

Beyond wells: towards demand-side perspective to manage global methane emissions from oil and gas production

Bin Chen^a, Siyi Kan^{b,c*}, Sijing Wang^a, Huijing Deng^a, Bo Zhang^{d*}

^a Fudan Tyndall Center, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200438, China

^b The Bartlett School of Sustainable Construction, University College London, London, WC1E 6BT, UK

^c Laboratory of Systems Ecology and Sustainability Science, College of Engineering, Peking University, Beijing 100871, China

^d China Institute for Studies in Energy Policy, School of Management, Xiamen University, Fujian, 361005, PR China

13 **Abstract:** The international trade of oil/gas-implicated commodities could potentially
14 jeopardize global methane mitigation targets when exporting countries have loose or
15 even no methane regulations. Therefore, this paper constructs a demand-driven impacts
16 model to uncover the impact of global consumption and international trade on regional
17 oil and gas methane emissions in 2014. It's estimated that more than three-fifths of
18 global oil & gas methane emissions are embodied in international commodity trade (e.g.,
19 petroleum, chemicals), primarily from large oil and gas suppliers (e.g., Russia, Nigeria
20 and Iran) to large consuming economies (e.g., China, Japan and USA). Notably, more
21 than three quarters of oil & gas methane emissions embodied in EU's final consumption
22 occurs in other regions. Our results could facilitate targeted demand-side mitigation
23 strategies (e.g., labelling low-emission products, shifting to a circular bio-economy) to
24 complement supply-side efforts, especially considering the relatively loose supply-side
25 methane regulations on oil and gas sectors in large exporting regions.

* Corresponding authors.

E-mail addresses: sykan@pku.edu.cn (Siyi Kan), zhangbo@cumtb.edu.cn (Bo Zhang)

26

27 **Keyword:** Methane emissions, oil and gas production, international trade, global
28 supply chains, demand-driven impacts

29

30 **1. Introduction**

31 Reducing greenhouse gas (GHG) emissions is a global priority for climate change
32 mitigation. As a powerful driving force of climate change, global methane emissions
33 continued to increase by 1.8% in 2018, accounting for about one fifth of total GHG
34 emissions (Olivier and Peters, 2020). Methane's heat-trapping ability, aka., global
35 warming potential, is 25 times greater than that of carbon dioxide on the 100-year time
36 horizon under the United Nations Framework Convention on Climate Change
37 (UNFCCC), while atmospheric methane concentration has already more than doubled
38 since the Industrial Revolution (Reay et al., 2018). It's estimated that more than 60%
39 of the methane emissions are contributed by intensive anthropogenic activities (e.g.,
40 agricultural and fossil fuel production) (Saunois et al., 2016). The surging
41 concentrations of methane emissions make it the second most important human-
42 induced GHG after carbon dioxide. Meanwhile, the relative short lifespan of methane
43 in the atmosphere offers a unique opportunity to take actions that have immediate
44 beneficial impacts on climate change. Therefore, achieving the 2 °C and even 1.5 °C
45 target by 2030 requires more urgent and stringent policy interventions targeted on
46 methane control (Fletcher and Schaefer, 2019). Reducing methane emissions could also
47 deliver significant co-benefits to human health and agricultural production through

48 ozone air quality improvement (Avnery et al., 2013; West et al., 2006).

49 Oil and gas sectors play an indispensable role in global methane profile. Methane

50 leakage could occur at multiple stages of the oil and gas supply chains (Brandt et al.,

51 2014; Caulton et al., 2014; Konschnik and Jordaan, 2018; Nature, 2005; Schneising et

52 al., 2014; Zavala-Araiza et al., 2015), especially the production and gathering stages.

53 According to the Global Methane Budget, annual methane emissions from oil and gas

54 sectors are estimated to be 69-88 Tg, accounting for about 65 % of total fossil methane

55 emissions or one quarter of global anthropogenic methane emissions (Saunois et al.,

56 2016; Saunois et al., 2020). More recent studies have indicated that the oil and gas

57 methane emissions are substantially underestimated by around 20-60% in some regions

58 (e.g., USA) and the whole world (Alvarez et al., 2018; Hmiel et al., 2020; Schwietzke

59 et al., 2016). Notably, limiting methane losses from oil and gas operations is hindered

60 by the world economy's foreseeable huge demand for oil and gas. On one hand, crude

61 oil is likely to maintain the lion's share of global energy consumption in the next two

62 decades (IEA, 2017), accounting for around one third global energy demand in 2040 in

63 the Current Policy Scenario. On the other hand, natural gas is seen as a bridge fuel to

64 smooth the ongoing energy transition towards a carbon-neutral energy mix for many

65 coal-dominant regions such as China (Qin et al., 2017; Tanaka et al., 2019). The gradual

66 replacement of coal with natural gas is expected to push up gas demand, which further

67 exacerbates the headwinds for methane reduction. It's estimated that coal-to-gas

68 transition would lead to additional warming out to mid-22nd century if the methane

69 leakage rate is around 10% (Wigley, 2011).

70 Numerous efforts have been devoted to assisting the oil and gas sectors in methane
71 management. A comprehensive and reliable emission inventory is prerequisite for
72 mitigation initiatives. Therefore, many studies focus on compiling oil and gas methane
73 emission inventories at various stages of supply chain (e.g., production, processing,
74 transmission, storage, distribution and end-use) on different scales, including field
75 (Allen et al., 2013; Karion et al., 2013), city (McKain et al., 2015; Plant et al., 2019),
76 basin (Harriss et al., 2015; Karion et al., 2015), national (Alvarez et al., 2018; Dedikov
77 et al., 1999; Sheng et al., 2017; Zhang et al., 2022; Zimmerle et al., 2015), regional
78 (Brandt et al., 2014; Nara et al., 2014) and global (Hausmann et al., 2016; Höglund-
79 Isaksson, 2017) scales. These studies have also identified major sources of oil and gas
80 methane emissions, including the flaring, venting and unintended leakage during
81 production. Accordingly, some supply-side measures have been advocated to reduce
82 methane leakage and improve recovery rate, such as mandatory leakage detection and
83 reporting, rapid retrofit/replacement of outdated equipment, accelerating elimination of
84 venting and flaring from oil and gas wells, and installation of vapor recovery units,
85 which contributes greatly to global methane control efforts.

86 It's proved that a large amount of oil and gas initially extracted in some countries
87 (e.g., North Africa and Russia) will finally be consumed by others (e.g., EU and China)
88 through the complex global supply-chain network (Kan et al., 2020; Kan et al., 2019b;
89 Wu and Chen, 2019). In other words, the demand for goods and services in consumer

90 countries are driving production of oil and gas in other countries, which in turn
91 aggravates methane leakage. The international trade of oil and gas as well as oil & gas-
92 reliant products can be regarded as transfer of methane emissions that are embodied in
93 these products, and therefore could jeopardize global methane mitigation targets when
94 exporting countries have loose or even no methane regulations on oil and gas industries.
95 The above-mentioned evidences suggest that only supply-side mitigation measures are
96 sometimes inadequate to achieve an ambitious methane reduction goal. Hence,
97 demand-side mitigation options aimed at global consumption and international trade
98 could serve as a complement to supply-side practices. Most previous studies focused
99 on the carbon dioxide emissions driven by international trade (Baumert et al., 2019;
100 Davis and Caldeira, 2010; Li et al., 2020; Ottelin et al., 2019). A universal finding is
101 that 23-30% of global carbon dioxide emissions could be attributed to international
102 trade (Wiedmann and Lenzen, 2018). Only a few studies paid attention to methane
103 emissions exclusively embodied in international trade. For example, Subak showed that
104 the methane leakage associated with international trade of rice, meat and milk products
105 can jeopardize the effectiveness of Framework Convention on Climate Change (Subak,
106 1995). More recent studies uncovered the role of international meat (Caro et al., 2014),
107 dairy(Wu et al., 2022) as well as general commodity trade (Fernández-Amador et al.,
108 2020; Wang et al., 2019; Yan et al., 2021) in redistributing regional methane emissions.
109 Notably, little efforts have been devoted to revealing how global consumption and
110 international trade reshape the profile of regional oil and gas methane emissions,

111 especially from the perspective of both oil & gas sectors as well as non-oil & gas sectors.

112 In specific, this study aims to (1) shed light on how export-oriented production

113 induces methane losses in large oil and gas producing regions, (2) map the trade routes

114 underpinned by global supply-chain network between final consumers and primary oil

115 and gas suppliers, and (3) identify regions with large consumption-based impacts on

116 global oil and gas methane leakages, in order to facilitate tailored demand-side

117 mitigation strategies. This work goes beyond simple oil and gas methane emissions

118 mapping, in that it unveils a global supply-chain network that tele-connects onsite

119 methane emissions during oil and gas production with international trade and global

120 consumption, based on which comprehensive demand-side policies could be

121 formulated to manage global methane emissions from oil and gas production.

122

123 **2. Methodology and data sources**

124 **2.1 Demand-driven impacts model**

125 In order to evaluate methane emissions driven by demand and international trade,

126 environmentally extended input-output analysis (EEIOA) is adopted, which is widely

127 acknowledged as a powerful tool to reveal the connection between onsite resource

128 use/environmental impacts and demand of final consumers (Leontief, 1970; Wiedmann,

129 2009; Wiedmann and Lenzen, 2018). The method incorporates production-based

130 environmental inventories (i.e., oil and gas methane emissions) into global multi-

131 regional input-output (GMRIQ) tables that capture trade flows between industrial

132 sectors and from these sectors to final consumers. Methane emissions can therefore be
 133 traced across global supply chains from where they are produced to where the emission-
 134 inducing products are consumed via international trade.

