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Abstract

Recent breakthroughs in the development of agents to solve challenging sequential
decision making problems such as Go [50], StarCraft [58], or DOTA [3], have
relied on both simulated environments and large-scale datasets. However, progress
on this research has been hindered by the scarcity of open-sourced datasets and the
prohibitive computational cost to work with them. Here we present the NetHack
Learning Dataset (NLD), a large and highly-scalable dataset of trajectories from
the popular game of NetHack, which is both extremely challenging for current
methods and very fast to run [23]. NLD consists of three parts: 10 billion state
transitions from 1.5 million human trajectories collected on the NAO public NetHack
server from 2009 to 2020; 3 billion state-action-score transitions from 100,000
trajectories collected from the symbolic bot winner of the NetHack Challenge 2021;
and, accompanying code for users to record, load and stream any collection of such
trajectories in a highly compressed form. We evaluate a wide range of existing
algorithms including online and offline RL, as well as learning from demonstrations,
showing that significant research advances are needed to fully leverage large-scale
datasets for challenging sequential decision making tasks.

1 Introduction

Recent progress on deep reinforcement learning (RL) methods has led to significant breakthroughs
such as training autonomous agents to play Atari [33], Go [50], StarCraft [58], and Dota [3], or to
perform complex robotic tasks [24, 44, 26, 35, 16, 41]. In many of these cases, success relied on
having access to large-scale datasets of human demonstrations [58, 3, 41, 26]. Without access to such
demonstrations, training RL agents to operate effectively in these environments remains challenging
due to the hard exploration problem posed by their vast state and action spaces. In addition, having
access to a simulator is key for training agents that can discover new strategies not exhibited by human
demonstrations. Therefore, training agents using a combination of offline data and online interaction
has proven to be a highly successful approach for solving a variety of challenging sequential decision
making tasks. However, this requires access to complex simulators and large-scale offline datasets,
which tend to be computationally expensive.

The NetHack Learning Environment (NLE) was recently introduced as a testbed for RL, providing
an environment which is both extremely challenging [15] and exceptionally fast to simulate [23].
NLE is a stochastic, partially observed, and procedurally generated RL environment based on the
popular game of NetHack. Due to its long episodes (i.e. tens or hundreds of thousands of steps)
and large state and action spaces, NLE poses a uniquely hard exploration challenge for current
RL methods. Thus, one of the most promising research avenues towards progress on NetHack is
leveraging human or symbolic-bot demonstrations to bootstrap performance, which also proved
successful for StarCraft [58] and Dota [3].
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In this paper, we introduce the NetHack Learning Dataset (NLD), an open and accessible dataset
for large-scale offline RL and learning from demonstrations. NLD consists of three parts: first,
NLD-NAO: a collection of state-only trajectories from 1.5 million human games of NetHack played
on nethack.alt.org (NAO) servers between 2009 and 2020; second, NLD-AA: a collection of
state-action-score trajectories from 100,000 NLE games played by the symbolic-bot winner of the
2021 NetHack Challenge [15]; third, TtyrecDataset: a highly-scalable tool for efficient training
on any NetHack and NLE-generated trajectories and metadata. NLD, in combination with NLE,
enables computationally-accessible research in multiple areas including imitation learning, offline
RL, learning from sequences of only observations, as well as combining learning from offline data
with learning from online interactions. In contrast with other large-scale datasets of demonstrations,
NLD is highly efficient in both memory and compute. NLD-NAO can fit on a $30 hard drive, after being
compressed (by a factor of 160) from 38TB to 229GB. In addition, NLD-NAO can be processed in
under 15 hours, achieving a throughput of 288,000 frames per second with only 10 CPUs. NLD’s
low memory and computational requirements makes large-scale learning from demonstrations more
accessible for academic and independent researchers.

To summarize, the key characteristics of NLD are that: it is a scalable dataset of demonstrations (i.e.
large and cheap) for a highly-complex sequential decision making challenge; it enables research in
multiple areas such as imitation learning, offline RL, learning from observations of demonstrations,
learning from both static data and environment interaction; and it has many properties of real-world
domains such as partial observability, stochastic dynamics, sparse reward, long trajectories, rich
environment, diverse behaviors, and a procedurally generated environment.

In this paper, we make the following core contributions: (i) we introduce NLD-NAO, a large-scale
dataset of almost 10 billion state transitions, from 1.5 million NetHack games played by humans;
(ii) we also introduce NLD-AA, a large-scale dataset of over 3 billion state-action-score transitions,
from 100,000 games played by the symbolic-bot winner of the NeurIPS 2022 NetHack Competition;
(iii) we open-source code for users to record, load, and stream any collection of NetHack trajectories
in a highly compressed form; and (iv) we show that, while current state-of-the-art methods in offline
RL and learning from demonstrations can effectively make use of the dataset, playing NetHack at
human-level performance remains an open research challenge.

2 Related Work

Offline RL Benchmarks. Recently, there has been a growing interest in developing better offline
RL methods [25, 39, 11, 60, 61, 21, 20, 6, 2, 49] which aim to learn from datasets of trajectories.
With it, a number of offline RL benchmarks have been released [1, 62, 10, 42, 22, 43]. While these
benchmarks focus specifically on offline RL, our datasets enable research on multiple areas including
imitation learning, learning from observations only (i.e. without access to actions or rewards), as
well as learning from both offline and online interactions. In order to make progress on difficult
RL tasks such as NetHack, we will likely need to learn from both human data and environment
interaction, as was the case with other challenging games like StarCraft [58] or Dota [3]. In contrast,
the tasks proposed in current offline RL benchmarks are much easier and can be solved by training
either only online or only offline [10, 62]. In addition, current offline RL benchmarks test agents
on the exact same environment where the data was collected. As emphasized by [57], imitation
learning algorithms drastically overfit to their environments, so it is essential to evaluate them on
new scenarios in order to develop robust methods. In contrast, NLE has long procedurally generated
episodes which require both long-term planning and systematic generalization in order to succeed.
This is shown in [30], which investigates transfer learning between policies trained on different
NLE-based environments.

