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Abstract

Purpose: Brain image volumetric measurements (BVM) methods have been used to quantify
brain tissue volumes using magnetic resonance imaging (MRI) when investigating abnormal-
ities. Although BVM methods are widely used, they need to be evaluated to quantify their reli-
ability. Currently, the gold-standard reference to evaluate a BVM is usually manual labeling
measurement. Manual volume labeling is a time-consuming and expensive task, but the con-
fidence level ascribed to this method is not absolute. We describe and evaluate a biomimetic
brain phantom as an alternative for the manual validation of BVM.

Methods:We printed a three-dimensional (3D) brain mold using an MRI of a three-year-old boy
diagnosed with Sturge-Weber syndrome. Then we prepared three different mixtures of styrene-
ethylene/butylene-styrene gel and paraffin to mimic white matter (WM), gray matter (GM), and
cerebrospinal fluid (CSF). The mold was filled by these three mixtures with known volumes.
We scanned the brain phantom using two MRI scanners, 1.5 and 3.0 Tesla. Our suggestion is
a new challenging model to evaluate the BVM which includes the measured volumes of the
phantom compartments and its MRI. We investigated the performance of an automatic BVM,
i.e., the expectation–maximization (EM) method, to estimate its accuracy in BVM.

Results: The automatic BVM results using the EMmethod showed a relative error (regarding the
phantom volume) of 0.08, 0.03, and 0.13 (�0.03 uncertainty) percentages of the GM, CSF, and
WM volume, respectively, which was in good agreement with the results reported using manual
segmentation.

Conclusions: The phantom can be a potential quantifier for a wide range of segmentation
methods.

© 2021 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.8.1.013503]
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1 Introduction

Medical imaging techniques seek to reveal organs’ internal structure to diagnose disorders and
follow up their behavior in response to treatments. These techniques include two central steps,
i.e., hardware setup and image processing algorithms. Alongside prior information and expertise,
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radiologists use image processing packages to interpret the extracted results to suggest a patient’s
treatment strategy under examination. Therefore, the precision of image processing techniques is
of crucial importance for the treatment.

Brain image segmentation is one of the image processing techniques used for visualization1

and volumetric analysis2–4 of the brain compartments as well as the possibility to detect lesions5,6

or tumors.7,8 Figure 1 presents a common pipeline for volumetric brain segmentation. The pipe-
line produces a label map that classifies each image voxel into tissue categories, i.e., white matter
(WM), gray matter (GM), and cerebrospinal fluid (CSF). Thus, one can calculate the volume of
compartments using the labels and the image’s voxel size.

Several volumetric brain segmentation methods have been proposed using different tech-
niques, e.g., expectation–maximization (EM) algorithm,9 K-mean,10 and q-entropy11 for either
estimating a specific region or the total brain volume. Although the number of such techniques
has proliferated as research groups seek new methods with improved accuracy and faster exe-
cution, one needs to evaluate their performance to quantify the reliability of the extracted results
from those methods.

It is common to use similarity coefficients12 to evaluate the label map’s precision produced by
an image segmentation method. In this type of evaluation, a reference image (gold standard) is
needed to calculate the similarity coefficient. Therefore, an index is calculated to show how
much the label map is similar to the gold standard. If the index approaches 1, a higher similarity
is achieved, and if the index is closer to 0, a lower similarity is concluded. The evaluation pipe-
line using the similarity metric is illustrated in Fig. 2.

To date, there are two sources of gold standard references to calculate the similarity metrics:
expert manual segmentation and phantom imaging. Manual segmentation is the most reliable
one, but it is time-consuming and strongly operator dependent.13 One can use postmortem vol-
ume quantification as a reference to access the accuracy of segmentation methods, though tissue
deformation prevents voxel-wise comparison.14 There are significant visual ambiguities that
make the manual segmentation a very challenging task. For instance, the contrast range of the
human eyes is limited and may not distinguish voxels with very similar intensities, as shown in
Fig. 3. As an alternative for this infrequent source, phantoms are more naturally accessible
sources.

Fig. 1 A pipeline for volume estimation using the image segmentation method. In this sche-
matic, the volumes of three main brain compartments (WM, GM, and CSF) are estimated using
a label map.

