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Abstract 

Improving efficiency of operations is a major challenge in Facility Management given the 

limitations of outsourcing individual building functions to third-party companies. The status of 

each building function is isolated in siloes which are controlled by these third-party companies. 

Companies provide access to aggregated information in the form of reports through web 

portals, emails, or bureaucratic processes. Digital Twins represent an emerging approach to 

return awareness and control to facility managers by automating all levels of information access 

(from granular data to defined KPIs and reports) and actuation. This paper proposes a 

low-latency data integration method that supports actuation and decision making in Facility 

Management, including construction, operations and maintenance data, and Internet of Things. 

The method uses federated data models and semantic web ontologies, and it is implemented 

within a data lake architecture with connections to siloed data to keep the delegation of 

responsibilities of data owners. A case study in the Alan Reece building (Cambridge, United 

Kingdom) demonstrates the approach by enabling Fault-Detection-and-Diagnosis of the 

Heating Ventilation and Air Conditioning system for facility management. 
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1. Introduction 

Net-zero carbon objectives force restrictive goals and constraints towards the efficient use of 

energy in the built environment (Kazmi et al., 2014; Ufuk Gökçe and Umut Gökçe, 2014). 

Efficient building operation remains as a big challenge in Architecture, Engineering, 

Construction and Facility Management (AEC/FM) where the focus is on the design and 

construction phases (Boje et al., 2020). Building Information Modelling (BIM) became one of 

the main advancements and areas of research in AEC by enabling actionable and understandable 

3D models of the built environment (Succar, 2009; Zhu et al., 2023). Despite the promising 

research on BIM data generation for facility managers from early stages, there is a slow adoption 

of the technology in the industry where practitioners only implement maintenance strategies 

based on the as-built models received at handover (i.e., from construction phase to operations), 

and BIM is never updated (Azhar, 2011; Becerik-Gerber et al., 2012; Volk et al., 2014; Shigaki 

and Yashiro, 2021). 

Building operations are characterised by systems functions (e.g., electricity, heating, 

plumbing, ...). In the current landscape, it is becoming popular to outsource operation of each 

function to third-party companies with the objective of effective equipment operation (Volk et 

al., 2014), focusing on performance of individual systems by single-point or distributed 

monitoring (Kazmi et al., 2014). However, these systems are not necessarily independent (e.g., 

HVAC needs from the electric system to operate, plumbing rely on mechanical system 

elements), and therefore, monitoring should be integrated. Some authors addressed the 

integration of Building Automation Systems (BAS) with BIM to improve single system’s 
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operation, but complete integration of system functions has not been fully explored (Ufuk Gökçe 

and Umut Gökçe, 2014; Dong et al., 2014; Oti et al., 2016; Chen et al., 2018a; Tang et al., 2020; 

Quinn et al., 2020; Hu et al., 2021; Hosamo et al., 2023a). All these improvements in individual 

system operations come at the cost of awareness and control for facility managers that need to 

rely on third-party service providers (Shigaki and Yashiro, 2021) which translates in the inability 

to orchestrate multiple building functions and limits efficient building operations. 

Digital twin (DT) technologies are rising as the facilitators of integrated building 

operations in AEC/FM throughout the life-cycle of buildings (Dong et al., 2014; Hu et al., 

2021, 2022; Khajavi et al., 2019). In this domain, the Digital twins initiative is strongly 

influenced by BIM and it combines emerging technologies in the AEC/FM industry like 

Internet of Things (IoT) for environmental monitoring and resource tracking (Boje et al., 2020; 

Sotres et al., 2017). Nevertheless, digital twins are still hindered by the segregation of data 

generated by the delegation of building functions (e.g., HVAC, electricity, plumbing, ...) to 

third-parties. Outsourcing generates segregation of data since it is stored in siloes often 

controlled by third-party service providers (Hu et al., 2016, 2021; Shigaki and Yashiro, 2021). 

This segregation is translated into data modelled to meet independent systems’ requirements 

(e.g., building automation system, asset management system, occupancy, design and 

construction data) rather than as part of the overarching built environment entity (Corry et al., 

2015; Woodhead et al., 2018). In addition, systems are distributed and buildings components 

information is often outdated, incomplete, and inaccurate when exchanged between the assets’ 

life cycles (e.g., from design and construction to operations and management) (O’Donnell et al., 
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2013). This paper is motivated by the need of adequate data integration and management as a 

crucial aspect for digital twinning of the built environment. 

Some integration approaches in digital twins for the built environment include: BIM APIs, 

Extract-Transform-Load (ETL) processes, relational databases schema mapping, semantic web, 

and hybrid approaches. Among them, semantic web approaches (e.g., linked data and 

ontologies) became popular for built environment data integration in the last decade (Tang et 

al., 2019; Kim et al., 2018; Donkers et al., 2022). Semantic web technologies drive data 

integration while enhancing understandability by achieving broad classification and description 

of built environment entities (Pauwels et al., 2017; Corry et al., 2015). Ontologies are domain 

specific (e.g., building structures and hierarchy, building functions structure, sensors), and, 

therefore, multiple ontologies are necessary to encompass all the intricacies and complexities 

of buildings (Terkaj et al., 2017). The effort of creating an ontology that accommodates all 

domains (e.g., BIM, BAS, IoT, ...) becomes unmanageable as the digital twin escalates by 

incorporating more functions, systems, and digital twin applications. These ontologies are 

extended until they become hard to understand (Zhe et al., 2006; Kumar and Baliyan, 2018; 

McDaniel and Storey, 2020; Hryhorovych, 2021). Some advancements in the domain of 

modularisation of semantic web ontologies show potential improvement of the reasoning 

capabilities by identifying core ontologies, and inter-connecting entities, but the approach lacks 

practical validation (Pauwels and Terkaj, 2016; Wagner et al., 2022; Tan et al., 2023). On top 

of that, high latency is introduced by ontology resolution which is a hindrance for real-time 

data provision (Neumann and Weikum, 2010; Bizer and Schultz, 2009; Eneyew et al., 2022). 
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Data federation promotes the domain-specific independence of data sources while finding 

appropriate links to standardise integration of data (Van Der Lans, 2012b,a; O’Donnell et al., 

2013; Shen et al., 2021; Barbella and Tortora, 2023). Data federation can use semantic web 

approaches combined with other technologies in order to avoid the burden of creating a 

combined ontology. 

