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ABSTRACT

The wetting dynamics of liquid particles, from coated droplets to soft capsules, holds significant technological interest. Motivated by the need
to simulate liquid metal droplets with an oxidized surface layer, in this work, we introduce a computational scheme that allows us to
simulate droplet dynamics with general surface properties and model different levels of interface stiffness, also describing cases that are
intermediate between pure droplets and capsules. Our approach is based on a combination of the immersed boundary and the lattice
Boltzmann methods. Here, we validate our approach against the theoretical predictions in the context of shear flow and static wetting
properties, and we show its effectiveness in accessing the wetting dynamics, exploring the ability of the scheme to address a broad
phenomenology.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0160096

I. INTRODUCTION

The wetting of a solid surface by a liquid coincides with its ability
to preserve contact with the liquid.1–4 The wettability of a solid sub-
strate by a pure droplet is quantified by the droplet’s equilibrium con-
tact angle heq, which, in turn, is determined by the balance between
adhesive and cohesive forces of the three phases involved (solid, liquid,
and vapor). At the macroscopic scale, Young’s equation5 describes this
balance as

cos heq ¼
rsl � rsg

r
; (1)

where rsl, rsg, and r are the solid–liquid, solid–gas, and liquid–gas sur-
faces, respectively. Equation (1) also estimates the degree of wettability,
making the distinction between poor (heq > 90�) and good
(heq < 90�) wetting regimes. Out of equilibrium, the additional com-
plexities arising from time dependence and viscous dissipation make
dynamic wetting critical to a wide range of phenomena, including

droplet spreading, capillary rise, imbibition, and more complex situa-
tions like fluid displacement in porous media or multiphase flow in oil
recovery.6–9 The recent development of new catalytic devices, for
example, requires the usage of liquid metals and metal alloys in the
form of catalytic liquid droplets adsorbed on porous solid support.10,11

However, several liquid metals, such as gallium and gallium-based
alloys, oxidize when exposed to air and an inherent oxide layer appears
on top of the surface. This oxide layer acts as a solid-like “skin,” encap-
sulating a liquid metal core12,13 and changing the wetting properties of
the droplet.14–17 Another example concerns the so-called liquid mar-
bles, realized by rolling a small liquid droplet in poorly wetting pow-
der. Because of the layer of powder grains at the liquid–air interface,
the wetting of these droplets is inhibited,18,19 as required in some
recent technological and microfluidic applications.20,21 The lattice
Boltzmann (LB) method has been used for decades to address prob-
lems in wettability.22–33 A typical strategy used to simulate droplets
within the framework of LB includes introducing nonideal interface

Phys. Fluids 35, 082126 (2023); doi: 10.1063/5.0160096 35, 082126-1

VC Author(s) 2023

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

 24 Septem
ber 2023 17:38:03

https://doi.org/10.1063/5.0160096
https://doi.org/10.1063/5.0160096
https://www.pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0160096
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0160096&domain=pdf&date_stamp=2023-08-30
https://orcid.org/0000-0002-9761-5110
https://orcid.org/0000-0002-7351-7268
https://orcid.org/0000-0002-0031-905X
https://orcid.org/0000-0002-5267-1629
https://orcid.org/0000-0002-9200-6623
mailto:f.pelusi@iac.cnr.it
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/5.0160096
pubs.aip.org/aip/phf


force models such as the Shan–Chen34 and the Free-Energy ones.35

However, these approaches model a diffuse interface. Simulating drop-
lets with complex rheology, specifically coated droplets, including liquid
metal ones with an oxide layer or liquid marbles, requires the use of a
constitutive law for the interface. In this case, it is more convenient to
use a method that reproduces the sharp-interface limit of hydrodynam-
ics. In addition, pseudopotential or free-energy approaches do not easily
allow modelling a behavior that, as it is typical for coated droplets, is
intermediate between the case of a pure droplet and that of a capsule, as
is the case for coated droplets. For these reasons, here we have opted for
combining the LB model with an immersed boundary (IB) method,
which naturally preserves the hydrodynamic sharp-interface limit, to
simulate the complex droplet’s wetting dynamics (see Fig. 1).

Our goal is to introduce a comprehensive numerical approach
that allows modeling droplets with complex interfacial properties in a
consistent way. Here, we model the interface as a 3D triangular mesh
and employ a constitutive law based on the theory of Barthès-Biesel
and Rallison36 to explore the case of coated droplets. This approach
allows us to describe in a continuous way the transition from pure
droplets to capsule-like models by minimizing the number of involved
parameters. We provide a validation of our IBLB numerical simula-
tions against the theoretical prediction in the case of a simple shear
flow experiment. Then, we perform wetting dynamics simulations,
which show good agreement with experimental observations in the
case of a pure droplet, and we explore the range of accessible contact
angles in terms of the involved parameters and the intensity of the
interaction with the wall. With this approach, we aim to provide a
qualitative approximation of the mechanical behavior of droplets with
a complete and wide range of interfacial properties. Nevertheless, the
model can be further refined to include additional interface properties,
enhancing its accuracy and applicability such as an extended model to
mimic the oxidized layer thickness when dealing with liquid metal
droplets.

