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Abstract Machine learning techniques are now well estab-
lished in experimental particle physics, allowing detector
data to be analyzed in new and unique ways. The identifi-
cation of signals in particle observatories is an essential data
processing task that can potentially be improved using such
methods. This paper aims at exploring the benefits that a
dedicated machine learning approach might provide to the
classification of signals in dual-phase noble gas time pro-
jection chambers. A full methodology is presented, from
exploratory data analysis using Gaussian mixture models and
feature importance ranking to the construction of dedicated
predictive models based on standard implementations of neu-
ral networks and random forests, validated using unlabeled
simulated data from the LZ experiment as a proxy to real data.
The global classification accuracy of the predictive models
developed in this work is estimated to be >99.0%, which
is an improvement over conventional algorithms tested with
similar data. The results from the clustering analysis were
also used to identify anomalies in the data caused by miscal-
culated signal properties, showing that this methodology can
also be used for data monitoring.

1 Introduction

Dual-phase noble element time projection chambers (TPCs)
are excellent rare event observatories due to their low back-
ground, low energy threshold, good energy and position reso-
lutions, and ability to scale their target mass [1]. These detec-
tors have a long history in direct searches for dark matter
(DM) in the form of Weakly Interacting Massive Particles
(WIMPs) [2—-6] and new, multi-tonne scale detectors using
this technology are already or will soon start collecting data
in the near future [7-9]. A dual-phase noble element TPC
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consists of a scintillating liquid target volume (usually argon
or xenon) in equilibrium with a gaseous layer on top, both
observed by arrays of light sensors placed at the top of the gas
phase and/or at the bottom of the liquid phase. An interaction
with the target material in the TPC will excite and ionize some
atoms at the interaction site, producing both scintillation light
and ionization charge [1]. The scintillation light is promptly
detected by the light sensors as the primary signal (S1). An
electric field across the liquid phase drifts the ionization elec-
trons that did not recombine towards the liquid-gas interface,
where they are extracted to the gas phase and accelerated in
a stronger field to produce a larger electroluminescence light
signal (S2). The distribution of the S2 light over the light
sensor arrays is used to reconstruct the position of the initial
interaction in the horizontal plane, while the time between
the S1 and S2 signals indicates the depth of the interaction.
Furthermore, the relative size of these signals can be used to
distinguish between electron recoils (ER) and nuclear recoils
(NR) and infer the nature of the interacting particle [10].

In order to fully characterize an interaction in both posi-
tion and energy, all signals resulting from the different pro-
cesses in the detector must be correctly identified. This is
usually performed by a specialized classification algorithm.
Such classifiers need not only to correctly identify the main
signals (S1 and S2) that characterize an event in a dual-phase
TPC but also avoid misclassifying spurious signals as rele-
vant ones. A high efficiency classifier is imperative in order to
ensure that no event is misreconstructed and that rare signal
events are accurately identified. Dual-phase noble element
TPCs share the same overall pulse shape characteristics for a
wide range of detector parameters, like electric field strength,
light collection efficiency or the thermodynamic parameters
of xenon/argon [11], and thus also share many of the same
challenges related to signal identification.

Several techniques can be deployed to classify the sig-
nals recorded in these detectors, from simple, human-built,
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heuristic methods like decision trees [12,13] to advanced
data analysis techniques such as machine learning (ML). It
has been demonstrated that a classification efficiency for S1
and S2 signals above 90% is achievable using conventional
heuristic methods [5,6], with some signal-level processing
methods showing efficiencies >98% and >99% for small
S1 and S2 signals, respectively [14]. The implementation of
classification methods based on ML could improve this signal
identification efficiency while also providing important infor-
mation for the identification of spurious pulses. These meth-
ods have the advantage of handling high dimensional data
more efficiently than conventional methods and can uncover
unique and insightful information about intrinsic properties
of the data. This work will explore a ML-based methodology
for the development of high-accuracy and minimally-biased
pulse classification tools tailored for dual-phase noble ele-
ment TPCs.

There is an underlying risk in training a ML classifier
model with non-representative data, most notably if the train-
ing is performed in a supervised manner. Supervised learning
methods often resort to simulated data for training, and their
results are therefore dependent on the accuracy of those sim-
ulations. This motivates the usage of unsupervised learning
methods that do not rely on approximated models of the real
data. In these approaches, the data features used for training
are obtained directly from the target dataset, guaranteeing
that all the available information and any possible data trends
are present with no underlying hidden biases.

A particularly convenient set of tools used to process unla-
beled datasets are clustering algorithms. Clustering analysis
is very often combined with classification efforts because
it naturally partitions the data based on its intrinsic proper-
ties in a robust, minimally-biased way [15]. In this work, a
clustering analysis using Gaussian mixture models (GMMs)
[16] is used to build two distinct predictive models designed
for classification, those being random forests (RFs) [17,18]
and an ensemble of neural networks (NN) [19]. This cluster-
ing method was chosen for its ability to handle large density
inhomogeneities in the data [15]. The predictive models were
selected due to their simplicity, robustness and excellent per-
formance as classifiers, as well as their availability across
many different ML software packages and implementations.
The RF model was also selected due to its ability to extract
information about the best discriminant features in the data
[15].

Section 2 will give an overview of the data used in this
analysis (unlabeled simulated data from the LUX-ZEPLIN
(LZ) experiment [8,20]). Section 3 will present the method-
ology developed for processing the data and constructing
classification tools based on ML: a clustering analysis is pre-
sented in Sect. 3.1, that will then be the basis for the develop-
ment of predictive models based on RFs presented in Sect. 3.2
and a NN ensemble model presented in Sect. 3.3. A discus-
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sion of the results and main issues can be found in Sect. 3.4.
Section 4 will present some final remarks regarding the dif-
ferent models and an overview of the methodology developed
in this work.

2 Overview of the data

This work was developed using LZ simulated data [20] from
a simulated dataset created on October 2018 by the collab-
oration to validate its analysis tools. Simulated LZ data was
chosen in order to keep this work relevant for current and
next generation experiments searching for rare events over a
wide range of energies. This data was also readily available
and extensively tested. To ensure that the simulated data is
analogous to real data, Monte Carlo truth information was
not used for this study.

