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Abstract— As soft robotic systems become increasingly com-
plex, there is a need to develop sensory systems which can
provide rich state information to the robot for feedback control.
Multi-axis force sensing and control is one of the less explored
problems in this domain. There are numerous challenges in
the development of a multi-axis soft sensor: from the design
and fabrication to the data processing and modelling. This
work presents the design and development of a novel multi-
axis soft sensor using a gelatin-based ionic hydrogel and
3D printing technology. A learning-based modelling approach
coupled with sensor redundancy is developed to model the
environmentally dependent soft sensors. Numerous real-time
experiments are conducted to test the performance of the sensor
and its applicability in closed-loop control tasks at 20 Hz. Our
results indicate that the soft sensor can predict force values
and orientation angle within 4% and 7% of their total range,
respectively.

I. INTRODUCTION

Soft robotic sensing technologies are vital in providing
dense tactile sensing abilities to emerging robotic systems
in a conformable manner [1], [2]. These technologies allow
us to measure the physical properties of interactions with
minimal interference [3]. Numerous soft sensing technolo-
gies have been explored in the field recently, however, they
have largely been limited to estimation of body configuration
and contact localization [3], [2]. A largely unexplored sen-
sory modality is multi-axis force sensing, a capability well-
developed in rigid robotics [4]. This is primarily because
of two reasons. First, for a soft bodied sensor, decoupling
of multi-directional forces requires complex models and
simplifying assumptions. This in turn makes the design and
fabrication process challenging. Second, these stretchable
materials exhibit several nonlinear material properties and
are affected by environmental conditions, which present
additional modelling challenges.

One of the first examples of a soft multi-axis force
sensor used embedded microchannels filled with a conductive
liquid which responded uniquely to different force directions
applied to a force post [5]. This system could measure normal
forces and shear force in a plane. However, there were still
some challenges involved with the nonlinear properties of
the sensor and its temperature dependence, which made it
difficult to be used in real-world applications. Similarly,
interlocking conductive microstructures have been used to
develop sensors that can differentiate normal forces and
shear, however, without any characterisation [6]. Similar to
the work by Vogt et al.[5], magnetic field-based soft tri-axis
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Fig. 1: The proposed three-axis soft sensor attached to the
end-effector of a UR5 manipulator. The setup is trained to
estimate the forces along the vertical axis, along with the
direction of the applied force in two axes.

tactile sensors were developed by Hongbo et al. using embed-
ded hall effect sensors [7]. Along the same lines, capacitive
[8] and inductive [2] elements can be used to differentiate
multi-directional force components. More recently, magnetic
skins have shown promise for multi-axis force sensing,
especially over a larger area [9], [10]. Nevertheless, all these
technologies still involve embedded rigid components, are
highly location sensitive and have not yet been used for real-
time control. Closing the loop requires accurate models of
these sensors, which is challenging because of their nonlinear
properties.

Gelatin-based hydrogels have recently been gaining inter-
est in the field of soft robotic sensors because of their low
cost, ease of fabrication, biodegradability, and printability
[11], [12], [13]. Heiden et al. demonstrate their use as waveg-
uides to facilitate basic directional sensing [14]. However,
their highly linear resistive responses to applied strain [15]
have yet to be implemented in a multi-axis sensor.

Time variant electro-mechanical properties are unavoid-
able in these sensor materials and their surrounding soft
matrix. Hence, to model these soft strain sensors, the state
estimation model must either use the time history of sensor
states for future predictions [16] or use redundant sensor
configurations to compensate for the nonlinearities [17].
Learning-based approaches using recurrent neural networks
are typically used to directly incorporate the time depen-
dent factors [18], [19], [20], [21]. Conversely, these time
dependent hidden sensor states and external factors like
temperature and humidity can be compensated using multiple
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Fig. 2: Sensor fabrication process. (a) 3D-printing filaflex base (b) Attaching common ground wire and sensor wires (c)
Applying salt-sensorized hydrogel to each groove (d) Spin-coat with Ecoflex-20 (e) Assemble to 3D-printed ABS base and
wire to the voltage divider.

sensors [17], [15]. In this work, we use the combination of
recurrent neural networks and redundant sensor configura-
tions to model our soft sensors. Closing the loop with soft
sensors can be done once a reliable state estimation model is
created and the kinematic relation between estimated states
and robot motion is established [22], [23], [24], [25].

This work presents the design, fabrication, modelling,
and control of a fully soft multi-axis force sensor using
an ionically conductive gelatin-glycerol hydrogel. Unlike
existing works, our design is continuously soft and has a
large sensing surface. The design is inexpensive and easy to
fabricate, enabling quick prototyping and custom designs. To
compensate for the hydrogel’s baseline shift and environmen-
tal dependence, a modelling framework incorporating sensor
redundancy and time-series learning is presented. Numerous
experiments test the performance of the proposed sensor and
its applicability for closed-loop control tasks.