Fig. 2 Evaluation of a brain segmentation method using DICE (a similarity coefficient). The cal-
culated coefficient shows the similarity between label maps and the gold standard.
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Phantoms are divided into digital15 and physical16 categories. Digital phantoms have been
widely used for evaluating brain segmentation methods more than the others as ground truth.17–19

The first and most important advantage of digital phantoms is the controllability of the produced
image features. This means that by changing the features of the simulation20 in digital phantoms,
the drawbacks of a volumetric segmentation algorithm can be revealed. Reproducing this kind of
phantoms is cost-effective and not a time-consuming task. Magnetic resonance imaging (MRI)
brain simulations usually mimic healthy brains [Fig. 4(a)] and do not contain all the artifacts that
may exist in real situations [Fig. 4(c)]. Artifacts such as noise and magnetic field bias effects are
added to digital phantoms to produce a plausible simulation close to an actual brain image using
different algorithms. However, one can easily remove the artifacts by recognizing their type.

A physical phantom, also known as a clinical simulator, is an object made by a tissue-
mimicking material (TMM) with tunable properties. TMMs can simulate different properties in
different imaging modalities to evaluate, analyze, and tune various imaging devices.22 Physical
phantoms can mimic most human body parts, either addressing surgical planning such as
cardiac,23 oral surgery,24 and breast25,26 or simulating needle-based interventions.27 Recently,
phantoms with desired imaging characteristics for three-dimensional (3D) techniques such as
computer tomography (CT) and MRI28 and ultrasound29,30 have been employed.

Although the physical phantoms mimicking the brain are not new,31,32 recently, they have
been used and developed for brain image analysis.33–38 They can also be used to investigate and
characterize imaging devices, e.g., photoacoustic imaging systems39 and diffuse imaging and
spectroscopy.40 Here, the acquired images will be analyzed to adjust the imaging techniques’
parameters to achieve the best possible image quality. Construction time and cost are disadvan-
tages of physical phantoms compared to digital phantoms. A significant difference between

Fig. 4 (a) Simulated brain;17 (b) healthy brain; and (c) patient brain with Sturge-Weber disease.21

Atrophy can be seen on the left side of the patient’s brain.

Fig. 3 A part of the axial view of a brain image. Yellow rectangular shows a part of the MRI includ-
ing two tissues. Red rectangular shows 12 pixels with different intensities. It is difficult for human
eyes to choose a very similar pixel in the border for labeling because eyes may not be able to
distinguish the difference between them.
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physical and digital phantoms is the presence of real artifacts in physical ones. Despite all the
pros and cons of physical phantoms, many companies produce them for various research fields
and educational purposes. For brevity, we will use the term phantom to indicate a physical phan-
tom throughout the rest of this paper.

Awide range of materials can be used to construct a phantom. Two of the most used classes
in TMMs are natural polymers (e.g., gelatin and agar) and synthetic polymers [e.g., polyvinyl
alcohol (PVA) cryogel and polyacrylamide41]. Cabrelli et al.42 provided a mixture of the copoly-
mer in oil styrene-ethylene/butylene-styrene (SEBS), i.e., kraton polymers/paraffin wax, in
order to mimic the main brain compartments. This mixture in MRI has a specific range of
intensity in which, by changing the ratio of paraffin wax to SEBS gel, the intensities can
be adjusted similar to the intensities of the brain compartments in MRI. In addition, the phan-
toms made of such materials have significantly lower temporal degradation compared to water-
based phantoms.43,44

Three-dimensional models can be produced based on CT or MRI volumetric medical
images.28 This 3D printed model is used as a mold in the phantom preparation process.24 In
this work, we prepared a 3D brain model and used it as the mold (consisting of two separated
molds for left and right lobes) filled with three mixtures of SEBS gel and paraffin to mimic WM,
GM, and CSF in the brain. Since each phantom compartment’s volume before filling the molds
was measured experimentally using two different methods, it can be compared with the mea-
sured volumes by any brain image volumetric measurements (BVM). Therefore, this phantom
and the measures of its compartments are our suggestions as a quantifier for BVMs. As an imple-
mentation example, our proposed model was used to evaluate EM45 to assess its accuracy when
estimating the phantom brain compartments.