LZ will use a 7 tonne xenon TPC observed by 494 photo-
multiplier tubes (PMTs) distributed between two arrays (253
at the top and 241 at the bottom) [21]. An event is comprised
of digitized waveforms originating from the readout of the
TPC PMTs. The waveforms are digitized at 100 M samples
per second and are only recorded when the voltage response
of the PMT is above a threshold of 0.16 photoelectrons (PEs)
[8]. These are then combined across all PMT channels to
produce a summed waveform, which will contain several
distinguishable structures that can be isolated in time and are
expected to correlate to particular signals in the TPC. Each
such structure will be referred to as a pulse. The event data
is processed in a typical modular analysis approach, starting
with pulse-level data processing and then performing event-
level reconstruction: after some initial timing synchroniza-
tion calibrations and baseline corrections, a dedicated pulse
finding algorithm uses difference of Gaussian (DoG) filters to
identify transients in the summed waveforms and isolate indi-
vidual pulses in time [22]. The widths of the Gaussian filters
are tuned to match the average frequency response of S1 and
S2 pulses, and by setting thresholds in the responses of these
filters the algorithm can identify the boundaries of a pulse
(start and end times). Next, the parameterization algorithms
calculate a set of pulse-shape and channel distribution quan-
tities using both the summed and individual PMT channel
waveforms within the pulse boundaries. These quantities are
then used by the classifier algorithms to identify the physical
origin of each individual pulse (S1, S2, etc). The quantities
relevant for the pulse classification analysis explored in this
work are presented in Sect. 2.2. After this pulse-level anal-
ysis, other dedicated algorithms use the full context of the
event to characterize the interaction in the detector (in both
energy and position).

Errors along the data processing chain, from the electron-
ics readout to the pulse-level analysis algorithms, can pro-
duce spurious pulses that contaminate the data. The correct
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identification and characterization of these spurious pulses is
critical for the physics analysis, as well as to mitigate them
at their origin.

2.1 Signals in a dual-phase noble element TPC

Figure 1 displays some examples of pulses in the dataset used
that are expected to be found in a dual-phase noble element
TPC. The main pulse types are the aforementioned S1 and
S2, that are represented in Fig. 1a, b, respectively.

In the presence of an electric field, most of the scintillation
light is produced by the decay of xenon excimers, which
have fast decay times of 2.2 ns and 27 ns for transitions
from singlet or triplet electronic excited states to the ground
state, respectively [1]. Due to a combination of the pulse
response of the PMT amplifier chain and S1 photon flight
time, which can become greater than the decay times of the
xenon excimers in large TPCs [23], a typical S1 pulse has a
length in time of the order of 100 ns FWHM, rising quickly
(~50ns) and falling exponentially (~500 ns). The S1 signals
will also have, on average, larger amplitudes in the bottom
PMT channels due to the internal reflection of scintillation
in the liquid-gas interface.

The S2 signal is proportional to the number of electrons
extracted into the gas phase, with each electron producing
hundreds of scintillation photons [1]. The shape in time of
the S2 signal is dictated by the electron transit time across
the gas gap in the extraction region and by the charge distri-
bution of the electron cloud drifted from the interaction site
to the liquid-gas interface [24]. The drifting electrons will
experience diffusion (in both the longitudinal and transverse
directions) along the travel path, making the S2 signals from
interactions deeper in the TPC wider than those from interac-
tions closer to the liquid-gas boundary. These effects result in
S2 pulses with a length in time of the order of ~2 us FWHM,
considering an extraction field of 2 10kV/cm and a gas gap of
8 mm (electron transit time of 1.2 us) [8,24]. Due to electron
diffusion, the S2 pulses tend to have an almost symmetrical
shape in time, akin to a normal distribution. Most of the S2
light is detected by the top PMT array due to its proximity to
the liquid boundary and extraction region.

A pulse that results from the detection of a single photon
by a PMT is called a single photoelectron (SPE). The small-
est S1 pulses are composed of SPEs in a small set of PMT
channels within a short time window. Random coincidence
of PMT dark counts (spontaneous and spurious PMT pulses
inherently indistinguishable from SPEs) can mimic small S1
pulses. To minimize this effect, a channel coincidence (i.e.,
the number of PMT channels that record signal within the
time window of a pulse) of 3 or more is required for a pulse
to be considered an S1 in LZ (3-fold coincidence) [21]. In
order to preserve potential smaller S1 signals in low-energy
analyses, the channel coincidence requirement for S1 pulses

was reduced to 2-fold in this work. This wider acceptance of
pulses with lower channel coincidence can be reverted at a
later analysis stage, if needed.

PMT afterpulses (APs) are typically caused by residual
gas ionized by the electrons accelerated in the charge multi-
plication stages of the PMT. These ions are then drifted back
to the photocathode where they release more electrons and
produce a delayed signal at characteristic times [25,26]. Fig-
ure 1c shows an S1 pulse followed by five APs. An example
of a signal generated by the extraction of a single electron
(SE) from the liquid into the gas phase is presented in Fig. 1d
(left-most pulse) and in Fig. 1f (see discussion below for more
details on the latter example). An S2 pulse is, in its essence,
the overlap of several SE signals. The shape of SE pulses
display great variability, with characteristic spike structures
caused by the random nature of the detection of electrolumi-
nescence photons. As mentioned previously, the extraction of
a single electron can produce hundreds of photons [1], with
the average number of photons detected per extracted elec-
tron depending on the fixed strength of the extraction field,
photon yield of the gas and light collection efficiency of the
detector. Therefore, SE pulses have a very characteristic size
that is used to calibrate the response of the detector [8]. Much
like the channel coincidence criteria for S1 pulses, S2 pulses
usually need to have areas several times larger than the aver-
age SE area in order to be considered valid, excluding false
S2 pulses caused by random SE pileup. However, in order
to preserve the classification of the smallest S2 pulses, the
pileup of two or more SE pulses will be considered a valid
S2 pulse in this work.