135 Table 1 The scheme of environmentally-extended global multi-regional input-output
 136 model

Output Input		Intermediate use				Final use				Total output
		Economy I		Economy m		Economy I		Economy m		
Sector I	Sector n	Sector I	Sector n	Category I	Category k	Category I	Category k	Category I	Category k	
Economy I	Sector I ⋮ Sector n	Economy m	Sector I ⋮ Sector n	z_{ij}^{rs}				y_{ik}^{rs}		x_i^r
Intermediate input	CH ₄ emissions from oil & gas production			e_i^r						

137
 138 The GMRIO model has been applied to account various ecological elements, such
 139 as energy use (Chen et al., 2018b; Kan et al., 2019a; Oswald et al., 2020), land use
 140 (Chen et al., 2018a; Kan et al., 2021; Kan et al., 2023; Pendrill et al.), water use (Lenzen
 141 et al., 2013a; Liu et al., 2020; Lutter et al., 2016), carbon emissions (Acquaye et al.,
 142 2017; Davis and Caldeira, 2010; Kanemoto et al., 2016; Li et al., 2020) and other air
 143 pollutant emissions (Chen et al., 2019; Li et al., 2017; Long et al., 2022; Meng et al.,
 144 2016). Table 1 illustrates the scheme of environmentally-extended GMRIO model.
 145 Accordingly, the world is divided into m regions, each including n industrial sectors
 146 and k kinds of final demand. Sectoral total output (measured by monetary value)

147 consists of output to other sectors and output to final demand, which can be expressed

148 as:

$$\begin{pmatrix} \mathbf{A}^{11} & \mathbf{A}^{12} & \dots & \mathbf{A}^{1m} \\ \mathbf{A}^{21} & \mathbf{A}^{22} & \dots & \mathbf{A}^{2m} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{A}^{m1} & \mathbf{A}^{m2} & \dots & \mathbf{A}^{mm} \end{pmatrix} \begin{pmatrix} \mathbf{x}^1 \\ \mathbf{x}^2 \\ \vdots \\ \mathbf{x}^m \end{pmatrix} + \begin{pmatrix} \sum_1^m \mathbf{y}^{1s} \\ \sum_1^m \mathbf{y}^{2s} \\ \vdots \\ \sum_1^m \mathbf{y}^{ms} \end{pmatrix} = \begin{pmatrix} \mathbf{x}^1 \\ \mathbf{x}^2 \\ \vdots \\ \mathbf{x}^m \end{pmatrix} \text{ (or } \mathbf{AX} + \mathbf{Y} = \mathbf{X} \text{)} \quad (1)$$

149 where $\mathbf{A}^{rs} = (a_{ij}^{rs})_{mn \times mn}$ (the technology coefficient matrix), with $a_{ij}^{rs} =$

150 z_{ij}^{rs} / x_i^r representing output of sector i in region r to support one unit of production of

151 sector j in region s ; $\mathbf{x}^r = (x_i^r)_{n \times 1}$ (sectoral output matrix), with x_i^r standing for the

152 total output of sector i in region r ; $\mathbf{y}^{rs} = (y_{ik}^{rs})_{n \times k}$ (final demand matrix), with y_{ik}^{rs}

153 denoting output of sector i in region r to satisfy the final demand k of region s . To better

154 describe the relationship between total output matrix and final demand matrix, the

155 equation can be transformed as follows:

$$\mathbf{X} = (\mathbf{I} - \mathbf{A})^{-1} \mathbf{Y} \quad (2)$$

156 where \mathbf{I} is the identity matrix.

157 If we define $\mathbf{E}^r = (e_i^r)_{1 \times mn}$ as the direct emissions intensity vector whose elements

158 represent production-based methane emissions per unit of sectoral output (oil and gas

159 sectors in this study), the demand-driven emissions (**DE**) can be calculated by:

$$\mathbf{DE} = \mathbf{E} \mathbf{X} = \mathbf{E} (\mathbf{I} - \mathbf{A})^{-1} \mathbf{Y} \quad (3)$$

160 The matrix \mathbf{Y} can be considered as a combination of multiple components, such as

161 final demand satisfied by domestic and foreign sectors respectively or sectoral output

162 for domestic and foreign final demand respectively. $\mathbf{E}(\mathbf{I}-\mathbf{A})^{-1}$ is the sector-specific

163 embodied emission intensity vector, defined as the sum of direct (on-site) and indirect

164 (upstream) emissions generated to produce per unit final demand (monetary value) of
165 the sector. Accordingly, methane emissions driven by different components can be
166 distinguished. From this framework, methane emissions embodied in international trade
167 could be obtained by:

$$\mathbf{DE}^{rs} = \tilde{\mathbf{E}}^r (\mathbf{I} - \mathbf{A})^{-1} \tilde{\mathbf{Y}}^s \quad (4)$$

168 where \mathbf{DE}^{rs} denotes the methane emission from oil and gas production in region r
169 related to cross-regional final products and services consumed in regions s . $\tilde{\mathbf{E}}^r$
170 represents the direct emission intensity vector for region r but zero for all other regions,
171 while $\tilde{\mathbf{Y}}^s$ is the final demand vector for region s but zero for all other regions.

172 **2.2 Data sources**

173 The model inputs include national methane emission from oil and gas production
174 and the GMRI table. National on-site methane emissions from oil and gas production
175 are collected from EDGARv6.0 (Crippa et al., 2020), which provides complete national
176 methane emission inventories from different sources (including oil and gas production)
177 during 1970–2021. The GMRI table for the year 2014 is derived from Global Trade
178 Analysis Project (GTAP) 10 database (Andrew and Peters, 2013), after comprehensive
179 comparisons between various databases regarding the geographic coverage and sectoral
180 resolution. On one hand, GTAP 10 disaggregates 141 regions, allowing for detailed
181 analysis for a wide range of individual countries (A. Aguiar, 2016), while EXIOBASE
182 and World Input-Output Database (WIOD) only cover less than 45 countries with others
183 merged to composite regions (Dietzenbacher et al., 2013; Stadler et al., 2018). On the

184 other hand, oil and gas sectors are separated from an aggregated mining sector as two
185 specific sectors in GTAP, which is different from Eora, a database also with a high
186 country resolution (Lenzen et al., 2013b). The oil and gas sector methane emission
187 inventory derived from EDGAR are directly allocated to oil and gas sector in GTAP,
188 respectively. However, the EDGAR doesn't distinguish methane emissions from
189 venting and flaring between oil and gas sector. Thus, we allocate the methane emissions
190 from venting and flaring to oil and gas sector separately according to a previous study
191 (Höglund-Isaksson, 2017). Detailed information for regions and sectors is presented in
192 Appendix Table 1 and 2, and the mapping between EDGAR and GTAP sectors is
193 summarized in Appendix Table 3. Consequently, the oil and gas methane emission
194 matrix E^r in equation (3) and (4) is thus constructed.

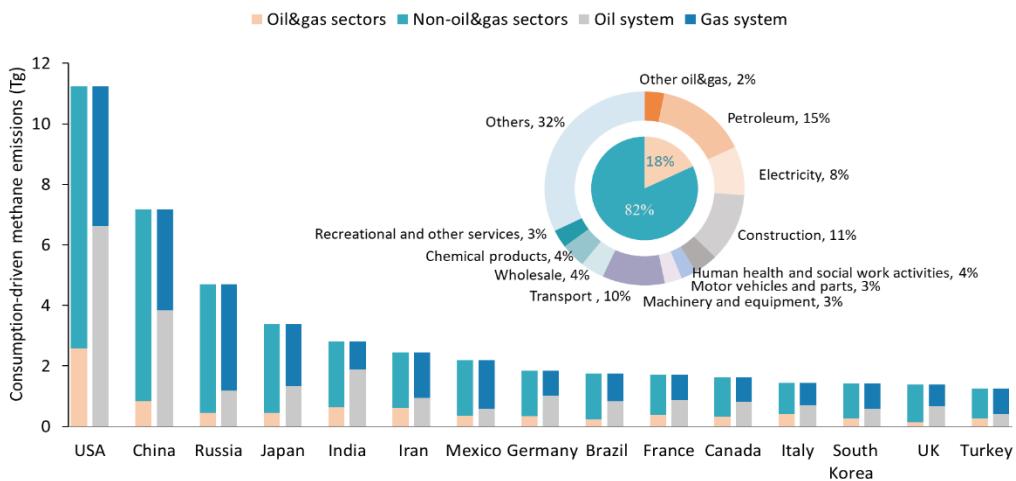
195 **2.3 Uncertainty analysis**

196 The overall uncertainties of the results stem from two sources, namely, the national
197 oil and gas methane emission inventory and GMRIO table. EDGAR database provides
198 uncertainties reported within twice the standard deviation of the mean value for major
199 economies, such as China $\pm 57\%$, USA $\pm 32\%$ and EU $\pm 32\text{--}57\%$ (Janssens-Maenhout
200 et al., 2019). Regarding the GMRIO table, spatial resolution (Su and Ang, 2010), sector
201 aggregation (Zhang et al., 2018) and price variability (Wiedmann et al., 2015) all have
202 certain impacts on the uncertainties. Many studies have validated that the GMRIO data
203 contributes around $\pm 2\text{--}20\%$ to the consumption-based impacts evaluation at national
204 level (Hertwich and Peters, 2009; Moran and Wood, 2014; Rodrigues et al., 2018).

