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Abstract 

Multi-Criteria-Decision-Analysis (MCDA) has been 

incorporated into retrofit decision-making to help obtain 

optimal strategies that can address a holistic objective 

criterion. However, MCDA for retrofit problems is often 

performed over two stages through pre-processing or 

post-processing of the simulation inputs/outputs which 

leads to detecting only a limited portion of the optimal 

(Pareto-Front) decisions available. This study proposes a 

parametric approach for MCDA, embedded into building 

performance simulation, that addresses many of the 

MCDA limitations highlighted and demonstrates how the 

parametric and area-weighted approach proposed can 

explore a bigger parameter space and be responsive to the 

various building geometries. 

Highlights 

• The pre-processed and post-processed simulation 

approaches incorporated into the existing MCDA 

frameworks could not identify 93-95% of the optimal 

(non-dominated) solutions obtained by the 

parametric MCDA (P-MCDA) framework. 

• Through a python script that performs backend 

calculations for the score-based qualitative retrofit 

objectives, the EnergyPlus Energy Management 

System (EMS) can be used to define and report 

additional custom outputs for the score-based (non-

simulated) retrofit objectives. 

• While acknowledging the limitations to the attempts 

to formulate “objective” decisions for qualitative 

objectives, area-weighted MCDA calculations are 

one approach to decrease the subjectivity of the 

decision-making process. 

• P-MCDA may improve MCDA efficiency in terms of 

the size of the investigated parameter space as it can 

benefit from the means of parametric building 

performance simulation and optimisation. 

• Separate retrofit configurations for building fabric 

elements with different orientation could be derived 

using P-MCDA. 

Introduction 

The decision-making process for building retrofit is 

complex as multiple parameter options to configure 

retrofit measures can be investigated and multiple 

objectives of the retrofit performance criteria can be 

looked at (Lu et al., 2021; Ma et al., 2012; Pacific 

Northwest National Laboratory et al., 2011).  Due to the 

difficulty of making retrofit decisions that account for the 

trade-offs for the often-competing retrofit objectives, 

parametric building performance simulation and 

algorithmic optimization have been deployed in multiple 

studies to automate the process of investigating a large 

pool of possible retrofit scenarios (Costa-Carrapiço et al., 

2020; Evins, 2013; Hashempour et al., 2020). However, 

regardless of how efficient these methods can be at 

estimating measurable objectives such as energy, carbon, 

and thermal comfort, etc., building performance 

simulation (BPS) can be deemed insufficient to derive 

holistic and realistic retrofit decisions (Gleeson et al., 

2011; Kimpian et al., 2021; Robinson, 2021). Choosing 

an optimal retrofit scenario can often be attributed to other 

important goals that cannot be evaluated through BPS 

methods, such as the applicability of the retrofit measures, 

the heritage concerns, the disruption to the occupants, and 

the labour skills required, etc. Multi-criteria-decision-

analysis (MCDA, also called multi-criteria-decision-

making or MCDM) has been utilized in the literature for 

retrofit decision makings to account for the non-simulated 

factors to broaden the optimality criteria and assure that 

the retrofit scenarios proposed are applicable and 

appealing to the different parties involved (Hopfe et al., 

2013; Kimpian et al., 2021; Powell et al., 2015; Robinson, 

2021).  

Retrofit MCDA revolves around formulating quantitative 

scores that estimate the performance of the various retrofit 

measures against a holistic criterion that would often 

include a mixture of quantitative and qualitative 

objectives. For a retrofit scenario, a certain combination 

of retrofit measures is formulated. Objectives of the 

scenario are evaluated by summing the scores the selected 

retrofit measures would achieve (Ruggeri et al., 2020). 

The ranking of the scenarios proposed is based on 

aggregating the scores of each retrofit scenario across the 

different objectives. Different weights can be applied to 

the objectives scores before aggregation if the objectives 

are deemed of different relative importance. Objectives’ 

weights direct the ranking of the scenarios to favour the 

measures that address the objectives with the higher 

weights (Kokaraki et al., 2019; Robinson, 2021; Ruggeri 

et al., 2020). 

For retrofit decision-making, quantifying the qualitative 

features has been performed in the literature by consulting 

the relevant stakeholders (such as the occupants and the 

retrofit experts) to let them assign scores that indicate how 

the various retrofit measures perform at achieving a 

certain qualitative objective. Consulting the stakeholders 

has been deployed as well to help define the optimality 

criteria by distinguishing the objectives in the first place 

(Roberti et al., 2017) and assigning weights that represent 

how much a specific objective should be contributing to 

the overall decision . 