This paper is organized as follows: in Sec. II, we describe the
interface model introduced in the IBLB framework. Then, in Sec. III,
we summarize the main features of the IBLB model employed. The
benchmark of a droplet in a simple shear flow is shown in Sec. IV. In
the context of the wetting dynamics, Sec. VA reports a model valida-
tion, while all wetting dynamics facets are analyzed and discussed in
Sec. VB. Results are summarized in Sec. VI.

II. INTERFACE MODEL

In this section, we describe the theoretical model employed in
this work to simulate a generic soft particle. Following Barthès-Biesel
and Rallison,36 we consider a two-dimensional, isotropic, and homo-
geneous elastic interface with no bending resistance. Its mechanical
response is characterized by an interface strain energy
wS ¼ wSðI1; I2; a1; a2; a3Þ, which is written in terms of the principal
strain invariants I1;2 and three parameters a1;2;3 as

36

wS I1; I2; a1; a2; a3ð Þ ¼ wS;0 þ
1
2

a1 � a3ð Þlog I2 þ 1ð Þ

þ 1
8

a1 þ a2ð Þlog2 I2 þ 1ð Þ

þ a3
1
2

I1 þ 2ð Þ � 1

� �
; (2)

where wS;0 is a reference value. I1 and I2 quantify the strain and dila-
tion state of the membrane, respectively. The parameters a1;2;3,
instead, characterize the material properties: the prestress a1 is an iso-
tropic tension without an applied load; a2 is the resistance against area
dilatation; and a3 is the resistance against shear deformation (i.e., the
strain modulus). For the sake of simplicity, hereafter we will refer to
these three parameters as a ¼ ða1; a2; a3Þ. Concerning their choice,
we distinguish the two main classes of prestressed (a1 > 0) and non-
prestressed (a1 ¼ 0) particles. For the latter class, an appropriate

FIG. 1. Sketch of the wetting dynamics of a generic particle with initial radius R initially placed in contact with a flat wall. The interface is resolved with a 3D triangular mesh.
On each triangular face j, some force contributions u are computed and distributed to the vertices i 2 j, with the aim to consider (i) the interface elasticity/rigidity, (ii) the volume
conservation, and (iii) the wall–particle interaction. We also report the corresponding involved parameters.
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combination of a2 and a3 leads to the well-known Skalak37 and Neo-
Hookean38 models. By conveniently tuning these parameters, one can
switch from a pure droplet (a ¼ ðr; 0; 0Þ, where r is the surface ten-
sion) to a pure elastic capsule (a ¼ ð0; 0; a3 > 0Þ) and describe inter-
mediate and more complex situations. In particular, in this work, we
also consider the classes of particles with a ¼ ða1 > 0; 0; a3 > 0Þ and
a ¼ ða1 > 0; a2 > 0; a3 > 0Þ. We call the first type of particle a
“softly coated droplet” because it has the characteristic surface tension
term of a droplet but also a strain modulus because of a3 > 0. Because
of the presence of a dilatational term a2 > 0, we call the second type
“rigidly coated droplet.” Here, we argue that the latter case could be
used to describe the interfacial properties of particles like liquid metal
droplets with oxidized surfaces. In Table I, we summarize the type of
particles investigated in this work.

In order to check that Eq. (2) leads to the correct particle dynam-
ics, we consider the case of a shear flow experiment, where a particle
with initial radius R and dynamic viscosity l is placed between two
distant moving walls that generate a shear rate _c (see top panel of
Fig. 2). In this setup, the time-dependent motion of the particle
shape may be distinguished into two contributions: a solid body
rotation and a stretching. Notice that the interface may rotate via a
tank-treading motion despite the particle reaching its steady state.
This means that at this stage, the interface deformation is constant
in time at Eulerian point x, but it is not constant by looking at point
X on the interface. Thus, following concepts and notation of Ref.
36, the time-evolution of the dimensionless position x (i.e., the
position divided by the initial radius R), which is representative of
the deformation field, reads

x ¼ X þ b K � X þ XX � J � Kð Þ � X½ �; (3)

where b� 1 is the expansion coefficient around the initial spherical
position (we truncate the equation at the leading order in b), while J
and K are two symmetric and traceless second-rank tensors that
depend only on time. It follows that the instantaneous external shape
of the particle r can be computed in terms of the norm of Eq. (3),
together with its normal n,36

r � jxj ¼ 1þ bX � J � X ¼ 1þ b
x � J � x

r2
; (4a)

n ¼ x
r
þ 2b

xx � J � x
r3

� J � x
r

� �
: (4b)

