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ABSTRACT
Optical spectra contain a wealth of information about the physical properties and formation histories of galaxies. Often though,
spectra are too noisy for this information to be accurately retrieved. In this study, we explore how machine learning methods
can be used to de-noise spectra and increase the amount of information we can gain without having to turn to sample averaging
methods such as spectral stacking. Using machine learning methods trained on noise-added spectra - SDSS spectra with Gaussian
noise added - we investigate methods of maximising the information we can gain from these spectra, in particular from emission
lines, such that more detailed analysis can be performed. We produce a variational autoencoder (VAE) model, and apply it on
a sample of noise-added spectra. Compared to the flux measured in the original SDSS spectra, the model values are accurate
within 0.3-0.5 dex, depending on the specific spectral line and S/N. Overall, the VAE performs better than a principle component
analysis (PCA) method, in terms of reconstruction loss and accuracy of the recovered line fluxes. To demonstrate the applicability
and usefulness of the method in the context of large optical spectroscopy surveys, we simulate a population of spectra with noise
similar to that in galaxies at 𝑧 = 0.1 observed by the Dark Energy Spectroscopic Instrument (DESI). We show that we can recover
the shape and scatter of the MZR in this "DESI-like" sample, in a way that is not possible without the VAE-assisted de-noising.
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1 INTRODUCTION

Spectroscopy is a particularly powerful tool to retrieve fundamental
information about the contents of galaxies and their formation his-
tories. Some quantities can be directly retrieved from spectral mea-
surements (e.g. the total mass of the neutral interstellar medium from
the HI 21cm integrated line flux), others require complex modeling
of continuum and/or line features (e.g. star formation histories). Es-
pecially in the latter case, having access to quality spectra with high
resolution and sensitivity to both continuum and line emission is a
requirement. In this paper, we focus on optical spectroscopy in the
context of galaxy evolution studies, and explore methods to retrieve
a maximum amount of information from spectra even when these
sensitivity requirements are not met.

Astronomy is experiencing a "data volume" revolution, and optical
spectroscopy is no exception. For example, the Dark Energy Spec-
troscopic Instrument (DESI; DESI Collaboration et al. 2016, 2023)
will produce spectra for in excess of 30 million galaxies, an order of
magnitude more than was achieved by the Sloan Digital Sky Survey
(SDSS; York et al. 2000). Such a data volume opens up new param-
eter space for galaxy evolution studies, but to make the most of these
data we need to overcome the challenge that the depth of the spectra,
while sufficient to measure redshifts, often does not allow for the
accurate derivation of quantities such as metallicities, star formation
rates/histories and stellar masses/kinematics.

There are several methods to increase the S/N of spectra to

★ E-mail: matt.scourfield.18@ucl.ac.uk
† E-mail: a.saintonge@ucl.ac.uk

overcome such challenges. Spectral stacking is currently the most
commonly-used of these methods. By averaging the spectra, we can
boost the signal and make measurements that are representative of
the sub-population of objects stacked, even when individual objects
do not have detectable emission. While a powerful tool, stacking
also has its limitations, for example it does not return any informa-
tion about the scatter in the underlying population and the results
are entirely dependent on the a priori choices of what galaxies to
combine into different stacks (see Saintonge & Catinella 2022, for
further details).

Alternatively, methods which are agnostic to the physics of galax-
ies can also be used. One example of this is Principal Component
Analysis (PCA, Hotelling 1933; Jolliffe & Cadima 2016), a type
of dimensional reduction algorithm. In PCA, components are found
which can be linearly combined to approximately reproduce an in-
put. For example, Yip et al. (2004a) find three components to be
sufficient to reproduce most galaxy types found in the SDSS spectro-
scopic sample to within a 10% error; increasing to ten components
allows the modeling of rare populations such as galaxies with extreme
emission lines. While the linear nature of PCA lends itself well to
interpretation of the components, it also limits the use of the method
in reproducing data with non-linear components. For example, Yip
et al. (2004b) apply PCA to the SDSS spectra of quasars and find that
∼ 100 components are required to accurately reproduce their sample
out to 𝑧 ∼ 5, due to the non-linearity of the problem.

Machine learning (ML) techniques are also an example of these
agnostic methods, and are increasingly used due to their flexibility
and ability to process large quantities of data. ML has been used for
spectral classification (Müller & Schnider 2021; Ferreira et al. 2020;
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2 M. Scourfield et al.

Subclassification Candidates Sample

Emission Line Galaxy 50948 4522
Absorption Galaxy 20771 4003
Quiescent Galaxy 12204 1175
Narrow-Line AGN 2968 297
Broad-Line AGN 17 3

Total 86908 10000

Table 1. Breakdown of spectral subclassifications.

Li et al. 2020), artifact and anomaly detection (Storey-Fisher et al.
2021; Tanoglidis et al. 2021), parameter extraction (Schuldt et al.
2021; Lovell et al. 2019; Fathivavsari 2020) and even as a method
of going from image to spectra (Wu & Peek 2020; Holwerda et al.
2021). In particular, Generative Adversarial Networks (GANs), a type
of neural network, are commonly used as a method of de-noising
and enhancing for astronomical images (Schawinski et al. 2017;
Shirasaki et al. 2021). Another type of neural network commonly
used for de-noising are Autoencoders (AEs, Vincent et al. 2010),
and have previously been applied to various areas of Astronomy,
such as galaxy spectral energy distribution classification (Frontera-
Pons et al. 2017), gravitational waves analysis (Shen et al. 2017;
Liao & Lin 2021), cosmological parameter constraint (Wang et al.
2021), deep cluster detection (Karmakar et al. 2018) and chemical
modelling (Holdship et al. 2021).

In this paper, we investigate the use of autoencoders to perform
spectral de-noising, and enhancing the amount of information we
are able to retrieve from low S/N galaxy spectra. In section 2 we
present the data used in this paper, and the various models we use
are introduced in section 3. We then apply these models to SDSS
spectra and discuss in Section 4 how they perform in accurately
recovering emission line fluxes. As a proof-of-concept, we show
how the autoencoder de-noising can enable the study of the mass-
metallicity in a DESI-like survey in Section 5 before presenting our
conclusions in 6.