The objective of this paper is the integration of BIM (as-built information), IoT, and 

Building Automation Systems’ data for real-time visualisations and applications in a digital twin 

environment to support facility management. The challenges faced are the connection of diverse 

domain (and often low-available) data and the real-time data provision. It is important to 

highlight that the data diversity challenge has been eased by translating domain data using 

industry-known ontologies like Industry Foundation Classes (IFC) (ISO, 2018), BrickSchema 

(Brick Consortium, Inc, 2023), and an adaptation of the Building Topology Ontology named 

ACP data model (Rasmussen et al., 2021; Brazauskas et al., 2021). The paper adopts a hybrid 

approach based on data federation and modularised semantic web also referred as federated data 

modelling throughout the paper. The technical aspects and methods for the integration of data in 

a digital twin in the built environment are the main focus of the paper. Techniques are 

demonstrated in a case study conducted on the digital twin of the Alan Reece building of the 

University of Cambridge. The case study demonstrates the integration methods used for a Fault 

Detection and Diagnosis (FDD) application of the building’s Heating, Cooling and Air 

Conditioning (HVAC) system. 

The rest of this paper is structured as follows. Section 2 explores the existing literature 
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related to digital twins in the built environment, information integration and the concept of data 

federation. Section 3 describes the methods and technological solutions used. Section 4 defines 

a case study where these methods were applied. Section 5 discusses caveats and limitations of 

this work. The conclusions derived from this research are drawn in section 6. 

 

2. Related work 

This section introduces the concept of digital twin in the context of the built environment and 

the relationship with BIM, BAS, and IoT. This relationship leads to the need for data 

integration. The concept of data federation is explained at the end of the section. 

 

2.1 Digital twins in the built environment 

A digital twin is a system that portraits the digital representation of a physical counterpart. 

Every digital twin needs to incorporate three perspectives: a digital representation (e.g., a 3D 

model), a flow of data from the physical world to the digital representation (e.g. monitoring), 

and a flow of data from the digital representation to the physical counterpart (e.g., actuation). 

Digital twins symbolise the natural convergence of emerging technologies in the AEC/FM 

industry like BIM, IoT, Artificial Intelligence (AI) towards integrated building functions 

monitoring and actuation. The roles of these technologies in digital twinning and their 

relationships are introduced in the subsequent paragraphs. 

In this framework, BIM takes the role of the digital representation of the 

built-environment. BIM changed the way the built environment information is created, stored, 

and exchanged between involved stakeholders (Howell and Rezgui, 2018). The Industry 
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Foundation Classes (IFC) brought data exchange of BIM between industrial design 

applications (Autodesk Inc., 2021; Perttula and Suchocki, 2020; Building Smart Int., 2022; ISO, 

2015). Model View Definitions (MVD) are subsets of the IFC that represent BIM data related 

to a specific discipline that support data exchange between BIM and Building Automation 

Systems. 

The Internet of Things (IoT) and Building Automation Systems enable both monitoring 

and actuation for digital twins, pushing BIM towards adjacent research areas throughout the 

entire built environment life-cycle, at building, infrastructure, and city levels (Boje et al., 2020; 

Sotres et al., 2017; Angjeliu et al., 2020). (Liebenberg and Jarke, 2023) proposes digital 

shadows (i.e., digital representation plus monitoring only) as accelerators for production 

engineering, operation, and service. (Hu et al., 2022) identifies some challenges that Digital 

Twin designers face in the built environment including diverse and multi-function sensors 

systems, and multi-asset integration. (Hu et al., 2022) classifies state-of-the-art Industry 4.0 

technologies into Digital Twin solution areas like data acquisition, processing, modelling and 

simulation, and decision support enablers, and provides a technological framework to integrate 

all these technologies. 

The role of the last element of digital twins for the built environment, Artificial 

Intelligence, is as part of the applications. Digital twin applications in the built environment 

include data visualisation (e.g., dashboards, heatmaps, navigation), condition monitoring (e.g., 

anomaly detection, Fault Detection and Diagnosis), and prognosis (e.g., fault prediction, 

predictive maintenance) (Hu et al., 2022; Alanne and Sierla, 2022). Many are designed to 
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access and visualise integrated information dynamically in near-real time. Dynamic data 

collection may be active, via queries (e.g., RDBMS and SQL, LDAP, files sync), or passive, 

via subscriptions to data publishers (e.g., message-passing, MQTT, KAFKA, websockets, 

REST APIs, webhooks). Additionally, non-dynamic data sources like maintenance reports and 

schedules, assets specifications, and 3D models can support decision-making in digital twin 

applications. While dynamic access to these data sources is not critical, it facilitates digital twin 

applications development and non-dynamic data reuse. Latency becomes a requirement for the 

technologies in the digital twin framework used to enable end-user applications and actuation. 

When relating these three disciplines, BIM, IoT, and BAS become data sources that 

enable digital twin applications. These applications define data and performance requirements 

for the integration methods that provide data. (Quinn et al., 2020) highlights three challenges 

of linking BIM with live IoT data: integration methods, heterogeneity and availability of data, 

and suitability of data architecture to support static (e.g., semantic, geometric, and 

topographical) and dynamic (e.g., sensor data in the form of time-series) data. (Tang et al., 

2019) conducted an in-depth review of BIM and IoT devices integration in the AEC industry 

across multiple domains, including Facility Management. It highlights three key components of 

BIM and IoT integration: 

■ BIM serves as a data repository for contextual information. It consists of building 

geometry, and sometimes it is extended with IoT devices’ description and location, 

static information, and other soft building information collected from occupancy 

patterns. Contextual information is stored in industrial BIM or IFC formats. 
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■ Time-series data records sensor readings. Traditional time-series data is stored in 

well-structured relational databases. More recently, data is stored in time-series 

databases or No-SQL alternatives. 

■ The integration method between contextual information and time-series data. The 

review concludes with a classification of BIM and IoT integration methods: a) solutions 

using BIM tools’ APIs and relational database, b) solutions transforming BIM data into 

a relational database using new schema, c) solutions creating new query language, d) 

solutions using semantic web technologies and e) hybrid approaches. 

(Mohammed et al., 2020) identifies that the 67% of the literature on IoT and BIM 

integration is framed during design and construction phases and only the 22% is contextualised 

within facility management. Among the latter, (Arslan et al., 2017; Kirstein and Ruiz-Zafra, 

2018; Wu et al., 2018; Wang et al., 2020; Kang et al., 2018; Chen et al., 2018b; Lu et al., 2021; 

Hosamo et al., 2023b) load BIM data into relational databases using new schemas (category b). 