2 Materials and Methods

2.1 Material Preparation

We used nine mixtures of the copolymer (SEBS) in mineral oil in a concentration of 10% w/w
and paraffin wax to choose three among them mimicking the brain tissues. Paraffin wax was
added in a mass fraction of 0% to 80% (by 10% increments) of solvent (oil mass) to the SEBS
gel.42 The sample preparation of the SEBS copolymer, mineral oil, and paraffin was continually
stirred. The mixtures remained at 120°C for ∼5 h in an oven (YK Oven vac 64L) to ensure
complete homogenization.

2.2 Phantom Preparation

A pilot phantom was constructed using a sample consisting of a mixture of SEBS gel/paraffin
(90% w/w) and a hypothalamus morphology mold from a didactical model.46 We scanned the
hypothalamus phantom in a 3.0 Tesla MRI scanner to reveal the inhomogeneity and intensity
range. Next, we covered the pilot phantom with a sample layer with a concentration of 70% and
then one more layer of 90% w/w SEBS gel/paraffin. The covered hypothalamus phantom with
the nine cylindrical samples (20 × 20 × 20 mm3) were scanned by 1.5 and 3.0 Tesla scanners
into three samples for manufacturing the brain compartments. A brain MRI of a 3-year-old boy
diagnosed with Sturge-Weber syndrome21 was used to print a 3D silicone mold (as a two-piece
model for the lobes of the brain). This disease results in an asymmetric lobe, unlike common
models, which are symmetric and homogenous. These geometric properties provide a challeng-
ing model for evaluating BVM. The molds were printed (polylactic acid fused filament) sep-
arately, using a Zmorph 2.0 S (LLC, Wroclaw, Poland) printer with a z-layer: 0.1 mm, path width
0.4 mm. Then both molds were filled using the first sample [100% SEBS gel, 450.320 g
(�0.005) or 531;300 mm3 (�0.01%)] as WM. After extracting the WM mimicking phantoms
(two lobes) from the molds, they were covered using the second sample [70% w/w SEBS gel/
paraffin, 125.410 g (�0.005) or 147;100 mm3 (�0.01%)] as GM. Afterward, these two WM–

GM phantoms were joined together and covered with the third sample [20% w/w SEBS gel/
paraffin, 171.270 g (�0.005) or 199; 100 mm3 (�0.01%)] as CSF.
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2.3 Error Analysis

To determine the exact volume of each part of the phantom, we estimated the samples’ density by
two different methods. Using the well-known water displacement method and using an alumi-
num cylindrical mold with known volume (5� 0.001 mm inner radius and 10� 0.001 mm

height), which was filled with the sample. In both methods, an analytical balance with a read-
ability of 0.000001 g was employed. However, to measure the mass of the materials to fill the
molds, we used a balance with �0.005 g uncertainty. There are two types of uncertainties to
measure the volumes: instrument error (systematic) and formula’s error (computational). For the
instruments, i.e., balances and digital micrometer, the systematic errors were mentioned. For the
density formula, we used the fractional uncertainties as

EQ-TARGET;temp:intralink-;e001;116;609ρ ¼ m
V

→
δρ

ρ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
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2
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�
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2

s
; (1)

but for the volume of the aluminum cylindrical mold
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Therefore, for the density, we have
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and for the volume of the phantom compartments
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For example, for GM volume estimation in the lab, total error in percentage was calculated as
follows:

EQ-TARGET;temp:intralink-;e005;116;325

δVGM

VGM

¼
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s
≅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.000042 þ 0.00032

p
≅ 0.03%: (5)

We estimated the maximum error (systematic and computational) for WM or CSF using Eq. (5)
as 0.03% of the total volume.

2.4 MRI Characterization

We scanned the material samples and the phantoms using two different MRI scanners, i.e., a
1.5-T scanner and a higher magnetic field strength 3.0-T scanner. The details of both scanners
can be seen in Table 1.