2 DATA

We use spectra from SDSS Data Release 7 (DR7, Abazajian et al.
2009) in order to train our model. A lower redshift cutoff of 𝑧 = 0.024
is chosen to ensure coverage of the [OII]3727Å doublet, and an
upper cutoff of 𝑧 = 0.05, to prevent the sample being dominated by
massive galaxies and to ensure good SNR of both emission lines
and continuum. This leaves us with a total of 86,908 galaxies whose
spectra can be used to construct our sample from.

These spectra each have a subclassification assigned to them from
the SDSS and astroML (VanderPlas et al. 2012) pipelines, which are
the same as those presented in Vanderplas & Connolly (2009): ab-
sorption galaxy, quiescent galaxy, emission line galaxy, narrow-line
AGN and broad-line AGN. These subclassifications are determined
by first using the output of the SDSS spectroscopic pipeline, splitting
the spectra into galaxies and QSOs (here called broad-line AGN).
The galaxy spectra are then further split; those with both H𝛼 and H𝛽

emission lines with SNR> 3 are classified as either narrow-line AGN
or emission line galaxies based on their position in the BPT diagram
according to the criterion of Kewley et al. (2001), and the remaining
spectra are classified as either absorption-line galaxies if they have
Balmer absorption lines detected with SNR> 3, or quiescent galaxies
if they show neither significant Balmer line emission or absorption.

The breakdown of galaxy subclassifications within the candidates is
shown in table 1.

The properties of these candidate spectra are not uniformly dis-
tributed, meaning that randomly constructing our sample from the
candidate spectra would result in models that are overfit to the most
dense regions of the parameter space. As such, rather than randomly
constructing our sample from the candidate spectra we instead use
the derived galaxy properties from the MPA-JHU emission line anal-
ysis for SDSS DR7 to split spectra based on H𝛼 flux. We use this
quantity as in this paper we are most concerned with reproducing
the emission lines, rather than continuum features. This will be ex-
plored in a further study. We use 10 bins logarithmically spaced from
100.2 −103.4 1e-17 erg/s/cm2, populating each bin with 1,000 galax-
ies randomly selected out of all of those with H𝛼 flux in the relevant
range. This gives us a final sample of 10,000 galaxies, of which
8,000 are used during model training and validation, and the remain-
ing 2,000 for testing performance. During training of neural network
models, 2,000 spectra are withheld and used as a validation set to
evaluate the evolution of the models performance during the training
process. The same spectra are used in the test set for each model to
allow for direct comparisons of results between them, while the val-
idation set is selected randomly at the start of each models training.
We choose this split, as it allows us to get a good measure of the
model performance, while maximising the size of the training set -
something that is especially important given the low number of some
subclassifications in the sample. The breakdown of classifications in
this final sample are also shown in table 1. Due to the small number
of broad-line AGN in the final sample we do not comment on this
subclass in our analysis, as there are insufficient points to draw any
meaningful conclusions, though still include them in the sample for
completeness.

Once the spectra in the sample have been selected, we pre-process
them by shifting the spectra to the rest frame and re-sampling to
825 common wavelength bins, logarithmically spaced between 3700
and 7900 Å, then normalise them such that the total flux is unity.
This reduces the range of flux values such that the models do not
need to handle inputs on varying scales. We then create noise-added
spectra by injecting additional Gaussian noise. In order to determine
the magnitude of this noise we look at data from the DESI survey and
produce a noise model following the method of Scholte & Saintonge
(2023). This is done by taking the errors on the observed emission
lines, and interpolating to produce a continuous error model over the
whole wavelength range. For simplicity however, we use a uniform
noise over the whole wavelength range (rather than varying with
wavelength) adopting a standard deviation of 0.04 normalised flux
units, which is the upper envelope of the noise level across the DESI
wavelength range. The normalisation process is then repeated on
these noise-added spectra. The results in a final data set with a shape
of [𝑛× 825], where 𝑛 is the number of spectra in a sample/batch and
825 the number of flux values. The models we use also output data
in this same shape.

For clarity, throughout this paper we refer to the spectra we use as
the ground truth as the ’original SDSS spectra’, and the spectra we
use as inputs to the models as ’noise-added spectra’. Additionally,
we refer to the spectra that are output by models as ’predicted spec-
tra’. Examples of noise-added and original SDSS spectra from each
subclassification are shown in figure 1.
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Spectrum de-noising 3

Figure 1. Example spectra from the sample comparing original SDSS (blue) and noise-added (orange) normalised flux values from various subclassifications in
the sample. The spectra are processed by shifting to the rest frame and re-binning to common wavelengths. Each row corresponds to a different subclassification.

3 METHODS

There have been various papers looking into using dimensional re-
duction tools in order to parameterise spectra (Portillo et al. 2020;
Pat et al. 2022); however, another advantage of latent spaces these
studies do not explore is the varying information content of the differ-
ent dimensions. While some dimensions in a reduction will contain
information on important spectral features such as emission line
strengths others will mainly contain information about the noise on
the data. Discarding such dimensions results in also discarding the
noise they describe, while leaving the information contained within
other dimensions intact. We explore two different methods of dimen-
sional reduction as a means of this noise reduction method; the more
traditional PCA method and deep learning autoencoder methods. In
both cases we look at performance using 2, 4, 6, and 10 components,
as in Portillo et al. (2020).

3.1 Principal Component Analysis

Principal Component Analysis (PCA, Hotelling 1933; Jolliffe &
Cadima 2016) revolves around the idea of finding the principal com-
ponents of a data set, and using linear combinations of them to recre-
ate the input. These principal components are obtained by taking the
covariance matrix of the data set and computing its eigenvectors and

eigenvalues. These eigenvectors correspond to the principal compo-
nents and the eigenvalues to the variance, and hence the information
content, of the corresponding vector. Thus, by taking the eigenvec-
tors in order of decreasing eigenvalues they are also ordered by their
importance to correctly reconstruct data. For more details on the
exact process see textbooks such as Jackson (2005).