For many real-world applications such as autonomous driving or robotic manipulation, learning from
human data is essential due to safety concerns and time constraints [40, 10, 8, 5, 27, 52, 55, 17, 38, 18].
However, most offline RL benchmarks contain synthetic trajectories generated by either random
exploration, pretrained RL agents, or simple hard-coded behaviors [10]. In contrast, one of our
datasets consists entirely of human replays, while the other one is generated by the winner of the
NetHack Competition at NeurIPS 2022 which is a complex symbolic bot with built-in knowledge of
the game. Human data (like the set contained in NLD-NAO) is significantly more diverse and messy
than synthetic data, as humans can vary widely in their expertise, optimize for different objectives
(such as fun or discovery), have access to external information (such as the NetHack Wiki [34]),
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and even have different observation or action spaces than RL agents. Hence, learning directly from
human data is essential for making progress on real-world problems in RL.

Large-Scale Human Datasets. A number of large-scale datasets of human replays have been
released for StarCraft [59], Dota [3], and MineRL [14]. However, training models on these datasets
requires massive computational resources, which makes it unfeasible for academic or independent
researchers. In contrast, NLD strikes a better balance between scale (i.e. a large number of diverse
human demonstrations on a complex task) and efficiency (i.e. cheap to use and fast to run).

For many real-world applications such as robotic manipulation, we only have access to the demon-
strator’s observations and not their actions [29, 48, 40, 8, 51]. Research on this setting has been
slower [9, 56, 7], in part due to the lack of efficient large-scale datasets. While there are some datasets
containing only observations, they are either much smaller than NLD [32, 57, 48], too computationally
expensive [59, 3], or lack a simulator which prevents learning from online interactions [12, 28, 8].

3 Background: The NetHack Learning Environment

The NetHack Learning Environment (NLE) is a gym environment [4] based on the popular “dungeon-
crawler” game, NetHack [19]. Despite the visual simplicity, NetHack is widely considered one of the
hardest video games in history since it can take years for humans to win the game [54]. Players need
to explore the dungeon, manage their resources, as well as learn about the many entities and their
dynamics (often by relying on external knowledge sources like the NetHack Wiki [34]). NetHack
has a clearly defined goal, namely descend the dungeon, retrieve an amulet, and ascend back to win
the game. At the beginning of each game, players are randomly assigned a given multidimensional
character defined by role, race, alignment, and gender (which have varying properties and challenges),
so they need to master all characters in order to win consistently. Thus, NLE offers a unique set of
properties which make it well-positioned to advance research on RL and learning from demonstrations:
it is a highly complex environment, containing hundreds of entities with different dynamics; it is
procedurally generated, allowing researchers to test generalization; it is partially observed, highly
stochastic, and has very long episodes (i.e. one or two orders of magnitude longer that Starcraft
II [59]).

Following its release, several works have built on NLE to leverage its complexity in different ways.
MiniHack [45] allows researchers to design their own environments to test particular capabilities
of RL agents, by leveraging the full set of entities and dynamics from NetHack. The NetHack
Challenge [15] was a competition at NeurIPS 2021, which sought to incentivise a showdown between
symbolic and deep RL methods on NLE. Symbolic bots decisively outperformed deep RL methods,
with the best performing symbolic bots surpassing state-of-the-art deep RL methods by a factor of 5.

4 The NetHack Learning Dataset

The NetHack Learning Dataset (NLD) contains three components:

1. NLD-NAO — a directory of ttyrec.bz2 files containing almost 10 billion state trajectories
and metadata from 1,500,000 human games of NetHack played on nethack.alt.org.

2. NLD-AA — a directory of ttyrec3.bz2 files containing over 3 billion state-action-score
trajectories and metadata from 100,000 games collected from the winning bot of the NetHack
Challenge [15].

3. TtyrecDataset — a Python class that can scalably load directories of ttyrec.bz2 /
ttyrec3.bz2 files and their metadata into numpy arrays.

We are also releasing a new version of the NetHack environment, NLE v0.9.0, which contains new
features and ensures compatibility with NLD (see Appendix C).

File Format. The ttyrec3 file format stores sequences of terminal instructions (equivalent to
observations in RL), along with the times at which to play them. In NLE v0.9.0, we adapt this format
to also store keypress inputs to the terminal (equivalent to actions in RL), and in-game scores over
time (equivalent to rewards in RL), allowing a reconstruction of state-action-score trajectories. This

3
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adapted format is known as ttyrec3. The ttyrec.bz2 and ttyrec3.bz2 formats, compressed
versions of ttyrec and ttyrec3, are the primary data formats used in NLD. Using TtyrecDataset,
these compressed files can be written and read on-the-fly, resulting in data compression ratios of more
than 138. The files can be decompressed into the state trajectory on a terminal, by using a terminal
emulator and querying its screen. For more details see Appendix D.

Throughout the paper, we refer to a player’s input at a given time as either state or observation.
However, note that NetHack is partially observed, so the player doesn’t have access to the full state
of the game. We also sometimes use the terms score and reward interchangeably, since the increment
in in-game score is a natural choice for the reward used to train RL agents on NetHack. Similarly, a
human’s keypress corresponds to an agent’s action in the game.

Metadata. NetHack has an optional built-in feature for the logging of game metadata, used for the
maintenance of all-time high-score lists. At the end of a game, 26 fields of data are logged to a
common xlogfile4 for posterity. These fields include the character’s name, race, role, score, cause
of death, maximum dungeon depth, and more. See Appendix E for more details on these fields. With
NLE v0.9.0, an xlogfile is generated for all NLE recordings. These files are used to populate all
metadata contained in NLD.

State-Action-Score Transitions. As mentioned, NLD-AA contains sequences of state-action-score
transitions from symbolic-bot plays, while NLD-NAO contains sequences of state transitions from
human plays. These transitions are efficiently processed using the TtyrecDataset. The states
consist of: tty_chars (the characters at each point on the screen), tty_colors (the colors at
each point on the screen), tty_cursor (the location of the cursor on the screen), timestamps
(when the state was recorded), and gameids (an identifier for the game in question). Additionally,
keypresses and score observations are available for ttyrec3 files, as in the NLD-AA dataset. The
states, keypresses, and scores from NLD map directly to an agent’s observations, actions, and rewards
in NLE. More information about these transitions can be found in Appendix F.

