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A B S T R A C T   

Reducing pipe leakage is one of the top priorities for water companies, with many investing in higher quality 
sensor coverage to improve flow forecasting and detection of leaks. Most research on this topic is focused on 
leakage detection through the analysis of sensor data from district metered areas (DMAs), aiming to identify 
bursts after their occurrence. This study is a step towards the development of ‘self-healing’ water infrastructure 
systems. In particular, machine learning and deep learning-based algorithms are applied to forecasting the 
anomalous water flow experienced during bursts (new leakage) in DMAs at various temporal scales, thereby 
aiding in the health monitoring of water distribution systems. This study uses a dataset of over 2,000 DMAs in 
North Yorkshire, UK, containing flow time series recorded at 15-minute intervals for a period of one year. Firstly, 
the method of isolation forests is used to identify anomalies in the dataset, which are cross referenced with 
entries in the water mains repair log, indicating the occurrence of bursts. Going beyond leakage detection, this 
research proposes a hybrid deep learning framework named FLUIDS (Forecasting Leakage and Usual flow 
Intelligently in water Distribution Systems). A recurrent neural network (RNN) is used for mean flow forecasting, 
which is then combined with forecasted residuals obtained through real-time Kalman filtering. While providing 
expected day-to-day flow demands, this framework also aims to issue sufficient early warning for any upcoming 
anomalous flow or possible leakages. For a given forecast period, the FLUIDS framework can be used to compute 
the probability of flow exceeding a pre-defined threshold, thus allowing decision-making for any necessary in
terventions. This can inform targeted repair strategies that best utilize resources to minimize leakages and dis
ruptions. The FLUIDS framework is statistically assessed and compared against the state-of-practice minimum 
night flow (MNF) methodology. Based on the statistical analyses, it is concluded that the proposed framework 
performs well on the unobserved test dataset for both regular and leakage water flows.   

1. Introduction 

With rising population levels putting pressure on water supplies, 
efficient distribution of this increasingly scarce resource is crucial if the 
needs of consumers are to be met. For 2018–2019, in England and 
Wales, an average of 3170 million liters (21% of the water entering the 
public supply) was lost daily as leakage. This equates to wastage of 53 
liters per person per day (PR19 final determinations: Securing cost ef
ficiency technical appendix 2019). Such high levels of leakage result not 
only in higher energy use (and associated carbon emissions) in water 
treatment (Spedaletti et al., 2022), but also undermines efforts to reduce 
consumption on the demand side, as consumer confidence in their water 
supplier is reduced. This is compounded by the fact that, despite efforts 

by the water companies to improve leakage management, a significant 
proportion of bursts in distribution systems are reported by consumers 
rather than detected by the companies themselves. This puts increased 
pressure on supply-based solutions for rising water consumption, such as 
the construction or expansion of water storage and treatment infra
structure, many of which are carbon-intensive and will set the water 
industry back in its goal of achieving net-zero by 2030 (Net Zero 2030 
Routemap, 2020). Instead, a sustainable approach to reduce 
supply-based wastage via leakage is needed (Ávila, Sánchez-Romero, 
López-Jiménez & Pérez-Sánchez, 2022), which will in-turn impact 
consumer behavior by building trust. Hence, more proactive and reliable 
approaches are required for leakage management in water distribution 
systems (Proactive approach to leaks required to meet tough Ofwat 
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targets, 2020; Zanfei, Menapace & Righetti, 2023). 
Hence, a priority for Ofwat, the economic regulator of the water 

industry in England and Wales, is to reduce leakage across water dis
tribution networks, ensuring a more significant proportion of water is 
available to meet the population’s needs and improving consumer 
confidence in the water supply. The standard practice for water utility 
companies in the UK is to divide the water distribution network into 
district meter areas (DMAs). DMAs represent isolated water network 
areas, typically serving up to 2000 households, where the flow is 
measured at the inlet and outlet. Leakage management in the UK is 
usually performed at the DMA level (Morrison, 2004). 

In the field of leakage management of water flow distribution pipes, 
leakage detection has been a critical research subject (Romano, Kapelan 
& Savić, 2014; Chan, Chin & Zhong, 2018; Puust, Kapelan, Savic & 
Koppel, 2010; Aksela, Aksela & Vahala, 2009; Mounce, Boxall & 
Machell, 2010). Sensors at the DMA inlet and outlet record flow data at 
regular time-intervals, monitoring the flow behavior. This data can be 
fed into leakage detection models that seek to identify leaks from 
changes in the flow profile over a set time period. Many of these models 
are trained using examples of normal flow data and flow during leakage 
bursts. The burst examples are typically obtained by matching the 
timestamps of abnormal flow patterns to pipe repair records or reports of 
visible leakage from consumers to water companies. Alternatively, the 
data can be simulated through a hydrant flush event designed to mimic a 
leakage burst (Birek, Petrovic & Boylan, 2014). Some studies do not use 
data from real water distribution networks and instead extract pressure 
data from simulation software-based network models (Leu-and Bui, 
2016). 

The most common methods for identifying leaks utilize the concept 
of minimum night flow (MNF) (García, Cabrera, and Cabrera, 2012). 
This technique recognizes that water usage during nighttime hours is 
less variable compared to the daytime. Hence, the average nightly 
minimum over a specified window can be used as a baseline for com
parison with new flow data, with a significant variation (relative to a 
pre-defined threshold) indicating a leakage (Malithong, Gulphanich, 
and Suesut, 2005, Mounce, Boxall, and Machell, 2007). However, these 
techniques are not highly reliable as MNF methodologies have to deal 
with several uncertainties. Accurate use of MNF relies upon having 
sufficient knowledge to estimate several parameters, including active 
night users, leakage exponent (which varies with system pressure), and 
the hour-to-day factor (Amoatey, Obiri-Yeboah, and Akosah-Kusi, 
2021). Reliable estimation of these parameters typically requires pres
sure data in addition to the flow data. Selection of the best time window 
for MNF is an additional consideration. It has been shown that minimum 
error does not correspond with the selected night flow window but with 
the hour in which average demand applies (García, Cabrera, and Cab
rera, 2012). While it is often the responsibility of trained operators to 
identify leakage from MNF, a significant proportion of leaks are reported 
to the water companies by their customers (Mounce, Boxall, and 
Machell, 2007). 

More recent work conducted in the leakage management and 
detection domain has explored the potential of using machine learning 
and deep learning tools. These include artificial neural networks (ANNs) 
(Mounce and Machell, 2006, Aksela, Aksela, and Vahala, 2009, 
Romano, Kapelan, and Savić, 2014, Zanfei et al., 2022), support vector 
machines (Geberemariam, Juran, and Shahrour, 2014, Kang et al., 2018, 
Gao, Yang, and Hu, 2010), Kalman filters (KFs) (Ye and Fenner, 2011, 
Jung and Lansey, 2015), and wavelet analysis (Romano, Kapelan, and 
Savić, 2014). With sufficient quality and quantity of training data, these 
methods have demonstrated strong performance in leakage identifica
tion (Mounce and Machell, 2006). Recent work has also seen machine 
learning-based leakage detection built into larger models that act as 
digital twins of water systems (Wu et al., 2023), recognizing that 
intelligent management of water systems is a key component of the drive 
towards sustainable smart cities (Oberascher, Rauch, and Sitzenfrei, 
2022). Apart from leakage detection, another critical domain in the field 

of leakage management is the forecasting or prediction of leakage. Un
like leakage detection, which is concerned with the identification of 
bursts from flow data after they have occurred, leakage pre
diction/forecasting aims to anticipate anomalous flow before it occurs, 
thereby enabling early warning of potential leakage within a given 
forecasting period. This allows preventative maintenance to be sched
uled, which can act to repair pipes before any water is lost as leakage. 
While the field of leakage detection has observed several dedicated 
studies, leakage prediction/forecasting has received significantly less 
attention from the research community due to its complexity. Leakage 
forecasting at a regional level has been conducted over various time 
periods ranging from weeks to a year. For example, Birek et al. (2014) 
utilize an evolving fuzzy algorithm on historic leakage levels and repair 
data across nine regions consisting of aggregated DMA areas to forecast 
the future rates of monthly leakage (Birek, Petrovic, and Boylan, 2014). 
Studies on leakage forecasting at the individual pipe level have analyzed 
pipe properties, such as diameter, age, and material, as well as other 
factors, including soil type, ground movement, and traffic loading, to 
assess their impact on leakage likelihood (Leu-and Bui, 2016, Jing and 
Zhi-Hong, 2012; Barton, Farewell, Hallett, and Acland, 2019). 