205 This study further adopts a stochastic modelling to estimate the overall
206 uncertainties quantitatively (Haoran Zhang et al., 2019; Lenzen et al., 2018; Lenzen et
207 al., 2010). The error of each raw data point is propagated by introducing the standard
208 deviation (SD) based on Monte Carlo simulation. The approach takes the assumption
209 that observation of multi-regional input-output entries follow the lognormal distribution
210 (Haoran Zhang et al., 2019; Lenzen et al., 2010). The simulation is conducted for 10,000
211 iterations to obtain the overall uncertainties of national demand-driven oil and gas
212 methane emissions. More technical details and simulation codes could be found in our
213 previous study (Long et al., 2022; Wei et al., 2021; Wei et al., 2020). The relative
214 standard deviation (RSD) of methane emissions inventory and GTAP MRIO table are
215 derived from (Janssens-Maenhout et al., 2019) and (Hertwich and Peters, 2009),
216 respectively (see Appendix Table A4).

217 **3. Results**

218 **3.1 Global demand driving oil and gas methane emissions**


219 In 2014, the world total methane emissions from oil and gas production amount to
220 71.3 Tg (trillion gram), of which more than half (38.5 Tg) are sourced from the gas
221 production and the rest (32.8 Tg) from oil production. Strikingly, from the
222 consumption-based perspective, only 18% of methane emissions are driven by demand
223 for oil and gas products (mainly petroleum), while the remainder are primarily induced
224 by other manufacturing and tertiary sectors to provide finished products and services
225 for final consumers (see Fig. 1). Specifically, Construction accounts for the largest share

226 of non-oil & gas-caused methane emissions (11%), followed by Transport (10%),
227 Electricity (8%), Human health and social activities (4%), Whole sale (4%), and
228 Chemical products (4%). When looking at methane emissions from global gas system
229 alone, even higher proportion (87%) are associated with demand from non-oil & gas
230 sectors.

231 At the national scale, consumption-based methane emissions are dominated by a
232 handful of developed countries, such as USA, Japan and many EU members, as well as
233 large developing countries, such as China, Russia and India (as shown in Fig. 1). Final
234 demand of USA drives 11.2 Tg of oil and gas methane emissions, approximately to the
235 sum of emissions by China (7.2 Tg) and Russia (4.7 Tg), who are the second and third
236 largest final consumers of emission-inducing products. USA alone drives 16% of global
237 total emissions, and the six largest consumers altogether almost contribute 50% of the
238 total. Among the leading 15 consumer countries, non-oil & gas sectors remain the major
239 driving force, accounting for 72%~90% of the consumption-based emissions. Moreover,
240 source structures of consumption-based methane emissions vary across countries. For
241 India and USA, around 60% of the country's consumption-based emissions are sourced
242 from global oil system, while the proportion is generally lower in Russia, Japan and
243 Mexico. Meanwhile, the simulated uncertainty range of the national consumption-based
244 oil and gas methane emissions are approximately [-11.3%, +12.9%], [-12.7%, +14.4%],
245 [-31.0%, +44.3%], [-10.5%, +12.3%] and [-11.7%, +14.7%] at the 95% confidence
246 intervals for USA, China, Russia, Japan and India, respectively. (Uncertainties for other

247 regions are presented in Appendix Table A5).

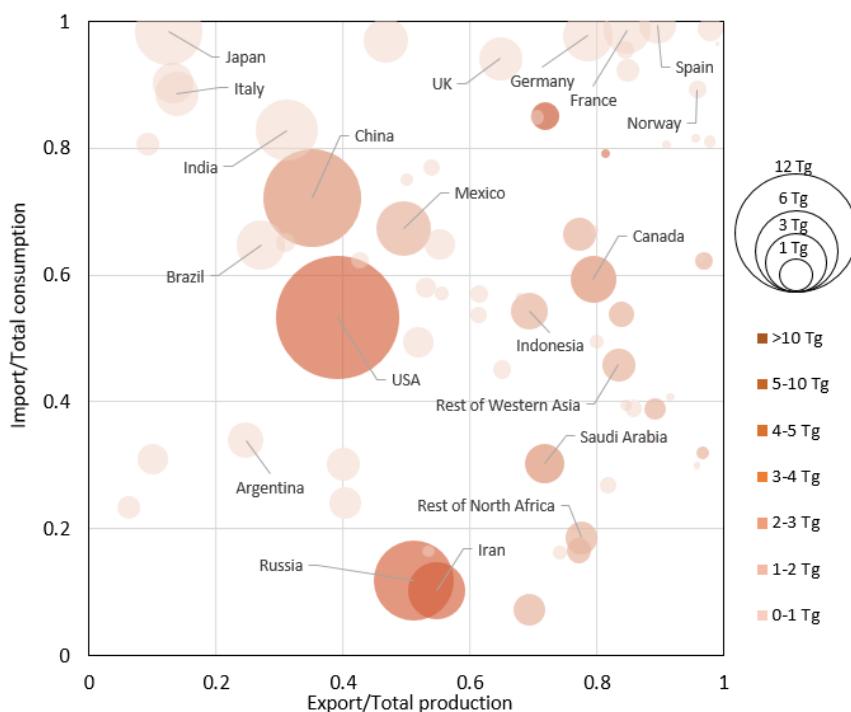
248

249 Fig.1 Demand-driven methane emissions by sector and source for the world economy and major
250 final consumers (The left and right bar show national demand-driven methane emissions by two
251 broadly classified sectors, i.e. oil & gas sectors and non-oil-&-gas sectors, and by two sources, i.e.
252 oil and gas production, respectively. The pie chart shows global demand-driven methane emissions
253 by major sectors. Detailed information of GTAP regions and sectors are provide in Appendix Table
254 A1 and A2.)

255 From the perspective of embodied emission intensity (as shown in Fig. 2), different
256 oil and gas closely-connected sectors in different regions have varied embodied
257 intensities. In general, Oil, Gas and Petroleum sectors have larger embodied emission
258 intensities. Notably, those oil and gas-based sectors like Chemical products, Rubber and
259 plastic products and Transport, though they don't emit methane emissions directly.
260 However, the production of these oil and gas-based products would require upstream
261 oil and gas inputs and therefore result in methane emissions.

Unit: t/thousand USD	Oil	Gas	Petroleum	Chemical products	Rubber and plastic products	Electricity	Transport nec	Water transport	Air transport
China	10.3	970.8	10.1	2.7	1.6	2.0	2.0	3.5	3.5
Japan	17.5	2852.9	6.9	3.3	1.5	7.8	1.5	13.0	2.2
India	8.8	136.4	12.6	7.5	4.7	2.0	3.7	8.9	2.5
Canada	25.2	22.5	17.5	5.6	2.1	5.8	6.4	10.6	7.0
USA	13.5	122.6	13.5	2.9	1.2	3.4	4.7	2.1	5.6
Mexico	12.6	120.6	18.6	8.4	5.4	37.0	4.3	2.8	5.3
Brazil	6.4	61.9	9.1	2.8	1.3	6.2	3.2	2.9	3.3
Germany	6.1	305.7	9.0	2.0	0.9	1.4	1.1	33.1	4.3
Italy	4.2	706.4	14.6	2.6	1.2	3.9	2.3	5.6	5.6
UK	2.1	82.0	7.1	1.5	0.7	2.8	1.4	3.1	2.5
Norway	4.0	11.4	4.9	1.8	0.8	0.2	1.0	3.8	2.2
Russia	13.6	61.4	13.5	12.0	17.7	18.3	6.5	3.5	4.9
Iran	25.1	1136.2	47.0	29.7	14.3	28.1	22.1	71.8	17.6
Saudi Arabia	5.4	40.3	8.7	5.8	3.6	13.7	8.5	6.1	7.2
Nigeria	30.4	37.9	25.4	3.0	2.5	5.7	3.6	4.8	5.0
Turkey	5.3	3383.8	16.7	5.2	2.7	12.7	2.9	2.7	4.7
Mexico	12.6	120.6	18.6	8.4	5.4	37.0	4.3	2.8	5.3