S2 pulses are generally followed by a tail of delayed elec-
tron emissions that can result in SE pileup and thus mimic an
S2 signal, as seen in Fig. le. These delayed emissions typ-
ically produce an immediate continuous signal within some
tens of us after the S2 signal (dubbed “S2 tail”) and a dis-
perse trail of SE pulses that can last several ms after the S2
(“e-trains”) [27,28]. These emission phenomena tend to scale
with the size of the main S2 signal. The S2 tail is most likely
the result of photoionization of impurities in the liquid bulk
caused by xenon luminescence, and by photoelectric effect on
the field grids. The e-trains and other SE delayed emissions
with longer time scales are likely produced by the sponta-
neous emission of electrons trapped at the liquid boundary
and by the capture and subsequent release of drifting elec-
trons by impurities [27,28].

Spurious pulses, i.e., pulses that do not directly correlate
to real light-yielding processes in the TPC or that present
unusual or unexpected properties, are the result of errors at
any stage of data handling, from the electronics readout to the
pulse-level analysis algorithms. These pulses often display
similarities with either S1 or S2 pulses, contaminating the
data and leading to misclassification errors. Figure 1f shows
two SE pulses, with the leftmost being incorrectly split into
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Fig. 1 Examples of typical pulses expected in dual-phase noble ele-
ment TPCs, obtained from LZ simulated data. Pulse amplitudes are con-
verted to units of photons detected (phd) per nanosecond. The coloured
boxes represent the pulse boundaries calculated by a simple pulse find-
ing algorithm, the purple and green boxes mark the main S1 and S2

several non-physical substructures by the pulse finding algo-
rithm. These individual structures resemble S1 pulses in both
shape and timing, and constitute a significant challenge for
pulse-level classification in this dataset.

The main pulse classes that are usually considered in the
low-level analysis of dual-phase noble-element TPCs are the
aforementioned S1, S2, SE and SPE classes. Pulses that do
not belong to any of the previously mentioned classes or
that have non-physical properties (i.e., spurious pulses) are
labeled as “Other” in this work.

2.2 Pulse features and data preprocessing
Pulses are identified by the classification algorithms based on

their characteristic geometrical features. Some analyses use
the raw shape of the pulse directly to identify the pulse (e.g.,
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(f) Example of a SE pulse split by the pulse find-
ing algorithm (left) and a correctly identified SE pulse
(right).

pulses of an event, respectively. The splitting of single electron (SE)
pulses, like the example presented in f, is particularly challenging to the
classification, since these spurious pulses have characteristics that are
very similar to S1 pulses and PMT afterpulsing (AP)

using convolutional neural networks [29] or deep learning
[30]) but typically an intermediate parameterization step is
used to calculate relevant shape-related quantities, such as
integrated areas, lengths, fit parameters and other detector-
specific traits, that are then used by the classification algo-
rithms. This work will follow the latter approach. Of the avail-
able pulse features in the LZ dataset used, dubbed “reduced
quantities” (RQs), 11 were selected for this analysis and are
summarized in Table 1. These RQs were selected based on
past experience on heuristic pulse classification algorithms
developed for the LUX and LZ experiments. The pL90 RQ
provides a better estimation of the length of a pulse compared
to the time difference between the pulse start and pulse end
boundaries set by the pulse finder algorithm, since the lat-
ter length has larger variance for smaller pulses. The four
prompt fraction RQs (pF50, pF100, pF200 and pFlk) are
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Table 1 Some of the pulse-level RQs available in LZ simulated data chosen for the classification analysis in this work

Name [unit] Type Description
PA [phd] Float Total integrated area from the start to the end of the pulse
pH [phd/ns] Float Pulse maximum amplitude
pHTL Float Fraction of pulse length time at which the pulse reaches maximum amplitude
pL90 [ns] Int Pulse length time at 90% area, from 5 to 95% integrated area time
PRMSW [ns] Int Pulse root mean square (RMS) width
pF50 Float Fraction of the pulse area integrated in a 50 ns time window starting 10 ns before the 5% integrated area time
pF100 Float Same as pF50 but for a 100 ns integration window
pF200 Float Same as pF50 but for a 200 ns integration window
pFlk Float Same as pF50 but for a 1 s integration window
TBA Float Top-bottom asymmetry: difference between the top PMT area fraction and bottom PMT area fraction
Coincidence Int Number of PMT channels that record signal within pulse boundaries
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Fig. 2 Marginal distributions of the main pulse populations in pulse
area (pA) vs pulse length at 90% area (pL90) space (left) and top-bottom
asymmetry (TBA) vs pA space (right). Not all isolated populations are
labeled, only the cases presented in Fig. 1 have been highlighted. The

somewhat correlated, but they were included in this work in
order to identify which one has the strongest discriminant
power (Sect. 3.2.1).

A pre-selection of pulses was performed to ensure the
quality of the dataset before the classification analysis,
excluding pulses with non-physical RQ values, e.g., nega-
tive total areas, height or length. Pulses with coincidence=1
are also excluded a priori from this analysis since these can
be automatically identified as either SPE or Other pulses,
both of which are not critical for the description of the event.
However, the value of the coincidence RQ is often overes-
timated in this dataset due to accidental partial overlap of
pulses across different channels, especially for SPE pulses
and afterpulsing. Even though these pulses are expected to be
measured in a single PMT channel, negligible contributions
from baseline fluctuations or small portions of partially over-
lapping pulses in other channels within the boundaries of the

populations labeled “baselines” consist of random noise that is isolated
by the pulse finding algorithm. The population labeled “N-fold DC”
contains spurious pulses caused by random coincidences of PMT dark
counts (DCs) in N PMT channels

pulse can lead to higher coincidence RQ values. This results
in some SPEs and APs having coincidence > 1 and thus are
eligible to be classified as S1 pulses, contaminating the RQ
dataset. This, however, does not affect the final physics anal-
yses since these distinctions are intentionally delayed to a
dedicated event identification algorithm that uses the context
provided by the remaining pulses in the event. This separa-
tion between pulse-level and event-level processing allows
for the deployment of algorithms that are highly specialized
for each task.