There are multiple methods found in the literature that can 

be used to aggregate the MCDA scores such as weighted 

sum, weighted product, analytic hierarchy process (AHP), 

and ELECTRE (Robinson, 2021; Wang & Rangaiah, 

2017). However, regardless of the MCDA method used, 

MCDA tools can be deemed impractical at approaching 

some complex decision-making problems due to 

limitations such as: 

1. The results of the MCDA objectives are often logged 

individually/manually. The number of scenarios 

explored through MCDA is limited or much less than 

what can be explored via parametric BPS. As a result, 

it would be difficult to investigate a large number of 

scenarios systematically via MCDA as the number of 

the investigated scenarios has to be narrowed down. 

2. The score attributed to a certain retrofit measure is 

does not factor in the area of  this intervention. The 

score would be a number that is attributed to retrofit 

measure regardless of how large the area of 

application is. It is unclear how the geometry of the 

building can change the overall scores. 

3. Most importantly, retrofit MCDA often incorporates 

pre or post-processing of the simulation inputs or 

outputs due to limitations in the MCDA tools used to 

evaluate the various objectives (Robinson, 2021). 

Energy, carbon, and thermal comfort are often 

estimated using BPS while retrofit objectives of 

qualitative nature are often estimated using simple 

spreadsheet calculations. In simulation pre-

processing, the best performing MCDA scenarios in 

terms of their qualitative features only will qualify for 

the simulation stage. In contrast, in simulation post-

processing, a large number of scenarios can be 

simulated, but only the best performing scenarios at 

the simulated objectives will qualify for the 

assessment of the qualitative features to narrow down 

the parameter space within the computational 

limitations. This phased comparison of the objectives 

would mathematically make some of the optimal 

solutions go undetected. 

To address these limitations, the study proposes a 

parametric approach for multi-criteria decision analysis, 

called hereafter P-MCDA that can be utilized to optimize 

building retrofits. The study presents a novel framework 

to support embedding the calculations of any user-defined 

(non-simulated) MCDA retrofit criteria into parametric 

BPS. P-MCDA can be characterised by the following 

aspects of novelty that address the MCDA limitations: 

1. MCDA automation that enables the investigation of a 

larger parameter space using BPS tools. 

2. Area-weighted MCDA scores that can imply the 

measure specific score as well as the area of the 

measure intervention. This enables the application of 

the same scores to buildings of different geometries 

(i.e. stock level decision making). Area-based 

calculations also help with  evaluating complex 

scenarios where different retrofit measures are 

applied to the fabric elements positioned at different 

orientations. 

3. Simultaneious pareto-front analysis to obtain optimal 

retrofit scenarios that can capture the tradeoffs of all 

the quantitative or quantitative objectives, instead of 

performing pre-processed or post-processed 

optimisations. 

Automating MCDA has also permitted the incorporation 

of more features such as algorithmic optimisation, 

sensitivity analysis, and data clustering, but these features 

were beyond the scope of this paper as they were not 

considered to be the main drivers behind P-MCDA, but 

rather a by-product. The aspects of novelty in this study 

are to present the concept of simultaneous processing of 

the MCDA objectives to detect the optimal solutions and 

to demonstrate how an automated and area-weighted 

approach for MCDA calculations can make retrofit 

decision-making adaptive to the building geometry. 

Methods 

Through the application of alternative fabric retrofit 

configurations on models of different form factors, the 

study compares between the simultaneous optimization in 

P-MCDA against the existing phased optimization (pre-

processing and post-processing MCDA) frameworks. 

P-MCDA is a Python script to improve and automate the 

MCDA calculations that looks at a range of simulated 

(quantitative) and non-simulated (score-based or 

qualitative) decision-making objectives criteria. The 

script uses multiple modules such as NumPy, Pandas, 

Eppy to manipulate and run EnergyPlus files, Pymoo to 

detect the Pareto-Front, and K-means for data-clustering. 

The main steps for P-MCDA script, also illustrated in 

Figure 1, are to: 

1. Read an EnergyPlus Input Data File (IDF) for a 

certain building. 

