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Abstract 

Background: Instrumental variables (IVs) can be used to provide evidence as to whether a treatment 

𝑋 has a causal effect on an outcome 𝑌. Even if the instrument 𝑍 satisfies the three core IV 

assumptions of relevance, independence and the exclusion restriction, further assumptions are 

required to identify the average causal effect (ACE) of 𝑋 on 𝑌. Sufficient assumptions for this include: 

homogeneity in the causal effect of 𝑋 on 𝑌; homogeneity in the association of 𝑍 with 𝑋; and no 

effect modification (NEM). 

Methods: We describe the NO Simultaneous Heterogeneity (NOSH) assumption, which requires the 

heterogeneity in the 𝑋-𝑌 causal effect to be mean independent of (i.e., uncorrelated with) both 𝑍 

and heterogeneity in the 𝑍-𝑋 association. This happens, for example, if there are no common 

modifiers of the 𝑋-𝑌 effect and the 𝑍-𝑋 association, and the 𝑋-𝑌 effect is additive linear. We 

illustrate NOSH using simulations and by re-examining selected published studies. 

Results: When NOSH holds, the Wald estimand equals the ACE even if both homogeneity 

assumptions and NEM (which we demonstrate to be special cases of – and therefore stronger than – 

NOSH) are violated.  

Conclusions: NOSH is sufficient for identifying the ACE using IVs. Since NOSH is weaker than existing 

assumptions for ACE identification, doing so may be more plausible than previously anticipated. 

 

Keywords: Causal inference; Effect modification; Homogeneity; Identification; Instrumental 

variables. 
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1. Introduction 

Instrumental variable (IV) methods can be applied to strengthen causal inference using non-

experimental data when the assumption of no unmeasured confounding is implausible.1–3 A valid IV 

satisfies the three core assumptions (defined formally below) of relevance, independence and the 

exclusion restriction.4,5 These assumptions allow testing the sharp causal null hypothesis – i.e., 

whether the treatment has a causal effect on the outcome for at least one member of the 

population. However, point-estimating well-defined treatment effect parameters requires further 

assumptions, sometimes referred to as fourth point identifying assumptions (IV4).6 In this paper our 

target estimand is the average causal effect (ACE) on the additive scale (defined precisely in section 

2.1). Different IV4 assumptions sufficient for ACE identification have been proposed, including: 

treatment effect homogeneity,4,7 instrument effect homogeneity,8,9 no effect modification (NEM)4,9, 

and no unmeasured common effect modifier (NUCEM)10 (defined precisely in section 2.3). Given our 

focus on the ACE, IV4 assumptions that identify other estimands (e.g., monotononicity, which 

identifies the local average causal effect (LACE)11) will not be discussed in detail. 

Previous papers have described the IV estimand when treatment effects vary. Heckman (1997) 

described, for a binary treatment, that if individual treatment effects do not affect whether someone 

is treated, the IV estimand equals the ACE.7 Harris and Remler (1998) noted this, stating that the ACE 

is identified if treatment effect heterogeneity is unrelated to treatment assignment.12 Brookhart and 

Schneeweiss (2007) described how, if the individual levels effects of a binary treatment are the same 

for different instrument values, the IV estimator identifies the ACE in the population.8 Wang and 

Tchetgen Tchetgen (2018) describe how, for a binary instrument and a binary treatment, the ACE is 

identified if no unmeasured confounders are additive modifiers of the association between the 

instrument and the treatment or of the effect of the treatment on the outcome.9 Cui and Tchetgen 

Tchetgen (2021), again focusing on binary instrument and treatment, proposed a weaker version of 

this condition which only requires that there is no common additive modifier of the instrument-

treatment association and the treatment-outcome effect.10 Syrgkanis et al. (2019) state that the ACE 



3 
 

 

is not generally identified if individual-level instrument-treatment and treatment-outcome effects 

are dependent.13 

Numerous reviews and methodological papers have described several identifying assumptions.4,14–17 

Here, we introduce the NO Simultaneous Heterogeneity (NOSH) assumption. We show that if NOSH 

holds, the IV estimand equals the ACE. We also show that other IV4 assumptions are special cases of 

NOSH. Finally, we use simulations to corroborate the theory. 

2. Methods 

2.1. Notation and assumptions 

Let 𝑍, 𝑋, 𝑌 and 𝑈 respectively denote the instrument, the time-fixed treatment, the outcome and all 

unmeasured common causes of 𝑋 and 𝑌. For simplicity, we consider the case where no adjustment is 

made for measured covariates. However, the concepts developed here can be trivially extended to 

accommodate measured covariates. We also discuss covariate adjustment in the simulation study 

(section 4 in the Supplement). 