Inputs can then be encoded by calculating the amount of each
component required to recreate them. The total number of PCA
components produced is the same as the number of dimensions in
the data; however, as the components are ordered by variance it is
possible to use fewer components with minimal information loss by
removing those at the end of the list first. Removing components in
this manner results in a dimensional reduction model.

In terms of spectral data, these components take the form of their
own template spectrum which control one or more features in the
final spectrum. For example, one template may control the amplitude
of the H𝛼 line in the output while another may control the strength
of the 4000 Å break. In cases where a template controls multiple
features they will commonly be related in some way, such as the
lines in a doublet.

We apply PCA to the noise-added spectra in out training set us-
ing the sklearn implementation (Pedregosa et al. 2011), producing
models with 2, 4, 6 and 10 components. The test set noise-added
spectra are then passed through the resulting models and their recon-
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4 M. Scourfield et al.

n component variance % variance cumulative % variance

1 4.4e-2 3.2 3.19
2 9.6e-3 0.7 3.89
4 3.0e-3 0.22 4.50
6 2.8e-3 0.2 4.90
10 2.7e-3 0.2 5.70
677 1.1e-3 0.078 90.04
808 8.1e-4 0.058 99.04

Table 2. The variance explained by each component of the PCA analysis of
the noise-added spectra. The value as a percentage of the total variance, as
well as the cumulative percentage including all previous components is also
shown.

n component variance % variance cumulative % variance

1 4.2e-2 70 69.77
2 7.7e-3 13 82.56
4 1.0e-3 1.7 89.82
5 4.8e-4 0.8 90.62
6 4.3e-4 0.71 91.32
10 1.3e-4 0.21 92.55
384 2.8e-6 4.6e-3 99.00

Table 3. As in Table 2, but for PCA analysis of the original SDSS spectra.

struction losses evaluated using the mean square error of the result
compared to the original. These values are then used as reference
points for the performance of our machine learning methods.

The variance for a number of the components in the PCA are
given in table 2, as well as their corresponding percentage variance
and the cumulative percentage variance up to that component. Of
note, a total of 677 components are requires to explain 90% of the
variance, increasing to 808 for 99%. In fact, only∼6% of the variance
is explained by the first 10 components. For comparison the same
information for the components when we apply PCA to the original
SDSS spectra is shown in table 3, where it can be seen that only
5 components are required to explain 90% of the variance, 384 to
explain 99% and the first 10 components contain nearly 93% of the
variance. This shows how the increase in overall variance of the
data caused by the additional noise necessitates a larger number of
components in order to adequately explain the variance, and thus
accurately reproduce spectra.

Returning our focus to the PCA analysis of the noise-added spectra,
we plot the first 5 components in figure 2 in order to identify which
features influence the reconstruction the most. We can see that the
first component already contains the template for a large number of
lines, including the Balmer series, the OII, OIII and SII doublets and
NII, showing that these are an important feature when reconstructing
spectra. These lines are also present in other components, such that
their exact ratios are controlled through a combination of compo-
nents rather than lines being controlled by individual components
demonstrating that the model has picked up on relations between
them. While the lines in the first component are relatively narrow,
later components feature broader versions of these lines such that
their widths can be controlled. Note that PCA components can have
either positive or negative contributions to the predicted spectra, and
so components do not have to exclusively correspond to emission or
absorption.

Continuum shape are not only controlled by a superposition of
components similar to line features, but are in fact also controlled
by the same components that contain line features, highlighting the
relation between continuum shape and lines in spectra.

The SNR of these features decreases as as we look at later com-
ponents, with the 4th components containing very little information
about the continuum shape. By the time the 5th component is reached
continuum features have completely disappeared amongst the noise,
and the small number of of line features which appear to be present,
such as the SII doublet, have very low SNR. In subsequent compo-
nents these line features have been lost too, such that they serve only
to encode noise.

3.2 Autoencoders

An autoencoder (AE, Kramer 1991) is a type of neural network
which attempts to reproduce a given input by passing it through a
bottleneck - a layer in the model with fewer dimensions than the
input. By passing through this layer, the model is forced to learn to
encode inputs into a latent space, in effect performing a dimensional
reduction on the data. The structure of an AE can be split into two
parts with the latent space in the middle, an encoder which handles
the reduction of inputs down to this latent space, and a decoder which
converts for the latent representation back out to the form of the input.

An alternative to AEs are variational autoencoders (VAEs, Kingma
& Welling 2013), a type of AE where, rather than a single fixed value
being generated for each dimension in the latent space, many normal
distributions are generated instead. Values are then drawn from these
distributions to use as the latent representation of the spectra. Using
distributions allows for similar inputs to overlap in the latent space,
leading to continuous distributions of points making interpolation
between points possible. This allows for VAEs to also be used as
generative models, creating new data by sampling from the latent
space.

For ease of distinguishing between the two different types we
henceforth refer to these two distinct architectures by their acronyms,
AE and VAE, and use the full word, autoencoder, either when dis-
cussing the general concept of an autoencoder, or when referring to
both architectures.

We make use of both types of model, in each case implementing a
simple architecture using Keras (Chollet et al. 2015). The input layer
takes the noise-added spectra and then passes them through a number
of intermediate dense layers, which each make use of leaky ReLU
activation functions. An activation function computes the value of a
node in the network based on an aggregation of the values of nodes
in the previous layer.

The most commonly used activation function is the rectified linear
unit (RELU, Fukushima 1969), which takes an input and sets it equal
to zero if it is negative, and leaves positive values unchanged using
the formula

ReLU(𝑥) = 𝑚𝑎𝑥(0, 𝑥). (1)

One problem that can arise when using this activation is that during
training, a node can become stuck in a state where it always gives
zero. As this is the result of the number being set to zero rather
than of a calculation the model is not able to pass information to the
previous layer to solve this problem and so the node ’dies’, effectively
reducing the number of nodes in the network which contain useful
information.

Leaky ReLU is an alternative activation function which seeks to
avoid this problem. It does so by modifying the function such that
instead of setting negative values to zero, they are instead damped by
a factor 𝑑 in order to still allow some information to pass through,
albeit at a reduced rate (Maas 2013).
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Spectrum de-noising 5

Figure 2. The first 5 components of the PCA analysis of the noise-added spectra. For each component the horizontal black dashed line corresponds to the zero
point, and the vertical grey dashed lines correspond to different line features. The PCA reconstructs spectra through linear combinations of these components.
Subsequent components are not included as they encode only noise.
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6 M. Scourfield et al.