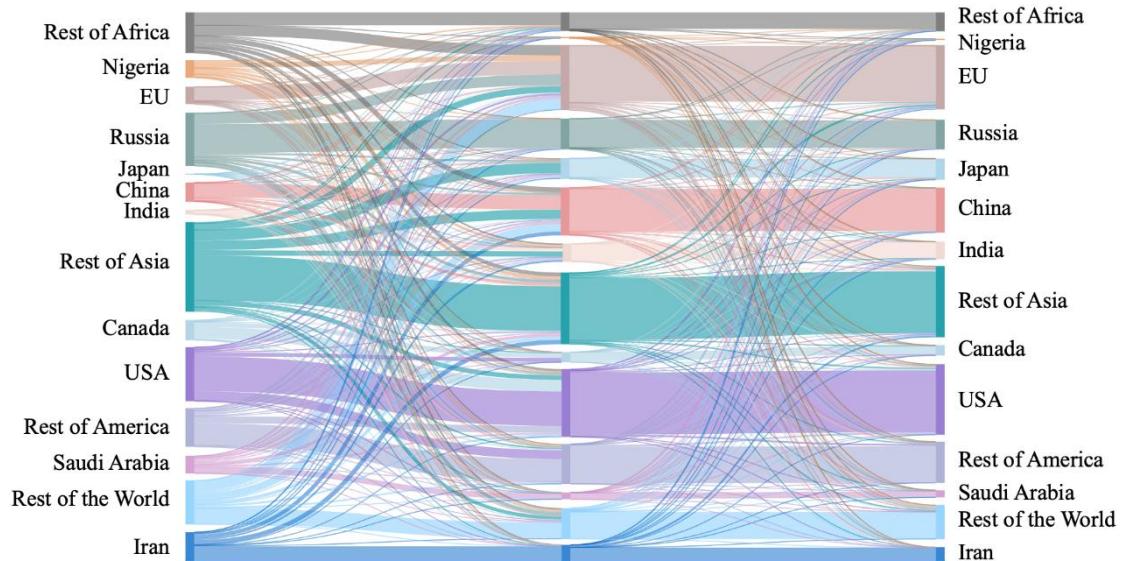
262


263 Fig.2 Embodied methane emission intensities of oil and gas closely-connected sectors in
264 major countries

265

266 3.2 International trade reshaping global oil and gas methane emissions

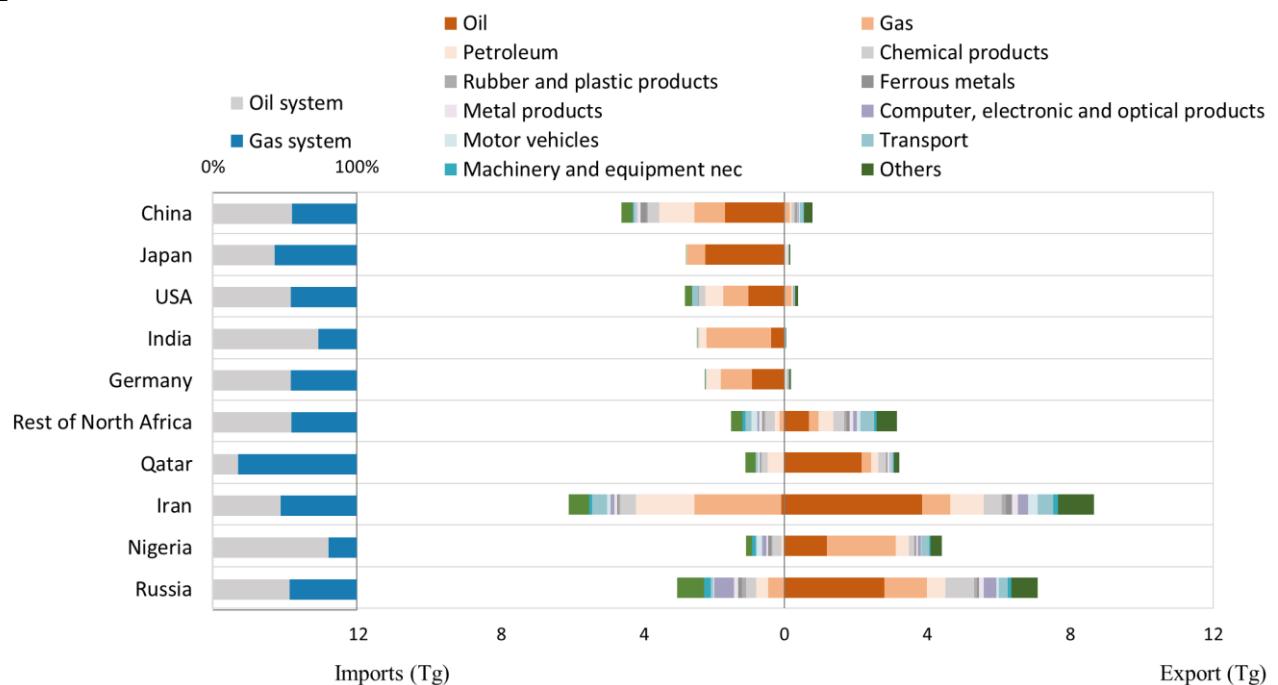
267 Methane emissions displaced via international trade reaches 45.2 Tg, accounting
268 for 63% of global total oil and gas methane emissions. Fig. 3 depicts the share of
269 methane emissions mediated by international trade in terms of how much of a region's
270 local methane emissions are driven by external demand and how much of its
271 consumption-based methane emissions are displaced outside its own border. There is a
272 cluster of countries and regions (henceforth simplified as countries) centered in the
273 bottom right corner of the figure, characterized with high proportion of methane-
274 intensive export production on the production side and low share of emission
275 displacement on the demand side. The cluster consists of countries recording
276 considerable local methane emissions, including Russia, Iran, Saudi Arabia and some
277 other African and Western Asia countries. However, for most of them, local demand


278 only drives few emissions compared to major final consumers. There is also a group of
 279 countries lying close to the upper left corner, including Japan, India and Italy. They
 280 observe small amounts of domestic methane emissions, with most of the emissions
 281 transferred offshore. USA is the only country that drives substantial emissions both at
 282 home and abroad. Meanwhile, two-fifths of its domestic emissions are associated with
 283 exports. Mainland China shows a similar situation but produces less emissions on both
 284 production and demand side. Located near the upper right corner, Norway, Spain and
 285 France witness large share of emissions both displaced into and out of their territories.

286
 287 Fig.3 The share of methane emissions mediated by international trade
 288 (The horizontal axis represents the ratio of emissions caused by export production to total
 289 production-based emissions and the vertical axis denotes the ratio of emissions embodied in imports
 290 to total demand-driven emissions. The size of the circles reflects the volume of total consumption-
 291 driven emissions and the shade of color reflects the amount of production-based emissions. For
 292 regions that does not record local oil and gas methane emissions, export/total production is set to be
 293 0.)
 294

295 In order to uncover how much emissions produced in a certain source country are

296 induced by the demand of a certain sink country, a source-to-sink budget is provided in
297 Fig. 4, which captures the relations between direct methane emitters and final
298 consumers via the connection by final producers (supplying products to final consumers
299 rather than intermediate agents). It can be seen that the driving effect of final demand
300 is mainly transmitted to domestic final producers first before to primary suppliers, and
301 the displacement of methane emissions is basically from EU, USA, China, Japan and
302 India to Russia, Iran, Saudi Arabia and Africa. For Russia, the second largest methane
303 emitter, 20% of its emissions are driven by demand of EU, 54% by itself, 3-4% by USA
304 and China each. Regarding Rest of Asia, there are also around 50% of emissions
305 induced by export production. Japan accounts for the largest share (12%), followed by
306 China, EU, and India. While exported emissions reaches 68% of total share in Rest of
307 Africa, dominated by EU (26%) and China (12%), with USA accounting for 6%. On
308 the demand side, EU is highly reliant on foreign emission-intensive production (78% is
309 displaced) and mainly displaces emissions to Russia, Rest of Africa and Rest of Asia.
310 While for USA, China, Japan and India, primary suppliers are relatively diversified.
311 Furthermore, oil system not only produces more methane emissions than gas system,
312 but contributes more to the emission displacement.



314 Fig.4 Source-to-sink budget of global oil and gas methane emissions
 315 (The left, middle and right columns are direct methane emitters, final producers and final
 316 consumers of emission-inducing products, respectively. The thickness of the flows (using exporters'
 317 colors) denotes the amount of emissions embodied in trade flows.)
 318

319 Fig. 5 shows the sectoral contribution of methane emissions embodied in trade for
 320 top 5 net importers and exporters. Among the 141 regions, 102 regions gain an
 321 embodied oil and gas methane emissions surplus, while the other 39 regions have a
 322 deficit. China, Japan and USA are among the largest net methane emissions importers,
 323 exactly the major consumers, while Russia, Nigeria and Iran are the largest net exporters,
 324 mainly the global oil and gas suppliers. Oil, Gas and Petroleum sectors dominate the
 325 transferred methane emissions for major net exporters (77%~99%). It should be noted
 326 that though Iran exports large amount of oil and gas, it also imports gas from
 327 Turkmenistan to meet its domestic demand (Hafeznia et al., 2017), resulting in the large
 328 oil and gas methane emissions imports for Iran. In contrast, sectoral contributions are
 329 more diversified for the top net importers. Generally, Chemical products, Transport and

330 Computer, electronic and optical products together account for 25%, 20% and 14% for
 331 Germany, China and USA, respectively.