2.5 BVM Evaluation

The acquired image and the phantom’s volumes were used as a new challenging model for evalu-
ating BVM. This model can be used to evaluate any BVM, e.g., a brain volume segmentation
method by following these instructions.

Step 1. Use the brain phantom image as the input image.
Step 2. Use a BVM to segment the image into its compartments and extract a label map.
Step 3. Use the label map to calculate the volumes of the brain phantom compartments.
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Step 4. Calculate the error using the values calculated in step 3 and the volumes measured
experimentally.

We evaluated the EM segmentation as a BVM using this instruction. The software to perform
EM segmentation and calculate the volumes was a 3DSlicer.47 Two relative errors were calcu-
lated for each phantom compartment, i.e., relative error with respect to phantom volume (RE1)
and relative error with respect to each compartment (RE2).

3 Results

Figure 5 shows the MRI image of the hypothalamus phantom made by 90% w/w SEBS gel/
paraffin wax, covered by 30% and 10% paraffin, respectively, in which we can see a few bubbles
in the sagittal (yellow) view of the hypothalamus (down left). Nine mixtures of SEBS gel and
paraffin wax are surrounding the hypothalamus.

Table 2 presents the range intensities of the samples in both scanners calculated by 3DSlicer
software. The range intensities of samples in 1.5 and 3.0 Tesla devices are different indirectly due
to time repetition (TR) and time echo (TE), but directly due to T1 relaxometry differences (which
depend on the B0 field strength).

We compared the range intensity of three real MRIs with the samples to choose three samples
among the mixtures for manufacturing the brain compartments. Table 3 presents the intensity
statistics of the three real images.

Since different scanners were used to acquire the images, one cannot expect to obtain the same
range of intensities, even with the same modality protocols. Nevertheless, by scaling the inten-
sities of the samples and the real images from 0 to 1 we chose samples 1, 4, and 9, which had
maximum similarity to CSF (∼0 to 0.3), GM (∼0.3 to 0.8), and WM (∼0.8 to 1.0) in real images.

We used sample 1 (100% SEBS gel as WM) to fill the two-piece model lobes. Then sample 4
(70% SEBS gel with 30% paraffin as GM) was used to cover the lobes. In Fig. 6(a), a few bright
(noises) and dark (bubbles) spots have appeared. The two lobes in the previous step were
attached and covered with sample 9 (20% SEBS gel 80% paraffin wax as CSF) to complete the
brain phantom with three compartments. In addition to bubbles and noises, the bias field effect
can also be seen in this image. The bias field images produced by N4Bias Field Correction
module in the 3DSlicer are shown in Fig. 6(b).

Table 1 MRI scanners specification used in this study.

Specifications Scanner 1 Scanner 2

Manufacturer (model) Philips Medical Systems (Achieva) Philips Medical Systems (Achieva)

Magnetic field strength (Tesla) 1.5 3.0

Receiving coil SENSE-Head-8 Dual coil

Transmitting coil B B

Scanning sequence GR GR

Sequence variant MP MP

Repetition time (ms) 8.04 7

Echo time (ms) 3.73 3.21

Flip angle (deg) 8 8

Acquisition matrix 400 × 400 × 160 240 × 240 × 160

Resolution (voxels per mm) 0.6 × 0.6 × 1.0 1.0 × 1.0 × 1.0

Protocol name SAG_T1_3D SENSE 3DT1_VBM SENSE
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After manufacturing the entire brain phantom, the total volume was measured (here only
using water displacement, because using density and mass was not applicable) again to deter-
mine the difference between before and after attaching the three samples. The total volume of the
final product was more than the sum of all volumes separately. Indeed, this difference was due
to the presence of the undesired bubbles. The final volume of the phantom considering WM,
GM, CSF, and bubbles was 24361 mm3 (�0.01%) more than the sum of all volume measured
separately.

EM segmentation was used to segment the image of the brain phantom. Figures 7(a)–7(c)
show one slice of the original image, the associated label map produced by EM, and a magnified
part of the label, respectively.