II. MATERIALS AND METHODS

A. Fabrication
The multi-axis force sensor is fabricated by 3D printing a

cup-like, non-conducting flexible base (Filaflex) as mechan-
ical support. The base is axially symmetric with 16 grooves
extending from the centre to the edge, in which an ionically
conductive gelatin-glycerol hydrogel is embedded (Figure
2). The hydrogel uses a 1:1.5:2.5:0.2:0.1 wt% composition
of gelatin (pork, 240-260 bloom):glycerol:water:citric acid
monohydrate: table salt (NaCl), as described in [15]. All
grooves are connected and electrically grounded at the centre.
The sensor is further coated with a layer of Ecoflex-20 to
protect the hydrogel, then fastened to the end effector of a
Universal Robots UR5 robotic arm using a base 3D printed
from acrylonitrile butadiene styrene (ABS).
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Fig. 3: Resistive response of the 16 sensor channels to the
4 forces A-D. A video of this experiment can found in the
supplementary material.

Each of the 16 hydrogel channels is connected through
a voltage divider of resistance value 2.2 MΩ. It is then
connected to a 16-bit National Instrument USB 6212 Series
Data Acquisition System (DAQ), which supplies a 5V DC
voltage across the divider and measures the output voltage
at each central node at 20 Hz (Fig. 2). When an external
force strains the hydrogel, its impedance and hence voltage
values vary accordingly. The sensor morphology is designed
such that the magnitude and direction of applied forces
at the tip can be found by measuring the changes in the
sensor properties. An illustration of the sensor response to
forces from four different directions is shown in Figure 3.
As designed, the sensor channels in each quadrant respond
most strongly to the correspondingly directed forces, though
with differing magnitude. The change in impedance is less



Fig. 4: Experiment setup. The ground truth force sensor consists of 4 load cells, where the signal is amplified by the amplifier
circuit. The soft multi-axis force sensor is connected through a voltage divider.

obvious in direction D probably due to inconsistencies in the
fabrication process. However, these asymmetric responses
can easily be handled by any learning-based approach as
long as the observed response is unique. Any environment
dependent changes (e.g. temperature) to the hydrogel affects
all the sensor channels similarly, and hence can be eliminated
easily.

B. Experimental Setup

The soft multi-axis force sensor is installed at the tip
of an UR5 robotic manipulator. For our experiments, the
UR5 arm is constrained to rotational motions in the X and
Y axes and translational motion in the Z-axis. To obtain
ground truth force applied on the soft sensor, four FC22
compression load cells are placed in a square formation to
support a rigid platform in the XY-plane (Figure 4). Raw
signals from the FC22 load cells are amplified using Texas
Instruments UA741CP operational amplifiers. These signals
are read through analog channels of the DAQ, then read
through USB by the MATLAB programming environment.

Estimating the magnitude and orientation of the exerted
force from the sensor states can be a difficult problem due to
multiple factors. First, because of the sensor’s non-collocated
architecture, the relationship between sensor response and
the control variable is nontrivial, which in this case is
the force in the Z-direction and the 2 DoF orientation
information. Second, the sensor has significant temporal
nonlinearities like drift and hysteresis. To address the first
issue, we use multiple sensors and recurrent neural networks
(RNNs) which utilize information from past data points for
prediction [25].

C. Sensor Modeling

The relationship between the hydrogel sensor responses
and the force output is modeled using a long-short term
memory (LSTM) network. We collect 25 batches of data,
each of varying time lengths of around 15 min, with 30-90s
rest time between each batch to ensure that the initial condi-
tion varies. In each batch, the UR5 presses the sensor against
the platform 31 times at random orientations, velocities, and
for a random duration of time. Note that maximum rotation
from the Z-axis is ±24.3 degrees for data collecting and all
subsequent tests.

The orientation of the manipulator is updated at the start
of each press before the sensor can make contact with the
platform. The time between the orientation update and the
first detection of exerted force is entirely random. Since the
sensors respond to the orientation change once in contact,
for training the ground truth orientation data is updated only
when the force value goes above a small threshold. The
aligned raw data is then separated into a training and testing
set, each normalized by subtracting the set’s initial value,
then dividing by its standard deviation. This ensures that the
sensors always start at zero to the network, even if the actual
values drift over time.

