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Bundled payment models are widely used in healthcare reimbursement but they were primarily designed

for conditions managed by a single provider in a centralized manner. Therefore, these models do not account

for the complexities of conditions requiring post-acute care (PAC) after hospitalization, resulting in weak

incentives for care coordination between hospitals and PAC providers, particularly in decentralized set-

tings. Motivated by the Comprehensive Care for Joint Replacement (CJR) payment model introduced by

CMS—which holds hospitals accountable for the cost and quality of the entire episode, including PAC—we

examine the effectiveness of existing payment models in decentralized care. Our analysis shows that bun-

dled payment models and the CJR framework, especially without gainsharing agreements, do not fully align

provider incentives. To address these shortcomings, we propose a payment model that explicitly links hospital

and PAC provider reimbursements. Using a game-theoretical framework, we show that this model results in

socially optimal provider actions. Moreover, we establish that similar efficiency gains can be achieved within

the CJR framework if hospitals and PAC providers adopt structured gainsharing agreements. Numerical

simulations show that implementing this approach could reduce readmission costs by 12%, generating over

$150 million in annual savings for Medicare joint replacement procedures alone.
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1. Introduction

Diagnosis-Related Group (DRG) based payment models have been widely implemented across

numerous countries, including the United States, Canada, Australia, New Zealand, Germany, and

Sweden, with the goal of promoting efficient and high-quality healthcare delivery (OECD 2019).

These systems operate by assigning predetermined payment amounts for specific medical conditions

or treatments, based on the average cost of treating patients within the respective DRG. The

payment amount serves as a cost benchmark to incentivize cost efficiency improvement—healthcare

providers who manage to operate more efficiently than the average are able to generate positive
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margins from their services. The use of relative cost performance benchmarks follows the classic

principle of yardstick regulation and has been shown to elicit socially optimal actions (in balancing

expenditures and benefits) of cost reduction when the regulator is less informed than agents of their

cost structures (Shleifer 1985). The implementation of DRG-based payment systems, particularly

through the inpatient prospective payment system (PPS) initiated by the Centers for Medicare &

Medicaid Services (CMS) in 1983, has resulted in reduced hospital spending growth for Medicare

(Davis and Rhodes 1988) and has led to the introduction of PPSs in other settings such as post-

acute care (PAC).1

However, despite the success in incentivizing cost reduction, there is a legitimate concern that

PPSs potentially encourage providers to prioritize cost savings over the quality of care. To address

this concern, regulators have introduced outcome-based payment systems, commonly known as

pay-for-performance payment models. These models go beyond simply reimbursing providers for

services rendered or tasks completed, by linking a portion of DRG-based payments to health out-

comes and treatment quality.2 In these models, the magnitude of reward and penalty payments for

each provider is determined based on their relative performance compared to other providers, simi-

lar to the approach used in DRG-based payments. Extensive empirical research has been conducted

to examine the effects of outcome-based payment models (see Blumenthal et al. (2015) among

others). Furthermore, there is a growing body of literature exploring the design and effectiveness

of these payment models; see, for example, Arifoğlu et al. (2021), Savva et al. (2019), Chen and

Savva (2018), Zhang et al. (2016).

Care coordination: Prospective and outcome-based payment models, which we refer to as

single-entity payment models, have proven effective in cases where treatment decisions are made

in a centralized manner within a single entity (e.g., a hospital or a PAC provider) for a specific

episode of care. However, certain medical conditions, such as joint replacement, involve multiple

independent providers, leading to decentralized treatment decisions.

Following joint replacement surgery, a significant number of Medicare beneficiaries are discharged

from hospitals or other acute-care settings to various PAC settings, including skilled nursing facili-

ties, inpatient rehabilitation facilities, and home health agencies (Li et al. 2020, Schwarzkopf et al.

2016). These PAC settings vary in the intensity and complexity of the medical, skilled nursing,

and rehabilitative services they provide (Department of Health and Human Services 2017) and the

cost of PAC can constitute a substantial portion of the overall care expenses (Barnett et al. 2019).

1 In PAC settings, patients are classified into resource utilization groups (RUG) not DRGs. However, the PPSs for
acute and post-acute care use the same payment structure otherwise. Therefore, we use the term DRG-based models
for both settings.

2 Notable examples of these models include the Hospital Value-Based Purchasing (VBP) Program and the Skilled
Nursing Facility Value-Based Purchasing (SNF VBP) programs, as outlined in CMS (2023).
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While other conditions, such as stroke, traumatic injuries, and pneumonia, may also require PAC,

our primary focus in this paper is on joint replacement due to the recent emphasis placed on these

procedures by the CMS (Department of Health and Human Services 2017).

Effective coordination between hospitals and PAC providers is important for achieving favorable

outcomes in joint replacement procedures. PAC for joint replacement typically involves a range

of services designed to support the patient’s recovery, such as physical therapy and occupational

therapy (MedPAC 2022). Acute-care providers (usually working in a hospital setting) play a critical

role in ensuring successful PAC outcomes as well through coordination and effective transition of

care (Arana et al. 2017, Department of Health and Human Services 2021). Hospitals and PAC

providers can implement several strategies to improve coordination and transitions, including the

use of connected electronic health records and other technology tools, establishing partnerships,

scheduling post-discharge visits from hospital physicians, and implementing joint education and

training programs (Adler-Milstein et al. 2021, Britton et al. 2017, Cipriano et al. 2018).

In the past, CMS utilized separate PPSs to reimburse hospitals and PAC providers for their indi-

vidual contributions to joint replacement treatment. However, these payment methods, even with

outcome-based adjustments, failed to provide adequate incentives for investments in care coordina-

tion (Department of Health and Human Services 2021). This was because additional investments

made by one party to enhance the efficiency of the other party were not reimbursed under the tra-

ditional DRG payment structure. Furthermore, these payment methods could lead to unintended

consequences, such as hospitals discharging patients to PAC settings with unnecessary intensive

care in an attempt to reduce readmissions (Zhu et al. 2018) because hospitals are penalized for

excess 30-day readmissions under the Hospital Readmissions Reduction Program (HRRP). Con-

sequently, a more comprehensive approach to payment models was needed, one that considers the

collaborative nature of care delivery across multiple entities (in a decentralized manner) in the

context of joint replacement procedures.

CJR Program: To enhance coordination between hospitals and PAC providers, CMS imple-

mented the Comprehensive Care for Joint Replacement (CJR) model in 2016 across specific geo-

graphic areas in the United States. The CJR model aimed to address the challenges of care coor-

dination by holding participating hospitals financially accountable for the entire episode of care,

encompassing hospitalization and all PAC services for 90 days post-discharge. CMS establishes

a target price for hip and knee replacements based on the average regional treatment cost, with

quality of care taken into account through a composite-quality score adjustment of up to 3%. Par-

ticipating hospitals receive a reconciliation payment if the total episode of care costs during the

performance year are below the target price, while repayments may be required if the total episode
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of care costs exceed the target price (CMS 2018, Department of Health and Human Services 2021).

However, PAC providers continue to be paid using an outcome-based PPS.

The CJR program draws on concepts from bundled-payment models but incorporates unique

features. While (conventional) bundled payment models involve a single payment to cover the entire

episode of care (a feature CJR program adopted), the CJR program utilizes separate payments

to hospitals and PAC providers, recognizing them as distinct entities. This separation introduces

challenges in assigning responsibility for costs and quality outcomes across the full episode of care.

Unlike single-entity models where one organization oversees all aspects of treatment, hospitals

in the CJR program collaborate with multiple PAC providers, complicating the attribution of

costs and care quality. This fragmentation can lead to misaligned incentives, where one provider

benefits from the efforts of another without contributing proportionally—a phenomenon known as

free-riding in multi-provider settings (Salanie 1997, Chapter 5.3.8).

To further encourage care coordination, the CJR program permits hospitals to establish gain-

sharing agreements with PAC providers, allowing them to share financial rewards and penalties.

However, designing effective gainsharing agreements is challenging, particularly due to informa-

tional asymmetries between hospitals and PAC providers (Gupta et al. 2021, Ghamat et al. 2021),

and CMS has provided limited guidance on this issue. Additionally, hospitals cannot mandate

which PAC provider a patient chooses, further complicating coordination efforts (McGarry and

Grabowski 2017). Furthermore, despite the intent to encourage collaboration, these agreements

have seen minimal adoption in practice. Interviews conducted with CJR hospitals indicate that

gainsharing agreements were virtually nonexistent during the program’s implementation (Hopewell

et al. 2024, Ghamat et al. 2021). As a result, empirical evaluations have found that the CJR

program has achieved only modest and statistically insignificant cost savings, primarily through

reduced PAC utilization rather than efficiency improvements (CMS 2021a, Barnett et al. 2019,

Finkelstein et al. 2018).

Analysis of existing payment models: Given the limitations of the CJR program in effec-

tively incentivizing care coordination we analyze various payment models to understand their

impact on provider behavior and patient outcomes. To assess the long-term impact of different

payment models, we develop a stylized model where the cost efficiency of care provided by a PAC

provider can be improved by additional investment from the hospital that provided acute care to

the patient, and the readmissions can be reduced through collective investments.

Using this framework, we first examine the bundled payment model that precedes the CJR pro-

gram and demonstrate that, while bundled payment improves cost containment compared to PPS,

it fails to incentivize hospitals and PAC providers to coordinate care effectively. Specifically, these
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models do not provide hospitals with incentives to invest in reducing PAC costs, and provide inad-

equate incentives for providers to collectively reduce readmissions. As a result, bundled payment

results in suboptimal coordination and higher overall costs.

Next, we introduce a CJR-type payment model that captures the key financial incentives of

the CJR program, focusing on settings where gainsharing agreements are absent. This payment

model extends the bundled payment model by making hospitals responsible for the total episode of

care costs, including PAC services and readmissions. We show that, while this model incentivizes

hospitals to invest in lowering PAC costs, it does not induce first-best levels of investment in

reducing readmissions. The misalignment arises because hospitals bear full financial responsibility

for readmissions, while PAC providers remain accountable only for their own costs. This imbalance

in financial accountability limits the incentives for PAC providers to collaborate in reducing hospital

readmissions and costs, thereby reinforcing fragmentation in post-acute care.

Improving payment models: Recognizing these limitations, we propose a new payment model

that explicitly links hospital and PAC provider payments to each other’s performance. In contrast

to the CJR-type payment model, which adjusts hospital payments based on total episode costs

while leaving PAC provider payments unchanged, our payment model introduces an outcome-based

adjustment that ensures both hospitals and PAC providers share financial responsibility for read-

mission costs. This structure eliminates the incentive misalignment and encourages collaboration

between hospitals and PAC providers to improve patient outcomes.

We prove that our payment model elicits first-best provider actions, i.e., both hospitals and

PAC providers invest at socially optimal levels in reducing costs of care and readmissions. By

aligning financial incentives across entities, our model eliminates the incentive misalignment under

existing bundled payment and CJR-type models. Furthermore, we demonstrate that these first-best

outcomes can also be achieved within the existing CJR framework if hospitals and PAC providers

enter into a specific form of gainsharing agreement. Additionally, we demonstrate the flexibility of

our payment model in incorporating various practical considerations and discuss the information

requirements necessary to achieve care coordination in both the CJR and our proposed models,

emphasizing the critical role of accurate PAC cost estimates.

Through numerical experiments calibrated to Medicare data, we quantify the cost-saving poten-

tial of our proposed payment model. Our results show that, compared to the bundled payment

model, our payment model reduces readmission costs by 12%, translating into estimated annual

savings exceeding $150 million for Medicare joint replacement procedures alone. Moreover, even

partial implementation of our model—where hospitals and PAC providers share 50% of readmission

costs—produces substantial improvements, nearly matching first-best levels of care coordination.
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As policymakers consider expanding bundled payment models beyond joint replacement to other

multi-entity care settings, our framework provides a strong foundation for designing more effective

payment models that can drive broader improvements in care quality and cost efficiency.

2. Literature review

In this section we review the relevant literature on healthcare payment models and describe the

contribution of our research to different streams in this literature. We also explain our contribution

to the literature on moral hazard in teams.

Research on payment models for a single-entity setting: Our research contributes to

the literature on designing healthcare payment models (see for example So and Tang (2000),

Jiang et al. (2012, 2020, 2021), Ata et al. (2013), Adida et al. (2016), Bastani et al. (2016),

Aswani et al. (2019), Bavafa et al. (2021), Adida and Bravo (2023), Hwang et al. (2023), Savva

et al. (2023), Goodman and Dai (2024)), particularly those focused on relative performance-based

payment models currently employed by CMS. Savva et al. (2019) show that augmenting cost-

based payment models by a waiting time-based adjustment can incentivize waiting time reduction.

Arifoğlu et al. (2021) identify inefficiencies of the HRRP and propose a bundled payment model

to elicit the socially optimal levels of cost and readmission reductions.

Our proposed payment model similarly draws on the relative (to other providers) performance to

determine each provider’s payment. However, while existing literature focuses on centralized care

settings where a single provider manages the entire care episode, our paper examines decentralized

care settings where different providers independently manage segments of a patient’s care, such as

acute and post-acute care. This necessitates a new modeling approach and novel payment models

to explore interactions and achieve coordination between these providers, and assess the effects of

prevailing payment models on cost and quality of collaborative care. We use our model to show

that single-entity payment models, as discussed in previous studies, are inadequate for promoting

care coordination and achieving optimal outcomes. Additionally, we examine a CJR-type payment

model and unveil its limitations in incentivizing care coordination.

Research on payment models for care coordination: Our research makes a significant

contribution to the literature on payment models for care coordination across different settings.

This body of work primarily focuses on comparing the potential cost and quality of care improve-

ments resulting from a transition from traditional fee-for-service payment models to episode-based

payment models, such as bundled payments.

Adida and Bravo (2019) study reimbursement contracts between a managing organization offer-

ing basic care, and an external provider providing advanced care, which is reimbursed by the former.

Bravo et al. (2023) consider patient referral by an accountable care organization to a preferred
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external provider under the Medicare Shared Saving Program, and design cost- and risk-sharing

contracts to improve coordination in referral markets. Rajagopalan and Tong (2022) consider a

general practitioner’s patient referral to a specialist with limited capacity. They find that making

a bundled payment shared by different providers leads to higher referral rates and lower service

time by the specialist, and propose to use a variable payment per unit of service time to achieve

first-best outcomes. Vlachy et al. (2023) explore the impact of bundled payments on care intensity

co-production by a hospital and a physician. Gupta and Mehrotra (2015) analyzes a regulator’s

optimal selection of healthcare bundles with key parameters chosen by proposers.

A key distinction between this literature and our study lies in our focus on relative performance-

based payment models as currently employed by CMS. In contrast, the existing literature primarily

explores payment models with exogenously determined reimbursement amounts and performance

targets, assuming the regulator possesses the required information to establish these measures.

Additionally, there is a body of literature that examines the design of gainsharing contracts

in existing payment models. Gupta et al. (2021) investigate the design of gainsharing contracts

between hospitals and physicians when the overall payment for care is based on a bundled payment

model. Similarly, Ghamat et al. (2021) explore the design of gainsharing contracts between hospitals

and PAC providers under CJR. In contrast, our study focuses on the design of payment models for

scenarios where care is delivered by multiple providers, rather than solely addressing the allocation

of a single bundled payment among different providers. In addition, similar to other papers reviewed

above, Gupta et al. (2021) and Ghamat et al. (2021) do not utilize relative performance-based

payment models.

One relevant study in this literature is Zorc et al. (2017). Their research also addresses the design

of payment models to promote care coordination, with a specific focus on the care pathway between

general practitioners (GPs) and specialists, aiming to reduce delays in accessing specialist treat-

ment. As in our work, they explore the design of relative performance-based payment models and

demonstrate how model parameters can be determined using the performance of other providers,

such as through yardstick regulation, under various scenarios.

However, a key distinction between their study and ours lies in the focus of provider pairs.

While they concentrate on the coordination between GPs and specialists, our study considers

a broader network of hospital and PAC providers. As a result, their model is more applicable

to care coordination between GPs and specialists, as their underlying assumptions differ from

ours. Specifically, in our model, we incorporate the notion that effective PAC treatment requires

additional investment from hospitals directly, whereas their model assumes that the quality of care

at each stage is solely determined by the provider operating at that specific stage.
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Research on the impact of CJR: A body of literature empirically demonstrates the impact

of the CJR program on provider actions (Ellimoottil et al. 2016, Finkelstein et al. 2018, Barnett

et al. 2019, Haas et al. 2019, Einav et al. 2022, Chen and Delana 2025). These studies show the

early effects of CJR on patient discharge destinations and highlight some of the incentive issues

inherent in the CJR program. This literature further motivates our research on designing more

effective payment models for the decentralized multi-entity settings.

Research on moral hazard in teams: Our paper contributes to the broader theory of moral

hazard in teams. Holmstrom (1982) demonstrates that, in team production from agents’ unob-

servable inputs, free-riding arises as agents input less than the first-best level. He further designs

group incentives that elicit socially optimal actions by basing agent payments on team production.

Mookherjee (1984) provides necessary and sufficient conditions for the optimality of independent

contracts and rank order tournaments. Although our proposed payment model also provides group

incentives, a crucial distinction exists: in this literature, the regulator knows cost structures but

not agent inputs, so it can calculate the first-best inputs and contract based on the resulting

team production. However, in our setting the regulator does not know cost structures and cannot

calculate the first-best actions. We overcome this information asymmetry with yardstick compe-

tition as in Shleifer (1985) while extending it from single-entity settings to a multi-entity setting

for collaborative care. We show that the bundled payment and CJR-type payment models fail to

elicit first-best actions, and develop an innovative payment model that achieves the first best by

adjusting provider payments using other providers’ performance for the entire episode of care.

3. Model and first-best outcome

We examine an episode of care for a specific condition, such as joint replacement, which consists of

two stages. The first stage involves acute care delivered in a hospital, followed by PAC provided by

another entity like a skilled nursing facility (SNF). To account for the impact of care quality deci-

sions, we assume that unsuccessful care may lead to patient readmission to the hospital, requiring

the patient to restart the care process there (approximately 23% of Medicare patients discharged

to SNFs experience readmission to the hospital within 30 days (Britton et al. 2017)).

We consider three types of decision-makers—the regulator, hospitals, and PAC providers. The

regulator sets the payment model that dictates how providers are reimbursed for providing acute

and post-acute care, with the objective of maximizing total welfare. Informed by the terms of the

reimbursement scheme, hospitals and PAC providers choose their investments (or expenditures) in

reducing the cost of care and readmission probability to maximize their expected profits. We estab-

lish the Nash equilibrium of this game to assess the long-term impact of different reimbursement

schemes on the cost and quality performance of collaborative care.
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In the rest of this section, we first describe the care model and the objective function of each

decision-maker. Then, we establish the first-best outcome, i.e., provider actions that maximize total

welfare. Finally, we discuss the information asymmetry between the regulator and providers, how

it prevents the direct enforcement of the first-best outcome, and has led healthcare regulators to

adopt relative performance-based payment models.

Care model: Each patient receives an episode of care that includes both acute and post-acute

stages with (expected) associated costs Ch and Cs incurred by the hospital and the PAC provider,

respectively. A patient is readmitted with probability R, which measures the quality of care. Hos-

pitals and PAC providers make investments to reduce the cost and improve the quality of care as

described next.

We define the cost of acute care per patient as Ch : [0,Γ]→ R+, a function of the action ah

taken by the hospital. The action ah represents the total expenditures by the hospital to reduce

the acute care cost Ch per patient, with an upper bound of Γ > 0. For example, hospitals may

invest in developing health information technologies, improving care delivery processes, and other

initiatives aimed at enhancing cost-efficiency.

After receiving acute care, a patient is discharged from the hospital to receive post-acute care

by a PAC provider.3 The per-patient cost of PAC, denoted by Cs : [0,Γ]× [0,Γ]→ R+, depends

on the hospital’s action bh and the PAC provider’s action bs. Similar to acute care, bh and bs

are considered in monetary terms with upper bound Γ, without loss of generality. For example,

hospitals and PAC providers may invest in dedicating more staff time, or hiring additional staff to

coordinate care and improving coordination through shared electronic medical record systems.

After receiving acute and post-acute care for the initial (i.e., index) admission, a patient is

rehospitalized with probability R : [0,Γ]× [0,Γ]→ [0,1]. This probability depends on the per-patient

investments of the hospital (eh) and the PAC provider (es) towards reducing readmissions. If

readmitted, the patient receives acute and post-acute care from the same providers as in the initial

admission, with fixed expected costs denoted by ξh and ξs > 0, respectively.4

Our model can incorporate endogenous costs of care for readmitted patients, as discussed in

Appendix F. In addition, for expositional simplicity, we present a simple model where the actions

of the providers are captured by one-dimensional variables, i.e., eh, es, bh, and bs. We present a

more detailed model in Appendix J and prove that our results are valid in that more general setting

as well.

3 Equivalently, we capture a setting where a fixed (i.e., exogenous) fraction of patients require PAC, and our main
model focuses exclusively on these patients. We extend the model in Appendix E to consider different types of PAC
providers and endogenous discharge decisions.

4 Since ξh is the expected cost of acute care among all readmitted patients, our model accounts for cases where some
patients are readmitted directly to the PAC setting.
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Providers (hospitals and PAC providers): We consider a provider network consisting of

N hospitals indexed by i = 1, . . . ,N , and M PAC providers indexed by j = 1, . . . ,M , with the

fraction of patients discharged from hospital i to PAC provider j denoted by pij > 0. For notational

simplicity, we denote K≡ {1, . . . ,K} and Ki ≡K\ i for any given integer K throughout the paper.

For each hospital i∈N , we use pi ≡
∑

j∈M pij to denote the fraction of patients receiving acute

care from the hospital and assume that pi > 0 for all i ∈ N , i.e., each hospital provides care to

some patients. Similarly, for each PAC provider j ∈M, we use p̃j ≡
∑

i∈N pij to denote the fraction

of patients receiving PAC from the provider and assume that p̃j > 0 for all j ∈M, i.e., each PAC

provider treats some patients. Without loss of generality, we normalize the total patient population

to one, i.e.,
∑

i∈N pi =
∑

j∈M p̃j = 1.

Next, we derive the objectives of all hospitals i ∈ N and PAC providers j ∈M. We append

subscripts to each decision-making parameter, as introduced earlier, to denote association with

specific providers. Specifically, ahi represents the investment by hospital i to reduce acute care costs.

The investments by hospital i to reduce PAC costs and readmissions for provider j are denoted by

bhij and ehij, respectively, while bsij and esij denote the corresponding investments by PAC provider

j. For notational simplicity, we denote the decisions of hospital i by hi = (ahi , b
h
ij, e

h
ij, j ∈M) and

the decisions of PAC provider j by sj = (bsij, e
s
ij, i∈N ).

The objective of hospital i, denoted by Πh
i , can be expressed as follows:

Πh
i (hi) = T hi −Chi (hi), (1)

where T hi represents the reimbursement amount received by the hospital (determined by the reg-

ulator) and Chi (hi) is the total cost of hospital i given by

Chi (hi) =pi
[
Ch(ahi ) + ahi

]
+
∑
j∈M

pij
[
R(ehij, e

s
ij)ξ

h + bhij + ehij
]
. (2)

We assume that each hospital invests the same level in reducing the costs of acute care for all

patients, regardless of the PAC destination (i.e., ahi is constant for all i ∈N and does not depend

on j), as hospitals are unlikely to vary their treatment decisions based on the anticipated PAC

provider. However, the investment in reducing the expected costs of PAC care and readmissions

(i.e., bhij and ehij) varies depending on the specific PAC provider. This difference in investment levels

is essential because managing costs effectively in these areas involves collaborative efforts between

entities, such as utilizing shared healthcare records or implementing coordinated care protocols in

the PAC setting.

The objective of PAC provider j, denoted by Πs
j , can be expressed as follows:

Πs
j(sj) = T sj −Csj (sj), (3)
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where T sj denotes the payment received by the PAC provider from the regulator, and Csj (sj) is the

total cost of the PAC provider j given by

Csj (sj) =
∑
i∈N

pij
[
Cs(bhij, b

s
ij) +R(ehij, e

s
ij)ξ

s + bsij + esij
]

(4)

In this section, and throughout the rest of the paper, costs Ch and Cs should be understood as

expected values, since the cost of treating each patient can be random. Payment amounts to each

provider can be based on the realization of these costs. In general, we assume that providers are

maximizing the expected value of their objective.

