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Abstract
Background  Multiple sclerosis (MS) is characterized by pathology in white matter (WM) and atrophy of grey matter (GM), 
but it remains unclear how these processes are related, or how they influence clinical progression.
Objective  To study the spatial and temporal relationship between GM atrophy and damage in connected WM in relapsing–
remitting (RR) MS in relation to clinical progression.
Methods  Healthy control (HC) and early RRMS subjects visited our center twice with a 1-year interval for MRI and clinical 
examinations, including the Expanded Disability Status Scale (EDSS) and Multiple Sclerosis Functional Composite (MSFC) 
scores. RRMS subjects were categorized as MSFC decliners or non-decliners based on ΔMSFC over time. Ten deep (D)GM 
and 62 cortical (C) GM structures were segmented and probabilistic tractography was performed to identify the connected 
WM. WM integrity was determined per tract with, amongst others, fractional anisotropy (FA), mean diffusivity (MD), 
neurite density index (NDI), and myelin water fraction (MWF). Linear mixed models (LMMs) were used to investigate GM 
and WM differences between HC and RRMS, and between MSFC decliners and non-decliners. LMM was also used to test 
associations between baseline WM z-scores and changes in connected GM z-scores, and between baseline GM z-scores and 
changes in connected WM z-scores, in HC/RRMS subjects and in MSFC decliners/non-decliners.
Results  We included 13 HCs and 31 RRMS subjects with an average disease duration of 3.5 years and a median EDSS of 
3.0. Fifteen RRMS subjects showed declining MSFC scores over time, and they showed higher atrophy rates and greater 
WM integrity loss compared to non-decliners. Lower baseline WM integrity was associated with increased CGM atrophy 
over time in RRMS, but not in HC subjects. This effect was only seen in MSFC decliners, especially when an extended WM 
z-score was used, which included FA, MD, NDI and MWF. Baseline GM measures were not significantly related to WM 
integrity changes over time in any of the groups.
Discussion  Lower baseline WM integrity was related to more cortical atrophy in RRMS subjects that showed clinical pro-
gression over a 1-year follow-up, while baseline GM did not affect WM integrity changes over time. WM damage, therefore, 
seems to drive atrophy more than conversely.
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Introduction

In multiple sclerosis (MS), the most common pathological 
brain changes are widespread pathology in the white matter 
(WM) and atrophy of the grey matter (GM) [1]. Although 
GM atrophy shows stronger associations with clinical dys-
function than WM atrophy [2], large variability between 
patients’ atrophy rates and disability progression have been 
reported [3, 4]. It has been suggested that this inter-patient 
variability of GM atrophy rates arises to a large part because 
of the different distribution and severity of WM damage 
between patients, indicating the importance of looking at 
the GM–WM relationship in anatomically connected regions 
[5–8]. However, most studies investigating this had a cross-
sectional design and could therefore not draw any conclu-
sions on whether GM atrophy precedes of follows WM dam-
age, and how this effects disability progression in MS.

A recent systematic review by Lie et al. [9] that included 
90 studies on the relationship between WM lesions and GM 
volume showed an inverse association between the 2, par-
ticularly in early (relapsing) MS, and less so in progres-
sive MS, suggesting that GM neurodegeneration is mostly 
secondary to WM damage in the form of lesions in early 
stages of the disease. Still, a knowledge gap is present since 
WM damage in MS is not confined to focal lesions, but to 
microstructural damage as well. Microstructural damage 
in the WM can be assessed indirectly through quantitative 
magnetic resonance (MR) measures, such as fractional ani-
sotropy (FA), mean diffusivity (MD), axial diffusivity (AD) 
and radial diffusivity (RD), which are simplified measures 
obtained from the diffusion tensor for the overall integrity 
of the WM [10]. Multi-shell diffusion weighted imaging 
(DWI) can provide more biophysical properties such like 
neurite orientation dispersion and density imaging (NODDI) 
[11], thereby providing more information on microstructural 
damage in the WM. Recent studies have shown that NODDI 
parameters such as neurite density index (NDI) and orienta-
tion dispersion index (ODI) enable additional characteriza-
tion of the WM in MS subjects [12, 13]. In particular, NDI 
can be considered an axonal marker [14]. Other imaging 
techniques that can be used for further characterization of 
damage in the WM are quantitative susceptibility mapping 
(QSM) and myelin water imaging (MWI). QSM may enable 
us to visualize WM damage and lesion formation before 
conventional structural imaging could [15], and from MWI, 
the myelin water fraction (MWF) can be calculated, which 
can provide information on the myelin content of the WM 
[16]. Combining these imaging measures may enable us to 
visualize more subtle WM damage patterns that occur in the 
early stages of the disease.

In this study, we aimed to investigate whether in early 
RRMS, the amount and/or type of damage in the WM tracts 

connected to the GM influences neurodegeneration, or 
whether damage in the GM influences damage in the con-
nected WM tracts over time, and how this may relate to dis-
ability. For this, we studied longitudinal multimodal imag-
ing data to better understand the spatiotemporal relationship 
between WM and GM damage in early RRMS.

Methods

Subjects

The institutional review board approved the study protocol 
and all participants gave written informed consent prior to 
participation, according to the Declaration of Helsinki. To 
be included in the study, patients had to be diagnosed with 
clinically definite RRMS [17] and have a disease duration of 
no more than 5 years. They could be included if they were 
using no treatment or first-line treatment, but not if they were 
using more advanced treatment. Their clinical disability lev-
els had to be limited, with a maximum allowed EDSS score 
of 5.0. In case of switching of treatment, MRI examina-
tions were planned with at least 4–6 months of delay [18]. 
When steroids were used, MRI was delayed by 3 months 
[19]. Patients were excluded (over the course of the study) 
in case of (switching to) second-line treatment to avoid spu-
rious (pseudo)atrophy effects. Patients were seen at 1-year 
intervals, for extensive MR imaging and evaluation of clini-
cal and neuropsychological performance.

A group of age-, gender- and education-matched healthy 
controls (HCs) was also included and seen at 1-year intervals 
for extensive MR imaging. Exclusion criteria for both MS 
and HC subjects were inability to undergo MRI examination; 
and past or current clinically relevant neurological, psychiat-
ric or (auto)immune disorders other than MS. The data used 
in the current study were part of a larger cohort study, some 
results of which have been reported previously [20].

MR imaging—acquisition

This was a single-center study in which a single MR scan-
ner was used without intermediate upgrades. Imaging was 
performed on a 3 T whole-body scanner (Discovery MR750, 
GE Healthcare, Milwaukee, WI., USA) and an eight-channel 
phased-array head coil. The MR protocol included a sag-
ittal 3D T1-weighted fast spoiled gradient echo sequence 
(FSPGR with TR/TE/TI = 8.2/3.2/450  ms and 1.0  mm 
isotropic resolution) and a sagittal 3D T2-weighted fluid 
attenuated inversion recovery sequence (FLAIR with TR/
TE/TI = 8000/130/2338 ms at resolution 1.0 × 1.0x1.2 mm).

Axial 2D DWI acquisitions covering the entire brain 
(echo planar imaging, TR/TE = 6200/86 ms with 2.0 mm 
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isotropic resolution) with accompanying reference scans 
with reversed phase-encoding direction were performed. The 
multi-shell DWI consisted of 7 volumes without diffusion 
weighting (b = 0 s/mm2) and 88 volumes with non-colinear 
diffusion gradients (29 images with b = 500 s/mm2 and 59 
images with b = 2000 s/mm2). The b-values were interleaved 
to improve post-processing steps like motion correction [21].

Quantitative susceptibility mapping (QSM) images were 
acquired using an axial 3D multiple echo GRE sequence, 
with 7 TEs (TR/TEstart/TEdelta/TEmax = 49.24/5.44/6.55
/44.73 ms at resolution 0.5 × 0.5 × 1.6 mm).

Lastly, multicomponent driven equilibrium single pulse 
observation of T1 and T2 (mcDESPOT) was acquired in 
an axial 3D slab with 2.5 mm isotropic resolution, using 
a spoiled gradient recalled sequence (SPGR with TR/
TE = 8/3.02 ms with multiple flip angles [3°, 4°, 5°, 6°, 
7°, 9°, 13°, 18°]), a balanced steady-state free precession 
sequence (SSFP with TR/TE = 4.736/2.368 ms, with multi-
ple flip angles [12°, 16°, 21°, 27°, 33°, 40°, 51°, 65°], with 
phases 0° and 180° for the odd flip angles and phases 90 and 
270 degrees for the even flip angles), and a 2D axial B1 map 
(TR/TE = 17/12.8 ms at lower resolution 4.0 × 4.0 × 5.0 mm). 

High-order shimming was performed for multi-shell DWI, 
QSM, and mcDESPOT acquisitions.

MR imaging—analysis

An overview of the different MRI post-processing streams 
used in this study is shown in Fig.  1 and analyses are 
described below.