In recent years, the forecasting of water flow data at a DMA level has 
gained attention (Hutton and Kapelan, 2015, Mounce, 2013). Typically, 
these studies have primarily focused on predicting regular water de
mand rather than specifically addressing leakage prediction (Pandey, 
Bokde, Dongre, and Gupta, 2021; Kavya, Mathew, Shekar, and P, 2023). 
Water demand forecasting aims to estimate expected water usage, and 
thus it mainly focuses on forecasting typical non-leakage flow. On the 
other hand, leakage prediction requires forecasting anomalous flow, 
which can indicate potential leakage incidents (Geelen, Yntema, Mole
naar, and Keesman, 2021). While water demand forecasting is valuable 
for resource planning, leakage prediction can significantly improve asset 
repair strategies and enhance system efficiency by reducing water loss 
(McMillan and Varga, 2022). 

However, there have been some studies that attempt to detect 
leakage by forecasting expected non-leakage flow levels using Bayesian 
forecasting methods (Hutton and Kapelan, 2015; Geelen, Yntema, 
Molenaar, and Keesman, 2021). These studies compare the forecasted 
flow levels with incoming flow data, and a significant difference is 
considered indicative of leakage (Hutton and Kapelan, 2015; Geelen, 
Yntema, Molenaar, and Keesman, 2021). It has been suggested that 
machine learning techniques, particularly ANNs, have the potential to 
outperform baseline methods in forecasting flow data at the DMA level 
(Mounce, 2013). Recent research has indicated that long short-term 
memory (LSTM)-based neural networks offer superior performance in 
demand forecasting, surpassing other time series forecasting models for 
predicting typical short-term water demand in a single DMA case study 
(Kavya, Mathew, Shekar, and P, 2023). Furthermore, recent work on the 
forecasting of time series climate data suggests that using an information 
theory based loss function (Sayeed et al., 2021) can improve perfor
mance over the traditional loss functions seen to date in water demand 
forecasting (Kavya, Mathew, Shekar, and P, 2023). 

Hybrid forecasting methods, which combine various forecasting 
techniques with error (residual) forecasting modeling, have shown high 
levels of accuracy and the ability to forecast time series with different 
characteristics (de Oliveira, Silva, and de Mattos Neto, 2022). Applying 
these methods to the water sector has clear benefits, and some studies 
have already applied hybrid methods to typical water demand fore
casting (Bata, Carriveau, and Ting, 2020; Pandey et al., 2021). The 
effectiveness of residual forecasting in improving time series forecasting 
of water demand has been demonstrated at both the regional (Chen, 
Long, Bai, and Zhang, 2019) and DMA levels (Brentan et al., 2018), with 
the KF being the preferred method for residual forecasting in these 
studies. However, it should be noted that these studies have focused 
solely on demand forecasting and do not address the forecasting of 
leakage flow (Chen, Long, Bai, and Zhang, 2019; Brentan et al., 2018). 
Furthermore, the LSTM-based forecasting method (Kavya, Mathew, 
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Shekar, and P, 2023) and the residual forecasting approach with KF 
(Brentan et al., 2018) have so far been applied only at the scale of a 
single DMA and have not been combined or applied to large datasets, 
such as the thousands of DMAs managed by each water company 
(Kavya, Mathew, Shekar, and P, 2023; Brentan et al., 2018). Therefore, 
there is a need to explore the potential of combining these methods and 
apply them to a large dataset to harness their benefits on a broader scale 
(such as the thousands of DMAs managed by each water company). 

Although there is clearly significant potential in this area, there has 
not yet been a study that uses real sensor data and sophisticated data- 
driven machine-learning and deep-learning techniques to forecast, at 
any geographic level, the anomalous flow that indicates bursts/leakages. 
By forecasting anomalous flow, rather than contrasting a forecast of 
expected flow with incoming data, early warning can be provided for 
leakage, facilitating faster repair. An accurate forecast of leakage flow 
can also provide an estimate of expected water loss, which can inform 
the prioritization of repair jobs. This places leakage forecasting within a 
bigger system of self-healing leakage management, which considers the 
processes of anticipation, detection, and repair (McMillan and Varga, 
2022). 

Hence, the study presented herein proposes a hybrid deep learning 
framework named FLUIDS (Forecasting Leakage and Usual flow Intel
ligently in Distribution Systems) for leakage forecasting at a DMA level. 
FLUIDS is based on LSTM recurrent neural networks (RNNs) and KF 
which utilizes the recorded flow data up to the current time step (t) to 
forecast flow for n future time steps (t + n). The framework is trained and 
tested using an extensive database of ~2000 DMAs from North York
shire, UK, containing 15-minute interval flow data for a year. The 
trained framework is statistically validated for high goodness-of-fit and 
forecasting power. Furthermore, due to the data-driven nature of the 
proposed FLUIDS framework, it can be efficiently trained for other 
DMAs using the flow data available to the water utility companies and 
hence can be effectively utilized for proper water resource management. 

2. Dataset 

The dataset used in this study is provided by Yorkshire Water, the 
utility company responsible for water supply and distribution in North 
Yorkshire, UK. For water distribution management, Yorkshire Water 
divides this region into over 2000 DMAs. Fig. 1 presents the locations of 
the ~2000 DMAs used in this study. 

For each DMA, the net flow data (in liters/second) is available at 15- 
minute intervals for a year, from April 2016 to April 2017. Yorkshire 
Water assigns each flow data point a validity code; ‘V’ for valid, ‘I’ for 
invalid, or ‘M’ for missing, as it is not uncommon for a DMA to have 
periods of missing or invalid data due to faults in the sensors. However, 

these faults are infrequent and represent less than 5% of the DMA flow 
data provided for this study. Fig. 2a shows the full year of flow data for 
one exemplar DMA. It can be observed that the magnitude of flow re
mains broadly consistent throughout the year, with slight seasonal 
fluctuations as expected. Fig. 2b shows a standard week of valid flow 
data from the same DMA and the daily fluctuations can be easily seen in 
the data indicating lower nightly usages. On a 24-hour scale, minimums 
are seen during the night hours, with peaks occurring during the 
morning and late afternoon that correspond with a large proportion of 
the population leaving for and returning from work/school. The 
example in Fig. 2a also contains very short periods of missing data and 
several very short ‘spikes’, where the flow magnitude jumps well above 
the values typically seen. The provided dataset also contains the repair 
log of the DMAs with their repair dates. Over 5000 repairs are reported 
in the repair log provided for this study, covering over 1600 unique 
DMAs. The dataset provided by Yorkshire Water doesn’t assign a reason 
for the conducted repairs. It is assumed that the majority of repairs are in 
response to leakage or damage to the pipes. Repairs are typically 
prompted either by customer leakage reports or identification of unusual 
flow data by Yorkshire Water operators. While leaks that are customer- 
reported and visible at surface level are often tackled within a few hours 
or days, leaks that are not visible may take several weeks to be repaired. 
This delay between leakage and repair means that a comparison of flow 
and repair logs alone is insufficient for verifying the leakage instances. 
Instead, a method is needed for the identification of flow data that 
corresponds to leakage and the timing of which can then be compared to 
recorded repairs. In the absence of widespread metering, repair data is 
the best alternative for the validation of the models. 