Leaky ReLU(𝑥) = 𝑚𝑎𝑥(𝑑 · 𝑥, 𝑥) where 0 < 𝑑 < 1. (2)

In this case, we use 𝑑 = 0.3.
During training of the model, dropout is also implemented on

these layers in order to reduce overfitting, a technique by which
during training the activations of each node in the network may be
randomly set to zero in order to stop the model becoming over reliant
on a small number of nodes (Hinton et al. 2012).

These intermediate dense layers serve as the encoder layers, and
their outputs are used to generate the latent space values, though the
exact method differs for the two architectures. For the AE architecture
latent space values are obtained by simply passing the output into
another dense layer, called the latent layer, which produces the latent
space values.

For the VAE two layers are required to produce latent space val-
ues. The first is called the parameter layer, which is also a dense
layer. However, instead of directly producing the latent space values,
the parameter layer generates pairs of values known as distribution
parameters. Each pair corresponding to a dimension in the latent
space.

The second layer in the VAE is the sampling layer. This layer takes
each pair of distribution parameters and treats them as the parameters
of a Gaussian distribution. Specifically, the first value in each pair
represents the mean, and the second value represents the log variance
of the corresponding Gaussian distribution. The sampling layer then
randomly samples a value from each of these Gaussian distributions
to serve as the latent space value for that dimension.

No activation functions are used for the latent layer, parameter
layer or sampling layer.

A simplified visualisation of the AE architecture is shown in figure
3 and the VAE architecture in figure 4.

The decoder is the same for both models; a number of densely
connected intermediate layers which use leaky ReLU activation func-
tions and employ dropout during training. The number and size of the
decoder layers are the same as in the encoder, though in the reverse
order. A final dense layer with no activation function then gives the
model output: the predicted spectra.

These predicted spectra and the original SDSS spectra are used
to measure the reconstruction loss of the models by computing the
mean square error of the prediction. The reconstruction loss for a set
of J spectra with K flux values is thus given by

𝑀𝑆𝐸 =
1
2

𝐽∑︁
𝑗=1

𝐾∑︁
𝑘=1

𝑤 𝑗 ,𝑘 (𝑥′𝑗 ,𝑘 − 𝑦 𝑗 ,𝑘)2, (3)

where 𝑤 𝑗 ,𝑘 is the weighting of the 𝑘 𝑡ℎ pixel in the 𝑗 𝑡ℎ spectrum,
𝑥′
𝑗 ,𝑘

the normalised flux of the pixel predicted by the algorithm and
𝑦 𝑗 ,𝑘 the normalised flux in the original SDSS spectrum. The pixel
weightings are based on the inverse square of the flux error for that
pixel with an additional factor of 2 × 10−6 in the denominator to
soften the largest weights, as in Portillo et al. (2020).

For the AE model the reconstruction loss of the predicted spectra
serves as the loss term to be optimised during training; however, for
the VAE the evidence lower bound (ELBO) is optimised instead. This
quantity gives a lower bound for the log-likelihood of our observed
data given our model, and is used as the stochasticity introduced to
our model by the latent space means we cannot calculate an exact
value. The ELBO is made up of two terms,

𝐸𝐿𝐵𝑂 = 𝐿
(
𝑦, 𝑥′

)
− 𝐷𝐾𝐿 (𝑞 (𝑧 |𝑦) | |𝑝 (𝑧)) (4)

Latent Dropout Intermediate Units
Dimensions Rate Layers 1 2 3 4

2 0.8 4 900 800 400 300
4 0.5 4 900 900 500 400
6 0.7 4 1000 900 800 800
10 0.9 4 900 800 800 600

Table 4. Optimal AE hyperparameters found for each number of latent di-
mensions in the uniform sample, found through random search.

where L is the model likelihood, in this case the reconstruction loss,
and 𝐷𝐾𝐿 the KL divergence which measures the difference between
the posterior of the latent values 𝑞 and their prior 𝑝. This KL term has
the effect of making the distribution of inputs in the latent space match
the prior, which is chosen to be the standard normal distribution as
this allows for an exact analytic solution to the KL divergence to be
used, as per the equation from Kingma & Welling (2013, appendix
B),

𝐷𝐾𝐿 =
1
2

𝐽∑︁
𝑗=1

(1 + 𝑙𝑜𝑔(𝜎𝑗2) − 𝜇 𝑗
2 − 𝜎𝑗

2), (5)

where 𝜎𝑗
2 is the variance of the latent distribution for the 𝑗 𝑡ℎ di-

mension and 𝜇 𝑗 the mean.
In both cases, optimisation is carried out using an Adam optimiser

(Kingma & Ba 2014) with an initial learning rate of 10−4. During
the training process, the optimised value is monitored such that if the
value does not drop by at least 10% within 5 epochs, the learning
rate is decreased by a factor of 10. If this criterion is still not met
within a further 5 epochs, the model training is ended early to prevent
overfitting. Batch sizes of 64 are used.

The values of other hyperparameters for each model are deter-
mined through random search of 100 different models. The models
are trained for up to 25 epochs. The best performing hyperparameters
are then identified by comparing the mean final loss values evaluated
on the validation set, then a final model is trained for 200 epochs
using these hyperparameters. This process is repeated for multiple
numbers of latent dimensions, each time testing 100 hyperparameter
combinations. Once all of the dimensionality have been optimised
their final performances are compared by taking the mean of the
reconstruction loss on the test set.