Structural imaging analysis

Brain extraction was performed using FMRIB Software 
Library (FSL) version 5.0.10 brain extraction tool BET [22, 
23] and N3 bias field correction with 3T optimized param-
eters was performed with FreeSurfer version 6.0 [24]. Lesion 
segmentation was performed with the deep-learning algo-
rithm nicMSlesions version 0.2 [25, 26] which was opti-
mized for our data in an earlier study [27]. In summary, 
full re-training of the nicMSlesions neural network (11 lay-
ers) was done with the use of manual lesion segmentations 
available from fourteen subjects with MS. All parameters 
were set at default. On the resulting lesion probability map, 

Fig. 1   Overview of MR imaging analysis. Top row: T1 and FLAIR 
images were used to create a lesion mask (nicMSlesions) and lesion 
filled (LEAP) image, which was used as input for longitudinal SAM-
SEG for subcortical segmentation and longitudinal FreeSurfer for 
cortical parcellation. Middle row: multi-shell diffusion weighted 
images (DWI) were used to obtain FA and MD in the WM mask. A 

tensor image from DTI-TK was used to register FreeSurfer ROIs, and 
probtrackx was used for tractography (example from thalamus tracts 
and postcentral tracts). Bottom row: NODDI was used to obtain NDI 
and ODI maps; SPGR images were used to create MWF maps; mag-
nitude and phase (not shown) images were used to create QSM maps
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the optimized probability threshold of 0.4 was applied and 
lesions smaller than five voxels were removed.

Lesion filling was performed with LEsion Automated 
Processing (LEAP) [28] and lesion filled images were pro-
cessed with the longitudinal pipeline of FreeSurfer [29–31], 
using a template-driven approach to provide a detailed par-
cellation and segmentation of the cortex and subcortical 
structures [32, 33]. Cortical thickness was obtained from 
FreeSurfer and brain volumes were obtained from the lon-
gitudinal pipeline of Sequence Adaptive Multimodal SEG-
mentation (SAMSEG) [34, 35]. To control for differences 
in head size, whole brain (WB), WM and DGM brain vol-
umes were normalized and calculated as a percentage of 
the segmentation-based total intracranial volume (normal-
ized WB [nWB], normalized WM [nWM], and normalized 
DGM [nDGM], respectively). In addition, nDGM volume 
and CGM thickness were converted into z-scores for each 
structure separately, based on the entire cohort. In our analy-
sis, two DGM structures (nucleus accumbens and amygdala) 
and three CGM structures (entorhinal cortex, frontal pole 
and temporal pole) were excluded from analyses due to their 
known measurement variabilities [36].

Diffusion imaging analysis

All images were corrected for susceptibility induced geomet-
ric distortions using FSL topup [37, 38], and for movement 
and eddy currents with FSL eddy [39]. The diffusion tensor 
was fitted on all b = 0 mm/s2 and b = 2000 s/mm2 images to 
obtain the FA, MD, AD and RD values.

The multi-shell ball and stick model of bedpostx [40] was 
used to estimate the voxel-wise diffusion parameter distri-
bution. Probabilistic tractography using 5000 streamlines 
was performed with probtrackx2 [41–43]. After linear reg-
istration of DWI to 3DT1, the inverse transformation was 
used to register the FreeSurfer regions of interest (ROIs) to 
DWI space using nearest-neighbour interpolation; thus per 
hemisphere, 5 DGM and 31 CGM regions were available as 
seed and target ROIs for tractography. A midline exclusion 
mask was used to ensure tracts could not cross hemispheres, 
except through the corpus callosum, fornix and brainstem. 
Moreover, the target ROIs were used as both waypoint and 
termination masks.

Probabilistic tractography was performed on year-1 scans, 
after which the tracts were propagated to the year-2 scans 
using Diffusion Tensor Imaging ToolKit (DTI-TK) version 
2.3.1 [44, 45], to create a spatially normalized tensor within-
subjects template. DTI-TK makes use of an affine registra-
tion algorithm with explicit tensor reorientation optimization 
[46]. The longitudinal pipeline as proposed by Keihaninejad 
et al. [47] was used. A DTI-TK within-subject template was 
created for each subject from the b = 2000 mm/s2 images. 

With these templates, the year-1 probabilistic connectivity 
distribution was registered to year-2 images for each subject.

Neurite Orientation Dispersion and Density Index 
(NODDI) Matlab Toolbox version 1.0.1 was used to obtain 
the neurite density index (NDI) and orientation dispersion 
index (ODI). Voxels for which the NODDI model failed (i.e. 
all voxels with fiso > 0.99; ficvf > 0.99; kappa = 0.05; and all 
error-code voxels) [11] were filtered out to create a tissue 
mask image to apply to the NDI and ODI images.

QSM imaging analysis

SuscEptibility mapping PIpeline tool for phAse image 
(SEPIA) version 0.7.2 [48] containing the Susceptibiltiy 
Tensor Imaging (STI) Suite [49] in MATLAB (The Math-
Works, Natick, MA) was used for processing of magnitude 
and phase images after applying a brain mask obtained 
with FSL BET. After phase unwrapping with the optimum 
weights-laplacian-based method and background field 
removal with variable radius kernel, QSM images were esti-
mated with iterative sparse linear equation and least square 
(iLSQR) with susceptibility of the whole brain defined as 0 
parts per million (ppm). QSM maps were registered to DWI 
space of the corresponding time point.

Myelin water imaging analysis

From B1, SPGR and SSFP images, myelin water fraction 
(MWF) maps were estimated using qimcdespot (from Quan-
titative Imaging Tool [QUIT] [50] version 2.0.2), assuming 
a three-component model with exchange. Upper and lower 
bounds were slightly adapted based on inspection of his-
tograms and in-house optimization within a group of HC 
subjects. MWF maps were registered to DWI space of the 
corresponding time point.

WM measures in probabilistic tracts

The probabilistic tracts were multiplied by the binary WM 
mask, and for all measures (i.e. FA, MD, AD, RD, NDI, 
ODI, MWF and QSM), mean values per tract were extracted, 
weighted by the connectivity probability to emphasize the 
tract center, and decrease the effect of spurious tracts. We 
determined all WM measures for the whole tract, consisting 
of normal-appearing (NA)WM and lesional WM, but also 
perilesional WM.

In order to combine WM measures, z-scores were cal-
culated per tract for each WM measure, based on the 
entire cohort, and z-scores were combined depending on 
which information was present. We calculated a diffusion 
z-score (WM-Diffusion = (zFA-zMD-zRD)/3) as well as 
an extended WM z-score (WM-Extended = (zFA – zMD 
– zRD + zNDI + zMWF)/5), when data were available.
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Clinical and neuropsychological evaluation

Patients’ medical history was taken, including the occur-
rence of relapses and changes in therapy. Neuropsychologi-
cal evaluation included the Symbol Digit Modalities Test 
(SDMT) [51] to measure information processing speed. Two 
parallel test versions were used to minimize learning effects. 
SDMT scores were corrected for age, sex and educational 
level and transformed into z-scores, based on a normative 
sample of Dutch healthy controls (n = 407) [52].

Patients’ physical disability was measured with the 
Expanded Disability Status Scale (EDSS) questionnaire 
[53], the 9 Hole Peg Test (9-HPT) and the 25 Foot Walk 
Test (25-FWT) [54]. From these three, EDSS + progression 
was determined as a descriptive, binary, marker of physical 
disability progression [55].

To also take cognitive disability into account in this group 
of early RRMS subjects with relatively low EDSS scores, Mul-
tiple Sclerosis Functional Composite (MSFC) [54] scores were 
calculated from 9-HPT, 25-FWT and SDMT z-scores. For 
each of the three sections, results were considered impaired 
upon z-score ≤ -1.5. Over time, RRMS subjects were classified 
as MSFC decliner when MSFC scores were lower at year-2 
compared to year-1, and as MSFC non-decliner when MSFC 
scores were equal or higher at year-2 compared to year-1.

Statistics

HC vs RRMS comparisons for baseline demographics were 
performed by independent samples t-test, Mann–Whitney 
U-test, or Chi Square test, when appropriate. Differences in the 
RRMS group over time were analyzed with paired t-test, Wil-
coxon Signed Ranks test, or McNemar test, when appropriate.

To analyze HC and RRMS differences over time in nor-
malized brain volumes, cortical thickness, and z-scores for 
nDGM, CGM or WM, linear mixed models (LMM) with 
subject as random intercept were used, with fixed factors 
time, type (i.e. HC/RRMS) and time*type. When appropri-
ate, LMM analysis was also performed to assess baseline 
differences between the two groups. Since application of an 
LMM requires constant variance in errors, z-scores for both 
WM and GM measures were used.

LMM analysis with subject as random intercept and type 
(i.e. HC/RRMS or MSFC non-decliner/decliner) as fixed 
factor was used for longitudinal analysis of DGM/CGM 
z-score relations with WM z-scores in the connected tracts. 
For the longitudinal relations, we analyzed both the effect 
of baseline WM z-scores on change in the connected GM 
z-scores (i.e. baseline WM to ΔGM), and the effect of base-
line GM z-scores on change in WM z-scores in the con-
nected tracts (i.e. baseline GM to ΔWM); both with type 
(HC/RRMS) or MSFC group (declining/non-declining) as 
covariates. When an interaction effects were present, the 

cohort was split based on type or MSFC group and LMM 
analysis were performed as described above. Analyses for 
DGM and CGM were performed separately.