3. Dataset pre-processing 

In an ideal scenario, the FLUIDS framework would undergo training 
using a dataset comprising confirmed leakages, as well as confirmed 
non-leakage flow, extracted from a complete dataset devoid of any 
missing or invalid water flow data. However, this ideal scenario is un
realistic due to the presence of various issues and errors inherent in real- 
time sensor data collection. Therefore, it becomes necessary to statisti
cally complete the available water flow data and carefully select 
appropriate examples of water flow data that accurately represent 
bursts/leakage events and periods of regular/non-leakage flow. This 
section outlines the pre-processing steps taken to generate the essential 
inputs for training the proposed framework. 

The sensor data obtained from the DMAs often contain missing and 
invalid flow data points thereby requiring statistical completion of the 
flow data. In this study, Kalman smoothing is used to complete the 
dataset. Once the flow data is completed, an anomaly detection algo
rithm, such as isolation forests, is applied to identify outlier points 
corresponding to pipe leakage. It should be noted that the repair logs 
may not precisely align with the timestamps of the leakages (as repair 
process may be conduct hours to weeks after the leakage event), making 
it necessary to employ external algorithms to statistically label the most 
probable leakage points. After identifying the outliers, which represent 
the leakage points, the study selects appropriate time-series examples of 
both leakage data (LKG) and non-leakage data (NLKG) for approxi
mately 2000 DMAs. This process results in a total of approximately 
10,000 flow data series that are utilized for training. 

3.1. Handling missing and invalid data 

Before training the proposed FLUIDS framework, any errors in the 
flow data must be identified and replaced. Errors may be in the form of 
missing or invalid data. The data is deemed invalid if it has a value of less 
than zero (as flow values cannot be negative) or if it has a preassigned 
‘invalid’ flow validity code. Furthermore, missing data is identified by 
the presence of ‘NaN’ values or by the ‘missing’ flow validity code. 

The need for pre-processing due to the prevalence of missing or Fig. 1. DMA locations.  
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erroneous data in water flow time series is a recognized issue (Moretti 
et al., 2022), and several methods have been proposed for dealing with 
this issue, including filling missing data with preceding flow values (Wu 
and He, 2021; Xue et al., 2022), but there is no singular method that is 
recognized as the standard in this field (O’Halloran and Jarrett, 2006). 
In order to rectify these issues in the flow data, this study uses Kalman 
smoothing to replace invalid data or complete the missing data 
(Shumway and Stoffer, 1982). Kalman smoothing is able to capture the 
time-varying behavior present in dynamic models by updating the es
timates based on available past and future measurements. This allows 
for more accurate completion of missing data points, even when the 
system’s characteristics are evolving (e.g., changes in the physical 
properties of the water pipes due to aging, corrosion, etc.). Kalman 
smoothing is also able to effectively handle missing data that follows an 
unpredictable pattern in terms of the frequency and length of missing 
sections (as is the case for the data used in this study) (Shumway and 
Stoffer, 2017). By smoothing the time series, not just completing the 
missing sections, Kalman smoothing reduces the impact of noise and 
outliers, helping to reveal underlying trends in the water flow data and 
thereby enhancing the data completeness. Thus Kalman smoothing is an 
ideal candidate model for handling missing or invalid time series data 
(Menéndez García et al., 2022; Skarlatos et al., 2023). 

The smoothing process involves estimating the ‘state’ of the time- 
series data (in this case, for the flow data) before and after the missing 
portion of the data, to perform appropriate interpolation of the obser
vations. This is done by first performing a forward pass through the 
time-series data with a KF. The KF is a state-space method that models 
the observation and the state of a given time-series data using Eqs. (1) 
and 2, respectively. 

yt = xt + vt
(
∼ N

(
0, σ2)) (1)  

xt = θxt− 1 + wt
(
∼ N

(
0, τ2)) (2)  

where yt is the observed (or measured) value at time t, xt represents the 
underlying state, θ is a tuning parameter, and vt and wt are noise com
ponents that are assumed to be normally distributed with a mean of 
0 and standard deviations of σ and τ, respectively. 

The KF is a simple dynamic Bayesian network, which estimates the 
underlying state at each time-step t recursively, based on a series of 
observed measurements assumed to be a linear combination of the state 
and noise (Masreliez and Martin, 1977). The KF process consists of a 
prediction step, where the underlying state and co-variance are esti
mated, and an update step, where information from the observed mea
surement (at time-step t) is used to revise state and co-variance estimates 
(Durbin and Koopman, 2012). Kalman smoothing is a post-processing 
method where, for a given window (t = 1,2,…,T) in addition to a for
ward pass with KF, a backward recursive pass estimates each past state, 

taking into account information from after the smoothing window 
(t > T) (Shumway and Stoffer, 2017). Kalman smoothing is an 
improvement over KF alone, as smoothing can refine estimates of pre
vious states in the light of later observations (Briers, Doucet, and Mas
kell, 2009). By incorporating both past and future observations, taking 
into account the uncertainty and noise present in the measurements, 
Kalman smoothing ensures that the completed data points are good 
representation of the state and trends observed in the data especially in 
the vicinity of the missing data (Shumway and Stoffer, 2017). Hence, 
using Kalman smoothing for data replacement, any erroneous (i.e., 
invalid and missing data) flow data is rectified, and complete flow data 
is available to train the proposed FLUIDS framework. Sections of missing 
or invalid flow, as defined by the flow validity codes assigned by 
Yorkshire Water or by the presence of NaNs, zeros, or negative values in 
the flow data, are replaced by the process of Kalman smoothing. 

A preliminary analysis of the initial dataset used in this study shows 
that ~95% of sections of missing or invalid flow data have under 480 
datapoints (equivalent to 5 days compared to 1 year of total available 
water flow data), with over 85% of sections containing less than 96 
datapoints (equivalent to 24 h). The median and mode of the missing or 
invalid sections are observed to be 5 datapoints (equivalent to 75 min). 
Hence such small a ratio of missing/invalid data is not expected to affect 
the Kalman smoothening process. It should also be noted that from the 
total available flow data only ~10,000 randomly selected groupings 
representing leakage and non-leakage flow are used to train the 
framework, and so the impact of missing or invalid data is further 
restricted (this is explained in Section 3.3). 

Fig. 3 shows a short section of flow data from an exemplar DMA (a) 
before and (b) after Kalman smoothing. The replaced section of flow, 
which was missing in this instance, smoothly connects the preceding and 
subsequent data, producing a flow profile that follows the expected 
pattern for this section. The fluctuation from the overall flow curve is no 
more than is seen is the observed adjacent data. Thus, Kalman 
smoothing can replace erroneous sensor data with realistic values based 
on the available non-erroneous data. This allows for complete flow data 
to be provided to the leakage identification model and ensures that the 
anomaly detection stage of the framework is targeting leakage rather 
than erroneous data. 

3.2. Anomalous flow detection and leakage labeling 

Once the flow data has been through pre-processing to replace 
missing or invalid data, it is essential to label the leakage data appro
priately to train the FLUIDS framework. Since leakage labels are not 
directly available from the provided dataset, based on existing literature 
(Mounce, Boxall, and Machell, 2007; Mounce et al., 2013) it is assumed 
that some groups of outliers in the flow data are indicative of leakage. To 

Fig. 2. Flow data from DMA 586 for (a) a full year and (b) a typical week.  