As shown in Fig. 7(c), most of the bubbles were detected as GM (gray) because the intensity
range of the bubbles was close to the GM intensity range. Using this label map and a module in
the 3DSlicer, we measured the volumes of WM (yellow), GM, and CSF (blue). In order to evalu-
ate these measurements, we compared them with the experimental measurements of the compart-
ments. Since EM detected the bubbles as GM, we should compare it (GMEM) by the summation
of GM measured experimentally (GMexp) plus the bubbles. Then

EQ-TARGET;temp:intralink-;sec3;116;248GMt ¼ GMexp þ bubbles ¼ 147;100þ 24;300 ¼ 171;400 mm3;

where GMt can be used to estimate the error of the EM segmentation method for calculating
the GM. Table 3 shows the EM segmentation method’s relative errors. Since GM measured
by EM was

EQ-TARGET;temp:intralink-;sec3;116;179GMEM ¼ 170;678 mm3;

then the relative error concerning the total volume is

EQ-TARGET;temp:intralink-;e006;116;136RE1ðGMEMÞ ¼
jGMt − GMEMj
phantom vol

¼ j171;400 − 170;678j
901;900

≅ 0.0008: (6)

However, the relative error concerning GM is

Fig. 5 Hypothalamus phantom made by one sample (90% SEBS gel mixed to 10% paraffin wax)
covered by 30% and 10% paraffin, respectively. Top left axial, right 3D, down left the sagittal and
downright coronal view of the acquired image in 3DSlicer software. Nine different combinations of
SEBS gel and paraffin wax are surrounding a hypothalamus. The yellow arrows show the bubbles.
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Table 2 Nine samples of different combinations of paraffin wax and SEBS gel, min, max, mean,
and standard deviation (StdDev) of measured intensities of them by two scanners 1.5 and 3.0
Tesla. The gray rows are chosen as three tissue to mimic WM, GM, and CSF in the brain.

Materials Intensities

Sample SEBS gel (%) Paraffin (%) Min Max Mean StdDev

1.5 Tesla 1 100 0 420 585 436 16

2 90 10 351 419 399 17

3 80 20 309 350 330 11

4 70 30 232 271 248 11

5 60 40 183 201 192 5

6 50 50 169 179 173 3

7 40 60 141 165 155 7

8 30 70 88 140 118 14

9 20 80 52 87 68 9

3.0 Tesla 1 100 0 404 515 422 18

2 90 10 344 393 375 13

3 80 20 235 331 283 30

4 70 30 193 232 210 11

5 60 40 172 186 179 4

6 50 50 160 170 164 3

7 40 60 138 159 151 5

8 30 70 82 135 109 13

9 20 80 51 81 62 7

Table 3 Numbers show the range intensities for three real MRIs acquired from a 3.0-Tesla scan-
ner. GM, WM, and CSF are gray and WMs and cerebrospinal fluid, respectively.

Tissues Min Max Mean StdDev

Image 1 GM 0 229 116 19

WM 0 201 78 32

CSF 0 85 28 17

Image 2 GM 336 723 484 43

WM 43 747 289 75

CSF 0 290 87 42

Image 3 GM 102 156 120 6

WM 60 118 91 11

CSF 5 77 42 12
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EQ-TARGET;temp:intralink-;e007;116;320RE2ðGMEMÞ ¼
jGMt − GMEMj

GMt
¼ j171;400 − 170;678j

171;400
≅ 0.004: (7)

The relative errors for WM, CSF, and the total volume were calculated in the same way and are
presented in Table 4.

Fig. 6 (a) Complete phantom of the infant’s brain with three materials mimics the real brain.
N, noise and B, bubbles. (b) The bias effect took place in the brain phantom.

Fig. 7 (a) Original acquired image of brain phantom; (b) label map of phantom by EM-algorithm
in 3DSlicer [▪ CSF (blue), ▪ GM (Gray), and ▪ WM (yellow)]; and (c) red arrows show the bubbles,
which were detected as GM by EM.

Table 4 Relative errors calculated for EM-segmentation. (+b) including bubbles. RE1, relative
error concerning the phantom volume and RE2, relative error concerning each compartment.