Exploratory binary logistic regression was used to predict 
whether a subject would belong to the MSFC non-declining 
or MSFC declining group over time by looking at baseline 
WM or baseline GM values only; as well as combining these 
measures with demographics such as sex, age, education, 
treatment type and EDSS at baseline. Statistical analyses 
were performed using SPSS26 (IBM SPSS, Chicago, USA) 
and p-values were considered statistically relevant upon 
p ≤ 0.05. Since LMM analysis was performed multiple times 
(i.e. for every GM or WM measure as possible outcome 
separately), p-values were considered statistically significant 
upon p ≤ 0.01.

Results

Demographics

In total, 40 subjects with early RRMS and 15 age-and-sex-
matched HCs were included in the study. A total of 11 sub-
jects did not complete both year-1 and year-2 measurements 
and were, therefore, excluded from analyses in the current 
study (two HC subjects [inability to undergo MRI exami-
nation] and nine RRMS subjects [n = 5 switch to second-
line therapy; n = 1 switch to first-line therapy just prior to 
examination; n = 3 inability to undergo MRI examination 
unrelated to RRMS]). This resulted in a total of 44 age-, 
sex-, and education-matched subjects (13 HC, 31 RRMS) 
with full data available for analysis, for whom demographics 
are depicted in Table 1. Follow-up time for RRMS and HC 
subjects was similar (1.00 ± 0.10 years and 0.99 ± 0.10 years, 
respectively).

RRMS subjects had an average disease duration of 
3.5 ± 1.4 years at baseline measurements with median EDSS 
3.0 (range 0.0–5.0). A total of 6 subjects (19%) showed 
EDSS + progression during follow-up. 9-HPT and SDMT 
scores did not significantly differ from year-1 to year-2, 
but worsening of 25-FWT results was seen (Z = – 2.930, 
p = 0.003). A total of ten subjects (32%) had at least one 
impaired MSFC section (i.e. 9-HPT, 25-FWT and/or SDMT) 
at year-1, and seven subjects (23%) at year-2. Total MSFC 
score did not change significantly over time, but a total of 
n = 15 subjects showed an overall decline in MSFC score 
from year-1 to year-2 (MSFC decliners), whereas n = 16 
did not (MSFC non-decliners). No significant differences in 
age, sex, education, disease duration, treatment time/type, or 
number of relapses in the previous year were found between 
the MSFC decliners and non-decliners.
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MRI characteristics

MWI data were not available for 2 of 13 HC subjects and 7 
of 31 RRMS subjects at year-1 (MSFC non-decliners n = 2 
and MSFC decliners n = 5, respectively), and for 1 RRMS 
subject (MSFC non-decliner) at year-2. QSM data were not 

available for one RRMS subject (MSFC decliner) at year-1, 
and for one RRMS subject (MSFC non-decliner) at year-2.

HC vs RRMS subjects

MRI characteristics for HC and RRMS subjects over time 
are shown in Table 2. Larger atrophy rates in RRMS com-
pared to HC subjects were found for normalized WB, WM 

Table 1   Demographics for HC and RRMS subjects; and RRMS clinical characteristics over time

SD standard deviation, IQR interquartile range; ARR​ annualized relapse rate, EDSS expanded disability status scale, 9-HPT 9-hole peg test, 25-
FWT 25-foot walk test, SDMT symbol digit modalities test, MSFC multiple sclerosis functional composite
Statistics: *p < 0.05. z-scores from 9-HPT and 25-FWT were calculated from year-1 data, and are therefore not depicted at year-1 since they will, 
by default, have a mean of 0 and a SD of 1
a Education level according to Verhage scale (0–7)
b Treatment group interferon consists of interferon beta-1a (Avonex®, Rebif®), beta-1b (Betaferon®) and peginterferonbeta

Baseline demographics HC (n = 13) RRMS (n = 31)

Age in years, mean ± SD 37.5 ± 12.8 37.3 ± 7.5
Sex, m/f (% m) 4/9 (31) 7/24 (23)
Education levela, median (IQR) 6 (5–7) 6 (5–7)
Follow-up time in years, mean ± SD 0.99 ± 0.10 1.00 ± 0.10
Disease duration in years, mean ± SD – 3.5 ± 1.4
ARR​
median (range) – 0 (0–2)
≥ 1 relapse in previous year, n (%) 9 (29)
Treatmentb, n (%)
none - 10 (32)
interferon 4 (13)
glatiramer acetate 5 (16)
dimethyl fumarate 11 (36)
teriflunomide 1 (3)
Treatment duration in years, mean ± SD – 2.9 ± 1.1

Clinical characteristics RRMS RRMS

year-1 year-2
EDSS
median (range) 3.0 (0–5.0) 3.0 (0–6.0)
EDSS + progression, n (%) – 6 (19)
9-HPT
in seconds, mean ± SD 19.66 ± 2.95 19.44 ± 3.22
z-score, mean ± SD – 0.108 ± 1.09
25-FWT
in seconds, mean ± SD 4.40 ± 1.25 4.90 ± 2.19
z-score, mean ± SD – – 0.412 ± 1.785
SDMT
n correct, mean ± SD 65 ± 14 66 ± 15
z-score, mean ± SD – 0.387 ± 1.284 – 0.157 ± 1.289
MSFC score
mean ± SD – 0.129 ± 0.696 – 0.153 ± 0.880
≥ 1 impaired section, n (%) 10 (32) 7 (23)
MSFC decline over time, n (%) n.a 15 (48)
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Table 2   MRI characteristics of HC and RRMS subjects over time

HC (n = 13) RRMS (n = 31) Statistics
Time * Type interaction

Year-1 Year-2 Year-1 Year-2

WB volume
Unnormalized (ml), mean ± SD 1134 ± 122 1123 ± 129 1071 ± 89 1066 ± 93 n.a
Normalized (%ICV), mean ± SD 70.4 ± 2.1 70.8 ± 2.2 70.0 ± 2.0 69.8 ± 2.3 F(1,42) = 5.473, p = 0.024 *
WM volume
Unnormalized (ml), mean ± SD 419 ± 59 415 ± 61 393 ± 39 392 ± 42 n.a
Normalized (%ICV), mean ± SD 26.0 ± 1.1 26.1 ± 1.0 25.7 ± 1.2 25.6 ± 1.4 F(1,42) = 6.093, p = 0.018 *
GM volume
Unnormalized (ml), mean ± SD 679 ± 64 673 ± 68 644 ± 52 641 ± 53 n.a
Normalized (%ICV), mean ± SD 42.2 ± 2.0 42.4 ± 2.1 42.1 ± 4.4 42.0 ± 1.6 F(1,42) = 3.589, p = 0.065
DGM volumea n.a
Unnormalized (ml), mean ± SD 44.13 ± 3.08 44.16 ± 3.10 41.44 ± 3.68 41.25 ± 3.70 F(1,42) = 5.341, p = 0.026 *
Normalized (%ICV), mean ± SD 2.75 ± 0.19 2.76 ± 0.19 2.72 ± 0.17 2.70 ± 0.17 B = – 0.061, p = 0.571, CI [– 0.271, 0.149]
z-score, mean ± SD 0.145 ± 1.078 0.158 ± 1.067 – 0.040 ± 0.947 – 0.087 ± 0.972 n.a
CGM thicknessb

mm, mean ± SD 2.58 ± 0.10 2.57 ± 0.11 2.55 ± 0.10 2.54 ± 0.10 F(1,86) = 0.551, p = 0.460
z-score, mean ± SD 0.187 ± 1.022 0.099 ± 1.036 – 0.038 ± 0.967 – 0.083 ± 0.986 B = 0.043, p = 0.334, CI [– 0.044, 0.129]
WM z-scores in DGM tractsc