2. Read an excel file that controls the MCDA input and 

output configuration. This file includes a database of 

the variant options for the retrofit measures 

investigated (parameters/inputs) as well as the 

objectives criteria elements that should be considred 

(outputs). 

3. Manipulate and run the IDF file based on the Excel 

file configurations. 

4. Implement backend calculations and report the non-

simulated objective results back to the EnergyPlus 

outputs using an EMS script. 

5. Perform analysis on the parameter and solution 

spaces using sensitivity correlation, data-clustering, 

and Pareto-Front analysis to understand which 

parameter configurations can be deemed optimal. 

Regarding the decision-making parameters, variable 

discrete configurations for wall insulation, floor 

insulation, roof insulation, window glass, window frames, 

and window shading have been defined. P-MCDA is not 

limited to the parameters defined in this study as it can 

handle many more building retrofit measure variables 

such as external shading, window to wall ratio, lighting 



power, HVAC system template, HVAC operation 

strategy, and options for photovoltaics. 

Four MCDA objectives have been defined as retrofit 

criteria in this study: operational energy use intensity 

(kWh/m2), retrofit embodied carbon (kCO2/m2), building 

disruption (unitless), and heritage concerns (unitless). The 

energy and carbon objectives are both examples for 

quantitative simulation-based metrics, while the 

disruption and heritage are examples for qualitative 

objectives that are converted into score-based 

calculations. P-MCDA is not limited to the objectives 

considered by this study as any user-defined score-based 

objectives can be added to the objectives criteria by the 

decision maker. 

A measure-specific score was assigned for each retrofit 

measure against the non-simulated objectives defined. 

The scores were arbitrarily, but sensibly, assumed by the 

authors to test P-MCDA. Actual scores should be 

obtained through feedback from retrofit stakeholders in a 

certain building or context. The calculation of a non-

simulated objective (𝑆𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒)  is area weighted 

according to Equation 1. The objective result is the 

aggregated sum of the of scores assumed for each retrofit 

measure (𝑆𝑚𝑒𝑎𝑠𝑢𝑟𝑒) multiplied by the area of application 

of the measure (𝐴𝑚𝑒𝑎𝑠𝑢𝑟𝑒), divided by the total (gross) 

floor area of the building (𝐺𝐹𝐴). 

𝑆𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 =  
∑(𝑆𝑚𝑒𝑎𝑠𝑢𝑟𝑒∗ 𝐴𝑚𝑒𝑎𝑠𝑢𝑟𝑒)

𝐺𝐹𝐴
 (1) 

To test a large pool of retrofit scenarios, iterative 

EnergyPlus simulations have been automated in Eppy in 

Python. A random sample of 500 iterative simulations for 

each IDF file has been carried out. A random option for 

the retrofit each retrofit measure was assigned for each 

iteration. Eppy was used to capture the areas of 

intervention for each retrofit measure in every iteration 

and Python built-in maths operations have been used to 

calculate the final scores for the non-simulated objectives. 

In terms of reporting the objective results back to the 

EnergyPlus ecosystem, a Python script that deploys the 

Energy Management System (EMS, a scripting tool used 

to manipulate EnergyPlus IDF files during the simulation) 

was used to log the final scores of the objectives criteria 

into the EnergyPlus standard outputs. This has been 

carried out by creating EMS “global variables” that would 

be a placeholder for the calculated values. The values 

calculated using Equation 1 in Python were logged into 

the global variables using an EMS program. The EMS 

global variables were then reported in the EnergyPlus 

output files as regular output variables. 

For the analysis of the results, P-MCDA deploys K-means 

data clustering to establish performance-driven clusters 

(group the retrofit scenarios that lead to similar results 

together). This method is used to group the similar retrofit 

scenarios in terms of their outcomes rather than their 

inputs. Data clustering was applied to the entire solution 

space as well as the optimal solutions to identify if certain 

clusters are found to have more optimal solutions. The 

parameters representation in each cluster was derived for 

the entire solution spaces as well as for the Pareto-Front. 

To recap the workflow, shown in Figure 1, Python was 

used to manipulate and run the EnergyPlus files 

iteratively based on an input/output configuration set in 

an excel file. In the background, Python was used to 

perform the model-based and area-weighted score 

calculations, and an EMS script was added to report the 

calculations back to the IDF file to enable finding the 

results among the standard EnergyPlus outputs. Python 

was used after the simulation to analyse the solution space 

and to obtain the parameters that can be deemed optimal. 