API. The TtyrecDataset follows the API of an IterableDataset defined in PyTorch. This allows
for the batched streaming of ttyrec.bz2 / ttyrec3.bz2 files directly into fixed NumPy arrays
of a chosen shape. Episodes are read sequentially in chunks defined by the unroll length, batched
with a different game per batch index. The order of these games can be shuffled, predetermined or
even looped to provide a never-ending dataset. This class allows users to load any state-action-score
trajectory recorded from NLE v0.9.0 onwards.

The TtyrecDataset wraps a small sqlite3 database where it stores metadata and the paths to files.
This design allows for the simple querying of metadata for any game, along with the dynamic subse-
lection of games streamed from the TtyrecDataset itself. For example, in Figure 1, we generate
sub-datasets from NLD-NAO and NLD-AA, selecting trajectories where the player has completed the
game (‘Ascended’) or played a ‘Human Monk’ character, respectively. Appendix G shows how to
load only a subset of trajectories, for example where the player has ascended, or a certain role has
been used.

Scalability. The TtyrecDataset is designed to make our large-scale NLD datasets accessible even
when the computational resources are limited. To that end, several optimizations are made to
improve the memory efficiency and throughput of the data. Most notably, TtyrecDataset streams
recordings directly from their compressed ttyrec.bz2 files. This format compresses the 30TB of
frame data included in NLD-NAO down to 229GB, which can fit on a $30 SSD5. This decompression
requires on-the-fly unzipping and terminal emulation. The TtyrecDataset performs these in GIL-
released C/C++. This process is fast and trivially parallelizable with Python Threadpool, resulting
in throughputs of over 1.7 GB/s on 80 CPUs. This performance allows the processing of almost 10
billion frames of NLD-NAO in 15 hours, with 10 CPUs. See Table 1 for a quantitative description of
our two datasets.

5 Dataset Analysis

In this section we perform an in-depth analysis of the characteristics of NLD-AA and NLD-NAO.

4
https://nethackwiki.com/wiki/Xlogfile

5https://www.amazon.com/HP-240GB-Internal-Solid-State/dp/B09KFHTYWH
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Table 1: NLD-AA and NLD-NAO in numbers.

NLD-AA NLD-NAO

Episodes 109,545 1,511,228
Transitions 3,481,605,009 9,858,127,896
Policies (Players) 1 48,454
Policies Type symbolic bot human
Transition (state, action, score) state

Disk Size (Compressed) 96.7 GB 229 GB
Data Size (Uncompressed) 13.4 TB 38.0 TB
Compression Ratio 138 166

Mean Epsiode Score 10,105 127,218
Median Episode Score 5,422 836
Median Episode Transitions 28,181 1,724.0
Median Episode Game Turns 20,414 3,766

Epoch Time (10 CPUs) 4h 49m 14h 37m

5.1 NLD-AA

To our knowledge, AutoAscend6 is currently the best open-sourced artificial agent for playing
NetHack 3.6.6, having achieved first place in the 2021 NeurIPS NetHack Challenge by a considerable
margin [15]. AutoAscend is a symbolic bot, forgoing any neural network and instead relying on a
priority list of hard-coded subroutines. These subroutines are complex, context dependant, and make
significant use of NetHack domain knowledge and all NetHack actions. For instances, the bot keeps
track of multiple properties for encountered entities and can even solve challenging puzzles such as
Sokoban. A full description of AutoAscend’s algorithm and behavior can be found in the NetHack
Challenge Report [15].

NLD-AA was generated by running AutoAscend on the NetHackChallenge-v0 [15] task in NLE
v0.9.0, utilising its built-in recording feature to generate ttyrec3.bz2 files. It consists of over 3
billion state-action-score transitions, drawn from 100,000 episodes generated by AutoAscend. Of
the NLE tasks, NetHackChallenge-v0 most closely reproduces the full game of NetHack 3.6.6,
and was introduced in NLE v0.7.0 to grant NetHack Challenge competitors access to the widest
possible action space, and force an automated randomisation of the starting character (by race, role,
alignment, and gender). By virtue of using ttyrec3.bz2 files, in-game scores and actions (in the
form of keypresses) are stored along with the states, and metadata about the episodes.

Dataset Skill. The AutoAscend trajectories demonstrate a strong and reliable NetHack player,
far exceeding all the deep learning based approaches, but still falling short of an expert human
player. NetHack broadly defines a character with less than 2000 score as a ‘Beginner’7. AutoAscend
comfortably surpasses the ‘Beginner’ classification in more than 75% of games for all roles, and in
95% of games for easier roles like Monk (see Figure 1). Given the high variance nature of NetHack
games, and the challenge of playing with the more difficult roles, this is an impressive feat.

Compared to the human players in NLD-NAO, AutoAscend’s policy finds itself just within the top
15% of all players when ranked by mean score. When ranked by median score8 it comes within
the top 7%. However, these metrics are somewhat distorted by the long tail of dilettante players
who played only a few games. If instead we define a ‘competent’ human player as one to have ever
advanced beyond the Beginner classification, then AutoAscend ranks in the top 33% of players by
mean score, and top 15% by median.

The competence of AutoAscend contrasts both with the poor performance of deep RL bots, and with
the exceptional performance required to beat the game. As the winning symbolic bot of the NetHack
Challenge, AutoAscend beat the winning deep learning bot by almost a factor of 3 in median score,
and close to a factor of 5 in mean score. This performance is far outside what deep RL agents can
currently achieve, and in some domains NLD-AA may be considered an “expert" dataset. However,

6
https://github.com/maciej-sypetkowski/autoascend

7
https://nethackwiki.com/wiki/Beginner

8Median score was the primary metric in the NetHack Challenge
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Figure 1: Box plots of episode scores (left) and episode turns (right) for NLD-NAO
and NLD-AA as well as for their corresponding subsets that contain only winning games (‘Ascended’)
or games played with a ‘Human Monk’ character, respectively. These plots show the distribution in
ability in NLD-NAO is heavy-tailed, along with the typical scores and game length needed to win, well

above the median. By comparison, NLD-AA games are competent but not expert, even for easy
characters like ‘Human Monk’.

when compared to the distribution of winning games (i.e. those that have ‘ascended’), both mean and
median score are orders of magnitude short.