Vendors enable the first two categories via APIs for information query from their proprietary 

BIM formats or model transformation into a relational database. There exist some open source 

tools that also enable such transformation from IFC (IFCOpenshell.org, 2021; Bock and 

Friedrich, 2023), but both options bring relational data modelling challenges that need to be 

addressed (Wyszomirski and Gotlib, 2020; Prudhomme et al., 2020). Solutions creating new 

query language are limited in the context of digital twins since they do not enable dynamic 

query of sensor data (Tang et al., 2019). Most research is focused on semantic web ontologies, 

and hybrid methods, described sections 2.2 and 2.3. 
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2.2 Data integration using semantic web approaches 

Semantic web is the most popular technique used to store, share, and use heterogeneous data 

sets in the built environment (Quinn et al., 2020). It uses the Resource Description Framework 

(RDF) to represent BIM, asset, and sensor information to act as a proxy to link them. (Tang et 

al., 2019) enumerates the steps to data integration using semantic web: 

■ Transform contextual and reference data about spaces, assets, and sensors into RDF. 

■ Extract time-series data from its source and transform it into RDF. 

■ Link data silos across different domains via unique identification. 

■ Use query languages (e.g., SPARQL) to discover the relationships between all three 

components, including time-series data. 

Table 1 summarises popular ontologies. 

Recent developments try to combine IFC with semantic web technologies to facilitate 

data extraction. (Pauwels et al., 2011) combined IFC and Express (ISO, 1994) into a 

knowledge base through RDF (W3C, 2014) to develop a semantic rule checking environment 

for the construction industry. IFCOWL exposes building structures and hierarchy, despite IFC 

being inherently biased towards 3D visualisation (Beetz et al., 2009; Pauwels et al., 2017; Ma 

and Liu, 2018). (Zhu et al., 2023) extracts the semantics of IFC into a graph to improve the 

data access, query, and understandability. The Building Topology Ontology (BOT) (Rasmussen 

et al., 2021) focuses on capturing topological concepts in buildings such as sites, floors, zones, 

and rooms. Some authors considered the representation of assets and systems in the built 

environment as part of BIM (Dave et al., 2018; Tomasevic et al., 2015) as the foundations of 
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digital twins in the built environment. Haystack (Haystack, 2021) is a popular ontology for 

describing building assets using semi-structured sets of tags which are highly custom but 

inconsistent. BrickSchema standardizes semantic descriptions of the physical, logical, and 

virtual assets in buildings and the relationships between them (Brick Consortium, Inc, 2023; 

Balaji et al., 2016). Semantic Sensor Network (SSN) (W3C, 2016a) describes sensors and their 

observations, features of interest and samples, procedures, and actuators, and has been used to 

describe BAS data with semantic tags. The Smart Appliances Reference ontology (SAREF) 

(ETSI, 2023) is intended to enable interoperability between solutions from different providers 

and among various activity sectors in the Internet of Things (IoT). The Sensor, Observation, 

Sample, and Actuator (SOSA) ontology (Janowicz et al., 2019; W3C, 2016b) redesigns SSN to 

provide lightweight general-purpose specification for modelling the interaction between the 

entities involved in the acts of observation, actuation, and sampling. Sensor Model Language 

(SensorML) (Open Geospatial Consortium, 2023) provides a robust and semantically-tied 

means of defining sensors, actuators, and processes associated with the measurement and 

post-measurement transformation of observations. 

Many authors reviewed the semantic web literature to combine or reuse these ontologies 

to achieve data integration (Dibley et al., 2012; Curry et al., 2013; Costa and Madrazo, 2015; 

Zhang et al., 2015; Terkaj et al., 2017; Boje and Li, 2018; Boje et al., 2020; Gouda Mohamed 

et al., 2020; Hu et al., 2021; Donkers et al., 2022; Wang et al., 2022; Zhu et al., 2023; Eneyew 

et al., 2022). The BACnet ontology (ASHRAE, 2013) reuses SSN, BOT, SOSA, and IFCOWL 

to describe spatial building data, assets, sensors, and values to enable better visualisation of the 
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automated systems (e.g., HVAC room diffusers) (Tang et al., 2020). 

(Quinn et al., 2020) identifies some limitations in the use of ontologies for BIM, BAS, 

and IoT data integration. Most ontologies define custom extensions to create the link with BIM, 

and the need to manually map ontology tags to data points in the BAS remains a challenge 

(Chen et al., 2018a). Additionally, the use of ontologies acting as a link proxy between 

BAS/IoT and BIM creates data redundancy and duplication, for instance, when converting 

time-series data into RDF. Because of the low performance of RDF representing 

fixed-structured data, the semantic web approach is both time consuming to implement and 

restricted to semantic data concepts represented in the ontology (Hu et al., 2016). (Bradley et 

al., 2016) identified a lack of information integration and governance despite BIM and the 

numerous semantic web approaches, and argue that these approaches suffer low scalability 

since they are geared towards knowledge discovery rather than dynamic integration and 

visualisation of data. (Bradley et al., 2016) also identifies three underlying factors common to 

all integration approaches, namely, definition (i.e., vocabulary and metadata), process (i.e., 

alignment with operational aspects), and connection (i.e., dynamic association and use) of 

information. Despite the evolution of IFC into ontologies like IFCOWL, it has not fully solved 

the problem for all application domains since it from conception is designed towards 

visualisation rather than to be modified or used dynamically (Boje et al., 2020). (Pauwels et al., 

2011, 2017) states that the limited expression range of the IFC causes limitations when one 

wants to describe a building using certain concepts not found in the IFC. IFC often contains 

multiple descriptions of the same information which creates difficulties in partitioning the 
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information (Terkaj et al., 2017). 

The latency introduced by ontology resolution is a challenge on its own that has been 

addressed from data engineering point of view (Neumann and Weikum, 2010). Ontologies are 

a way to enable data integration but most times at a cost of high latency (Bizer and Schultz, 

2009). Query processors retrieve summarized time-series data using SPARQL, and its selection 

for time-series integration has large implications on the overall latency (i.e., time to provide an 

output) (Quinn et al., 2020). For instance, (Chevallier et al., 2020; Mavrokapnidis et al., 2021; 

Donkers et al., 2023) suggest query processors for integrating BIM and IoT data using linked 

data and known ontologies like SOSA, Brick, IFC and BOT. The impact of connecting 

real-time data through SPARQL queries in latency is higher than hybrid approaches, since this 

technology limits the benefits of the optimised relational and NoSQL data repositories, and 

message-passing protocols. 

 

2.3 Data integration alternatives and hybrid approaches 

Looking away from semantic web for BIM data integration, literature becomes scarce and 

disconnected, but focuses on leveraging BAS data. (Quinn et al., 2020) relies on naming 

convention to extract summary time-series data from the IoT database, reducing data 

redundancy and facilitating implementation by avoiding the ontology mapping step. (Gerrish et 

al., 2017) extracts BIM in Revit to JSON using Dynamo (Autodesk, 2023) and links it to BAS 

data in a relational database using a custom Python script. (Chamari et al., 2022) suggests a 

hybrid approach to integrate IFC and BAS by combining triple stores and SPARQL for 

contextual data that connects assets and monitoring, and NoSQL databases for the time-series 
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data. Same authors repeat the method to integrate IoT and IFC information (Chamari et al., 

2023). (Cheng et al., 2020) develops a data-driven predictive maintenance planning framework 

for Facility Management based on BIM, BAS, and IoT technologies, and achieves data 

integration by an ETL process into a SQL database. (Kang and Hong, 2015) designed an ETL 

process to integrate BIM, geographical data, and maintenance records in a custom DB. 