𝑍 is a valid IV if the following three causal assumptions (illustrated in Figure 1) are satisfied: i) 

relevance: 𝑍 and 𝑋 are statistically dependent; ii) independence: 𝑍 ⫫ 𝑈 (where “⫫” denotes 

statistical independence); and iii) exclusion restriction: 𝑍 ⫫ 𝑌|𝑋, 𝑈.4,5 

Figure 1 is a graphical representation of the following non-parametric structural equation model: 

𝑋𝑖 = 𝑓𝑋(𝑍 = 𝑍𝑖 , 𝑈 = 𝑈𝑖 , 𝜀𝑋 = 𝜀𝑋𝑖) 

𝑌𝑖 = 𝑓𝑌(𝑋 = 𝑋𝑖 , 𝑈 = 𝑈𝑖 , 𝜀𝑌 = 𝜀𝑌𝑖), 

where 𝑋𝑖  is the value of 𝑋 for individual 𝑖 (the same notation applies to other variables), 𝑓𝑋 and 𝑓𝑌 

respectively denote the functions governing 𝑋 and 𝑌, and 𝜀𝑋 and 𝜀𝑌 respectively denote stochastic 

direct causes of 𝑋 and 𝑌 (so that 𝜀𝑋 ⫫ 𝜀𝑌). We now define 𝐹𝑋𝑖
(𝑧) = E[𝑋𝑖|𝑑𝑜(𝑍 = 𝑧), 𝑈 = 𝑈𝑖 , 𝜀𝑋 =

𝜀𝑋𝑖] and 𝐹𝑌𝑖
(𝑥) = E[𝑌𝑖|𝑑𝑜(𝑋 = 𝑥), 𝑈 = 𝑈𝑖 , 𝜀𝑋 = 𝜀𝑋𝑖] – that is, 𝐹𝑋𝑖

(𝑧) is the expectation of 𝑋 when 𝑍 
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is set (possibly counterfactually) to 𝑧, while the other variables retain their observed values. A similar 

interpretation holds for 𝐹𝑌𝑖
(𝑥).  

The individual level instrumental and treatment effects 𝛽𝑋 and 𝛽𝑌 can be defined as follows: 

𝛽𝑋𝑖
= 𝐹𝑋𝑖

(1) − 𝐹𝑋𝑖
(0) for a binary 𝑍, 

𝛽𝑋𝑖
= 𝐹𝑋𝑖

(𝑧) − 𝐹𝑋𝑖
(𝑧 − 1) for a multivalued discrete 𝑍, 

𝛽𝑋𝑖
=

𝜕

𝜕𝑧
[𝐹𝑋𝑖

(𝑧)]|
𝑧=𝑍𝑖

 for a continuous 𝑍, 

𝛽𝑌𝑖
= E[𝐹𝑌𝑖

(1) − 𝐹𝑌𝑖
(0)|𝑈 = 𝑈𝑖 , 𝜀𝑌 = 𝜀𝑌𝑖] for a binary 𝑋, 

𝛽𝑌𝑖
=

𝜕

𝜕𝑥
[𝐹𝑌𝑖

(𝑥)]|
𝑥=𝑋𝑖

 for a continuous 𝑋. 

For a multivalued discrete 𝑍, we assume 𝑍 is coded numerically such that E[𝑋|𝑍 = 1] ≤ ⋯ ≤

E[𝑋|𝑍 = 𝐾], where 𝐾 is the number of values that 𝑍 attains, and 𝑧 ∈ {2, … , 𝐾}. Notice that, for 

continuous 𝑍, the definition of 𝛽𝑋 implicitly assumes that 𝐹𝑋(𝑧) is differentiable with respect to 𝑍. 

For non-continuous 𝑋, this would happen for example if 𝑋𝑖~Bernoulli(𝑝𝑖) or 𝑋𝑖~Poisson(𝜆𝑖), 

where 𝑝𝑖  or 𝜆𝑖 are differentiable functions of 𝑍. A similar notion applies to 𝛽𝑌 and 𝐹𝑌(𝑧) for a 

continuous 𝑋. 