 

Figure 1: P-MCDA workflow. 

EnergyPlus single and multi-floor shoebox models with 

12 m x 18 m footprint generated in DesignBuilder have 

been used to test the P-MCDA framework as shown in 

Figure 2. The floor(s) height for the tested models was 3 

m. The EnergyPlus weather file for Cairo International 

Airport in Egypt was used to load the weather data as this 

study is a by-product of a larger research project that looks 

at devising retrofit strategies in the context of Cairo. 

Three buildings with different form factors (FF) have 

been studied to investigate how the proportional changes 

in the areas of the building fabric elements can make 

changes to what retrofit measures will be optimal. Three 

configurations for the same building were tested: a single 

floor model (3 m high, FF = 0.94), a three-floor model (9 

m high, FF = 0.5), and a five-floor model (15 m high, FF 

= 0.41). It has been found that increasing the number of 

floors to be more than three floors would have a negligible 

effect on the form factor. The form factors mentioned 



were calculated by dividing the overall surface area 

including the ground floor area by the building volume. 

Form factors might also be calculated by dividing the 

overall surface area by the gross floor area (GFA). In that 

case, the form factors will be 2.83, 1.5, and 1.23 for the 

single, three, and five floor models respectively. 

 

   

Figure 2: Three buildings with different form factors 

tested. 

A brief for the retrofit measures options and their scores 

can be found in Table 2 in the Appendix. The rationale 

behind the study assumptions was to make a complex 

decision-making problem where several trade-offs will be 

arising for the competing objectives. For example, adding 

the same amount of a certain insulation material to the 

external walls externally or internally will result in 

external walls with the same U-Values and the same 

embodied carbon (unless unintended thermal bridging 

occurring at the building junctions is accounted for). 

Hence, the disruption and the impact on the heritage 

significance will be the decisive objectives that will direct 

the decision. 

For instance, internal wall insulation would result in more 

disruption and less heritage concerns, while external wall 

insulation would have an opposing impact. High 

disruption scores and low heritage concerns have been 

presumed for the retrofit measures that deploy internal 

insulation, with the scores slightly varying to account for 

the different insulation thickness. In contrast, lower 

heritage concerns scores and high disruption scores have 

been assigned to the retrofit measures that would deploy 

internal insulation. 

Moreover, P-MCDA was designed to enable assigning 

different retrofit measures for the fabric elements at 

different orientations. All fabric measures can have a 

scope of application where the decision-maker can choose 

whether to unify or separate the retrofit measure 

configurations based on the orientation. For this study, all 

the fabric retrofit measures were applied through 

separating the configuration of the north facing elements 

from the rest of the building. If needed, one of the 

following configurations can be assigned for each 

measure: 

• Unified retrofit measure for the different orientations 

• Separate north, and unify east, west, and south facing 

configuration. 

• Separate north, separate south, and unify east and 

west facing configurations. 

• Separate measure configuration for each orientation. 

The number of options for the parameters of walls, roofs, 

floors, window glazing, window frames, and window 

shading were 21, 13, 13, 17, 10, and 2 respectively. This 

has initially resulted in more than 400 thousand possible 

combinations of the retrofit measures (scenarios) that can 

be investigated via P-MCDA. Since north facing elements 

have been configured to be separate, the parameter space 

size has increased to more than 1.3 billion possible retrofit 

scenarios. This denotes how computationally expensive it 

is to consider various retrofit configurations for the 

various orientations. 

The retrofit measures options have been developed for the 

context of an office building in Egypt, but any other score 

assumptions could be tested. The scope of this paper is to 

validate the framework rather than the scores assumed.  

Results 

From the 500 simulations run by P-MCDA, 49, 47, and 

40 optimal (non-dominated) solutions were identified for 

the one, three, and five floor buildings respectively. As 

shown in Figure 3, the study found that phased processing 

(pre and post processing) for the three models would lead 

to obtaining only a maximum of 3 optimal solutions. This 

denotes that the largest portion of optimal solutions (from 

93% to 95%) will remain undetected when phased 

processing to the MCDA scores is used. The simple 

reason for that is that phased processing can only obtain 

the intersection of two Pareto Front: the solutions that are 

concurrently optimal in the simulated and the non-

simulated objectives’ space. 