L. McMillan et al.                                                                                                                                                                                                                               



Sustainable Cities and Society 99 (2023) 104934

5

ascertain that the identified outliers highly likely represent leakage, 
additional steps were adopted based on a review of relevant literature 
and discussions with experts at Yorkshire Water. As there may be other 
causes of outlier flow, further criteria must be met in order for an outlier 
grouping to be defined as probable leakage. First, this section verifies the 
assumption that many outliers correspond to leakage by checking the 
time difference between the detected outlier and the nearest repair log, 
as it is expected that the pipe repair would have been conducted quickly 
after the leakage burst. The following section then details the additional 
criteria that must be met for outliers to be selected as LKG groupings, 
which are used to train the proposed framework. 

It is important to acknowledge that this holds true only for leakages 
that are eventually detected by the water company, either through 
customer reports or flow monitoring. Leakage that occurs gradually and 
remains undetected for an extended period may not have a corre
sponding repair log and might not be identified as an outlier, especially 
if the leakage began before April 2016 (the start of the study period). 
Consequently, the outliers selected to train this framework are more 
likely to represent new bursts or leakage events rather than background 
leakage. If data on background leakage were to become available, the 
framework could be trained using relevant examples. However, such 
data is not accessible for the current study. Nevertheless, the analysis of 
|Z| values, as presented in the results section of this study, confirms that 
the points selected during the data pre-processing stage indeed represent 
genuine outliers. 

Outliers are identified using a tree-based unsupervised machine 
learning algorithm known as isolation forests (Liu, Ting, and Zhou, 
2008). The concept behind isolation forests is that the outliers are 
typically easier to isolate than normal data points, based on their rarity 
and different attribute values. In terms of decision trees, this places 

outliers closer to the root node than expected data points. The out
liers/anomalies are distinguished from the non-outliers/anomalies 
based on a hyperparameter called contamination fraction which sets 
the classification threshold (Liu, Ting, and Zhou, 2012). In this study, a 
contamination fraction of 0.005 is selected. The anomaly detection 
process allows the data to be labeled as outliers and non-outliers. Out
liers can then be further analyzed to establish whether they are indica
tive of potential leakage. 

Outliers are detected in the completed flow data for all DMAs using 
the isolation forests algorithm. Fig. 4 presents the outliers detected 
inflow data of two DMAs. The dashed lines in the figures also show the 
dates on which the corresponding DMAs were repaired, based on the 
repair log. It can be observed from the figures that the algorithm per
forms well in identifying both extreme outliers and extended periods of 
unusual flow rates. The detected outliers, particularly extreme outliers, 
seem to correlate well with repair dates. Though some repair dates are 
observed to be away from the outlier data, this can be due to the repairs 
being conducted for reasons other than pipe leakage, which are not of 
interest in this study. It is further observed that the algorithm also flags 
some other unusual flow data points that do not appear to be leakages. 
Hence, it is crucial to identify outlier groups so that only extended pe
riods of irregular flow are flagged as possible leakage, while isolated 
individual outliers are discarded. For this reason, LKG groupings are 
required to be a minimum of 20 outliers in length. The literature sup
ports this approach in the field, suggesting that anomalous flow shorter 
than a few hours in length is likely not leakage but sensor error, fire
fighting, or an industrial event (Mounce, Boxall, and Machell, 2007). 

Identifying accurate leakage data points is essential in developing a 
reliable flow forecasting tool that can accuracy anticipate bursts. The 
assumption of using the outliers as the proxy for real leakage is further 

Fig. 3. Section of missing data (a) before and (b) after Kalman smoothing, DMA 586.  

Fig. 4. Outlier identification and repair dates for DMAs: (a) 586, (b) 1316.  
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validated by comparing the time differences between the outliers and 
repair dates from the repair log. Some fluctuation between the leakage 
and repair times is expected, as the time taken to respond to suspected 
leakage can vary depending on factors such as accessibility, size, and 
visibility. Also, since the repair logs only contain the dates of repair 
(rather than exact timestamps), outliers identified on the same day or 
closely before or after the repair can be used to validate the leakage 
labels conducted via isolation forests. Fig. 5 shows the time difference 
between each repair and the closest outlier before and after the repair 
for DMA 586, which has undergone 22 repairs during the year. It is 
noted that outliers largely correspond well with the recorded repairs, 
with a significant number of repairs occurring within 24 hours of an 
outlier. Those repairs that occur within 24 hours of an outlier likely 
respresent the visible leakages reported by the customers. Almost all 
recorded repairs in the example shown in Fig. 5 took place less than 16 
days after a period of outlier flow, with many taking place less than ten 
days after an outlier. This falls well within the repair timescale that 
would be expected for less urgent, non-visible leakage or leakage on land 
requiring permissions for access. These findings confirm that repair data 
is the best proxy for confirmed bursts. 

3.3. Data preparation 

Once the outliers have been identified, these need to be grouped into 
LKG and NLKG data in order to train the forecasting model. Outliers that 
sit very close together (within a few hours of each other) are likely to 
indicate a single burst rather than two distinct bursts, so these are 
grouped together. Hence, if the outliers are within six hours of each 
other, they are placed within the same outlier grouping, with interim 
data points also labeled as outliers. This is done for all outliers for each 
DMA flow record. A minimum length of outlier grouping is chosen, as 
short periods of anomalous flow or unique outlier points may indicate 
causes other than leakage (such as anomalous usage). Additionally, 
these groupings must be of sufficient length to train the LSTM-RNN. The 
length of each outlier grouping is computed, and the ones with fewer 
than 20 data points are ignored for this study. The literature suggests 
that shorter periods of anomalous flow tend to represent firefighting or 
industrial events rather than leakage (Mounce, Boxall, and Machell, 
2007). The finally selected outlier groupings represent the potential 
leakage groups. This LKG flow data is expected to be forecasted by the 
final trained FLUIDS framework, thus preceding flow data is required to 
be used as the input. Hence the outlier/leakage (LKG) groupings must 
also be proceeded by a sufficient amount of non-outlier datapoints to 
serve as an input to the LSTM-RNN. To have sufficient data for training, 
this input data needs to be equal to or greater than the LKG data in 
length. LKG groupings that do not satisfy this requirement are discarded. 
The maximum length of input data is set to 672 data points, representing 
a week’s flow data. This is deemed sufficiently long to give a represen
tative sample of flow before an outlier. A total of 3409 LKG groupings 

are selected with these criteria. Since the RNNs, or any ANN-based 
model, require a set number of input and output data points, the 
length of LKG groupings and the preceding input data must be the same 
for all examples. The maximum length of LKG data is observed to be 335 
points. Hence all inputs need to have 672 data points, and the outputs 
need to be 335 in length. This consistency is obtained by zero-padding, 
where zeros are added before the flow data for inputs and after the flow 
data for outputs (i.e., LKG data). Zero padding ensures that all LKG 
groupings have the same total length, which is required to train the 
LSTM-RNN. This process prepares the leakage dataset. An example of a 
LKG grouping is provided in Fig. 6a. 

As the proposed FLUIDS framework aims to forecast both regular 
flow data and leakage flow data, a selection of non-outlier/non-leakage 
data (NLKG) is also selected and merged with LKG data to train the 
LSTM-RNN. The NLKG groupings are equal in length to the LKG 
groupings (i.e., 335 data points) and are similarly divided into input and 
output sections. However, as the NLKG groups are more prevalent in the 
dataset than the number of LKG groupings, to avoid any data bias all the 
NLKG groupings cannot be used to train the proposed FLUIDS frame
work. A significant difference in the sample sizes of the two groupings 
can cause considerable bias in tuning the models. Hence, random sam
ples of NLKG groupings are obtained from the ~2000 DMA flow datasets 
with different sampling ratios between the NLKG and LKG groupings. 
Based on the performance of the RNN (discussed in section 3.2.2), a 
sample size with NLKG samples equivalent to two times the number of 
LKG samples was used for further study. An example of a NLKG grouping 
is shown in Fig. 6b. In summary, both LKG and NLKG groupings contain 
preceding flow data which is used as inputs to the LSTM-RNN, and the 
outputs consists of the following outlier grouping in case of LKG data or 
following regular flow in case of NLKG data. 