Dataset Coverage. Thanks to its scale, NLD-AA provides solid coverage of the early-to-mid game of
NetHack. NLD-AA also provides good coverage of all possible actions and roles, with episodes that
last for tens of thousands of transitions. Nevertheless, the dataset contains many complex and diverse
behaviors. For the full breakdown of the symbolic bot’s behaviors found in NLD-AA see Appendix E.

Datasest Noise. Since all trajectories were generated using NLE, these trajectories have no terminal
rendering noise. NLE uses a VT100 emulator to record ttyrec3.bz2 files, and NLD uses the same
emulator to load them.

5.2 NLD-NAO

The NetHack community has a long history of using public servers, wherein players can play together,
stream and rewatch games of NetHack.9. The nethack.alt.org server, known as NAO10, is one
of the longest running of such servers, having started in 2001, and hosts recordings dating back to
2009. The server attempts to record all games in ttyrec.bz2 format, and hosts them publicly on
an S3 bucket11. Unlike NLE, NAO offers players the option of saving a game and resuming play later,
allowing for games that span multiple sessions, or last potentially days, weeks, months or years.

NLD-NAO was collected by downloading and filtering a dump of ttyrec.bz2 recordings and metadata
from NAO. It consists of almost 10 billion state transitions, drawn from approximately 1.5 million
games played by just under 50,000 humans of mixed ability. These games were played between 2009
and 2020, and span NetHack versions v3.4.0 to 3.6.6. Since NAO provides no link between episode
metadata and available ttyrec recordings, we developed an algorithm to assign and correctly order
ttyrec recordings to their corresponding episode metadata, and to filter out trivial or empty games.
The full procedure is outlined in Appendix H.

Dataset Skill. The NAO trajectories were generated from humans of very different skill levels, ranging
from novice to expert, and cover a vast distribution of outcomes. The distributions of episode scores,
episode turns, and average player scores are highly Zipfian, with long correlated tails spanning
several orders of magnitude. The correlation of these distributions greatly improves the quality of
the dataset. While the median episode score does not progress beyond Beginner status, such short
episodes contribute relatively few transitions to the overall dataset. The bulk of the transitions comes
from medium-to-high scoring games that last a long time. The NLD-NAO dataset therefore combines
two desirable properties: it contains a large number of diverse behaviors with varying levels of
performance, as well as many good trajectories from expert demonstrators.

Dataset Coverage. Thanks to its size and expert policies, NLD-NAO provides an unparalleled coverage
of the game of NetHack. The dataset contains many examples of advanced game sections not yet
achievable by symbolic or RL bots, such as descending the dungeon and retrieving the amulet. Most
importantly, it includes 22,000 examples of winning the game (“Ascension”), and includes several

9
https://nethackwiki.com/wiki/Public_server

10
https://nethackwiki.com/wiki/Nethack.alt.org

11
s3://altorg/ttyrec/
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examples of doing so with special conducts such as “Nudist” (not wearing any armour). The full
distribution of such achievements and conducts can be found in Appendix E.

Dataset Noise. Unlike NLE, NAO does not enforce any fixed terminal type on the player, nor any
fixed screen dimensions or configuration. Variations in all these can lead to rendering noise that
may include odd symbols or cropped layouts. These types of artefacts are common in real-world
applications of learning from demonstrations, which makes NLD a suitable dataset for advancing
research in this area. More details about these artefacts, as well as other types of noise (e.g. matching
of recordings to players), see Appendix H.

6 Experiments

6.1 Methods

We demonstrate the utility and challenge of NLD by evaluating algorithms from a range of fields
including online RL, offline RL, imitation learning, and learning from demonstrations.

All methods are implemented using the open-source asynchronous RL library moolib [31], allowing
for continual evaluation of agents in order to generate training curves (even in the offline RL setting).
In addition, all our methods use the same core model architecture, which is based on a popular
open-source Sample Factory baseline12, adapted to only use tty_* observations but still remain
fast to run. Unless specified otherwise, all experiments were evaluated with 1024 episodes from
NLE’s NetHackChallenge-v0 task after training for 1.5B frames. The mean and standard deviation of
the episode return was computed over 10 training seeds. Full details about the algorithms and their
hyperparameters can be found in Appendix I. All our implementations will be open-sourced to enable
fast research progress.

Online RL. For online RL baselines that do not make use of the NLD datasets, we use Asynchronous
Proximal Policy Optimization (APPO) [47, 37] and Deep Q-Networks (DQN-Online). The former
is a strong on-policy policy-gradient-based method for NLE, and the latter is a popular off-policy
value-based method in the wider literature.

Offline RL. Since NLD-AA contains state-action-reward transitions, we can train a number of offline
RL baselines on it. More specifically, we use a Deep Q-Network baseline trained on the dataset (DQN-
Offline), as well as two state-of-the-art offline RL methods, Conservative Q-Learning (CQL) [21]
and Implicit Q-Learning (IQL) [20]. Note that these methods cannot be trained on NLD-NAO since it
doesn’t contain actions or rewards.

Learning from Demonstrations. We also evaluate a number of baselines that do not make use
of rewards, but instead use state-action or state-only transitions. For NLD-AA, we use Behavioural
Cloning (BC), a popular imitation learning method, which trains a policy to match the corresponding
actions in the dataset using a supervised learning objective. For NLD-NAO, we use Behavioral
Cloning from Observations (BCO) [56] which is a popular baseline for learning from state-only
demonstrations. This method performs BC on a learned inverse dynamics model which was trained to
predict the action taken given two consecutive states. We then investigate the use of BC and BCO in
an online setting by augmenting our APPO baseline in two ways. First, we add the BC or BCO loss
between the agent’s policy and the expert’s action for observations in the dataset resulting in APPO +
BC and APPO + BCO respectively. Second, we add a KL-divergence loss between the agent’s policy
and a pretrained BC(O) model resulting in Kickstarting BC(O), similar to [46]. These methods make
use of state and action data but no rewards.

For NLD-AA, we investigate the performance of the above algorithms across two partitions: one with
a single character (‘Human Monk’), and one with all the characters (i.e. the full dataset). Each of
these is evaluated on their corresponding environments. Full details about our experimental setup are
available in Appendix I.