Under the stable unit treatment value assumption, 𝛽𝑋𝑖
 is the additive change in the expectation of 𝑋 

caused by a unit increase in 𝑍 in individual 𝑖 and 𝛽𝑌𝑖
 is the additive change in the expectation of 𝑌 

caused by a unit increase in 𝑋 in individual 𝑖. From this notation, the ACE is defined as E[𝛽𝑌] – i.e., 

the average of 𝛽𝑌 in the population. This definition incorporates the case of a multi-valued 𝑋 

(excluding the case where 𝑋 is an unordered multivalued variable or 𝑋 is a discrete variable with 

non-linear effects on 𝑌, since derivatives are not defined in these cases), where the distribution of 𝑋 

in the population will affect the ACE. This quantity is sometimes referred to as the average derivative 

effect.18,19 Finally, the conventional IV estimand known as the Wald estimand (here denoted as 𝛽𝐼𝑉) is 

defined as 𝛽𝐼𝑉 =
cov(𝑌,𝑍)

cov(𝑋,𝑍)
.13,20 
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2.2. The NO Simultaneous Heterogeneity (NOSH) assumption 

We define the NOSH assumption as a combination of two conditions (Assumptions 1 and 2, defined 

below). The name NOSH refers to the fact that, if these two assumptions hold, then 𝛽𝑌 ⫫ (𝑍, 𝛽𝑋) – 

that is, heterogeneity in the causal effect is independent of heterogeneity in the instrument effect 

(and of the instrument). Since 𝛽𝑋 and 𝛽𝑌 denote effects on the additive scale, NOSH focuses on 

additive effect modification. Of note, there is no assumption regarding multiplicative effect 

modification other than what is implied by our assumptions on additive effect modification (in 

section 2 in the supplement, we discuss implications of non-linear effects and non-linear data-

generating models for NOSH). 

Theorem 1: If NOSH holds, then 𝛽𝐼𝑉 = ACE (proof in section 3 in the Supplement). 

We now define the conditions for NOSH to hold using causal diagrams (see section 1 in the 

Supplement for equivalent definitions using non-parametric structural equation models). For a 

precise articulation, it is useful to partition 𝑈 in Figure 1 in six non-overlapping, exhaustive sets of 

variables (Table 1). 

Figure 2A illustrates possible causal relationships compatible with Figure 1 (i.e., compatible with the 

core IV assumptions) among 𝑈, 𝑍, 𝑋, 𝛽𝑋 and 𝛽𝑌. Of note, Figure 1 assumes that 𝑍 is a causal 

instrument, but this is not necessary for NOSH to be defined or hold. In Theorem 1, 𝛽𝑋 can be 

replaced 𝛽𝑋
∗ , here denoting the individual-level association of a non-causal instrument 𝑍∗ and 𝑋. By 

non-causal instrument, we mean that 𝑍∗ is not a cause of 𝑋. Still, it is associated with 𝑋 through 

paths that included 𝑍 as a non-collider (more specifically, paths of the form 𝑍∗ ← 𝑊 → 𝑍 or 𝑍∗ →

𝐶 ← 𝑍, where 𝐶 is being conditioned on). Therefore, both modifiers of the effect of 𝑍 on 𝑋 and 

modifiers of the association between 𝑍∗ and 𝑍 will be modifiers of the association of 𝑍∗ and 𝑋. 

Modifiers of 𝑍-𝑋 must be independent of modifiers of 𝑋-𝑌 for NOSH to hold, as discussed above. 

Moreover, modifiers of 𝑍-𝑍∗ must be independent of any cause of 𝑌 (otherwise 𝑍∗ would be an 
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invalid IV). Therefore, if Assumptions 1 and 2 (see below) hold for 𝑍, they also hold for 𝑍∗. Given this 

clarification, 𝑍 will be depicted as a causal instrument in Figure 2 for simplicity. 

Although it is not usual to depict individual-level effects as nodes in a causal graph, 𝛽𝑋 and 𝛽𝑌 are 

indeed random variables. Since 𝑋 is fixed in time, these two variables are simply functions of other 

individual-level random variables, so they are not qualitatively different from 𝑋 or 𝑌 for example. 

This contrasts with variables that may also depend on non-individual level characteristics, such as 

person-time, which depends on follow-up duration and can be influenced by study design. Causes of 

𝛽𝑋 can be interpreted as modifiers of the effect of 𝑍 on 𝑋, while causes of 𝛽𝑌 can be interpreted as 

modifiers of the effect of 𝑋 on 𝑌. A more comprehensive description on representing individual-level 

effects in causal graphs is available elsewhere.21 For example, Table 1 describes that 𝑈2 modifies the 

effect of 𝑋 on 𝑌, but not the effect of 𝑍 on 𝑋. This is translated in Figure 2A by the directed path 

from 𝑈2 to 𝛽𝑌, but not to 𝛽𝑋 (see Box 1). Explicitly depicting 𝛽𝑋 and 𝛽𝑌 in the graph facilitates 

identifying conditions under which 𝛽𝑋 and 𝛽𝑌 are d-separated, which is useful to precisely articulate 

sufficient conditions for NOSH to hold. 