A deep network consisting of two LSTM layers each with
20 hidden units and a dropout layer with dropout rate of 0.3
is used to map the 16 soft sensor inputs to the 4 force outputs
and 3 orientation outputs (Figure 5). Of the 3 outputs, only
the first 2 (representing rotations in the X and Y axes) are
important since we are constraining the rotation in the z-
axis, essentially controlling only two DoF orientations. Four
batches out of the 25 from the start, middle, and end of the
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Fig. 5: The LSTM network used for estimating the force
and orientation of contact from the raw sensor data (left).
Training curve of the network (right).

entire dataset are taken as validation to prevent overfitting.
A mini-batch size of 500 is used for updating the weights of
the network after each iteration. The MATLAB deep learning
toolbox is used for creating and training the LSTM network.
The adaptive moment estimation (Adam) optimizer is used
to update the weights of the network. The root mean squared
error (RMSE) for the training and validation data is shown
in Figure 5.

D. Control

We use the LSTM network’s predictions to design a pro-
portional controller which runs at the same frequency (20Hz)
as the learned model (Figure 6). A simple proportional feed-
back controller is used to close the loop. For our feedback
experiments, we try to control the cumulative perpendicular
force (Fest) applied by the manipulator irrespective of the
orientation of the manipulator. During the test, the raw signal
from the 16 sensors is measured, resampled to 20Hz by linear
interpolation, normalized, and fed to the LSTM network in
each control loop. The predicted forces values are added and
fed to the control loop. The estimated orientation is not used
for these control tasks. But note that indirectly, the network
is using the orientation information to estimate the applied
vertical force. The error between the estimated force and the
target force is proportional to the distance that the robot is
commanded to move, as shown in the equation below:

Translation = Kp(Fdes − Fest) (1)

This proportional gain is tuned manually in different control
experiments to give the best results.

III. EXPERIMENTAL RESULTS

Three sets of experiments are performed to validate the
proposed sensor and control framework. First, an open-loop
test to validate the real-time accuracy of the learned model
is performed. As this involves smooth motions with patterns
similar to the training set, this result is a good indicator of
the accuracy of the sensor system. Second, we analyze the
closed-loop performance of the Z-axis force controller by
performing a frequency sweep at a fixed random orientation.
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Fig. 6: Closed-loop control architecture using the learned
state estimation model.

Finally, the steady-state performance of the closed-loop
controller is evaluated for step inputs for randomly varying
end-effector orientation.

The average and standard deviation values of the
predicted-real and desired-real errors for each experiment are
shown in Table I. The average predicted-real error is calcu-
lated by taking the absolute difference between predicted
and real values, then taking the mean; similarly, the average
desired-real error is the mean of the absolute difference
between desired and real values, but only when the sensor
is in contact with the ground truth force sensors. The real-
time test does not specify desired force values, so it does not
have an entry for desired-real force error. Steady-state and
frequency sweep tests have fixed orientation, hence they do
not have data for orientation error.

A. Real-time Open-loop Prediction

For this experiment, the sensor is rotated to a random
orientation and pressed down on the ground truth force
sensor at varying velocities and forces, and for a random
duration of time. The maximum allowed rotation is ±24.3 deg
from the z-axis. Figure 7 shows the real-time performance
of the network on both the force and orientation prediction.
The error of the orientation prediction is shown as the angle
between the real and predicted Z vectors (Figure 7b). Error
in the rotation about the z-axis is negligible since the sensor’s
actual and predicted rotation in the z-axis is extremely close
to zero (of the order of 10−5-10−3). The predicted vertical
forces have an average error of 4% of the total force range
(Table I). There seems to be an onset of drift in the base
value of the predictions over time indicating that the LSTM
network has to be reset and the sensor states have to be reset
to zero. The average error in orientation is slightly higher
with an average error of 7% of the total range of rotation
along the Z vector. Note that the orientation predictions
are only output when the sensor is in contact with the
environment. It can also be observed that there is a small
remnant artifact even after contact removal either due to
hysteresis or other factors. However, this is not found in
the force predictions. Further studies have to be done to
investigate the cause of this.
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Note that the orientation predictions are only output when
the sensor is in contact with the environment.

Fig. 7: Real-time force and orientation prediction perfor-
mance.