6.2 Results and Discussion

As Table 2 and Figure 2 show, NLD-AA poses a difficult challenge to modern offline RL algorithms.
While CQL is able to use the offline trajectories to outperform both a random policy, IQL, as well as

12
https://github.com/Miffyli/nle-sample-factory-baseline
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Table 2: Average episode return across 10 seeds for a number of popular baselines using NLD and /
or NLE. First, we evaluate a range of offline RL methods such as DQN-Offline, CQL, IQL and BC
trained on NLD-AA and NLD-AA-Monk, as well as BCO trained on NLD-NAO. Second, we evaluate
methods that combine offline and online learning such as Kickstarting + BC and APPO + BC trained
on NLD-AA and NLD-AA-Monk, as well as Kickstarting + BCO and APPO + BCO trained on NLD-NAO.
Finally, we evaluate a few methods that only have access to online interactions from NLE (no external
datasets) such as a Random Policy, DQN-Online, and APPO. All evaluations are conducted with
NLE’s NetHackChallenge-v0 task, using Random (@) characters for NLD-AA and NLD-NAO, and a
Human Monk character for NLD-AA-Monk. We compare all these to the average episode return in the
corresponding datasets. Methods that use both offline and online data outperform all others by a wide
margin, but are still significantly worse than humans (by almost two orders of magnitude) and even the
symbolic bot (by more than a factor of three). The top online algorithm, APPO, outperforms the top
offline approach, BC. These results indicate that NLD poses a substantial challenge to state-of-the-art
methods.

NLD-AA NLD-AA-Monk NLD-NAO
Character Random Human Monk Random

offline only

8
><

>:

DQN-Offline 0.0 ± 0.1 0.0 ± 0.1 -
CQL 704 ± 112 732 ± 219 -
IQL 341 ± 40 533 ± 178 -
BC(O) 1220 ± 261 1728 ± 615 12.5 ± 2.0

offline + online
⇢

Kickstarting + BC(O) 2250 ± 81 3907 ± 330 502 ± 62
APPO + BC(O) 2767 ± 284 4779 ± 1116 1972 ± 180

online only

(Random Policy 0.2 ± 0.2 0.4 ± 0.4 (see col 1)
DQN-Online 159 ± 68 247 ± 152 (see col 1)
APPO 1799 ± 156 4006 ± 323 (see col 1)

Dataset Average 10105 17274 127356

online and offline variants of DQN, it falls short of capturing the average performance of trajectories
in the dataset by over an order of magnitude. BC performs better due to the higher quality of the
supervised learning signal, which is typically denser and less noisy than the RL one, but it too falls
well short of the data generating policy. Prior work has shown that offline RL methods struggle to
perform well in stochastic environments [36], and to generalize outside the distribution of state-action
pairs in the dataset [13]. These challenges are particularly intensified with NLD, which is highly
stochastic, partially observed, procedurally generated, and has a very large state and action space.

Methods that combine offline and online training such as Kickstarting + BC(O) or APPO + BC(O)
outperform offline-only methods and outperform or match online-only methods, while also speeding
up training. In fact, APPO + BC sets a new state-of-the-art for purely Deep RL on NLE, and would
have won first place on the Neural Track at the NetHack Challenge 2021, scoring a median of 2110
and beating the hybrid symbolic-deep RL winner by almost 400 points [15]. Despite being our best
method, APPO + BC is still significantly worse than the average performance in the dataset, further
emphasizing the difficulty of NLD.

Finally, our results demonstrate the utility of NLD-NAO while highlighting the challenge of learning
from sequences of only observations. Our inverse model is trained with trajectories from a random
policy, and therefore experiences an extremely small fraction of the entire state-action space. Even so,
BCO on NLD-NAO labeled with these actions is able to yield performance that comfortably exceeds
that of a random policy. While APPO + BCO performs similarly to APPO, training appears to be
much more stable. Thus, using more sophisticated policies for training the inverse model (e.g. a mix
between a pretrained RL policy and a random policy or an exploration method that maximizes the
diversity of visited states and actions) could further improve performance.

7 Conclusion

In this paper, we introduce NLD, a large-scale dataset of demonstrations from NetHack, a complex,
stochastic, partially observed, procedurally generated video game. NLD enables research in multiple
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Figure 2: Mean episode return (with samples plotted) over 10 seeds during training for APPO, APPO
+ BC(O), and Kickstarting + BC(O) using NLD-AA (left), NLD-AA-Monk (center), and NLD-NAO
(right). NLD-AA and NLD-NAO both are evaluated with Random character (@), while NLD-AA-Monk is
evaluated with only the Human Monk character. Some sample curves associated with the pure online
APPO methods exhibit a behaviour wherein performance appears to plateau, before bursting rapidly
to a new performance level. This is a common pattern in NLE and corresponds to an agent learning a
new behaviour that greatly unlocks yet more of the game, such as praying when starving or kicking
down locked doors. Since NLE is highly procedurally generated with a vast action and state space, it
is hard to predict when an agent will encounter sufficient opportunities to “take off” in this way. Such
“taking off” phenomena are less visible when learning from NLD, as useful behaviours are present in
the data throughout.

areas such as imitation learning, offline RL, learning from sequences of observations, and learning
from both offline data and online interactions. NLD allows researchers to learn from very large datasets
of demonstrations without requiring extensive memory or compute resources. We train a number of
state-of-the-art methods in online RL (both on-policy and off-policy), offline RL, imitation learning,
as well as learning from observation-only sequences. Our results indicate that significant research
advances are needed to fully leverage large-scale datasets in order to solve challenging sequential
decision making problems.

In many real-world applications such as robotics, it is common to have access to datasets of observa-
tions, without corresponding actions or rewards. Thus, one important direction for future research
is to learn from trajectories containing only observations. NLD enables this type of research in a
safe, cheap, fast, and reproducible environment, while still exhibiting many properties of real-world
domains such as partial observability, high stochasticity, and long episodes. Due to NetHack being
procedurally generated, in order to consistently win the game, an agent needs to learn a robust policy
that generalizes to new scenarios. Our strongest baseline learns from both static data and environment
interaction, so a promising avenue for future work is to develop more effective methods that combine
offline and online learning. Existing algorithms for offline RL and learning from demonstrations
struggle to match the average performance of trajectories in our datasets, suggesting that NLD is a
good benchmark to probe the limits of these methods and inspire the development of approaches that
are effective in more challenging and realistic domains.