WM-Diffusion 0.442 ± 0.829 0.105 ± 1.096 – 0.050 ± 0.867 – 0.180 ± 0.872 B = 0.207, p = 0.023, CI [0.028, 0.387] *
WM-Extendedd 0.384 ± 0.688 0.177 ± 0.898 – 0.138 ± 0.839 – 0.169 ± 0.772 B = 0.290, p = 0.001, CI [0.114, 0.467] **
FA 0.504 ± 1.028 0.123 ± 1.094 – 0.013 ± 0.941 – 0.250 ± 0.911 B = 0.144, p = 0.131, CI [–0.043, 0.332]
MD – 0.362 ± 0.817 – 0.014 ± 1.207 0.090 ± 0.952 0.105 ± 0.980 B = – 0.234, p = 0.022, CI [–0.452, –0.035] *
AD – 0.006 ± 0.960 – 0.079 ± 1.127 0.132 ± 0.982 –0.096 ± 0.961 B = – 0.155, p = 0.183, CI [– 0.382, 0.073]
RD – 0.462 ± 0.879 – 0.088 ± 1.224 0.046 ± 0.927 0.184 ± 0.946 B = – 0.235, p = 0.020, CI [– 0.433, –0.037] *
NDI 0.434 ± 0.82 0.221 ± 0.962 – 0.150 ± 0.985 – 0.125 ± 1.006 B = 0.238, p = 0.013, CI [0.051, 0.425] *
ODI – 0.336 ± 0.982 0.032 ± 1.043 – 0.124 ± 0.965 0.251 ± 0.958 B = 0.007, p = 0.947, CI [– 0.211, 0.226]
MWFd 0.514 ± 0.592 0.347 ± 0.616 – 0.250 ± 1.424 – 0.139 ± 0.679 B = 0.342, p = 0.004, CI [0.108, 0.577] **
QSMe 0.053 ± 1.019 0.041 ± 0.943 – 0.052 ± 0.952 0.011 ± 1.057 B = 0.050, p = 0.706, CI [– 0.209, 0.309]
WM z-scores in CGM tractsc

WM-Diffusion 0.320 ± 0.877 0.045 ± 1.002 0.033 ± 0.807 – 0.186 ± 0.919 B = 0.055, p = 0.136, CI [– 0.017, 0.128]
WM-Extendedd 0.250 ± 0.788 0.123 ± 0.850 – 0.079 ± 0.743 – 0.189 ± 0.819 B = 0.122, p < 0.001, CI [0.050, 0.195] ***
FA 0.408 ± 1.001 – 0.068 ± 1.027 0.143 ± 0.940 – 0.286 ± 0.952 B = 0.048, p = 0.300, CI [– 0.043, 0.138]
MD – 0.228 ± 0.971 0.154 ± 1.131 0.073 ± 0.880 0.087 ± 1.037 B = – 0.060, p = 0.132, CI [–0.139, 0.018]
AD 0.022 ± 1.045 – 0.264 ± 1.072 0.212 ± 0.928 – 0.111 ± 0.967 B = – 0.037, p = 0.425, CI [– 0.128, 0.054]
RD – 0.323 ± 0.970 – 0.049 ± 1.143 – 0.030 ± 0.873 0.186 ± 1.020 B = – 0.058, p = 0.161, CI [– 0.139, 0.023]
NDI 0.293 ± 0.952 0.205 ± 0.970 – 0.073 ± 0.977 – 0.136 ± 1.009 B = 0.025, p = 0.469, CI [– 0.042, 0.092]
ODI – 0.261 ± 1.014 0.368 ± 1.101 – 0.311 ± 0.879 0.266 ± 0.927 B = – 0.052, p = 0.293, CI [– 0.149, 0.045]
MWFd 0.495 ± 0.810 0.274 ± 0.792 – 0.171 ± 1.245 – 0.164 ± 0.813 B = 0.312, p < 0.001, CI [0.212, 0.412] ***
QSMe 0.154 ± 1.024 0.211 ± 0.938 – 0.118 ± 0.982 – 0.040 ± 1.004 B = 0.010, p = 0.852, CI [– 0.096, 0.116]

Bold values in statistics column are significant
SD standard deviation, %ICV percentage of total intra cranial volume, B estimate, CI 95% confidence interval
*p < 0.05; **p < 0.01; ***p < 0.001. Time*Type interaction calculated with HC as reference
a DGM volume is the total of the 10 structures (i.e. excluding left and right accumbens and amygdala)
b CGM thickness is calculated from the mean left and mean right cortical thickness output from FreeSurfer
c WM measures are depicted as a mean z-score over all DGM c.q. CGM tracts, respectively, and statistics calculated with linear mixed models to 
correct for the amount of tracts
d MWF was available for 11/13 HCs and 24/31 RRMS subjects at year-1, and for 13/13 HC and 30/31 RRMS subjects at year-2
e QSM was available for 13/13 HC and 30/31 RRMS subjects at year-1, and for 13/13 HC and 30/31 RRMS subjects at year-2
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and DGM volumes (p = 0.024, p = 0.018 and p = 0.026, 
respectively). RRMS subjects showed generally lower 
z-scores of DGM volume, CGM thickness, and measures of 
WM integrity (e.g. lower FA, higher MD; or more specifi-
cally lower NDI as axonal damage marker, and lower MWF 
as myelin damage marker), but no significant differences 
were found between HC and RRMS, neither cross-section-
ally nor longitudinally.

In both DGM- and CGM-seeded tracts, WM-Extended 
z-scores decreased less over time in RRMS compared to 
HC subjects (DGM: B = 0.290, SE = 0.090, p < 0.001; 
CGM: B = 0.122, SE = 0.037, p < 0.001), but the WM-
Extended z-scores were also already lower at year-1 in 
RRMS compared to HC subjects (DGM: B = 0.464, 
SE = 0.200, p = 0.024; CGM: B = 0.358, SE = 0.190, 
p = 0.066), although not reaching significance.

MSFC non‑declining vs MSFC declining subjects

Comparing the RRMS subjects based on their declining or 
non-declining MSFC score over time (Table 3), we found 
significantly higher atrophy rates for normalized WB, WM, 
GM and DGM volumes (p = 0.013, p = 0.029, p = 0.022 
and p = 0.021, respectively) in the MSFC declining group 
compared to non-declining group. CGM thickness as well 
as CGM z-score also decreased faster over time in MSFC 
declining compared to non-declining subjects (p = 0.010 and 
p = 0.019, respectively).

In both DGM and CGM tracts, several WM z-scores 
declined faster in MSFC declining compared to non-declin-
ing subjects (e.g. WM-Extended: B = 0.259, SE = 0.094, 
p = 0.006 for DGM, and B = 0.176, SE = 0.040, p < 0.001 for 
CGM, respectively). Interestingly, this was highly signifi-
cant for changes in myelin-related measures (MWF and RD), 
but not for the axonal marker NDI. For the CGM, but not 
DGM, overall WM integrity was significantly lower at both 
time points in MSFC declining subjects compared to MSFC 
non-declining subjects (e.g. WM-Extended: B = – 0.436, 
SE = 0.204, p = 0.040).

Effect of baseline WM integrity on change 
in connected GM over time

The relation between baseline WM integrity and changes 
in DGM volume and CGM thickness over time is shown in 
Table 4. Table 4A shows significant relations between base-
line WM-Diffusion, WM-Extended, FA and RD z-scores 
and the change in CGM thickness in the entire cohort (e.g. 
WM-Extended: B = – 0.055, SE = 0.019, p = 0.005). This 
relationship between baseline WM and CGM thickness 
change was stronger in RRMS compared to HC subjects 

for WM-Diffusion, WM-Extended, MD, RD and NDI (e.g. 
WM-Diffusion*Type: B = 0.088, SE = 0.025, p < 0.001), thus 
including both axonal and myelin markers. When the MSFC 
non-declining group was compared with the MSFC declin-
ing group, similar effects were observed as when compar-
ing HC with RRMS (Table 4B): also here the baseline WM 
z-scores had a WM*Type relationship in CGM (e.g. WM-
Extended*MSFC type: B = 0.120, SE = 0.031, p = 0.001), 
where the relationship between WM damage and CGM 
thickness change was stronger in MSFC decliners than in 
non-decliners, and involved both markers of myelin dam-
age in the WM (FA, RD) and the marker of axonal damage 
(NDI). No significant relations between WM z-scores and 
change in DGM volumes over time were seen, neither over 
the entire cohort, nor for the MSFC groups.

Post hoc analysis in HC and RRMS groups separately 
(Table 4C) showed that lower WM integrity related to a 
decrease in cortical thickness over time in RRMS subjects 
(e.g. WM-Extended: B = 0.033, SE = 0.015, p = 0.030), 
whereas HC subjects showed an opposite relationship (e.g. 
WM-Extended: B = – 0.055, SE = 0.019, p = 0.004). Post 
hoc analysis splitting in the two MSFC groups showed that 
the WM–GM relationship was only significant in subjects 
whose MSFC score declined over time (e.g. WM-Extended: 
B = 0.098, SE = 0.025, p < 0.001), and not in subjects whose 
MSFC did not (e.g. WM-Extended: B = – 0.021, SE = 0.019, 
p = 0.272).

Effect of baseline GM on change in connected WM 
integrity over time

The relation between baseline DGM volume or CGM 
thickness and changes in WM integrity over time is shown 
in Table 5. Table 5A shows there were no significant rela-
tions between baseline GM z-scores and WM z-scores 
over time, except for a different association in HC and 
RRMS subjects of baseline DGM volume on AD change 
over time, which was also seen between the two MSFC 
groups (Table 5B). CGM thickness z-scores did not relate 
significantly to WM change over time.