 

Figure 3: Solutions obtained out of 500 runs for the 

three buildings tested using different MCDA approaches. 

In other words, phased optimisation only detects the 

scenarios that are non-dominated in terms of their 

simulated objectives and non-dominated in terms of their 

non-simulated objectives. However, normal simultaneous 

processing gives many more options to achieve optimality 

as it detects the solutions that are non-dominated across 

all objectives even if they are dominated by other 

solutions if only the simulated objective space or the non-

simulated objectives’ spaces are looked at. 
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Figures 4 and 5 show how the Pareto-Front (PF) solutions 

across all objectives is dispersed across the solution space. 

This is the main reason why phased optimisation could 

not detect all the optimal solutions. For instance, post-

processed simulation in MCDA will fail to obtain those 

highlighted PF solutions that cause relatively high energy 

consumption and embodied carbon shown in Figure 4, 

while pre-processed simulation will prematurely filter out 

those highlighted PF solutions that might cause relatively 

high disruption and heritage concerns shown in Figure 5. 

 

Figure 4: The objective result space for the simulated 

objectives for the one floor building 

 

Figure 5: The objective result space for the non-

simulated objectives for the one floor building 

It was obvious that changing the building geometry has 

not only affected the number of solutions in the Pareto-

Front, but also has made some impact on some of the 

retrofit measures that were present most frequently in the 

Pareto-Front, as shown in Table 1. By shortlisting the 

three options of measures that appeared the most in the 

Pareto-Front for the buildings studied, it can be observed 

that some parameter options for a specific building (form 

factor) have changed in rank or have disappeared from the 

top three shortlist in the other two buildings. For example, 

business as usual wall retrofit (BAU) has become more 

optimal as the form factor decreased in the three and five 

floor buildings. This shows that P-MCDA is responsive 

to the building geometry as accounting for the relative 

areas of the building fabric elements would change the 

scores of the objectives, hence the optimal solutions 

obtained. It is also shown that separating the configuration 

of the retrofit measures based on the building element 

orientation has managed to derive orientation-specific 

measures that can better suit the optimality criteria, 

another feature that will be challenging to do using 

manual MCDA. 

Discussion 

Phased processing was found to be incapable of 

considering the trade-offs between the simulated and non-

simulated objectives. As shown earlier in Figure 3, phased 

processing gets the solutions that are either lowest in 

terms of their quantitative (simulated) objectives criteria 

scores or their qualitative (calculated/ non-simulated) 

objectives criteria scores. It fails to capture a huge grey 

zone of retrofit solutions that might not be the best in 

terms of the qualitative nor the quantitative objectives 

separately, but they remain optimal as they are not 

dominated by other solutions (those scenarios that could 

achieve higher scores in all objectives criteria). In fact, 

this missing grey zone offers a significantly larger variety 

of optimal retrofit scenarios where a sweet spot between 

the competing objectives might be found. 

Limitations 

Some limitations can underpin the notion of transforming 

the qualitative objectives into measurable values/scores. 

It is difficult to convert people’s feelings and perceptions 

into scores and consider numbers to be a true 

representation that can be generalised for a larger group 

of people. However, while acknowledging the conceptual 

limitations, decision-making for accountable policy 

making often requires some quantification for the 

qualitative factors in order to reach definite, transparent, 

and justified decisions through a systematic process. 

Score-based decision making enables the participation of 

the multiple stakeholders and creates a basis for a “less 

subjective” process. This has become a normalised 

practice to establish tangible evidence on people’s 

feedback, either in the form of a simple feedback form 

that to measure customers’ satisfaction, or through 

sophisticated algorithms embedded into applications that 

tailor the service provided to the users based on complex 

metrics that measure the user preferences. 

Furthermore, rigorous formulation of measure-based 

scores that are derived from stake-holders feedback will 

remain an ongoing limitation until more validated scores 

roll out as more retrofit post-occupancy evaluations are 

carried out. 