In Figure 2A, all unmeasured variables 𝑈1 to 𝑈6 are d-connected to one another due to a latent 

variable, thus allowing for statistical dependencies between them in unrestricted ways. Although 

these variables could be d-connected due to other causal structures (e.g., a path 𝑈1 → 𝑈2), this 

would violate the classification proposed in Table 1 (in this example, 𝑈1 would be an effect modifier 

of both the effect of 𝑍 on 𝑋 and the effect of 𝑋 on 𝑌 – i.e., it would be a component of 𝑈6), and thus 

blur the distinct implications of distinct types of effect modifiers. 

Although this is not central to our arguments, it is instructive to clarify that, from a statistical 

perspective, both 𝑈3 and 𝑈4 (for example) are effect modifiers of 𝛽𝑋 if 𝑈3 and 𝑈4 are d-connected, 

because 𝛽𝑋 will vary between strata of 𝑈3 and between strata of 𝑈4 (the same reasoning applies to 

other unmeasured variables with respect to 𝛽𝑋 and/or 𝛽𝑌). For clarity, we use “effect modifier” to 

refer to variables that themselves exert effect modification and “surrogate effect modifier” to refer 
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to variables that are d-connected with effect modifiers but do not themselves exert effect 

modification. Although our arguments could ignore surrogate effect modifiers, defining different 

types of effect modifiers allows for a more comprehensive articulation of conditions sufficient for 

NOSH to hold. 

Since d-separation implies statistical independence, causal diagrams can be used to find conditions 

under which 𝛽𝑌 is d-separated from (and thus statistically independent of) 𝛽𝑋 and 𝑍. Under such 

conditions, NOSH holds. In Figure 2A, 𝛽𝑌 is d-connected through multiple paths to both 𝑍 and 𝛽𝑋, so 

𝛽𝑌 ⫫ (𝑍, 𝛽𝑋) (and therefore NOSH) will not generally hold. 

We now describe the assumptions that define NOSH. 

Assumption 1: All unmeasured variables that modify 𝑍-𝑋 are independent of all unmeasured 

variables that modify 𝑋-𝑌. 

This assumption implies that there are no unmeasured variables that themselves modify (on the 

additive scale) both the effect of 𝑍 on 𝑋 and the effect of 𝑋 on 𝑌 – that is, 𝑈6 = ∅. Furthermore, all 

unmeasured variables that modify the effect of 𝑍 on 𝑋 (i.e., 𝑈1 and 𝑈4) are independent of all 

unmeasured variables that modify the effect of 𝑋 on 𝑌 (i.e., 𝑈2 and 𝑈5). This implies that there are 

neither unmeasured effect modifiers of 𝑍-𝑋 that are also surrogate effect modifiers of 𝑋-𝑌 nor 

unmeasured surrogate effect modifiers of 𝑍-𝑋 that are also effect modifiers of 𝑋-𝑌. However, 𝑈1, 𝑈3 

and 𝑈4 may be correlated with one another, and 𝑈2, 𝑈3 and 𝑈5 may be correlated with one another. 

For this to hold, 𝑋 cannot cause 𝑈2. Otherwise, 𝑈1 and 𝑈4 (which are modifiers of the effect of 𝑍 on 

𝑋) and 𝑈2 (which is a modifier of the effect of 𝑋 on 𝑌) will be d-connected through the paths 𝑈1 →

𝑋 → 𝑈2 and 𝑈4 → 𝑋 → 𝑈2. This assumption is violated in Figure 2A, where all unmeasured variables 

are allowed to be d-connected with one another. 

Even if Assumption 1 holds, paths of the form 𝛽𝑋 ← 𝑍 → 𝑋 → 𝛽𝑌, which render 𝛽𝑋 and 𝛽𝑌 d-

connected, may still exist. Therefore, Assumption 1 is necessary, but not sufficient, to render 𝛽𝑋 and 

𝛽𝑌 d-separated. 
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Assumption 2: The effect of 𝑋 on the expectation of 𝑌 is additive linear. 