Depending on the number of layers, between 4 and 6 hyperpa-
rameters are tuned for the models; the dropout rate, the number of
intermediate layers in the encoder and decoder, and the number of
units in each of these intermediate layers. The ranges for these pa-
rameters are:

• Dropout Rate: 0 - 0.9 (steps of 0.1)
• Intermediate Layers: 2 - 4
• Layer Units: 100 - 1000 or previous layer size (steps of 100)

which are sampled uniformly.
The optimum hyperparemeter values found for each number of

latent dimensions are shown in table 4 for the AE model, and table 5
for the VAE model. The training and validation losses are also shown
in figure 5, the AE in the left panel and the VAE in the right panel.
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Spectrum de-noising 7

Figure 3. An example of the architecture for a 2 dimensional autoencoder model, the number of neurons in layers has been reduced for visualisation purposes.
The colour of layers corresponds to their type; yellow for the input, green for the encoder intermediate layers, blue for the latent space values, red for decoder
intermediate layers and purple for the output. Layers with white stripes are optional and may not be included in all models. Dashed connections correspond to
layers which employ dropout during training. Neurons with no outline use no activation function and those with a dashed outline use leaky ReLU activation
function.

Figure 4. An example of the architecture for a 2 dimensional variational
autoencoder model. The encoder and decoder architecture are largely the
same as the AE (figure 3) and so repeated components been simplified here.
Where the architectures differ is when the encoder produces latent space
values: instead of directly generating latent space values it rather generates
a pair of parameters for each latent dimension - in this case two pairs, each
containing a mean, shown in light grey, and a log variance, shown in dark
grey. Each pair of these parameters describes a normal probability distribution
from which the latent value, in blue, is then sampled.

4 RESULTS

4.1 Clustering of galaxy classes in the latent space

Once we train the final models, we produce plots of their latent
spaces. The latent space for the 6 dimensional VAE model is shown
in figure 6, with points coloured based on subclassification. Note that
the numbering of the latent space values is based on their order in

Latent Dropout Intermediate Units
Dimensions Rate Layers 1 2 3 4

2 0.8 4 1000 900 600 200
4 0.7 4 1000 1000 700 500
6 0.5 4 800 800 700 600
10 0.9 4 900 900 600 400

Table 5. Optimal VAE hyperparameters found for each number of latent
dimensions in the uniform sample, found through random search.

the VAE, and as such has no significance to their importance, unlike
in PCA.

Emission line galaxies, which make up the largest subclassification
in the sample, are present throughout the distributions; however, the
other galaxy subclassifications are much more concentrated, resulting
in the latent slices taking the appearance of a main cluster with an
extended tail of emission line galaxies leading off. Within this cluster,
the absorption and quiescent subclasses both occupy similar spaces,
making them difficult to disentangle. The narrow-line AGN appear
to occupy a much more concentrated region within the cluster.

The histograms present another view of these same trends, as the
emission line galaxies distribution show a tail to one side in a num-
ber of dimensions, as does the narrow-line AGN to a lesser extent.
All subclasses are present in the regions where the absorption and
quiescent histogram distributions overlap, with those two subclassi-
fications overlapping almost entirely such that the model struggles to
differentiate the two.

This latent space distribution of a main cluster with a tail is sim-
ilar to that found by Portillo et al. (2020); however, the roles of the
different subclassifications differ. In their latent space it is instead the
quiescent galaxies that form the tail, and the emission line galaxies
that form the bulk of the main cluster. Note that they do not have
an absorption line galaxy subclassification, instead splitting galaxies
with high Balmer emission strengths between the emission line galax-
ies and narrow-Line AGN subclassifications based on the [NII]/H𝛼

line-ratio diagnostic - doing the same with our sample would result
in only a single subclassification making up the main cluster as cur-
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8 M. Scourfield et al.

Figure 5. Reconstruction loss history during training of the autoencoder models for each of the different dimensionalities. The solid lines correspond to loss
calculated using the training set after each epoch, which is shown during training, and the dashed to loss on the validation set, which the model is not shown.
Left: Loss for the AE model. Right: Loss for the VAE model. Note that although training loss is lower for the AE model, validation loss is lower for the VAE
model, showing that the AE model overfits the data more.

rently it is a mix of absorption line and quiescent galaxies. Despite
using a different classification scheme based on the BPT diagram and
H𝛼 equivalent width, the latent space presented by Pat et al. (2022)
also shows overlapping classifications with regions dominated by a
single class - in their case starforming and passive galaxies. Other
dimensionalities of the VAE model show similar distributions, as do
the AE latent spaces.

This makes the latent space a useful tool for identifying emission
line galaxies, and also narrow-line AGN in some cases; however, the
degeneracy between absorption and quiescent means that these clas-
sifications cannot be separated from one another using this method.

4.2 Reconstruction loss and spectrum recovery

In order to analyse how well the models can reproduce the original
SDSS spectra, we plot the mean reconstruction loss over the whole
test set in Figure 7. The figure shows that the autoencoder predic-
tions (both from the AE and VAE) outperform the PCA model, for all
dimensionalities. The PCA is most competitive in the case of the 2 di-
mension latent space. For the PCA, the reconstruction loss increases
at a roughly constant rate as the number of dimensions increases,
indicating that the first 2 dimensions contain the most information,
and additional dimensions add mostly noise. Meanwhile, the two
autoencoder models initially show improvement as dimensionality
increases before flattening out after 6 dimensions. The largest drop
in reconstruction loss for both occurs between 2 and 4 dimensions,
after which point the reconstruction loss plateaus.

Despite the similarities in their behaviour however, the VAE con-
sistently outperforms the AE for all dimensions. This result is sur-
prising, as the AE is optimised solely on the reconstruction loss while
the VAE simultaneously fits the KL divergence. However, a closer
examination of the training loss shown in figure 5 reveals that the AE
model has lower loss on the training data compared to the VAE.

The relative performance of the two models switches when the
models are evaluated on the validation and test data, suggesting that
the AE model is overfitting the training data to a higher degree, while
the VAE model is able to generalise more easily. This difference can

be attributed to the noise added to the latent space of the VAE during
training, the randomness of which helps to reduce overfitting.

This difference in behavior between the PCA and autoencoder
models as dimensionality increases can be attributed to their differ-
ent approaches to dealing with noise. Gaussian noise, which adds
variance to the data, can be problematic for PCA as it attempts to
encode all of the variance, including that added by noise. As more
dimensions are included, the model becomes increasingly overfit and
unable to generalize to new data. In contrast, autoencoders can learn
to filter out noise during the encoding process (Alain & Bengio 2012;
Bengio et al. 2012), allowing them to maintain accuracy with increas-
ing dimensionality. This ability to ignore noise enables autoencoders
to better capture meaningful features and trends in the data, whereas
PCA struggles to distinguish signal from noise.