Post hoc analysis in HC and RRMS groups separately 
(Table 5C) showed that in RRMS subjects, lower DGM 
volumes related to a decrease in AD in the connected 
tracts over time (B = 0.109, SE = 0.042, p = 0.009), an 
effect that was not found in HC subjects (B = – 0.130, 
SE = 0.075, p = 0.086). Furthermore, this was only seen in 
subjects whose MSFC would decline over time (B = 0.203, 
SE = 0.050, p < 0.001), and not in subjects whose MSFC 
would not decline over time (B = – 0.002, SE = 0.066, 
p = 0.977).
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Table 3   MRI characteristics of RRMS subjects with non-declining or declining MSFC score over time

MSFC non-declining (n = 16) MSFC declining (n = 15) Statistics
Time*Type interaction

Year-1 year-2 Year-1 Year-2

WB volume
Unnormalized (ml), mean ± SD 1073 ± 93 1075 ± 96 1064 ± 94 1058 ± 92 n.a
Normalized (%ICV), mean ± SD 70.3 ± 2.0 70.4 ± 2.0 69.6 ± 2.1 69.2 ± 2.4 F(1,29) = 7.029, p = 0.013*
WM volume
Unnormalized (ml), mean ± SD 392 ± 44 393 ± 45 392 ± 40 390 ± 39 n.a
Normalized (%ICV), mean ± SD 25.6 ± 1.2 25.7 ± 1.3 25.6 ± 1.4 25.5 ± 1.5 F(1,29) = 5.266, p = 0.029*
GM volume
Unnormalized (ml), mean ± SD 648 ± 49 649 ± 51 638 ± 58 634 ± 56 n.a
Normalized (%ICV), mean ± SD 42.5 ± 1.4 42.5 ± 1.4 41.7 ± 1.5 41.4 ± 1.6 F(1,29) = 5.895, p = 0.022*
DGM volumea

Unnormalized (ml), mean ± SD 42.12 ± 3.67 42.05 ± 3.71 40.71 ± 3.68 40.41 ± 3.62 n.a
Normalized (%ICV), mean ± SD 2.76 ± 0.17 2.76 ± 0.17 2.67 ± 0.16 2.65 ± 0.16 F(1,29) = 5.470, p = 0.026*
z-score, mean ± SD 0.164 ± 0.911 0.152 ± 0.918 – 0.257 ± 0.940 – 0.342 ± 0.967 B = 0.074, p = 0.511, CI [– 0.147, 0.296]
CGM thicknessb

mm, mean ± SD 2.56 ± 0.09 2.56 ± 0.09 2.53 ± 0.10 2.52 ± 0.10 F(1,60) = 7.165, p = 0.010**
z-score, mean ± SD 0.024 ± 0.949 0.033 ± 0.959 – 0.104 ± 0.983 – 0.207 ± 0.999 B = 0.113, p = 0.019, CI [0.018, 0.207]*
WM z-scores in DGM tractsc

WM-Diffusion 0.045 ± 0.949 0.030 ± 0.870 – 0.151 ± 0.759 – 0.404 ± 0.820 B = 0.238, p = 0.009, CI [0.061, 0.415]**
WM-Extendedd – 0.115 ± 0.915 0.032 ± 0.751 – 0.171 ± 0.722 – 0.369 ± 0.742 B = 0.259, p = 0.006, CI [0.074, 0.444]**
FA 0.033 ± 0.992 – 0.110 ± 0.963 – 0.062 ± 0.883 – 0.398 ± 0.830 B = 0.194, p = 0.043, CI [0.006, 0.382]*
MD – 0.046 ± 1.037 – 0.144 ± 0.920 0.235 ± 0.831 0.371 ± 0.974 B = – 0.235, p = 0.026, CI [– 0.442, – 0.028]*
AD 0.004 ± 1.009 – 0.262 ± 0.892 0.269 ± 0.936 0.080 ± 1.002 B = – 0.077, p = 0.517, CI [– 0.310, 0.156]
RD – 0.057 ± 1.012 – 0.056 ± 0.926 0.156 ± 0.815 0.441 ± 0.903 B = – 0.285, p = 0.004, CI [– 0.480, – 0.089]**
NDI – 0.020 ± 0.996 0.076 ± 0.951 – 0.289 ± 0.956 – 0.339 ± 1.022 B = 0.146, p = 0.132, CI [– 0.044, 0.337]
ODI – 0.129 ± 0.966 0.260 ± 0.915 – 0.118 ± 0.967 0.242 ± 1.004 B = 0.030, p = 0.800, CI [– 0.201, 0.261]
MWFd – 0.373 ± 1.711 0.018 ± 0.607 – 0.079 ± 0.856 – 0.296 ± 0.713 B = 0.602, p < 0.001, CI [0.307, 0.898]***
QSMe 0.045 ± 0.990 0.105 ± 1.062 – 0.163 ± 0.896 – 0.082 ± 1.047 B = 0.005, p = 0.973, CI [– 0.283, 0.293]
WM z-scores in CGM tractsc

WM-Diffusion 0.185 ± 0.781 0.055 ± 0.788 – 0.128 ± 0.803 – 0.444 ± 0.977 B = 0.186, p < 0.001, CI [0.111, 0.261]***
WM-Extendedd 0.010 ± 0.728 0.027 ± 0.698 – 0.204 ± 0.747 – 0.404 ± 0.874 B = 0.176, p < 0.001, CI [0.098, 0.254]***
FA 0.248 ± 0.952 – 0.128 ± 0.922 0.030 ± 0.913 – 0.453 ± 0.955 B = 0.107, p = 0.030, CI [0.011, 0.203]*
MD – 0.112 ± 0.845 – 0.206 ± 0.850 0.270 ± 0.874 0.399 ± 1.1123 B = – 0.223, p < 0.001, CI [– 0.304, – 0.143]***
AD 0.065 ± 0.938 – 0.314 ± 0.894 0.370 ± 0.892 0.106 ± 0.995 B = – 0.116, p = 0.019, CI [– 0.213, – 0.019]*
RD – 0.194 ± 0.842 – 0.088 ± 0.849 0.145 ± 0.871 0.478 ± 1.104 B = – 0.227, p < 0.001, CI [– 0.310, – 0.144]***
NDI 0.084 ± 0.949 0.056 ± 0.958 – 0.240 ± 0.979 – 0.341 ± 1.022 B = 0.073, p = 0.047, CI [0.001, 0.145]
ODI – 0.332 ± 0.906 0.229 ± 0.916 – 0.288 ± 0.848 0.306 ± 0.938 B = – 0.033, p = 0.541, CI [– 0.137, 0.072]
MWFd – 0.218 ± 1.433 0.020 ± 0.623 – 0.104 ± 0.916 – 0.347 ± 0.931 B = 0.486, p < 0.001, CI [0.368, 0.604]***
QSMe – 0.114 ± 0.919 – 0.071 ± 0.908 – 0.123 ± 1.049 – 0.010 ± 1.091 B = – 0.050, p = 0.418, CI [– 0.170, 0.071]

Bold values in statistics column are significant
SD standard deviation, %ICV percentage of total intra cranial volume, B estimate, CI 95% confidence interval
*p < 0.05; **p < 0.01; ***p < 0.001. Time*Type interaction calculated with non-declining MSFC as reference
a DGM volume is the total of the 10 structures (i.e. excluding left and right accumbens and amygdala)
b CGM thickness is calculated from the mean left and mean right cortical thickness output from FreeSurfer
c WM measures are depicted as a mean z-score over all DGM c.q. CGM tracts, respectively, and statistics calculated with linear mixed models to 
correct for the amount of tracts
d MWF was available for 14/16 MSFC non-declining subjects and 10/15 MSFC declining subjects at year-1, and for 15/16 MSFC non-declining 
subjects and 15/15 MSFC declining subjects at year-2
e QSM was available for 16/16 MSFC non-declining and 14/15 MSFC declining subjects at year-1, and for 15/16 MSFC non-declining and 15/15 
MSFC declining subjects at year-2
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Predicting MSFC decline based on baseline WM 
and GM parameters

Exploratory binary logistic regression to study the rela-
tion between baseline imaging parameters and the MSFC 
groups showed that WM-Extended z-scores were bet-
ter predictors than WM-Diffusion z-scores (Nagelkerke 
R2 = 0.594 versus 0.362, respectively), and that either of 
the WM z-scores were better predictors than GM z-scores 
only (Nagelkerke R2 = 0.287) in a model including sex, 
age, education, treatment type and baseline EDSS score. 
A total of 78% of subjects could be classified correctly 
(MSFC-non-declining: 84%; MSFC-declining: 69%) in a 
model based on sex, age, education, treatment type, EDSS, 
GM z-score, WM-Diffusion z-score and WM-Extended 
z-score (Nagelkerke R2 = 0.611).

Discussion

This longitudinal study in early RRMS explored the spa-
tial and temporal relations between GM damage and WM 
integrity in the connected tracts using multimodal MRI. 
Our most important finding was that lower baseline WM 
integrity, as determined with DTI, NODDI and MWF, 
related to increasing atrophy of the connected cortical 
GM over time in subjects with RRMS, and especially for 
those who experienced increasing disability over the study 
period. In contrast, lower baseline cortical GM thick-
ness or deep GM volume did not relate to WM integrity 
changes in the connected tracts over time.