After the quality selections mentioned above, a total of
109 pulses are randomly selected from the remaining. The full
dataset corresponds to an average of 25400 distinct events,
corresponding to roughly 10 minutes and 35 seconds of expo-
sure considering the expected average background event rate
of 40 Hz for LZ [8]. Figure 2 shows a rough labeling of the
main pulse populations in the dataset, obtained using tradi-
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tional pulse identification methods and visual inspection. The
goal of Fig. 2 is to act as a reference for the upcoming results
in Sects. 3.1, 3.2 and 3.3. The populations are not fully sep-
arable in any 2-dimensional representation of pulse features
but their general distributions can be intuitively inferred.

3 Methods

The following sections explain in detail the implementations
and results of the ML methods explored in this analysis. A
clustering analysis of the data is performed first, using Gaus-
sian mixture models, and the results are then used to train
two predictive models based in tree ensembles (RFs) and
NNs to perform pulse classification and to extract useful
information from the RQ dataset. These ML methods are
extensively used in the physical sciences [31]. The potential
of tree ensemble methods like RFs and boosted decision trees
(BDTs) for data analysis in physics is well established, from
searches for beyond the Standard Model physics at particle
colliders [32,33] to dark matter direct detection experiments
[6,34,35].

Much like the tree ensemble methods, NNs are exten-
sively used in dark matter searches at colliders [33,36-38],
direct detection experiments [39—41], cosmology and astro-
physics surveys [42-44], and in other rare event searches
[45,46]. However, this work will take a different approach to
the traditional implementation of a single feed-forward dense
NN by implementing instead an ensemble of NN classifiers
trained individually to classify each valid pulse class in the
data in a One-vs-All configuration [16]. Ensembles of NNs
have been around for at least three decades [47-50], but the
implementations are often based on generalizations of boost-
ing or bagging strategies applied to NN models. In this work,
the NN ensemble is instead composed of specialized binary
classification models that work in parallel and whose results
are combined to obtain a final classification.

Throughout this work the dataset will be partitioned into
four distinct classes, corresponding to the class labels

S = {s1, 52, 53, 54} = {S1, S2, SE, Other}.

The S1 pulse class will include 2-fold coincidence pulses
in an effort to preserve the classification efficiency for low-
energy searches. The distinction between S2 and SE pulses,
despite both having the same physical origin, is expected
to help the classification algorithms distinguishing between
larger S1 pulses and the plethora of S2-like pulses, such as
S2 tails and SE pileup, during training.

3.1 Clustering analysis

GMMs are a multi-component probabilistic distribution
where a finite ensemble of Gaussian distributions are assumed

@ Springer

to originate the observed data [16]. The GMM implemen-
tation of the public python package scikit-learn [51] was
used for the cluster analysis' considering K = 67 com-
ponents and full covariance freedom between the different
GMM components. The number of components of the mix-
ture model was roughly estimated using an implementation
of the kernel-based algorithm described in Reference [52].
This number was left purposefully larger than the number of
categorical pulse classes being considered by the classifier
module since each global pulse class contains several dis-
tinct pulse populations. This increases the efficiency of the
clustering analysis by allowing a more “fine-grained” model
that can account for the hidden stratification of the data [53].
Also, over-partitioning allows for a deeper understanding of
the differences between seemingly degenerate populations,
possibly allowing for the detection of outlier populations or
pathological structures that were not identified in the pre-
ceding steps. Furthermore, after the clustering analysis, the
different components of the mixture model can be collapsed
into the same categorical classes corresponding to the pulse
types expected in the data. This is a form of hierarchical pro-
cessing that greatly accelerates learning on the subsequent
classification algorithms [54]. However, some of the choices
made in the assignment of pulse labels to the GMM com-
ponents may not be ideal and will introduce biases in the
following processing steps. As with many aspects of cluster
analysis, and ML in general, a heuristic approach is some-
what inevitable [15].

Figure 3 displays the results of the GMM clustering of
the RQ dataset, considering K = 67 components and using
the following subset of RQs: pA, pH, pL90, pF100 and TBA.
These RQs were selected based on their ubiquity in the anal-
ysis and with the goal of reducing the dimensionality of the
data. Despite the probabilistic nature of the GMM algorithm,
each pulse is categorically associated to the Gaussian compo-
nent with the highest likelihood of having generated it [16].
Every GMM component is checked for spurious features in
these and other marginal distributions and any strange popu-
lation is handscanned, i.e., a sample of pulse waveforms are
analyzed by eye, to determine their constituents. The first
noticeable feature is the green population of S2-like pulses
at high pA and trailing to higher pL90 values that clearly dis-
plays a pathological behavior of TBA (range outliers), with
fluctuations that are larger than expected for regular S2 pulses
(see Fig. 2). Investigation prompted by this observation deter-
mined that this issue was caused by a misreconstruction of the
TBA RQ by the pulse parametrization algorithms. Another
notable result from the GMM model is the identification of a
distinct population of SE signals that are followed by either
an afterpulsing or a coincident dark count, making them sim-
ilar to small S2 pulses in the RQ space and resulting in a

! https://gitlab.com/PauloBras/PClassGMMClustering. git.
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Fig. 3 Scatter plots of the GMM components for pulse area (pA) vs pulse length (pL90) RQs (left) and top-bottom asymmetry (7BA) vs pulse area

RQs (right). The size and density of the 67 components vary significantly

small mixture between these signals in some GMM compo-
nents. This, however, is inconsequential to the physics analy-
sis since S2 and SE pulses can be discriminated by area alone
in a subsequent processing step.

Each GMM component is now assigned a categorical
pulse class based on the type of pulses that it contains. The
contents of each component are inferred by carefully charac-
terizing their parameter distributions and by handscanning a
larger sample of pulses. Two GMM components were iden-
tified as containing most of the SE split population with low
contamination from other pulse species. However, handscans
of other GMM components seem to indicate that the cluster-
ing analysis cannot fully resolve afterpulsing and the contam-
inant SPE pulses from other spurious pulses like SE splits or
baseline fluctuations. The components with noticeable con-
tamination are assigned to the categorical pulse class in the
majority. A discussion of the effect that these results and
choices have in the training of the predictive models is pro-
vided in Sect. 3.4.