(Hosamo et al., 2023a) integrates BIM, sensor time-series and maintenance records in a custom 

ETL process to enable condition monitoring. (Hadjidemetriou et al., 2023) suggests an 

architecture for real-time and faster than real-time estimations that integrates geometric and 

systems data through simulation models and APIs. 

Some hybrid approaches represent and store contextual and reference information 

through ontologies (building topology, sensor information, asset information), but retain sensor 

time-series data in relational databases (Eneyew et al., 2022). Data integration is conducted via 

sensors’ or assets’ IDs described in RDF. (Corry et al., 2015; Hu et al., 2016) developed a hybrid 

architecture linking relational databases of time-series data through the sensor ID to sensor 

reference information using SSN and then used SPARQL to discover the relationships between 

sensors and semantically-described building contextual data in IFC. (McGlinn et al., 2017) used 

a similar approach to store actuator and BIM data in RDF and used SPARQL to reason the 

inter-dependencies between them, then integrated the results with time-series data from sensors 

(including reference sensor data) from a relational database. (Tang et al., 2019) states some 

benefits from hybrid approaches, including reduction of data duplicity of time-series data (RDF 

and relational database), storage saving since RDF format tends to become heavier, and better 
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query performance in both relational databases and RDF, respectively. 

Data Lakes are considered a comprehensive approach for data management in distributed 

information systems (Kumar et al., 2018). A data lake is a collection of storage instances of 

various data assets stored in a (near) exact copy of the source format (Gartner, 2023), and 

represent the natural evolution of data warehouses for distributed environments. Data pipelines 

are processes to prepare, clean, integrate, and provide access to data considering the individual 

information requirements of the data consumers and applications in a data lake (Mehmood et 

al., 2019). Data lake architectures are a subset of Big Data architectures (ISO/IEC, 2020) 

where the focus is on enabling data ingestion from diverse and distributed sources while 

keeping data in its original raw state. Data is transformed on-demand using custom 

fit-for-purpose integration strategies that better suit data consumers and applications. There are 

plenty of data lake architecture examples (Fang, 2015; Ait Errami et al., 2023; Mehmood et al., 

2019; Madera and Laurent, 2016; Chessell et al., 2014, 2015), but generally they fit in the 

reference architecture in figure 1. 

Looking at the limitations of non-semantic and hybrid approaches, data transformations 

and integration in the AEC context cannot be achieved effortlessly (Hu et al., 2016; Adnan and 

Akbar, 2019). The lack of completeness and accuracy of the geometries and semantics is a 

common issue in ETL processes for construction data (Sani and Rahman, 2018). The need for 

fidelity (i.e., preserving raw data to avoid information loss) creates multiple versions of data, 

which induces a substantial risk of inconsistency (Sawadogo and Darmont, 2021). On-demand 

database schema mapping on large variety of sources is an arduous effort while integrating data 
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in the pipelines (Nargesian et al., 2019). Data lakes can quickly turn into data swamps without 

appropriate management (Raj and Surianarayanan, 2020). 

 

2.4 Data federation 

Data federation can be considered as a hybrid approach for data integration. The idea of 

federation appeared with Big Data and HDFS (Hadoop, 2023). Federated data consist in 

ensuring independence and self-management of data sets instead of struggling to centralise 

them (Van Der Lans, 2012b). Techniques like data fusion and federated learning were 

developed to harness the value of data in such distributed environment. 

Data fusion is a process of integration of multiple data representing the same real-world 

object into a consistent, accurate, and useful representation (Bleiholder and Naumann, 2009). 

Data fusion, in a more modern view of the concept, unlocks knowledge fusion across multiple 

disparate (but potentially connected) data sets and integrates the insights rather than schema 

mapping and data merging (Zheng, 2015). New-age data fusion methods can be stage-based 

(i.e., learning from each source at a time), feature level-based (i.e., extracting common 

features), and semantic meaning-based (i.e., extracting features, meaning and relationships). 

Federated learning, introduced in (Konečný et al., 2016; McMahan et al., 2017) and then 

popularised by Google, involves training models over remote devices or siloed data centres 

while keeping data localized (Li et al., 2020). Federated learning could be regarded as a data 

fusion method where data remains at source and models are moved to the data sources and 

iteratively trained locally. Models’ updates are sent back to a manager, decrypted, averaged, and 

consolidated into the centralized model. In the context of IoT, federated learning offers a way of 
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harnessing the potential of data streams from sensors when computing capabilities are moved to 

the edge (Chahoud et al., 2023; Sun et al., 2021). With the growing concern on data privacy at 

the edge, federated learning has been regarded as a promising solution for deploying distributed 

data processing and learning in wireless networks (Lu et al., 2021). 

In the case of digital twins, federation can be extrapolated to entire data sources in which 

data owners retain all data locally. Particularly, in the built environment data federation suits 

the natural segregation and independence of the data sources during operations and 

management (Hu et al., 2016; Corry et al., 2015). Each data source is modelled according to 

independent needs while collaborating for the integration towards specific Digital Twin 

applications. Federated approaches are necessary in this context to enable digital twin 

applications for data management (Moretti et al., 2022), and for facility management 

(Qolomany et al., 2020; White et al., 2021; Pang et al., 2021; Walters, 2019). (Werbrouck et al., 

2022) demonstrate how a Common Data Environments (CDEs) based on Linked Data for the 

AEC industry facilitate complex interactions between the various stakeholders participating in 

a project while maintaining independent federated data sets. 

 

2.5 Gap analysis 

Facility Management practice is characterised by the disconnection of the data which causes a 

lack of semantic interoperability. While semantic web solutions have demonstrated effective 

knowledge discovery, the need for manual tagging and the lack of performance of ontology 

resolution limit the performance of monitoring data stores in terms of real-time data delivery. 

In fact, some studies fell short to achieve real-time data integration due to the use of semantic 
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web approaches. Literature is moving towards adjacent areas by implementing hybrid 

approaches. Scalability has been explored in commercial architectures but mainly in terms of 

monitoring. One of the areas towards semantic interoperability that has not been fully explored 

in the context of digital twins for the built environment is data federation. 