These results suggest that in early RRMS, damage of 
the WM precedes atrophy of the cortical GM and that this 
relationship is clinically relevant since it was only found in 
subjects with worsening of their overall MSFC score over 
time. Cortical thinning as a result of preceding lower WM 
integrity in connected tracts has been suggested previously 
[56, 57], and we extend those findings by studying this 
longitudinally in early RRMS. Accelerated CGM atrophy 
has previously also been found upon increasing clinical 
progression independent of relapse activity [58], and our 
results confirm this already in the very early stages of the 
disease. For progressive MS, it was earlier found that WM 
damage preceded cortical GM damage [6], and a recent 
combined MRI-histopathological study showed that this 
WM-integrity-related cortical thinning could be attributed 
to GM axonal density loss, rather than myelin or microglia 
density loss within GM [59].

Our study adds important new insights, by demonstrating 
that in WM tracts, both axonal damage and myelin dam-
age are related to subsequent cortical thinning. That myelin 
damage, as assessed here through MWF and RD, would be 
implicated, may not come as a surprise given the relations 

between demyelinating focal WM lesions and GM atrophy 
in MS described previously and reviewed systematically in 
[9]. Nonetheless, the fact that quantitatively assessed mye-
lin damage in whole WM tracts was related to subsequent 
thinning of the connected cortex in RRMS, is novel. While 
(higher) RD was highly significantly more strongly related 
to subsequent cortical thinning in RRMS than HC, (lower) 
MWF failed to reach significance. In the post hoc analyses 
in RRMS alone, both RD and MWF just failed to meet the 
significance threshold. However, in the most affected patient 
group, those with RRMS who exhibited MSFC decline dur-
ing the study, both RD and MWF at baseline were highly 
significantly related to subsequent thinning of the connected 
cortex. Future studies, ideally in larger groups but maintain-
ing the homogeneity of image acquisition adhered to here, 
should investigate the role of myelin damage in WM in the 
process of cortical thinning in RRMS in more detail.

Axonal damage is another important component of WM 
damage in MS. With NDI, this study included a quantitative 
marker of this damage. Lower NDI in WM tracts was signifi-
cantly related to more subsequent thinning of the connected 
cortex in; whether assessing its effect in RRMS versus HC; 
in MSFC-declining versus non-declining RRMS; or in the 
post hoc analyses on RRMS separately and in the MSFC-
declining subgroup. The recurring strength of this marker 
suggests an important role for WM axonal damage in the 
development of subsequent cortical thinning.

The finding that this process may already be ongoing in 
early RRMS may also inform therapeutic choices: treatments 
that would be developed to target primarily neurodegenera-
tion may have limited effect, since atrophy may be secondary 
to WM damage. In the current study, we did not find any 
significant influences of WM integrity on atrophy of DGM 
in either HC or RRMS subjects; and also not in either of the 
two MSFC groups. Correlations between WM damage and 
connected DGM volumes have been shown in earlier studies, 
although these studies focused only on lesion volume and 
not on overall integrity of the entire tract [9, 60]. Studies 
that did look at overall integrity of the tract at baseline and 
its effect on atrophy focused mainly on the thalamus [7, 61, 
62]. Interestingly, a cross-sectional study showed that con-
nectivity of thalamocortical tracts related to cortical, but not 
thalamic, atrophy [63], which may be in line with our results 
where we did not find any relations between WM and DGM 
atrophy, but only with CGM atrophy. It is known that MS 
DGM segmentation has some methodological issues[64], 
and therefore we took some precautions: subjects’ brain 
volumes were measured at similar times of the day to limit 
diurnal volume fluctuations; specific longitudinal segmenta-
tion software optimized in subjects with MS was used[34]; 
amygdala and nucleus accumbens were excluded from analy-
sis due to known difficulties in segmentation of these small 
structures[36]; and DGM volumes were normalized and 
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Table 4   Effect of baseline WM integrity z-score on change in DGM volume z-score and CGM thickness z-score over time; compared in HC/
RRMS (A), MSFC non-declining/declining (B), and split per group (C; CGM only)

ΔDGM ΔCGM

WM Type WM*TYPE WM Type WM*TYPE

A. HC vs MS
 WM-Diffusion
  B, p 0.026, 0.201 – 0.049, 0.076 – 0.014, 0.551 – 0.051, 0.002** 0.026, 0.622 0.073, < 0.001***
  95% CI [– 0.014, 0.066] [– 0.102, 0.005] [– 0.061, 0.033] [– 0.083, – 0.018] [– 0.079, 0.131] [0.033, 0.113]

 WM-Extendeda

  B, p 0.006, 0.789 – 0.042, 0.099 – 0.004, 0.897 – 0.055, 0.005** 0.024, 0.697 0.088, < 0.001***
  95% CI [– 0.041, 0.054] [– 0.093, 0.008] [– 0.058, 0.051] [– 0.093, – 0.017] [– 0.101, 0.149] [0.040, 0.136]

 FA
  B, p 0.031, 0.059 – 0.045, 0.097 – 0.023, 0.254 – 0.038, 0.003** 0.027, 0.608 0.038, 0.015
  95% CI [– 0.001, 0.063] [– 0.099, 0.008] [– 0.063, 0.017] [– 0.064, – 0.013] [– 0.079, 0.133] [0.008, 0.069]

 MD
  B, p – 0.003, 0.885 – 0.059, 0.028 – 0.007, 0.766 0.036, 0.024 0.037, 0.479 – 0.074, < 0.001***
  95% CI [– 0.041, 0.035] [– 0.111, – 0.006] [– 0.051, 0.037] [0.005, 0.068] [– 0.068, 0.142] [– 0.112, – 0.035]

 AD
  B, p 0.035, 0.028 – 0.060, 0.017 – 0.040, 0.035 – 0.004, 0.769 0.048, 0.363 – 0.022, 0.155
  95% CI [0.004, 0.065] [– 0.109, – 0.011] [– 0.076, – 0.003] [– 0.030, 0.022] [– 0.058, 0.154] [– 0.053, 0.009]

 RD
  B, p – 0.024, 0.209 – 0.049, 0.073 0.012, 0.598 0.041, 0.007** 0.029, 0.583 – 0.062, < 0.001***
  95% CI [– 0.062, 0.014] [– 0.103, 0.005] [– 0.032, 0.056] [0.011, 0.071] [– 0.076, 0.134] [– 0.098, – 0.025]

 NDI
  B, p – 0.008, 0.659 – 0.064, 0.021 0.007, 0.720 – 0.039, 0.024 0.034, 0.516 0.073, < 0.001***
  95% CI [– 0.042, 0.027] [– 0.118, – 0.010] [– 0.034, 0.048] [– 0.073, – 0.005] [– 0.070, 0.138] [0.033, 0.114]

 ODI
  B, p – 0.040, 0.012 – 0.048, 0.066 0.033, 0.080 0.021, 0.088 0.042, 0.434 – 0.006, 0.672
  95% CI [– 0.071, – 0.009] [– 0.100, 0.003] [– 0.004, 0.070] [– 0.003, 0.046] [– 0.065, 0.149] [– 0.036, 0.023]

 MWFa

  B, p – 0.031, 0.254 – 0.061, 0.026 0.032, 0.268 – 0.015, 0.393 0.032, 0.610 0.041, 0.045
  95% CI [– 0.086, 0.023] [– 0.115, – 0.008] [– 0.025, 0.089] [– 0.049, 0.019] [– 0.095, 0.160] [0.001, 0.081]

 QSMb

  B, p 0.009, 0.536 – 0.059, 0.028 0.008, 0.625 – 0.005, 0.659 0.039, 0.470 0.010, 0.461
  95% CI [– 0.019, 0.037] [– 0.111, – 0.007] [– 0.026, 0.043] [– 0.029, 0.018] [– 0.069, 0.147] [– 0.017, 0.038]

B. MSFC non-
declining vs MSFC 
declining

 WM-Diffusion
  B, p – 0.003, 0.850 – 0.070, 0.018 0.029, 0.266 – 0.022, 0.188 – 0.109, 0.0510 0.083, < 0.001***
  95% CI [– 0.036, 0.029] [– 0.127, – 0.013] [– 0.023, 0.081] [– 0.056, 0.011] [– 0.219, 0.000] [0.037, 0.129]

 WM-Extendeda

  B, p – 0.004, 0.800 – 0.049, 0.079 0.019, 0.521 – 0.021, 0.306 – 0.090, 0.200 0.120, < 0.001***
  95% CI [– 0.038, 0.029] [– 0.105, 0.006] [– 0.041, 0.079] [– 0.061, 0.019] [– 0.232, 0.051] [0.059, 0.180]

 FA
  B, p – 0.003, 0.874 – 0.073, 0.017 0.022, 0.369 – 0.026, 0.029 – 0.120, 0.034 0.056, 0.001**
  95% CI [– 0.034, 0.029] [– 0.132, – 0.014] [– 0.026, 0.069] [– 0.049, 0.003] [– 0.230, – 0.010] [0.021, 0.090]