Since in Eq. (4) only tensor J appears, it means that J describes the
overall deformation (i.e., the stretching contribution), while K
describes the motion on the interface (i.e., the solid body rotation).36

We remark that J is traceless because of the volume conservation con-
straint, whereas this property for K can be checked as a posteriori. In
the limit of small deformations, the evolution equations for J and K
are given by36

D

Dt
K ¼ 5E

2kþ 3
þ L
2kþ 3

þ M 6kþ 4ð Þ
2kþ 3ð Þ 19kþ 16ð Þ

D

Dt
J � Kð Þ ¼ 2

19kþ 16
M;

8>>><
>>>:

(5)

where

DA
Dt
¼ dA

dt
� X � A� A �Xð Þ (6)

is the Jaumann derivative36 applied to a generic tensor A, which takes
into account the rotation of the particle with the vorticity of the exter-
nal fluid. E and X are the symmetric and asymmetric parts of the
velocity gradient, respectively; k is the viscosity ratio between inside
and outside fluids, and

L ¼ 4 a2 þ a3ð ÞJ � 6a2 þ 10a3ð ÞK; (7a)

M ¼ �4 a1 þ 2a2 þ 2a3ð ÞJ þ 12a2 þ 16a3ð ÞK : (7b)

By numerically integrating Eq. (5), it is possible to obtain information
on the transient deformation dynamics since the tensor J is directly
related to the particle deformation as39

D ¼ Ca J211 þ J212
� �1=2

; (8)

where Ca ¼ lR_c=a is the capillary number. In the latter definition,
one can consider a ¼ a1 ¼ r for a pure droplet or a ¼ a3 for a pure
capsule. For the sake of simplicity, we fix the values of parameters a1,
a2, and a3 to be equal to the same value a, and we will refer to this
triad of values simply as a ¼ að0=1; 0=1; 0=1Þ, with the vector ele-
ments turned on (1) and off (0) with the corresponding model (see
Table I).

III. NUMERICAL IMPLEMENTATION

The dynamics of the inner and outer fluid is simulated using a
single-component lattice Boltzmann (LB) method in terms of the fluid
particle populations fiðx̂; tÞ. The latter represents the probability distri-
bution function of finding a fluid particle in a discrete lattice
(Eulerian) node x̂ at a discrete time t. The corresponding macroscopic
behavior is recovered in the long-wavelength limit, which allows the
link with the Navier–Stokes equations. Indeed, the solutions of the
Navier–Stokes equation for the total density and momentum are easily
accessible from the populations as qðx̂; tÞ ¼

P
i fiðx̂; tÞ and

qðx̂; tÞuðx̂; tÞ ¼
P

icifiðx̂; tÞ, respectively, with ci representing a set of
19 discrete velocities (i ¼ 0;…; 18) living on a three-dimensional lat-
tice (i.e., we employ a D3Q19 LB model). The dynamics of fi is ruled

TABLE I. List of system models that can be explored by tuning the parameters a1,
a2, and a3 in the interface model for a generic particle reported in Eq. (2). The left
and right tables refer to the prestressed and non-pre-stressed particle classes,
respectively. For each model, we display the corresponding fitting parameters a, b, c,
and d appearing in Eq. (25).

Prestressed particles

a ¼ ða1; a2; a3Þ Model a b c d

a ¼ að1; 0; 0Þ Pure droplet 0.78 0.42 0.0 1.0
a ¼ að1; 0; 1Þ Softly coated droplet 0.87 0.5 0.0 1.0
a ¼ að1; 1; 1Þ Rigidly coated droplet 0.91 0.55 0.0 1.0

Non-pre-stressed particles

a ¼ ða1; a2; a3Þ Model a b c d

a ¼ að0; 0; 1Þ Pure elastic capsule 0.71 2.0 0.2 0.75
a ¼ að0; 1; 1Þ Non-pre-stressed capsule 0.7 1.6 0.2 0.75
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by a continuous succession of propagation and collision steps, as
highlighted by the discretized Boltzmann equation40,41

fi x̂ þ ciDt; t þ Dtð Þ � fi x̂; tð Þ

¼ �Dt
s

fi x̂; tð Þ � f
eqð Þ

i x̂; tð Þ
h i

þ wi 1� Dt
2s

� �
ci � uð Þ � F

c2s
þ

ci � Fð Þ ci � uð Þ
c4s

 !
Dt; (9)

where Dt is the time step. The propagation of fi on the lattice is
described by the lhs of Eq. (9) with the help of ci, while the single-
relaxation-time BGK approximation of the collision operator appears
as the first term in the rhs The latter has the aim of modeling the relax-
ation of fi toward the equilibrium distribution f ðeqÞi ðx̂; tÞ, represented
as the local Maxwellian distribution

f
eqð Þ

i x̂; tð Þ ¼ wiq 1þ ukci;k
c2s
þ
ukuj ci;kci;j � c2s dkj

� �
2c2s

" #
: (10)