This paper targets real-time data integration for digital twins in the built environment 

using a federated approach. A data lake architecture is used to enable the connection to the 

federated data sources. The framework enables the use of different ontologies and custom data 

models to represent domain specific data. For instance, IFC is used to model BIM data (i.e., 

building components, geometries, and topology), BrickSchema is used to model the BAS (i.e., 

BAS components and hierarchy), and a custom flexible data model based in BOT is used for 

additional IoT sensor data and BAS operation records. The method for integration focuses on 

the sensor data stream and attaches the information required by the digital twin applications in 

a modular data pipeline, using transformations, schema-mapping, and semantic-based fusion to 

minimise latency. The method is demonstrated within a case study of a digital twin of a 

3-storey building with several HVAC zones and a Fault Detection and Diagnosis (FDD) 

application. 

 

3. Data integration for digital twins in the built environment 

This section presents the architecture of the digital twin data platform and the method for BIM, 

BAS, and IoT data integration in the context of the built environment. 
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3.1 Digital twin data platform 

The digital twin data platform is composed of services for data ingestion and storage, 

management, and consumption, shaping the architecture of a data lake. Well-known data cloud 

solutions for data platforms are commercially available, and other authors have suggested 

reference architectures for IoT-enabled smart buildings using such platforms focusing on 

scalability (Bashir et al., 2022; Linder et al., 2017, 2021; Genkin and McArthur, 2023). As part 

of a joint-research effort towards pushing commercial technology boundaries, the data platform 

selected is the Adaptive City Platform (ACP) (see figure 3) which was developed using 

state-of-the-art technologies like Vrtx to enable real-time applications with minimal end-to-end 

(i.e., from data sources to applications) latency (Brazauskas et al., 2021). Data integration is 

enabled in this context, focusing on the real-time aspect of data. 

The architecture is depicted in figure 2, and it has two flows of data: real-time streams 

and batch data. 

The ACP ingests, stores, and manages data from real-time sources like IoT sensors (e.g., 

LoRaWan, radio-frequency, WiFi), and the BAS (e.g., HVAC components data points, 

including operating status and embedded sensors). It uses two forms of ingestion: 

publish-subscribe model (i.e., FeedHandler), and database connections (i.e., FeedMakers). The 

former is enabled by MQTT clients, and the latter by SQL clients that extract data with the 

required frequency. The ACP is engineered towards minimising the end-to-end latency for 

real-time data, averaging a few milliseconds between a data entry (i.e., when it is ingested) and 

exit (i.e., when it is available for use). This is particularly important in the built environment to 
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visualise the real status of assets and spaces and for the early identification of potential 

problems in Operation Maintenance and Repair (OM&R) (Boje et al., 2020). Raw data is kept 

for traceability and repeatability. An internal high-end bus enables the internal flow of data 

using publish-subscribe model. Other services can subscribe to required data. Data storage of 

time-series data (i.e., MsgFiler) is redirected into day-level JSON files in the file system and, 

alternatively to a general purpose SQL database. The ACP enables access to data in real-time 

both through REST POST to the desired http destination URL (i.e., MsgRouteR), and by 

accepting data subscriptions through websockets (i.e., RTMonitor). More details about the ACP 

can be found in (Brazauskas et al., 2021). 

Other reference and transactional data sources may coexist in the data lake, but they are 

not necessarily ingested through the ACP. Reference data of the built environment consists of 

static blueprints, CAD drawings and 3D models of the building structures; documentation of 

mechanical, electrical, and plumbing systems, or other representations of their functional 

dependencies; and asset catalogues. Transactional data refers to semi-static information about 

status of assets, maintenance work orders, such as the condition inspection and date of assets. 

Reference and transactional data is stored either in its raw format or using a domain specific 

ontology like IFC for BIM or BrickSchema for the building functions. Access to these sources 

of data needs to be enabled by APIs (e.g., IFC Openshell, SPARQL, file system general I/O). 

Both real-time streams and batch data are federated in multiple reservoirs in the data lake 

which facilitates the ingestion of high-variety data as well as high and low velocity data. Data 

pipelines enable pre-processing and integration. 

Downloaded by [] on [22/09/23]. Copyright © ICE Publishing, all rights reserved.



Accepted manuscript 
doi: 10.1680/jsmic.23.00002 

23 
 

 

3.2 Data pipelines and integration method 

Data integration is enabled in this context, focusing on the real-time aspect of data. A similar 

approach is suggested by (Eneyew et al., 2022), however, that method suffers from slower 

query response time for accessing a large number of semantically described sensor 

observations simultaneously. The relatively slower query response time is primarily the result 

of the query mediation overhead incurred during the serial transformation of the raw sensor 

data to an in-memory knowledge graph. This integration method circumvents that problem by 

extracting contextual information into memory in a hierarchical model that maps the BIM and 

BAS information, and then tags individual sensor readings realising them back to the real-time 

data stream. 

Data integration is conducted through data pipelines. A data pipeline is a piece of 

software that sits between the data storage and sources, and the data consumers to extract, 

transform, and integrate available data on demand. The creation of data pipelines starts with the 

identification of information requirements by data consumers and applications (e.g., required 

data points, input format, pace) (Pishdad-Bozorgi et al., 2018). A data pipeline can be reused 

by different applications and different data pipelines can be combined to serve a new 

application if required (see figure 4). It is essential to understand what data the data consumers 

and applications use, how often and what format it is required (Kang and Choi, 2015; 

Becerik-Gerber et al., 2012). Sometimes, existing pipelines can be reused adding a new layer 

of data transformation (e.g., if a different format is needed) or integration (e.g., if additional 

data needs to be combined). If no existing pipeline can provide it, then a new one must be 
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designed from scratch. In such case, it is also necessary to identify the sources of data in the 

lake for the data pipeline to extract, transform and combine data. Ultimately, the data access is 

made available by data pipeline through an API in the format and pace required. In this paper, 

authentication is not considered but it is an important part of research in data lakes. This 

process is also known as data engineering. 

The data integration method presented in this paper is focused on the real-time data 

stream from the ACP, but IoT or BAS data by itself lacks of meaning without context. Static 

sources add contextual information before applications make use of it (e.g., sensor location, 

building functions, subsystem). With the context, sensor data becomes a feature or an event 

that belongs to other entities. For instance, an IoT sensor produces temperature readings, but 

that temperature is the property of a space. Similarly, a vibration sensor in the BAS produces 

vibration frequencies in the X, Y, Z to represent the movement of a pump in the HVAC system. 