A rough classification of the data has already been per-
formed by identifying the contents of each GMM compo-
nent. Even though mixture models can be used as predictive
models, alternative ML methods such as tree ensembles and
neural networks are often better at generalizing and handling
novel data. In the absence of labeled data, the results from the
GMM clustering analysis can be used as a prior estimate of
the pulse classes and were used to train the predictive models
described in Sects. 3.2 and 3.3. The accuracy of these models
will be calculated using the results obtained in this Section
as targets, together with careful monitoring of their results
via data handscans.

3.2 The RFClassifier pulse classification tool

The simplicity and robustness of random forests motivated
the development of the RFClassifier’ pulse classification
tool. This tool has been developed using the scikit-learn
implementation of the RandomForestClassifier model [51].
The methodology followed here aims to provide a deeper
understanding of how to best separate bad pulse popula-
tions overlapping with the main populations and to deter-
mine which RQs, parametric thresholds, and sequences of
selection criteria yield the most efficient partitioning of the
dataset (i.e., feature importance ranking) [15,18].

The RQs selected for benchmarking the model were pA,
pH, pL90, pRMSW, pF50, pF100, pF200, pFl1k,TBA and
pHTL. The coincidence RQ was not selected due to being
miscalculated for smaller pulses, as explained in Sect. 2.2.
Despite being highly correlated, the four prompt fraction RQs
(pF50, pF100, pF200 and pF1k) were included in the input
data to determine which one has the strongest discriminant
power among them.

The results obtained in the clustering analysis in Sect. 3.1
are used to train and benchmark the RFClassifier model. The
number of trees in the model, their individual depth, and
the minimal sample size to allow the data to be split, were
estimated recursively by monitoring the performance of the
model. The final model is composed of 101 learners with no
limitation of growth and minimum number of samples to split
a branch set at 2. The RQ dataset was divided into a training
set and test set with 80-20% splitting ratio. No additional
selection of data was performed and all classes are consid-
ered to have the same importance. It is worth noting that some

2 https://gitlab.com/PauloBras/PClassRFClassifier.git.
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Fig. 4 Distribution of the pulse populations in the marginal distribu-
tion TBA vs pA after being processed by the RFClassifier. The top-left
plot displays the distribution of pulses classified as S1. The top right plot

classes are more common than others in this dataset, namely
SE pulses. Bootstrap aggregating (bagging) may induce some
class bias if some classes are more represented than others in
amulti-class dataset. This effect is amplified if bootstrapping
is done without replacement, which is the case here [15,18].
However, the asymmetry on the abundances of the differ-
ent species is not too severe in this work and all classes are
assumed to be sufficiently well represented, with the least
prevalent class (S1 pulses, corresponding to around 10% of
all pulses in the dataset) being around 2 orders of magnitude
larger than the number of learners used.

Figures 4 and 5 display the results of the predictions of
the RFClassifier model for the test dataset, represented in the
marginal distributions log;,(pA) vs log;(pL90) and TBA vs
log;o(pA), respectively. These distributions can be compared
to the plots in Fig. 2, that displays the distribution of all pulse
populations conveniently labeled. The population of SE split
pulses is clearly visible at the center of the bottom-left plot of
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displays the distribution of S2 pulses, while the bottom plots display
the Other population on the left and the SE population on the right

Fig. 4, that displays the distribution of the pulses classified as
Other by the RFClassifier. This module successfully tagged
most of the SE split pulses as Other, leaving only a small
number of these spurious pulses in the distribution of pulses
classified as S1, displayed on the top-left plot of Fig. 4.

Table 2 displays the confusion matrix of the RFClassifier
for the test set of the RQ dataset, using the GMM results
as the target class. The overall validation accuracy (acc) of
the RFClassifier model, calculated using the GMM results
as the target classification, is acc = 99.38%. Considering
only the classification of S1-like and S2-like pulses, i.e., not
considering the mixing of S2 and SE pulse labels to be a mis-
classification, the validation accuracy is acc3182 =99 67%.

The main failure mode present in these results is the clas-
sification of Other pulses as S1-like pulses, mainly from SE
splits. Conversely, some S1-like pulses are also being iden-
tified as Other pulses, hinting at some level of label mixing
in the GMM results (see discussion in Sect. 3.4).
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3.2.1 Feature importance ranking

When working with classification of data with large dimen-
sionality it is useful to rank the data features by their use-
fulness in partitioning the data. This allows ML models like
those explored in this work to be trained with a smaller sub-
set of features that ranked higher, and by doing so greatly
improving training efficiency without compromising classi-
fication performance [15], assuming that this feature rank-
ing is ubiquitous across different models. Even for data with
lower dimensionality, the identification of the best discrimi-
nant features is an extremely useful step in the development
of traditional heuristic classification algorithms, or in pro-
viding important information for the development of more
efficient online data monitoring tools.
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displays the distribution of S2 pulses, while the bottom plots display
the Other population on the left and the SE population on the right

The permutation importance score method was used in this
work to determine which RQs are the best overall discrimi-
nants for this dataset. This method evaluates the decrease in
a model score when a single feature value is randomly shuf-
fled, and is more reliable than the typical variable importance
ranking methods based on impurity indices and variable fre-
quency since it is less sensitive to highly correlated variables
and to asymmetric representation of class labels [18,55].