The relaxation process lasts for a relaxation time s. In Eq. (10), f ðeqÞi is
weighted by the lattice-dependent weights wi and depends on the speed
of sound cs ¼ Dx̂=

ffiffiffi
3
p

Dt
� �

, where Dx̂ is the lattice spacing (the weight
wi in the employed D3Q19 model are wi ¼ 1=3 for i¼ 0, wi ¼ 1=18
for i ¼ 1…6; wi ¼ 1=36 i ¼ 7…18). The last term of Eq. (9) refers to
the forcing implementation following the Guo scheme,42 where F is the
force acting on the fluid. Notice that this forcing scheme modifies the
fluid velocity as qðx̂; tÞuðx̂; tÞ ¼

P
icifiðx̂; tÞ þ FDt=2 to guarantee

the second-order space–time accuracy. In our simulations, we keep fixed
to unity, both Dx̂ and Dt. Furthermore, the fluid dynamic viscosity l in
LB models is related to the relaxation time s as l ¼ c2sqðs� 1=2Þ.
Here, we keep the viscosity ratio k fixed to unity since the investigation
of the role played by k goes beyond the purpose of this work.

Then, to simulate the interface of a coated droplet or soft parti-
cle immersed in the surrounding LB fluid, we model the spherical
particle interface using a 3D triangular mesh generated from a recur-
sive refining of an icosahedron. Thus, the mesh resolution is defined
in terms of the total number of triangular faces Nf (see Fig. 6 for a
pictorial view of particles with different resolutions). To couple the
soft particle dynamics with that of the surrounding fluid, we use the
immersed boundary (IB) method, i.e., a fluid–mesh interaction
method developed for the first time by Peskin43 and based on the
distinction between interface (Lagrangian) nodes qðtÞ and fluid
(Eulerian) nodes x̂ . The resulting coupling is distinct in two opera-
tions, i.e., interpolation and spreading. The interpolation operation
consists of the computation of the i-th interface-node velocity _qiðtÞ
from the fluid one (uðx̂; tÞ) as (note that Eq. (11) causes the velocity
of the surface to be equal to the fluid velocity, ensuring thus the no-
slip boundary condition at the interface41,44)

_qi tð Þ ¼
X

x̂
u x̂; tð ÞdD x̂ � qi tð Þ

� �
Dx̂3: (11)

This operation allows updating the node position qiðtÞ as

qi t þ Dtð Þ ¼ qi tð Þ þ _qi tð ÞDt: (12)

Then, the spreading operation is an interpolation of the interface nodal
force to the fluid one, which allows making the latter aware of the

presence of the interface: at this step, the total force (volume-) density
the particle exerts on the fluid at the Eulerian node x̂ is given by

F x̂; tð Þ ¼
X
i

ui tð ÞdD x̂ � qi tð Þ
� �

; (13)

where ui is the total force on the Lagrangian node i, and the sum runs
over all Lagrangian nodes. Both operations involve the so-called dis-
crete delta function dD, which is used to approximate the Dirac delta
function on our lattice and is defined as41,43,44

dD x̂ð Þ ¼ 1

Dx̂3
/4 x̂ð Þ/4 ŷð Þ/4 ẑð Þ ; (14)

where /4ðrÞ is the “interpolation stencil” involving four Eulerian
nodes along each coordinate axis45 and defined as follows:

/4 x̂ð Þ ¼

1
8

3� 2jx̂j þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4jx̂j � 4x̂2

q� �
0 � jx̂j

1
8

5� 2jx̂j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�7þ 12jx̂j � 4x2

p	 

Dx̂ � jx̂j � 2Dx̂

0 2Dx̂ � jx̂j:

8>>>>><
>>>>>:

(15)

The resulting IBLB method has been largely used to simulate the
dynamics of capsules45–49 and red blood cells.50–54 However, only a
few works employed this method for simulating droplet dynam-
ics.55–57 A detailed step-by-step description of the IBLB algorithm
implementation can be found in Ref. 41.