IoT and BAS contextual data is modelled according to the ACP data model presented in 

(Brazauskas et al., 2021), which is a schema governed by crates that structures data in a 

hierarchy similar to the BOT ontology (Rasmussen et al., 2021). A crate is an entity (e.g., a 

sensor, an equipment, a space, a floor) with its own attributes plus zero or more parents (see 

figure 5). Parents are referenced in the crate approach rather than been nested. Thus, crates 

form a hierarchical structure, but every crate is uniquely identified through an indexed key for 

quick access. This is particularly effective to represent the topologies and functional 

hierarchies of buildings, their systems as well as sensor data. Documental databases are chosen 

to hold the crate model, and JavaScript Object Notation (JSON) format is used in the ACP. 
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Listing 1 shows an example of the crate model. Time-series data is collected through the ACP 

and every sensor reading is tagged with the contextual information based on the indexed id. 

Even that the ACP data strategy is used to govern the flow of real-time data, there are two 

ontologies that help understanding sensor data in the built environment: the ISO 12006 (ISO, 

2015) (Industry Foundation Classes - IFC data model) and BrickSchema. 

IFC excels on 3D modelling (i.e., detail-drawing all the structures and components), and 

thus it has a complex representation the topologies and the architectural hierarchies, which can 

be inferred by traversing the IFC elements and relationships. (Moretti et al., 2020) shows how 

IFC meta-information about hierarchy and topology of the built environment can be extracted. 

An IFC2ACP data pipeline was developed to read the IFC files and infer the topologies and 

architectural hierarchies using the IFCOpenShell python API (IFCOpenshell.org, 2021). Then 

it transforms that information into the ACP crates model and store it in memory in a JSON 

object to enable indexed access to all the elements. The IFC2ACP data pipeline reacts to 

changes in the original source on demand when a new IFC file is available. 

The design of BrickSchema focuses on defining the physical, logical, and virtual building 

assets with the emphasis on building operations, such as equipment or sensors in lighting, 

sub-metering, and HVAC systems (Balaji et al., 2016). BrickSchema is also effective for 

existing buildings where retrieving this information can be costly and time consuming (e.g., 

through laser scanning, imagery). Leveraging its strong expressability of building system 

hierarchies, the BrickSchema has been adopted in real cases like (Xie et al., 2021) to represent 

building metering system, and to connect sub-metering readings with spatial characteristics for 
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fine-grained energy analysis. However, BrickSchema models are networks that contain many 

cycles to determine connections between entities. Traversing these cyclical networks in 

real-time can be costly in latency. (Xie et al., 2021) shows how BrickSchema meta-information 

on the systems in the built environment can be transformed into the ACP crates data model for 

real-time applications. The BrickSchema files (i.e., turtle or TTL) are read in the Brick2ACP 

data pipeline using the py-brickschema python API (Brickschema.org, 2021), and transformed 

into the ACP crates data model to avoid that increase in latency. The ACP crates version of the 

BrickSchema meta-information is stored in JSON in memory for quick access. The Brick2ACP 

data pipeline reacts to changes in the original source on demand when a new TTL file is 

available. 

The lingering question is how to integrate both ontologies since some applications may 

need to make use of metadata from both IFC and BrickSchema. Luckily, there is no need to 

create a meta-ontology to combine IFC and BrickSchema since they both handle the concept of 

a Space (in IFC) or Location (in BrickSchema) and Sensors (in IFC) or Points (in BrickSchema) 

which can be used as a nexus for the semantic mapping of the ontologies. A IFCxBrick data 

pipeline was implemented to integrate the tailored ACP versions IFC and BrickSchema data 

based on the common elements found in both ontologies. Transparent access to integrated data 

is enabled through an API. The API allows data consumers to access all elements in the 

building. It is also possible to query the elements inside the known element (i.e., children; e.g., 

all the sensors in a location) as well as the elements to which the known elements belongs to 

(i.e., the parents; e.g., the location of an asset/equipment). 
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Any application can open a websocket client connected to the ACP platform to subscribe 

to sensor data in real-time (see figure 6) and request contextual metadata from the IFCxBrick 

API. 

Whereas semantic web approaches like centralised triple stores focus on data exploration, 

this approach is tweaked towards real-time data reporting. Developed APIs can also be used for 

exploration, but they are not specifically designed for data discovery. Despite having selected 

the ACP platform, this method could be also implemented using commercial tools that mirror 

the architecture and implement the pipelines. Integration in modular pipelines support the 

delegation of information management to data sources. Tagging individual readings with 

contextual data available in memory provide fast access to real-time data. 

 

4. Case study: institute for manufacturing 

The approach is implemented in the digital twin pilot of Alan Reece building at the West 

Cambridge site. The Alan Reece building is a 3-storey building and stands over a 

3800-square-meter comprehensive area, including spaces for teaching, office, research, 

laboratory, canteen. Figure 7 shows the 3D model of the Alan Reece building. The digital twin 

is geared to support building operations and asset management. Among the applications 

enabled by the digital twin, this paper exemplifies the data integration approach through a Fault 

Detection and Diagnosis (FDD) functionality for building HVAC systems. The focus of this 

section is on the integration method application, rather than in the FDD application. Details on 

the FDD application can be found in (Xie et al., 2021). 

The setting for this case study is an HVAC zone comprising two seminar rooms where an 
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automated FDD application identifies anomalies in the comfort temperature of the spaces (see 

figure 8) using real-time analytics based on sensor and contextual data (i.e., IFC and 

BrickSchema). These two spaces are conditioned with a Variable Refrigerant Flow (VRF) 

system, connected to multi-zone indoor air conditioning units in a multi-split manner. 

Functionally, the VRF and indoor units provide heating and cooling the building, serving 

multiple seminar rooms and lecture theatres. The air conditioning system of the seminar rooms 

is pictured in figure 9. The FDD application makes use of temperature, humidity and dew-point, 

open-closed (for windows and doors) data from IoT sensors in the seminar rooms, plus 

operational data of the HVAC system from the BAS. Figure 9 shows the monitoring parameters 

in the BAS for this application. 

For this example, the target is the Zone Temperature Malfunction fault (see figure 9). 

This fault refers to anomalies found on the comfort temperature of the seminar rooms’ HVAC 

zone. If the temperature monitored by the IoT sensor exceeds the comfort interval, the FDD 

triggers an investigation. First, it checks the status of the windows and doors of the space, and the 

HVAC Zone temperature. If there is an anomaly, it is necessary to diagnose the sources, 

including potential impact to critical assets further up in the hierarchy of the HVAC system. Thus, 

operational status of the indoor units feeding the seminar rooms and the VRF needs to be 

checked accessing the BAS. 

The information required for the FDD application consist of the real-time from the IoT 

sensors and BAS sensing points, the relationships between faults, assets, and spaces in the 

HVAC from BrickSchema, and the topology of the rooms from IFC. Real-time data is ingested 
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and managed by the Adaptive City Platform (ACP) which runs in a custom server. Reference 

data (i.e., IFC and BrickSchema models) is also stored in the same custom server in its original 

format. The IFC2ACP, Brick2ACP, and IFCxBrick data pipelines are responsible for the 

integration and online APIs are made available for all three data pipelines. The ACP enables 

realtime data requests and subscription through websockets. 