 MD
  B, p 0.003, 0.834 – 0.069, 0.016 – 0.023, 0.316 – 0.009, 0.587 – 0.096, 0.084 – 0.049, 0.025
  95% CI [– 0.026, 0.032] [– 0.125, – 0.014] [– 0.069, 0.023] [– 0.041, 0.023] [– 0.206, 0.014] [– 0.093, – 0.006]

 AD
  B, p 0.002, 0.912 – 0.073, 0.013 – 0.006, 0.777 – 0.026, 0.025 – 0.105, 0.060 0.002, 0.930
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Table 4   (continued)

ΔDGM ΔCGM

WM Type WM*TYPE WM Type WM*TYPE

  95% CI [– 0.026, 0.029] [– 0.129, – 0.016] [– 0.047, 0.035] [– 0.049, – 0.003] [– 0.216, 0.005] [– 0.032, 0.035]
 RD
  B, p 0.002, 0.894 – 0.070, 0.017 – 0.028, 0.244 0.020, 0.205 – 0.109, 0.051 – 0.074, < 0.001***
  95% CI [– 0.028, 0.032] [– 0.127, – 0.013] [– 0.077, 0.020] [– 0.011, 0.051] [– 0.219, 0.000] [– 0.116, – 0.031]

 NDI
  B, p – 0.011, 0.453 – 0.072, 0.017 0.017, 0.460 0.003, 0.855 – 0.098, 0.085 0.059, 0.010**
  95% CI [– 0.041, 0.018] [– 0.131, – 0.014] [– 0.029, 0.63] [– 0.029, 0.035] [– 0.210, 0.014] [0.014, 0.104]

 ODI
  B, p – 0.008, 0.578 – 0.074, 0.014 0.002, 0.938 0.025, 0.029 – 0.120, 0.034 – 0.021, 0.212
  95% CI [– 0.036, 0.020] [– 0.131, – 0.016] [– 0.040, 0.043] [0.003, 0.047] [– 0.231, – 0.009] [– 0.053, 0.012]

 MWFa

  B, p – 0.008, 0.578 – 0.053, 0.057 – 0.001, 0.980 0.008, 0.547 – 0.106, 0.33 0.052, 0.025
  95% CI [– 0.036, 0.020] [– 0.108, 0.002] [– 0.047, 0.046] [– 0.019, 0.035] [– 0.246, 0.035] [0.007, 0.097]

 QSMb

  B, p 0.014, 0.261 – 0.072, 0.018 0.002, 0.907 – 0.014, 0.189 – 0.120, 0.037 0.037, 0.013
  95% CI [– 0.011, 0.040] [– 0.131, – 0.014] [– 0.038, 0.043] [– 0.035, 0.007] [– 0.233,– 0.008] [0.008, 0.066]

ΔCGM

HC (n = 13) RRMS (n = 31) MSFC non-declin-
ing (n = 16)

MSFC declining (n = 15)

C. Post hoc group 
split

 WM-Diffusion
  B, p – 0.051, 0.003 0.022, 0.057 – 0.022, 0.150 0.030, < 0.001***
  95% CI [– 0.084, – 0.018] [– 0.001, 0.046] [– 0.053, 0.008] [0.026. 0.095]

 WM-Extendeda

  B, p – 0.055, 0.005** 0.033, 0.030 – 0.021. 0.272 0.098. < 0.001***
  95% CI [– 0.093, – 0.017] [0.003, 0.063] [– 0.059. 0.017] [0.050, 0.147]

 FA
  B, p – 0.038, 0.004** 0.000, 0.990 – 0.026, 0.016 0.030, 0.032
  95% CI [– 0.064, – 0.012] [– 0.017, 0.017] [– 0.047, – 0.005] [0.003, 0.058]

 MD
  B, p 0.036, 0.027 – 0.037, < 0.001*** – 0.009, 0.539 – 0.058, < 0.001***
  95% CI [0.004, 0.069] [– 0.059, – 0.016] [– 0.039, 0.020] [– 0.090, – 0.027]

 AD
  B, p – 0.004, 0.770 – 0.026, 0.002** – 0.027, 0.014 – 0.025, 0.065
  95% CI [– 0.030, 0.023] [– 0.043, – 0.010] [– 0.048, – 0.005] [– 0.052, 0.002]

 RD
  B, p 0.041, 0.008** – 0.021, 0.057 0.020, 0.168 – 0.053, < 0.001***
  95% CI [0.011, 0.071] [– 0.042, 0.001] [– 0.008, 0.048] [– 0.085, – 0.022]

 NDI
  B, p – 0.039, 0.027 0.034, 0.003** 0.002, 0.883 0.062, < 0.001****
  95% CI [– 0.073, – 0.004] [0.012, 0.057] [– 0.027, 0.032] [0.028, 0.096]

 ODI
  B, p 0.021, 0.094 0.015, 0.070 0.025, 0.016 0.004, 0.771
  95% CI [– 0.004, 0.046] [– 0.001, 0.031] [0.005, 0.045] [– 0.022, 0.030]

 MWFa

  B, p – 0.015, 0.393 0.026, 0.017 0.008, 0.530 0.060, 0.003**
  95% CI [– 0.049, 0.019] [0.005, 0.048] [– 0.017, 0.033] [0.021, 0.099]
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converted into z-scores per structure to enable grouping of 
large and small DGM structures within one LMM. However, 
where our linear mixed model method was well suited for 
analysis of the CGM tracts (i.e. damage may occur in dif-
ferent tracts and different cortical areas between MS sub-
jects), it may be less suitable for the analysis of DGM tracts, 
and analyses per DGM structure may be more informative. 
Due to the small sample size, we did not further investigate 
the separate DGM structures in the current study, but this 
remains of interest for future, larger, studies.

The fact that anterograde neurodegeneration from WM 
integrity loss was mainly found in subjects who showed 
clinical progression (i.e. MSFC decliners), further indi-
cates the clinical relevance of these disease mechanisms. 
It should be noted that the distinction between decliner and 
non-decliner is only subtle, in the 1-year follow-up of this 
cohort of 31 RRMS subjects. However, although the groups 
only consisted of 15 declining and 16 non-declining RRMS 
subjects, exploratory regression analysis suggested impor-
tance of baseline WM integrity (including NDI and MWF) 
over baseline GM scores, on MSFC progression over time. 
Although implications for clinical progression are subtle and 
preliminary, future studies may benefit from including meas-
ures of the integrity of the tract over lesion volume only, and 
especially from the addition of NDI and MWF as important 
axonal and myelin markers, respectively, to standard DTI 
analyses.

This study has some limitations. First, our sample size was 
relatively small and for a few subjects, MWF and QSM values 
were not available; this was mitigated by using mixed models 
analyses that take all data-points into account. Although our 
study follow-up time was short, significant atrophy patterns as 
well as WM–GM relations could be recognized already early 
in the disease. Larger sample sizes and longer follow-up times 
might increase the power of these findings.

Furthermore, while it would be interesting to study the 
relation with GM atrophy separately for damage in WM 
lesions in connected tracts and for damage in NAWM in 
connected tracts, we have chosen not to pursue such analy-
ses in the present work. Because of the small numbers of 
lesions per person in our study group of people with early 
MS, and because the anatomical locations of those lesions 
vary from patient to patient, a large number of WM tracts 
will not contain any lesion. The small amount of data will 
lead to a low statistical power regarding the relation between 
that lesion-bound damage on the one hand, and atrophy of 
the connected GM regions on the other. By contrast, by 
quantifying the tract-specific damage through the quantita-
tive MR measures for the whole tract, regardless of whether 
lesions were present, we were able to include all tracts in all 
patients in our analyses. This allowed for a comprehensive 
analysis, while also limiting the number of statistical tests. 
Nonetheless, the extraction of weighted mean values from 
the whole WM tract may be less optimal for QSM, due to 
opposite effects on susceptibility of demyelination and iron 
deposition[15], and so for QSM separate analysis of lesions, 
perilesional WM and NAWM may be informative. For future 
studies, it may be interesting to also look at the microstruc-
tural measures in the DGM and CGM itself. In this way, 
we can investigate not only the effect of WM integrity on 
atrophy of the connected GM, but also on the neurobiologi-
cal processes underlying this neurodegeneration, such as 
demyelination and axonal loss.