SEBS
gel (%)

Paraffin
(%)

Measured
volumes in lab
(mm3 �0.03%)

Measured
volumes by EM

(mm3)
RE1

(�0.03%)
RE2

(�0.03%)

GM 70 30 147,100 170,678 (þb) 0.08 0.4

WM 100 0 531,300 531,021 0.03 0.05

CSF 20 80 199,100 197,920 0.13 0.59

GM + WM + CSF 877,500 — — —

Brain phantom 901,800 899,619 0.24 0.24

Bubbles vol 24,300
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The relative error for GM (0.08%) was in good agreement with the error calculated using
manual segmentation in Eq. (9), which was 0.07%.

Figure 8(a) shows the photograph of the covered hypothalamus phantom and the nine cylin-
drical samples. It can be seen that by increasing the percentage of paraffin in the samples, their
transparency has decreased. Figure 8(b) shows the photograph of the final brain phantom.

4 Discussion

We propose a new challenging model, i.e., a biomimetic brain phantom with premeasured com-
partments showing an acceptable accuracy (�0.03%) for quantifying brain volume measure-
ments with MRI. Since previous quantifiers such as manual labeling and simulators have
several disadvantages, e.g., time-consuming and limitation in sick brain simulations, this model
can be used as an alternative.

Our proposed model was a physical phantom and its image, which provides a quantifier even
for technicians to evaluate their manual volume measurement performance. Although there
are other methods to evaluate manual volume estimation, e.g., cadavers’ muscle dissection48

for muscle volume estimation, the dissection’s accuracy still suffers from human error. It is not
always applicable to dissect tissue and measure its volume. Instead, we measured the volume of
the phantom using two different methods with acceptable accuracy.

Another advantage of the proposed phantom is the possibility of manipulating the intensity
level range of its compartments using a different mixture of SEBS gel and paraffin. This is par-
ticularly important because it makes it more difficult for brain volume measurements to estimate
volume compartments accurately. In this study, we selected those samples with the intensity level
ranges with the highest similarities to the intensities of real brain substances in MRI. One can
choose those samples, which have closer intensity ranges, together to be more challenging to
distinguish. This can be considered as an advantage of the physical phantoms.

To the best of our knowledge, this was the first physical phantom to mimic a real brain of a
human with Sturge-Weber disease. However, we believe it is possible to construct a 3D model
for other brain abnormalities and prepare a phantom using our preparation pipeline.

Although undesired bubbles in the phantom were measurable, the bubbles should be avoided
in a phantom study. We kept the samples in the oven to eliminate the air bubbles over 5 h, but a
few bubbles still appeared in the final phantom when filling the mold. It is left for the future

Fig. 8 (a) Hypothalamus phantom covered by two samples surrounded by nine different combi-
nations of SEBS gel (G) and paraffin (P). (b) Brain phantom of the infant, diagnosed by Sturge-
Weber syndrome, made by three samples (G ¼ 100%, 70%, and 20% with P ¼ 0%, 30%, and
80%, respectively).
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works to remove all bubbles using another approach. Using injection filling may decrease the
bubbles.

5 Conclusions

In this study, a physical brain phantom was constructed using three mixtures of SEBS gel and
paraffin (mimicking WM, GM, and CSF in the real brain) and a 3D printed model. Artifacts, i.e.,
noise, inhomogeneity, and bias effect, appeared in the phantom’s acquired image similar to a real
brain image. The volumes of the brain phantom compartments were measured experimentally
using two methods. The measurements of these volumes and the acquired MR image of the
phantom were proposed as a new challenging model to evaluate volume brain measurement
methods. To the best of our knowledge, this is the first phantom mimicking a brain with an
abnormality. The EM segmentation method was evaluated using the proposed model, and the
results showed a correlation between the calculated error using the new metric and the error
calculated in the previous study. The estimated relative errors for GM, WM, and CSF were
0.08%, 0.03%, and 0.13% with �0.03% uncertainty. Although the bubbles in the phantom can
be used as a gas-filled lesion that may result from infection, possibly microbleeds, small arterio-
venous malformations, or calcifications, the bubbles were an undesired part of this study. For
future work, using another approach, for example, injection filling, may help to decrease the
bubbles.
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