In our implementation, the total nodal force ui, appearing in Eq.
(13) and acting on the i-th node at position ri at time t, is given by the
sum of several contributions, i.e.,

ui ¼ uS
i þ uV

i þ uW
i : (16)

Each contribution plays a distinct role. First of all, uS
i incorporates the

information on the elastic properties of the interface. Thus, we com-
pute this nodal force term as

uS
i ¼ �

@

@fqig
wS qif gð Þ; (17)

where wS is the generalized strain energy defined in Eq. (2). Equation
(17) is calculated using a first-order finite element method as described
in Ref. 45. Then, because we are dealing with incompressible fluids, we
need to consider a volume conservation constraint. With this aim, we
follow Ref. 45 and we write the nodal volume force contribution uV

i
as58

uV
i ¼ �

@

@fqig
wV qif gð Þ; (18)

where wV ¼ kVðV � V0Þ2=2V0 is the volume energy. In this defini-
tion of the volume energy, kV refers to the volume-force coefficient,
and it is kept fixed to 1. V ¼

P
jVj is the instantaneous total particle

volume, with the index j running over the number of faces Nf (note
that V is functionally dependent on frig), while V0 is the initial total
particle volume. Further details on how to compute nodal force contri-
butions in Eqs. (17) and (18) can be found in Ref. 58. The last contri-
bution in Eq. (16) corresponds to the wall–particle interaction, the key
element for wetting dynamics simulations. The IBLB approach used in
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this work involves only one single fluid component, and it is not possi-
ble to control the wall–fluid surface tensions rsl and rsg by introducing
two different interactions as, for example, Huang and co-workers did
in the case of multicomponent pseudopotential LB models.24

However, many implementations of fluid–wall interactions in the case
of single-component LB models59–61 use a pseudopotential-like fluid–
wall interaction, which does not control rsl and rsg separately, but only
their overall effect. These models work well in describing the wetting
dynamics of droplets despite this limitation. In this work, we follow
the same approach, and we introduce a Lennard–Jones interaction on
behalf of the wall–particle interaction

uW
i ¼ 48�

n
di

� �12

� 1
2

n
di

� �6
" #

di

d2i
; (19)

where di is the shortest displacement vector between the centroid of
the triangle to which node i belongs and the wall surface, and
di ¼ jdij. It means that the force is computed once for each triangle,
and then it is distributed on its vertices. The choice of employing a
Lennard–Jones interaction potential results from the necessity to
model adhesive and repulsive forces between the droplet or particle
and the surface. It follows the large amount of works based on molecu-
lar dynamics simulations, which successfully studied the behavior of
nanodroplets or ridges on chemically patterned substrates.62–66 Notice
that in this work, we set n ¼ 0:5Dx̂ to have an interface–wall interac-
tion that decays to zero after one lattice spacing, thus respecting as
much as possible the microscopic range and tuning the interaction by
changing only �. The nodal force contributions and the corresponding
parameters are summarized in Fig. 1.

By summarizing, the IBLB algorithm implemented in this work
matches the following steps:41

1. Compute the nodal force ui on each node i [Eq. (16)];
2. Spread the nodal force to obtain the force acting on the fluid

Fðx̂; tÞ via Eq. (13);
3. Perform the LB integration step: compute equilibrium distribu-

tions [Eq. (10)], then apply the collision and perform the propa-
gation. At this stage, Fðx̂; tÞ enters in r.h.s. of Eq. (9);

4. Compute the fluid velocity uðx̂; tÞ from LB populations;
5. Interpolate the fluid velocity to compute the Lagrangian node

velocity [Eq. (11)];
6. Update the position of each node qðtÞ via Eq. (12);
7. Iterate from step 1.

All simulations have been performed in a periodic domain in the
x- and y-directions, while two walls are placed along the (vertical) z-
direction. A half-node bounce-back rule implements second-order no-
slip boundary conditions at the walls.41 Dimensional quantities are
shown in lattice Boltzmann units (lbu).

Note that although this method is not able to capture particle
breakup and coalescence, it provides an easy way to model different sys-
tems by simply tuning the ai parameters, as detailed in Sec. II. The intro-
duction of the wall–particle interaction [Eq. (19)] induces an
accumulation of interface nodes on the wall–particle contact area. Such
an aggregation is more prominent for high values of � that are required
for observing small contact angles and is responsible for a numerical
instability in that regime. The remeshing technique may help to mitigate
this problem, but since we are interested in large contact angles, this
accumulation does not affect the results presented in this paper.

IV. BENCHMARK: SHEAR FLOW DYNAMICS

To showcase the versatility of the interface model proposed in Sec.
II, we perform a double analysis by measuring the deformation of coated
droplets and soft particles undergoing a shear flow. Indeed, on the one
hand, we benchmark our model with what is known in the literature for
the case of a pure droplet, while, on the other hand, we explore the differ-
ent scenarios associated with each particle case listed in Table I. In this
setup, we run simulations for particles with an initial radius R¼ 19 lbu,
placed in a channel with a distance between the two walls H¼ 128 lbu.
The system has the same size along the other two directions, x and y. In
order to vary the capillary number Ca, we systematically tune the values
of a, keeping fixed the shear rate _c by the constraint of low Reynolds
number (Re¼ 10�2). Without loss of generality, we set the fluid density
q¼ 1 lbu and the relaxation time s¼ 1 lbu, resulting in a dynamic vis-
cosity of the particle l¼ 1/6 lbu. In Figs. 2(a) and 2(d), we report simula-
tion data for the time-evolution of the deformation index defined as