B. Closed-loop Frequency Sweep

For the next test, the closed-loop performance of the Z-
axis force controller (See Figure 6) is tested by performing a
frequency sweep. The target force is given as a chirp signal
of increasing frequency, from 0Hz at t = 0s to 0.3Hz at
t = 550s. The soft sensor is fixed at one orientation and
only translational movement in the Z-axis is allowed. For
this dynamic response test, the proportional gain factor (Kp)
is tuned to be 0.4. This larger factor ensures that the robot
moves quickly enough to follow the target force. The sensor’s
frequency response with target force as input and real force
as output is shown in Figure 8. As the frequency increases
linearly, however, the peak value of the ground truth force
decreases, while the peak value of the predicted force drops
by a small amount and then remains almost constant. This is
expected because the proportional gain factor limits UR5’s
velocity and hence the maximum depth it can press down on
the ground truth sensor. At higher frequencies the prediction
error increases, indicating either conditions that have not

Predicted-Real Force Error
Tests Average Error (N) Standard Deviation (N)

Real-time 1.9794 3.7260
Steady-state 0.1 5.5479 7.9809
Steady-state 0.4 6.0199 8.2739

Frequency Sweep 5.2102 5.5957

Desired-Real Force Error
Tests Average Error (N) Standard Deviation (N)

Steady-state 0.1 16.4404 9.6384
Steady-state 0.4 9.6754 10.2800

Frequency Sweep 7.4863 9.4491

Orientation (Error Angle)
Tests Average Error (deg) Standard Deviation (deg)

Real-time 1.6923 2.8449

TABLE I: Prediction performances for all three experiments.

been trained on or the limitations of the sampling rate. The
performance of the sensor is robust up to the cutoff frequency
at 0.12Hz (See Bode plot of the controller in Figure 9).

C. Steady State Force Control

For the final test, the soft sensor is rotated to a random
orientation, then pressed down onto the platform to exert a
random predesignated constant target force for around 20s
before it is removed. This procedure is repeated 21 times.
The predicted force, real force, and target force values are
plotted in Fig. 10(a). Two proportional gain factors Kp for
the controller are tested: 0.1 and 0.4. The smaller gain factor
successfully prevents the exerted force from overshooting
when the UR5 presses down to meet the target force.
However, it can be too slow to follow the force step input,
leading to a large average error between real and desired
force values. A larger gain factor of 0.4 makes sure that the
predicted force quickly meets the target, though the real force
may be much lower than predicted or may overshoot.

As the step input leads to an impulse impact, larger errors
between the predicted and real forces are observed. This
is in line with the observations from the frequency sweep,
as the prediction errors start increasing at higher frequency.
Adopting a faster sample rate and training the LSTM network
on more dynamic motion data should improve performances.
The latency between the real and target force is determined
by the distance of the sensor from the surface and the
gain factor. Shorter distance and larger gain factors would
decrease the time to contact.

To show the possible applications of orientation prediction,
we conduct two tests. Since the learned network is able
to predict the sensor’s orientation from its states when a
force in the z-axis is applied, we are able to find the
force vector given any sensor orientation when the force is
exerted from a random direction. This is done by performing
coordinate transformation based on UR5 kinematics. The
force vector with respect to the UR5 base coordinate can
be found and a closed-loop tactile follow-the-leader task can
be performed. The supplementary video attachment shows
this 3-axis feedback controller.
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Fig. 8: Orientation invariant Z-axis frequency sweep.
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Fig. 9: Bode plot of the closed-loop controller.
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Fig. 10: Orientation invariant steady-state force control.

IV. CONCLUSION

This paper presents a fully soft gelatin-glycerol sensor for
multi-axis force control. The radially symmetric design of the
sensor allows us to differentiate forces and their magnitudes
from multiple direction using minimal electrodes. The fabri-
cation process uses 3D printing methods and casting. Using
recurrent neural networks, the sensor is able to robustly
predict the orientation and magnitude of the exerted force,

even with significant drift and hysteresis in sensor response.
This is because of the redundant sensor configuration and
the dynamic modelling approach. With the trained network,
a simple Proportional controller is designed for both static
and dynamic tests. To the best of our knowledge, this is the
first demonstration of a real-time multi-axis force controller
using a fully soft sensing device.

Future works include better fabrication techniques for im-
proving the robustness of the sensor and speed of production.
Better encapsulation methods will be investigated to reduce
direct contact of the hydrogel material to the environment.
For example, the grooves could be switched to the inside
surface of the Filaflex base so that the hydrogels will not be
in direct contact with the environment, but will still deform
with respect to applied forces. Different morphologies of the
embedded hydrogels can also be investigated for varied func-
tionalities. For example, the sensor grooves can be arranged
into spiral shape for better torque estimation. Scaling up the
system would involve using faster data acquisition systems
with more sensory lines and using accurate multi-axis ground
truth sensors. The current learning-based approach with
recurrent neural networks to sensor modeling has been shown
to be robust. However, network performance can be improved
by collecting more data over a wide dynamic range, as well
as more data across different environmental conditions. The
feedback controller can be improved by adding a derivative
component of the controller if noises in the predicted force
can be reduced with additional data processing techniques.
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