332

333 Fig.5 Methane emissions embodied in imports and exports by sector for top 5 net
 334 importers and exporters

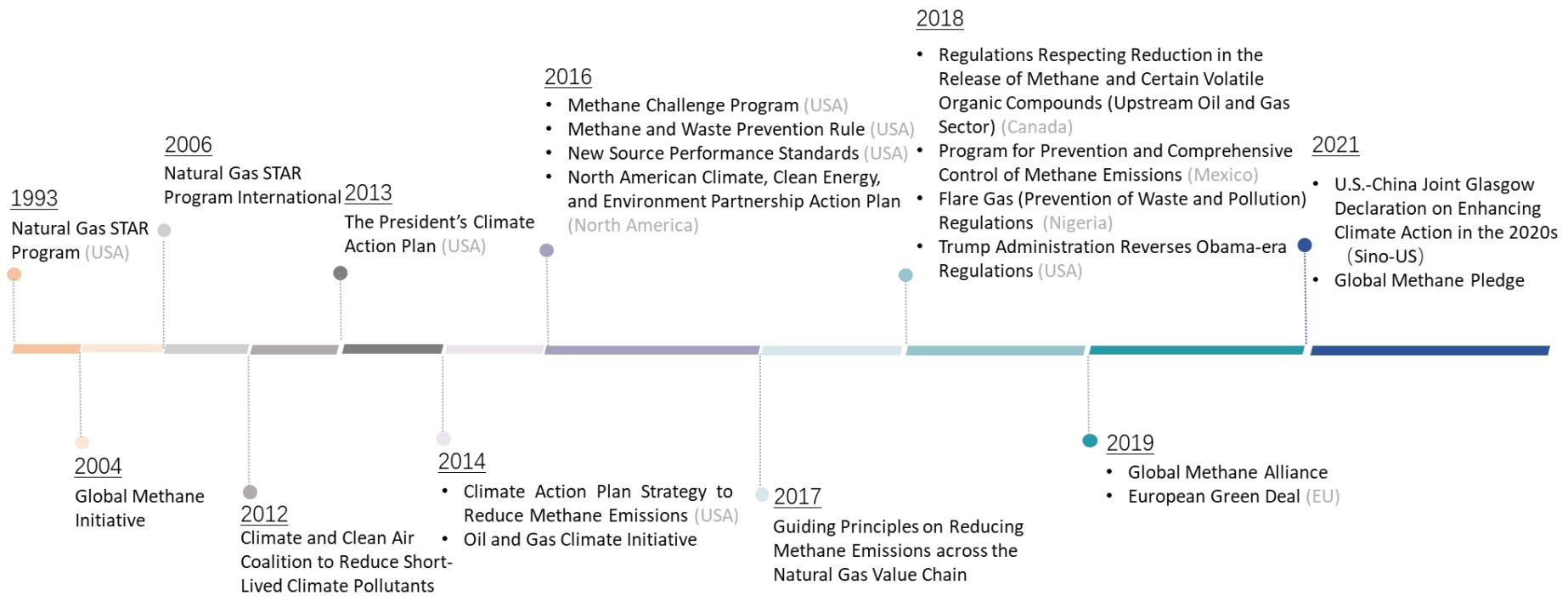


Fig.6 Major oil and gas methane control efforts (Those without country tags are at a transnational scale.)

4. Conclusions and policy implications

Reducing a short-lived climate pollutant like methane can buy us time to act more decisively in mitigating carbon dioxide emissions (Montzka et al., 2011). Recent years have witnessed the incremental policies and regulatory frameworks addressing methane emissions from oil and gas sectors (see summary in Fig. 6), with USA, Canada and Mexico taking a leading role. Meanwhile, the *Global Methane Alliance* has also urged its members to achieve an absolute reduction target of at least 45% reduction by 2025 or near-zero methane emissions in oil and gas sectors (CCAC, 2019). The most recent Global Methane Pledge, launched by USA, EU and other over 100 countries, commit to reduce global methane emissions by at least 30% from 2020 levels by 2030. However, our analysis has proved that supply-side measures are sometimes unable to capture the full impacts of a region due to increasing international trade, prompting the need to quantify oil and gas methane emissions induced by a region's final consumption, both from home and abroad. Otherwise, a reduction illusion may occur as some import-dominated consuming regions could achieve the methane mitigation target by outsourcing oil & gas methane emissions to export-oriented producing regions, which undermines the global methane reduction efforts. According to our results, for example, more than three quarters of oil & gas methane emissions embodied in EU's consumption comes from other regions (e.g., Russia, Rest of Africa and Rest of Asia). In the pursuit of de-carbonization of local energy sector, EU has proposed the European Green Deal, striving to be climate neutral in 2050 (EC, 2019), while less emphasis has

been put to address the oil & gas methane emissions generated along EU's upstream supply chains. Consequently, it is needed to set a consumption-based targets (e.g., 40%~45% reduction in EU's consumption-driven oil & gas methane emissions by 2025) through various consumer-oriented policies, such as labelling low-emission products, encouraging more energy efficient vehicles and shift to a bio-based circular economy (IPCC, 2022; Moran et al., 2018). Technology and invest transfer to upstream suppliers is also conducive to the reduction of EU's methane footprint, as they can help to enhance methane leakage detection measures or improve methane recovery (Bjørn et al., 2018; Wood et al., 2017). Such policies are especially crucial when methane emissions are displaced from developed regions to developing regions where regulations are loose and technological and financial support are lacking generally. Moreover, USA, one of the largest oil & gas producer and once a pioneer in methane control in oil & gas sectors, has recently rolled back curbs on oil and gas methane emissions (EPA, 2020). Considering that consumption of USA also drives considerable oil & gas methane emissions, such demand-side measures could well complement the supply-side deregulation in USA.

The significant role of international trade in reshaping global oil & gas methane profile also creates additional opportunities for demand-side intervention. Our results show that more than three-fifths of the global oil & gas methane emissions are embodied in international, primarily exporting from large oil and gas suppliers (e.g., Russia, Nigeria and Iran) to large consuming economies (e.g., Mainland China, Japan

and USA). The comparison of the major findings in this study with previous studies is shown in Appendix Table A6. It should be noted that the proportion of oil and gas methane emissions embodied in international trade is much higher than agricultural methane emissions embodied in rice, meat and milk products trade or methane emissions embodied in all commodity trade. Thus, the displacement of oil and gas methane emissions need more intervention. Meanwhile, the major embodied methane trade players are different when considering different methane sources and trade commodities. For example, Russia is a net exporter in terms of oil and gas methane emissions embodied in international trade, but a net importer in terms of livestock methane emissions embodied in international meat trade.

For import-dominated consumers, they should develop a comprehensive framework to measure, monitor and track the trajectory of methane emissions embodied in their imported goods and services along the global supply chains. Some fiscal instrument could be adopted, such as taxes on methane-intensive imports (Chaves et al., 2020; Fahimnia et al., 2015), but they should be treated with extreme cautions. For example, stimulated by the coal-to-gas switching policy, China imports increasing amount of natural gas, which also generates substantial methane leakages (Gan et al., 2020). Therefore, these regions should integrate methane emissions embodied in imports into their national commitment to methane reduction. For export-oriented producers, their oil and gas companies should improve the measurement, verification and transparency of methane leakage data to enhance green supply chain management,

which could increase green competitiveness in global oil and gas markets (Ahmad et al., 2017; Yang et al., 2013). Moreover, international platforms (e.g., Global Methane Alliance, Global Methane Pledge and et al.) could scale up actions by developing tailored scheme to reduce the international oil and gas methane leakage. Since sectors, institutions and governments are brought together, coordinated efforts are more easily achieved than countries working alone.

Another interesting finding of our study is the critical but often overlooked role of non-oil & gas-sectors. Oil and gas as important energy sources and raw materials are primarily used as intermediate input to industrial production, methane emissions from oil and gas production are therefore transferred across global supply chains firstly as embodiments in a wide range of oil & gas-reliant non-oil & gas semi-processed products and eventually as embodiments in non-oil & gas highly-processed final products. Our results confirm that oil and gas sectors only captures roughly 18% of global total consumption-driven and displaced methane emissions respectively. In this case, it is necessary to trace oil and gas methane from the origin of emissions to the actual final products that are mostly provided by non-oil & gas-sectors. Otherwise, consumption-driven methane emissions will be mistakenly attributed to the intermediate agents rather than the real final consumers, which will lead to the underestimation of emission displacement and the responsibility of real final consumers, in turn misguiding policy makers in formulating consumption-based mitigation strategies. This particularly requires attention when major driving forces behind oil and

gas methane emissions are found to be the demand of many developed economies (e.g., USA, EU and Japan). On one hand, as the largest final consumer, USA has strict methane regulations for oil and gas sectors, demand-side actions could serve as a complement to supply-side supervision and mitigation measures. On the other hand, developed economies usually have mature and complete regulatory systems, advanced technological support as well as sufficient financial resources. Fully realizing the decisive influence of these developed economies on oil and gas methane emissions can promote their participation in transnational methane control initiatives, making reduction practices more feasible and cost-effective. Moreover, revealing the role of non-oil & gas-sectors also provides detailed references for downstream sectors of oil and gas sectors (e.g., Construction, Transport, Electricity, Human health and social activities, Whole sale and Chemical products) to implement industry-scale policies. For example, these sectors should both improve resource-efficiencies in the production and green its upstream supply chains, for example, by shifting from fossil-based raw materials to bio-based raw materials (Yang et al., 2021).

Differentiating specific emission sources is also helpful to control methane emissions. It is reported that oil and gas methane emissions is dominated by emissions from venting of petroleum gas and unintended leakage due to oil production in Russia, China and many countries in central & western Asia and Africa as well as emissions from unintended leakage in gas production in USA and Canada (Höglund-Isaksson, 2017). Under the circumstances, direct emitters and corresponding final consumers

should target on different emission sources. While future changes in energy structure should also be considered. For example, the USA is expected to contribute the largest increase in oil production between 2018 and 2040 (IEA, 2019). Therefore, it should not only focus on methane emissions from gas system but also watch out for potential emissions from oil production. Moreover, it is found that reduced methane emissions from extended associated petroleum gas recovery in recent years is largely offset by the growing methane emissions from unconventional gas expansion in USA and Canada. In the meanwhile, gas production is estimated to grow in the presence of stated policies, with the growth led by unconventional gas (e.g., shale gas) since the shale gas revolution in USA is in full swing (IEA, 2019). The increasing contribution of unconventional gas extraction therefore deserves additional attention in future efforts to reduce methane emissions.

Acknowledgement

This study has been supported by the National Natural Science Foundation of China (Grant no. 52100210), and China Postdoctoral Science Foundation (2021M690663).

References

A. Aguiar, B.N., R. McDougall, 2016. An Overview of the GTAP 9 Data Base. *Journal of Global Economic Analysis* 1, 181-208.

