subspace, it is important that the

mean of the variational posterior also be expressed in this subspace.

Leaving μ in the full-rank space creates a poorly conditioned problem,

since several directions will be ignored when calculating gradients

using low-rank approximations.

5.6 | Calculating the expected firing rate

For Gaussian z�N μ,Σð Þ and exponential firing-rate nonlinearity, the

firing rate λ¼ exp zð Þ is log-normally distributed. The mean of this dis-

tribution, λh i, has the closed-form expression exp μþ 1
2diag Σ½ �� �

(c.f.

Rule & Sanguinetti, 2018). Evaluating this expression requires the

diagonal of the posterior covariance matrix.

In the low-rank subspace (42), these diagonal elements Σii can be

calculated with the following procedure:

X eR > diag q1=2
h i

¼ eR >∘q1=2
Λ diag eξ�1h i

þXX >

eΣ1=2 eR chol Λ½ ��1

eΣii 
X
j

eΣ1=2
h i2

ij
:

ð43Þ

In (43), we first project the (square root of the) precision update

diag q1=2

 �

into the low-rank subspace. We then obtain the inverse

posterior covariance in the low-rank space, “Λ.” Rather than invert

this directly, we compute its Cholesky factorization and use a triangu-

lar inverse solver. We expand this from the low-rank subspace using

the inverse FFT. This provides a factor eΣ1=2
of the low-rank approxi-

mation to the posterior covariance such that eΣ¼ eΣ1=2 eΣ1=2
� �>

, from

which we extract the diagonal variances. This factor is also useful for

sampling from the variational posterior (22).

5.7 | Iteratively estimating q

From (20), we see that q must equal λ to maximize the evidence lower

bound (15) (for fixed μ). However, since λ depends on q, this must be

solved self consistently. This can be solved by ascending the simpler

gradient Δq/ λ�q. Taking discrete steps yields the following fixed-

point iteration:

qtþ1 λ qtð Þ, where

λ qtð Þ ¼ n ∘ exp μþ1
2
diag Σ qtð Þ½ �

� 	
and

Σ qtð Þ ¼ Σ�1z þdiag q½ �
 ��1
:

ð44Þ
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In practice, we implement this by iterating the marginal posterior vari-

ances v¼diag Σ½ �. This is amounts to a different parameterization

of (44):

vtþ1 diag Σ vtð Þ½ �, where

Σ vtð Þ ¼ Σ�1z þdiag λ vtð Þ

 �
 ��1

λ vtð Þ ¼ n ∘ exp μþ1
2
vt

� 	
:

ð45Þ

Challis and Barber (2013) note that the iteration in (44) may diverge. In

practice, we have found that the reparameterized iteration in (45) always

converges when starting from v¼0, provided one re-optimizes the pos-

terior mean before each step according to (17), and provided the prior is

sufficiently well-conditioned. Note that Σ vtð Þ remains bounded in the

parameterization in (45) as 0≼Σ vtð Þ≼Σz. This implies that the itera-

tion cannot diverge to infinity if the prior precision Σ�1z is full rank (≼

is the Loewner order of positive semidefinite matrices). Since these

iterations are simply gradient descent with a step size of 1, instability

can be remedied by choosing a smaller step-size, if encountered.

5.8 | Binning data

For clarity, we presented the derivations in this manuscript in terms of

piecewise-constant spatial basis functions. In practice, linearly inter-

polated binning provides better resolution for a given grid size, and

this is what we used in the provided reference implementation.

For each visit and/or spike at location x, we distributed the point

mass at x over a 2�2 neighborhood of adjacent bins via linear inter-

polation. This amounts to using square-pyramidal basis functions to

provide a piecewise-linear model the inferred firing-rate map (com-

pare to fig. 1 in Cseke et al., 2016).

Since most calculations are performed directly on the spatial-

frequency components of the grid map, choices for spatial binning

only affect the numeric integration of the data likelihood (5) over the

spatial domain. Locally constant binning amounts to using the Rie-

mann sum to compute this integral, and linearly interpolated binning

amounts to using the trapezoid rule. Linear interpolation improves

resolution compared to a piecewise-constant model, but conceptually

there are no substantive differences.