To ensure the input data does not contain any erroneous datapoints 
(possibly due to undetected sensor error), variance checks are performed 
on the input data section of both LKG and NLKG groupings, and those 
with exceptionally high or low coefficients of variation (COV) are dis
carded. Any LKG group with a coefficient of variation (COV) below 0.1 
or greater than 10 for the input section of data is discarded. Further
more, for NLKG groupings, the output section of the flow data is also 
required to have a COV between 0.1 and 10. This is done to ensure that 
the selected non-outlier information is error-free and doesn’t contain 
any non-detected peaks or portions of unbalanced flow (any unex
pected/unlabelled malfunctioning). In total, ~10,000 LKG and NLKG 
groupings are used as the final dataset, with 672 points of inputs and 335 
points of outputs. This dataset is then used to train and test a hybrid 
forecasting model for leakage prediction. 

4. Methodology 

The general procedure for training the proposed FLUIDS framework 
is illustrated in Fig. 7. The details are explained in the following sub- 

Fig. 5. Time difference between repairs and closest outliers (hrs) for DMA 586.  
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sections. First the selected 10,000 flow data series undergo a time-series 
decomposition to separate their trend and seasonal components. These 
decomposed components serve as inputs for training a LSTM-RNN, 
which aims to forecast the mean flow data. It is important to note that 
both LKG and NLKG data are included in the training dataset, enabling 
the LSTM-RNN to predict flow behavior during burst periods, rather 
than solely focusing on regular non-leakage flow. The forecasted mean 
flow data from the LSTM-RNN is then used to calculate the residuals, 
representing the differences between the predicted and recorded flow 
values. These residuals are subsequently utilized to train a boosting KF, 
which enables real-time forecasting of future residuals, further 
enhancing the accuracy of predictions. Finally, the forecasted residuals 
are combined with the mean forecast generated by the LSTM-RNN to 

derive the final predictions. Consequently, the FLUIDS framework con
sists of two main components: 1) LSTM-RNN, trained to forecast the 
expected flow data for t + n time points using t-m recorded flow values 
(where t is the current time step, n is the number of future timesteps, and 
m is the number of previous timesteps), and 2) KF, which provides real- 
time estimates of residuals, thereby refining the LSTM-RNN’s pre
dictions and aligning them closer to the true flow behavior. 

As state-space models like KF are widely based on the assumption of 
stationary time series, this assumption is validated in this study using an 
augmented Dickey-Fuller unit hypothesis test (Mushtaq, 2011). The test 
has the null hypothesis that the time series is non-stationary and has a 
unit root. For the flow data in this study, p-values are observed to be well 
below the significance level of 0,05, and the null hypothesis is rejected. 

Fig. 6. Examples of groupings for (a) LKG data: DMA 586 outlier 1, (b) randomly selected NLKG data: DMA 586 group 1.  

Fig. 7. Procedure for training the proposed FLUIDS framework.  

L. McMillan et al.                                                                                                                                                                                                                               



Sustainable Cities and Society 99 (2023) 104934

8

This indicates that the flow data can be deemed stationary for 
state-space and other time-series modeling techniques. 

4.1. Flow forecasting 

4.1.1. Mean flow forecasting 
Effective forecasting of anomalous flow data can allow leakage to be 

anticipated, facilitating a more efficient approach to leakage manage
ment and system maintenance. By forecasting the anomalous flow data, 
itself, rather than forecasting regular flow data and comparing this to 
incoming anomalous data, earlier warning can be provided of potential 
bursts and estimated water loss calculated. In this study, the ANN-based 
model is used to forecast the mean flow for a future period of time. It is 
well known that a stationary time series typically consists of two general 
components: i) trend and ii) seasonal (Shumway and Stoffer, 2017). The 
trend component represents the general pattern of the time-series data 
over the entire time duration. In contrast, the seasonal component refers 
to the cyclic repetition of a trend within a specific time period. Neural 
networks can potentially struggle to model seasonality directly from 
time series data (Nelson, Hill, Remus, and O’Connor, 1999). Hence, to 
address this issue, additive time series decomposition is used to break 
down the input data of both LKG and NLKG groupings into a trend, 
seasonal component, and the remaining noise (Cleveland and Tiao, 
1976). In this case, the trend represents the general pattern of flow data 
over the input time window, while the seasonal component reflects the 
fluctuations in flow during the 24 hours. Using the time-series decom
position (Eq. (3)), the input flow time series yt is decomposed into a 
trend, seasonal, and noise components, where Tt and St are the trend and 
seasonal components at timestep t, and ε is the noise in the data which is 
assumed to be normally distributed with a mean of 0 and a standard 
deviation of δ. 

yt = Tt + St + ε
(
∼ N

(
0, δ2)) (3) 

In this study, the decomposed trend and seasonal components are 
used as inputs to train an LSTM-RNN, which outputs a forecast of the 
NLKG/LKG flow section of the groupings. RNNs are a class of ANN 
developed for modeling time series data (Rumelhart, Hinton, and Wil
liams, 1986). RNNs allow the output of a neural network layer at 
time-step t − 1 to be used as inputs for the same neural network layer for 
the following time-step t. This forms a directed graph and allows the 
transfer of ‘memory’ between adjacent time steps so that the output of 
the neural network layer at a given time step is dependent on prior el
ements within the time series. 

Although RNNs can handle dependencies between individual steps in 
a time series, they suffer from issues with long-term dependencies and 
vanishing gradients (Hochreiter, 1998). As a result, RNNs struggle to 
learn if asked to use outputs from previous time steps many steps back 
(time lags) as inputs for estimating the current time step. Selecting an 
LSTM architecture for the RNN can solve these challenges. Each LSTM 
layer contains a set of recurrently connected blocks, with one or more 
recurrently-connected memory cells and three multiplicative gates 
regulating information flow (Graves and Schmidhuber, 2005). A cell 
state transfers relative information down the sequence chain and be
tween LSTM blocks - the ‘memory’ of the network. In each LSTM cell, a 
forget gate passes on information from previous outputs and the current 
input at time-step t and decides what data to keep in the cell state. An 
input gate decides how the current input should be used to update the 
cell state and modify the memory, and an output gate uses the input and 
the memory of the cell to decide the output for the current time step. 
Thus LSTM cells act as information processing units and provide a route 
for ‘memory’ to pass beyond adjacent cells, enabling the RNN to bridge 
long time lags steps (Hochreiter and Schmidhuber, 1996; Gers, 
Schmidhuber, and Cummins, 2000). While other deep learning-based 
models such as feed-forward networks, gated recurrent unit (GRUs), 
etc., have been known to work well some time-series applications, for 

long-memory time-series such as water flow, those models also suffer 
from vanishing gradient phenomenon (Cahuantzi, Chen, and Güttel, 
2023). Hence in this study, LSTM-RNNs are used to develop the flow 
forecasting model. 