Regulator: The regulator aims to maximize the total welfare W , which is equal to the patient

surplus minus the total cost, i.e.,

W =υ−
∑
i∈N

Chi (hi)−
∑
j∈M

Csj (sj). (5)

Here, υ represents the patient surplus from receiving treatment, and the remaining terms con-

stitute the expected total cost of providing care as described earlier; see (2) and (4). For simplicity,

we assume that the patient receives a fixed benefit υ from treatment, independent of readmissions.

However, this assumption can be relaxed to incorporate patient disutility from readmissions, as

discussed in a similar manner in Section 5.3 of Arifoğlu et al. (2021). As υ is fixed, the regulator’s

problem of maximizing total welfare is equivalent to minimizing the total expected cost of a care

episode. Additionally, we have proven that our main result remains valid when the regulator assigns

different relative weights to patients’ and providers’ utilities.

Next, we outline our assumptions regarding socially optimal actions. Specifically, we assume

that the regulator’s objective function has a unique optimizer, referred to as “first-best” from

hereon. Additionally, we assume that the cost functions Ch and Cs, along with the readmission

probability function R, are twice differentiable, and that the first-best actions are characterized by

the following first-order conditions (FOCs) obtained from the regulator’s objective function (5):

dCh(a∗h)

dah
+ 1 = 0, (6)

∂Cs(b∗h, b
∗
s)

∂bh
+ 1 = 0, (7)

∂Cs(b∗h, b
∗
s)

∂bs
+ 1 = 0, (8)

∂R(e∗h, e
∗
s)

∂eh
(ξh + ξs) + 1 = 0, (9)

∂R(e∗h, e
∗
s)

∂es
(ξh + ξs) + 1 = 0, (10)

In Appendix A, we provide sufficient conditions on the cost of care and readmission probability

functions for these assumptions to hold. Under these assumptions, the socially optimal actions for
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all hospitals, denoted by (a∗h, b
∗
h, e
∗
h), are identical to each other, and similarly, the first-best actions

for all PAC providers, denoted by (b∗s, e
∗
s), are also identical.

On a technical note, when pij = 0, i.e., no patients are discharged from hospital i to PAC provider

j, the associated cost of care is zero, regardless of the values of bhij, b
s
ij, e

h
ij, e

s
ij. In that case, we

assume that the first-best actions are a∗h, b
∗
h, b
∗
s, e
∗
h, e
∗
s, and hospital i and PAC provider j choose

first-best actions in equilibrium under any reimbursement scheme. This treatment eases exposition

and is without loss of generality because any provider actions lead to zero cost of care from PAC

provider j because pij = 0, see (4).

Information asymmetry: In an ideal scenario, if the regulator has perfect knowledge of the

expected cost of care and readmission probability functions (Ca, Cs, and R), it can determine

the first-best actions and enforce providers to implement them through strict penalties for any

deviation. However, obtaining such precise information on the cost and readmission probability

functions is prohibitively difficult in practice due to the intricate and evolving nature of healthcare

technologies and processes.

This information asymmetry has compelled healthcare regulators, such as CMS in the United

States and National Health Service (NHS) in the United Kingdom, to adopt yardstick competition-

type payment schemes such as the CJR, HRRP, and VBP programs. These schemes reimburse

providers based on their relative performance compared to other providers, as measured by docu-

mented costs and other observable characteristics of hospitals and patients (CMS 2023, Cots et al.

2011).

Therefore, unlike the extant literature on payment models for care coordination—which typically

assumes that the regulator has full information—we consider a setting in which the regulator

does not observe Ca, Cs, or R. Instead, we focus on relative performance-based payment models,

which are commonly used to address such information asymmetries. We assume the regulator has

access to ex-post outcomes, including realized costs, investments, and readmission probabilities.

This allows for the design of relative performance metrics, as implemented in the CJR program

(see Section 6.2) and in single-entity settings (Shleifer 1985, Arifoğlu et al. 2021, Savva et al. 2023).

Notably, this assumption requires that the regulator observes providers’ ex-post investments in cost

and readmission reduction, but not the detailed effort components underlying those investments.

For simplicity, we abstract away from modeling these underlying efforts, and show in Appendix J

that our results remain valid even when providers make multidimensional, unobservable efforts.

4. Payment models and care coordination

Healthcare payment models have been widely implemented to contain costs and reduce readmis-

sions, but most are designed for single-entity settings with centralized decision-making. To examine



13

the challenges in the CJR program, we first analyze existing bundled payment models in multi-

entity settings using the framework introduced earlier. In Section 4.1, we show that these models

fail to achieve first-best outcomes. In Section 4.2, we introduce a CJR-type payment model that

captures key incentive mechanisms in the CJR program and identify its limitations in incentivizing

care coordination. In Section 4.3, we discuss challenges in designing coordinating payment models,

which establishes the foundation for our subsequent analysis in Section 5.

4.1. Bundled payment model in multi-entity settings

Before implementing the CJR program, CMS used separate DRG-based PPSs to reimburse hospi-

tals and PAC providers for their respective contributions to joint replacement treatment. (Similar

payment systems are commonly used by both public and private insurance companies worldwide.)

Under PPS, providers receive a fixed reimbursement that covers treatment costs, including those

for readmitted patients. These reimbursement rates are determined based on the average cost across

all similar providers, creating an incentive for cost reduction (CMS 2024).

In our modeling framework, PPS payment model can be defined as follows. Let

C̄h
i =

∑
k∈Ni

pkC
h(ahk)

1− pi

denote the average acute care cost,

āhi =

∑
k∈Ni

pka
h
k

1− pi

denote the average investments to reduce acute care costs,

b̄hi =

∑
k∈Ni

∑
j∈M

pkjb
h
kj

1− pi
,

denote the average investments to reduce post-acute care costs and

ēhi =

∑
k∈Ni

∑
j∈M

pkje
h
kj

1− pi
,

denote the average investments to reduce readmission probability, among all other hospitals exclud-

ing hospital i. The payment amount to hospital i is then given by

T hi = pi[C̄
h
i + āhi + b̄hi + ēhi ] +

∑
j∈M

pijR(ehij, e
s
ij)ξ

h. (11)

Thus, hospital i receives payment (C̄h
i + āhi + b̄hi + ēhi ) for an initial admission equal to the average

cost and investments, and receives payment ξh for a readmission. The payment [C̄h
i + āhi + b̄hi + ēhi ]
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can be thought of as the estimated cost of care and investment to provide effective care. The last

component (i.e,
∑

j∈M pijR(ehij, e
s
ij)ξ

h) covers the cost of treating readmitted patients.

Similarly, the payment amount to PAC provider j is

T sj = p̃j[C̄
s
j + b̄sj + ēsj ] +

∑
i∈N

pijR(ehij, e
s
ij)ξ

s, (12)

where

C̄s
j =

∑
i∈N

∑
k∈Mj

pikC
s(bhik, b

s
ik)

1− p̃j
, b̄sj =

∑
i∈N

∑
k∈Mj

pikb
s
ik

1− p̃j
, and ēsj =

∑
i∈N

∑
k∈Mj

pike
s
ik

1− p̃j
,

respectively, represent the average PAC cost, investments to reduce PAC cost and readmission

probability, among all other PAC providers.

Even in a single-entity setting, PPS fails to provide the right incentives to reduce readmissions, as

providers continue to receive payments for each readmitted patient (Arifoğlu et al. 2021). Naturally,

the same holds in equilibrium for the multi-entity setting. Indeed, we show (under the assumptions

in Appendix A) that PPS leads to a unique equilibrium in which hospitals and PAC providers do

not invest in reducing readmissions, i.e., ehij = esij = 0, for each hospital i ∈ N and PAC provider

j ∈ M. Moreover, in the multi-entity setting, PPS fails to incentivize sufficient investment in

care coordination: hospitals do not invest in reducing the PAC cost, and PAC providers invest in

reducing the PAC cost at suboptimal levels, consistent with the findings in Arifoğlu et al. (2021)

for the single-entity setting.

These limitations highlight the need for alternative payment models that actively encourage

providers to reduce readmissions. One such approach is the bundled payment model, which, in

a single entity setting, refers to a payment arrangement in which a provider—such as a hospital

or outpatient surgery center—receives a fixed payment covering all services delivered within that

setting during a defined episode of care. In this structure, each provider is reimbursed for only

the portion of the episode they deliver. For example, the hospital receives a bundled payment for

the inpatient stay, while post-acute care services are paid separately if not included in the bundle.

However, in some designs, bundled payments can also cover both the initial admission and any

related readmissions that occur within the episode window.

This structure intuitively aligns incentives by rewarding providers for keeping patients healthy:

they receive a fixed payment regardless of whether a readmission occurs, so avoiding complications

and readmissions improves their margins. Recognizing these potential benefits, CMS implemented

bundled payment models through programs such as HRRP and SNF VBP Program.
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Next we introduce the bundled payment model in our multi-entity setting, following (Arifoğlu

et al. 2021). Define

R̄h
i =

∑
k∈Ni

∑
j∈M

pkjR(ehkj, e
s
kj)

1− pi
and R̄s

j =

∑
i∈N

∑
k∈Mj

pikR(ehik, e
s
ik)

1− p̃j
(13)

as the average readmission benchmark for hospital i and PAC provider j, respectively. The payment

amounts for hospital i and PAC provider j can be modeled, respectively, as follows:

T hi = pi

[
C̄h
i + āhi + b̄hi + ēhi + R̄h

i ξ
h
]
, (14)

T sj = p̃j

[
C̄s
j + b̄sj + ēsj + R̄s

jξ
s
]
. (15)

In words, each provider receives a payment for the portion of the episode of care delivered within

their setting, equal to the average cost and investments required to cover both the initial admission

and any potential readmission in that same setting.

We highlight the fact that the main difference between the bundled payments and PPS is that a

fixed payment for each patient (i.e., piR̄
h
i ξ

h in (14)) replaces the payment for caring for readmitted

patients (i.e,
∑

j∈M pijR(ehij, e
s
ij)ξ

h in (11).) Because this payment under bundled payment is fixed

regardless of whether the patient is readmitted or not, it incentivizes hospitals to reduce readmis-

sions. Similarly, bundled payments pay a fixed amount (i.e., p̃jR̄
s
jξ
s in (15)) to PAC providers.

The bundled payment model elicits first-best cost and quality outcomes in single-entity settings

(Arifoğlu et al. 2021). Notably, the payments (14) and (15) are fixed and do not influence providers’

incentives. These payments are designed to ensure that providers break even in equilibrium while

minimizing overall payment levels. However, in multi-entity settings, the bundled payment model

alone fails to elicit first-best actions because it does not incentivize enhanced care coordination

between entities. We next formally establish this limitation.

Proposition 1. If the regulator uses the bundled payment model defined in (14) to reimburse

hospitals and (15) to reimburse PAC providers, then the unique Nash equilibrium is for each hospital

i ∈N to pick ahi = a∗h, and for each hospital i ∈N and PAC provider j ∈M such that pij > 0, to

pick bhij = 0, ehij = ĕh and bsij = g(0), esij = ĕs, respectively, for some ĕh and ĕs defined in the proof in

Appendix B and g is defined in (A-5). In addition, costs of care and investments associated with

readmissions are higher than the first-best level:

R(ĕh, ĕs)(ξ
h + ξs) + ĕh + ĕs >R(e∗h, e

∗
s)(ξ

h + ξs) + e∗h + e∗s. (16)

The main implication of Proposition 1 is that, similar to PPS, hospitals do not invest in reducing

PAC costs, i.e., bhij = 0. This occurs because the bundled payment model does not provide incentives
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for hospitals to lower the costs incurred by PAC providers they collaborate with. Moreover, hospitals

and PAC providers invest inadequately in reducing readmission probabilities, resulting in higher

total costs of care and investments associated with readmissions than the first-best level, as shown

in (16). This inefficiency arises because the bundled payment model holds hospitals and PAC

providers financially responsible only for readmission costs within their own settings rather than

for the total cost of the entire episode of care, even though their actions impact overall costs.

Thus, the bundled payment model for single-entity settings does not incentivize hospitals to

coordinate care in reducing PAC costs or readmission probabilities. This lack of coordination results

in suboptimal investments in cost and readmission reductions, ultimately driving up the overall

cost of care. Recognizing these shortcomings, the CJR program builds on the bundled payment

model by holding participating hospitals financially accountable for the cost of both acute and

post-acute care, including readmissions. We evaluate the effectiveness of the CJR program below.

4.2. CJR-type payment model

The CJR program extends the bundled payment model by introducing incentives to improve coor-

dination between hospitals and PAC providers. It does so by making hospitals accountable for the

entire episode of care, linking their reimbursement to the total cost of treatment. Hospitals receive

financial rewards if total spending for a patient remains below a predetermined threshold and face

penalties if it exceeds that amount. Additionally, CMS permits hospitals to share up to 50% of

gains or losses from payment reconciliation with PAC providers through gainsharing agreements.

However, this approach has not been effective in practice. Recent research, based on extensive

interviews, found that “none of the hospitals interviewed throughout the evaluation said that they

had established such agreements” (Hopewell et al. 2024) (see also Ghamat et al. (2021)).

To analyze the incentive mechanisms embedded in the CJR program, we consider a simplified

CJR-type payment model that captures its key features. In this model, the regulator reimburses

providers under the bundled payment model, as defined in (14)-(15), while adjusting hospital

payments based on the total cost of collaborative care—including PAC costs for initial admissions

and both acute and post-acute care costs for readmissions. However, PAC providers continue to

be reimbursed under bundled payment. We assume that gainsharing agreements between hospitals

and PAC providers are absent, both to isolate and assess their impact and because they have not

been widely adopted in practice.

We consider a CJR-type payment model where the payment amount for hospital i is given by:

T hi = pi

[
C̄h
i + R̄h

i ξ
h + āhi + b̄hi + ēhi

]
+
∑
j∈M

pij

[
C̄sh
i −Cs(bhij, bsij) +

(
R̄h
i −R(ehij, e

s
ij)
)

(ξh + ξs)
]
, (17)
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where

C̄sh
i =

∑
k∈Ni

∑
j∈M

pkjC
s(bhkj, b

s
kj)

1− pi
, (18)

is the average cost of PAC for all patients discharged from all hospitals, excluding hospital i. The

main difference between this CJR-type payment model and the bundled payment model (see (14))

is the term in the second line in (17). This term captures the fact that hospitals are held responsible

for the whole episode of care in the CJR program. The payment amount for PAC provider j is the

same as in bundled payment (15), since they continue to be paid under bundled payment model.

Remark 1. Our CJR-type payment model is designed to capture the core financial incentives of

the actual CJR program while simplifying certain complexities for analytical clarity. The first key

difference lies in the scope of performance evaluation. The actual CJR program assesses hospitals

based on various episode quality and cost metrics, incorporating factors such as complications,

patient outcomes, and readmissions. In contrast, our simplified model focuses solely on readmissions

to specifically examine the joint actions of hospitals and PAC providers in reducing them. By doing

so, we isolate coordination incentives without the added complexity of broader quality measures.

Also, we assume that both hospitals and PAC providers receive a fixed payment per patient,

including readmissions. In contrast, CMS employs the HRRP for hospitals and various VBP plans

for PAC providers. These programs introduce additional complexities beyond the bundled payment

models considered in our analysis. Nevertheless, our model captures similar incentive structures, as

these programs also encourage readmission reduction but only based on each provider’s own costs,

without accounting for the financial impact on the other entity involved in patient care. (For further

details, see Arifoğlu et al. (2021) and CMS (2023).) Despite these differences, our model preserves

the fundamental incentive mechanisms of the CJR program, ensuring that our findings provide

meaningful insights into how bundled payments influence hospital and PAC provider behavior.

We next establish the equilibrium outcome under the CJR-type payment model.

Proposition 2. If the regulator uses (17) to reimburse hospitals and (15) to reimburse PAC

providers, then the unique Nash equilibrium is for each hospital i ∈ N to pick ahi = a∗h, and for

each hospital i ∈ N and PAC provider j ∈ M such that pij > 0, to pick bhij = b∗h, e
h
ij = ẽh and

bsij = b∗s, e
s
ij = ẽs, respectively, for some ẽh and ẽs defined in the proof in Appendix C. In addition,

costs of care and investments associated with readmissions are higher than the first-best level:

R(ẽh, ẽs)(ξ
h + ξs) + ẽh + ẽs >R(e∗h, e

∗
s)(ξ

h + ξs) + e∗h + e∗s. (19)

Proposition 2 shows that while the CJR-type payment model achieves some of its intended goals,

it falls short in others. On the one hand, hospitals and PAC providers invest at first-best levels to
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reduce PAC costs; specifically bhij = b∗h and bsij = b∗s, respectively. This result occurs because each

hospital is fully responsible for PAC cost performance due to the adjustment term
∑

j∈M pij

[
C̄sh
i −

Cs(b
h
ij, b

s
ij)
]

in (17).

However, hospitals and PAC providers do not invest at first-best levels in reducing readmissions,

resulting in higher total costs of care and investments, as shown in (19). This misalignment occurs

due to two key factors: (i) Hospitals are disproportionately accountable for readmission costs–they

receive payment adjustments based on both acute and post-acute care costs of readmissions yet

already bear the acute care costs under fixed per-episode payments; (ii) PAC providers are not

accountable for the acute care cost of readmissions, limiting their incentives to invest in reducing

readmissions.

4.3. Discussion

In summary, while the CJR-type payment model successfully incentivizes hospitals to reduce PAC

costs, it fails to induce first-best investment from both hospitals and PAC providers in reducing

readmissions. Although gainsharing agreements have the potential to improve coordination in the-

ory, their limited adoption in practice raises concerns about the program’s overall effectiveness.

Addressing these challenges is the focus of this paper.

However, several key issues must be considered. First, the CJR program extends the bundled

payment model from a single-entity to a multi-entity setting by introducing additional payment

adjustments for hospitals. Whether these adjustments successfully create incentives for care coordi-

nation remains a priori unclear. Thus, our first goal is to identify payment models that can achieve

first-best outcomes in a multi-entity setting—a challenge that, to the best of our knowledge, has

not been formally addressed in the literature.

Second, the CJR program’s reliance on gainsharing agreements may reflect additional objectives

or constraints that are not explicitly captured in our model. A deeper understanding of the structure

of coordinating incentive mechanisms can provide valuable insights into how gainsharing agree-

ments should be designed from a regulatory perspective. However, structuring these agreements is

inherently complex due to several factors: (i) hospitals and PAC providers operate independently

and may have conflicting objectives (e.g., extended patient follow-ups may lower PAC costs but

increase hospital costs); (ii) hospitals exercise discretion over PAC referrals, and this discretion

may impact the effectiveness of gainsharing agreements; (iii) given the diversity of PAC providers

(e.g., SNFs, home health agencies), patients may choose different post-acute care options, making

it unclear how gainsharing agreements should account for these complex referral networks.

Given these complexities, the next section introduces a payment model structurally similar to

the CJR-type model and demonstrates its ability to induce first-best provider actions under various
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modeling considerations. Within this framework, we also examine the role of gainsharing agree-

ments in shaping coordination incentives and establish how they can be structured to achieve

first-best outcomes in multi-entity care settings.

5. Coordinating reimbursement schemes

To address the limitations of the CJR-type payment model, we propose an alternative payment

structure that explicitly incentivizes care coordination between hospitals and PAC providers in

Section 5.1. In Section 5.2 we show how gainsharing agreements can be structured to achieve first-

best actions, building on our results in Section 5.1. We present the results of a numerical analysis

to quantify the cost-saving potential of the proposed payment models in Section 5.3.

5.1. A new payment model

Our proposed payment model consists of two key components: (i) a payment to cover the costs of

care and investments to improve care; and (ii) an outcome-based adjustment to promote coordina-

tion, both of which are calculated based on the performances of other providers. The outcome-based

adjustment ensures that hospitals and PAC providers share financial responsibility for care coor-

dination by linking reimbursements to each other’s performance.

The payment amount for hospital i is given by:

T hi = pi

[
C̄h
i + āhi + b̄hi + ēhi + R̄h

i ξ
h
]

︸ ︷︷ ︸
Cost of care

+
∑
j∈M

pij

[
C̄sh
i −Cs(bhij, b

s
ij) +

(
R̄h
i −R(ehij, e

s
ij)
)
ξs
]

︸ ︷︷ ︸
Outcome-based adjustment for care coordination

. (20)

The payment for PAC provider j is given by:

T sj = p̃j

[
C̄s
j + b̄sj + ēsj + R̄s

jξ
s
]

︸ ︷︷ ︸
Cost of care

+
∑
i∈N

pij

[
R̄s
j −R(ehij, e

s
ij)
]
ξh.︸ ︷︷ ︸

Outcome-based adjustment for care coordination

(21)

The “Cost of care” component follows the bundled payment structure in (14)-(15), reimbursing

providers for the costs of care delivery and investments in cost and readmission reductions for both

initial admissions and potential readmissions. The “Outcome-based adjustment for care coordina-

tion” component differentiates this payment model from the bundled payment model by explicitly

aligning incentives between hospitals and PAC providers. In (20), hospitals are rewarded or penal-

ized based on the average PAC cost for their discharged patients and the average PAC cost for their

readmitted patients, relative to other hospitals. Similarly, in (21), PAC providers are rewarded

or penalized based on the average acute-care cost for readmitted patients, relative to other PAC

providers. The introduction of these payment adjustments ensures that both hospitals and PAC

providers internalize the financial consequences of their coordination investments, thereby incen-

tivizing collaborative strategies to enhance patient care and reduce overall costs as we show next

(the proof is presented in Appendix D).
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Theorem 1. If the regulator uses (20) to reimburse hospitals and (21) to reimburse PAC

providers, then the unique Nash equilibrium is for each each hospital i∈N and PAC provider j ∈M

to pick first-best actions ahi = a∗h, b
h
ij = b∗h, e

h
ij = e∗h, and bsij = b∗s, e

s
ij = e∗s, respectively. In addition,

all providers break even in this equilibrium.

This result demonstrates that the proposed payment model successfully elicits first-best invest-

ments from both hospitals and PAC providers in reducing care costs and readmission probabili-

ties. As discussed following Proposition 2, the CJR-type payment model fails to induce first-best

investments in reducing readmissions, as hospitals are held disproportionately accountable, while

PAC providers bear no responsibility for the acute care costs of treating readmitted patients. The

proposed model eliminates this misalignment by excluding hospitals’ own readmission costs from

payment adjustments and linking PAC providers’ payments to the readmission costs incurred by

their partner hospitals.

In addition, Theorem 1 offers key insights into the design of relative performance-based payment

models for multi-entity healthcare systems. While bundled payments alone may incentivize efficient

care in single-entity settings (see Section 4.1 for a detailed discussion), additional adjustments are

necessary in multi-entity settings, where patients receive acute and post-acute care from different

providers. Our proposed model bridges this gap through an outcome-based adjustment that ties

each provider’s payment to the performance of their collaborating providers, thereby fostering

coordinated and efficient care delivery.

In terms of implementation, our results above show that care coordination in multi-entity settings

can be achieved without gainsharing agreements—our proposed payment model elicits the first-

best outcome by separately adjusting payments to hospitals and PAC providers. Next, we derive

further practical insights by showing that our proposed payment model (i) can be implemented

within the existing CJR program in Section 5.2, and (ii) generate significant cost savings for CMS

in Section 5.3 through numerical experiments.

5.2. Implementation using the CJR program

Proposition 2 established that the CJR-type payment model does not lead to first-best actions in

the absence of gaingainsharing agreements. This section examines how gaingainsharing agreements

can be structured to achieve first-best actions, building on the results in Theorem 1.

The primary difference between our payment model and the CJR-type payment model without

gainsharing agreements lies in the allocation of readmission costs. In the CJR-type payment model,

PAC providers are not financially responsible for hospital readmissions (see (15)). In contrast, our

payment model links their payments to the acute care costs associated with readmitted patients
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through the “Outcome-based adjustment for care coordination” in (21). To address this discrep-

ancy, gainsharing agreements should be designed to make PAC providers accountable for these

costs.

Currently, CMS permits gainsharing agreements derived from hospitals’ reconciliation payments

based on costs of the entire episode of care, without specifying which cost components should be

included. However, as discussed above, to achieve the first-best outcome, gainsharing agreements

should focus on the acute-care cost of readmitted patients, and exclude the PAC cost for initial

or readmitted patients. This structure provides incentives for PAC providers to invest in reducing

readmissions while maintaining hospitals’ incentives to reduce the PAC cost.

Building on this insight, we now consider a modified CJR-type payment model in which hospitals

share a portion of the payment adjustments for the acute-care cost of readmitted patients with

PAC providers. We consider the full range of the sharing portion as denoted by θ ∈ [0,1]. In

practice, offering flexibility in the sharing portion allows healthcare providers to design gainsharing

agreements that reflect their specific patient populations and care settings. Moreover, given the

limited adoption of gainsharing agreements, our analysis across the full range of θ will demonstrate

the potential of (partial and full) gainsharing agreements in promote collaborative care.