D tð Þ ¼ r1 tð Þ � r3 tð Þ
r1 tð Þ þ r3 tð Þ ; (20)

where r1 and r3 are the main particle semi-axes in the shear plane (see
the top of Fig. 2 for a sketch). The simulation time is normalized with
_c. Results show a very good agreement between simulations and the
time-evolution of the deformation D defined in Eq. (8), obtained from
the analytical solutions of Eq. (5) (dashed lines). In addition, the
steady-state value of the deformation D can be analytically estimated
as a function of the triad of a as

D ¼ 5a1 3a2 þ 4a3ð Þ
4 3a1a2 þ 5a1a3 þ 2a2a3 þ 2a23
� �

" #
Ca; (21)

where Ca¼lR_c=a1. Since Eq. (21) has been computed with
a2; a3 6¼ 0, it does not hold for a pure droplet, for which
a ¼ að1; 0; 0Þ. In the latter case, we have36

D ¼ 19kþ 16
16kþ 16

Ca; (22)

with k¼ 1 in the present work. Figures 2(b) and 2(e) confirm the
agreement between simulation data and Eqs. (21) and (22) in the limit
of small deformations (i.e., small Ca), while it diverges for larger values
of D. Note that in Fig. 2(b), the theoretical prediction for cases a
¼ að1; 0; 1Þ and a ¼ að1; 1; 1Þ are so close to not being distinguishable.

In addition, to complete the picture of soft particle dynamics
under shear flow, we report in Figs. 2(c) and 2(f) the inclination angle
H (see top panel) as a function of the capillary number Ca. In the limit
of small deformations and the case of a pure droplet with k¼ 1, these
results are again in agreement with what is expected from simula-
tions67 (black crosses) and the theory of Chaffey and Brenner68 (dotted
black line) which reads

H ¼ p
4
� 19kþ 16ð Þ 2kþ 3ð Þ

80 kþ 1ð Þ Ca: (23)

We observe a stronger dependency on Ca for non-pre-stressed particle
models, probably due to the higher rigidity.

To summarize, we find a good agreement for the time-evolution
of the particle deformation D(t) and its steady-state value D between
the analytical solution of the model [Eq. (5)] and our numerical model
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for both coated droplets and soft particles. This is true in the limit of
small deformation, which is the basic assumption behind the theory.36

Furthermore, in the case of a pure droplet, both D and the inclination
angle H follow the analytical predictions. It is worth noting that this
benchmark also contributes to the validation of our generalized inter-
face model against the interface response to an external flow.

V. WETTING DYNAMICS
A. Model validation

We now analyze the wetting dynamics of coated droplets and
soft particles simulated using the interface model discussed in Sec. II.
In this kind of experiment, we consider a single particle with initial

radius R and placed close to a flat wall, i.e., its initial position is such
that the z-coordinate of its center-of-mass ZCM is at a distance R from
the wall to let it feel the action of an attractive wall–interface interac-
tion with intensity � [see Eq. (19) and Fig. 1 for a pictorial view]. In
our implementation, since we do not have direct control over rsl, rsg

appearing in Eq. (1), we consider � to play the role of an effective solid
surface tension as � / rsl � rsg .

Before entering into the details of the wetting dynamics of pre-
stressed and non-prestressed particles, we validate our implementation
by quantitatively investigating the spreading dynamics of a pure drop-
let, a ¼ að1; 0; 0Þ, by comparing the time evolution of the radius r of
the contact area with the literature. Indeed, it has been observed that
this observable scales in time as

FIG. 2. Simulated experiment of a single particle under shear flow for the prestressed [panels (a–c)] and non-pre-stressed [panels (d–f)] particle models. In all panels, different
symbols/colors refer to different models. Top panels: a sketch of the shear experiment and the final shape of the particle for Ca ¼ 0:3. Panels (a) and (d): time evolution of the
deformation index D(t) [Eq. (20)] as a function of time for capillary number Ca¼ 0.05. Time is shown normalized with the shear rate _c, and dashed lines refer to the analytical
solutions of Eq. (5). Panels (b) and (e): the steady-state value of the deformation D as a function of Ca. Dashed lines draw the theoretical predictions: Eq. (22) (salmon line)
for the pure droplet case and Eq. (21) (other color lines) for all the other models. Panels (c) and (f): the steady-state value of the inclination angle H as a function of Ca. To val-
idate the model in the case of a pure droplet, we report black crosses from Ref. 67, and we draw dotted lines for Eq. (23).
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r ¼ Ctd; (24)