Figure 10 shows the usage of the IFCxBrick data pipeline to discover and diagnose the 

zone temperature malfunction fault. The FDD application monitors the sensors related to the 

zone temperature malfunction fault. 

The sequence starts with the FDD application querying the function getAllSensors 

indicating the fault id. The function will return the list of sensors related to this fault. 

Subsequently, the FDD application can subscribe to the real-time data of the sensor list. Then, 

on every message that arrives to the FDD the following steps may be triggered: 

■ The FDD application needs to know the type of sensor that the message is coming from. 

The type of sensor is in the body of the message coming from the ACP, but it can also be 

queried with the function getAllSensors of the IFCxBrick indicating the sensor id. In 

this example, IoT sensors are located only in spaces and never in equipment in the Alan 

Reece Building. 

■ The FDD application queries the function getAllSpaces of the IFCxBrick API with the 

sensor id to know what space (i.e., seminar room 2) that IoT sensor belongs to (i.e., its 

parent). If the temperature of the seminar 2 exceeds the comfort interval, the 

investigation is triggered. 
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■ The FDD application will check other sensors in that space by querying the function 

getAllSensors of the IFCxBrick API with the list of spaces returned in the previous step. 

It also requests the last readings from the ACP through the websocket. 

■ A crosscheck including the original reading and the new sensor readings is performed to 

identify the source of the problem. All the sensors reporting a problem in the crosscheck 

must be investigated. The functions getAllEquipment and getAllSpaces from the 

IFCxBrick API can be queried again to know more about the HVAC system functional 

relationships (e.g., what HVAC Zone the space belongs to, what indoor unit feeds the 

HVAC Zone, which VRF feeds the corresponding indoor units; see figure 9), as well as 

the topology and the hierarchy of the building (e.g., what sensors are in a space, or an 

equipment, what spaces belong to other spaces; see figure 8). 

■ Similarly to step 3, the last sensor readings of the spaces and equipment that are subject 

to further investigation can be requested to the ACP. The last two steps are repeated 

until the source of the fault is identified. 

The faults discovered by the FDD and the diagnosis can be reported through the required 

methods to assist facility management. In this case, the FDD reports via email to the facility 

manager, and the faults are visualised in the 3D model of the building by flashing the affected 

assets and spaces. Ideally, actuation can be enabled in the form of operating the HVAC system 

at a different temperature if there is no fault, but facility managers did not allowed full 

automation in this case study. 
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4.1 Evaluation 

Comparison against the most similar methods in the literature is not completely possible. 

Technologies, hardware, and data is completely different in (Eneyew et al., 2022), and, while 

their integration method focuses on knowledge discovery, the integration method suggested in 

this paper focuses on enabling real-time digital twin applications where it is key to minimise 

the latency introduced by the integration itself. The architecture suggested in (Hadjidemetriou 

et al., 2023) is geared towards estimations and uses simulation models to integrate data, 

however, no metrics are provided on performance. Despite these differences, similar metrics 

are produced below. 

This method attaches the contextual information to individual sensor readings using the 

pipelines. Data used for this evaluation was generated by twelve sensors over a period of three 

months. Sensors generated data between at different sampling rates over the same period: six 

of them generated data every two minutes, five of them every thirty seconds, and the last 

sensor generated data every second. For every single message passing through the pipelines, 

the latency introduced by the integration method was measured by taking a timestamp in 

nanoseconds before and after its execution. The average latency introduced by the method was 

1.221 milliseconds with an standard deviation of 1,299 milliseconds, a maximum of 10 

milliseconds and a minimum of 0,98 milliseconds. Since most reference data is loaded and 

indexed in memory, this method is really bounded to memory performance. As a reference, the 

integration method in (Eneyew et al., 2022) is capable of integrating a single data point in 37 

milliseconds. 
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Historical data queries metrics were produced using the same 3 months period. Figure 11 

shows the integration time and the query response time over the number of sensor readings 

queried. The integration time is under the milliseconds barrier, however, this is diminished by 

the query time. In this case study, historical data is stored into JSON daily files in the file 

system which means that it needs to be loaded in memory from the hard-disk drives. This 

limits the potential of the architecture for this type of jobs. Historical data can be moved to a 

time-series data base to improve query times. Again, as a reference, (Eneyew et al., 2022) 

queries (including integration) are around ten times faster, however, it does not provide exact 

metrics of how much the integration method adds to this query times. Authors assert that the 

larger part of the latency of queries was introduced by the SPARQL query resolution. 

 

5. Discussion 

Important lessons were learned during this case study. BAS are managed by separate roles and 

even departments, and serviced by different companies, reducing data availability. In most 

cases data is only available as spreadsheets or documents that require preprocessing (e.g., asset 

maintenance records, hand-over documents of buildings). Information changes are not 

documented, and original documents are still used as reference instead, affecting data accuracy 

and timeliness. It is easier to get a one-time dump of the information, but not on-demand. Even 

when on-demand access is enabled, the technical aspects of data engineering appear. The 

high-variety of BAS, the manifold applications’ and users’ requirements make the design of 

pipelines an ordeal. Further, the duplication of pipelines is likely without appropriate planning 

(e.g., shared features identified). Federated data models helped to manage this complexity 
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enabling the design of tailored models and modular data pipelines. 

3D models of buildings are only available since the advent of BIM in the industry. Old 

built-environment documentation (e.g., floorplans, CAD) would need to be updated and 

digitalised to enable digital twins. Digital documentation of building functions like an HVAC 

system is even more unusual. The need of manually creating these digital documents is limited 

to skilled professionals that are knowledgeable in the domain and have been trained in the use 

of semantic web approaches, despite the existence of innovative tools like IFC modellers, 

BrickSchema and other ontology editors. This also applies to IoT deployment management and 

maintenance since sensors are often the forgotten assets in digital twins. 

Digital twins should include actions triggered from the virtual environment to the 

physical counterpart. In the built-environment this perspective is often limited by the facility 

managers that still do not trust fully automated environments. Therefore, digital twins become 

decision support systems that can suggest appropriate actions. In the case of new building 

developments, digital twins designed from AEC stages have the potential of becoming multi-

function systems to be directly handed over to facility managers. 

 

6. Conclusions 

AECO industry is steering in the direction of the digitalisation of buildings from the design and 

construction phase to ensure efficient building operations. Digital twins are enablers for smart 

buildings operations to meet Net-zero objectives, but they can only achieve their full potential 

when integrating building functions. 