This assumption holds if 𝐹𝑌𝑖
(𝑥) = 𝜑𝑖 + 𝜇𝑖𝑥, where 𝜑𝑖  and 𝜇𝑖  may vary between individuals. In this 

case, 𝐹𝑌𝑖
(𝑥) − 𝐹𝑌𝑖

(𝑥′) = 𝜇𝑖(𝑥 − 𝑥′). This implies that, for a given individual, the additive change in 

the expectation of 𝑌 caused by a unit increase in 𝑋 does not depend on the value of 𝑋 that the 

individual has. That is, the effect of 𝑋 on 𝑌 is additive linear (but not necessarily constant) across 

individuals. This implies that the path 𝑋 → 𝛽𝑌 does not exist. Consequently, 𝑍 and 𝛽𝑌 are d-

separated (that is, 𝛽𝑌 ⫫ 𝑍). Of note, this assumption is automatically satisfied if 𝑋 is binary. 

In Figure 2B, both Assumptions 1 and 2 hold. In this graph, 𝛽𝑌 and 𝛽𝑋 are d-separated (because all 

paths from 𝛽𝑋 to 𝛽𝑌 contain at least one collider), and 𝛽𝑌 and 𝑍 are d-separated (because all paths 

from 𝑍 to 𝛽𝑌 contain 𝑋 as a collider). 

Even though the above focused on the structural interpretation of NOSH (i.e., an interpretation 

where concepts can be represented in causal graphs), this assumption can be relaxed in the sense 

that it does not require full independence, but only mean independence (i.e., uncorrelatedness). 

That is, if E[𝛽𝑌|𝑍, 𝛽𝑋] = E[𝛽𝑌], then 𝛽𝐼𝑉 = ACE (see the proof in the Supplement for details). 

Therefore, NOSH is a statistical statement, so representing it using causal graphs may be useful, but 

not strictly required. For example, In Figure 2A, even though NOSH will not generally hold, it is 

possible that it holds under lack of faithfulness (i.e., when there is d-connection but no statistical 

association). In this sense, NOSH is agnostic to whether faithfulness is assumed. 

2.3. NOSH is a generalization of previous IV4 assumptions 

We now show that well-known assumptions that identify the ACE imply NOSH. 

2.3.1. Causal effect homogeneity 

For a binary 𝑋 and assuming deterministic counterfactuals, this assumption can be defined as 

𝑌𝑖(𝑋𝑖 = 1) − 𝑌𝑖(𝑋𝑖 = 0) = 𝑐 (a constant), where 𝑌𝑖(𝑋𝑖 = 𝑥) = 𝑓𝑌(𝑑𝑜(𝑋 = 𝑥), 𝑈 = 𝑈𝑖 , 𝜀𝑌 = 𝜀𝑌𝑖) for 

𝑥 ∈ {0,1}. More generally, this condition can be defined as 𝛽𝑌𝑖
= 𝑐. Since 𝛽𝑌 is constant, NOSH 
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trivially holds – i.e., NOSH is implied by causal effect homogeneity. Moreover, NOSH allows 

identification when there is causal effect heterogeneity. Therefore, NOSH is weaker than causal 

effect homogeneity. 

2.3.2. Instrument effect homogeneity 

For a binary causal instrument 𝑍 and assuming deterministic counterfactuals, this assumption can be 

defined as 𝑋𝑖(𝑍𝑖 = 1) − 𝑋𝑖(𝑍𝑖 = 0) = 𝑐, where 𝑋𝑖(𝑍𝑖 = 𝑍) = 𝑓𝑋(𝑑𝑜(𝑍 = 𝑧), 𝑈 = 𝑈𝑖 , 𝜀𝑋 = 𝜀𝑋𝑖) for 

𝑥 ∈ {0,1}. Generally, this condition can be defined as 𝛽𝑋𝑖
= 𝑐. Since 𝛽𝑋 is constant, 𝛽𝑌 ⫫ 𝛽𝑋 trivially 

holds. However, instrument effect homogeneity does not imply 𝛽𝑌 ⫫ 𝑍, because the effect of 𝑋 on 𝑌 

may be non-linear, except if 𝑋 is binary. This is important because additive linearity in the effect of 𝑋 

on 𝑌 is required for the conventional IV estimand to equal the ACE22 (see section 3 in the 

Supplement). 

Therefore, instrument effect homogeneity implies that Assumption 1 is true. However, ACE 

identification also requires Assumption 2, which means NOSH holds. Since NOSH allows identification 

under instrument effect heterogeneity and both NOSH and instrument effect homogeneity require 

Assumption 2, NOSH is weaker than instrument effect homogeneity. 