where both the prefactor C and the exponent d can vary. When capil-
lary forces drive the droplet spreading and inertial effects are negligi-
ble, Eq. (24) coincides with Tanner’s law,69 predicting an exponent
d ¼ 1=10. Contrariwise, when capillary and inertial forces are bal-
anced, it has been observed that the value of the exponent can vary
with some factors, such as viscosity,70 surface tension,70 droplet initial
shape,71 and wettability.70,72–74 In particular, a value of d ¼ 1=2 has
been observed in the case of very small contact angles. In Fig. 3(a), we
report the time evolution of r, normalized to the initial radius R at
varying equilibrium contact angles heq. A scaling law following Eq.
(24) is observed, with the exponent d slightly decreasing at increasing
heq, in agreement with Ref. 72 [see Fig. 3(b)]. This implies that in our
simulations of wetting dynamics, the inertia is not negligible and plays
a role in resisting the deformation. Note that, as later highlighted in
Fig. 4(a), our model can capture only cases of large contact angles
(88� � heq � 180�); indeed d approaches but does not reach a value
of close to 1/2, which is characteristic of small contact angles.70,72–74

This is comparable, for example, to the case of a liquid metal droplet,
which has been observed to never assume values of heq < 100� also in
the case of oxidization, suggesting that our model can be used to study
such kind of system. Concerning the prefactor C [Fig. 3(c)], it
decreases as heq increases, once again in agreement with Ref. 72. Note
that the “jumps” in r that are visible in Fig. 3(a) for heq ¼ 157� origi-
nate from the numerical error in measuring very small variations of
the contact area.

B. Results

With the aim of simulating the wetting dynamics of droplets
with complex interface properties, we explore both prestressed
(a1 > 0) and non-pre-stressed (a1 ¼ 0) particles. For each system,
characterized by a ¼ ða1; a2; a3Þ ¼ að0=1; 0=1; 0=1Þ, we apply the
same strategy used for the benchmark, which we summarize again for
the sake of clarity. First, we fix the value of a to 10�4 lbu. This choice
fixes both the surface tension for pre-stressed particles and the strain
modulus for non-pre-stressed particles. Then, we measure heq as a

function of the wall–particle interaction energy �. In Appendix, we
also discuss a resolution test for the wetting dynamics.

In Figs. 4(a) and 4(b), we report the measured heq as a function of
the ratio �=a for prestressed and non-pre-stressed particle models,
respectively. In Figs. 4(c) and 4(d), we report for convenience the cor-
responding values of cos heq. After the largest value of �=a is reported
in each plot, numerical instabilities appear in the contact area region;
these set the limit of applicability of our approach in terms of contact
angles that can be modeled. Concerning prestressed particles, pure
droplets (circles) appear to be marginally more stable with respect to
the choice of � than the other particles (softly coated particles,
a ¼ að1; 0; 1Þ, upward triangles; rigidly coated particles,
a ¼ að1; 1; 1Þ, pentagons) but can reach only a slightly higher contact
angle (heq ¼ 88� vs heq ¼ 79�). Notice that the cases a ¼ að1; 0; 1Þ
and a ¼ að1; 1; 1Þ are very similar, meaning that when the system is
very rigid, the dilatational contribution given by a2 is not relevant for
the equilibrium contact angle heq. This result is in contrast with what
we observed in the shear flow. Non-pre-stressed particle models [Figs.
4(b) and 4(d)] are stable for a more limited range of values of �=a.
After around the value of �=a ¼ 1:5, the contact angle does not drop
significantly anymore. Similarly to the prestressed case, a2 does not
seem to have any influence on heq. The behavior of cos heq as a func-
tion of �=a follows very well the empirical behavior:

cos heq ’ a tan �1 b �=a � cð Þ½ � � d; (25)

where a, b, c, and d are fitting parameters depending on the type of
particle [see Table I and dashed lines in Figs. 4(c) and 4(d)]. Equation
(25) differs from Eq. (1) because, as mentioned above, the model we
present in this work misses the direct control of the wall surface ten-
sions but rather drives the mechanical interaction between the particle
and the solid surface. Obviously, the fitting constants represent
(unknown) functions of the parameters a1, a2, a3, and �. By increasing
separately by a factor of 10 each of the components of a, as reported in
Fig. 5(a), we can understand that the leading order behavior is dictated
by a1, while a2 and a3 provide relatively minor changes in heq.
In addition, from Fig. 5(b), one can see that a1 must enter in Eq. (25) in
the ratio with � because data for the increased a1 (downward triangles)

FIG. 3. Spreading experiment for a pure liquid droplet, a ¼ ða1; 0; 0Þ, on a flat surface. Panel (a): radius of the contact area r as a function of time t, where r and t are reported
normalized to the initial radius R and the characteristic time t	 ¼ ðqR3=rÞ1=2, respectively. Different symbols/colors refer to different values of the equilibrium contact angle
heq. In all cases, we observe a scaling law r=R ¼ Cðt=t	Þd. The solid line indicates the scaling with d ¼ 3=10, while the dotted line refers to scaling d ¼ 3=20. Panels (b)
and (c) show the value of the dimensionless exponent d and the dimensionless prefactor C, respectively, as a function of heq.
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collapses onto the original case (pentagons) once plotted as a function
�=a1. The remaining parameters a2 and a3, instead, do not appear to
provide a similar scaling, thus meaning that these two parameters may
functionally enter the other fitting parameters of Eq. (25).