Acquaye, A., Feng, K., Oppon, E., Salhi, S., Ibn-Mohammed, T., Genovese, A., Hubacek, K., 2017. Measuring the environmental sustainability performance of global supply chains: A multi-regional input-output analysis for carbon, sulphur oxide and water footprints. *Journal of Environmental Management* 187, 571-585.

Ahmad, N.K.W., de Brito, M.P., Rezaei, J., Tavasszy, L.A., 2017. An integrative framework for sustainable supply chain management practices in the oil and gas industry. *Journal of Environmental Planning and Management* 60, 577-601.

Allen, D.T., Torres, V.M., Thomas, J., Sullivan, D.W., Harrison, M., Handler, A., Herndon, S.C., Kolb, C.E., Fraser, M.P., Hill, A.D., Lamb, B.K., Miskimins, J., Sawyer, R.F., Seinfeld, J.H., 2013. Measurements of methane emissions at natural gas production sites in the United States. *Proceedings of the National Academy of Sciences* 110, 17768.

Alvarez, R.A., Zavala-Araiza, D., Lyon, D.R., Allen, D.T., Barkley, Z.R., Brandt, A.R., Davis, K.J., Herndon, S.C., Jacob, D.J., Karion, A., Kort, E.A., Lamb, B.K., Lauvaux, T., Maasakkers, J.D., Marchese, A.J., Omara, M., Pacala, S.W., Peischl, J., Robinson, A.L., Shepson, P.B., Sweeney, C., Townsend-Small, A., Wofsy, S.C., Hamburg, S.P., 2018. Assessment of methane emissions from the U.S. oil and gas supply chain. *Science* 361, 186.

Andrew, R.M., Peters, G.P., 2013. A multi-region input-output table based on the global trade analysis project database (GTAP-MRIO). *Economic Systems Research* 25, 99-121.

Avner, S., Mauzerall, D.L., Fiore, A.M., 2013. Increasing global agricultural production by reducing ozone damages via methane emission controls and ozone-resistant cultivar selection. *Global Change Biology* 19, 1285-1299.

Baumert, N., Kander, A., Jiborn, M., Kulionis, V., Nielsen, T., 2019. Global outsourcing of carbon emissions 1995–2009: A reassessment. *Environmental Science & Policy* 92, 228-236.

Bjørn, A., Kalbar, P., Nygaard, S.E., Kabins, S., Jensen, C.L., Birkved, M., Schmidt, J., Hauschild, M.Z., 2018. Pursuing necessary reductions in embedded GHG emissions of developed nations: Will efficiency improvements and changes in consumption get us there? *Global Environmental Change* 52, 314-324.

Brandt, A.R., Heath, G.A., Kort, E.A., Sullivan, F., Pétron, G., Jordaan, S.M., Tans, P., Wilcox, J., Gopstein, A.M., Arent, D., Wofsy, S., Brown, N.J., Bradley, R., Stucky, G.D., Eardley, D., Harriss, R., 2014. Methane Leaks from North American Natural Gas Systems. *Science* 343, 733.

Caro, D., LoPresti, A., Davis, S.J., Bastianoni, S., Caldeira, K., 2014. CH₄ and N₂O emissions embodied in international trade of meat. *Environmental Research Letters* 9, 114005.

Caulton, D.R., Shepson, P.B., Santoro, R.L., Sparks, J.P., Howarth, R.W., Ingraffea,

A.R., Cambaliza, M.O., Sweeney, C., Karion, A., Davis, K.J., Stirm, B.H., Montzka, S.A., Miller, B.R., 2014. Toward a better understanding and quantification of methane emissions from shale gas development. *Proc Natl Acad Sci U S A* 111, 6237-6242.

CCAC, 2019. A Global Alliance to Significantly Reduce Methane Emissions in the Oil and Gas Sector by 2030. Climate & Clean Air Coalition.

Chaves, L.S.M., Fry, J., Malik, A., Geschke, A., Sallum, M.A.M., Lenzen, M., 2020. Global consumption and international trade in deforestation-associated commodities could influence malaria risk. *Nat Commun* 11, 1258.

Chen, B., Han, M.Y., Peng, K., Zhou, S.L., Shao, L., Wu, X.F., Wei, W.D., Liu, S.Y., Li, Z., Li, J.S., Chen, G.Q., 2018a. Global land-water nexus: Agricultural land and freshwater use embodied in worldwide supply chains. *Science of the Total Environment* 613-614, 931-943.

Chen, B., Li, J.S., Wu, X.F., Han, M.Y., Zeng, L., Li, Z., Chen, G.Q., 2018b. Global energy flows embodied in international trade: A combination of environmentally extended input-output analysis and complex network analysis. *Applied Energy* 210, 98-107.

Chen, B., Wang, X.B., Li, Y.L., Yang, Q., Li, J.S., 2019. Energy-induced mercury emissions in global supply chain networks: Structural characteristics and policy implications. *Science of The Total Environment* 670, 87-97.

Crippa, M., Solazzo, E., Huang, G., Guzzardi, D., Koffi, E., Muntean, M., Schieberle, C., Friedrich, R., Janssens-Maenhout, G., 2020. High resolution temporal profiles in the Emissions Database for Global Atmospheric Research. *Scientific Data* 7, 121.

Davis, S.J., Caldeira, K., 2010. Consumption-based accounting of CO₂ emissions. *Proceedings of the National Academy of Sciences* 107, 5687-5692.

Dedikov, J.V., Akopova, G.S., Gladkaja, N.G., Piotrovskij, A.S., Markelov, V.A., Salichov, S.S., Kaesler, H., Ramm, A., Müller von Blumencron, A., Lelieveld, J., 1999. Estimating methane releases from natural gas production and transmission in Russia. *Atmospheric Environment* 33, 3291-3299.

Dietzenbacher, E., Los, B., Stehrer, R., Timmer, M., De Vries, G., 2013. The construction of world input-output tables in the WIOD project. *Economic Systems Research* 25, 71-98.

EC, 2019. The European Green Deal sets out how to make Europe the first climate-neutral continent by 2050, boosting the economy, improving people's health and quality of life, caring for nature, and leaving no one behind. The European Commission.

EPA, 2020. Oil and Natural Gas Sector: Emission Standards for New, Reconstructed, and Modified Sources Reconsideration/Reviews, in: Agency, U.S.E.P. (Ed.). EPA, New York.

Fahimnia, B., Sarkis, J., Choudhary, A., Eshragh, A., 2015. Tactical supply chain planning under a carbon tax policy scheme: A case study. *International Journal of Production Economics* 164, 206-215.

Fernández-Amador, O., Francois, J.F., Oberdabernig, D.A., Tomberger, P., 2020.

The methane footprint of nations: Stylized facts from a global panel dataset. *Ecological Economics* 170, 106528.

Fletcher, S.E.M., Schaefer, H., 2019. Rising methane: A new climate challenge. *Science* 364, 932.

Gan, Y., El-Houjeiri, H.M., Badahdah, A., Lu, Z., Cai, H., Przesmitzki, S., Wang, M., 2020. Carbon footprint of global natural gas supplies to China. *Nat Commun* 11, 824.

Hafeznia, H., Pourfayaz, F., Maleki, A., 2017. An assessment of Iran's natural gas potential for transition toward low-carbon economy. *Renewable and Sustainable Energy Reviews* 79, 71-81.

Haoran Zhang, Kehan He, Xuejun Wang, Hertwich, E.G., 2019. Tracing the uncertain Chinese mercury footprint within the global supply chain using a stochastic, nested input-output model. *Environmental Science & Technology*.

Harriss, R., Alvarez, R.A., Lyon, D., Zavala-Araiza, D., Nelson, D., Hamburg, S.P., 2015. Using Multi-Scale Measurements to Improve Methane Emission Estimates from Oil and Gas Operations in the Barnett Shale Region, Texas. *Environmental Science & Technology* 49, 7524-7526.

Hausmann, P., Sussmann, R., Smale, D., 2016. Contribution of oil and natural gas production to renewed increase in atmospheric methane (2007–2014): top–down estimate from ethane and methane column observations. *Atmos. Chem. Phys.* 16, 3227-3244.

Hertwich, E.G., Peters, G.P., 2009. Carbon footprint of nations: A global, trade-linked analysis. *Environmental science & technology* 43, 6414-6420.

Hmiel, B., Petrenko, V.V., Dyonisius, M.N., Buiertz, C., Smith, A.M., Place, P.F., Harth, C., Beaudette, R., Hua, Q., Yang, B., Vimont, I., Michel, S.E., Severinghaus, J.P., Etheridge, D., Bromley, T., Schmitt, J., Faïn, X., Weiss, R.F., Dlugokencky, E., 2020. Preindustrial $^{14}\text{CH}_4$ indicates greater anthropogenic fossil CH_4 emissions. *Nature* 578, 409-412.

Höglund-Isaksson, L., 2017. Bottom-up simulations of methane and ethane emissions from global oil and gas systems 1980 to 2012. *Environmental Research Letters* 12.

IEA, 2017. *World Energy Outlook 2017*. International Energy Agency, Paris.

IEA, 2019. *World Energy Outlook 2019*. International Energy Agency, Paris.

IPCC, 2022. *Climate Change 2022-Mitigation of Climate Change: Summary for Policymakers*. Intergovernmental Panel on Climate Change.

Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener, F., Bergamaschi, P., Pagliari, V., Olivier, J.G.J., Peters, J.A.H.W., van Aardenne, J.A., Monni, S., Doering, U., Petrescu, A.M.R., Solazzo, E., Oreggioni, G.D., 2019. EDGAR v4.3.2 Global Atlas of the three major greenhouse gas emissions for the period 1970–2012. *Earth System Science Data* 11, 959-1002.

Kan, S., Chen, B., Chen, G., 2019a. Worldwide energy use across global supply chains: Decoupled from economic growth? *Applied Energy* 250, 1235-1245.

Kan, S., Chen, B., Han, M., Hayat, T., Alsulami, H., Chen, G., 2021. China's forest land use change in the globalized world economy: Foreign trade and unequal household consumption. *Land Use Policy* 103.

Kan, S., Chen, B., Meng, J., Chen, G., 2020. An extended overview of natural gas use embodied in world economy and supply chains: Policy implications from a time series analysis. *Energy Policy* 137, 111068.

Kan, S., Chen, B., Persson, U.M., Chen, G., Wang, Y., Li, J., Meng, J., Zheng, H., Yang, L., Li, R., Du, M., Kastner, T., 2023. Risk of intact forest landscape loss goes beyond global agricultural supply chains. *One Earth* 6, 55-65.

Kan, S.Y., Chen, B., Wu, X.F., Chen, Z.M., Chen, G.Q., 2019b. Natural gas overview for world economy: From primary supply to final demand via global supply chains. *Energy Policy* 124, 215-225.

Kanemoto, K., Moran, D., Hertwich, E.G., 2016. Mapping the Carbon Footprint of Nations. *Environmental Science & Technology* 50, 10512-10517.

Karion, A., Sweeney, C., Kort, E.A., Shepson, P.B., Brewer, A., Cambaliza, M., Conley, S.A., Davis, K., Deng, A., Hardesty, M., Herndon, S.C., Lauvaux, T., Lavoie, T., Lyon, D., Newberger, T., Pétron, G., Rella, C., Smith, M., Wolter, S., Yacovitch, T.I., Tans, P., 2015. Aircraft-Based Estimate of Total Methane Emissions from the Barnett Shale Region. *Environmental Science & Technology* 49, 8124-8131.

Karion, A., Sweeney, C., Pétron, G., Frost, G., Michael Hardesty, R., Kofler, J., Miller, B.R., Newberger, T., Wolter, S., Banta, R., Brewer, A., Dlugokencky, E., Lang, P., Montzka, S.A., Schnell, R., Tans, P., Trainer, M., Zamora, R., Conley, S., 2013. Methane emissions estimate from airborne measurements over a western United States natural gas field. *Geophysical Research Letters* 40, 4393-4397.

Konschnik, K., Jordaan, S.M., 2018. Reducing fugitive methane emissions from the North American oil and gas sector: a proposed science-policy framework. *Climate Policy* 18, 1133-1151.

Lenzen, M., Moran, D., Bhaduri, A., Kanemoto, K., Bekchanov, M., Geschke, A., Foran, B., 2013a. International trade of scarce water. *Ecological Economics* 94, 78-85.

Lenzen, M., Moran, D., Kanemoto, K., Geschke, A., 2013b. Building Eora: a global multi-region input-output database at high country and sector resolution. *Economic Systems Research* 25, 20-49.

Lenzen, M., Sun, Y.-Y., Faturay, F., Ting, Y.-P., Geschke, A., Malik, A., 2018. The carbon footprint of global tourism. *Nature Climate Change*.

Lenzen, M., Wood, R., Wiedmann, T., 2010. Uncertainty analysis for multi-region input-output models—a case study of the UK's carbon footprint. *Economic Systems Research* 22, 43-63.

Leontief, W., 1970. Environmental Repercussions and the Economic Structure: An Input-Output Approach. *The Review of Economics and Statistics* 52, 262-271.

Li, J., Chen, B., Chen, G., Wei, W., Wang, X., Ge, J., Dong, K., Xia, H., Xia, X., 2017. Tracking mercury emission flows in the global supply chains: A multi-regional input-output analysis. *Journal of Cleaner Production* 140, 1470-1492.

Li, Y.L., Chen, B., Chen, G.Q., 2020. Carbon network embodied in international trade: Global structural evolution and its policy implications. *Energy Policy* 139, 111316.

Liu, Y., Chen, B., Chen, G., Li, Z., Meng, J., Tasawar, H., 2020. Globalized energy-water nexus through international trade: The dominant role of non-energy commodities for worldwide energy-related water use. *Science of The Total Environment* 736, 139582.

Long, X., Chen, B., Wang, P., Zhang, M., Yu, H., Wang, S., Zhang, H., Wang, Y., 2022. Exports Widen the Regional Inequality of Health Burdens and Economic Benefits in India. *Environ Sci Technol* 56, 14099-14108.

Lutter, S., Pfister, S., Giljum, S., Wieland, H., Mutel, C., 2016. Spatially explicit assessment of water embodied in European trade: A product-level multi-regional input-output analysis. *Global Environmental Change* 38, 171-182.

McKain, K., Down, A., Raciti, S.M., Budney, J., Hutyra, L.R., Floerchinger, C., Herndon, S.C., Nehrkorn, T., Zahniser, M.S., Jackson, R.B., Phillips, N., Wofsy, S.C., 2015. Methane emissions from natural gas infrastructure and use in the urban region of Boston, Massachusetts. *Proceedings of the National Academy of Sciences* 112, 1941.

Meng, J., Liu, J., Xu, Y., Guan, D., Liu, Z., Huang, Y., Tao, S., 2016. Globalization and pollution: tele-connecting local primary PM_{2.5} emissions to global consumption, *Proc. R. Soc. A. The Royal Society*, p. 20160380.

Montzka, S.A., Dlugokencky, E.J., Butler, J.H., 2011. Non-CO₂ greenhouse gases and climate change. *Nature* 476, 43-50.

Moran, D., Wood, R., 2014. Convergence between the Eora, WIOD, EXIOBASE, and OpenEU's consumption-based carbon accounts. *Economic Systems Research* 26, 245-261.

Moran, D., Wood, R., Hertwich, E., Mattson, K., Rodriguez, J.F.D., Schanes, K., Barrett, J., 2018. Quantifying the potential for consumer-oriented policy to reduce European and foreign carbon emissions. *Climate Policy*, 1-11.

Nara, H., Tanimoto, H., Tohjima, Y., Mukai, H., Nojiri, Y., Machida, T., 2014. Emissions of methane from offshore oil and gas platforms in Southeast Asia. *Scientific Reports* 4, 6503.

Nature, 2005. Low methane leakage from gas pipelines.

Olivier, J.G.J., Peters, J.A.H.W., 2020. Trends in global CO₂ and total greenhouse gas emissions: 2019 Report. PBL Netherlands Environmental Assessment Agency, The Hague, Netherlands.

Oswald, Y., Owen, A., Steinberger, J.K., 2020. Large inequality in international and intranational energy footprints between income groups and across consumption categories. *Nature Energy* 5, 231-239.

Ottelin, J., Ala-Mantila, S., Heinonen, J., Wiedmann, T.O., Clarke, J., Junnila, S., 2019. What can we learn from consumption-based carbon footprints at different spatial scales? Review of policy implications. *Environmental Research Letters*.

Pendrill, F., Gardner, T.A., Meyfroidt, P., Persson, U.M., Adams, J., Azevedo, T., Bastos Lima, M.G., Baumann, M., Curtis, P.G., De Sy, V., Garrett, R., Godar, J.,

Goldman, E.D., Hansen, M.C., Heilmayr, R., Herold, M., Kuemmerle, T., Lathuillière, M.J., Ribeiro, V., Tyukavina, A., Weisse, M.J., West, C., Disentangling the numbers behind agriculture-driven tropical deforestation. *Science* 377, eabm9267.

Plant, G., Kort, E.A., Floerchinger, C., Gvakharia, A., Vimont, I., Sweeney, C., 2019. Large Fugitive Methane Emissions From Urban Centers Along the U.S. East Coast. *Geophysical Research Letters* 46, 8500-8507.

Qin, Y., Edwards, R., Tong, F., Mauzerall, D.L., 2017. Can Switching from Coal to Shale Gas Bring Net Carbon Reductions to China? *Environ Sci Technol* 51, 2554-2562.

Reay, D.S., Smith, P., Christensen, T.R., James, R.H., Clark, H., 2018. Methane and Global Environmental Change. *Annual Review of Environment and Resources* 43, 165-192.

Rodrigues, J.F.D., Moran, D., Wood, R., Behrens, P., 2018. Uncertainty of Consumption-Based Carbon Accounts. *Environ Sci Technol*.

Saunois, M., Bousquet, P., Poulter, B., Peregon, A., Ciais, P., Canadell, J.G., Dlugokencky, E.J., Etiope, G., Bastviken, D., Houweling, S., Janssens-Maenhout, G., Tubiello, F.N., Castaldi, S., Jackson, R.B., Alexe, M., Arora, V.K., Beerling, D.J., Bergamaschi, P., Blake, D.R., Brailsford, G., Brovkin, V., Bruhwiler, L., Crevoisier, C., Crill, P., Covey, K., Curry, C., Frankenberg, C., Gedney, N., Höglund-Isaksson, L., Ishizawa, M., Ito, A., Joos, F., Kim, H.S., Kleinen, T., Krummel, P., Lamarque, J.F., Langenfelds, R., Locatelli, R., Machida, T., Maksyutov, S., McDonald, K.C., Marshall, J., Melton, J.R., Morino, I., Naik, V., O'Doherty, S., Parmentier, F.J.W., Patra, P.K., Peng, C., Peng, S., Peters, G.P., Pison, I., Prigent, C., Prinn, R., Ramonet, M., Riley, W.J., Saito, M., Santini, M., Schroeder, R., Simpson, I.J., Spahni, R., Steele, P., Takizawa, A., Thornton, B.F., Tian, H., Tohjima, Y., Viovy, N., Voulgarakis, A., van Weele, M., van der Werf, G.R., Weiss, R., Wiedinmyer, C., Wilton, D.J., Wiltshire, A., Worthy, D., Wunch, D., Xu, X., Yoshida, Y., Zhang, B., Zhang, Z., Zhu, Q., 2016. The global methane budget 2000–2012. *Earth Syst. Sci. Data* 8, 697-751.