The LKG and NLKG groupings are split into train and test sets such 
that 80% of both groupings are used in training and 20% of both groups 
are used for testing the LSTM-RNN. LSTM-RNNs of various configura
tions and hyperparameters are developed and trained. In particular, 
index of agreement (IA) (Willmott, 1981; Willmott et al., 1985), 
described in Equation 4, is used as the loss function for training and 
testing an LSTM-RNN, where O is the recorded output flow data and P is 
the RNN predicted flow data, and n and i represent the total number of 
forecasted timesteps and the timestep of interest, respectively. A valu
able tool for the comparison of model performance, IA gives a single 
bounded metric for pattern characterization and comparison, yet also 
incorporates information on the magnitude of deviations into this metric 
and has therefore been widely applied to the assessment of 
model-produced estimates of time-series data (Duveiller, Fasbender, and 
Meroni, 2016). When compared to traditional loss functions such as 
mean squared error (MSE), IA is shown to achieve better performance on 
time series data due to the reduction of bias in both high and low values 
rather than the average bias (Sayeed et al., 2021). 

IA = 1 −

∑n
i=1(Oi − Pi)

2

∑n
i=1(|Pi − O| + |Oi − O|)

2 (4) 

The various architectures are tested using the train set, and the best 
performing combination of LSTM-RNN architecture and hyper
parameters is then selected. The chosen LSTM-RNN configuration, once 
trained, provides mean flow forecasting. 

4.1.2. Residual forecasting 
Since the LSTM-RNN is a pre-trained model, it cannot adjust to 

fluctuations in real-time; hence, to further improve the predictions, a 
boosting concept (Chen and Guestrin, 2016) is utilized to model the 
early residuals observed between the LSTM-RNN-based flow forecast 
and the real-time sensor recording of corresponding flow data. The early 
residuals are then used to estimate the future residuals for the remaining 
uncertain period of the output. Thus, modeling of residuals can improve 
overall forecast accuracy by providing an estimate of the error expected 
from the LSTM-RNN due to any real-time fluctuations. This study uses 
KF as the boosting model for forecasting the residuals in real-time 
(Harvey, 1990). The KF is a Bayesian method for sequentially esti
mating the states of a dynamic system where the state evolution and 
measurement models are linear and Gaussian (Kovvali, Banavar, and 
Spanias, 2013). The recursive nature of the KF enables it to model 
continuously changing systems. KFs also do not need to hold much 
memory and thus can be run very quickly, making them ideal for 
real-time applications (Maybeck, 1990). In the residual forecasting 
model, the KF algorithm first uses Kalman smoothing to estimate the 
state of the observed residuals and then forecasts residuals for a 
pre-defined forecast period. Forecasting uses the observation and state 
equations recursively (Morrison and Pike, 1977). Given an initial esti
mate at time t, the KF first performs a prediction step, estimating the 
state at time t+ 1, as well as the uncertainty of this prediction. Once the 
observed value at t + 1 is received, a correction step is performed. A 
calculation for Kalman gain adjusts the weights given to the incoming 
observations and current-state estimate. The prediction and uncertainty 
estimates are then updated based on this new information, and the cycle 
repeats for the next time step (Durbin and Koopman, 2012). This con
tinues for known observations at time-steps t = 1, 2,…,T. Having pro
vided the KF with sufficient known observations to tune parameters such 
as the co-variance estimate and the Kalman gain, the KF can be used to 
forecast for a defined period of future time-steps (t > T), where obser
vations are unknown. This process is repeated in real-time for complete 
predictions. As more recorded values are received, the KF model can 
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update residual predictions to reflect this new information. The final 
flow forecast from the proposed FLUIDS framework is based on the 
addition of the mean forecast from the LSTM-RNN and the forecasted 
residuals from the KF. Fig. 8 shows the processing of incoming flow data 
through the proposed framework and final flow forecasting. 

5. Results 

This section presents the results of the trained framework. The mean 
and residual components of the forecasting method are presented first 
separately and then in combination, and the accuracy of the model is 
assessed. Furthermore, a comparison of the results of this study to a 
simple MNF method of leakage detection is presented, to demonstrate 
the benefits of the FLUIDS framework over traditional methods. 

5.1. Mean flow forecasting 

Fig. 9 illustrates the outcome of time series decomposition on 
exemplar input data. The trend component shows the overall pattern of 
change in flow across a week, while the seasonal component captures 
the daily flow pattern. This typical pattern, with twice-daily peaks and a 
significant drop overnight, reflects typical water consumption over 24 h 
and is seen in most input data. The trend component is more variable 
across LKG/NLKG input groupings, as this is affected by factors such as 
which (and when) days of the week appear in the input data and if and 
how leakage is reflected in the input data. In order to ensure all relevant 

patterns are considered, these two components are separately input into 
the RNN. 

The 10,227 input and LKG/NLKG data groupings are randomly split 
into train (80%) and test (20%) sets while making sure train and test sets 
consists of same ratio of LKG and NLKG data. The training is conducted 
with 10% cross-validation. After hyperparameter tuning, the best per
forming final LSTM-RNN architecture in terms of IA is shown in Fig. 10. 
In particular, the LSTM-RNN network is trained using stochastic 
gradient descent (Kiefer and Wolfowitz, 1952) with Adam optimizer 
(Kingma and Ba, 2017) and IA (Willmott, 1981; Willmott et al., 1985) as 
the loss function. Since the values of IA range from 0 to 1, with 1 being 
the best match and 0 as the worst match, the loss function is used 
negatively to allow gradient descent rather than ascent. 

The trained RNN uses flow data’s trend and seasonal components as 
inputs and predicts the flow for the future 335-time-steps (i.e., LKG/ 
NLKG data for 335 15-minute intervals). IA values are calculated for 
each grouping to assess how well these predictions align with the 
observed LKG/NLKG data. The left part of Fig. 11 presents the distri
bution of IA values for all the groupings. Overall, this IA profile indicates 
good performance by the RNN, with predicted values and observed flow 
in good agreement. The vast majority of groupings have an IA value over 
0.5, with a first peak between 0.5 and 0.6 and a second, more prominent 
peak between 0.8 and 0.9. The reason for these peaks can be due to the 
differences in the ‘type’ of grouping, so factors that vary between 
groupings are further investigated. 

Due to different magnitudes of outliers, LKG groupings vary signifi

Fig. 8. Proposed FLUIDS framework for flow forecasting.  
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cantly in length and volatility (i.e., the magnitude of LKG flow compared 
to the magnitude and variance of preceding input flow). Hence, it is 
necessary to ensure that the RNN predictions are not biased towards LKG 
groupings with lower volatility compared to the high volatility group
ings. This is done by computing the |Z| values for each output grouping 
(LKG/NLKG groupings) using Eq. (5). In this equation, peakout and 
medianin are the largest value in the LKG/NLKG section of flow and the 
median value in the input flow, respectively, while σin is the standard 
deviation of the input data. The |Z| value thus compares the size of the 
output peak to the size and variability of the preceding input data. As 
can be observed from Fig. 6, the peak of NLKG flow is not as high as the 
peak of LKG flow when compared to the median of the preceding input 
flow. Also, peak flows can vary significantly based on the burst level 

within the LKG groupings. Therefore, computing the |Z| values and 
comparing them against the corresponding IA values allow the detection 
of any unintended bias in the model. 

|Z| =
|(peakout − medianin)|

σ2
in

(5) 

Furthermore, since the LKG/NLKG parts of the groupings vary in 
length and are zero-padded (as described in previous sections), it is 
essential to check any potential bias in the LSTM-RNN predictions 
concerning the non-zero padded length of the output data. The right side 
of Fig. 11 shows the IA values for all the ~10,000 examples compared to 
the output data’s |Z| values and non-zero padded length. The color of 
each dot represents the |Z| value of each grouping. It is observed that 

Fig. 9. DMA 586 outlier 1 (a) input data, (b) trend component, (c) seasonal component.  

Fig. 10. Architecture of the trained LSTM-RNN.  