8 Acknowledgements

We would like to thank Drew Streib and the NAO maintainers for their work in the NetHack
community and their help throughout this project. We would also like to thank Michał Sypetkowski
and Maciej Sypetkowski for their work on the AutoAscend bot.

References
[1] Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. Striving for simplicity in

off-policy deep reinforcement learning. ArXiv, abs/1907.04543, 2019.

[2] Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective on
offline reinforcement learning. In ICML, 2020.

9



[3] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Christopher Hesse, Rafal Józefow-
icz, Scott Gray, Catherine Olsson, Jakub W. Pachocki, Michael Petrov, Henrique Pondé
de Oliveira Pinto, Jonathan Raiman, Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szymon
Sidor, Ilya Sutskever, Jie Tang, Filip Wolski, and Susan Zhang. Dota 2 with large scale deep
reinforcement learning. ArXiv, abs/1912.06680, 2019.

[4] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[5] Serkan Cabi, Sergio Gomez Colmenarejo, Alexander Novikov, Ksenia Konyushkova, Scott E.
Reed, Rae Jeong, Konrad Zolna, Yusuf Aytar, David Budden, Mel Vecerík, Oleg O. Sushkov,
David Barker, Jonathan Scholz, Misha Denil, Nando de Freitas, and Ziyun Wang. A framework
for data-driven robotics. ArXiv, abs/1909.12200, 2019.

[6] Ching-An Cheng, Tengyang Xie, Nan Jiang, and Alekh Agarwal. Adversarially trained actor
critic for offline reinforcement learning. ArXiv, abs/2202.02446, 2022.

[7] Samuel Cohen, Brandon Amos, Marc Peter Deisenroth, Mikael Henaff, Eugene Vinitsky, and
Denis Yarats. Imitation learning from pixel observations for continuous control. In Deep RL
Workshop NeurIPS 2021, 2021.

[8] Sudeep Dasari, Frederik Ebert, Stephen Tian, Suraj Nair, Bernadette Bucher, Karl Schmeckpeper,
Siddharth Singh, Sergey Levine, and Chelsea Finn. Robonet: Large-scale multi-robot learning.
ArXiv, abs/1910.11215, 2019.

[9] Ashley D. Edwards, Himanshu Sahni, Yannick Schroecker, and Charles Lee Isbell. Imitating
latent policies from observation. ArXiv, abs/1805.07914, 2019.

[10] Justin Fu, Aviral Kumar, Ofir Nachum, G. Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. ArXiv, abs/2004.07219, 2020.

[11] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning
without exploration. In ICML, 2019.

[12] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics: The
kitti dataset. The International Journal of Robotics Research, 32:1231 – 1237, 2013.

[13] Caglar Gulcehre, Sergio Gómez Colmenarejo, Jakub Sygnowski, Thomas Paine, Konrad Zolna,
Yutian Chen, Matthew Hoffman, Razvan Pascanu, Nando de Freitas, et al. Addressing extrapo-
lation error in deep offline reinforcement learning. 2020.

[14] William H. Guss, Brandon Houghton, Nicholay Topin, Phillip Wang, Cayden Codel, Manuela M.
Veloso, and Ruslan Salakhutdinov. Minerl: A large-scale dataset of minecraft demonstrations.
ArXiv, abs/1907.13440, 2019.

[15] Eric Hambro, Sharada Mohanty, Dmitrii Babaev, Minwoo Byeon, Dipam Chakraborty, Edward
Grefenstette, Minqi Jiang, Daejin Jo, Anssi Kanervisto, Jongmin Kim, et al. Insights from the
neurips 2021 nethack challenge. arXiv preprint arXiv:2203.11889, 2022.

[16] Nicolas Manfred Otto Heess, TB Dhruva, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg
Wayne, Yuval Tassa, Tom Erez, Ziyun Wang, S. M. Ali Eslami, Martin A. Riedmiller, and David
Silver. Emergence of locomotion behaviours in rich environments. ArXiv, abs/1707.02286,
2017.

[17] James Henderson, Oliver Lemon, and Kallirroi Georgila. Hybrid reinforcement/supervised
learning of dialogue policies from fixed data sets. Computational Linguistics, 34:487–511,
2008.

[18] Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, Craig Ferguson, Àgata Lapedriza,
Noah J. Jones, Shixiang Shane Gu, and Rosalind W. Picard. Way off-policy batch deep
reinforcement learning of implicit human preferences in dialog. ArXiv, abs/1907.00456, 2019.

[19] Kenneth Lorber. NetHack Home Page. https://nethack.org, 2020. Accessed: 2020-05-30.
[20] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit

q-learning. ArXiv, abs/2110.06169, 2021.
[21] Aviral Kumar, Aurick Zhou, G. Tucker, and Sergey Levine. Conservative q-learning for offline

reinforcement learning. ArXiv, abs/2006.04779, 2020.

10

https://nethack.org


[22] Vitaly Kurin, Sebastian Nowozin, Katja Hofmann, Lucas Beyer, and B. Leibe. The atari grand
challenge dataset. ArXiv, abs/1705.10998, 2017.

[23] Heinrich Kuttler, Nantas Nardelli, Alexander H. Miller, Roberta Raileanu, Marco Selvatici,
Edward Grefenstette, and Tim Rocktäschel. The nethack learning environment. ArXiv,
abs/2006.13760, 2020.

[24] Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco Hutter. Learning
quadrupedal locomotion over challenging terrain. Science Robotics, 5, 2020.

[25] Sergey Levine, Aviral Kumar, G. Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. ArXiv, abs/2005.01643, 2020.

[26] Sergey Levine, Peter Pastor, Alex Krizhevsky, and Deirdre Quillen. Learning hand-eye coordi-
nation for robotic grasping with deep learning and large-scale data collection. The International
Journal of Robotics Research, 37:421 – 436, 2018.

[27] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. A contextual-bandit approach to
personalized news article recommendation. ArXiv, abs/1003.0146, 2010.