To formalize this framework, assume that hospitals bear a fraction (1 − θ) of the payment

adjustment associated with acute-care readmission costs, while PAC providers share the remaining

θ. Under this modified CJR-type payment model, the hospital payment for hospital i is given by:

T hi = pi

[
C̄h
i + āhi + b̄hi + ēhi + R̄h

i ξ
h
]

+
∑
j∈M

pij

[
C̄sh
i −Cs(bhij, bsij) +

(
R̄h
i −R(ehij, e

s
ij)
)

((1− θ)ξh + ξs)
]
. (22)

The corresponding payment for PAC provider j is given by:

T sj = p̃j

[
C̄s
j + b̄sj + ēsj + R̄s

jξ
s
]

+
∑
i∈N

pij

[
R̄s
j −R(ehij, e

s
ij)
]
θξh. (23)

With flexible gainsharing agreements, the modified CJR-type payment model encompasses several

payment models as special cases. When θ= 0, it reduces to the original CJR-type payment model

(15) and (17), in which hospitals do not share any payment adjustments with PAC providers. When

θ = 1, PAC providers become fully accountable for hospital readmission costs, making this model

identical to our proposed payment model in (20)-(21). This result highlights that full alignment of

provider incentives can be achieved through appropriately structured gainsharing agreements.

We now analyze the equilibrium outcomes under this modified CJR-type payment model for all

values of θ ∈ [0,1], allowing us to assess the impact of different sharing levels on provider incentives.

Section 5.3 provides numerical results to illustrate the effects of θ on cost and readmission outcomes.
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Proposition 3. If the regulator uses (22) to reimburse hospitals and (23) to reimburse PAC

providers, then the unique Nash equilibrium is for each hospital i ∈ N to pick ahi = a∗h, and for

each hospital i ∈ N and PAC provider j ∈M such that pij > 0, to pick bhij = b∗h, e
h
ij = ẽh(θ) and

bsij = b∗s, e
s
ij = ẽs(θ), respectively, for some ẽh and ẽs defined in the proof in Appendix C. We have

ẽh(1) = e∗h, ẽs(1) = e∗s. If ∂2R(eh, es)/∂eh∂es > 0, ẽh(θ) decreases in θ and ẽs(θ) increases in θ.

Proposition 3 characterizes providers’ readmission-reduction investments across the full range of

sharing portion θ. As explained above, when hospitals fully share payment adjustments with PAC

providers (i.e., θ = 1), the modified CJR-type payment is the same as our proposed payment

model, thus providers invest at the first-best levels. To further study partial sharing, we consider

∂2R(eh, es)/∂eh∂es > 0, i.e., hospital investment is less effective at reducing readmissions at higher

PAC provider investments. Under this condition, hospitals invest more while PAC providers invest

less than the first-best levels, i.e., ẽh(θ)> e∗h and ẽs(θ)6 e∗s. This is expected as hospitals partially

absorb the payment adjustment associated with acute-care readmission costs that should be borne

by PAC providers. Furthermore, with greater sharing portion θ, providers invest closer to the

first-best levels—hospitals invest less and PAC providers invest more in reducing readmissions.

As we demonstrate in the next section, this leads to significant cost savings and reductions in

readmissions.

5.3. Numerical Experiments

To complement our theoretical findings, we conduct a numerical analysis to quantify the cost-

saving potential of our proposed payment model. Using real-world data, we calibrate our model

and evaluate its impact on PAC costs and readmission rates, comparing it to the alternative

payment models discussed earlier. This analysis provides empirical support for the theoretical

results, demonstrating how the proposed approach enhances financial and operational efficiency in

multi-entity healthcare settings.

In this section, we first outline the model calibration process, detailing the parameter selection

and data sources used in the analysis. We then present the results from a series of numerical

experiments, highlighting the comparative performance of different payment models in terms of

cost reduction, incentive alignment, and readmission outcomes.

Model calibration: We estimate model parameters using Medicare claims data three years

prior to CJR (CMS 2021b), a period during which providers were reimbursed under PPS. The

estimation of model parameters relies on the baseline (i.e., three years prior to CJR) risk-adjusted

average costs among hospitals whose participation in the CJR model was mandatory from Exhibit

D-1 of CMS (2021b). We assume that all providers adopt equilibrium actions consistent with PPS.
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First, we use the “Anchor payments” in this exhibit to estimate the expected total cost for acute

care of a new admission, i.e., Ch(a∗h) + a∗h = $12,190, the “Readmission payments” to estimate

the expected acute care cost for the potential readmission, i.e., R(0,0)ξh = $1,225, and the “SNF

payments” to estimate the PAC cost in an entire episode, i.e., Cs(0, g(0)) + R(0,0)ξs = $6,142.

Second, we estimate the readmission probability in PPS using the 90-day readmission rate for SNF

discharges prior to CJR implementation from Welsh et al. (2017), i.e., R(0,0) = 0.121. Third, since

the PAC cost per episode of care is much higher for patients who were readmitted versus those

who were not (Phillips et al. 2019), we assume that the PAC cost of a readmitted patient is 60%

of the patient’s total PAC cost, i.e., ξs/(Cs(0, g(0)) + ξs) = 40% (our results are robust to other

reasonable PAC cost allocations). Fourth, we use the following functions:

Ch(ah) = τh exp

(
1− a

h

τh

)
, (24)

Cs(bh, bs) = τ s
(

exp

(
1− bh

τ s

)
+ exp

(
1− bs

τ s

))
, (25)

R(eh, es) =
τ

ξh + ξs

(
exp

(
1− e

h

τ

)
+ exp

(
1− e

s

τ

))
, (26)

for constants τh, τ s, τ > 0, where exp(·) is the exponential function. These functions satisfy all

assumptions and yield reasonable equilibrium outcomes under different payment models calibrated

to data (see below).5 We use FOCs to determine, in simple closed forms, the first-best actions:

a∗h = τh, b∗h = b∗s = τ s, e∗h = e∗s = τ, (27)

and the following equilibrium actions under different payment models:

g(0) = τ s, ĕh = τ

(
1 + ln

(
ξh

ξh + ξs

))
, ĕs = τ

(
1 + ln

(
ξs

ξh + ξs

))
, (28)

ẽh = τ

(
1 + ln

(
(2− θ)ξh + ξs

ξh + ξs

))
, ẽs = τ

(
1 + ln

(
θξh + ξs

ξh + ξs

))
. (29)

Fifth, we plug equilibrium actions into (24)-(26) and use estimates in the first three steps to obtain

the following calibrated parameter values:

τh = 6,095, τ s = 1,102, τ = 399, ξh = 10,124, ξs = 7,798. (30)

Results: Using the calibrated parameter values and the equilibrium actions for different pay-

ment models summarized in Table 1, we evaluate the differences in three aspects; (i) the expected

total PAC costs and investments for an initial admission, given by Cs(bh, bs)+bh+bs, (ii) the read-

mission probability, given by R(eh, es), and (iii) the expected total costs of care and investments

for a readmission, given by R(eh, es)(ξh+ξs)+eh+es and referred to as “readmission costs” below.

5 Since there is no consensus in the literature regarding the functional forms for the cost and quality of collaborative
acute and post-acute care, we have explored several options. We chose the exponential form because it yields more
realistic equilibrium outcomes compared to other functions used in the literature, such as the inverse functions utilized
in Arifoğlu et al. (2021) and the Cobb-Douglas function employed in Andritsos and Tang (2018).



24

Table 1 Equilibrium outcomes under different payment models

Payment model ah bh bs eh es

Prospective payment system a∗h 0 g(0) 0 0

Bundled payment model a∗h 0 g(0) ĕh ĕs

CJR-type payment model a∗h b∗h b∗s ẽh(> e∗h) ẽs(< e
∗
s)

Our proposed payment model a∗h b∗h b∗s e∗h e∗s

Note: For each parameter a superscript ∗ denotes first-best outcomes.

The numerical results show that single-entity payment models lead to 18% higher total PAC

costs, amounting to $5,200 per patient compared to $4,408 under both the proposed payment model

and the CJR-type payment model. Furthermore, as shown in Figure 1, the proposed payment

model induces the socially optimal readmission probability of 4.5%, whereas the bundled payment

model results in a readmission probability of 9.1%, and the CJR-type payment model at θ = 0

leads to a readmission probability of 6.6%. The lower readmission probability under the proposed

payment model translates into reductions in readmission costs of 14% and 12% compared to the

bundled payment and the CJR-type payment model, respectively. These reductions correspond to

per-patient cost savings of $265 and $221, respectively.

The aggregate financial impact of these savings is substantial. Extrapolating the per-patient

savings to the entire Medicare population, using patient volumes from 2019, yields estimated annual

savings of approximately $197 million under the proposed payment model, compared to the bundled

payment model, and $164 million compared to the CJR-type payment model. Projections indicate

that these savings could reach $325 million and $271 million annually by 2030, assuming similar

baseline costs for regions currently not subject to the CJR payment model (Shichman et al. 2023).

Surprisingly, even partial cost-sharing under the CJR-type payment model significantly improves

outcomes. When hospitals and PAC providers share just 50% of readmission costs (θ = 0.5), the

readmission probability drops below 4.8%, approaching the socially optimal level, while readmission

costs fall within 2% of first-best levels. These results highlight the potential of well-structured

gainsharing agreements to promote collaborative care—even without full cost-sharing.

Beyond cost reduction, the proposed payment models have additional benefits that contribute

to overall healthcare system efficiency. By substantially reducing readmission probabilities, it low-

ers patient health risks, minimizes the disruption and inconvenience associated with readmission

episodes, and optimizes the utilization of healthcare resources. The improved alignment of financial

incentives between hospitals and PAC providers fosters a more coordinated approach to patient

care, leading to enhanced outcomes and a more efficient allocation of healthcare expenditures.
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Figure 1 Equilibrium readmission probabilities and costs under different payment models (τh = 6,095, τs = 1,102,

τ = 399, ξh = 10,124, ξs = 7,798; cost and readmission probability functions are given by (24)-(26))
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6. Practical considerations

While our analysis has focused on incentive mechanisms for payment models to promote col-

laborative care, implementing these payment models requires additional considerations like data

availability and cost estimation. This section focuses on the practical aspects by examining how

the proposed payment model can be effectively implemented and flexibly adjusted to accommodate

various practical considerations.

We begin by demonstrating our proposed payment model’s adaptability in using total cost per

patient as a cost benchmark for each provider in Section 6.1. This modification facilitates the use

of readily available data for cost benchmarking, simplifying implementation. In Section 6.2, we

address parameter estimation, highlighting the feasibility of leveraging existing data from the CJR

program. Next, we discuss the model’s flexibility, particularly its ability to incorporate aspects

of the CJR framework in Section 6.3. Finally, we show in Section 6.4 that our payment model

continues to yield first-best outcomes even when some of our modeling assumptions are relaxed.

6.1. Total costs

It is possible to simplify the implementation of the proposed payment model by reducing the

number of cost components regulators need to monitor.

To compute PAC provider payment T sj in (21), regulators only need to observe the total PAC

cost for each patient, expressed as Cs
ij + bsij + esij, along with readmission probabilities and costs.

However, hospital payment T hi in (20) is determined solely by PAC costs Cs(bhij, b
s
ij) and does not
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account for costs bsij and esij. When it is difficult to observe individual cost components separately,

we propose adjusting the hospital’s payment structure to be based on the total PAC cost.

We define the total cost of PAC provider j’s treatment for patients discharged from hospital i

as C sh
ij =Cs(bhij, b

s
ij) + bsij + esij, and let C̄ sh

i denote the average total cost for hospital i as given by:

C sh
ij =Cs(bhij, b

s
ij) + bsij + esij, (31)

and let

C̄ sh
i =

∑
k∈Ni

∑
j∈M

pkjC sh
kj

1− pi
. (32)

The payment amount for hospital i is then given by

T h
i = pi

[
C̄h
i + āhi + b̄hi + ēhi + R̄h

i ξ
h
]

+
∑
j∈M

pij

[
C̄ sh
i −C sh

ij

]
+
∑
j∈M

pij

[
R̄h
i −R(ehij, e

s
ij)
]
ξs. (33)

Note that the first component above is the average total cost of all hospitals except i. We can show

that Theorem 1 remains valid when T sj defined in (21) is used along with T h
i . The implementation

of the proposed model within the CJR program (see Section 5.2) can be similarly modified.

6.2. Informational requirements

In this section, we explain how the proposed payment model can be implemented while minimizing

additional information requirements for CMS, building on the observations from the previous

section. The CJR program already collects data to determine payments to providers, and this

information can also be used to calculate payment amounts in our model. Additionally, other

methods can be employed when more data are available. We explain these methods and provide

guidance on implementation where applicable.

Our payment model requires two types of data: patient flow and readmission data and cost

estimates.

Patient flow and readmissions data: This includes the number of patients treated by each

provider, along with the pair of providers (where applicable) who treated them, and readmission

status (corresponding to pi, p̃j, pij, and R in (33) and (21)). The CJR program already relies

on patient flow and readmissions data collected by CMS from providers (CMS 2018, Ko et al.

2022). Thus, the proposed payment model does not induce additional information burden regarding

patient flows.



27

Cost Estimates: Our model extends the single-entity DRG-based payment models explored in

prior research (Savva et al. 2019, Arifoğlu et al. 2021), which use prospective payments. In these

models, payment amounts do not require precise cost estimates as long as they ensure providers

can break even (see the discussion in the paragraph preceeding Proposition 1). This is because

payments are fixed and independent of provider actions. Similarly, parts of our payment model

follow this structure and do not require highly accurate cost estimates. In particular, the cost-of-

care payments ((33) and (21)) for hospital costs operate in the same way, allowing them to rely on

approximate estimates without affecting the model’s overall functionality.

However, the payment term C sh
ij in (33), which reflects the PAC provider’s treatment cost,

directly influences hospital decisions. As a result, obtaining precise cost estimates for PAC providers

is important, while other cost components do not require the same level of accuracy. Next, we

present estimation methods used in the CJR program and other applications that align with these

requirements.

CMS determines bonus payments for hospitals under the CJR program based on payment data

rather than based on their actual cost data. While this method does not perfectly reflect actual

provider costs, it is the approach currently used and can be incorporated into our proposed payment

model. In addition, providers retain some discretion in cost reduction even with the DRG-based

payment system. For example, institutional PAC providers can reduce their CMS payments by

shortening patient lengths of stay. Additionally, these providers receive separate payments for

certain non-therapy ancillary services, such as medications, respiratory therapy, and specialized

equipment (CMS 2024). Because CMS already uses these payments to evaluate cost efficiency in

the CJR program, they provide a practical baseline for cost estimation in our proposed payment

model. Specifically, payments made to hospitals and PAC providers can be used to approximate:

Ch
i + ahi + bhi + ehi , and ξh

for hospitals and

Cs
ij + bsij + esij, and ξs

for PAC providers. These values can then be used in our payment calculations (33) and (21), as

well as the implementation within the CJR program (see Section 5.2).

Although payment-based estimates align with CMS practices, they may not fully capture cost

efficiencies in provider expenses.6 Therefore, more refined methods are needed to improve accuracy.

CMS already collects claims and cost reports from providers, which offer a more detailed view of

6 Discrepancies between CMS cost estimates and actual provider costs may influence provider actions under both the
CJR program and our payment model. However, a detailed examination of these effects is beyond the scope of this
paper and is left for future research.
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treatment costs beyond what payment data alone can provide. These reports include financial and

operational details that facilitate cost-to-charge ratio adjustments, as demonstrated in Oomer et al.

(2017), Taira et al. (2003), Salemi et al. (2013). This approach provides a more precise measure of

provider costs than relying solely on payments.

An alternative cost estimation framework is used by the NHS in the UK (Amies-Cull et al.

2023). The NHS calculates costs at the provider level using the Patient Level Information and

Costing Systems (PLICS). This system assigns costs, such as staff salaries, equipment usage, med-

ications, and overheads, to individual patient care episodes. By grouping similar episodes under

Healthcare Resource Groups (HRGs) and aggregating their costs, the NHS determines the average

cost of delivering services for each HRG. These calculations adhere to nationally mandated costing

standards, ensuring consistency and comparability across providers. The resulting data informs

payment mechanisms, resource allocation, and benchmarking across the healthcare system.

6.3. Flexibility of the proposed payment model

The proposed payment model is adaptable to incorporate some of the features used in CJR.

Regionalization: The CJR program employs a regionalized payment approach, setting target

prices for each region to reflect cost variations, as noted by (Department of Health and Human

Services 2021). Our model can also adapt to regional cost variations by offering flexibility in

calculating payment amounts and benchmark parameters. For instance, a hospital’s payment could

be determined based on its performance relative to similar hospitals in the same region, combined

with the average performance of a selected provider group. This method allows for the setting of

flexible payment amounts and performance targets that take regional cost differences into account.

Risk exposure: Despite its benefits, our model increases risk exposure for PAC providers, par-

ticularly in the context of excess acute-care costs from readmissions. This risk could be mitigated

by implementing strategies such as limiting the initial share of penalties and rewards and increas-

ing them gradually, akin to the approach used in the CJR payment model for hospitals. Such an

approach would give PAC providers time to adapt and optimize their collaboration with acute-care

providers.

6.4. Extensions

We extend our proposed payment model by incorporating several practical considerations and

demonstrate that it continues to elicit first-best outcomes with appropriate modifications.

Endogenous discharge decisions: We consider different types of PAC settings, e.g., SNFs, home

care, and inpatient rehabilitation centers, with different care intensity as proxied by the PAC cost

and readmission functions. Patients are heterogeneous in their risks for readmissions and hospitals

decide the fraction of their patients discharged to each PAC setting, with riskier patients discharged
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to more intensive PAC settings, e.g., SNFs than home care. In each PAC setting, discharged patients

receive PAC from providers in that PAC setting with exogenous discharge probabilities, as in the

main model. See Appendix E for details.

The discharge decisions have significant implications for PAC providers, hospitals, and social

welfare. Specifically, these decisions determine the readmission risk of patients discharged to each

PAC setting, thereby affecting the collaborative investments of hospitals and PAC providers in

reducing readmissions and the PAC costs. In addition, the socially optimal discharge decisions are

made by weighing the benefits of reduced readmissions from discharging more patients to more

intense PAC settings against the increased PAC costs.

Despite these intricacies, we show that our proposed payment model continues to incentivize

hospitals and PAC providers to make socially optimal decisions, with the following modifications.

First, each hospital is reimbursed for their collaborative investments in reducing PAC costs and

readmissions based on the average fraction of patients discharged to the same PAC setting among

other hospitals. The reimbursement no longer depends on the hospital’s own discharge fractions

which could distort its collaborative investment decisions. Second, hospital payments are adjusted

by the PAC providers’ investments to reduce the PAC cost and readmissions relative to other PAC

providers. This new payment adjustment incentivizes hospitals to consider the implications of their

discharge decisions on PAC providers’ investments in reducing costs and readmissions.

Endogenous readmission treatment costs: We extend our original model by considering that, the

cost of treating a patient who is readmitted depends on the providers’ actions. Specifically, we

define Ch and Cs as the treatment costs for hospitals and PAC providers, respectively, for both

the initial admission and readmission. We update our proposed payment model by replacing the

(exogenous) readmission treatment costs ξh and ξs with the corresponding average treatment costs

among all other providers. We prove that the payment model continues to elicit socially optimal

decisions. See Appendix F for details.

Uniform investments: In our original model, we assume that hospitals make different PAC

provider dependent investments to reduce the PAC costs, and PAC providers make different hospi-

tal dependent investments. In this extension, we assume that hospitals invest the same amount for

all PAC providers, and that PAC providers invest the same amount for all hospitals. We update the

reimbursements for these investments in our proposed payment model and show that it continues

to elicit socially optimal decisions. See Appendix G for details.

Fixed investments: Our original model focuses on variable investments which are accounted on

a per-patient basis. We extend it by considering lump-sum investments from hospitals and PAC

providers. We consider two separate cases in which the hospital/PAC provider lump-sum investment

is uniform or specific to PAC provider/hospital. In each case, we update the reimbursements for
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provider investments in our proposed payment model and show that it continues to elicit socially

optimal decisions. See Appendix H for details.

Non-identical providers: We extend our original model by considering heterogeneity among

providers and patients across multiple dimensions, such as geographic and demographic factors. If

these factors are observable by the regulator and exogenous to the providers, our proposed payment

model can be adapted to accommodate this heterogeneity and continue to elicit socially optimal

decisions. Specifically, the regulator calculates relative-performance benchmarks based on each

provider’s observable characteristics through an estimation procedure (e.g., linear regression). This

aligns with the CJR program’s risk-adjustment procedure, which uses a linear regression model

with variables on patient characteristics and health status to adjust the target price for different

patients. See Appendix I for details.

7. Conclusions

Payment models play a critical role in shaping healthcare providers’ incentives to deliver high-

quality, cost-effective care. While DRG- and performance-based payment models have demon-

strated effectiveness in single-entity settings, their ability to promote care coordination is limited

in settings involving multiple independent entities, such as hospitals and PAC providers in joint

replacement surgeries. To enhance care coordination, CMS implemented the CJR program, which

holds participating hospitals financially accountable for the entire episode of care, encompassing

hospitalization and PAC services. However, despite this effort, the program has yielded only mod-

est and statistically insignificant cost savings. This raises the question of which payment models

are capable of improving care coordination and how they might be effectively integrated within

existing healthcare reimbursement structures.

This paper develops an analytical framework to examine incentive mechanisms underpinning

multi-entity payment models. Our analysis shows that conventional bundled payment models and

the CJR framework, especially without gainsharing agreements, do not fully align provider incen-

tives. To address these limitations, we propose a payment model that explicitly links hospital

and PAC provider reimbursements. Using a game-theoretical framework, we show that this model

results in socially optimal provider actions. We further show that the proposed payment model

can be seamlessly incorporated into the existing CJR framework through structured gainsharing

agreements, and that the proposed model can be flexibly adjusted to incorporate various practical

considerations.

Limitations and future research: Our model assumes a sufficiently high patient volume to

stabilize performance estimates, which may not hold for smaller institutions or providers in less

populated regions. Addressing variability in such settings requires further refinement, potentially
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through adjustments in risk-sharing mechanisms. Additionally, while our analysis primarily focuses

on readmissions as a quality measure, the CJR model incorporates a broader set of indicators,

including complication rates and patient-reported outcomes. Future research could explore the

integration of these additional metrics into our framework.

Like other bundled payment systems, our model does not address potential over-treatment or

provider risk selection behaviors, which could skew care provision towards healthier patients. These

issues underline the need for ongoing monitoring and potential model adjustments to align provider

incentives more closely with patient health outcomes. Developing payment models that curtail

incentives for over-treatment and risk selection remains a crucial area of research to improve collab-

orative care delivery. Additionally, the CJR payment model was made voluntary in certain regions

and the effects of voluntary participation in payment models and their implications for provider

selection and patient outcomes present valuable research avenues (see Einav et al. (2022)).
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Appendix

A. Conditions for unique socially optimal actions determined by FOCs

In this section we prove that the regulator has unique optimal actions that can be determined by

FOCs (6)–(10) under certain conditions.

Assumption A-1. (i) The expected acute care cost is strictly decreasing and strictly convex in

hospital investment, i.e., dCh(ah)/dah < 0 and d2Ch(ah)/d(ah)2 > 0, and the following boundary

conditions hold.

lim
ah↓0

dCh(ah)

dah
<−1< lim

ah↑Γ

dCh(ah)

dah
.

(ii) The expected PAC cost is decreasing and jointly strictly convex in hospital and SNF invest-

ments, i.e.,

∂Cs(bh, bs)

∂bi
< 0 and

∂2Cs(bh, bs)

∂(bi)2
> 0 for i= h, s,

∂2Cs(bh, bs)

∂(bh)2

∂2Cs(bh, bs)

∂(bs)2
>

(
∂2Cs(bh, bs)

∂bh∂bs

)2

,

and the following boundary conditions hold.

lim
bh↓0

∂Cs(bh, bs)

∂bh
<−1< lim

bh↑Γ

∂Cs(bh, bs)

∂bh
for all bs ∈ [0,Γ],

lim
bs↓0

∂Cs(bh, bs)

∂bs
<−1< lim

bs↑Γ

∂Cs(bh, bs)

∂bs
for all bh ∈ [0,Γ].