To visualise how these losses translate into spectral reconstructions
we plot an example spectrum from the sample (from an absorption
galaxy) in the top panel of Figure 8, overlaying the 2 dimensional
predicted spectra from each of the methods. The 2 dimensional model
is chosen, as this is the dimension for which the performance of the
PCA and autoencoder models are most similar. From this, we can see
that the position of absorption and emission features are reproduced
well, as is the galaxy continuum up to ∼ 6500Å, after which point
it begins to over predict the continuum flux. We visually inspected
many spectra and their reconstruction, and notice that this difficulty
of the 2 dimensional PCA and AE models to reproduce the continuum
at the longest wavelengths is common across the sample.

These discrepancies are likely a result of the fact that the informa-
tion content of optical spectra is largest at shorter wavelengths (e.g.
around the 4000Å break, see Ferreras et al. 2023), and so greater
improvements in the reconstruction loss are achieved by correctly
fitting these more information-rich spectral regions. Thus, errors in
reproducing the spectra at 𝜆 > 6500Å are less costly, and so the
models do not learn to handle them as effectively.

Looking instead at higher dimensionality reconstructions, e.g. 10
dimensions as shown in the bottom panel of figure 8, it is clearly
visible that the additional parameters available allow the AE and
VAE models to better reproduce the full spectrum (as evidenced by
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Spectrum de-noising 9

Figure 6. Latent space representation of the 6 dimensional VAE model, points are coloured based on their classification. Coloured arrows at the edge of a plot
indicate points of the corresponding classification that lie outside the plotted range. Note that the order of the dimensions is arbitrary and has no relation to their
information content.

the lower reconstruction loss). Meanwhile, the PCA reproduction
significantly increased noise in the continuum, further increasing the
previous conclusion that additional dimensions mostly encode noise.

In order to test what spectra the models are worst at reproducing,
we identify the predicted spectra with the highest reconstruction
losses for each model. We find that the spectra with the greatest
loss is the same across all models. Additionally, looking at the top
5 highest reconstruction losses there is a large amount of overlap in
the spectra that occur between all of the models.

Visually inspecting the original SDSS versions of these common
spectra, while some of them have low SNR, others have SNR compa-
rable to spectra which are well reproduced. Instead, what is common
between the group is an unusual feature where the initial few flux
values of the spectra (up to ∼3725Å) are all significantly higher than
the continuum, being instead comparable to the peak H𝛼 flux values
seen in emission line galaxies. While this feature does overlap with
the [OII]3726Å doublet, it is too flat to be these lines - though in
some cases it does appear the line is superimposed on top of this
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10 M. Scourfield et al.

Figure 7. Comparison of how the mean reconstruction loss over the whole
test set

, measured using mean squared error, of the PCA and autoencoder models
vary with different numbers of latent dimensions.

feature - and so we believe this not to be a physical feature but an
error in the original SDSS spectra.

In the predicted spectra this feature is not present, and is instead
replaced with an OII emission line, and the continuum values are
consistent with those at higher wavelengths.

The fact that the presence of this unphysical feature causes spectra
to be badly reproduced shows that these models, while agnostic to the
physics responsible for spectral features, still do not blindly reproduce
unphysical features. Instead in the presence of anomalies the models
attempt to reconcile the errors with what they saw during training.

4.3 Line flux recovery

While we have shown in the previous section that the overall spectral
shape and features are recovered by the autoencoder models, we now
need to quantify the accuracy of the emission line fluxes that can be
recovered. We use pPXF (Cappellari & Emsellem 2004; Cappellari
2017, 2022) to fit the stellar continuum and emission line fluxes of
both the the original SDSS spectra and the models (both the PCA and
VAE). The two sets of fluxes are plotted against each other in Figure
9; this allows us to asses how well the line fluxes recovered from the
noise-added spectra by the VAE (or PCA) compare to those directly
measured from the original SDSS spectra. We show the results for
the 4 dimensional model.

We evaluate the performance of the models both using the full
range of fluxes probed, and only on the well sampled regions (the
latter labelled as "filled bins" in Fig. 9). We define such "filled bins"
as those where the number of measurements is > 𝑁/(𝑛𝑏𝑖𝑛𝑠 + 1),
where 𝑁 is the total number of points and 𝑛𝑏𝑖𝑛𝑠 the number of bins
used. We use this criteria as it selects bins with at least as many
spectra in them as we would expect from a uniform distribution.
Figure 9 includes the scatter of the fitted values over both ranges in

each panel. These values are shown for all dimensionalities, as well
as for the AE models, in Table 6.

The fluxes recovered by the VAE compare very well with the SDSS
reference over the flux range that is well sampled. Over this interval,
the scatter is 0.3 dex for H𝛼, the line typically with the highest
S/N, increasing to 0.45 dex for fainter lines such as [NII]𝜆6583
and [OIII]𝜆5007. For all the emission lines studies, the flux values
recovered by the VAE and PCA are overestimated at the lowest input
flux values, and the scatter increases. The overestimation of the fluxes
in the faint line regime is more severe for the PCA predictions than
for the VAE method for the H𝛼, [OIII]𝜆5007 and [NII]𝜆6583. The
overall scatter of the fluxes recovered by the PCA method is also
higher overall, and it is more common for line flux values not to be
recovered at all in the PCA predictions.

Comparing the scatter of VAE fluxes to the scatter obtained if we
treat the uncertainty on fitted SDSS flux values as the error, we find
the model scatter to be a factor ∼ 2 greater for all lines with the
difference being smallest for H𝛿 and greatest for [OIII]𝜆5007.

This shows that the flux values obtained after applying our model
to noise-added spectra have comparable accuracy to those obtained
from the original SDSS spectra and that through the application of
our model, data with lower SNR can be included in scientific analysis
with minimal loss of accuracy when compared to higher SNR data.
This accuracy loss can be further reduced if we are able to avoid the
areas of systematic over prediction in our model. One way to do this
is by applying appropriate flux cuts to keep line fluxes above these
regions.