[28] Jeffrey Mahler, Matthew Matl, Vishal Satish, Michael Danielczuk, Bill DeRose, Stephen
McKinley, and Ken Goldberg. Learning ambidextrous robot grasping policies. Science Robotics,
4, 2019.

[29] Ajay Mandlekar, Danfei Xu, J. Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni, Li Fei-
Fei, Silvio Savarese, Yuke Zhu, and Roberto Mart’in-Mart’in. What matters in learning from
offline human demonstrations for robot manipulation. ArXiv, abs/2108.03298, 2021.

[30] Michael Matthews, Mikayel Samvelyan, Jack Parker-Holder, Edward Grefenstette, and Tim
Rocktäschel. Hierarchical kickstarting for skill transfer in reinforcement learning, 2022.

[31] Vegard Mella, Eric Hambro, Danielle Rothermel, and Heinrich Küttler. moolib: A Platform for
Distributed RL. 2022.

[32] Raphael Memmesheimer, Ivanna Mykhalchyshyna, Viktor Seib, and Dietrich Paulus. Simitate:
A hybrid imitation learning benchmark. 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 5243–5249, 2019.

[33] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin A. Riedmiller. Playing atari with deep reinforcement learning. ArXiv,
abs/1312.5602, 2013.

[34] NetHack Wiki. NetHackWiki. https://nethackwiki.com/, 2020. Accessed: 2020-02-01.
[35] OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew,

Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, Jonas Schneider,
Nikolas A. Tezak, Jerry Tworek, Peter Welinder, Lilian Weng, Qiming Yuan, Wojciech Zaremba,
and Lei M. Zhang. Solving rubik’s cube with a robot hand. ArXiv, abs/1910.07113, 2019.

[36] Keiran Paster, Sheila McIlraith, and Jimmy Ba. You can’t count on luck: Why decision
transformers fail in stochastic environments. arXiv preprint arXiv:2205.15967, 2022.

[37] Aleksei Petrenko, Zhehui Huang, Tushar Kumar, Gaurav Sukhatme, and Vladlen Koltun. Sample
factory: Egocentric 3d control from pixels at 100000 fps with asynchronous reinforcement
learning. In International Conference on Machine Learning, pages 7652–7662. PMLR, 2020.

[38] Olivier Pietquin, Matthieu Geist, Senthilkumar Chandramohan, and Hervé Frezza-Buet. Sample-
efficient batch reinforcement learning for dialogue management optimization. ACM Trans.
Speech Lang. Process., 7:7:1–7:21, 2011.

[39] Rafael Figueiredo Prudencio, Marcos R.O.A. Maximo, and Esther Luna Colombini. A survey on
offline reinforcement learning: Taxonomy, review, and open problems. ArXiv, abs/2203.01387,
2022.

[40] Rongjun Qin, Songyi Gao, Xingyuan Zhang, Zhen Xu, Shengkai Huang, Zewen Li, Weinan
Zhang, and Yang Yu. Neorl: A near real-world benchmark for offline reinforcement learning.
ArXiv, abs/2102.00714, 2021.

[41] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, John Schulman, Emanuel Todorov, and
Sergey Levine. Learning complex dexterous manipulation with deep reinforcement learning
and demonstrations. ArXiv, abs/1709.10087, 2018.

11

https://nethackwiki.com/


[42] Sabela Ramos, Sertan Girgin, L’eonard Hussenot, Damien Vincent, Hanna Yakubovich, Daniel
Toyama, Anita Gergely, Piotr Stanczyk, Raphaël Marinier, Jeremiah Harmsen, Olivier Pietquin,
and Nikola Momchev. Rlds: an ecosystem to generate, share and use datasets in reinforcement
learning. ArXiv, abs/2111.02767, 2021.

[43] Stéphane Ross, Geoffrey J. Gordon, and J. Andrew Bagnell. A reduction of imitation learning
and structured prediction to no-regret online learning. In AISTATS, 2011.

[44] Andrei A. Rusu, Matej Vecerík, Thomas Rothörl, Nicolas Manfred Otto Heess, Razvan Pas-
canu, and Raia Hadsell. Sim-to-real robot learning from pixels with progressive nets. ArXiv,
abs/1610.04286, 2017.

[45] Mikayel Samvelyan, Robert Kirk, Vitaly Kurin, Jack Parker-Holder, Minqi Jiang, Eric Hambro,
Fabio Petroni, Heinrich Küttler, Edward Grefenstette, and Tim Rocktäschel. Minihack the planet:
A sandbox for open-ended reinforcement learning research. arXiv preprint arXiv:2109.13202,
2021.

[46] Simon Schmitt, Jonathan J. Hudson, Augustin Zídek, Simon Osindero, Carl Doersch, Woj-
ciech M. Czarnecki, Joel Z. Leibo, Heinrich Küttler, Andrew Zisserman, Karen Simonyan, and
S. M. Ali Eslami. Kickstarting deep reinforcement learning. ArXiv, abs/1803.03835, 2018.

[47] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[48] Pratyusha Sharma, Lekha Mohan, Lerrel Pinto, and Abhinav Kumar Gupta. Multiple interactions
made easy (mime): Large scale demonstrations data for imitation. In CoRL, 2018.

[49] Noah Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael
Neunert, Thomas Lampe, Roland Hafner, and Martin A. Riedmiller. Keep doing what worked:
Behavioral modelling priors for offline reinforcement learning. ArXiv, abs/2002.08396, 2020.

[50] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mas-
tering the game of go with deep neural networks and tree search. nature, 529(7587):484–489,
2016.

[51] Bradly C. Stadie, P. Abbeel, and Ilya Sutskever. Third-person imitation learning. ArXiv,
abs/1703.01703, 2017.

[52] Alexander L. Strehl, John Langford, Lihong Li, and Sham M. Kakade. Learning from logged
implicit exploration data. In NIPS, 2010.

[53] Michita Imai Takuma Seno. d3rlpy: An offline deep reinforcement library. In NeurIPS 2021
Offline Reinforcement Learning Workshop, December 2021.