Figure 6 shows the permutation importance score for each
RQ considered in the analysis. The scores were obtained
using the fully trained RFClassifier model. The pA and pL90
RQs are the best overall discriminants, with pF100, pF200,
pH and TBA all roughly equal as the next strongest features.
There is also an apparent preference for the pF'100 RQ among
the prompt fraction RQs. The pF50, pF1k, pRMSW and pHTL
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Table 2 Confusion matrix of the RFClassifier results over the test dataset, using the GMM results as the target labels

GMM class RFClassifier predicted class Total

S1 S2 Other
S1 11,590 0 261 11,851 5.9%
S2 0 51,103 4 51,455 25.7%
SE 0 228 128,371 0 128,599 64.4%
Other 385 13 7692 8095 4.0%
Total 11,975 51,344 128,724 7957 200,000
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Fig. 6 Permutation importance ranking obtained with the RFClassifier

RQs scored the lowest on the permutation importance rank-
ing.

The feature ranking provided by the RFClassifier was used
to inform the training of the NN ensemble method presented
in Sect. 3.3. The low dimensionality of the data used in this
study, with only 10 independent features, means that training
times are manageable and reducing the number of features
will not impact it significantly. However, excluding the fea-
tures with lower discrimination power increases the effec-
tiveness of training and can help the model reach a higher
accuracy. This was verified by comparing the accuracy of the
same model trained with all features and with only the top 6
performing ones. For that reason, the pF50, pFlk, pRMSW
and pHTL RQs were excluded during the training of the NN
ensemble method presented in Sect. 3.3.

These results were also used to inform other non-ML clas-
sification algorithms that were proposed for LZ.

3.3 TriNet classifier

It was established during this work that an ensemble of dense
NN as binary classifiers, each trained in a One-vs-All con-
figuration, returned better overall results than a single multi-
class NN classifier model. In a One-vs-All problem, each of
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the NNs focuses on learning how to distinguish a single class
from the remaining.

The NN ensemble model developed in this work com-
bines several independent learners, each trained separately
to identify a single given categorical pulse class. The predic-
tion of the ensemble of K’ NN classifiers is represented by
a function y = f(x), with y = {915 92 ... ; D .. 5 Yk}
The terms 33 are the output vectors of the k™ NN classi-
fier in the ensemble, labeled here as NN;. These terms can
be defined as independent functions such that yp = fi(x),
with fi- being the function fitted by NNy.. The terms y;
are two-vectors of the form y;» = (ex/, €). The component
)311, = €y is the “response” of NNy, and should approach
1 when a pulse is of the class designated to the NN. Con-
versely, the term )3,%, = €y represents the response of NNy for
all the other classes, here named the “anti-response”. Since
the response and anti-response are anti-correlated, only the
response is used in this work. The output of each NN is con-
tinuous and bounded, and can be viewed as the likelihood of a
given pulse being from the respective target class. Therefore,
this method provides a quasi-probabilistic approach to the
classification problem. Obtaining probabilistic information
instead of a categorical result can provide more information
about the nature of the pulse and the degree of ambiguity of
the prediction.

In this work the Other pulses are considered the “excep-
tion” class to the remaining target pulse classes and thus
they do not need to be learned explicitly by the NN ensemble
model. For that reason, the number of target classes with a
dedicated NN classifier in the ensemble is K’ = 3, those
classes being S1, S2 and SE, as mentioned at the end of
Sect. 3. Therefore, this model was named TriNet Classiﬁer,3
and was implemented and trained using the Keras library [56]
with a Tensorflow backend.

The architecture of the TriNet Classifier is represented
in the left side of Fig. 7. The ensemble model is composed
of three independently trained NN classifiers schematically
depicted in the right side of Fig. 7. Each NN classifier has
L = 3 fully connected hidden layers, with P = 17 hidden
units (neurons) each for a total of 4 = 51 neurons. These

3 https://gitlab.com/PauloBras/PClassTriNetClassifier.git.
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Fig. 7 Simplified schematic of
the TriNet Classifier model
(left). The model is composed of
an ensemble of three NN models
(right) each trained to separate
the three main pulse classes in
the data: S1, S2 and SE pulses.
The outputs of each NN

LZap dataset

/ INPUT (D=9) - tanh activation /

Dropout 10%

| Hidden layer 1 (17 units) - ELU activation |

Dropout 10%

classifier, yp = {€, €x'},
represent the response and
anti-response of the classifier to

NN;

Hidden layer 2 (17 units) - ELU activation
NN;

Dropout 10%

its respective class

values were selected by benchmarking the performance of
the individual models for different values of L and P. All
hidden neurons have an exponential linear activation (ELU)
[56]. The input layer and all hidden layers have an associated
dropout layer that will randomly shut down neurons with a
10% probability per neuron in each training batch in order to
prevent overtraining [19,56].

The output of the TriNet Classifier is given by the ensem-
ble of the individual outputs of each NN classifier, y =
{31; y2; y3}, with y» = (ep’, €) the output of the individual
NN classifier assigned to class label k’. For simplicity, the
output y is explicitly written as a matrix of the type

€1 €
y=|eé&
€3 €3

with the row vectors representing the individual outputs of
the NNy classifiers and the column vectors representing the
overall response and anti-response of the ensemble, hereby
defined by € = (¢, €2, 63)T and € = (€1, €3, €3)T, respec-
tively. Since the sum of the elements of each individual out-
put yx is approximately unity, the sum of all elements of
the TriNet Classifier output is approximately K’ (=3 in this
work), i.e.,

K/
Y (e +an~ K. (1)

k'=1

For each of the pulse classes present in the data, the out-
put y of the TriNet Classifier ensemble is expected to be
asymptotically equivalent to

10

Jxly=D~101]|;
01

— Dropoutio®
Hidden layer 3 (17 units) - ELU activation

Dropout 10%
— Dropouti®

| Output layer - Sigmoid activation |

€k’

[01
f&xly=2)~110]; ©))
0 1
f&xly=3)~101],

with the training label y = k’ representing the pulse class
sp € {S1, 82, SE}.

The responses of the individual classifiers of the TriNet
ensemble to a pulse that resembles neither an S1 nor an S2
nor an SE pulse, i.e., an Other pulse, are expected to be small,
i.e., the output of the TriNet Classifier model associated to
an Other pulses is expected to be asymptotically equivalent
to

01

Jxly#{L,2,3)~ (01]. 3
01

It is convenient to quantify the global strength of the
responses € and anti-responses € in order to evaluate if there
is any type of ambiguity on the predictions. The confidence
on the result, I'¢, can be expressed by the sum of the ele-
ments of €, and an equivalent quantity can be defined for €,
designated by ;.