Fig. 11. IA values, |Z| values, and output lengths (without zero padding) of all groupings.  
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25% of the selected LKG groupings have a |Z| value greater than 5, 
indicating a low probability (less than 0.00001) of randomly having |Z| 
> 5, and the median |Z| value of LKG groupings is 2.1, with a probability 
of |Z| > 2.1 being less than 0.035 This confirms that the pre-processing 
method has captured genuine outliers in the dataset. Additionally, the 
additional criteria for LKG group selection ensure the capture of flow 
patterns typical of leakage, characterized by a significant spike in flow 
data that surpasses the fluctuations in preceding data. 

As the most extended LKG group was 335 data points in length, many 
groupings possess this length without any zero padding (especially 
NLKG data). While higher values of IA are observed across the different 
LKG group lengths, the concentration of higher |Z| values in the top left 
of the plot suggests that the proposed model performs particularly well 
on leakages with large flow magnitudes and shorter LKG lengths. This 
may indicate that the preceding flow data for such LKG groups follow a 
more identifiable pattern captured by the LSTM-RNN. While this is an 
interesting hypothesis, it is beyond the scope of this paper to statistically 
investigate. Conversely, the lowest IA scores are seen in LKG groups with 
common |Z| values, suggesting that the LSTM-RNN struggles to forecast 
accurately if the peak values are small and the variability in the pre
ceding flow is high. 

To check the patterns of the LSTM-RNN predictions against the 
recorded output flow, Fig. 12 shows four quantile cases from the test 
data (20% of the dataset). Each of these cases represent a period of 
anomalous flow data flagged as LKG, rather than a period of regular, 
non-anomalous flow. While there are some fluctuations, the LSTM-RNN 
forecasts largely follow the overall pattern of the recorded flow data in 
both magnitude and direction of change (increase/decrease). In some 
areas, the flow forecast fluctuates more than the recorded data. In most 

cases, as seen in the examples shown for the 50th, 75th, and 99th IA 
percentiles in Fig. 12, this fluctuation tends to be distributed relatively 
evenly above and below the flow profile of the recorded outlier, sug
gesting that the overall pattern of flow is well captured. All four exam
ples in Fig. 12 see a higher forecast value for the first forecast flow 
datapoint than the recorded flow value. In terms of leakage manage
ment, that the LSTM-RNN is more inclined to an initial overestimate 
than an underestimate means that leakage is less likely to be missed by 
the model. However, particularly at the higher IA percentiles, the 
overestimation and underestimation in the prediction across the entire 
forecast window seem well balanced. Therefore, the model could be 
expanded to offer an accurate prediction of the quantity of water loss via 
leakage. It is observed that even at 25th percentile, the IA value exceeds 
0.5, with IA rising to over 0.7 at the 50th percentile. Forecast accuracy, 
and thus IA values, can be expected to improve with the addition of 
residual forecasting using the Kalman forecasting. 

5.2. Residual forecasting 

As the LSTM-RNN model is trained to estimate the mean flow using 
the known trend and stationary components of the preceding flow, the 
weights of the LSTM-RNN network are pretrained. They are expected to 
perform the flow forecasting with known causality. However, to 
improve the proposed FLUIDS framework’s real-time performance, the 
residuals obtained in real-time are further used to develop the state- 
space model using KF to appropriately forecast the future residuals. 
Using the pre-trained LSTM-RNN, the flow forecast is obtained from 
current time t to n time-steps ahead to t + n time, and then as the true 
values of flow are observed in real-time for time-steps t to t + k, where 

Fig. 12. Examples of true vs LSTM-RNN predicted flow for: (a) 25th percentile: DMA 1672 outlier 3 (IA =0. 5362), (b) 50th percentile: DMA 1999 outlier 2 
(IA =0.7098), (c) 75th percentile : DMA 189 outlier 4 (IA =0.8307), (d) 99th percentile : DMA 1085 outlier 2 (IA =0.9554). 
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k<n, KF is used to model the residuals by finding the difference between 
the LSTM-RNN forecast and the recorded flow. Due to the recursive 
nature of KF estimates, this process is expected to provide the FLUIDS 
framework with real-time deviations of the data and improve the ac
curacy of the hybrid forecasting system. The results of KF-based fore
casting of the LSTM-RNN residuals are presented for an exemplar DMA 
in Fig. 13. This example chooses a prediction window of six hours (24 
data points). 

As the observed values are considered to be the sum of the under
lying state plus noise, KF is performed on known residuals (time-steps ≤
t) before forecasting so that the prediction can be based on the estimated 
state rather than the observed values. KF is then used to obtain a forecast 
for n time-steps ahead. As more data points for the flow are recorded, the 
residuals are computed, and the updated model is used to forecast the 
residuals for a future time window. Fig. 13 shows the estimated states for 
t = (a) 24, (b) 48, and (c) 60 and KF forecast for n = 24 during a period of 
LKG flow, demonstrating how the KF is used to provide a forecast of 
residuals with a real-time rolling time window. It can be observed that 
forecasting power is improved as more residuals are provided to the 
model. The KF demonstrates strong performance in both state estima
tion of known residual data and forecasting the unknown residual data. 
The state estimation step smooths the observed data, with the estimated 
states showing less volatility than the observed residual values. 

Similarly, while the forecast can predict changes in the overall trend 
of the residual data, many peaks in the observed residual data appear 
less extreme in the forecasted data. Although huge spikes in residual 
data may be underestimated in the forecast, the KF effectively captures 
the overall pattern of residuals. Therefore, adding residual forecasting to 
mean flow forecasting will allow real-time updates to forecasting and 
improve the accuracy of the final combined prediction. 

5.3. Final flow forecasting 

Finally, the results of the LSTM-RNN and KF predictions are com
bined to obtain a final flow forecast. This is presented for an example 
case of LKG from the test set in Fig. 14. Note that the x-axis is split to 
provide greater detail for the forecasted section of flow. In this example, 
60 residuals are provided for a forecast window of 24 residuals. It can be 
observed that the combined forecast appears to match the recorded 
outlier well. The forecast anticipates the fluctuations in flow for the 
outlier period, during which the daily water consumption pattern is 
much less precise than for the input data. The forecast also matches the 
peak of the outlier well in both magnitude and time, though both peaks 
and dips can be overestimated in the prediction. 

Captured in this example is both an elevated daytime and nighttime 
flow, relative to the input data. The prediction also captures the sig
nificant drop in flow from day to night, despite the leakage. This drop 
corresponds to the overnight period often used to calculate MNF in other 

leakage identification studies. The forecast captures both the reduction 
in water usage from day to night and the elevated nighttime flow level 
indicative of leakage in studies using MNF. In shorter outlier groupings 
where the nighttime period is not represented within the outlier 
grouping, extending the forecast beyond the outlier period may be 
beneficial to verify whether the predicted minimum remains elevated 
compared to overnight periods in the input data, which would be ex
pected during leakage. As this prediction shows strong agreement with 
the recorded data throughout the outlier period, not just the overnight 
section, and the increased MNF is accurately anticipated by the forecast, 
it is shown that this method, unlike many traditional leakage identifi
cation methods, does not necessitate a full overnight period of flow data 
to identify leakage. Instead, anomalous flow behavior can be accurately 
determined and anticipated during daytime hours. This allows for more 
rapid flagging of leakage and thus can facilitate more timely and less 
disruptive repairs. For the LKG group shown in Fig. 14, the LSTM-RNN 
mean flow forecast has an IA of 0.8466. When combined with the re
sidual forecast, however, the IA for this group rises to 0.9240. This 
improvement demonstrates the value of this hybrid modeling method. 

5.4. Comparison with minimum night flow (MNF) 

Finally, the groupings flagged as LKG are analysed for burst detection 
using the traditional MNF methodology. It should be noted that, unlike 
the FLUIDS framework proposed herein, MNF is only a detection 
methodology and thus can only be applied to leakage detection and does 
not possess any flow prediction or forecasting capability. Nevertheless, 
this exercise is conducted to showcase the efficacy of the FLUIDS 
framework proposed in this study. 