[54] The Telegraph. The 25 hardest video games ever. 2021. Accessed: 2021-05-05.
[55] Philip S. Thomas, Georgios Theocharous, Mohammad Ghavamzadeh, Ishan Durugkar, and

Emma Brunskill. Predictive off-policy policy evaluation for nonstationary decision problems,
with applications to digital marketing. In AAAI, 2017.

[56] Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. ArXiv,
abs/1805.01954, 2018.

[57] Sam Toyer, Rohin Shah, Andrew Critch, and Stuart J. Russell. The magical benchmark for
robust imitation. ArXiv, abs/2011.00401, 2020.

[58] Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik,
Junyoung Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh,
Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang, L. Sifre, Trevor Cai, John P. Agapiou,
Max Jaderberg, Alexander Sasha Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard,
David Budden, Yury Sulsky, James Molloy, Tom Le Paine, Caglar Gulcehre, Ziyun Wang,
Tobias Pfaff, Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney,
Oliver Smith, Tom Schaul, Timothy P. Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris
Apps, and David Silver. Grandmaster level in starcraft ii using multi-agent reinforcement
learning. Nature, pages 1–5, 2019.

[59] Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha Vezhnevets,
Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John P. Agapiou, Julian Schrittwieser, John
Quan, Stephen Gaffney, Stig Petersen, Karen Simonyan, Tom Schaul, H. V. Hasselt, David

12



Silver, Timothy P. Lillicrap, Kevin Calderone, Paul Keet, Anthony Brunasso, David Lawrence,
Anders Ekermo, Jacob Repp, and Rodney Tsing. Starcraft ii: A new challenge for reinforcement
learning. ArXiv, abs/1708.04782, 2017.

[60] Yifan Wu, G. Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
ArXiv, abs/1911.11361, 2019.

[61] Chi Zhang, Sanmukh Rao Kuppannagari, and Viktor K. Prasanna. Brac+: Improved behavior
regularized actor critic for offline reinforcement learning. In ACML, 2021.

[62] Çaglar Gülçehre, Ziyun Wang, Alexander Novikov, Tom Le Paine, Sergio Gomez Colmenarejo,
Konrad Zolna, Rishabh Agarwal, Josh Merel, Daniel Jaymin Mankowitz, Cosmin Paduraru,
Gabriel Dulac-Arnold, Jerry Zheng Li, Mohammad Norouzi, Matthew D. Hoffman, Nicolas
Manfred Otto Heess, and Nando de Freitas. Rl unplugged: A collection of benchmarks for
offline reinforcement learning. In NeurIPS, 2020.

13



9 Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Appendix K.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] . See

Appendix L.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] Code will be
supplied with the dataset at the link provided in Appendix A.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Appendix I

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? [Yes] We report standard deviations across seeds for all
results.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix I

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] Although we do

not use “assets" per se, we do cite the bot AutoAscend by linking to it and citing the
author’s own write up in the NetHack Challenge report.[15]

(b) Did you mention the license of the assets? [Yes] We mention the license of the dataset
(same as NLE) in Appendix B

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
This is a dataset paper, so the ‘assets’ are the data, which is of course linked to in

Appendix A.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] We do not discuss this in the paper because: 1) some of the
data is from an open source bot and 2) the human data is already public and completely
anonymous. We did discuss this with the site creator (who collected the data, and put
up terms of use) and we obtained his consent, as well as the consent of the creators of
the bot.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] We discuss in Appendix H.3

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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10 Datasets Checklist

Include extra information in the appendix. This section will often be part of the supplemental material.
Please see the call on the NeurIPS website for links to additional guides on dataset publication.

1. Submission introducing new datasets must include the following in the supplementary
materials:
(a) Dataset documentation and intended uses. Recommended documentation frameworks

include datasheets for datasets, dataset nutrition labels, data statements for NLP, and
accountability frameworks. [We document the code to use the dataset in the repository
and provide many references in the Appendices.]

(b) URL to website/platform where the dataset/benchmark can be viewed and downloaded
by the reviewers. [We provide this in Appendix A]

(c) Author statement that they bear all responsibility in case of violation of rights, etc., and
confirmation of the data license. [We provide this in Appendix B and upon submission
to OpenReview]

(d) Hosting, licensing, and maintenance plan. The choice of hosting platform is yours, as
long as you ensure access to the data (possibly through a curated interface) and will
provide the necessary maintenance. [We provide this in Appendix A]

2. To ensure accessibility, the supplementary materials for datasets must include the following:
(a) Links to access the dataset and its metadata. This can be hidden upon submission if the

dataset is not yet publicly available but must be added in the camera-ready version. In
select cases, e.g when the data can only be released at a later date, this can be added
afterward. Simulation environments should link to (open source) code repositories.
[We provide this in Appendix A]

(b) The dataset itself should ideally use an open and widely used data format. Provide a
detailed explanation on how the dataset can be read. For simulation environments, use
existing frameworks or explain how they can be used. [We provide example usage,
documentation, and detailed specification in how data is stored in several Appendices]

(c) Long-term preservation: It must be clear that the dataset will be available for a long time,
either by uploading to a data repository or by explaining how the authors themselves
will ensure this. [We provide a maintenance plan in Appendix A]

(d) Explicit license: Authors must choose a license, ideally a CC license for datasets, or an
open source license for code (e.g. RL environments). [We provide an open license in
Appendix B]

(e) Add structured metadata to a dataset’s meta-data page using Web standards (like
schema.org and DCAT): This allows it to be discovered and organized by anyone. If
you use an existing data repository, this is often done automatically. [We are in the
process of building a site to host, but are happy to do this when completed.]

(f) Highly recommended: a persistent dereferenceable identifier (e.g. a DOI minted by
a data repository or a prefix on identifiers.org) for datasets, or a code repository (e.g.
GitHub, GitLab,...) for code. If this is not possible or useful, please explain why. [Code
and instructions will always live on GitHub].

3. For benchmarks, the supplementary materials must ensure that all results are easily repro-
ducible. Where possible, use a reproducibility framework such as the ML reproducibility
checklist, or otherwise guarantee that all results can be easily reproduced, i.e. all necessary
datasets, code, and evaluation procedures must be accessible and documented. [We provide
access to code for experiments and will tidy and rehost upon release of the dataset.].

4. For papers introducing best practices in creating or curating datasets and benchmarks, the
above supplementary materials are not required.
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