5 TEST CASE: THE MASS-METALLICITY RELATION

To further assess the reliability of autoencoder-predicted emission
line fluxes from noisy optical spectra for galaxy evolution studies,
we investigate how well they can be applied to the study of the
mass-metallicity relation. We choose metallicity for this test, as they
require accurate measurements of several emission lines.

We create a new sample for this test, consisting of only star-forming
galaxies, which is where metallicity can be accurately calculated,
with sufficient S/N in the emission lines without contamination from
AGN activity. This sample is selected using the criteria listed in
Section 2, with the additional condition that the galaxies belong to
the star-forming subclass in the MPA-JHU DR7 catalogue, which is
based on PCA analysis by David Schlegel. This reduces the number
of galaxies to 43,952.

These selected galaxies cover a narrower range of H𝛼 flux values
compared to the previously selection. Thus when binning them based
on H𝛼 flux we use a reduced range of 101.4 −103.2 1e-17 erg/s/cm2,
still using 10 logarithmically spaced bins. However, we note that
the highest luminosity bin is not completely filled, containing only
778 spectra. As a result we are unable to select a full 1,000 spectra
from it, causing this sample to be slightly smaller than the previous
one. The other bins contain sufficient spectra to fill them. The final
sample contains 9,778 spectra, with 1,956 used for testing and 7,882
for training. Of the training set 1,956 are reserved for validation. This
follows the same proportions as used previously.

To make this test as relevant as possible for future work, we switch
from using simple uniform noise to using the full noise model based
on the performance of the DESI survey (see section 2). We also
scale the input low-redshift, high-S/N SDSS data to simulate how
the galaxies would appear in the DESI survey if they were all at
𝑧 = 0.1. To help differentiate between spectra with noise added using
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Spectrum de-noising 11

Figure 8. Comparison of the model reconstructions of an absorption galaxy from the test set. The top panel shows the 2 dimensional model reconstructions and
the bottom the 10 dimensional models. The residuals for each plot are presented in separate panels beneath their respective reconstructions. The vertical dashed
line corresponds to 6500 Å, beyond which the continuum is commonly over/under predicted for lower dimension models.

this method and those using the method discussed in section 2, we
refer to these spectra as ’DESI-like spectra’.

The VAE model is then re-trained on these DESI-like spectra,
and the model applied to the rest of the spectra to perform our test.
Line fluxes are once again measured using pPXF with the gas-phase
metallicities then calculated using the calibration of Pettini & Pagel
(2004):

12 + log(O/H) = 8.73 − 0.32 × log
(
[OIII]𝜆5007/H𝛽

[NII]𝜆6584/H𝛼

)
. (6)

The median error on metallicity is 0.09 for each of the three different
types of spectra we investigate.

We show the mass-metallicity relation (MZR) of the test set in
Figure 10. The left panel is the reference: it is the MZR derived from
the original SDSS spectra of galaxies at 𝑧 < 0.05. The middle panel
is the MZR as would be recovered by directly measuring the emission
line fluxes of the DESI-like spectra. Not only is the shape and scatter
of the MZR very poorly recovered, but only a small fraction of the
galaxies have high-enough signal in the emission lines to make a
metallicity measurement possible (we require S/N> 15 in the H𝛼

line, following Scholte & Saintonge 2023). Finally, the right-hand
panel shows the MZR using the line fluxes from the predicted spectra
- when the DESI-like spectra are passes through the 6 dimensional
VAE model.

Applying the VAE model to the DESI-like spectra both increases
the number of galaxies with measurable metallicites back to similar
levels as in the original SDSS spectra, and allows for both the shape
and scatter of the MZR to be recovered. The slightly increased scatter
(0.12 dex as opposed to 0.09 in the original SDSS sample) mostly
comes from the low mass / low metallicity regime, where we have
seen in Fig. 9 that line fluxes can be overestimated by the VAE model.

There is significant interest in studying not just the shape and
redshift evolution of the MZR, but also the nature of its scatter,
including any dependence on third parameters. The consensus is that
the scatter in the MZR can be best explained by variations in cold
gas contents (e.g. Hughes et al. 2013; Bothwell et al. 2016; Brown
et al. 2018; Chen et al. 2022; Scholte & Saintonge 2023), which also
manifest themselves as a correlation between MZR scatter and the
star formation rate (e.g. Ellison et al. 2008; Lara-López et al. 2010;
Mannucci et al. 2010). To show that the VAE-recovered line fluxes
can be used to recover not just the shape and total scatter of the MZR,
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12 M. Scourfield et al.

Figure 9. Line peak flux comparison between the original SDSS spectra and the different 4 dimensional model predictions (rows) for various lines (columns).
The AE method is not shown, though gives similar results to the VAE method. Data are split into 10 bins based on the original SDSS flux value. The error bars
show the median flux for each bin with errors corresponding to the 16th and 84th percentiles. The standard deviation for all points is shown in each panel, as
is the standard deviation for points in full bins only. Full bins are defined as those containing more than 𝑁/(𝑛𝑏𝑖𝑛𝑠 + 1) points and shown in black, whereas
unfilled bins are shown in orange. The histograms in the top row show the distribution of the original SDSS flux value for each line. In subsequent rows this is
reproduced as a dashed outline, with the grey bars showing how many lines in each bin were successfully fit using pPXF.