(iii) Readmission probability is strictly decreasing and jointly strictly convex in hospital and SNF

investments, i.e.,

∂R(eh, es)

∂ei
< 0 and

∂2R(eh, es)

∂(ei)2
> 0 for i= h, s,

∂2R(eh, es)

∂(eh)2

∂2R(eh, es)

∂(es)2
>

(
∂2R(eh, es)

∂eh∂es

)2

,

and the following boundary conditions hold.

lim
eh↓0

∂R(eh, es)

∂eh
<− 1

ξh + ξs
< lim

eh↑Γ

∂R(eh, es)

∂eh
for all es ∈ [0,Γ], (A-1)

lim
es↓0

∂R(eh, es)

∂es
<− 1

ξh + ξs
< lim

es↑Γ

∂R(eh, es)

∂es
for all eh ∈ [0,Γ]. (A-2)

Under these assumptions, the socially optimal (or first-best) actions, denoted by (a∗h, b
∗
h, b
∗
s, e
∗
h, e
∗
s),

are unique and can be characterized using the FOCs.

Lemma A-1 (First-best benchmark). The regulator’s objective in (5) has a unique maxi-

mizer in which ahi = a∗h for each hospital i∈N , and for each PAC provider j ∈M such that pij > 0,

bhij = b∗h, b
s
ij = b∗s, e

h
ij = e∗h, and esij = e∗s, where a∗h, b

∗
h, b
∗
s, e
∗
h, e
∗
s ∈ (0,Γ) satisfy FOCs (6)–(10).
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Proof of Lemma A-1. Let ~h = {hi, i∈N} and ~s = {sj, j ∈M} denote the actions of all hospitals

and all PAC providers, respectively. Thus, total welfare W is a function of ~h and ~s, and by (2),

(4), and (5), is given by

W = υ−
∑
i∈N

∑
j∈M

pij

[
Ch(ahi ) + ahi +Cs(bhij, b

s
ij) + bhij + bsij +R(ehij, e

s
ij)(ξ

h + ξs) + ehij + esij

]
. (A-3)

For notational simplicity, we will drop the arguments when it is clear from the context.

First, we characterize a∗h, i.e., hospital’s first-best investment to reduce the expected acute care

cost. Taking the first and second partial derivatives of W in (A-3) with respect to ahi , we have

∂W

∂ahi
=−pi

[
dCh(ahi )

dahi
+ 1

]
,

∂2W

∂(ahi )2
=−pi

d2Ch(ahi )

d(ahi )2
.

By Assumption A-1(i), we have ∂2W/∂(ahi )2 < 0, limahi ↓0
∂W/∂ahi > 0, and limahi ↑Γ

∂W/∂ahi < 0.

Thus, there exists a unique a∗h ∈ (0,Γ) that satisfies FOC (6) and

a∗h = arg max
ahi ∈[0,Γ]

W (~h,~s) for each i∈N and any fixed (~h,~s) \ {ahi } (A-4)

Second, we characterize (b∗h, b
∗
s), i.e., first-best investments made by the hospital and PAC

provider to reduce the expected PAC cost. When pij = 0, W is independent of bhij and bsij. Without

loss of generality (WLOG) we assume that first-best actions are taken (see the last paragraph of

Section 3 for details), i.e., bhij = b∗h and bsij = b∗s, where b∗h and b∗s are given by (7)-(8). When pij > 0,

we take the first and second partial derivatives of W in (A-3) with respect to bsij and obtain

∂W

∂bsij
=−pij

[
∂Cs(bhij, b

s
ij)

∂bs
+ 1

]
,

∂2W

∂(bsij)
2

=−pij
∂2Cs(bhij, b

s
ij)

∂(bs)2
.

For any fixed bhij ∈ [0,Γ], we have ∂2W/∂(bsij)
2 < 0, limbsij↓0 ∂W/∂b

s
ij > 0, and limbsij↑Γ ∂W/∂b

s
ij < 0

by Assumption A-1(ii). Hence, there exists a unique g(bhij)∈ (0,Γ) that satisfies

∂Cs(bhij, g(bhij))

∂bs
+ 1 = 0. (A-5)

Applying the Implicit Function Theorem to (A-5), we obtain

dg(bhij)

dbhij
=−

∂2Cs(bhij, g(bhij))/∂b
h∂bs

∂2Cs(bhij, g(bhij))/∂(bs)2
. (A-6)

Since W is concave in bsij by Assumption A-1(ii), we have

W |bsij=g(bhij) = sup
bsij∈[0,Γ]

W.
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Next we show that for any given (~h,~s) \ {bhij, bsij}, there exists a unique b∗h ∈ (0,Γ) that satisfies

W |{bhij=b∗
h
,bsij=g(b∗

h
)} = sup

bhij∈[0,Γ]

W |bsij=g(bhij) .

Let W (bhij) = W |bsij=g(bhij) for notational simplicity. Then,

dW (bhij)

dbhij
=− pij

[
∂Cs(bhij, g(bhij))

∂bh
+
∂Cs(bhij, g(bhij))

∂bs
dg(bhij)

dbhij
+ 1 +

dg(bhij)

dbhij

]
=− pij

[
∂Cs(bhij, g(bhij))

∂bh
+ 1

]
, (A-7)

where the second equality follows from (A-5).

d2W (bhij)

d(bhij)
2

=− pij
[
∂2Cs(bhij, g(bhij))

∂bh∂bs
dg(bhij)

dbhij
+
∂2Cs(bhij, g(bhij))

∂(bh)2

]

= pij


(
∂2Cs(bhij ,g(b

h
ij))

∂bh∂bs

)2

∂2Cs(bhij ,g(b
h
ij))

∂(bs)2

−
∂2Cs(bhij, g(bhij))

∂(bh)2

< 0,

where the second equality follows by plugging in dg(bhij)/db
h
ij from (A-6), and the inequality follows

from Assumption A-1(ii). Moreover, we have limbhij↓0
dW (bhij)/db

h
ij > 0 and limbhij↑Γ

dW (bhij)/db
h
ij <

0 by Assumption A-1(ii). Thus, W (bhij) has a unique maximizer b∗h ∈ (0,Γ) satisfying the FOC

dW (b∗h)/dbhij = 0, which by (A-7) reduces to

∂Cs(b∗h, g(b∗h))

∂bh
+ 1 = 0. (A-8)

It then yields (7) by defining

b∗s = g(b∗h)∈ (0,Γ), (A-9)

and (8) follows by substituting bhij = b∗h into (A-5).

Third, we characterize (e∗h, e
∗
s), i.e., first-best investments made by the hospital and PAC provider

to reduce the readmission probability. When pij = 0, W is independent of ehij and esij. WLOG we

assume that first-best actions are taken (see the last paragraph of Section 3 for details), i.e., ehij = e∗h

and esij = e∗s, where e∗h and e∗s are given by (9)-(10). When pij > 0, we take the first and second

partial derivatives of W in (A-3) with respect to esij and obtain

∂W

∂esij
=−pij

[
∂R(ehij, e

s
ij)

∂es
(ξh + ξs) + 1

]
,

∂2W

∂(esij)
2

=−pij
∂2R(ehij, e

s
ij)

∂(es)2
(ξh + ξs).
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For any fixed ehij ∈ [0,Γ], we have ∂2W/∂(esij)
2 < 0, limesij↓0 ∂W/∂e

s
ij > 0, and limes↑Γ ∂W/∂e

s
ij < 0

by Assumption A-1(iii). Hence there exists a unique z(ehij)∈ (0,Γ) that satisfies

∂R(ehij, z(e
h
ij))

∂es
(ξh + ξs) + 1 = 0. (A-10)

Applying the Implicit Function Theorem, we obtain

dz(ehij)

dehij
=−

∂2R(ehij, z(e
h
ij))/∂e

h∂es

∂2R(ehij, z(e
h
ij))/∂(es)2

. (A-11)

Since W is concave in esij by Assumption A-1(iii), we have

W |esij=z(ehij) = sup
esij∈[0,Γ]

W.

Next we show that for any given (~h,~s) \ {ehij, esij}, there exists a unique e∗h ∈ (0,Γ) that satisfies

W |{ehij=e∗
h
,esij=e∗s} = sup

ehij∈[0,Γ]

W |esij=z(ehij) .

Let W (ehij) = W |esij=z(ehij) for notational simplicity. Then,

dW (ehij)

dehij
=−pij

[
∂R(ehij, z(e

h
ij))

∂eh
(ξh + ξs) +

∂R(ehij, z(e
h
ij))

∂es
dz(ehij)

dehij
(ξh + ξs) + 1 +

dz(ehij)

dehij

]
=−pij

[
∂R(ehij, z(e

h
ij))

∂eh
(ξh + ξs) + 1

]
,

where the second equality follows from (A-10).

d2W (ehij)

d(ehij)
2

=− pij
[
∂2R(ehij, z(e

h
ij))

∂eh∂es
dz(ehij)

dehij
+
∂2R(ehij, z(e

h
ij))

∂(eh)2

]
(ξh + ξs)

=pij


(
∂2R(ehij ,z(e

h
ij))

∂eh∂es

)2

∂2R(ehij ,z(e
h
ij))

∂(es)2

−
∂2R(ehij, z(e

h
ij))

∂(eh)2

 (ξh + ξs)< 0,

where the second equality follows by plugging in
dz(ehij)

dehij
from (A-11), and the inequality follows from

Assumption A-1(iii). Moreover, we have limehij↓0
dW (ehij)/de

h
ij > 0 and limehij↑Γ

dW (ehij)/de
h
ij < 0 by

Assumption A-1(iii). Thus there exists a unique e∗h ∈ (0,Γ) that satisfies (9) with e∗s = z(e∗h)∈ (0,Γ);

(10) follows by substituting ehij = e∗h into (A-10). �

B. Proofs: Bundled payment model

We continue to adopt Assumption A-1 with the first inequalities in (A-1)-(A-2) strengthened

respectively into

lim
eh↓0

∂R(eh, es)

∂eh
<− 1

ξh
for all es ∈ [0,Γ], (A-12)
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lim
es↓0

∂R(eh, es)

∂es
<− 1

ξs
for all eh ∈ [0,Γ], (A-13)

which ensures that under payment model (14)-(15) hospitals and PAC providers have unique best

responses that can be determined using FOCs.

Proof of Proposition 1: By (1), (2), and (14), hospital i’s objective is

Πh
i (hi) =

∑
j∈M

pij
[
(C̄h

i + R̄h
i ξ

h)− (Ch(ahi ) +R(ehij, e
s
ij)ξ

h) + (āhi + b̄hi + ēhi )− (ahi + bhij + ehij)
]
.

(A-14)

By (3), (4), and (15), PAC provider j’s objective is

Πs
j(sj) =

∑
i∈N

pij
[
(C̄s

j + R̄s
jξ
s)− (Cs(bhij, b

s
ij) +R(ehij, e

s
ij)ξ

s) + (b̄sj + ēsj)− (bsij + esij)
]
. (A-15)

We proceed in three steps. First, we prove that each hospital i picks ahi = a∗h for any fixed (hk, sj, k ∈

N , j ∈M) \ {ai}. Taking the first and second partial derivatives of Πh
i in (A-14) with respect to

ahi ,

∂Πh
i

∂ahi
=−pi

[
d(Ch(ahi ))

dahi
+ 1

]
,

∂2Πh
i

∂(ahi )2
=−pi

d2(Ch(ahi ))

d(ahi )2
.

By Assumption A-1(i), we have ∂2Πh
i /∂(ahi )2 < 0, limahi ↓0

∂Πh
i /∂a

h
i > 0, and limahi ↑Γ

∂Πh
i /∂a

h
i < 0.

Thus, hospital i has a unique optimal action determined by FOC and by (6), we have ahi = a∗h.

Second, we analyze hospitals’ and PAC providers’ investments to reduce the PAC cost in equi-

librium. When pij = 0, Πh
i and Πs

j are independent of both bhij and bsij. WLOG we assume that

first-best actions are taken (see the last paragraph of Section 3 for details), i.e., bhij = b∗h and bsij = b∗s,

where b∗h and b∗s are given by (7)-(8). When pij > 0, we have ∂Πh
i /∂b

h
ij = −pij < 0, which yields

bhij = 0 in any equilibrium. Plugging in (A-15) and taking the first and second partial derivatives

with respect to bsij, respectively, we obtain

∂Πs
j

∂bsij
=−pij

[
∂Cs(0, bsij)

∂bs
+ 1

]
,

∂2Πs
j

∂(bsij)
2

=−pij
∂2Cs(0, bsij)

∂(bs)2
.

By Assumption A-1(ii), we have ∂2Πs
j/∂(bsij)

2 < 0, limbsij↓0 ∂Πs
j/∂b

s
ij > 0, and limbsij↑Γ ∂Πs

j/∂b
s
ij < 0.

Thus, a unique equilibrium exists in which PAC provider j’s action bsij is determined by FOC and

we have bsij = g(0) by (A-5).

Third, we analyze hospitals’ and PAC providers’ investments to reduce the readmission probabil-

ity in equilibrium. When pij = 0, Πh
i and Πs

j are independent of both ehij and esij. WLOG we assume
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that first-best actions are taken (see the last paragraph of Section 3 for details), i.e., ehij = e∗h and

esij = e∗s, where e∗h and e∗s are given by (9)-(10). When pij > 0, we take partial derivatives of Πh
i and

Πs
j with respect to ehij and esij, respectively, and obtain

∂Πh
i

∂ehij
=−pij

[
∂R(ehij, e

s
ij)

∂eh
ξh + 1

]
, (A-16)

∂Πs
j

∂esij
=−pij

[
∂R(ehij, e

s
ij)

∂es
ξs + 1

]
. (A-17)

We proceed as follows: (i) We show that hospital i and PAC provider j have unique best responses

characterized by ehij = z̆h(esij) and esij = z̆s(e
h
ij). (ii) We establish the existence of a unique equilib-

rium (ĕh, ĕs) as determined by

∂R(ĕh, ĕs)

∂eh
ξh + 1 = 0, (A-18)

∂R(ĕh, ĕs)

∂es
ξs + 1 = 0. (A-19)

(iii) We prove that (ĕh, ĕs) 6= (e∗h, e
∗
s) and the total costs of care and investments associated with

readmissions, i.e., Φ(eh, es) =R(eh, es)(ξh + ξs) + eh + es, is strictly convex. The proof is complete

by noting that (e∗h, e
∗
s) is the unique unconstrained maximizer of Φ(eh, es) by Lemma A-1.

(i) For any fixed esij ∈ [0,Γ], by Assumption A-1(iii), (A-12), and (A-16), we have ∂2Πh
i /∂(ehij)

2 <

0, limehij↓0
∂Πh

i /∂e
h
ij > 0, and limehij↑Γ

∂Πh
i /∂e

h
ij < 0. Thus there exists a unique z̆h(esij)∈ (0,Γ) satis-

fying

∂R(z̆h(esij), e
s
ij)

∂eh
ξh + 1 = 0. (A-20)

For any fixed ehij ∈ [0,Γ], by Assumption A-1(iii), (A-13), and (A-17), we have ∂2Πs
j/∂(esij)

2 < 0,

limesij↓0 ∂Πs
j/∂e

s
ij > 0, and limesij↑Γ ∂Πs

j/∂e
s
ij < 0. Thus there exists a unique z̆s(e

h
ij)∈ (0,Γ) satisfying

∂R(ehij, z̆s(e
h
ij))

∂es
ξs + 1 = 0. (A-21)

(ii) By part (i), any equilibrium (ĕh, ĕs) must satisfy ĕh = z̆h(ĕs) and ĕs = z̆s(ĕh); this and (A-20)-

(A-21) imply (A-18)-(A-19). Below, we establish the existence and uniqueness of (ĕh, ĕs). Plugging

ĕs = z̆s(ĕh) into (A-20), we can characterize the hospital’s equilibrium investment ĕh by Ψ̆(ĕh) = 0,

where

Ψ̆(eh) =
∂R(eh, z̆s(e

h))

∂eh
ξh + 1. (A-22)

Taking the partial derivative with respect to eh, we obtain

dΨ̆(eh)

deh
= ξh

(
∂2R(eh, z̆s(e

h))

∂(eh)2
+
∂2R(eh, z̆s(e

h))

∂es∂eh
dz̆s(e

h)

deh

)
, (A-23)



42

where

dz̆s(e
h)

deh
=−∂

2R(eh, z̆s(e
h))/∂eh∂es

∂2R(eh, z̆s(eh))/∂(es)2
(A-24)

by taking the derivative of (A-21) with respect to ehij. Plugging (A-24) into (A-23), we have

dΨ̆(eh)

deh
= ξh

(
∂2R(eh, z̆s(e

h))

∂(eh)2
− (∂2R(eh, z̆s(e

h))/∂eh∂es)
2

∂2R(eh, z̆s(eh))/∂(es)2

)
> 0, (A-25)

where the inequality follows from Assumption A-1(iii). We also have limeh↓0 Ψ̆(eh) < 0 and

limeh↑Γ Ψ̆(eh)> 0 by Assumption A-1(iii) and (A-12). Therefore, there exists a unique ĕh = {eh ∈

(0,Γ)|Ψ̆(eh) = 0}. This and z̆s(e
h)∈ (0,Γ) imply that there exists a unique ĕs = z̆s(ĕh)∈ (0,Γ).

(iii) We first prove that (ĕh, ĕs) 6= (e∗h, e
∗
s) by contradiction. Suppose not, i.e., ĕh = e∗h and ĕs = e∗s,

then by (9),

∂R(ĕh, ĕs)

∂eh
(ξh + ξs) + 1 = 0,

which contradicts (A-18) due to ξs > 0. Thus we have (ĕh, ĕs) 6= (e∗h, e
∗
s).

Finally, we prove that Φ(eh, es) is a jointly strictly convex function.

∂2Φ

∂(eh)2
=
∂2R(eh, es)

∂(eh)2
(ξh + ξs),

∂2Φ

∂(es)2
=
∂2R(eh, es)

∂(es)2
(ξh + ξs),

∂2Φ

∂eh∂es
=
∂2R(eh, es)

∂eh∂es
(ξh + ξs).

The strict convexity of Φ follows from strict convexity of R(eh, es) by Assumption A-1(iii). �

C. Proofs: Equilibrium under CJR-type payment models

We continue to adopt Assumption A-1 with (A-1)-(A-2) strengthened respectively into

lim
eh↓0

∂R(eh, es)

∂eh
<− 1

ξh + ξs
and lim

eh↑Γ

∂R(eh, es)

∂eh
>− 1

2ξh + ξs
for all es ∈ [0,Γ], (A-26)

lim
es↓0

∂R(eh, es)

∂es
<− 1

ξs
and lim

es↑Γ

∂R(eh, es)

∂es
>− 1

ξh + ξs
for all eh ∈ [0,Γ], (A-27)

which ensures that PAC providers have unique optimal actions that can be determined using FOCs.

Proof of Proposition 2: Since the CJR-type payment model (15)-(17) is a special case of the

modified CJR-type payment model (22)-(23) at θ= 0, the equilibrium actions presented in Propo-

sition 2 are equal to the equilibrium actions presented in Proposition 3 at θ = 0. Moreover, (19)

can be proven in the same way as that for (16) and hence is omitted.

Proof of Proposition 3: By (1), (2), and (22), hospital i’s objective is

Πh
i (hi) =pi

[
C̄h
i + āhi −Ch(ahi )− ahi

]
+
∑
j∈M

pij

[
C̄sh
i −Cs(bhij, bsij) +

(
R̄h
i −R(ehij, e

s
ij)
)

((2− θ)ξh + ξs) + b̄hi − bhij + ēhi − ehij
]
.

(A-28)
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By (3), (4), and (23), PAC provider j’s objective is

Πs
j(sj) =

∑
i∈N

pij
[
C̄s
j −Cs(bhij, b

s
ij) + (R̄s

j −R(ehij, e
s
ij))(θξ

h + ξs) + b̄sj − bsij + ēsj − esij
]
. (A-29)

It is straightforward to verify that in any equilibrium, we have ahi = a∗h for each hospital i∈N , and

for each PAC provider j ∈M such that pij > 0, we have bhij = b∗h and bsij = b∗s; the proof is identical

to that in Theorem 1. Next, we analyze hospitals’ and PAC providers’ investments to reduce the

readmission probability in equilibrium. When pij = 0, Πh
i and Πs

j are independent of both ehij and

esij. WLOG we assume that first-best actions are taken (see the last paragraph of Section 3 for

details), i.e., ehij = e∗h and esij = e∗s, where e∗h and e∗s are given by (9)-(10). When pij > 0, we take

partial derivatives of Πh
i and Πs

j with respect to ehij and esij, respectively, and obtain

∂Πh
i

∂ehij
=−pij

[
∂R(ehij, e

s
ij)

∂eh
((2− θ)ξh + ξs) + 1

]
, (A-30)

∂Πs
j

∂esij
=−pij

[
∂R(ehij, e

s
ij)

∂es
(θξh + ξs) + 1

]
. (A-31)

We proceed as follows: (i) We show that hospital i and PAC provider j have unique best responses

characterized by ehij = zh(esij) and esij = zs(e
h
ij). (ii) We establish the existence of a unique equilib-

rium (ẽh, ẽs) for any given θ ∈ [0,1], defined by

∂R(ẽh, ẽs)

∂eh
((2− θ)ξh + ξs) + 1 = 0, (A-32)

∂R(ẽh, ẽs)

∂es
(θξh + ξs) + 1 = 0. (A-33)

Finally, we prove that (iii) ẽh and ẽs are continuous in θ ∈ [0,1], and (iv) dẽh/dθ < 0 and dẽs/dθ > 0

for all θ ∈ [0,1] if ∂2R(eh, es)/∂eh∂es > 0. For notational simplicity, we drop argument θ from ẽh

and ẽs.

(i) At any fixed esij ∈ [0,Γ], by (A-30) and Assumption A-1(iii), we have ∂2Πh
i /∂(ehij)

2 < 0,

limeh↑Γ ∂Πh
i /∂e

h
ij < 0, and limehij↓0

∂Πh
i /∂e

h
ij > 0 for any θ ∈ (θh, θ̄h), where

θh = sup
esij∈[0,Γ]

{
2 +

1

ξh

[
ξs +

1

limehij↑Γ
∂R(ehij, e

s
ij)/∂e

h

]}
< 0,

θ̄h = inf
esij∈[0,Γ]

{
2 +

1

ξh

[
ξs +

1

limehij↓0
∂R(ehij, e

s
ij)/∂e

h

]}
> 1

by (A-26). Thus, the hospital has a unique best response zh(esij)∈ (0,Γ) and is determined by the

FOC of Πh
i , i.e.,

∂R(zh(esij), e
s
ij)

∂eh
((2− θ)ξh + ξs) + 1 = 0. (A-34)
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At any fixed ehij ∈ [0,Γ], by (A-27), (A-31), and Assumption A-1(iii), we have ∂2Πs
j/∂(esij)

2 < 0,

limes↑Γ ∂Πs
j/∂e

s
ij < 0, and limes↓0 ∂Πs

j/∂e
s
ij > 0 for any θ ∈ (θs, θ̄s), where

θs = sup
ehij∈[0,Γ]

{
− 1

ξh

[
ξs +

1

limesij↓0 ∂R(ehij, e
s
ij)/∂e

s

]}
< 0,

θ̄s = inf
ehij∈[0,Γ]

{
− 1

ξh

[
ξs +

1

limesij↑Γ ∂R(ehij, e
s
ij)/∂e

s

]}
> 1

by (A-27). Thus, the PAC provider has a unique best response zs(e
h
ij) ∈ (0,Γ) and is determined

by the FOC of Πs
j , i.e.,

∂R(ehij, zs(e
h
ij))

∂es
(θξh + ξs) + 1 = 0. (A-35)

(ii) Consider any given θ ∈ Θ = (θh, θ̄h) ∩ (θs, θ̄s) ⊃ [0,1] due to θh, θs < 0 and θ̄h, θ̄s > 0. Plug-

ging esij = zs(e
h
ij) into (A-34), we can characterize the hospital’s equilibrium readmission-reduction

investment ẽh by Ψ(ẽh) = 0, where

Ψ(eh) =
∂R(eh, zs(e

h))

∂eh
((2− θ)ξh + ξs) + 1. (A-36)

Taking the partial derivative with respect to eh, we obtain

dΨ(eh)

deh
= ((2− θ)ξh + ξs)

(
∂2R(eh, zs(e

h))

∂(eh)2
+
∂2R(eh, zs(e

h))

∂es∂eh
dzs(e

h)

deh

)
, (A-37)

where

dzs(e
h)

deh
=−∂

2R(eh, zs(e
h))/∂eh∂es

∂2R(eh, zs(eh))/∂(es)2
(A-38)

by taking the derivative of (A-35) with respect to ehij. Plugging (A-38) into (A-37), we have

dΨ(eh)

deh
= ((2− θ)ξh + ξs)

(
∂2R(eh, zs(e

h))

∂(eh)2
− (∂2R(eh, zs(e

h))/∂eh∂es)
2

∂2R(eh, zs(eh))/∂(es)2

)
> 0, (A-39)

where the inequality follows from Assumption A-1(iii). We also have limeh↓0 Ψ(eh) < 0 and

limeh↑Γ Ψ(eh)> 0 by θ ∈ (θh, θ̄h). Therefore, there exists a unique ẽh = {eh ∈ (0,Γ)|Ψ(eh) = 0}. This

and zs(eh)∈ (0,Γ) imply that there exists a unique ẽs = zs(ẽh)∈ (0,Γ). We thus have proven that,

for any θ ∈Θ, there exists a unique equilibrium in which each hospital chooses eh = ẽh and each

PAC provider chooses es = ẽs, where ẽh and ẽs are defined in (A-32)-(A-33).