K

e = Z € (confidence) “4)
k=1
K’

I': = Z €r (confidence complement) (5)
k=1

The parameter I'z can be seen as the complement to the
confidence score I, since the result in Eq. (1) implies that
[;~ K' —Tk.
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The output of the TriNet model can be converted into a
probabilistic vector, p(k), using a simple set of rules using
the response vector € and the confidence score I'c. Since
there is no representation of spurious pulses in training, the
probability vector should have K’ + 1 number of terms, one
for each K’ primary class plus an additional term assigned
to the remaining classes. In the case of the TriNet classi-
fier, the K’ = 3 primary classes will return K’ + 1 = 4
probability results. For K’ = 3, the simplest parametrization
of the output of the model is given by Egs. (6) and (7), for
when the confidence I'¢ is less than or equal to 1 or when its
larger than 1, respectively. The latter case is dubbed “over-
confidence” and automatically indicates that there is some
conflict between the responses of the classifiers, which can
be the result of some pulses having mixed properties or hint-
ing towards problems in the data.

1. IfTe < 1:

plke K') = e
plk =4)=1-T¢ (Other) (©)

2. If I'c > 1 (overconfidence):

plk=4) = % ('e — 1) (Other)

1—pk=4
plk € Ky = ek/# %

Using the information obtained by feature importance
ranking with the RFClassifier (see Sect. 3.2.1), the follow-
ing list of RQs were selected as input: pA, pH, pL90, pF100,
pF200, and TBA. These inputs were normalized and mean-
centered when necessary to cover similar ranges, in order to
avoid loss of information and neuron “death” [19]. The mean-
centering of the pA and pL90 RQs is done with respect to the
mean values for SE pulses since these are very well defined in
the data and provide a natural middle point for the S1-like and
S2-like phase-spaces. The pH, pA and pL90 RQs were pro-
jected to a logarithmic representation since they span several
orders of magnitude. The TBA RQ and the prompt fraction
family of RQs do not need normalization.

The dataset was divided into a training set and test set
with 80-20% splitting ratio. The training is optimized using
the RMSprop algorithm [56] with an initial learning rate
a = 0.001 and batch size n = 128 samples. The choice
of the hyperparameters of the model was performed a-priori
by monitoring its generalization accuracy, loss over the gen-
eralization data and average training time. The training is
monitored using the accuracy score of each model over the
validation dataset, with an early stopping of the training if
the validation accuracy does not improve for 10 consecutive
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epochs. To avoid overfitting, the model is saved at the state
it was at the beginning of the 10 final training epochs.

The class labels used to train the TriNet Classifier were
obtained using the GMM clustering analysis explained in
Sect. 3.1. As mentioned before, there is some degree of mix-
ture between SE split pulses and S1 afterpulsing in the GMM
results, which is expected to influence the performance of the
TriNet Classifier in some way. If the mixture is not too severe,
each NN is expected to overcome the label impurity under
the Classification Without Labels (CWoLA) paradigm [57].
However, the contamination of SPE pulses with coincidence
larger than 1 seems to be uniformly distributed across the S1
and Other pulse classes in the GMM results, which may lead
to some confusion during training (see discussion below).

In order to represent the pulse populations for different
classes obtained with the TriNet Classifier, the § output, and
in turn the probabilistic vector of the pulse classes obtained
using Eqs. (6) and (7), are converted to categorical class labels
corresponding to the 4 possible pulse classes considered in
this work. Here, the categorical classifications are obtained
by setting threshold values to the elements of the probabilis-
tic vector, with each threshold being tuned to minimize the
misclassification errors (false positives and false negatives)
for its respective class. This conversion step can be achieved
in many different ways, and the one used in this work is not
assumed to be optimal.

Figures 8 and 9 display the results of the predictions of
the TriNet classifier model for the test dataset after convert-
ing them into categorical classifications, represented in the
marginal distributions log;,(pA) vs log;(pL90) and TBA vs
log;o(pA), respectively. These distributions can be compared
to the plots in Fig. 2, as well as with the results obtained with
the RFClassifier model in Figs. 4 and 5. The TriNet model is
able to separate the main pulses classes with high efficiency,
comparable to the results from the RFClassifier model pre-
sented in Sect. 3.2. Similarly to those results, the TriNet clas-
sifier model managed to separate the majority of the SE split
pulses, clearly visible at the center of the bottom-left plot of
Fig. 8, that displays the distribution of the pulses classified as
Other. The classification of some SE pulses with larger pulse
length as S2 pulses is a consequence of both models being
trained with the results from the GMM clustering analysis,
discussed in Sect. 3.1. The sub-population of SPE pulses
with coincidence RQ larger than 2 (easily identified by hav-
ing TBA ~ =£1) is present in both the distribution of pulses
classified as S1 (top left plot of Fig. 8) and in the distribu-
tion of pulses classified as Other (bottom left plot of Fig. 8).
This indicates that some mixing in the classification is tak-
ing place as mentioned before. A more detailed discussion is
presented in Sect. 3.4. Finally, it has been demonstrated that
the TriNet model is able to identify spurious pulses without
having explicitly learned from examples of these pulses dur-
ing training, which may provide a strong method to identify
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Fig. 8 Distribution of the pulse populations in the marginal distribu-
tion TBA vs pA after being processed by the TriNet Classifier trained
with the GMM results, and converted to categorical classifications. Top-

unexpected pathological behavior in the data by looking at
pulses classified as Other.

Table 3 compares the results of the TriNet Classifier with
the labels obtained in the GMM clustering analysis developed
in Sect. 3.1. From Table 3, the overall validation accuracy of
the TriNet Classifier model, calculated over the GMM labels,
is estimated to be acc = 99.06%. Considering only the clas-
sification of S1-like and S2-like pulses, i.e., not considering
the mixing of S2 and SE pulse labels to be a misclassifica-
tion, the validation accuracy becomes accS!5? = 99.47%.
Similarly to the RFClassifier results in Sect. 3.2, the main
contribution to the accuracy loss of the TriNet model is the
confusion between S1 pulses and Other pulses. This issue is
discussed in detail in the next section.