H𝛼 H𝛿 OIII 4363 SII 6716 OIII 5007 NII 6583
Model 𝜎 𝜎 𝑓 𝑖𝑙𝑙 𝜎 𝜎 𝑓 𝑖𝑙𝑙 𝜎 𝜎 𝑓 𝑖𝑙𝑙 𝜎 𝜎 𝑓 𝑖𝑙𝑙 𝜎 𝜎 𝑓 𝑖𝑙𝑙 𝜎 𝜎 𝑓 𝑖𝑙𝑙

2 dimensions
PCA 0.52 0.33 0.51 0.39 0.82 0.61 0.64 0.44 0.65 0.54 0.68 0.50
AE 0.45 0.36 0.52 0.35 0.75 0.60 0.61 0.45 0.53 0.42 0.64 0.48

VAE 0.42 0.30 0.56 0.37 0.75 0.62 0.53 0.41 0.49 0.38 0.59 0.49

4 dimensions
PCA 0.44 0.31 0.56 0.39 1.00 0.59 0.58 0.37 0.70 0.56 0.64 0.51
AE 0.41 0.34 0.54 0.34 0.71 0.59 0.55 0.42 0.52 0.41 0.62 0.52

VAE 0.36 0.29 0.45 0.37 0.74 0.63 0.52 0.38 0.55 0.44 0.56 0.45

6 dimensions
PCA 0.43 0.37 0.70 0.42 0.82 0.55 0.58 0.38 0.72 0.57 0.62 0.49
AE 0.43 0.35 0.52 0.36 0.72 0.57 0.51 0.39 0.52 0.44 0.61 0.48

VAE 0.37 0.29 0.41 0.33 0.76 0.61 0.53 0.42 0.54 0.43 0.59 0.48

10 dimensions
PCA 0.55 0.37 0.64 0.40 0.86 0.61 0.60 0.42 0.73 0.56 0.71 0.57
AE 0.41 0.32 0.48 0.38 0.80 0.60 0.59 0.40 0.67 0.45 0.60 0.49

VAE 0.43 0.31 0.45 0.36 0.77 0.60 0.53 0.38 0.64 0.43 0.59 0.48

Table 6. The standard deviations for the peak line flux predictions from our models vs the original SDSS spectra for a variety of lines. For each line, we show
both the standard deviation over the full range of line fluxes as well the standard deviation calculated using only full bins - defined as those containing more than
𝑁/(𝑛𝑏𝑖𝑛𝑠 + 1) . points

but also the systematic trends within the scatter, the points in Fig. 10
are color-coded by total SFR. Just like in the original SDSS sample
(left panel), the VAE predicted measurements (right panel) show the
trend that at fixed stellar mass the lower metallicity galaxies have
lower SFRs (and vice versa).

This proof-of-concept test shows that spectral denoising using
VAEs makes it possible to retrieve accurate line fluxes and their
derived quantities for galaxy spectra which otherwise would not be
usable directly.

6 CONCLUSIONS

We used autoencoders to de-noise galaxy spectra, comparing to the
performance of a more traditional PCA method. We use a sample
of SDSS spectra, selected to have a uniform distribution of H𝛼 line
fluxes. The autoencoder and PCA models are trained on noise-added
spectra, using the original SDSS spectra as ground truth when as-
sessing the performance of the models.

Training models with varying numbers of latent dimensions, we
find little variation in the latent spaces produced. In each case, emis-
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Spectrum de-noising 13

Figure 10. The mass-metallicity relation (MZR) for a sample of star-forming galaxies. Left: the MZR relation from the original SDSS sample (𝑧 < 0.05).
Middle: The MZR for DESI-like spectra - the same galaxies, but transformed to mimic the S/N of DESI spectra at 𝑧 = 0.1. Right: the MZR of the predicted
spectra when the DESI-like spectra are passed through the 6 dimensional VAE model. In all panels, the mass distribution of the full sample (orange histogram)
is compared to that of the galaxies with sufficient signal to enable a metallicity measurement (H𝛼 S/N> 15, blue histogram). The points are coloured based on
SFR, and in each panel the standard deviation around the MZR of Scholte & Saintonge (2023) is given. For sufficiently filled bins error bars are plotted show
16th, 50th and 86th percentile of the metallicity. The median error on metallicity is 0.09 for each of the three different types of spectra.

sion line galaxies separate themselves out from other classifications,
whereas narrow-line AGN are the most clustered.

The reconstruction loss of the PCA model increases with dimen-
sionality, showing that most of the information is encoded in the first
2 dimensions. Meanwhile, the autoencoder models outperform the
PCA method in all number of latent space dimensions tested. The
variational autoencoder outperforms the autoencoder for all dimen-
sions, but both show significantly smaller reconstruction loss than
the PCA.

For low dimensional reconstructions, the continuum is frequently
over/under predicted in the higher wavelength range of our spectra
(> 6500Å). This is due to the lower information content in these re-
gions relatively to lower wavelengths (Ferreras et al. 2023), meaning
that the limited number of features which can be encoded by low
dimension representations do not include those more information-
poor spectra regions. Once more dimensions are added to the model
such that more features can be encoded these over/under predictions
become less common.

We fit the original SDSS and predicted spectra with pPXF, and
compare the measured emission line fluxes. The VAE model repro-
duces the original SDSS values well over the range of fluxes well
sampled in the training set, with standard deviations of 0.3-0.5 dex
depending on the spectral line - a factor 2 greater than those obtained
from fits to the original SDSS spectra.

To demonstrate the validity of the emission line fluxes obtained
from VAE predicted spectra, we apply the VAE model to a sample
of star-forming galaxies with added noise consistent with the DESI
survey at 𝑧 = 0.1. We reproduce the shape and scatter of the original
MZR and show that dependency of the scatter on a third parameter
is preserved.

These results show the potential for machine learning techniques
as a part of data analysis pipelines, as a method of maximising the
data retrieved from spectra. While a loss of accuracy when working
with low SNR data is inevitable we find that by using autoencoder
models this loss can be reduced to enable for more accurate scientific
analysis. Further work on these techniques, such as by expanding

training data into currently under dense regions in order to improve
the model’s prediction capabilities within them, can reduce this loss
of accuracy even further.

Reducing the SNR requirements in order to perform emission line
analysis on spectra allows for our understanding of galaxies to be
pushed forward both directly, through allowing analysis of trends in
higher redshifts objects previously only observable in closer, higher
SNR observations, and indirectly by allowing for more data to be
gathered during surveys. Reductions in the required SNR of spectra
in surveys means less time is required observing an object in order
to obtain useable data, increase the rate at which targets can be
observed. It also allows for the redshift range over which surveys are
able to gather usable data to be expanded as they are able to observe
regions where data were previously too noisy without the need for
modifications to the instruments themselves.
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In this work we make use of the MPA-JHU catalogues which con-
tain emission line analysis for SDSS DR7, in addition to collating
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information from other sources. These catalogues are available at
https://wwwmpa.mpa-garching.mpg.de/SDSS/DR7/.
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