(iii) Now we show that ẽh and ẽs are continuous in θ ∈Θ, which implies continuity of ẽh and ẽs

in θ ∈ [0,1] ⊂ Θ. For ease of exposition, we will make explicit the dependence of zs and Ψ on θ;

see (A-35)-(A-36). Since R(eh, es) is twice differentiable and ∂2R(eh, es)/∂(es)2 > 0, by the Implicit

Function Theorem, zs(e
h, θ) defined as in (A-35) is continuous in eh ∈ (0,Γ) and θ ∈Θ, so as Ψ(eh, θ)
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defined as in (A-36). Since for any θ ∈Θ, a unique ẽh ∈ (0,Γ) exists and satisfies Ψ(ẽh, θ) = 0, by

the Implicit Function Theorem and noting ∂Ψ(ẽh, θ)/∂e
h > 0 by (A-39), ẽh is continuous in θ ∈Θ.

This and continuity of zs(e
h, θ) imply that ẽs = zs(ẽh, θ) is continuous in θ ∈Θ.

(iv) By continuity of ẽh and ẽs in θ ∈ [0,1], to prove ẽh > e∗h = limθ↑1 ẽh and ẽs < e∗s = limθ↑1 ẽs, it

suffices to prove dẽh/dθ < 0 and dẽs/dθ > 0 for all θ ∈ [0,1]. Taking the derivative of Ψ(ẽh(θ), θ) = 0

with respect to θ, we obtain

dẽh
dθ

=− ∂Ψ(ẽh, θ)/∂θ

∂Ψ(ẽh, θ)/∂eh
=−

((2− θ)ξh + ξs)∂
2R(ẽh,zs(ẽh,θ))

∂eh∂es
∂zs(ẽh,θ)

∂θ
− ξh ∂R(ẽh,zs(ẽh,θ))

∂eh

((2− θ)ξh + ξs)
[
∂2R(ẽh,zs(ẽh,θ))

∂(eh)2
+ ∂2R(ẽh,zs(ẽh,θ))

∂eh∂es
∂zs(ẽh,θ)

∂eh

] . (A-40)

By (A-38) and Assumption A-1(iii), the denominator on the right-hand side of (A-40) is positive

for all θ ∈ [0,1], thus

sgn

(
dẽh
dθ

)
=−sgn

(
((2− θ)ξh + ξs)

∂2R(ẽh, zs(ẽh, θ))

∂eh∂es
∂zs(ẽh, θ)

∂θ
− ξh∂R(ẽh, zs(ẽh, θ))

∂eh

)
. (A-41)

Taking the derivative of (A-35) with respect to θ, we have

∂zs(e
h, θ)

∂θ
=−

ξh ∂R(eh,zs(eh,θ))

∂es

(θξh + ξs)∂
2R(eh,zs(eh,θ))

∂(es)2

. (A-42)

Plugging it into (A-41), we obtain

sgn

(
dẽh
dθ

)
= sgn

(
(2− θ)ξh + ξs

θξh + ξs
∂2R(ẽh, zs(ẽh, θ))

∂eh∂es

∂R(ẽh,zs(ẽh,θ))

∂es

∂2R(ẽh,zs(ẽh,θ))

∂(es)2

+
∂R(ẽh, zs(ẽh, θ))

∂eh

)

= sgn

(
(2− θ)ξh + ξs

θξh + ξs
∂2R(ẽh, ẽs)

∂eh∂es

∂R(ẽh,ẽs)

∂es

∂2R(ẽh,ẽs)

∂(es)2

+
∂R(ẽh, ẽs)

∂eh

)

= sgn

(
(2− θ)ξh + ξs

θξh + ξs
∂2R(ẽh, ẽs)

∂eh∂es
∂R(ẽh, ẽs)

∂es
+
∂R(ẽh, ẽs)

∂eh
∂2R(ẽh, ẽs)

∂(es)2

)
< 0, (A-43)

where the second equality follows from ẽs = zs(ẽh, θ) for any θ, the third equality fol-

lows from ∂2R(eh, es)/∂(es)2 > 0 by Assumption A-1(iii), and the inequality follows from

∂2R(eh, es)/(∂eh∂es) > 0, ∂R(eh, es)/∂eh < 0, ∂R(eh, es)/∂es < 0, and ∂2r(eh, es)/∂e
2
s > 0 by

Assumption A-1(iii).

Taking the derivative of ẽs with respect to θ, we obtain

dẽs
dθ

=
dzs(ẽh, θ)

dθ
=
∂zs(ẽh, θ)

∂eh
dẽh
dθ

+
∂zs(ẽh, θ)

∂θ
=−

∂2R(ẽh,z̃s)

∂eh∂es

∂2R(ẽh,z̃s)

∂(es)2

dẽh
dθ
−

ξh ∂R(ẽh,z̃s)

∂es

(θξh + ξs)∂
2R(ẽh,z̃s)

∂(es)2

> 0, (A-44)

where the second equality follows from differentiation by parts, the third follows from (A-38)

and (A-42), and the inequality follows from dẽh/dθ < 0 by (A-43), ∂2R(eh, es)/(∂eh∂es) > 0,

∂R(eh, es)/∂eh < 0, ∂R(eh, es)/∂es < 0, and ∂2R(eh, es)/∂(es)2 > 0 by Assumption A-1(iii). �
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D. Proof of Theorem 1

The proof is based on the observation that under the proposed payment scheme, the difference

between a hospital’s objective and the regulator’s objective is independent of that hospital’s actions,

and the difference between a PAC provider’s objective and the regulator’s objective is independent

of that PAC provider’s actions. More precisely, given the actions of all other hospitals and PAC

providers, by (1)-(4), (20), and (21), hospital i’s objective is

Πh
i (hi) =pi

[
C̄h
i + āhi −Ch(ahi )− ahi

]
+
∑
j∈M

pij
[
C̄sh
i −Cs(bhij, b

s
ij) + (R̄h

i −R(ehij, e
s
ij))(ξ

h + ξs) + b̄hi − bhij + ēhi − ehij
]
, (A-45)

and PAC provider j’s objective is

Πs
j(sj) =

∑
i∈N

pij
[
C̄s
j −Cs(bhij, b

s
ij) + (R̄s

j −R(ehij, e
s
ij))(ξ

h + ξs) + b̄sj − bsij + ēsj − esij
]
. (A-46)

By (A-3), letting ~h = {hi, i ∈ N} and ~s = {sj, j ∈M} denote the actions of all hospitals and all

PAC providers, respectively, we have

∆h = Πh
i (hi)−W (~h, ~v) =pi

[
C̄h
i + āhi

]
+
∑
j∈M

pij
[
C̄sh
i + R̄h

i (ξh + ξs) + b̄hi + ēhi + bsij + esij
]
− v

+
∑
k∈Ni

∑
j∈M

pkj
[
Cs(bhkj, b

s
kj) +R(ehkj, e

s
kj)ξ

s + bskj + eskj
]

+
∑
k∈Ni

Chk (hk)

does not depend on hi, and

∆s = Πs
j(sj)−W (~h, ~v) =

∑
i∈N

{
pij
[
C̄s
j + R̄s

j(ξ
h + ξs) + b̄sj + ēsj + bhij + ehij

]
+ pi(C

h(ahi ) + ahi )
}
−v

+
∑
i∈N

∑
k∈Mj

pik
[
Cs(bhik, b

s
ik) +R(ehik, e

s
ik)(ξ

h + ξs) + bhik + bsik + ehik + esik
]

does not depend on sj. It then follows that hospital i’s problem

maximize
hi∈[0,Γ]2M+1

Πh
i (hi)

is equivalent to

maximize
hi∈[0,Γ]2M+1

W (hi|hk, sj, k ∈Ni, j ∈M) (A-47)

because the two objectives differ by ∆h which does not depend on the hospital’s decisions hi.

Similarly, PAC provider j’s problem, i.e.,

maximize
sj∈[0,Γ]2N

Πs
j(sj)
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is equivalent to

maximize
sj∈[0,Γ]2N

W (sj|hi, sk, i∈N , k ∈Mj). (A-48)

because the two objectives differ by ∆s which does not depend on the PAC provider’s decisions sj.

By Lemma A-1, the regulator’s problem, i.e.,

maximize
hi∈[0,Γ]2M+1,sj∈[0,Γ]2N ,i∈N ,j∈M

W (hi, sj, i∈N , j ∈M), (A-49)

has a unique maximizer given by hi = h∗ for each hospital i∈N and sj = s∗ for each PAC provider

j ∈M, where

h∗ = (a∗, b∗h, . . . , b
∗
h︸ ︷︷ ︸

M times

, e∗h, . . . , e
∗
h︸ ︷︷ ︸

M times

) and s∗ = (b∗s, . . . , b
∗
s︸ ︷︷ ︸

N times

, e∗s, . . . , e
∗
s︸ ︷︷ ︸

N times

)

are the first-best actions for each hospital and each PAC provider, respectively. It then follows that

for each hospital i∈N ,

h∗ = arg max
hi∈[0,Γ]2M+1

W (hi|hk = h∗, sj = s∗, k ∈Ni, j ∈M). (A-50)

Suppose not, then there exists h′ ∈ [0,Γ]2M+1 such that

W (h′|hk = h∗, sj = s∗, k ∈Ni, j ∈M)>W (h∗|hk = h∗, sj = s∗, k ∈Ni, j ∈M),

or equivalently

W (hi = h′,hk = h∗, sj = s∗, k ∈Ni, j ∈M)>W (hi = h∗, sj = s∗, i∈N , j ∈M).

This contradicts Lemma A-1 proving that W (hi, sj, i ∈ N , j ∈M) has a unique maximizer given

by hi = h∗ for each hospital i ∈ N and sj = s∗ for each PAC provider j ∈M. Similarly, for each

PAC provider j ∈M, we have

s∗ = arg max
sj∈[0,Γ]2N

W (sj|hi = h∗, sk = s∗, i∈N , k ∈Mj), (A-51)

i.e., each PAC provider j’s problem given by (A-48) has a unique solution sj = s∗, when other

hospitals and PAC providers choose first-best actions. By (A-50), each hospital i’s problem given

by (A-47) has a unique solution hi = h∗, when other hospitals and PAC providers choose first-

best actions. Thus, no hospital or PAC provider can profitably deviate from the first-best action

profile, i.e., hi = h∗ for each hospital i∈N and sj = s∗ for each PAC provider j ∈M; thus it is an

equilibrium. Plugging the first-best actions in (A-45)-(A-46) one can verify that all hospitals and

PAC providers break even in this equilibrium.



48

Now we prove by contradiction that there exist no other equilibria other than the first best.

Suppose there exists another equilibrium in which the actions of hospital i∈N and PAC provider

j ∈M are

ȟi = (ǎhi , b̌
h
i1, . . . , b̌

h
iM , ě

h
i1, . . . , ě

h
iM) and šj = (b̌s1j, . . . , b̌

s
Nj, ě

s
1j, . . . , ě

s
Nj).

Thus, in this proposed equilibrium, hi = ȟi is a solution for each hospital i’s problem (A-47), and

sj = šj is a solution for each PAC provider j’s problem (A-48), i.e.,

ȟi ∈ arg max
hi∈[0,Γ]2M+1

W (hi|ȟk, šj, k ∈Ni, j ∈M), (A-52)

šj ∈ arg max
sj∈[0,Γ]2N

W (sj|ȟi, šk, i∈N , k ∈Mj). (A-53)

By (A-4), we have ǎhi = a∗h for each hospital i∈N . Below we prove that

b̌hij = b∗h and b̌sij = b∗s, for each i∈N and j ∈M. (A-54)

Since (A-54) is assumed to hold when pij = 0 WLOG (see the last paragraph of Section 3 for

details), it suffices to consider the case of pij > 0. By (A-52)-(A-53), we have

b̌hij ∈ arg max
bhij∈[0,Γ]

W (bhij|ǎhi , ěhij, ȟk, šj, k ∈Ni, j ∈M) = arg min
bhij∈[0,Γ]

pij
[
Cs(bhij, b̌

s
ij) + bhij + b̌sij

]
, (A-55)

b̌sij ∈ arg max
bsij∈[0,Γ]

W (bsij|ěsij, ȟi, šk, i∈N , k ∈Mj) = arg min
bsij∈[0,Γ]

pij
[
Cs(b̌hij, b

s
ij) + b̌hij + bsij

]
, (A-56)

where the equalities follow by plugging in the expression of W from (A-3). In the proof of Lemma A-

1, we have solved for the optimization problem in (A-56) and obtained a unique best response

b̌sij = g(b̌hij)∈ (0,Γ), where g(·) is given by (A-5). Now we solve the optimization problem in (A-55).

For any fixed b̌sij ∈ [0,Γ], we have

∂2
[
Cs(bhij, b̌

s
ij) + bhij + b̌sij

]
∂(bhij)

2
=−

∂2Cs(bhij, b̌
s
ij)

∂(bh)2
< 0,

lim
bhij↓0

∂
[
Cs(bhij, b̌

s
ij) + bhij + b̌sij

]
∂bhij

= lim
bhij↓0

[
∂Cs(bhij, b̌

s
ij)

∂bh
+ 1

]
> 0,

lim
bhij↑Γ

∂
[
Cs(bhij, b̌

s
ij) + bhij + b̌sij

]
∂bhij

= lim
bhij↑Γ

[
∂Cs(bhij, b̌

s
ij)

∂bh
+ 1

]
< 0,

where all inequalities follow from Assumption A-1(ii). Thus, the optimization problem in (A-55)

has a unique solution b̌hij and is determined by the FOC, i.e., ∂Cs(b̌hij, b̌
s
ij)/∂b

h + 1 = 0. Plugging in

b̌sij = g(b̌hij), we obtain

∂Cs(b̌hij, g(b̌hij))

∂bh
+ 1 = 0. (A-57)
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In the proof of Lemma A-1, we have proven that (A-57) has a unique solution given by b∗h; see

(A-8). Thus, for all hospital i ∈ N and PAC provider j ∈M, we have b̌hij = b∗h and b̌sij = g(b̌hij) =

g(b∗h) = b∗s, where the last equality follows from (A-9). Following this procedure, one can verify that

ěhij = e∗h and ěsij = e∗s for each hospital i∈N and PAC provider j ∈M. It then follows that ȟi = h∗

and šj = s∗ for each hospital i ∈N and PAC provider j ∈M, contradicting our assumption that

(ȟi, šj, i∈N , j ∈M) is different from first best. �

E. Endogenous discharge decisions

In our original model presented in Section 3, we assumed that a certain percentage of patients

are discharged to PAC, and that this proportion is fixed. However, there is no consensus on the

optimal PAC setting for patients being discharged from the hospital, as highlighted by Li et al.

(2020). Generally, there are two options to consider:

• PAC institutions: These facilities, such as skilled nursing facilities (SNFs), inpatient rehabili-

tation centers, or long-term hospital care, typically offer more intensive care, potentially reducing

unnecessary readmissions. However, they also come with higher costs.

• Home: Patients can also receive PAC through visits from in-home healthcare providers. This

option is typically less costly than PAC in an institution, but it may not offer the same level of

care (Werner et al. 2019).

Hospitals need to optimize their discharge decisions, taking into account this trade-off among

different PAC settings, while also making investments to coordinate care with all types of PAC

providers. In this section, we extend our model to examine this additional decision and demonstrate

that our payment model can be applied (using the same underlying principles outlined in Section 5)

to incentivize hospitals to make socially optimal decisions when a patient can be discharged to

these different settings.

Model: To incorporate hospitals’ decisions regarding patients’ discharge destinations, we intro-

duce the assumption that there are L different types of PAC settings, including home. Each hospital

i determines the proportion, ρ`i ∈ [0,1], of their patients discharged to PAC providers of type `,

where ` ∈ L. We let ~ρi =
{
ρ`i , `∈L

}
denote the vector of these proportions for hospital i. We

represent the proportion of patients discharged from hospital i to type-` PAC provider j as p`ij.

Therefore, we have
∑

`∈L ρ
`
i = 1 and

∑
j∈M` p`ij/pi = ρ`i , where M` = {1, ...,M `} and M ` denotes

the number of PAC providers of type `.

Additional notation and terminology required in this section are based on the ones introduced

in Section 3. We use C` to denote the cost of PAC for type-` providers, and R` to represent the

readmission probability for patients discharged to a type-s PAC setting. Similar to our previous

model, we assume that C` : [0,Γ] × [0,Γ]→ R+ is dependent on the investments made by the
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hospital, denoted by bh,`, and by the PAC provider, denoted by b`. The readmission probability

from a type-` PAC setting, R` : [0,Γ]× [0,Γ]× [0,1]→ [0,1], depends on the investments of the

hospital, denoted by eh,`, and the PAC provider, denoted by e`, in reducing readmissions, as well

as the discharge decisions ~ρ. The cost of treating a readmitted patient is denoted by ξh for hospital

care and ξ` for PAC care at a type-` provider.

In contrast to the approach outlined in Section 3, our current assumption takes into account

the interdependence between readmission probabilities and the characteristics denoted by ~ρ for

each type of PAC providers. This consideration is essential for encompassing the variation in care

intensity across diverse PAC settings. Notably, hospitals tend to direct more critically ill patients

towards PAC facilities that offer more concentrated and intensive care. Rather than directly mod-

eling these intricate allocation decisions, we leverage the influence of ~ρ to encapsulate the effects

of patient distribution on readmission probabilities.

Objective functions: In the current setting, the objective of hospital i is defined as similar to

(1)

Πh
i (hi) =T hi −Chi (hi), (A-58)

where

Chi (hi) =pi

[
Ch
(
ahi
)

+ ahi

]
+
∑
`∈L

∑
j∈M`

p`ij

[
R`
(
eh,`ij , e

`
ij, ~ρi

)
ξh + bh,`ij + eh,`ij

]
(A-59)

is the total cost of the hospital. We use hi = (ahi , b
h,`
ij , e

h,`
ij , ~ρi, `∈L, j ∈M`) to denote the actions of

hospital i.

Similarly, the objective of type-` PAC provider j is defined similarly to (3)

Π`
j(vj) = T `j −C`j(vj), (A-60)

where

C`j(vj) =
∑
i∈N

p`ij
[
C`(bh,`ij , b

`
ij) +R`(eh,`ij , e

`
ij, ~ρi)ξ

` + b`ij + e`ij
]
. (A-61)

is the total cost of for this provider. Here vj =
(
b`ij, e

`
ij, i∈N

)
denotes the actions of PAC provider

j. For simplicity, we again assume that all readmitted patients receive PAC from the provider that

treated them during their initial visit.

Similar to (5), the total welfare W in this case is then given by:

W =υ−
∑
i∈N

Chi (hi)−
∑
s∈S

∑
j∈M`

C`j(vj). (A-62)
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The total welfare consists of: (i) patient utility; (ii) the total cost of hospital care; and (iii) the

total cost of all PAC providers.

For any fixed discharge decisions ~ρi for all i ∈ N , we assume that the socially optimal actions

are uniquely determined by the FOCs of total welfare, as in the original model; see Appendix E.

Moreover, in case of multiple discharge decisions being socially optimal, the regulator chooses one

of them using a certain tie-breaking rule. We assume, for simplicity, that hospitals follow the same

tie-breaking rule. Under these assumptions, the socially optimal actions for all hospitals, denoted

by (a∗h, b
∗
h,`, e

∗
h,`, ~ρ

∗) with a slight abuse of notation, are identical, where ~ρ∗ = {ρ∗` , `∈L} and it is

possible that ρ∗` = 0 for some `. Similarly, the socially optimal actions for type-` PAC providers,

denoted by (b∗` , e
∗
`), are identical, for each `∈L.

Payment scheme: We now present an extension of our proposed payment model and demon-

strate that it continues to incentivize hospitals and PAC providers to make socially optimal deci-

sions. Before delving into the technical details, we first explain the underlying concept.

The payment scheme outlined in Section 5 aims to improve care coordination by incentivizing

hospitals to reduce both their total care costs and the overall cost of PAC for their patients,

which includes costs associated with readmissions. Similarly, the payment scheme encourages PAC

providers to consider the cost of hospital care for readmitted patients in their decision-making

process. This is achieved by first setting hospital and PAC provider-specific benchmarks for these

costs, based on the average costs of other hospitals and PAC providers. The payments of hospitals

and PAC providers are then linked to their performance relative to these benchmarks. In the current

context, we apply the same concept, but we need to modify how the benchmarks are determined.

We will first present the payment scheme for the PAC providers, as it closely resembles the

payment scheme (21) in our original model. The payment for type-` PAC provider j is given by:

T `j =
[
Ĉ`
j + b̂`j + ê`j + R̂`

jξ
`
]∑
i∈N

p`ij︸ ︷︷ ︸
Cost of care

+
∑
i∈N

p`ij

[
R̂`
j −R`(eh,`ij , e

`
ij, ~ρi)

]
ξh︸ ︷︷ ︸

Outcome-based adjustment

, (A-63)

where

Ĉ`
j =

∑
i∈N

∑
k∈M`

j

p`ikC
`
(
bh,`ik , b

`
ik

)
∑
i∈N

∑
k∈M`

j

p`ik
and R̂`

j =

∑
i∈N

∑
k∈M`

j

p`ikR
`(eh,`ik , e

`
ik, ~ρi)∑

i∈N

∑
k∈M`

j

p`ik

represent the average cost and the readmission likelihood for patients who are treated by all type-`

PAC providers, excluding provider j. Additionally,

b̂`j =

∑
i∈N

∑
k∈M`

j

p`ikb
`
ik∑

i∈N

∑
k∈M`

j

p`ik
and ê`j =

∑
i∈N

∑
k∈M`

j

p`ike
`
ik∑

i∈N

∑
k∈M`

j

p`ik
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are the average investments to reduce costs and readmissions by all type-` PAC providers, excluding

provider j. It is worth noting that (A-63) follows the same structure as (21).

The payment scheme for hospitals is slightly different from that in Section 5 because of the

additional decision the hospitals need to make regarding the discharge destination of patients. The

payment scheme is modified to make hospitals internalize the cost of PAC in general. The hospital

payment scheme consists of two main parts: (i) cost of care payments to cover the costs of the

hospital, T h,0; and (ii) outcome-based payment based on the performances of type-s PAC providers

that the hospital discharged patients to, T h,` for `∈L.

We start with the cost of care component. As in (20), the hospital is compensated for the cost

of care as well as the investments to reduce costs and readmissions of the PAC providers that it

discharges patients to, as follows

T h,0i︸︷︷︸
Cost of care payment

= pi

[
C̄h
i + āhi + R̂h

i ξ
h
]

+
∑
l∈L

piρ̄
`
i

(
b̂h,`i + êh,`i

)
, (A-64)

where

ρ̄`i =

∑
k∈Ni

pkρ
`
k∑

k∈Ni
pk

(A-65)

represents the average fraction of patients discharged to type-` PAC providers, excluding patients

discharged from hospital i. Additionally, b̂h,`i and êh,`i represent the average costs incurred by

hospitals to improve care (in terms of cost and readmission probability, respectively) in type-` PAC

providers, excluding patients discharged from hospital i, defined as follows (similar to b̄hi and ēhi in

Section 4.1)

b̂h,`i =

∑
k∈Ni

∑
j∈M`

p`kjb
h,`
kj∑

k∈Ni

∑
j∈M`

p`kj
, êh,`i =

∑
k∈Ni

∑
j∈M`

p`kje
h,`
kj∑

k∈Ni

∑
j∈M`

p`kj
, `∈L,

and (similar to R̄h
i in Section 4.1)

R̂h
i =

∑
k∈Ni

∑̀
∈L

∑
j∈M`

p`kjR
`(eh,`kj , e

`
kj, ~ρk)∑

k∈Ni

∑̀
∈L

∑
j∈M`

p`kj

is the proportion of readmitted patients, excluding patients discharged from hospital i.