5.9 | Initializing parameters

5.9.1 | Grid period P and orientation

We estimated the grid period P using the radial autocorrelogram of

the firing-rate histogram y¼ k=n, calculated by averaging the 2D spa-

tial autocorrelogram over all angles. The radial autocorrelogram “Rρ”
for a period-P periodic spatial signal is given by Equation (9):

Rρ kΔx kð Þ/ J0
2π
P
k δx k

� 	
þconstant: ð46Þ

The location “Δp” of the first nonzero peak of Rρ kΔx kð Þ depends on
P, and we can solve for P given Δp as

P¼ 2π
k1,2

Δp , ð47Þ

where k1,2 is the second zero of the first-order Bessel function of the

first kind.

When using the oriented kernel (Figure 3a-2), we estimated the

grid orientation based on the phase of a 6-fold periodic sinusoid fit to

the spatial autocorrelogram at distance r¼P= 2πk1,2ð Þ.

5.9.2 | Heuristic μ and prior mean μz

We used a Gaussian kernel density smoother to estimate foreground

λf ¼Kσf �by and background λb¼Kσb �by rate maps (σf ¼P=π; σb¼5σf ).

We use this background log-rate map for the prior mean μz in varia-

tional inference. We used the foreground as an initial guess when

optimizing the posterior mean.

5.9.3 | Kernel height σ20 and constant offset c

We calculated an initial estimate of the log-rate as the difference between

the log-foreground and log-background maps. The variance of this map

was then used to initialize the kernel height, σ20. The kernel's constant

offset c controls how confident we are in our prior assumptions about

the average log-firing-rate across the environment. The average log-rate

is the average (“DC”) component of the prior mean μz. We set c¼103

to leave the inference procedure free to adjust the mean log-rate.

5.9.4 | Grid search

For the analyses shown in this paper, we refined kernel hyperpara-

meters in a two-step process. Starting from heuristically initialized

parameters, we estimated P,σ20
� �

via grid-search with an orientation-

agnostic kernel (Figure 3a-4). We recursively searched nearby values

of Θ until we found a local maximum. We re-used solutions for the

parameters of the variational posterior from previous choices of Θ as

initial guesses for optimizing new Θ to reduce computational cost.

Then, we identified orientation θ0 by leaving P,σ20
� �

fixed and sweep-

ing a range of angles in 0,π=3½ Þ, Finally, we re-optimized P,σ20
� �

for a

grid kernel with orientation θ0 (Figure 3a-2).

5.10 | Head-direction analyses

For Figure 5, head direction was tracked via a head-mounted infrared

LED (see Krupic et al., 2018 for details). We converted the recorded

head direction ϕraw tð Þ into cosine and sine components,

ϕx,ϕy

� 
¼ cos ϕraw tð Þð Þ, sin ϕraw tð Þð Þf g. We then imputed missing data

via linear interpolation and smoothed ϕx,ϕy

� 

with a 2Hz low-pass

Savitsky-Golay filter, yielding smoothed estimates eϕx,eϕy

n o
and head

direction ϕ¼ arg eϕxþ ieϕy

� �
. We used data from the entire experimen-

tal session to optimize the period, variance, and direction of a local-
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neighborhood grid kernel (kernel; Figure 3a-2) via grid search. We

used this spatial kernel “Kx” for all subsequent regressions.
Analyzing head-direction via weighted subsets of the data

reduces to the 2D inference problem. For each reference direction

ϕ0, we defined a weighting function w tð Þ� 0,1½ � as wt¼ max

0, cos ϕt�ϕ0ð Þ½ �2 (Equation (28)). We calculated weighted visit counts

nϕ0;m ¼
Pt s:t:

x � bmwt and spike counts kϕ0;m¼
Pt s:t:

x � bmytwt (compared to

Equation 4). Inference of a heading-conditioned rate map amounts to

inferring a 2D position rate map using these weighted counts.

To construct joint 2D + direction LGCP regression (Figure 5e–g),

one treats the time-varying head direction as a third spatial dimension.

The only difference from the spatial case is that the head-direction

axis does not require padding to avoid circular wrap-around. We

defined a grid of D¼24 head directions uniformly spaced around the

circle, and binned the smoothed head direction using linear interpola-

tion (see Section 5.8).