In this sense, one of the biggest challenges is to enable on-demand access to Building 
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Automation Systems (BAS) which ownership and management is often shared. Obtaining real 

on-demand data becomes an arduous cyclical process of requesting increasing access grants, 

since managers are not always willing to facilitate it. Senior asset managers must become 

facilitators in the development of the Digital Twin. The technical challenges of data 

engineering increase with high-variety data and uses, which may cause duplication of pipelines 

without adequate planning. 

This paper demonstrates how to integrate available data from different building functions. 

BAS (e.g., the functional relationships of building systems and operational records), BIM (e.g., 

the topology, and the architectural hierarchy of buildings) and real-time IoT information are 

integrated to enable dynamic asset management applications that support efficient building 

operations towards the net-zero objectives (e.g., optimising the operation and maintenance of 

the HVAC system). The framework displays methods to connect diverse domain data using 

data federation, industry-known ontologies, and a data lake architecture. The framework 

unlocks the data stored in silos while the use of federated data models helps with the delegation 

of data responsibilities. The data pipeline design method presented illustrates how to elicit 

information requirements of asset management applications in order to identify original data 

sources and data transformations and combinations to meet them. The design of the pipelines 

based on data federation and real-time data streams enable real-timeliness in the case study, 

circumventing the limitations that other works suffer due to semantic web approaches to tackle 

interoperability. It shows how this integration methods can aid, not only condition monitoring, 

but also enhanced visualisation to promote facility management. 
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The insights and reports provided by the applications can serve as new sources of 

information, but it is necessary to understand how to re-purpose them to enable new analysis 

and insights. Federated data models may need to be extended to accommodate newly created 

asset management knowledge. Whereas data lakes support the design of digital twins for the 

built environment, data access to original sources will remain as a big challenge because of the 

chain of responsibility of data. Implementation of DTs in early stages of buildings life-cycle 

can help eliminate this burden, and can become the first step towards servitisation in 

operations. 
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Listing 1. Crates model example for sensor data 

 

 "sensor-temperature-123456": { 
"acp_id": 
"sensor-temperature-123456", 
"type": "sensor", 
"features": ["temperature"], 
"parents": [ { "parent_id": "ifm-space-01", 

"parent_type": "space"} ] }, 

"sensor-vibration-789012": { 
"acp_id": "sensor-vibration-789012", 
"type": "sensor", 
"features": ["x", "y", "z"], 
"parents": [{ "parent_id": "ifm-pump-01", 

"parent_type": "equipment" } ] } 
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Listing 2. Example of the ACP representation of an IFCSpace 

 

"103": { 
"crate_id": "103", 
"crate_type": "space", 
"acp_ts": 1629813271.922424, 
"acp_localtime": "2021-08-24T14:54:31.9224", 
"ifc_id": "0UIH5Blo19ohldZ0jJVrWM", 
"ifc_type": "IfcSpace", 
"parent_crate_id": "GF-basement", 
"ifc_geometry": { 
"ifc_geometry_type": "IfcExtrudedAreaSolid", 
"ifc_location": [71474.9958300488,29669.3674420791,-150.0], 
"ifc_depth": 2375.0, 
"ifc_sweptarea": { 
"type": "IfcArbitraryClosedProfileDef", 
"points": [ 
[-2099.99980792596,-1137.49952716191], ..., 
[-2099.99980792596,-1137.49952716191]] 

} 
} 

} 
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Listing 3. Example of the ACP representation of a BrickSchema location 

 

"103": { 

"location_name":"http://ifm.cam.ac.uk/demo_building#103", 

"type": "https://brickschema.org/schema/Brick#Room", 

"number_of_points": 0, 

"number_of_equipment": 0, 

"parents": [{ 

"parent_id": "http://ifm.cam.ac.uk/demo_building#Floor_1", 

"type": "https://brickschema.org/schema/Brick#isPartOf", 

"parent_type": "location" 

},{ 

"parent_id": "http://ifm.cam.ac.uk/demo_building#Zone_103", 

"type": "https://brickschema.org/schema/Brick#isPartOf", 

"parent_type": "location" 

},{ 

"parent_id": "http://ifm.cam.ac.uk/demo_building#LZone", 

"type": "https://brickschema.org/schema/Brick#isPartOf", 

"parent_type": "location" 

}] 

} 
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Listing 4. Example of the integration of IFC and Brickschema through the ACP data model 

 

"103": { 

"acp_id": "103", 
"crate_type": "space", 
"crate_id": "103", 
"ifc": { 
"crate_id": "103", 
"crate_type": "space", 
"parent_crate_id": "GF-basement", 
... see IFC listing ..., 

}, 

"brick": { 
"location_name": "http://ifm.cam.ac.uk/demo_building#103", 
"type": "https://brickschema.org/schema/Brick#Room", 
... see BrickSchema listing ... 

} 

} 
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Table 1. Semantic web ontologies for the built environment 

 

Ontology BIM BAS IoT 

Industry Foundation lasses (IFC) (ISO, 2018) & 

IFCOWL (Beetz et al., 2009) 

*   

Building Topology Ontology (BOT) (Rasmussen et al., 

2021) 

*   

Haystack (Haystack, 2021) * *  

BrickSchema (Brick Consortium, Inc, 2023)  *  

Semantic Sensor Network (SSN) (W3C, 2016a)  * * 

Smart Appliances Reference ontology (SAREF) (ETSI, 

2023) 

 * * 

Sensor, Observation, Sample, and Actuator (SOSA) 

(W3C, 2016b) 

 * * 

Sensor Model Language (SensorML) (Open Geospatial 

Consortium, 2023) 

 * * 

Building Automation and Control Networks (BACnet) 

(ASHRAE, 2013) 

* * * 
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Figure 1. Reference Data Lake architecture 
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Figure 2. Digital Twin data platform architecture 
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Figure 3. Adaptive City Platform (ACP) (Brazauskas et al., 2021) 
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Figure 4. Data pipeline design: Inputs and outputs 

 

 

Downloaded by [] on [22/09/23]. Copyright © ICE Publishing, all rights reserved.



Accepted manuscript 
doi: 10.1680/jsmic.23.00002 

64 
 

 

Figure 5. Adaptive City Platform (ACP) crates data model (Brazauskas et al., 2021) 
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Figure 6. Data pipelines: ifc2acp, brick2acp and ifcxbrick, and the real-time connection with 

websockets 
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Figure 7. 3D Model of the Alan Reece building 
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Figure 8. 3D model of the Seminar Rooms 2 and 3 
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Figure 9. BrickSchema model of the HVAC system feeding Seminar Rooms 2 and 3 
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Figure 10. Sequence diagram to show the usage of the IFCxBrick API and the ACP 

websockets in an FDD application 
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Figure 11. Query response time evaluation 
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