2.3.3. No effect modification (NEM) by unmeasured factors 

Homogeneity can be relaxed by considering a condition sometimes referred to as NEM. We consider 

two versions of this assumption: NEM1 and NEM2. For a binary 𝑋, NEM1 is defined as 

E[𝑌𝑖(𝑋𝑖 = 1) − 𝑌𝑖(𝑋𝑖 = 0)|𝑈𝑖] = E[𝑌𝑖(𝑋𝑖 = 1) − 𝑌𝑖(𝑋𝑖 = 0)].9 More generally, NEM1 postulates 

that E[𝛽𝑌𝑖
|𝑈𝑖] = E[𝛽𝑌𝑖] – that is, no unmeasured 𝑋-𝑌 confounder modifies the additive effect of 𝑋 

on the expectation of 𝑌. For a binary 𝑋, NEM1 holds if 𝑈 and 𝛽𝑌 are d-separated; otherwise, it would 

not hold in general. Therefore, Assumption 1 is necessary for NEM1 to hold; otherwise, there will be 

open paths between 𝛽𝑌 and (components of) 𝑈. However, it is not sufficient since Assumption 1 

allows for confounders to be effect modifiers. If 𝑋 is continuous, Assumption 2 is also necessary (but 

not sufficient), otherwise the path 𝑋 → 𝛽𝑌 will exist, which would render 𝛽𝑌 and 𝑈 d-connected, thus 
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violating NEM1. Since Assumptions 1 and 2 are both necessary for NEM1 and sufficient for NOSH to 

hold, NEM1 implies NOSH. However, since these two assumptions are insufficient for NEM1 to hold, 

NOSH does not imply NEM1. Therefore, NOSH is weaker than NEM1. Of note, some authors refer to 

violation of NEM1 as essential heterogeneity.23 

Although not typically referred to this way, NEM also applies to the association between 𝑍 and 𝑋 (we 

will call this condition NEM2). For a binary causal instrument 𝑍, NEM2 is defined as 

E[𝑋𝑖(𝑍𝑖 = 1) − 𝑋𝑖(𝑍𝑖 = 0)|𝑈𝑖] = E[𝑋𝑖(𝑍𝑖 = 1) − 𝑋𝑖(𝑍𝑖 = 0)].9 More generally, NEM2 postulates 

that E[𝛽𝑋𝑖
|𝑈𝑖] = E[𝛽𝑋𝑖] – that is, no unmeasured 𝑋-𝑌 confounder modifies the additive association 

between 𝑍 and 𝑋. If both 𝑍 and 𝑋 are binary, NEM2 holds if 𝑈 and 𝛽𝑋 are d-separated; otherwise, it 

would not hold in general. Therefore, Assumption 1 is necessary for NEM2 to hold; otherwise, there 

will be open paths between 𝛽𝑌 and (components of) 𝑈. However, it is not sufficient, since 

Assumption 1 allows for confounders to be effect modifiers. For a continuous 𝑋, NEM2 is not 

sufficient to identify the ACE since even the stronger condition of instrument effect homogeneity 

requires Assumption 2. Since Assumptions 1 and 2 are both necessary for NEM2 to identify the ACE 

and sufficient for NOSH to hold, NEM2 implies NOSH. However, since these two assumptions are 

insufficient for NEM2 to hold, NOSH does not imply NEM2. Therefore, NOSH is weaker than NEM2. 

2.3.4. No unmeasured effect modification (NUCEM) 

For binary 𝑍 and 𝑋, it has been shown that the usual IV estimand equals the ACE if Cov(E[𝑋|𝑈, 𝑍 =

1] − E[𝑋|𝑈, 𝑍 = 0], E[𝑌|𝑈, 𝑑𝑜(𝑋 = 1)] − E[𝑌|𝑈, 𝑑𝑜(𝑋 = 1)]) = 0. In words, this condition (which is 

clearly weaker than NEM), postulates that there are no unmeasured variables that modify (on the 

additive scale) both the 𝑍-𝑋 association and the 𝑋-𝑌 effect. 10 This zero-covariance condition can be 

expressed as E[𝛽𝑌|𝛽𝑋] = E[𝛽𝑌], which is equivalent to NOSH for binary 𝑍 and 𝑋 (this is because, for 

a binary 𝑋, E[𝛽𝑌|𝑍, 𝛽𝑋] = E[𝛽𝑌|𝛽𝑋] since in this case Assumption 2 is guaranteed to hold). Therefore, 

NOSH generalizes NUCEM to situations involving non-binary 𝑍 and 𝑋. 