To facilitate comparison between approaches, we modified the

weighting function (28) into a positive semidefinite kernel by clipping its

negative eigenvalues to zero, that is, Kϕ ϕ,ϕ0ð Þ ¼F�1max 0,F w ϕ,ϕ0ð Þf g½ �.
We constructed the joint kernel Kϕx¼Kϕ

N
Kx as a Kronecker prod-

uct in the spatial domain, then discarded all but the D¼1000 largest

Fourier components to generate a low-rank subspace. Inference of

the posterior log-rate density is then identical to the 2D case. Unlike

Savin and Tkacik (2016), we do not use the Kronecker structure of the

(direction
N

position) prior in the inference, but rather infer the joint

posterior in a low-rank subspace.

We calculated the head-direction-dependent peak-density map in

Figure 5g by drawing 2D + direction samples from the inferred poste-

rior distribution, conditioning on each head-direction separately, and

identifying local maxima with a radius of P=2:5 of the grid period P

(with peak locations up-sampled via quadratic interpolation).

5.11 | Assessing estimator performance

In Figure 6, we assess the LGCP estimator performance on both

simulated and experimental data. We simulated an ideal grid cell

on a 90�90 grid with log-rate as in (8), scaled to a mean rate of

1.2Hz, and with a spatial period of 13 bins. For comparison to the

experimental results throughout the text, if each bin were 2�2 cm2,

this would correspond to a 1.8�1.8m enclosure and a cell with a

period of 26 cm. We simulated 30min of random exploration at

50 samples per second as Brownian motion (σ2 =0.02 bin2/s) clipped

to the arena boundaries, filtered twice with a first-order exponential

smoother (τ¼190 ms).

We compared the accuracy, bias, and variance of the LGCP and

KDE in Figure 6b–d. We defined a “scale-matched” Gaussian KDE

with variance σ20¼P2= 2π2
� �

. This matches the curvature of the

Gaussian kernel at Δx¼0 with that of the radial autocorrelation (9),

yielding a Gaussian kernel that approximates the size and shape of a

single grid field. We also defined a “finer-scale” KDE kernel, with vari-

ance σ2¼ σ20=8, which was more noisy, but provided a less biased esti-

mate in expectation. To assess accuracy, bias, and variance as a

function of data size (i.e., recording length), we partitioned the syn-

thetic data into 15 blocks and sampled bootstrapped training data sets

of varying duration, with replacement (200 samples). We kept the ker-

nel parameters fixed (for all estimators), rather than re-estimating

them on each sample (see Section 5.12 for an assessment that incor-

porates hyperparameter uncertainty).

5.12 | Cross-validated performance measures

We compared the ability of the LGCP and scale-matched

(σ20¼P2= 2π2
� �

) KDE to predict spiking activity on held-out test data

in Figure 6e,f. We used a simulated data set and 15 randomly cho-

sen cells from Krupic et al. (2018) (of those with at least five grid

fields).

We compared three different kernels for the LGCP estimator: (i) A

Gaussian Radial Basis Function (RBF), with variance σ20¼P2= 2π2
� �

iden-

tical to that of the KDE; (ii) A radial kernel (Figure 3a-4), which included

no assumptions about grid orientation, and (iii) A local-neighborhood

grid kernel (Figure 3a-2). The Gaussian kernel provides a fair compari-

son with the KDE, and the radial versus grid-kernel performance

emphasizes the importance of hyperparameter optimization.

We assessed performance under 10-fold cross-validation. We

tested both heuristic (see Section 5.9) and grid-search-optimized ker-

nel hyperparameters. Hyperparameter estimates were repeated for

each block with held-out data excluded. The reference KDE band-

width was fixed at the cells “true” period as identified by the optimal

kernel parameters on the whole data set.

We assessed LGCP performance using the expected log-

likelihood (14) of the held-out test data under the inferred posterior

distribution (or, for the KDE: the point estimate (5)). Since changes

in mean-rate between train/test data are uninteresting for inferring

spatial variations in tuning, we adjusted the predicted mean-rate to

match the test data before evaluating the (expected) log-likelihood

(“adjusted log-likelihood”). We also report performance in terms of

change in the % explained deviance, in analogy to a normalized R2

statistic from linear regression. We defined the “null” model as one

that simply guesses the mean-rate on the test data bλnull¼ ytesth i
(worst-case performance), and the “saturated” model asbλsaturated¼ ytest (theoretical maximum of the Poisson likelihood). Nor-

malized explained deviance is given as

eD¼ Lmodel�Lnullð Þ= Lsaturated�Lnullð Þ, ð48Þ

where L are the (expected) log-likelihoods of the respective models.

We report the improvement in (48) relative to the KDE baseline

(�100%) in Figure 6f.
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