However, even if the scores are validated, it might not be 

accurate to consider that the final score for a qualitative 

objective should only consider the measure-specific score 

multiplied by the area of each. In fact, the scores could 

change with more factors considered. For example, a 

disruption caused by adding internal wall insulation in a 

building will differ if a kitchen or a built-in storage is 

installed against the wall and will have to be removed to 

install the measure. The heritage concern score attributed 

200

220

240

260

280

300

150 200 250 300

R
et

ro
fi

t 
E

m
b

o
d

ie
d

 C
ar

b
o

n
 

(k
g
C

O
2

/m
2

)

Operational Energy (kWh/m2)

Cluster 1 Cluster 2

PF Cluster 1 PF Cluster 2

0

1

2

3

4

5

6

7

8

9

0 5 10 15 20

H
er

it
ag

e 
C

o
n

ce
rn

s

Disruption

Cluster 1 Cluster 2
PF Cluster 1 PF Cluster 2



to an external wall insulation might differ depending on 

the orientation of the wall or how difficult it is to maintain 

the outer appearance of the wall after adding the 

insulation. However, these missing factors can be 

programmed into P-MCDA by multiplying the scores of 

the measures by multipliers that account for these 

additional considerations.  

Unless it is developed further, P-MCDA will hardly be 

considered a universal solution that can tackle all the 

different considerations in retrofit decision-making 

systematically. The scores for an individual measure 

should be seen in tandem with the whole-building retrofit 

approach. For example, replacing the windows alone can 

be disruptive, but it might not be as disruptive if the walls 

are insulated or if the window sizes are to be changed as 

part of a building conversion or adaptive re-use. Score 

amendments by the stakeholders might be performed to 

account for all these considerations. Finally, one last 

limitation is the simulated outputs that cannot be 

modelled by EnergyPlus such as the thermal bridging that 

occurs when internal insulation is used, cannot be 

considered in P-MCDA. 

However, the limitations discussed are either concerns 

that can be addressed or systemic limitations that are 

attributed to the complexity of retrofit decision-making 

and not to P-MCDA alone. The same limitations would 

also exist in the various MCDA and optimisation 

frameworks. Hence, P-MCDA can be a step towards a 

more robust decision-making, but it can still be improved 

to achieve systematic and transparent retrofit decisions 

that consider a holistic objective criterion. 

Conclusion 

P-MCDA is a framework that can be used to automate 

MCDA and achieve simultaneous optimisation for the 

various objectives in retrofit decision-making. The 

Simultaneous processing for the simulated and non-

simulated objectives into one optimisation step could 

significantly increase the number of options obtained for 

optimal solutions in comparison to the existing MCDA 

methods that deploy phased optimisation (pre and post-

processed simulation). Evidence in this study showed that 

phased MCDA could obtain 5-7% of the optimal solutions 

generated for 500 randomly sampled iterative simulations 

conducted on three EnergyPlus input files. 

The proposed framework can be used to help decision 

makers add any user-defined score-based objectives to be 

included in the decision-making process such as 

disruption, practicality, heritage concerns, skilled labour 

required, etc. Every retrofit measure can have a particular 

score for the custom objectives added, and the overall 

score for each objective would be the aggregated area-

weighted sums of all the measures combined. Following 

an area-weighted approach is of particular importance 

since P-MCDA retrofit measures applied to the building 

envelope can have various configurations based on their 

orientations. This approach supports scaling up retrofit 

decision-making at building stock level as it makes the 

initial scores assumed for the retrofit measures are 

independent of the building geometry.

Table 1: Frequencies of the retrofit measures that appeared the most in the Pareto-Front 

 One floor (PF size= 49) Three floors (PF size= 47) Five floors (PF size= 20) 