3. Simulation study 
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We performed a simulation to demonstrate further NOSH is sufficient for ACE identification (a 

detailed description is provided in section 4 in the Supplement). Results are shown in Figure 3. In 

scenario 1, NOSH holds, and the two-stage least squares estimator (TSLS) (equivalent to the Wald 

estimator for a single 𝑍, 𝑋 and 𝑌24,25) consistently estimates the ACE, with coverage being 

approximately 95% and bias converging to zero as sample size increases. A similar pattern was seen 

when NOSH holds, but error terms were non-normal (scenarios 4 and 5). When NOSH is violated 

(scenarios 2 and 3), TSLS had substantial bias and undercoverage. Supplementary Table 1 shows the 

results for different TSLS specifications. When NOSH is violated, but Assumption 2 holds (as in 

scenario 2), adjusting for measured common effect modifiers mitigates bias. However, when NOSH is 

violated exclusively due to Assumption 2 being invalid (as in scenario 3), covariate adjustment does 

not improve estimation. 

4. Discussion 

This paper shows that the Wald estimator is consistent for the ACE if, in addition to the core IV 

assumptions, the NOSH assumption holds. NOSH is weaker than previously proposed IV4 

assumptions that identify the ACE. This does not include the monotonicity assumption (defined 

precisely in section 5.1 in the Supplement), which is sometimes classified as an IV4 assumption but 

does not identify the ACE. While NOSH is not strictly weaker or stronger than monotonicity, NOSH 

has two advantages over monotonicity. First, the latter only identifies LACEs, whereas NOSH 

identifies the ACE. Second, the NOSH assumption identifies the ACE even if there are defiers. 

However, if NOSH is violated but monotonicity holds, IV estimators, identify the LACE, which is a 

well-defined causal parameter for binary treatments. However, the notion of compliers is not well-

defined for continuous treatments. In this case, monotonicity allows interpreting the Wald estimand 

as a weighted average of treatment effects, with subgroups of the population where the 𝑍-𝑋 

association is stronger receiving greater weight.20,26 Although mathematically well-defined, this 

parameter is difficult to interpret for policy making. Conversely, if NOSH holds, then IV estimators 

will identify the ACE of a continuous treatment. 
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In many recent papers describing methodological developments that relax the exclusion restriction 

assumption when there are multiple IVs, treatment effect homogeneity is implicitly or explicitly 

required.27,28 This is because these methods assume that valid IVs identify the same causal effect 

(generally, the ACE). However, assuming NOSH holds for all IVs is sufficient to identify the ACE. This 

implies that the assumptions required for the validity of these methods are weaker than previously 

considered. Nevertheless, since we defined NOSH for a time-fixed treatment, caution must be taken 

to extrapolate our conclusions to time-varying treatments. Moreover, even though NOSH is weaker 

than homogeneity or NEM, it is still quite strong and should not be taken for granted in practice. 

NOSH is an untestable assumption that cannot be guaranteed by study design. Therefore, assessing 

its plausibility requires subject matter knowledge. We illustrate this by discussing three published IV 

studies (section 5 in the Supplement). The possibility of (partially) empirically verifying some IV4 

assumptions has implications for NOSH plausibility. For example, in the case of a continuous 

treatment, instrument effect heterogeneity would often imply (except in some specific 

circumstances) that the treatment is heteroscedastic with respect to the instrument (i.e., the 

variance of the treatment would differ between levels of the instrument).29,30 Future methodological 

studies are required to assess the power and utility of such tests in typical IV settings. Since NOSH is 

weaker than homogeneity, homoscedasticity, in this case, would support (but not guarantee) that 

NOSH holds. However, heteroscedasticity would not necessarily imply that NOSH is violated. 

Brookhart (2007)8 proposed empirically assessing the plausibility of instrument effect homogeneity 

by testing if instrument strength varies between strata of measured covariates. This can also be 

viewed as a test of NOSH since if multiple covariates modify instrument strength, then the 

assumption that there are no unmeasured common effect modifiers is less plausible. Indeed, 

assuming 𝑍 is a valid instrument, variability in IV estimates between strata defined by such covariates 

could be interpreted as evidence against NOSH. Strategies to empirically verify this assumption 

remain to be formally investigated. 
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An earlier glimpse of NOSH in the literature can be found, for example, in Angrist (1990),31 who noted 

that variation in response to the draft (i.e., 𝑍-𝑋 heterogeneity) based on potential outcomes (i.e., 𝑋-

𝑌 heterogeneity) could mean his results were biased estimates of the ACE. Indeed, this would be a 

scenario where NOSH is violated. For binary 𝑍 and 𝑋, NOSH is equivalent to NUCEM.10 However, no 

causal structures (e.g., in the form of causal graphs) that dictate whether NOSH is violated were 

presented. Syrgkanis et al. (2019)13 also postulated an independence condition that is equivalent to 

NOSH, without necessarily restricting to binary 𝑍 and 𝑋. However, mechanisms that could render this 

condition satisfied were similarly not discussed, and no explicit consideration was given to potential 

implications of non-linear instrument-outcome associations or treatment-outcome effects. 