The outcome-based payment component, based on the performance of type-` PAC providers, is

determined as follows:

T h,`i︸︷︷︸
PAC cost component

= piρ̄
`
i

(
Ĉ`,h
i + R̂h,`

i ξ`
)
−
∑
j∈M`

psij

[
C`
(
bh,`ij , b

`
ij

)
+R`

(
eh,`ij , e

`
ij, ~ρi

)
ξ`
]
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+piρ̄
`
i(b̂

`,h
i + ê`,hi )−

∑
j∈M`

p`ij

[
b`ij + e`ij

]
, (A-66)

where

R̂h,`
i =

∑
k∈Ni

∑
j∈M`

p`kjR
`(eh,`kj , e

`
kj, ~ρk)∑

k∈Ni

∑
j∈M`

p`kj
, and Ĉ`,h

i =

∑
k∈Ni

∑
j∈M`

p`kjC
`(bh,`kj , b

`
kj)∑

k∈Ni

∑
j∈M`

p`kj
, (A-67)

denote the proportion of readmitted patients and the average cost of type-` PAC providers, exclud-

ing patients discharged from hospital i, and

b̂`,hi =

∑
k∈Ni

∑
j∈M`

p`kjb
`
kj∑

k∈Ni

∑
j∈M`

p`kj
, and ê`,hi =

∑
k∈Ni

∑
j∈M`

p`kje
`
kj∑

k∈Ni

∑
j∈M`

p`kj
(A-68)

are the average investments to reduce type-` PAC providers’ costs and readmissions, respectively,

excluding patients discharged from hospital i.

The total payment amount for hospital i is calculated by summing up these components:

T hi = T h,0i +
∑
`∈L

T h,`i . (A-69)

To highlight the intuition behind the payment scheme for hospitals, we first note that T h,oi and

the “cost of care” component in (20) are almost identical in principle: both consider the total cost

incurred by the hospital in providing care and making improvement investments. Additionally,

T h,`i is similar to the “Outcome-based adjustment for care coordination” component in (20) with

a subtle difference: there is an additional term in the second line of (A-66). This term incentivizes

hospitals to consider the costs associated with different types of PAC providers’ investment in

reducing costs and readmissions. It does not appear in (20) because the discharge destination is

assumed to be exogenous in that section. However, this component could be incorporated in the

original payment scheme, as outlined in Remark 6.1.

We next prove that this payment scheme induces first-best actions from all providers.7

Proposition A-1. If the regulator uses (A-63) to reimburse hospitals and (A-69) to reimburse

PAC providers, then the unique Nash equilibrium is for each hospital i∈N and type-` PAC provider

j ∈M`, ` ∈ L, to pick first-best actions ahi = a∗h, b
h,`
ij = b∗h,`, e

h,`
ij = e∗h,`, ρ

`
i = ρ∗` , and b`ij = b∗` , e

`
ij = e∗` ,

respectively. In addition, all providers break even in this equilibrium.

7 Without loss of generality and, as in our original model, we assume that hospital i and type-` PAC provider j choose
first-best actions when p`ij = 0; see the last paragraph of Section 3 for details.
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Proof: We continue to adopt Assumption A-1, with functions Cs and R adapted into sets of

functions C` and R` for all ` ∈ L, and Assumption A-1(iii) applied to R` for any given ~ρ. These

assumptions ensure that for any given ~ρ the first-best actions are uniquely determined by the FOCs

of total welfare; see the proof of Lemma A-2 below. We will also prove that the total welfare with

first-best actions (as functions of ~ρ) plugged in achieves maximum at some discharge decisions

which are the same for all hospitals. Notably, we do not impose additional conditions to ensure

unique first-best discharge decisions and will prove in Proposition A-1 that our payment scheme

restores first best provided that hospitals follow the same break-even rule as the regulator when

multiple discharge decisions are optimal.

Lemma A-2 (First-best benchmark). The regulator’s objective in (A-62) has a maximizer

in which ahi = a∗h and ~ρi = ~ρ∗ for each hospital i ∈ N , and for each type-`, ` ∈ L, PAC provider

j ∈M` such that p`ij > 0, bh,`ij = b∗h,`, b
`
ij = b∗` , e

h,`
ij = e∗h,`, and e`ij = e∗` , where a∗h, b

∗
h,`, e

∗
h,`, b

∗
` , e
∗
` ∈ (0,Γ)

are unique and satisfy the following FOCs:

dCh(a∗h)

dah
+ 1 = 0, (A-70)

∂C`(b∗h,`, b
∗
`)

∂bh
+ 1 = 0, (A-71)

∂C`(b∗h,`, b
∗
`)

∂b`
+ 1 = 0, (A-72)

∂R`(e∗h,`, e
∗
` , ~ρ
∗)

∂eh
(ξh + ξ`) + 1 = 0, (A-73)

∂R`(e∗h,`, e
∗
` , ~ρ
∗)

∂e`
(ξh + ξ`) + 1 = 0. (A-74)

Proof of Lemma A-2: Let ~h = {hi, i ∈N} and ~v = {vj, j ∈M`, ` ∈ L} denote the actions of all

hospitals and all PAC providers, respectively. Thus, total welfare W is a function of ~h and ~v and

by (A-59), (A-61), and (A-62), is given by

W =υ−
∑
i∈N

pi
(
Ch(ahi ) + ahi

)
−
∑
i∈N

∑
`∈L

∑
j∈M`

p`ij
[
C`(bh,`ij , b

`
ij) + bh,`ij + b`ij +R`(eh,`ij , e

`
ij, ~ρi)(ξ

h + ξ`) + eh,`ij + e`ij
]
. (A-75)

For notational simplicity, we will drop the arguments when it is clear from the context. It is straight-

forward to verify that (A-4) holds and thus W is maximized at ahi = a∗h for all i ∈N ; the proof is

identical to that in Lemma A-1. In addition, for any fixed ~ρi, i ∈N , by (A-75) we have: (i) when

p`ij = 0, W is independent of hospital i’s investments (bh,`ij , e
h,`
ij ) and PAC provider j’s investments

(b`ij, e
`
ij). WLOG we assume that first-best actions are taken (see the last paragraph of Section 3 for

details), i.e., bh,`ij = b∗h,`, e
h,`
ij = ẽh,`(~ρi), b

`
ij = b∗` , e

`
ij = ẽ`(~ρi) as determined by (A-71), (A-72), (A-76),
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and (A-77), respectively; (ii) when p`ij > 0, the optimal investments are characterized by b∗h,`, b
∗
`

defined as in (A-71)-(A-72), and ẽh,`(~ρi), ẽ`(~ρi) defined as follows (this proof is omitted as it is

similar to that in Lemma A-1):

∂R`(ẽh,`(~ρi), ẽ`(~ρi), ~ρi)

∂eh
(ξh + ξ`) + 1 = 0, (A-76)

∂R`(ẽh,`(~ρi), ẽ`(~ρi), ~ρi)

∂e`
(ξh + ξ`) + 1 = 0. (A-77)

Plugging in (A-75) and noting that
∑

j∈M` p`ij/pi = ρ`i , we obtain

W =υ−Ch(a∗h)− a∗h

−
∑
i∈N

∑
`∈L

piρ
`
i

[
C`(b∗h,`, b

∗
`) + b∗h,` + b∗` +R`(ẽh,`(~ρi), ẽ`(~ρi), ~ρi)(ξ

h + ξ`) + ẽh,`(~ρi) + ẽ`(~ρi)
]
.

The welfare-maximizing patient discharge problem can thus be expressed as, for each i∈N ,

minimize
~ρi

∑
`∈L

ρ`i
[
C`(b∗h,`, b

∗
`) + b∗h,` + b∗` +R`(ẽh,`(~ρi), ẽ`(~ρi), ~ρi)(ξ

h + ξ`) + ẽh,`(~ρi) + ẽ`(~ρi)
]

(A-78)

s.t. ~ρi ∈ [0,1]L,
∑
`∈L

ρ`i = 1. (A-79)

Since ẽh,`(~ρi) and ẽ`(~ρi) defined as in (A-76)-(A-77) are the unique unconstrained minimizer of

R`(eh,`, e`, ~ρi)(ξ
h+ξ`)+eh,`+e`, the minimum value R`(ẽh,`(~ρi), ẽ`(~ρi), ~ρi)(ξ

h+ξ`)+ ẽh,`(~ρi)+ ẽ`(~ρi)

is continuous in ~ρi; this establishes continuity of objective (A-78) in ~ρi. Since the constraint set

defined by (A-79) is compact, the minimization problem (A-78)-(A-79) has at least one solution.

Moreover, each solution is independent of hospital index i because it does not appear in the

objective function in (A-78) and the constraint set defined in (A-79). The proof is complete by

defining ~ρ∗ as the first-best discharge decisions the regulator chooses for each hospital i∈N . �

Proof of Proposition A-1: The proof is based on the observation that under the proposed payment

scheme, the difference between a hospital’s objective and the regulator’s objective is independent of

that hospital’s actions, and the difference between a PAC provider’s objective and the regulator’s

objective is independent of that PAC provider’s actions. More precisely, given the actions of all

other hospitals and PAC providers, by (A-58)-(A-59) and (A-64)-(A-69), hospital i’s objective is

Πh
i (hi) =pi

[
C̄h
i + āhi −Ch(ahi )− ahi

]
+ piR̂

h
i ξ

h−
∑
`∈L

∑
j∈M`

p`ijR
`
(
eh,`ij , e

`
ij, ~ρi

)
ξh

+
∑
`∈L

[
piρ̄

`
i

(
b̂h,`i + êh,`i

)
−
∑
j∈M`

p`ij
(
bh,`ij + eh,`ij

)]
+
∑
`∈L

[
piρ̄

`
i(b̂

`,h
i + ê`,hi )−

∑
j∈M`

p`ij

(
b`ij + e`ij

)]
+
∑
`∈L

{
piρ̄

`
i

(
Ĉ`,h
i + R̂h,`

i ξ`
)
−
∑
j∈M`

p`ij

[
C`
(
bh,`ij , b

`
ij

)
+R`

(
eh,`ij , e

`
ij, ~ρi

)
ξ`
]}
.
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By (A-60)-(A-61) and (A-63), PAC provider j’s objective is

Π`
j(vj) =

∑
i∈N

p`ij

[
Ĉ`
j + b̂`j + ê`j −C`(bh,`ij , b

`
ij)− b`ij − e`ij +

(
R̂`
j −Rs(eh,`ij , e

`
ij, ~ρi)

)
(ξh + ξ`)

]
.

Subtracting each objective by W from (A-75), we obtain

Πh
i (hi)−W (~h, ~v) =pi

(
C̄h
i + āhi + R̂h

i ξ
h
)

+
∑
k∈Ni

[
Ch
(
ahk
)

+ ahk

]
− υ

+
∑
`∈L

piρ̄
`
i

[
b̂h,`i + êh,`i + b̂`,hi + ê`,hi + Ĉ`,h

i + R̂h,`
i ξ`

]
+
∑
k∈Ni

∑
`∈L

∑
j∈M`

p`kj

[
C`(bh,`kj , b

`
kj) +Rs

(
eh,`kj , e

`
kj, ~ρk

)
(ξh + ξ`) + bh,`kj + b`kj + eh,`kj + e`kj

]
,

and

Π`
j(vj)−W (~h, ~v) =

∑
i∈N

psij

[
Ĉ`
j + b̂`j + ê`j + R̂`

j(ξ
h + ξ`)

]
− v+

∑
i∈N

(
pi

[
Ch
(
ahi
)

+ ahi

]
+ p`ij

[
bh,`ij + eh,`ij

])
+
∑
i∈N

∑
k∈L`

∑
m∈Mk

pkim

[
Ck(bh,kim , b

k
im) +Rk

(
eh,kim , e

k
im, ~ρi

)
(ξh + ξk) + bh,kim + bkim + eh,kim + ekim

]
+
∑
i∈N

∑
m∈M`

j

p`im

[
C`(bh,`im , b

`
im) +Rs

(
eh,`im , e

`
im, ~ρi

)
(ξh + ξ`) + bh,`im + b`im + eh,`im + e`im

]
.

Therefore, the difference between objectives of the regulator and any hospital i does not depend

on the hospital’s actions hi, and the difference between objectives of the regulator and any PAC

provider j does not depend on the PAC provider’s actions vj. This implies that the equilibrium

actions are equal to the first-best actions; we omit the proof as it is similar to that for Theorem 1.

Plugging in the first-best actions one can verify that all hospitals and PAC providers break even

in equilibrium. �

F. Endogenous readmission cost

We initially assumed that the treatment costs for readmitted patients, denoted by ξh for hospitals

and ξs for PAC providers, are exogenous. However, in practice, hospitals and PAC providers may

invest to reduce treatment costs, which can affect costs of treating readmitted patients. In this sec-

tion, we extend our model to show that our payment schemes induce first-best actions by assuming

that the readmission cost is the same as the cost for the initial (index) admission. Specifically, we

define Ch and Cs as the treatment costs for hospitals and PAC providers, respectively, for both

the initial admission and readmission.

In this case, the objective of hospital i is given by:

Πh
i (hi) = T hi −Chi (hi), (A-80)
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where Chi (hi) represents the total cost of the hospital, defined as:

Chi (hi) =pi

[
Ch
(
ahi
)

+ ahi

]
+
∑
j∈M

pij

[
bhij + ehij +R

(
ehij, e

s
ij

) (
Ch
(
ahi
)

+ ahi + bhij
)]

(A-81)

and, as in Section 3, ahi , bhij, and ehij represent the investments of hospital i for cost reduction,

coordination, and readmission reduction, respectively. Similarly, the objective of PAC provider j

is given by:

Πs
j (s) = T sj −Csj (sj), (A-82)

where Csj (sj) represents the total cost of the PAC provider, defined as:

Csj (sj) =
∑
i∈N

pij

[
esij +

(
1 +R

(
ehij, e

s
ij

)) (
Cs
(
bhij, b

s
ij

)
+ bsij

)]
(A-83)

and, as in Section 3, bsij and esij represent the investments of PAC provider j for cost reduction

and readmission reduction, respectively. The main difference between (1) and (A-81) is that we

use
(
Ch (ahi ) + ahi + bhij

)
to capture the total cost of readmitted patients instead of ξh. Similarly,

Cs
(
bhij, b

s
ij

)
+ bsij replaces ξs in (3) to obtain (A-83).

To update the proposed payment model to account for the cost of readmitted patients, the

payment amount to hospital i is determined by:

T hi = pi

[(
1 + R̄h

i

) (
C̄h
i + āhi + b̄hi

)
+ ēhi

]
︸ ︷︷ ︸

Cost of care

+
∑
j∈M

pij

[(
1 + R̄h

i

) (
C̄sh
i + b̄sj

)
−
(
1 +R(ehij, e

s
ij)
) (
Cs
(
bhij, b

s
ij

)
+ bsij

)]
︸ ︷︷ ︸

Outcome-based adjustment

, (A-84)

The term C̄h
i + āhi + b̄hi in the first component (“Cost of care”) above is the payment to cover the

cost of treatment for readmitted patients in the hospital and the outcome-based payment reflects

the PAC cost of treating readmitted patients. Similar to the difference between objective functions

in this section and those in Section 5 as explained above (see (1) and (A-81)), the main difference

in the current payment amount is that the cost of treatment for readmitted patients (ξh and ξs)

in (20) are replaced by the corresponding costs in the current model in (A-84). Similarly, for PAC

providers, we modify the payment as follows

T sj =
∑
i∈N

pij

[(
1 + R̄s

j

) (
C̄s
j + b̄sj

)
+ ēsj

]
︸ ︷︷ ︸

Cost of care

+
∑
i∈N

pij

[(
1 + R̄s

j

) (
C̄h
i + āhi + b̄hi

)
−
(
1 +R(ehij, e

s
ij)
) (
Ch(ahi ) + ahi + bhij

)]
︸ ︷︷ ︸

Outcome-based adjustment

, (A-85)
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As for hospitals, C̄s
j + b̄sj in the first component covers the cost of treatment for readmitted patients

in PAC providers and the outcome-based payment is based on the cost of treating readmitted

patients in a hospital, whereas in (21) these costs are captured by ξh for hospitals and ξs for PAC

providers.

The objective of the regulator remains the same as in (5), where Chi and Csj are defined as in

(A-81) and (A-83), respectively, for all i∈N and j ∈M. Under the assumption that the regulator’s

objective has unique optimal actions (denoted again by (a∗h, b
∗
h, e
∗
h) for hospitals and by (b∗s, e

∗
s) for

PAC providers) and assuming these actions satisfy FOCs, we show that the payment scheme leads

to first-best actions.

Proposition A-2. If the regulator uses (A-84) to reimburse hospitals and (A-85) to reimburse

PAC providers, then the unique Nash equilibrium is for each each hospital i∈N and PAC provider

j ∈M to pick first-best actions ahi = a∗h, b
h
ij = b∗h, e

h
ij = e∗h, and bsij = b∗s, e

s
ij = e∗s, respectively. In

addition, all providers break even in this equilibrium.

Moreover, our model can be extended to accommodate scenarios where the cost of readmitted

patients deviates from that of index admissions, and where patients may need multiple readmis-

sions, as discussed in Section 5.3 of Arifoğlu et al. (2021).

Proof: We continue to adopt Assumption A-1 with (A-1)-(A-2) revised into

lim
eh↓0

∂R (eh, es)

∂eh
<− 1

Ch (a∗h) +Cs (b∗h, b
∗
s) + a∗h + b∗h + b∗s

< lim
eh↑Γ

∂R (eh, es)

∂eh
for any es ∈ [0,Γ], (A-86)

lim
es↓0

∂R (eh, es)

∂es
<− 1

Ch (a∗h) +Cs (b∗h, b
∗
s) + a∗h + b∗h + b∗s

< lim
es↑Γ

∂R (eh, es)

∂es
for any eh ∈ [0,Γ]. (A-87)

Under these conditions, the socially optimal actions uniquely exist and are determined by the

FOCs of total welfare W , as shown below.

Lemma A-3 (First-best benchmark). The regulator’s objective in (5) has a unique maxi-

mizer in which ahi = a∗h for each hospital i∈N , and for each PAC provider j ∈M such that pij > 0,

bhij = b∗h, b
s
ij = b∗s, e

h
ij = e∗h, and esij = e∗s, where a∗h, b

∗
h, b
∗
s ∈ (0,Γ) are defined in (6)-(8), e∗h, e

∗
s ∈ (0,Γ)

satisfy the following FOCs:

∂R (e∗h, e
∗
s)

∂eh

[
Ch (a∗h) +Cs (b∗h, b

∗
s) + a∗h + b∗h + b∗s

]
+ 1 = 0, (A-88)

∂R (e∗h, e
∗
s)

∂es

[
Ch (a∗h) +Cs (b∗h, b

∗
s) + a∗h + b∗h + b∗s

]
+ 1 = 0. (A-89)

Proof of Lemma A-3: Plugging (A-81) and (A-83) in (5), we obtain

W = υ−
∑
i∈N

∑
j∈M

pij

[(
1 +R(ehij, e

s
ij)
) (
Ch(ahi ) + ahi +Cs(bhij, b

s
ij) + bhij + bsij

)
+ ehij + esij

]
. (A-90)
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It is straightforward to verify that, for any fixed ehij and esij, i∈N , j ∈M, the regulator’s objective

in (A-90) has a unique maximizer in which ahi = a∗h for each hospital i ∈ N , and for each PAC

provider j ∈M such that pij > 0, bhij = b∗h and bsij = b∗s; the proof is identical to that in Lemma A-1.

Below we characterize (e∗h, e
∗
s), i.e., first-best investments hospitals and PAC providers make to

reduce readmissions. Let W ∗(ehij, e
s
ij, i∈N , j ∈M) = W |{ahij=a∗

h
,bhij=b∗

h
,bsij=b∗s ,i∈N ,j∈M} for notational

simplicity. When pij = 0, W ∗ is independent of ehij and esij. WLOG we assume that first-best actions

are taken (see the last paragraph of Section 3 for details), i.e., ehij = e∗h and esij = e∗s, where e∗h and

e∗s are given by (A-88)-(A-89). When pij > 0, we take the first and second partial derivatives of W ∗

with respect to esij and obtain

∂W ∗

∂esij
=−pij

{
∂R(ehij, e

s
ij)

∂es

[
Ch(a∗h) +Cs(b∗h, b

∗
s) + a∗h + b∗h + b∗s

]
+ 1

}
,

∂2W ∗

∂(esij)
2

=−pij
∂2R(ehij, e

s
ij)

∂(es)2

[
Ch(a∗h) +Cs(b∗h, b

∗
s) + a∗h + b∗h + b∗s

]
.

For any fixed ehij ∈ [0,Γ], we have ∂2W ∗/∂(esij)
2 < 0, limesij↓0 ∂W

∗/∂esij > 0, and limes↑Γ ∂W
∗/∂esij <

0 by Assumption A-1(iii) and (A-87). Hence there exists a unique z(ehij)∈ (0,Γ) that satisfies

∂R(ehij, z(e
h
ij))

∂es

[
Ch(a∗h) +Cs(b∗h, b

∗
s) + a∗h + b∗h + b∗s

]
+ 1 = 0. (A-91)

Applying the Implicit Function Theorem, we obtain

dz(ehij)

dehij
=−

∂2R(ehij, z(e
h
ij))/∂e

h∂es

∂2R
(
ehij, z(e

h
ij)
)
/∂(es)2

. (A-92)

Since W ∗ is concave in esij by Assumption A-1(iii), we have

W ∗|esij=z(ehij) = sup
esij∈[0,Γ]

W ∗.

Next we show that for any given (~h,~s) \ {ehij, esij}, there exists a unique e∗h ∈ (0,Γ) that satisfies

W ∗|{ehij=e∗
h
,esij=e∗s} = sup

ehij∈[0,Γ]

W ∗|esij=z(ehij) .

Let W ∗(ehij) = W ∗|esij=z(ehij) for notational simplicity. Then,

dW ∗(ehij)

dehij
=−pij

{(
∂R(ehij, z(e

h
ij))

∂eh
+
∂R(ehij, z(e

h
ij))

∂es
dz(ehij)

dehij

)[
Ch(a∗h) +Cs(b∗h, b

∗
s) + a∗h + b∗h + b∗s

]
+ 1 +

dz(ehij)

dehij

}
=−pij

{
∂R(ehij, z(e

h
ij))

∂eh

[
Ch(a∗h) +Cs(b∗h, b

∗
s) + a∗h + b∗h + b∗s

]
+ 1

}
,

where the second equality follows from (A-91).

d2W ∗(ehij)

d(ehij)
2

=− pij
[
∂2R(ehij, z(e

h
ij))

∂eh∂es
dz(ehij)

dehij
+
∂2R(ehij, z(e

h
ij))

∂(eh)2

][
Ch(a∗h) +Cs(b∗h, b

∗
s) + a∗h + b∗h + b∗s

]
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=pij


(
∂2R(ehij ,z(e

h
ij))

∂eh∂es

)2

∂2R(ehij ,z(e
h
ij))

∂(es)2

−
∂2R(ehij, z(e

h
ij))

∂(eh)2

[Ch(a∗h) +Cs(b∗h, b
∗
s) + a∗h + b∗h + b∗s

]
< 0,

where the second equality follows by plugging in dz(ehij)/de
h
ij from (A-92), and the inequal-

ity follows from Assumption A-1(iii). Moreover, we have limehij↓0
dW ∗(ehij)/de

h
ij > 0 and

limehij↑Γ
dW ∗(ehij)/de

h
ij < 0 by (A-86). Thus there exists a unique e∗h ∈ (0,Γ) that satisfies (A-88)

with e∗s = z(e∗h); (A-89) follows by substituting ehij = e∗h into (A-91). �

Proof of Proposition A-2: The proof is based on the observation that under the proposed payment

scheme, the difference between a hospital’s objective and the regulator’s objective is independent of

that hospital’s actions, and the difference between a PAC provider’s objective and the regulator’s

objective is independent of that PAC provider’s actions. More precisely, given the actions of all

other hospitals and PAC providers, by (A-80)-(A-81) and (A-84), hospital i’s objective is

Πh
i (hi) =

∑
j∈M

pij

[(
1 + R̄h

i

) (
C̄h
i + āhi + C̄sh

i + b̄hi + b̄sj
)

+ ēhi

]
−
∑
j∈M

pij

[(
1 +R(ehij, e

s
ij)
) (
Ch(ahi ) + ahi +Cs(bhij, b

s
ij) + bhij + bsij

)
+ ehij

]
.