3.4 Discussion

The RFClassifier and the TriNet models show some tension
with the results from the GMM clustering, especially in the
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left: pulses classified as S1. Top right: pulses classified as S2. Bottom-
right: pulses classified as SE. Bottom-left: distribution of the remaining
pulses, i.e., classified as Other

mixing of S1 and Other labels. A detailed handscan focused
on these cases was performed in order to determine their
cause. This exercise indicated that the major contributions
to the loss of accuracy on both the TriNet and RFClassifier
models are the misclassification of SPE pulses with incorrect
channel coincidence values, and a strong confusion between
S1 afterpulsing and the SE split pulses.

Roughly 55% of the pulses labeled as S1 in the GMM
analysis, and 43% of those labeled as Other, have coinci-
dence lower than 3. The majority of these cases are SPE
pulses with miscalculated coincidence, with a minor contri-
bution from random noise (baselines). From the handscan,
it was determined that these cases contribute to 64% of the
pulses misclassified as S1 and 24% of those misclassified as
Other by the TriNet model. If these pulses are excluded, the
accuracy of the TriNet model increases up to 99.3%.

The confusion between S1 afterpulsing and the SE split
pulses seems to be caused by some mixture on the GMM
analysis results, which influenced the TriNet and RFClassi-
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Table 3 Confusion matrix of

the results from the TriNet GMM class gllrlNet predlctedsczlass - — Total

Classifier, trained with the

GMM results as labels, s 11,571 0 0 280 11,851 5.9%

compared with the GMM results

obtained in Sect. 3.1 S2 0 51,001 444 10 51,455 25.7%
SE 0 380 128,211 8 128,599 64.4%
Other 698 38 28 7331 8095 4.0%
Total 12,269 51,419 128,683 7629 200,000

fier models. The degree of confusion indicates that the label
mixture for these two pulse types is high, as mentioned pre-
viously in Sect. 3.1, which most likely prevented the models
from fully learning to distinguish these two pulse types [57].
Very often these pulses share the same RQ phase-space and
have very similar waveforms. In fact, it became apparent dur-
ing the handscan that discriminating by eye between some
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SE split pulses and S1 afterpulsing was remarkably difficult
without some context from the rest of the event. Considering
that the classification is performed at the pulse level without
any information from the rest of the event (and only in the
RQ space) it seems reasonable that the GMM analysis, and
consequently the predictive models, could not fully separate
these two populations.
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Most of the classification issues mentioned above only
involve pulses that are not critical to the reconstruction of
an event, while the accuracy for identifying the primary S1
and S2 pulses correctly — the pulses that are essential to fully
describe an interaction — is expected to be much higher than
the values of the global accuracy presented here. For this
reason, the impact of these misclassifications on the perfor-
mance of the detector is expected to be negligible.

4 Conclusions

The methodology presented here demonstrates how one can
develop new or improve existing algorithms aimed at the
classification of signals in dual-phase noble element TPCs
using standard ML methods. Even though this work was per-
formed using simulated data, the omission of truth informa-
tion and the realism of the simulations used ensure that this
data is analogous to real detector data, which indicates that
this analysis can accomplish the same results and overcome
similar challenges when applied to real data.

The initial clustering analysis and the feature importance
ranking methods presented here provide vital information,
directly from detector data, that can then be used to train
dedicated ML predictive models capable of competing with
common ad hoc and heuristic methods. The GMM cluster-
ing analysis explored here provides a robust and minimally
biased way of characterizing detector data directly, in order
to train pulse classification algorithms while avoiding any
dependencies on simulations. This technique will be tested
with real detector data once LZ starts data taking.

The RFClassifier model achieved an overall classification
accuracy of 99.38% and was able to successfully tag known
spurious pulses in the data. The TriNet model also achieved
an excellent global accuracy of 99.04% and demonstrated
that it is possible to teach an ensemble of NNs to identify
spurious pulses while maintaining a high global classifica-
tion accuracy, even if the spurious pulses are not explicitly
learned. Both models, when used as standalone pulse clas-
sification tools, perform at least on par with conventional
methods [5,6,14] having also outperformed a conventional
classification algorithm developed and tested by the LZ col-
laboration with an overall accuracy of 98.6%, estimated via
handscans, for the same data used in this work. It was also
demonstrated that these models can be used as auxiliary tools
to identify systemic issues in the data processing stages pre-
ceding the classification. The TriNet Classifier model is also
able to deliver probabilistic information, providing this clas-
sifier with a higher classification flexibility than the remain-
ing methods studied here.

The results presented in this work were obtained whilst
training the classification models with impure data. This con-
tamination of the training labels originated from the GMM

clustering analysis, which in turn resulted from errors in pre-
ceding data handling stages, e.g., miscalculated coincidence
RQ or split pulses. These uncertainties in the data are to be
expected during the first stages of development of a process-
ing framework or when a detector begins taking data. Despite
these challenges, the methods developed in this work out-
performed traditional methods without resorting to a priori
knowledge of the data, such as truth information from sim-
ulations during validation. Thus, this methodology is able
to effectively overcome these potential sources of bias. Fur-
thermore, these methods can be used to diagnose potential
problems in preceding data handling stages, which has been
demonstrated in this work with some level of success. In par-
ticular the GMM clustering analysis has revealed issues with
the TBA RQ calculation by isolating the corresponding out-
lier population. This property can help to identify potential
issues in real data as well.

Finally, besides the challenges contemplated in this work
(mainly caused by data handling stages between data acqui-
sition and processing) additional problems are to be expected
when analysing real detector data (from LZ or other-
wise). However, since this methodology uses a data-driven
approach, it is expected to overcome any data-specific chal-
lenges with at least the same level of success as that of tradi-
tional methods, regardless of the nature of these challenges.
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