Moreover, their assumed data-generating mechanism for the outcome was 𝑌𝑖 = 𝜃𝑖(𝑈 = 𝑈𝑖)𝑋𝑖 +

𝜌(𝑈 = 𝑈𝑖) + 𝑒𝑖, where 𝜃(𝑈) is the causal effect function, which was assumed to be linear additive. 

However, such a model may not be appropriate when 𝑌 is binary, which is often assumed to be a 

non-linear function of 𝑋 and 𝑈 (e.g., the expectation of 𝑌 may be a logistic function of 𝑋 and 𝑈). 

Here we use counterfactual notation to explicitly define individual-level effects in a framework that 

allows for both binary and continuous 𝑍, 𝑋 and/or 𝑌. We also comprehensively describe data-

generating mechanisms influencing NOSH using causal graphs. This helps to apply expert knowledge 

to assess the plausibility of this assumption in practice. We also explicitly consider the implications of 

non-linear 𝑍-𝑋 associations and 𝑋-𝑌 effects. The present work thus clarifies the assumptions 

underlying NOSH, which allows differentiating it from previous IV4 assumptions and explicitly 

propose NOSH as an IV4 assumption that is weaker than previously described IV4 assumptions that 

identify the ACE. 
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Table 1. Subsets of unmeasured variables collectively represented as 𝑼 in Figure 1. 

Variable Causes 𝑿 Causes 𝒀 Modifies* 𝒁- 𝑿 Modifies* 𝑿- 𝒀 

𝑈1† Yes No Yes No 

𝑈2† No Yes No Yes 

𝑈3 Yes Yes No No 

𝑈4 Yes Yes Yes No 

𝑈5 Yes Yes No Yes 

𝑈6 Yes Yes Yes Yes 

†Strictly speaking, 𝑈1 and 𝑈2 do not belong to 𝑈 in Figure 1, but we will use the notation 

𝑈𝑗  to refer to unmeasured variables in general. 

*This refers to additive effect modification.  
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Figure 1. Causal graph illustrating the instrumental variable assumptions. 
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Figure 2. Causal graph illustrating causal relationships between the instrument (𝒁), the treatment 

(𝑿), individual level causal effect of 𝒁 on 𝑿 (𝜷𝑿)*, individual level causal effect of 𝑿 on the 𝒀 (𝜷𝒀)* 

and six unmeasured variables (𝑼𝟏 to 𝑼𝟔). The dotted lines represent causal effects from unknown 

causes (𝑳, 𝑳𝟏 and 𝑳𝟐, with a dotted box marking them as latent)  that render some or all 

unmeasured variables d-connected. 

 

A: All possible causal relationships compatible with Figure 1 (i.e., unrestricted model, where 

assumptions 1 and 2 are violated). 

B: Assumptions 1 and 2 hold. 

*Since 𝛽𝑋 and 𝛽𝑌 represent effects on the additive scale, variables d-connected with them are 

additive effect modifiers of 𝑍-𝑋 and 𝑋-𝑌, respectively.  
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Figure 3. Median bias, median standard error, coverage and rejection rate of two-stage least 

squares as an estimator of the 𝐀𝐂𝐄† in scenarios 1-5‡, where the causal effect of 𝑿 on 𝒀 is linear. 

 

†Average causal effect (ACE). 

‡1: NOSH holds. 2: Assumption 1 violated. 3: Assumption 2 violated. 4: NOSH holds and error terms 

are drawn from a beta distribution. 5: NOSH holds and error terms are drawn from a mixed chi-

squared distribution. 
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Box 1. Illustration of the equivalence between effect modification and causes of 

individual level effects 

Graphically representing effect modification as causes of individual level effects is 

consistent with the definition of effect modification. To illustrate, suppose 𝑌𝑖 = 𝛼1 +

𝛼2𝑋𝑖 + 𝛼3𝑋𝑖𝑉𝑖 + 𝜀𝑖, where 𝑉𝑖 is not caused by 𝑋 and 𝜀𝑖  is some continuous random error. 

In this situation, 𝛽𝑌 is defined as follows: 

𝛽𝑌𝑖
=

𝜕

𝜕𝑋
[𝛽𝑌𝑖] = 𝛼2 + 𝛼3𝑉𝑖. 

In this example, 𝑉 is a cause of 𝛽𝑌 because it is in the right-hand side of the structural 

equation model for 𝛽𝑌. This would be represented in a causal graph as any other causal 

relationship – i.e., as a directed path from the cause (𝑉) to the consequence (𝛽𝑌). 