By (A-82)-(A-83) and (A-85), PAC provider j’s objective is

Πs
j(vj) =

∑
i∈N

pij

[(
1 + R̄s

j

) (
C̄h
i + āhi + C̄s

j + b̄hi + b̄sj
)

+ ēsj

]
−
∑
i∈N

pij

[(
1 +R(ehij, e

s
ij)
) (
Ch(ahi ) + ahi +Cs

(
bhij, b

s
ij

)
+ bhij + bsij

)
+ esij

]
.

Subtracting each objective by W from (A-90), we obtain

Πh
i (hi)−W (~h, ~v) =

∑
j∈M

pij

[(
1 + R̄h

i

) (
C̄h
i + āhi + C̄sh

i + b̄hi + b̄sj
)

+ ēhi

]
+
∑
j∈M

pije
s
ij − υ

+
∑
k∈Ni

∑
j∈M

pkj

{[
1 +R(ehkj, e

s
kj)
] [
Ch(ahk) + ahk +Cs(bhkj, b

s
kj) + bhkj + bskj

]
+ ehkj + eskj

}
.

and

Πs
j(vj)−W (~h, ~v) =

∑
i∈N

pij

[(
1 + R̄s

j

) (
C̄h
i + āhi + b̄hi + C̄s

j + b̄sj
)

+ ēsj

]
+
∑
i∈N

pije
h
ij − υ

+
∑
i∈N

∑
k∈Mj

pik

{[
1 +R(ehik, e

s
ik)
] [
Ch(ahi ) + ahi +Cs(bhik, b

s
ik) + bhik + bsik

]
+ ehik + esik

}
.

Therefore, the difference between objectives of the regulator and any hospital i does not depend

on the hospital’s actions hi, and the difference between objectives of the regulator and any PAC

provider j does not depend on the PAC provider’s actions vj. This implies that the equilibrium

actions are equal to the first-best actions; we omit the proof as it is similar to that for Theorem 1.

Plugging in the first-best actions one can verify that all hospitals and PAC providers break even

in equilibrium. �
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G. Uniform Investments

In our original model in Section 5, we assume that each hospital makes different PAC provider

dependent investments at cost represented by bhij there, to reduce PAC treatment costs with each

PAC provider (vis-a-vis, we assumed PAC providers makes hospital-dependent investments at cost

represented by bsij there). However, some investments, such as installing an integrated IT system,

could be considered fixed costs that impact the collaboration of a hospital with all PAC providers

who are willing to participate in cost-reduction investments.

To model the impact of uniform (non-PAC/hospital-dependent) investments, assume that each

hospital makes investment Hi ∈ [0,Γ], i∈N , and each PAC provider makes investment Fj ∈ [0,Γ],

j ∈ M, to reduce PAC treatment costs. Additionally, assume that the cost of PAC treatment

Cs : [0,Γ]× [0,Γ]→R+ is a function of hospital’s action Hi and PAC provider’s action Fj. All other

components of the model remain identical to those introduced in Section 3.

In this case, the objective of hospital i is

Πh
i (hi) = T hi −Chi (hi), (A-93)

where Chi (hi) represents the total cost of the hospital, defined as:

Chi (hi) =pi
[
Ch(ahi ) + ahi +Hi

]
+
∑
j∈M

pij
[
R(ehij, e

s
ij)ξ

h + ehij
]
. (A-94)

Similarly, the objective of PAC provider j is

Πs
j (s) = T sj −Csj (sj), (A-95)

where Csj (sj) represents the total cost of the PAC provider, defined as:

Csj (sj) =p̃jFj +
∑
i∈N

pij

[
Cs(Hi,Fj) +R(ehij, e

s
ij)ξ

s + esij

]
. (A-96)

The main difference between our original model (1) and (A-93) is that now we use Hi to capture the

total cost of hospital i’s investments to reduce PAC treatment cost instead of bhij in (1). Similarly,

we use Fj in (A-95) to capture the total cost of PAC j’s investments instead of bsij in (3).

To incorporate this change into the payment model, we introduce average investments H̄i and

F̄j as benchmarks. Let

H̄i =

∑
k∈Ni

pkHk

1− pi
, (A-97)

denote the average investment for PAC treatment cost reduction of all hospitals, excluding hospital

i and

F̄j =

∑
k∈Mj

p̃kFk

1− p̃j
, (A-98)
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denote the average investment for PAC treatment cost reduction of all the PAC providers, excluding

provider j. The modified payment model for hospitals and PAC providers is as follows:

T hi = pi

[
C̄h
i + āhi + H̄i + ēhi + R̄h

i ξ
h
]

+
∑
j∈M

pij
[(
C̄sh
i −Cs(Hi,Fj)

)
+
(
R̄h
i −R(ehij, e

s
ij)
)
ξs
]
, (A-99)

T sj =
∑
i∈N

pij

[
C̄s
j + F̄j + ēsj + R̄jξ

s
]

+
∑
i∈N

pij
(
R̄j −R(ehij, e

s
ij)
)
ξh, (A-100)

where benchmarks H̄i and F̄j are defined as in (A-97) and (A-98), respectively, and other benchmark

parameters (i.e., āhi , ē
h
i , C̄

sh
i , R̄

h
i , C̄

s
j , R̄j, ē

s
j) are defined as in Section 4.1.

The payment model in this case is similar to that in Section 5, see (20) and (21), with the only

difference being the way hospitals and PAC providers are compensated for their cost reduction

investments. In (20) hospital i receives pib̄
h
i to recoup the cost of their investments to reduce PAC

costs (since it is assumed to be variable cost there), whereas in (A-99) they receive piH̄i. For PAC

providers, they receive
∑

i∈N pij b̄
s
j for the cost of investments in (21) which becomes

∑
i∈N pijF̄j in

(A-100).

The objective of the regulator in this case is given by (5), where Chi and Csj are defined as in

(A-94) and (A-96), respectively, for each i∈N and j ∈M. Assuming that the regulator’s objective

has a unique optimal solution and that the optimal actions satisfy the FOCs, we find that the

first-best actions for hospitals are identical and denoted by (a∗h,H
∗, e∗h) for each hospital, while the

first-best actions for PAC providers are identical and denoted by (F ∗, e∗s) for each PAC provider.

We next demonstrate that this payment scheme induces first-best actions.

Proposition A-3. If the regulator uses (A-99) to reimburse hospitals and (A-100) to reimburse

PAC providers, then the unique Nash equilibrium is for each each hospital i∈N and PAC provider

j ∈M to pick first-best actions ahi = a∗h,Hi = H∗, ehij = e∗h, and Fj = F ∗, esij = e∗s, respectively. In

addition, all providers break even in this equilibrium.

Similarly, we can demonstrate that when hospitals and PAC providers make uniform investments

for reducing readmissions, our proposed payment model, with appropriate adjustments, continues

to induce first-best actions.

Proof: We continue to adopt Assumption A-1 with conditions for PAC cost in Assumption A-1

adapted to: (i) PAC cost Cs(H,F ) is decreasing and convex in hospital and PAC provider actions:

∂Cs

∂H
< 0,

∂2Cs

∂H2
> 0,

∂Cs

∂F
< 0,

∂2Cs

∂F 2
> 0,

∂2Cs

∂H2

∂2Cs

∂F 2
>

(
∂2Cs

∂H∂F

)2

, (A-101)

and (ii) the following boundary conditions hold

lim
H↓0

∂Cs

∂H
<−1< lim

H↑Γ

∂Cs

∂H
for any F ∈ [0,Γ], (A-102)
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lim
F↓0

∂Cs

∂F
<−1< lim

F↑Γ

∂Cs

∂F
for any H ∈ [0,Γ]. (A-103)

Under these conditions, the socially optimal actions uniquely exist and are determined by the

FOCs of total welfare W , as shown below.

Lemma A-4 (First-best benchmark). The regulator’s objective in (5) has a unique maxi-

mizer in which ahi = a∗h and Hi = H∗ for each hospital i ∈ N , Fj = F ∗ for each PAC provider

j ∈M, and when pij > 0, ehij = e∗h and esij = e∗s, where a∗h, e
∗
h, e
∗
s ∈ (0,Γ) are defined in (6), (9), (10),

H∗,F ∗ ∈ (0,Γ) satisfy the following FOCs:

∂Cs (H∗,F ∗)

∂H
+ 1 = 0, (A-104)

∂Cs (H∗,F ∗)

∂F
+ 1 = 0. (A-105)

Proof of Lemma A-3: Plugging (A-94) and (A-96) in (5), we obtain

W = v−
∑
i∈N

∑
j∈M

pij

[
Ch
(
ahi
)

+ ahi +Cs(Hi,Fj) +Hi +Fj +R(ehij, e
s
ij)(ξ

h + ξs) + ehij + esij

]
.

(A-106)

It is straightforward to verify that, for any fixed Hi and Fj, i∈N , j ∈M, the regulator’s objective

in (A-106) has a unique maximizer in which ahi = a∗h for each hospital i ∈ N , and for each PAC

provider j ∈M such that pij > 0, ehij = e∗h and esij = e∗s; the proof is identical to that in Lemma A-1.

Below we analyze the first-best investments hospitals and PAC providers make to reduce PAC

costs, i.e.,

maximize
~H∈[0,Γ]N , ~F∈[0,Γ]M

W, (A-107)

where we denote ~H = {Hi, i∈N} and ~F = {Fj, j ∈M}. The objective W given by (A-106) is con-

cave in (~F , ~H) because the Hessian matrix D2W (~F , ~H) is negative semi-definite due to ∂2Cs/∂H2 >

0, ∂2Cs/∂F 2 > 0, and

∑
i∈N

pij
∂2Cs(Hi,Fj)

∂F 2
>
∑
i∈N

(
pij

∂2Cs(Hi,Fj)

∂H∂F

)2

∑
k∈M pik

∂2Cs(Hi,Fk)

∂H2

for each j ∈M, (A-108)

which follows from (∂2Cs/∂H2)(∂2Cs/∂F 2) > (∂2Cs/∂H∂F )2. In addition, the choice set of

(A-107) is compact. Thus, S has a unique maximizer denoted by H∗i and F ∗j , i ∈ N , j ∈M. By

(A-106),

∂W

∂Hi

=−
∑
j∈M

pij

[∂Cs(Hi,Fj)

∂H
+ 1
]
, (A-109)
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∂2W

∂H2
i

=−
∑
j∈M

pij
∂2Cs(Hi,Fj)

∂H2
, (A-110)

∂W

∂Fj
=−

∑
i∈N

pij

[∂Cs(Hi,Fj)

∂F
+ 1
]
, (A-111)

∂2W

∂F 2
j

=−
∑
i∈N

pij
∂2Cs(Hi,Fj)

∂F 2
. (A-112)

For any fixed ~F and each i∈N , we have ∂2W/∂H2
i < 0 by (A-110) and (A-101), limHi↓0 ∂W/∂Hi >

0 and limHi↑Γ ∂W/∂Hi < 0 by (A-109) and (A-102). For any fixed ~H and each j ∈M, we have

∂2W/∂F 2
j < 0 by (A-112) and (A-101), limFj↓0 ∂W/∂Fj > 0 and limFj↑Γ ∂W/∂Fj < 0 by (A-111)

and (A-103). Thus, the first-best investments H∗i and F ∗j , i∈N , j ∈M, are determined by FOCs:

M∑
j=1

pij

[∂Cs
(
H∗i ,F

∗
j

)
∂H

+ 1
]

= 0 for all i∈N , (A-113)

N∑
i=1

pij

[∂Cs
(
H∗i ,F

∗
j

)
∂F

+ 1
]

= 0 for all j ∈M. (A-114)

Let H∗ and F ∗ be determined by (A-104)-(A-105). The existence and uniqueness of H∗ and F ∗ are

ensured by (A-101)-(A-103). Moreover, one can verify that Hi =H∗ and Fj = F ∗ for each i ∈ N

and j ∈M is a solution of (A-113)-(A-114). Thus, first-best actions, as uniquely determined by

(A-113)-(A-114), are given by H∗i =H∗ and F ∗j = F ∗ for each i∈N and j ∈M. �

Proof of Proposition A-3: The proof is based on the observation that under the proposed payment

scheme, the difference between a hospital’s objective and the regulator’s objective is independent of

that hospital’s actions, and the difference between a PAC provider’s objective and the regulator’s

objective is independent of that PAC provider’s actions. More precisely, given the actions of all

other hospitals and PAC providers, by (A-93)-(A-94) and (A-99), hospital i’s objective is

Πh
i (hi) =

∑
j∈M

pij

[
C̄h
i + āhi + H̄i + R̄h

i (ξh + ξs) + C̄sh
i + ēhi

]
−
∑
j∈M

pij

[
Ch(ahi ) + ahi +Hi +R(ehij, e

s
ij)(ξ

h + ξs) +Cs(Hi,Fj) + ehij

]
.

By (A-95)-(A-96) and (A-100), PAC provider j’s objective is

Πs
j(vj) =

∑
i∈N

pij

[
C̄s
j + F̄j + R̄j(ξ

h + ξs) + ēsj

]
−
∑
i∈N

pij

[
Cs(Hi,Fj) +Fj +R(ehij, e

s
ij)(ξ

h + ξs) + esij

]
.

By (5), (A-94), and (A-96), total welfare is

W (~h, ~v) =υ−
∑
i∈N

∑
j∈M

pij

[
Ch(ahi ) + ahi +Cs(Hi,Fj) +Hi +Fj +R(ehij, e

s
ij)(ξ

h + ξs) + ehij + esij

]
.
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Subtracting each objective by W from (A-106), we obtain

Πh
i (hi)−W (~h, ~v) =

∑
j∈M

pij

[
C̄h
i + āhi + H̄i + R̄h

i (ξh + ξs) + C̄sh
i + ēhi

]
+
∑
j∈M

pij(Fj + esij)− υ

+
∑
k∈Ni

∑
j∈M

pkj

[
Ch(ahk) + ahk +Cs(Hk,Fj) +Hk +Fj +R(ehkj, e

s
kj)(ξ

h + ξs) + ehkj + eskj

]
.

and

Πs
j(vj)−W (~h, ~v) =

∑
i∈N

pij

[
C̄s
j + F̄j + R̄j(ξ

h + ξs) + ēsj

]
+
∑
i∈N

pij

[
Ch(ahi ) + ahi +Hi + ehij

]
− υ

+
∑
i∈N

∑
k∈Mj

pik

[
Ch(ahi ) + ahi +Cs(Hi,Fk) +Hi +Fk +R(ehik, e

s
ik)(ξ

h + ξs) + ehik + esik

]
.

Therefore, the difference between objectives of the regulator and any hospital i does not depend

on the hospital’s actions hi, and the difference between objectives of the regulator and any PAC

provider j does not depend on the PAC provider’s actions vj. This implies that the equilibrium

actions are equal to the first-best actions; we omit the proof as it is similar to that for Theorem 1.

Plugging in the first-best actions one can verify that all hospitals and PAC providers break even

in equilibrium. �

H. Fixed Costs of Investments

In our original model presented in Section 3, we assume variable costs of investments which are

accounted on a per-patient basis; see, e.g., bhij and ehij in (2). However, investments such as staff

training and process re-engineering, may primarily require a lump-sum investment independent

from patient volume. In this extension, we incorporate fixed costs of investments and show that

our proposed payment model can still induce the first-best outcome. We consider two separate

case in which the hospital/PAC provider lump-sum investment is uniform or specific to PAC

provider/hospital.

Uniform investments. Assume that each hospital i makes a total cost of investments Hi ∈

[0,Γ], i ∈ N , and each PAC provider j makes a total cost of investments Fj ∈ [0,Γ], j ∈M, to

reduce the per-patient PAC treatment cost Cs(Hi,Fj) ∈ R+; all other model components remain

identical to those introduced in Section 3. In this case, the objective of hospital i is given by (1),

where

Chi (hi) =pi
[
Ch(ahi ) + ahi

]
+Hi +

∑
j∈M

pij
[
R(ehij, e

s
ij)ξ

h + ehij
]

(A-115)

represents the total cost of the hospital. The objective of PAC provider j is given by (3), where

Csj (sj) =Fj +
∑
i∈N

pij

[
Cs(Hi,Fj) +R(ehij, e

s
ij)ξ

s + esij

]
(A-116)
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represents the total cost of the PAC provider. The only difference from our original model in (2)

and (4) is that, to reduce the PAC cost, hospital i and PAC provider j respectively make uniform

investments at lump-sum costs Hi and Fj independent from the patient volume.

To incorporate this change into the payment model, we define

H̄i =

∑
k∈Ni

Hk

N − 1
, (A-117)

as the average investment to reduce the PAC cost of all hospitals, excluding hospital i, and

F̄j =

∑
k∈Mj

Fk

M − 1
, (A-118)

the average investment of all PAC providers, excluding provider j. The payment amounts to hospital

i and PAC provider j are given respectively by:

T hi = pi

[
C̄h
i + āhi + ēhi + R̄h

i ξ
h
]

+ H̄i +
∑
j∈M

pij
[(
C̄sh
i −Cs(Hi,Fj)

)
+
(
R̄h
i −R(ehij, e

s
ij)
)
ξs
]
, (A-119)

T sj =
∑
i∈N

pij

[
C̄s
j + ēsj + R̄jξ

s
]

+ F̄j +
∑
i∈N

pij
(
R̄j −R(ehij, e

s
ij)
)
ξh, (A-120)

where benchmarks H̄i and F̄j are defined as in (A-117)-(A-118), respectively, and other benchmark

parameters (i.e., āhi , ē
h
i , C̄

sh
i , R̄

h
i , C̄

s
j , R̄j, ē

s
j) are defined as in Section 4.1. Compared to the payment

model in Section 5, here we modify provider reimbursement for the costs of investments to reduce

the PAC cost, i.e., from
∑

j∈M pijb
h
i for hospital i and

∑
i∈N pij b̄

s
j for PAC provider j to H̄i and

F̄j, respectively, to reflect the change in cost structure (i.e., variable versus fixed).

The total social welfare W is given by (5), where Chi and Csj are defined as in (A-115)-(A-116),

respectively, for each i ∈ N and j ∈M. We adapt Assumption A-1 to ensure the existence of a

unique set of first-best actions determined by the FOCs of W . Next, we demonstrate that our

payment model induces the first-best actions.

Proposition A-4. If the regulator uses (A-119) to reimburse hospitals and (A-120) to reim-

burse PAC providers, then the unique Nash equilibrium is for each each hospital i ∈ N and PAC

provider j ∈M to pick first-best actions ahi = a∗h,Hi =H∗, ehij = e∗h, and Fj = F ∗, esij = e∗s, respec-

tively. In addition, all providers break even in this equilibrium.

Similarly, we can demonstrate that when hospitals and PAC providers incure fixed costs of invest-

ments for reducing readmissions, our proposed payment model, with appropriate adjustments,

continues to induce first-best actions.

Proof: We continue to adopt Assumption A-1 with part (ii) adapted to (A-101)-(A-103). Plug-

ging (A-115)-(A-116) in (5), we obtain

W = v−
∑
i∈N

∑
j∈M

pij

[
Ch
(
ahi
)

+ ahi +Cs(Hi,Fj) +R(ehij, e
s
ij)(ξ

h + ξs) + ehij + esij

]
−
∑
i∈N

Hi−
∑
j∈M

Fj.
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We have verified that the first-best actions uniquely exist and are determined by the FOCs of

total welfare W , i.e., ahi = a∗h and Hi =H∗ for each hospital i∈N , Fj = F ∗ for each PAC provider

j ∈M, and when pij > 0, ehij = e∗h and esij = e∗s, where a∗h, e
∗
h, e
∗
s ∈ (0,Γ) are defined in (6), (9), (10),

and H∗,F ∗ ∈ (0,Γ) are defined in (A-104)-(A-105). The proof is identical to that for Lemma A-4

except that the first-best investments to reduce the PAC cost, i.e., H∗i and F ∗j , i ∈N , j ∈M, are

determined by the following FOCs:

1 +
M∑
j=1

pij
∂Cs

(
H∗i ,F

∗
j

)
∂H

= 0 for all i∈N , (A-121)

1 +
N∑
i=1

pij
∂Cs

(
H∗i ,F

∗
j

)
∂F

= 0 for all j ∈M. (A-122)

It is straightforward to verify that H∗i =H∗ and F ∗j = F ∗ for each i∈N and j ∈M is a solution of

(A-121)-(A-122). In addition, the first-best actions uniquely exist due to concavity of W . Thus, in

the first-best actions, Hi =H∗ for each hospital i∈N , and Fj = F ∗ for each PAC provider j ∈M.

Next, we prove that, under our proposed payment model, a unique equilibrium exists in which

providers choose the first-best actions. By (1), (A-115), and (A-119), hospital i’s objective is

Πh
i (hi) =

∑
j∈M

pij

[
C̄h
i + āhi + R̄h

i (ξh + ξs) + C̄sh
i + ēhi

]
+ H̄i−Hi

−
∑
j∈M

pij

[
Ch(ahi ) + ahi +R(ehij, e

s
ij)(ξ

h + ξs) +Cs(Hi,Fj) + ehij

]
,

where hi = (ahi ,Hi, e
h
ij, j ∈M). By (3), (A-116) and (A-120), PAC provider j’s objective is

Πs
j(vj) =

∑
i∈N

pij

[
C̄s
j + R̄j(ξ

h + ξs) + ēsj

]
+ F̄j −Fj −

∑
i∈N

pij

[
Cs(Hi,Fj) +R(ehij, e

s
ij)(ξ

h + ξs) + esij

]
,

where vj = (Fj, e
s
ij, i∈N ). Subtracting each objective by W , we obtain

Πh
i (hi)−W (~h, ~v) =

∑
j∈M

pij

[
C̄h
i + āhi + R̄h

i (ξh + ξs) + C̄sh
i + ēhi

]
+ H̄i +

∑
j∈M

pije
s
ij − υ+

∑
k∈Ni

Hk +
∑
j∈M

Fj

+
∑
k∈Ni

∑
j∈M

pkj

[
Ch(ahk) + ahk +Cs(Hk,Fj) +R(ehkj, e

s
kj)(ξ

h + ξs) + ehkj + eskj

]
,

and

Πs
j(vj)−W (~h, ~v) =

∑
i∈N

pij

[
C̄s
j + R̄j(ξ

h + ξs) + ēsj

]
+ F̄j +

∑
i∈N

pij

[
Ch(ahi ) + ahi + ehij

]
− υ+

∑
i∈N

Hi +
∑
k∈Mj

Fk

+
∑
i∈N

∑
k∈Mj

pik

[
Ch(ahi ) + ahi +Cs(Hi,Fk) +R(ehik, e

s
ik)(ξ

h + ξs) + ehik + esik

]
,

where ~h = {hi, i ∈ N} and ~v = {vj, j ∈M}. Therefore, the difference between objectives of the

regulator and any hospital i does not depend on the hospital’s actions hi, and the difference between
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objectives of the regulator and any PAC provider j does not depend on the PAC provider’s actions

vj. This implies that the equilibrium actions are equal to the first-best actions; we omit the proof

as it is similar to that for Theorem 1. Plugging in the first-best actions one can verify that all

hospitals and PAC providers break even in equilibrium. �

Provider-specific investments. Assume that each hospital i∈N makes a total cost of invest-

ments Hij ∈ [0,Γ], and each PAC provider j ∈ N makes a total cost of investments Fij ∈ [0,Γ],

to reduce the PAC treatment cost per patient discharged from hospital i to PAC provider j, as

denoted by Cs(Hij,Fij)∈R+; all other model components remain identical to those introduced in

Section 3. In this case, the objective of hospital i is given by (1), where

Chi (hi) =pi
[
Ch(ahi ) + ahi

]
+
∑
j∈M

Hij +
∑
j∈M

pij
[
R(ehij, e

s
ij)ξ

h + ehij
]

(A-123)

represents the total cost of the hospital. The objective of PAC provider j is given by (3), where

Csj (sj) =
∑
i∈N

Fij +
∑
i∈N

pij

[
Cs(Hij,Fij) +R(ehij, e

s
ij)ξ

s + esij

]
(A-124)

represents the PAC provider’s total cost. The only difference from our original model in (2) and (4)

is that, to reduce the PAC cost, hospital i and PAC provider j respectively make provider-specific

investments at lump-sum costs Hij and Fij independent from the patient volume.