VI. CONCLUSIONS

In this work, we introduced a novel numerical framework to
characterize coated droplets and soft particles accurately. This
approach is based on the theory of Barthès-Biesel and Rallison36 and
enables us to capture the unique behavior that is intermediate between
that of a pure droplet and a capsule. With this generalized constitutive
law, we are able to capture the special properties of a wide spectrum of

coated droplets, for example, liquid metal droplets surrounded by an
oxide layer. In the present approach, the interface strain energy is writ-
ten in terms of three parameters that play the role of material proper-
ties, i.e., the prestress (a1), the resistance against area dilatation (a2),
and the resistance against shear deformation (a3). With the choice of
these three parameters, we explore different types of coated droplets,
from pure liquid droplets to soft particles. We validate our methodol-
ogy with the theoretical predictions and recent experiments in both
shear flow and wetting experiments, and we explore the limits of the
model in terms of a1;2;3. We plan to enrich this description by includ-
ing new contributions to the presented model, for example, to mimic
the thickness of the oxide layer in the case of liquid metal droplets.

FIG. 4. Experiment of wetting dynamics. Panels (a) and (b): Equilibrium contact angle heq as a function of the wall–particle interaction intensity �, normalized to a . Panels (c)
and (d): Corresponding values of cosheq. Left panels [(a) and (c)] refer to prestressed particle models, while right panels [(b) and (d)] refer to non-pre-stressed particle models.
In all panels, different symbols/colors refer to different models, while dashed lines indicate fitting curves with Eq. (25) (values of fitting parameters are listed in Table I). Data
refer to simulations with a number of triangular faces equal to Nf¼ 16820.

FIG. 5. Equilibrium contact angle heq as a function of the wall–particle interaction intensity �, normalized to a [panel (a)] and max ðaiÞ with i¼ 1, 2, and 3 [panel (b)]. All data
refer to the case with all components of a ¼ ða1; a2; a3Þ turned on, but different symbols/colors refer to different “extreme” cases where one of the three parameters is
increased by order of magnitude. The number of triangular faces Nf is the same as for the data in Fig. 4.
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The latter could be useful to mimic the dynamics of other complex
droplets such as liquid marbles.
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APPENDIX: RESOLUTION TEST FOR WETTING
DYNAMICS

Results shown in Figs. 4 and 5 required a test to choose the
best resolution in terms of accuracy and computational effort. In
Fig. 6, we show the time evolution of the z-coordinate of its center-
of-mass ZCM, normalized by the initial radius R, for a pure droplet
case, a ¼ að1; 0; 0Þ, shown in Fig. 6(a) and 6(b), and a rigidly
coated droplet, a ¼ að1; 1; 1Þ, shown in Figs. 6(c) and 6(d). We
report two values of �=a, i.e., 0.05 [Figs. 6(a) and 6(c)] and 7 [Figs.
6(b) and 6(d)], resulting in a large and small equilibrium contact
angle for both systems. As long as the contact angle is very large,
then all resolutions are equivalent. However, moving toward
heq 
 80�, a large number of Nf is required for more precise contact
angle measurements in the case of a pure droplet. The latter state-
ment follows from the way we compute heq, i.e., by fitting the drop-
let shape with a circumference cut by a chord (i.e., the wall). To
perform the fitting procedure, we take a slice of the particle mesh
involving a number of nodes, which is roughly 4ffiffi

34
p

ffiffiffiffiffiffiffiffi
pNf

p
.

Furthermore, simulations with Nf¼ 42 320 show the same dynam-
ics as Nf¼ 16 820, but they require a higher computational cost,
leading to the choice made to produce the data reported in Figs. 4
and 5 to run simulations with Nf¼ 16 820.

FIG. 6. Resolution test for the wetting dynamics experiment a pure droplet with a ¼ að1; 0; 0Þ [panels (a) and (b)] and for a mixed system with a ¼ að1; 1; 1Þ [panels (c) and
(d)]. We compare the time evolution of the z-coordinate of the center-of-mass ZCM for different resolutions, given in terms of the number of mesh triangular faces Nf. Time t is
shown in lbu.
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