Walls 

IWI MW 50mm 

EWI EPS 50mm  

BAU 

8 

7 

7 

BAU 

IWI EPS 100mm 

EWI EPS 100mm 

20 

5 

3 

BAU 

IWI EPS 100mm 

IWI MW 50mm 

14 

5 

3 

N- Walls 

IWI EPS 50mm  

IWI EPS 100mm 

BAU 

7 

6 

5 

IWI MW 100mm 

IWI MW 50mm 

IWI EPS 150mm 

7 

6 

6 

EWI EPS 50mm 

IWI EPS 100mm 

IWI MW 200mm 

7 

5 

5 

Roof 

Roof Baseline 

BAU EPS 50mm 

MW 50mm 

11 

6 

6 

BAU EPS 50mm 

MW 100mm 

MW 200mm 

6 

5 

5 

MW 50mm 

AC 100mm 

BAU EPS 50mm 

6 

5 

5 

Floor 

Floor Baseline 

EPS 50mm 

AC 150mm 

23 

8 

4 

Floor Baseline 

AC 150mm 

MW 100mm 

24 

4 

3 

Floor Baseline 

AC 100mm 

MW 200mm 

13 

5 

4 

Windows 

Double Clear Argon 3/8/3 

Double Clear Air 6/13/6 Triple 

Clear Air 6/13/6/13/6 

9 

6 

4 

Triple Grey Air 3/8/3/8/3  

Double Grey Air 6/13/6 Triple 

Grey Air 6/13/6/13/6 

9 

5 

4 

Triple Grey Argon 6/13/6/13/6 

Double Grey Argon 6/13/6  

Triple Grey Air 6/13/6/13/6 

6 

6 

5 

N- 

Windows 

Triple Grey Air 3/8/3/8/3 

Double Grey Air 6/13/6 Triple 

Grey Argon 6/13/6/13/6 

6 

6 

5 

Double Grey Air 6/13/6 

Double Grey Argon 3/8/3 Triple 

Grey Argon 6/13/6/13/6 

6 

5 

5 

Triple Grey Argon 3/8/3/8/3 

Double Grey Argon 6/13/6 

Triple Clear Air 6/13/6/13/6 

6 

5 

5 

Window 

Frames 

Double Ins UPVC 

Double Aluminium 

Double Ins Aluminium 

9 

8 

7 

Double Ins Aluminum 

Double Aluminum 

Triple Ins Aluminum 

8 

8 

7 

Double Ins UPVC 

Triple UPVC 

Double Ins Aluminum 

8 

6 

5 

N- Window 

Frames 

Triple Ins Aluminium 

Double Aluminium 

Double Ins Aluminium 

7 

7 

7 

Double Ins Aluminum 

Double UPVC 

Triple Aluminum 

8 

7 

7 

Triple Ins Aluminum 

Triple Aluminum 

Triple UPVC 

8 

8 

5 

Local 

Shading 

Blind Slat30mm 45deg 

No Shading 

29 

20 

Blind Slat30mm 45deg 

No Shading 

29 

18 

Blind Slat30mm 45deg 

No Shading 

25 

15 

N- Local 

Shading 

No Shading 

Blind Slat 30mm 45deg 

27 

22 

No Shading 

Blind Slat 30mm 45deg 

31 

16 

No Shading 

Blind Slat 30mm 45deg 

20 

20 



Guides on formulating a consistent score system for the 

various retrofit measures would be preferred if P-MCDA 

is used. Although P-MCDA normalises the scores, there 

won’t be a mathematical problem if one objective is 

estimated with scores at scale from 1 to 5, and another on 

scale of 1 to 100. However, for a matter of consistency, a 

single system or range for all scores will be more viable 

and will help the stakeholders get more familiar with the 

scoring system and let them assign scores that are more 

representative of their perceptions. 

P-MCDA can be developed further to account for more 

complex considerations that would have an impact on the 

retrofit measures scores such as having building facades 

that are of different degree of heritage significance or 

conducting moisture analysis for the building fabric to 

constrain the optimality criteria to filter out build-ups that 

are prone to interstitial condensation. However, while 

acknowledging the limitations found in P-MCDA in terms 

of how inclusive this method can be to the various retrofit 

considerations and how “objective” it is to convert a 

qualitative goal into a score-based metric, this study could 

address many of the challenges found in retrofit decision-

making such that integrating the qualitative and the 

quantitative objectives into the decision-making process 

could be performed using the framework proposed. 

Additionally, automating the MCDA process helped with 

investigating a larger number of retrofit scenarios and 

deriving optimal orientation-specific retrofit measure 

configuration that can better suit the decision-making 

criteria. 
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Nomenclature 

AC Aerated concrete 

AHP Analytic hierarchy process 

BAU Business as usual 

BPS Building performance simulation 

ELECTRE 
Elimination and Choice Translating 

Reality 

EMS Energy Management System 

EPS Expanded polystyrene 

EWI External wall insulation 

FF Form factor 

GFA Gross floor area 

HVAC 
Heating, ventilation, and air-

conditioning 

Ins Insulated 

IWI Internal wall insulation 

MCDA Multi-criteria-decision-analysis 

MCDM Multi-criteria-decision-making 

MW Mineral wool 

PF Pareto-Front 

P-MCDA 
Parametric multi-criteria-decision-

analysis 
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Appendix 

Table 2: Options for retrofit measures and their scores assumed for the qualitative-based criteria. 
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