To incorporate this change into the payment model, we define

H̄i =

∑
k∈Ni

∑
j∈M

Hkj

N − 1
, (A-125)

as the average investment to reduce the PAC cost of all hospitals, excluding hospital i, and

F̄j =

∑
i∈N

∑
k∈Mj

Fik

M − 1
, (A-126)

the average investment of all PAC providers, excluding provider j. The payment amounts to hospital

i and PAC provider j are given respectively by:

T hi = pi

[
C̄h
i + āhi + ēhi + R̄h

i ξ
h
]

+ H̄i +
∑
j∈M

pij
[(
C̄sh
i −Cs(Hij,Fij)

)
+
(
R̄h
i −R(ehij, e

s
ij)
)
ξs
]
,

(A-127)

T sj =
∑
i∈N

pij

[
C̄s
j + ēsj + R̄jξ

s
]

+ F̄j +
∑
i∈N

pij
(
R̄j −R(ehij, e

s
ij)
)
ξh, (A-128)

where benchmarks H̄i and F̄j are defined as in (A-125)-(A-126), respectively, and other benchmark

parameters (i.e., āhi , ē
h
i , C̄

sh
i , R̄

h
i , C̄

s
j , R̄j, ē

s
j) are defined as in Section 4.1. Compared to the payment

model in Section 5, here we modify provider reimbursement for the costs of investments to reduce
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the PAC cost, i.e., from
∑

j∈M pijb
h
i for hospital i and

∑
i∈N pij b̄

s
j for PAC provider j to H̄i and

F̄j, respectively, to reflect the change in cost structure (i.e., variable versus fixed).

The total social welfare W is given by (5), where Chi and Csj are defined as in (A-123)-(A-124),

respectively, for each i ∈ N and j ∈M. We adapt Assumption A-1 to ensure that the first-best

actions and each provider’s best response are uniquely determined by the FOCs of W and provider

objective, respectively. Next, we demonstrate that our payment model induces the first-best actions.

Proposition A-5. If the regulator uses (A-127) to reimburse hospitals and (A-128) to reim-

burse PAC providers, then the unique Nash equilibrium is for each each hospital i ∈ N and PAC

provider j ∈M to pick first-best actions ahi = a∗h,Hij =H∗ij, e
h
ij = e∗h, and Fij = F ∗ij, e

s
ij = e∗s, respec-

tively.

Similarly, we can demonstrate that when hospitals and PAC providers incur fixed costs of invest-

ments for reducing readmissions, our proposed payment model, with appropriate adjustments,

continues to induce first-best actions.

Proof: We continue to adopt Assumption A-1 with part (ii) adapted to (A-101) and for each

i, j such that pij > 0,

lim
H↓0

∂Cs

∂H
<− 1

pij
< lim

H↑Γ

∂Cs

∂H
for any F ∈ [0,Γ], (A-129)

lim
F↓0

∂Cs

∂F
<− 1

pij
< lim

F↑Γ

∂Cs

∂F
for any H ∈ [0,Γ]. (A-130)

Plugging (A-123)-(A-124) in (5), we obtain

W = v−
∑
i∈N

∑
j∈M

pij

[
Ch
(
ahi
)

+ ahi +Cs(Hij,Fij) +R(ehij, e
s
ij)(ξ

h + ξs) + ehij + esij

]
−
∑
i∈N

∑
j∈M

[
Hij +Fij

]
.

Similar to the proof of Lemma A-1, it is straightforward to verify that the first-best actions uniquely

exist and are determined by the FOCs of total welfare W , i.e., ahi = a∗h for each hospital i∈N , and

for each PAC provider j ∈M such that pij > 0, Hij =H∗ij, e
h
ij = e∗h, Fij = F ∗ij, and esij = e∗s, where

a∗h, e
∗
h, e
∗
s ∈ (0,Γ) are defined in (6), (9), (10), and H∗ij,F

∗
ij ∈ (0,Γ) are as follows:

1 + pij
∂Cs

(
H∗ij,F

∗
ij

)
∂H

= 0, (A-131)

1 + pij
∂Cs

(
H∗ij,F

∗
ij

)
∂F

= 0. (A-132)

Next, we prove that, under our proposed payment model, a unique equilibrium exists in which

providers choose the first-best actions. By (1), (A-123), and (A-127), hospital i’s objective is

Πh
i (hi) =

∑
j∈M

pij

[
C̄h
i + āhi + R̄h

i (ξh + ξs) + C̄sh
i + ēhi

]
+ H̄i−

∑
j∈M

Hij
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−
∑
j∈M

pij

[
Ch(ahi ) + ahi +R(ehij, e

s
ij)(ξ

h + ξs) +Cs(Hij,Fij) + ehij

]
,

where hi = (ahi ,Hij, e
h
ij, j ∈M). By (3), (A-124) and (A-128), PAC provider j’s objective is

Πs
j(vj) =

∑
i∈N

pij

[
C̄s
j + R̄j(ξ

h + ξs) + ēsj

]
+ F̄j −

∑
i∈N

Fij −
∑
i∈N

pij

[
Cs(Hij,Fij) +R(ehij, e

s
ij)(ξ

h + ξs) + esij

]
,

where vj = (Fij, e
s
ij, i∈N ). Subtracting each objective by W , we obtain

Πh
i (hi)−W (~h, ~v) =

∑
j∈M

pij

[
C̄h
i + āhi + R̄h

i (ξh + ξs) + C̄sh
i + ēhi

]
+ H̄i +

∑
j∈M

pije
s
ij − υ+

∑
k∈Ni

∑
j∈M

Hkj

+
∑
i∈N

∑
j∈M

Fij +
∑
k∈Ni

∑
j∈M

pkj

[
Ch(ahk) + ahk +Cs(Hkj,Fkj) +R(ehkj, e

s
kj)(ξ

h + ξs) + ehkj + eskj

]
,

and

Πs
j(vj)−W (~h, ~v) =

∑
i∈N

pij

[
C̄s
j + R̄j(ξ

h + ξs) + ēsj

]
+ F̄j +

∑
i∈N

pij

[
Ch(ahi ) + ahi + ehij

]
− υ+

∑
i∈N

∑
j∈M

Hij

+
∑
i∈N

∑
k∈Mj

Fik +
∑
i∈N

∑
k∈Mj

pik

[
Ch(ahi ) + ahi +Cs(Hik,Fik) +R(ehik, e

s
ik)(ξ

h + ξs) + ehik + esik

]
,

where ~h = {hi, i ∈ N} and ~v = {vj, j ∈M}. Therefore, the difference between objectives of the

regulator and any hospital i does not depend on the hospital’s actions hi, and the difference between

objectives of the regulator and any PAC provider j does not depend on the PAC provider’s actions

vj. This implies that the equilibrium actions are equal to the first-best actions; we omit the proof

as it is similar to that for Theorem 1. �

I. Non-identical providers and risk adjustment

To implement coordinating reimbursement schemes in real-world scenarios, it is essential to account

for heterogeneity among providers and patients across various dimensions, such as geographic

and demographic factors. While we previously assumed that the regulator could identify identical

providers or pairs of identical providers, and that all patients were identical, this assumption may

not hold in practice. Nevertheless, if the heterogeneity factors can be observed by the regulator

and are exogenous to the providers, the proposed scheme can be modified to accommodate this

heterogeneity. This approach follows the framework outlined in Shleifer (1985), Savva et al. (2019),

and Arifoğlu et al. (2021).

The CJR model also employs a risk-adjustment procedure based on a linear regression model

with variables on patient characteristics and health status to adjust the target price for different

patients. This risk-adjustment approach aims to account for variations in expected costs associated

with patient complexity and comorbidities. In the following discussion, we illustrate this concept
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by considering the case where each type of provider differs along one characteristic. However, it

is important to note that all the results can be generalized to incorporate multiple characteristics

per provider, as discussed in Shleifer (1985) and Savva et al. (2019).

To demonstrate, assume that the readmission probability R is a function of the investments

of the hospital ehi , i ∈ N , and the PAC provider esj , j ∈ M, (as in Section 5) as well as the

observable exogenous characteristics of the hospital βh, of the PAC provider βs, and the patient

βp. Consequently, the first-best outcomes are dependent on the specific characteristics βh, βs, and

βp, see (6)–(10)).

In this modified approach, instead of using average values, as shown in Section 4.1, the regulator

estimates R̄h
i and R̄s

j , for all i∈N and j ∈M. These estimates are obtained through an estimation

procedure, such as linear regression, based on observed readmission probabilities and the corre-

sponding observable characteristics of hospitals βhi , i ∈ N , the PAC provider characteristics βsj ,

j ∈M, and the patient βp. Following the proof provided for Theorem 1, it can be shown that all

providers will take first-best actions under this revised scheme.

Moreover, if the estimation procedure accurately captures the true values, the targets set at the

estimated R̄h
i ’s and R̄s

j ’s will result in all providers achieving a break-even outcome. This implies

that the reimbursement scheme aligns with the actual costs incurred by providers, ensuring a fair

and balanced outcome.

J. Alternative cost modeling

Assume that the cost of acute care Ch : [0,Γ]N →R+, is a function of the hospital’s multidimensional

effort τh, and the dollar cost of this effort is ah(τh) : [0,Γ]N → [0,Γ]. Similarly, assume that the

PAC cost Cs : [0,Γ]N × [0,Γ]N →R+ depends on the multidimensional effort made by the hospital

ψh with dollar cost bh(ψh) : [0,Γ]N → [0,Γ], and the multidimensional effort of the PAC provider

ψs with dollar cost bs(ψs) : [0,Γ]N → [0,Γ]. The probability of patient readmission R : [0,Γ]N ×

[0,Γ]N → [0,1] is a function of the multidimensional effort made by the hospital κh with dollar cost

eh(κh) : [0,Γ]N → [0,Γ], and the multidimensional effort made by the PAC provider κs with dollar

cost es(κs) : [0,Γ]N → [0,Γ]. We subscript each effort by the corresponding provider index(es), e.g.,

τhi for hospital i’s effort to reduce the cost of acute care and ψhij for hospital i’s effort to reduce

PAC cost of patients discharged to PAC provider j. We use hi = (τhi ,ψ
h
ij, κ

h
ij, j ∈M) to denote the

actions of hospital i and sj = (ψsij, κ
s
ij, i∈N ) to denote the actions of PAC provider j.

Remark A-1. In keeping with the notation in our original model, we use Ca,Cs,R to represent

the costs and readmission functions. It is important to note, however, that their arguments are

unobservable efforts to reduce costs or the readmission probability as opposed to observable effort

costs in our original model.
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In this case, the objective of hospital i is

Πh
i (hi) = T hi −Chi (hi), (A-133)

where Chi (hi) represents the total cost of the hospital, defined as:

Chi (hi) = pi
[
Ch(τhi ) + ah(τhi )

]
+
∑
j∈M

pij
[
R(κhij, κ

s
ij)ξ

h + bh(ψhij) + eh(κhij)
]
, (A-134)

Similarly, the objective of PAC provider j is

Πs
j (sj) = T sj −Csj (sj), (A-135)

where Csj (sj) represents the total cost of the PAC provider, defined as:

Csj (sj) =
∑
i∈N

pij
[
Cs(ψhij,ψ

s
ij) +R(κhij, κ

s
ij)ξ

s + bs(ψsij) + es(κsij)
]
. (A-136)

Transfer payments to hospital i and PAC provider j, i.e., T hi and T sj , under all payment models

previously studied remain unchanged. They are specified in (14)-(15) for bundled payment, (20) and

(21) for our proposed payment model, and (23)-(22) for the CJR-type payment model, respectively,

with the understanding that costs (care and effort) and the readmission probability are functions

of unobservable efforts as in (A-134) and (A-136) above.

In what follows, we show that this alternative cost model is equivalent to our original model

in two steps: (i) we prove that any set of first-best efforts in the alternative cost model yield the

first-best costs/investments of efforts in our original model; (ii) we prove that, under each payment

model (i.e., the bundled payment model, our proposed payment model, and CJR-type payment

model), in any equilibrium of the alternative cost model, each provider’s optimal efforts induce a

cost of effort equal to the optimal investment (potentially a best response function) in our original

model.

(i) Plugging (A-134) and (A-136) into (5), we obtain the following expression of total welfare

W =υ−
∑
i∈N

∑
j∈M

pij

[
Ch(τhi ) + ah(τhi ) +Cs(ψhij,ψ

s
ij) + bh(ψhij) + bs(ψsij)

+R(κhij, κ
s
ij)(ξ

h + ξs) + eh(κhij) + es(κhij)
]
. (A-137)

Since W is separable in τhi , (ψ
h
ij,ψ

s
ij), (κ

h
ij, κ

s
ij), i ∈N , j ∈M, the socially optimal (i.e., first-best)

efforts are determined by solving the following problems separately:

minimize
τhi ∈[0,Γ]N

Ch(τhi ) + ah(τhi ), i∈N ,

minimize
ψh
ij ,ψ

s
ij∈[0,Γ]N

Cs(ψhij,ψ
s
ij) + bh(ψhij) + bs(ψsij), i∈N , j ∈M, s.t. pij > 0,



73

minimize
κhij ,κ

s
ij∈[0,Γ]N

R(κhij, κ
s
ij)(ξ

h + ξs) + eh(κhij) + es(κhij), i∈N , j ∈M, s.t. pij > 0.

Since the objective function and constraint set in each problem do not depend on hospital and

PAC provider indexes (i, j), the first-best efforts can be derived by solving these generic problems:

minimize
τh∈[0,Γ]N

Ch(τh) + ah(τh), (A-138)

minimize
ψh,ψs∈[0,Γ]N

Cs(ψh,ψs) + bh(ψh) + bs(ψs), (A-139)

minimize
κh,κs∈[0,Γ]N

R(κh, κs)(ξh + ξs) + eh(κh) + es(κh). (A-140)

We assume that all functions in the objectives are twice differentiable. This and compactness of

the constraint sets ensure the existence of a solution (i.e., a set of first-best efforts) to each of the

generic problem above. Next, we prove (i) for problem (A-139), i.e., any first-best efforts (ψh,ψs)

yield bh(ψh) = b∗h and bs(ψs) = b∗s; the proof for problems (A-138) and (A-140) is similar and omitted

for brevity.

We assume that bh(ψh) and bs(ψs) are onto, i.e., the range consists of all points in [0,Γ], and

construct the following minimization problem at each fixed (Bh,Bs)∈ [0,Γ]2.

minimize
ψh,ψs∈[0,Γ]N

Cs(ψh,ψs), (A-141)

s.t. bh(ψh)6Bh, bs(ψs)6Bs. (A-142)

Since bh(ψh) and bs(ψs) are continuous, increasing, and onto functions, the constraint set

(ψh,ψs)∈Ψw(Bh,Bs) = {ψh,ψs ∈ [0,Γ]N |bh(ψh)6Bh, bs(ψs)6Bs}

is a compact-valued correspondence Ψw : [0,Γ]2 ⇒ [0,Γ]2N satisfying the closed graph property

and hence is upper hemicontinuous. In Lemma A-5 below, we prove that Ψw(Bh,Bs) is lower

hemicontinuous, and hence continuous on [0,Γ]2. By the Maximum Theorem, the minimized value

of problem (A-141)-(A-142) as denoted by Ĉs(Bh,Bs), is a continuous function on [0,Γ]2. Thus,

problem

minimize
Bh,Bs∈[0,Γ]

Ĉs(Bh,Bs) +Bh +Bs (A-143)

has a solution denoted by B∗h,B
∗
s . We assume the solution to be uniquely determined by FOCs,

which is ensured by convexity and boundary conditions on Ĉs identical to those for Cs in our

original model.8 By Lemma A-1, (B∗h,B
∗
s ) = (b∗h, b

∗
s) given by (7)-(8) wherein Cs(bh, bs) = Ĉs(bh, bs).

To complete the proof for this part, it suffices to show that any first-best efforts (ψh,ψs) yield

bh(ψh) =B∗h and bs(ψs) =B∗s . Suppose not, we have (bh(ψh), bs(ψs)) 6= (B∗h,B
∗
s ) and there are two

8 Strict convexity of Ĉs(Bh,Bs) is ensured by strict convexity of Cs(ψh,ψs); see Theorem 9.17 of Sundaram (1996).
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cases: i) (ψh,ψs) is a solution to problem (A-141)-(A-142) for some (Bh′ ,Bs′) 6= (B∗h,B
∗
s ). In this

case,

Cs(ψh,ψs) + bh(ψh) + bs(ψs) = Ĉs(Bh′ ,Bs′) +Bh′ +Bs′

>Ĉs(B∗h,B
∗
s ) +B∗h +B∗s =Cs(ψ∗h,ψ

∗
s) + bh(ψ∗h) + bs(ψ∗s), (A-144)

where the inequality holds because problem (A-143) has a unique solution (B∗h,B
∗
s ) at which

problem (A-141)-(A-142) is solved by (ψ∗h,ψ
∗
s). Furthermore, (ψh,ψs) 6= (ψ∗h,ψ

∗
s) because

(bh(ψh), bs(ψs)) = (Bh′ ,Bs′) 6= (B∗h,B
∗
s ) = (bh(ψ∗h), bs(ψ∗s)),

where the equalities hold because constraints in (A-142) are binding at at any solution of problem

(A-141)-(A-142) for each (Bh,Bs)∈ [0,Γ]2, since Cs(ψh,ψs), bh(ψh), bs(ψs) are strictly increasing in

each argument. By (A-144) and (ψh,ψs) 6= (ψ∗h,ψ
∗
s), (ψh,ψs) is not a solution of problem (A-139),

contradicting our assumption that (ψh,ψs) is a first-best solution.

ii) (ψh,ψs) is not a solution to problem (A-141)-(A-142) for all (Bh,Bs) ∈ [0,Γ]2. Let (ψh
′
,ψs

′
)

denote a solution of problem (A-141)-(A-142) at (Bh,Bs) = (bh(ψh), bs(ψs)). We have bh(ψh
′
) =

bh(ψh) and bs(ψs
′
) = bs(ψs) since constraints in (A-142) are binding at any solution of problem

(A-141)-(A-142).

Cs(ψh,ψs) + bh(ψh) + bs(ψs) =Cs(ψh,ψs) + bh(ψh
′
) + bs(ψs

′
)>Cs(ψh

′
,ψs

′
) + bh(ψh

′
) + bs(ψs

′
),

where the inequality holds because (ψh
′
,ψs

′
) is a solution of problem (A-141)-(A-142) at (Bh,Bs) =

(bh(ψh), bs(ψs)) = (bh(ψh
′
), bs(ψs

′
)) whereas (ψh,ψs) is not. Thus, (ψh,ψs) is not a solution of

problem (A-139), contradicting our assumption that (ψh,ψs) is a first-best solution.

Lemma A-5. Ψw(Bh,Bs) is lower hemicontinuous at each fixed Bh,Bs ∈ [0,Γ].

Proof of Proposition A-5: We will invoke the sequential characterization of lower hemicontinuity;

see Proposition 4 on p. 299 of Ok (2007). That is, for each (Bh,Bs) ∈ [0,Γ]2 and any (ψh,ψs) ∈

Ψw(Bh,Bs), we will, for any sequence (Bh
m,B

s
m) ∈ [0,Γ]2 converging to (Bh,Bs) as m→∞, con-

struct a sequence (ψhm,ψ
s
m)∈Ψw(Bh

m,B
s
m) that converges to (ψh,ψs).

We define ψhm as the solution to the following minimization problem

minimize
ψ∈[0,Γ]N

|ψ−ψh|, (A-145)

s.t. bh(ψ)6min{Bh
m, b

h(ψh)}. (A-146)

A unique solution exists because the objective is strictly convex and the constraint set is compact

and non-empty. Also we have (i) bh(ψhm) 6 Bh
m by (A-146) and min{Bh

m, b
h(ψh)} 6 Bh

m, and (ii)
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ψhm → ψh as m→∞ as proven in the next paragraph. Similarly, we can construct ψsm ∈ {ψ ∈

[0,Γ]N |bs(ψ)6Bs
m} that converges to ψs as m→∞.

When bh(ψh) < Bh, there exists M > 0 such that min{Bh
m, b

h(ψh)} = bh(ψh) for all m > M .

Plugging into (A-146), we have ψhm =ψh for all m>M , so (ii) trivially holds. When bh(ψh) =Bh,

we prove (ii) by contradiction. Suppose that ψhm does not converge to ψh, then there exists M > 0

such that for all m>M , |ψhm−ψh|> ε> 0. By continuity of bh(·), we have |bh(ψhm)−bh(ψh)|> εb > 0

for all m > M . Since bh(ψhm) 6 bh(ψh) for each m by (A-146), we have bh(ψhm) < bh(ψh) − εb =

Bh− εb for all m>M . By convergence of Bh
m to Bh, there exists M ′ > 0 such that Bh

m >B
h− εb/2

for all m > M ′. We now prove that ψhm is not the solution to problem (A-145)-(A-146) for all

m > max{M,M ′}. Define ψh
′
m = ψhm + εh(ψh − ψhm), where εh > 0 and is small enough such that

bh(ψh
′
m)<Bh− εb/2; existence of εh is ensured by continuity of bh(·) and bh(ψhm)<Bh− εb. We also

have ψh
′
m = εhψ

h+(1−εh)ψhm ∈ [0,Γ]N for all εh ∈ (0,1) due to ψhm,ψ
h ∈ [0,Γ]N . Thus, all constraints

in problem (A-145)-(A-146) are satisfied at ψh
′
m . In addition, we have |ψh′m−ψh|= (1−εh)|ψhm−ψh|<

|(ψhm−ψh)| by εh ∈ (0,1), so ψh
′
m is a strict improvement over ψhm which thus is sub-optimal. �

(ii) Expanded provider objectives under the bundled payment model and the CJR-type payment

model (which mathematically includes our proposed payment model at θ= 1) are given by (A-14)-

(A-15) and (A-28)-(A-29), respectively, with the understanding that here costs (care and effort)

and readmission probability are functions of unobservable efforts. Since each provider’s objective

is strictly decreasing in her own costs of care and efforts and readmission probability, hospital i’s

equilibrium actions minimize Πh
i (hi) with ψsj and κsj solving the following problems:

minimize
ψs∈[0,Γ]N

Cs(ψh,ψs), (A-147)

s.t. bs(ψs) =Bs for each Bs ∈ [0,Γ], (A-148)

minimize
κs∈[0,Γ]N

R(κh, κs), (A-149)

s.t. es(κs) =Ks for each Ks ∈ [0,Γ]. (A-150)

Any ψs that is not a solution to problem (A-147)-(A-148) cannot emerge in equilibrium because

PAC provider j can strictly increase Πs
j (sj) by choosing a minimizer of problem (A-147)-(A-148),

which strictly decreases Cs(ψh,ψs) and does not change bs(ψs). Similarly, in equilibrium κs is a

solution to problem (A-149)-(A-150).

Denote the minimized value functions of problems (A-147)-(A-148) and (A-149)-(A-150) by

Ĉsh(ψh,Bs) and R̂h(κh,Ks), respectively, which are continuous with proof similar to that for

Ĉs(Bh,Bs). In what follows, we prove eh(κhi ) = zh(Ks) for each Ks ∈ [0,Γ] in equilibrium under the

CJR-type payment model, where zh is the hospital’s best response function in our original model
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and is determined by (A-34) with ∂R(eh, es)/∂eh replaced by ∂R̂(Kh,Ks)/∂Kh, where R̂(Kh,Ks)

is the minimized value function of the following problem:

minimize
κh∈[0,Γ]N

R̂h(κh,Ks), (A-151)

s.t. eh(κh) =Kh. (A-152)

Since hospital objective (A-28) is separable in τh,ψh, κh. the equilibrium κh can be derived by

solving the following generic problem for each PAC provider with cost of effort Ks ∈ [0,Γ]:

minimize
κh∈[0,Γ]N

R̂h(κh,Ks)((2− θ)ξh + ξs) + eh(κh). (A-153)

Any minimizer κh must be a solution to problem (A-151)-(A-152). If not, the hospital can strictly

lower the objective in (A-153) by choosing a solution to problem (A-151)-(A-152) which decreases

the readmission probability R̂h and does not affect the cost of effort eh. Thus, problem (A-153) is

equivalent to

minimize
Kh∈[0,Γ]

R̂(Kh,Ks)((2− θ)ξh + ξs) +Kh. (A-154)

There exists a solution to this problem, because the constraint set is compact and the objective is

continuous. In particular, continuity of R̂(Kh,Ks) follows by continuity of R(κh, κs) and applying

the Maximum Theorem to problems (A-148)-(A-150) and (A-151)-(A-152). We assume that the

solution is unique and determined by FOC, i.e.,

∂R̂(Kh,Ks)

∂Kh
((2− θ)ξh + ξs) + 1 = 0.

Since this is identical to the definition of zh in (A-34), in equilibrium we have eh(κh) =Kh = zh(Ks).

In a similar proof, one can show that all other best response PAC costs of efforts, for hospitals

and PAC providers under the CJR-type payment model and the bundled payment model, are

identical to the corresponding best response functions in our original model with PAC cost and

readmission functions defined appropriately; the hospital decision on the effort to reduce acute

care cost is identical to that in the first-best problem (A-138). We omit technical details to avoid

repetition.
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