Saunois, M., Stavert, A.R., Poulter, B., Bousquet, P., Canadell, J.G., Jackson, R.B., Raymond, P.A., Dlugokencky, E.J., Houweling, S., Patra, P.K., Ciais, P., Arora, V.K., Bastviken, D., Bergamaschi, P., Blake, D.R., Brailsford, G., Bruhwiler, L., Carlson, K.M., Carroll, M., Castaldi, S., Chandra, N., Crevoisier, C., Crill, P.M., Covey, K., Curry, C.L., Etiope, G., Frankenberg, C., Gedney, N., Hegglin, M.I., Höglund-Isaksson, L., Hugelius, G., Ishizawa, M., Ito, A., Janssens-Maenhout, G., Jensen, K.M., Joos, F., Kleinen, T., Krummel, P.B., Langenfelds, R.L., Laruelle, G.G., Liu, L., Machida, T., Maksyutov, S., McDonald, K.C., McNorton, J., Miller, P.A., Melton, J.R., Morino, I., Müller, J., Murguia-Flores, F., Naik, V., Niwa, Y., Noce, S., O'Doherty, S., Parker, R.J., Peng, C., Peng, S., Peters, G.P., Prigent, C., Prinn, R., Ramonet, M., Regnier, P., Riley, W.J., Rosentreter, J.A., Segers, A., Simpson, I.J., Shi, H., Smith, S.J., Steele, L.P., Thornton, B.F., Tian, H., Tohjima, Y., Tubiello, F.N., Tsuruta, A., Viovy, N., Voulgarakis, A., Weber, T.S., van Weele, M., van der Werf, G.R., Weiss, R.F., Worthy, D., Wunch, D., Yin, Y., Yoshida, Y., Zhang, W., Zhang, Z., Zhao, Y., Zheng, B., Zhu, Q., Zhu, Q.,

Zhuang, Q., 2020. The Global Methane Budget 2000–2017. *Earth Syst. Sci. Data* 12, 1561-1623.

Schneising, O., Burrows, J.P., Dickerson, R.R., Buchwitz, M., Reuter, M., Bovensmann, H., 2014. Remote sensing of fugitive methane emissions from oil and gas production in North American tight geologic formations. *Earth's Future* 2, 548-558.

Schwietzke, S., Sherwood, O.A., Bruhwiler, L.M., Miller, J.B., Etiope, G., Dlugokencky, E.J., Michel, S.E., Arling, V.A., Vaughn, B.H., White, J.W., Tans, P.P., 2016. Upward revision of global fossil fuel methane emissions based on isotope database. *Nature* 538, 88-91.

Sheng, J.-X., Jacob, D.J., Maasakkers, J.D., Sulprizio, M.P., Zavala-Araiza, D., Hamburg, S.P., 2017. A high-resolution ($0.1^\circ \times 0.1^\circ$) inventory of methane emissions from Canadian and Mexican oil and gas systems. *Atmospheric Environment* 158, 211-215.

Stadler, K., Wood, R., Bulavskaya, T., Södersten, C.-J., Simas, M., Schmidt, S., Usabiaga, A., Acosta-Fernández, J., Kuenen, J., Bruckner, M., Giljum, S., Lutter, S., Merciai, S., Schmidt, J.H., Theurl, M.C., Plutzar, C., Kastner, T., Eisenmenger, N., Erb, K.-H., de Koning, A., Tukker, A., 2018. EXIOBASE 3: Developing a Time Series of Detailed Environmentally Extended Multi-Regional Input-Output Tables. *Journal of Industrial Ecology* 22, 502-515.

Su, B., Ang, B., 2010. Input–output analysis of CO₂ emissions embodied in trade: the effects of spatial aggregation. *Ecological Economics* 70, 10-18.

Subak, S., 1995. Methane embodied in the international trade of commodities: Implications for global emissions. *Global Environmental Change* 5, 433-446.

Tanaka, K., Cavalett, O., Collins, W.J., Cherubini, F., 2019. Asserting the climate benefits of the coal-to-gas shift across temporal and spatial scales. *Nature Climate Change* 9, 389-396.

Wang, Y., Chen, B., Guan, C., Zhang, B., 2019. Evolution of methane emissions in global supply chains during 2000-2012. *Resources, Conservation and Recycling* 150, 104414.

Wei, W., Li, J., Chen, B., Wang, M., Zhang, P., Guan, D., Meng, J., Qian, H., Cheng, Y., Kang, C., Feng, K., Yang, Q., Zhang, N., Liang, X., Xue, J., 2021. Embodied greenhouse gas emissions from building China's large-scale power transmission infrastructure. *Nature Sustainability* 4, 739-747.

Wei, W., Wang, M., Zhang, P., Chen, B., Guan, D., Shao, S., Li, J., 2020. A 2015 inventory of embodied carbon emissions for Chinese power transmission infrastructure projects. *Scientific Data* 7, 318.

West, J.J., Fiore, A.M., Horowitz, L.W., Mauzerall, D.L., 2006. Global health benefits of mitigating ozone pollution with methane emission controls. *Proceedings of the National Academy of Sciences of the United States of America* 103, 3988.

Wiedmann, T., 2009. A review of recent multi-region input–output models used for consumption-based emission and resource accounting. *Ecological Economics* 69, 211-222.

Wiedmann, T., Lenzen, M., 2018. Environmental and social footprints of international trade. *Nature Geoscience* 11, 314-321.

Wiedmann, T.O., Schandl, H., Lenzen, M., Moran, D., Suh, S., West, J., Kanemoto, K., 2015. The material footprint of nations. *Proceedings of the National Academy of Sciences* 112, 6271-6276.

Wigley, T.M.L., 2011. Coal to gas: the influence of methane leakage. *Climatic Change* 108, 601.

Wood, R., Moran, D., Stadler, K., Ivanova, D., Steen-Olsen, K., Tisserant, A., Hertwich, E.G., 2017. Prioritizing Consumption-Based Carbon Policy Based on the Evaluation of Mitigation Potential Using Input-Output Methods. *Journal of Industrial Ecology*.

Wu, X.F., Chen, G.Q., 2019. Global overview of crude oil use: From source to sink through inter-regional trade. *Energy Policy* 128, 476-486.

Wu, Y., Mao, X., Lu, J., Wang, M., Zhang, Q., Song, P., Liu, Z., Gong, W., 2022. Dairy Trade Helps to Alleviate Global Carbon Emission Pressure. *Environ Sci Technol* 56, 12656-12666.

Yan, C., Han, M., Liu, Y., Zhang, B., 2021. Household CH₄ and N₂O Footprints of Major Economies. *Earth's Future* 9.

Yang, C.-S., Lu, C.-S., Haider, J.J., Marlow, P.B., 2013. The effect of green supply chain management on green performance and firm competitiveness in the context of container shipping in Taiwan. *Transportation Research Part E: Logistics and Transportation Review* 55, 55-73.

Yang, L., Wang, X.-C., Dai, M., Chen, B., Qiao, Y., Deng, H., Zhang, D., Zhang, Y., Villas Bôas de Almeida, C.M., Chiu, A.S.F., Klemeš, J.J., Wang, Y., 2021. Shifting from fossil-based economy to bio-based economy: Status quo, challenges, and prospects. *Energy* 228, 120533.

Zavala-Araiza, D., Lyon, D.R., Alvarez, R.A., Davis, K.J., Harriss, R., Herndon, S.C., Karion, A., Kort, E.A., Lamb, B.K., Lan, X., Marchese, A.J., Pacala, S.W., Robinson, A.L., Shepson, P.B., Sweeney, C., Talbot, R., Townsend-Small, A., Yacovitch, T.I., Zimmerle, D.J., Hamburg, S.P., 2015. Reconciling divergent estimates of oil and gas methane emissions. *Proc Natl Acad Sci U S A* 112, 15597-15602.

Zhang, D., Caron, J., Winchester, N., 2018. Sectoral Aggregation Error in the Accounting of Energy and Emissions Embodied in Trade and Consumption. *Journal of Industrial Ecology*.

Zhang, Y., Fang, S., Chen, J., Lin, Y., Chen, Y., Liang, R., Jiang, K., Parker, R.J., Boesch, H., Steinbacher, M., Sheng, J.X., Lu, X., Song, S., Peng, S., 2022. Observed changes in China's methane emissions linked to policy drivers. *Proc Natl Acad Sci U S A* 119, e2202742119.

Zimmerle, D.J., Williams, L.L., Vaughn, T.L., Quinn, C., Subramanian, R., Duggan, G.P., Willson, B., Opsomer, J.D., Marchese, A.J., Martinez, D.M., Robinson, A.L., 2015. Methane Emissions from the Natural Gas Transmission and Storage System in the United States. *Environmental Science & Technology* 49, 9374-9383.