The MNF method compares flow data for a given time of the day 
where the recorded flow is expected to have minimal variation with flow 
data for the same time of day during the preceding days or months. The 
time of day chosen is generally during the night, and so the flow during 
this time is termed ‘night flow’ (NF). MNF requires a preceding “window 
period” of regular flow (flow with no leakage events/bursts occurring) 
to calculate the average NF, against which new NF can be compared. 
While the size of the window period varies in the literature, it is 
generally agreed that a larger window leads to a better representation of 
typical NF behavior for a given DMA. The range of window periods in 
the literature vary from three days to six months (Amoatey, Obir
i-Yeboah, and Akosah-Kusi, 2021; Lee, Lee, and Lee, 2022; Tabesh, 
Yekta, and Burrows, 2009; Hamilton and McKenzie, 2014; Huang et al., 
2018). Similarly, the nightly hours used to calculate NF vary in litera
ture, beginning as early as 12am and ending as late as 5am (Lee, Lee, and 
Lee, 2022), but the hours of 2am to 4am are a common selection in 
pre-existing research (Mushtaq, 2011). The median value of flow during 
these hours over the window period is found, as MNF is sensitive to 
fluctuations or anomalies. The median value of flow data is often used to 

Fig. 13. Residual plots for 24 steps ahead, DMA 1316 outlier 1 with: (a) 24, (b) 48, and (c) 60 inputs.  
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limit the effects of erroneous data. A significant deviation from this 
value during the same hours of the following night is taken to indicate 
new leakage under MNF analysis. The deviation is computed in terms of 
percentage deviation between the NF of input data and the NF during 
the night of interest using Eq. (6), where d is the 24-hour day of interest 
and i is the size of the window period in days. 

Percentage deviation =
median(NFd)

median(NFd− 1, NFd− 2, …, NFd− i)
× 100 (6) 

Due to the limitations of the dataset, this study uses three days of 
window period of preceding flow. Based on this criterion, around 1300 
LKG group had sufficient length of input data to be used for MNF 
analysis (other LKG groups were discarded as they didn’t contain 
enough regular flow points between the outlier data). This requirement 
of long preceding flow is also a limitation of MNF as compared to the 
proposed FLUIDS framework, which is able to operate with minimal 
input data length (set to a minimum of six hours for this study and can be 
easily altered and retrained for shorter windows). The hours of 2 am to 4 
am were chosen for this study for the NF period. The extent to which the 
2 am to 4 am flow of each LKG grouping (with a sufficient amount of 
preceding flow data) deviates from the MNF of the preceding three 
nights is found using Eq. (6). This method was also repeated using mean 
values, rather than median values, to see if there were significant dif
ferences. The number of LKG groupings meeting or exceeding a selection 
of percentage deviation thresholds are shown in Table 1. 

It is observed that the MNF classifies under 50% of the true LKG 
groupings even at a low 10% percentage deviation threshold and can 

provide an accuracy of ~31% for a percentage deviation threshold of 
50%. Although using the mean leads to slightly higher accuracies than 
using the median, the differences are very small. This may be due to a 
poor representation of typical NF being captured in the limited input 
data. In contrast, the proposed FLUIDS framework produces forecasts of 
groups identified as LKG with a median IA value over 0.7 (with a lower 
quartile of 0.54 and an upper quartile of 0.83) even prior to the addition 
of residual forecasting. Again, it should be noted that while the MNF 
only detects the leakages, the proposed FLUIDS framework provides a 
point-to-point estimate of the future flow time-series. Hence a high mean 
IA in the forecast indicates a better prediction power which can be easily 
extended to better classification/detection power given a relevant 
threshold. Selection of the threshold for the proposed framework can be 
subjectively decided by the users or tested thoroughly on a case-by-case 
basis which is beyond the scope of this study. Thus, in addition to being 
able to flag outliers at any time of the day, the proposed FLUIDS 
framework is able to accurately forecast flow during periods of outlier 
flow, even in cases where MNF analysis would not flag the flow data as 
indicative of a burst. 

6. Conclusions 

In England and Wales, over 20% of water put into public supply does 
not make it to the taps of consumers (PR19 final determinations: 
Securing cost efficiency technical appendix 2019), a percentage that is 
not particularly unusual in the developed world (Kingdom, Liemberger, 
and Marin, 2006). The impacts of such high levels of leakage, other than 
the obvious wastage of water, include energy wastage from the treat
ment of water lost as leakage, additional costs for operators, negative 
customer experiences, and disincentivising water-saving behavior in 
customers (Funding approaches for leakage reduction - report for Ofwat 
2019). All of these act as barriers to the development of a truly sus
tainable water network, able to handle the demands of growing urban 
population. While detection methods have improved, it remains true 
that a majority of bursts are reported by customers, rather than detected 
by water companies (Proactive approach to leaks required to meet tough 
Ofwat targets 2020). To drive down leakage and build customer trust, a 
proactive approach is required that can provide rapid and accurate in
formation on leakage at a localised level, facilitating efficient and tar
geted repair strategies. The proposed hybrid machine learning-based 
framework (named FLUIDS) is able to forecast flow behavior at the DMA 

Fig. 14. Forecast for DMA 1316 outlier 1 (IA = 0.9240).  

Table 1 
MNF analysis of LKG groupings (1338 total groups).   

Method for finding average  

Median Mean 
Percentage 
deviation 

No. of LKG 
groups 
meeting 
MNF 
detection 
threshold 

Percentage of 
LKG groups 
meeting MNF 
detection 
threshold 

No. of LKG 
groups 
meeting 
MNF 
detection 
threshold 

Percentage of 
LKG groups 
meeting MNF 
detection 
threshold 

+10% 584 43.7 589 44.0 
+25% 487 36.4 497 37.1 
+50% 414 30.9 417 31.2  
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level to a high degree of accuracy. Able to forecast both regular (non-
leakage) flow and anomalous flow indicative of a burst, the proposed 
framework can be used to estimate the likelihood that flow in a given 
DMA will exceed a threshold that can be defined by the user, allowing 
for intelligent and proactive leakage management. 

The data-driven FLUIDS framework is trained and tested on a large 
dataset containing records for 12-month of flow for over 2000 DMAs in 
the Yorkshire region. Bursts are first identified using an anomaly 
detection algorithm and checked against logged repairs; isolation forests 
is the algorithm chosen for this study. Flow forecasting is performed for 
both LKG and NLKG data, with an LSTM-RNN giving a mean flow 
forecast and KF used to provide real-time residual forecasting. The 
LSTM-RNN alone is able to generate forecasts with a median IA of over 
0.7, with the IA further improved by the addition of residual forecasting. 
Performance is particularly strong for LKG groupings with high |Z| 
values, indicating more extreme bursts. This demonstrates that the 
framework is able to accurately forecast both regular (non-leakage) flow 
data and leakage flows. 

Leakage prediction via forecasting of anomalous flow is a relatively 
unexplored field of study, and it is hoped that the proposed FLUIDS 
framework will demonstrate the potential of anticipatory leakage 
management. FLUIDS framework can detect and forecast anomalous 
flow data even with limited available preceding flow data and regardless 
of time-of-day, which can improve the proportion of leaks detected first 
by water companies rather than customers. The balanced distribution of 
forecasting error in the results of this study also indicates that the 
FLUIDS framework could be expanded to provide accurate quantifica
tion of water loss during leakage. Accurate prediction of leakage can 
allow time-efficient and cost-efficient preventative maintenance, 
reducing water loss and customer disruption and taking an important 
step towards sustainable and systemic smart water management 
(Oberascher, Rauch, and Sitzenfrei, 2022; McMillan and Varga, 2022). 
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