Conclusion

Lower baseline WM integrity related to increasing cortical 
atrophy in RRMS subjects that show clinical progression 
over a 1-year follow-up. Baseline GM did not influence WM 
integrity changes over time. Collectively, this suggests that 

Table 4   (continued)

ΔCGM

HC (n = 13) RRMS (n = 31) MSFC non-declin-
ing (n = 16)

MSFC declining (n = 15)

 QSMb

  B, p – 0.005, 0.665 0.005, 0.492 – 0.014, 0.151 0.023, 0.042
  95% CI [– 0.029, 0.019] [– 0.009, 0.020] [– 0.033, 0.005] [0.001, 0.045]

Bold values in statistics column are significant
B estimate, CI confidence interval
**p < 0.01; ***p < 0.001
a MWF was available for 11/13 HCs and 24/31 RRMS subjects (MSFC non-declining n = 15, MSFC declining n = 10) at year-1, and for 13/13 
HC and 30/31 RRMS subjects (MSFC non-declining n = 15, MSFC declining n = 15) at year-2
b QSM was available for 13/13 HC and 30/31 RRMS subjects (MSFC non-declining n = 16, MSFC declining n = 14) at year-1, and for 13/13 HC 
and 30/31 RRMS subjects (MSFC non-declining n = 15, MSFC declining n = 15) at year-2
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Table 5   Effect of baseline DGM volume z-score or CGM thickness z-score on change in WM integrity z-score over time; compared in HC/
RRMS (A), MSFC non-declining/declining (B), and split per group (C; DGM only)

DGM CGM

WM Type WM*TYPE WM Type WM*TYPE

A. HC vs MS
 ΔWM-Diffusion
  B, p 0.009, 0.867 0.209, 0.201 – 0.007, 0.911 – 0.001, 0.965 0.055, 0.720 0.008, 0.760
  95% CI [– 0.095, 0.113] [– 0.115, 0.533] [– 0.136, 0.121] [– 0.042, 0.040] [– 0.253, 0.364] [– 0.042, 0.057]

 ΔWM-Extendeda

  B, p 0.015, 0.791 0.306, 0.089 – 0.060, 0.389 – 0.010, 0.642 0.121, 0.465 0.025, 0.341
  95% CI [– 0.094, 0.123] [– 0.049, 0.660] [– 0.195, 0.076] [– 0.051, 0.032] [– 0.213, 0.456] [– 0.026, 0.075]

 ΔFA
  B, p – 0.046, 0.330 0.139, 0.252 0.083, 0.160 0.011, 0.651 0.049, 0.663 – 0.020, 0.478
  95% CI [– 0.140, 0.047] [– 0.103, 0.381] [– 0.033, 0.198] [– 0.036, 0.058] [– 0.178, 0.277] [– 0.076, 0.036]

 ΔMD
  B, p – 0.068, 0.286 – 0.251, 0.189 0.107, 0.174 0.010, 0.684 – 0.059, 0.745 – 0.031, 0.281
  95% CI [– 0.193, 0.057] [– 0.631, 0.128] [– 0.047, 0.261] [– 0.038, 0.057] [– 0.424, 0.306] [– 0.088, 0.025]

 ΔAD
  B, p – 0.129, 0.041 – 0.169, 0.240 0.235, 0.003** 0.005, 0.841 – 0.037, 0.754 – 0.033, 0.287
  95% CI [– 0.254, – 0.005] [– 0.455, 0.117] [0.081, 0.389] [– 0.046, 0.056] [– 0.273, 0.200] [– 0.094, 0.028]

 ΔRD
  B, p – 0.008, 0.888 – 0.237, 0.210 – 0.001, 0.987 0.003, 0.903 – 0.058, 0.753 – 0.013, 0.656
  95% CI [– 0.125, 0.108] [– 0.611, 0.138] [– 0.145, 0.143] [– 0.044, 0.049] [– 0.424, 0.309] [– 0.068, 0.043]

 ΔNDI
  B, p 0.018, 0.774 0.239, 0.068 – 0.044, 0.562 – 0.009, 0.670 0.024, 0.815 0.022, 0.356
  95% CI [– 0.103, 0.138] [– 0.018, 0.497] [– 0.192, 0.105] [– 0.049, 0.031] [– 0.180, 0.227] [– 0.025, 0.070]

 ΔODI
  B, p 0.087, 0.099 0.017, 0.850 – 0.150, 0.022 – 0.036, 0.1169 – 0.058, 0.474 0.053, 0.085
  95% CI [– 0.016, 0.190] [– 0.167, 0.202] [– 0.277, – 0.022] [– 0.086, 0.015] [– 0.221, 0.104] [– 0.007, 0.114]

 ΔMWFa

  B, p 0.028, 0.645 0.363, 0.407 – 0.075, 0.333 – 0.025, 0.465 0.308, 0.385 0.093, 0.026
  95% CI [– 0.093, 0.150] [– 0.517, 1.243] [– 0.228, 0.078] [– 0.093, 0.042] [– 0.405, 1.021] [0.011, 0.176]

 ΔQSMb

  B, p 0.068, 0.320 0.051, 0.593 – 0.066, 0.440 – 0.004, 0.914 0.009, 0.906 0.019, 0.643
  95% CI [– 0.067, 0.203] [– 0.139, 0.241] [– 0.235, 0.103] [– 0.069, 0.062] [– 0.148, 0.167] [– 0.060, 0.097]

B. MSFC non-
declining vs MSFC 
declining

 ΔWM-Diffusion
  B, p 0.035, 0.459 – 0.241, 0.100 – 0.070, 0.277 0.028, 0.110 – 0.0187, 0.148 – 0.043, 0.086
  95% CI [– 0.059, 0.129] [– 531, 0.049] [– 0.196, 0.056] [– 0.006, 0.062] [– 0.444, 0.070] [– 0.092, 0.006]

 ΔWM-Extendeda

  B, p – 0.017, 0.719 – 0.285, 0.114 – 0.074, 0.274 0.032, 0.071 – 0.172, 0.259 – 0.037, 0.156
  95% CI [– 0.111, 0.077] [– 0.646, 0.075] [– 0.207, 0.059] [– 0.003, 0.066] [– 0.479, 0.136] [– 0.088, 0.014]

 ΔFA
  B, p 0.040, 0.334 – 0.181, 0.104 – 0.016, 0.772 – 0.006, 0.782 – 0.108, 0.312 – 0.007, 0.812
  95% CI [– 0.041, 0.120] [– 0.402, 0.040] [– 0.125, 0.093] [– 0.046, 0.035] [– 0.324, 0.107] [– 0.065, 0.051]

 ΔMD
  B, p – 0.025, 0.664 0.257, 0.150 0.127, 0.107 – 0.051, 0.011 0.223, 0.136 0.060, 0.035
  95% CI [– 0.139, 0.089] [– 0.097, 0.610] [– 0.027, 0.281] [– 0.090, – 0.012] [– 0.074, 0.521] [0.004, 0.116]

 ΔAD
  B, p – 0.005, 0.940 0.131, 0.390 0.216, 0.010** – 0.042, 0.057 0.114, 0.276 0.031, 0.334
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Table 5   (continued)

DGM CGM

WM Type WM*TYPE WM Type WM*TYPE

  95% CI [– 0.125, 0.116] [– 0.175, 0.437] [0.052, 0.380] [– 0.086, 0.001] [– 0.096, 0.323] [– 0.032, 0.093]
 ΔRD
  B, p – 0.042, 0.438 0.285, 0.087 0.068, 0.350 – 0.040, 0.042 0.228, 0.137 0.061, 0.028
  95% CI [– 0.147, 0.064] [– 0.044, 0.613] [– 0.075, 0.210] [– 0.078, – 0.002] [– 0.077, 0.534] [0.007, 0.116]

 ΔNDI
  B, p – 0.012, 0.831 – 0.162, 0.191 – 0.039, 0.613 0.037, 0.034 – 0.073, 0.470 – 0.047, 0.056
  95% CI [– 0.125, 0.100] [– 0.408, 0.085] [– 0.193, 0.114] [0.003, 0.071] [– 0.278, 0.132] [– 0.096, 0.001]

 ΔODI
  B, p – 0.023, 0.669 – 0.062, 0.548 – 0.089, 0.222 0.022, 0.343 0.034, 0.686 – 0.008, 0.812
  95% CI [– 0.127, 0.081] [– 0.271, 0.147] [– 0.231, 0.054] [– 0.023, 0.066] [– 0.138, 0.207] [– 0.071, 0.056]

 ΔMWFa

  B, p – 0.004, 0.957 – 0.634, 0.284 – 0.098,0.323 0.082, 0.014 – 0.468, 0.314 – 0.031, 0.525
  95% CI [– 0.141, 0.134] [– 1.835, 0.566] [– 0.292, 0.097] [0.016, 0.147] [– 1.410, 0.475] [– 0.129, 0.066]

 ΔQSMb

  B, p – 0.075, 0.296 – 0.006, 0.958 0.156, 0.130 0.030, 0.340 0.049, 0.549 – 0.033, 0.468
  95% CI [– 0.218, 0.067] [– 0.219, 0.208] [– 0.046, 0.358] [– 0.032, 0.093] [– 0.117, 0.215] [– 0.121, 0.056]

DGM

HC (n = 13) RRMS (n = 31) MSFC non-declining 
(n = 16)

MSFC declining (n = 15)

C. Post hoc group split
 ΔWM-Diffusion
  B, p 0.009, 0.900 0.001, 0.963 0.035, 0.493 – 0.034, 0.401
  95% CI [– 0.129, 0.147] [– 0.061, 0.064] [– 0.065, 0.134] [– 0.113, 0.046]

 ΔWM-Extendeda

  B, p 0.017, 0.814 – 0.049, 0.143 – 0.022, 0.665 – 0.083, 0.059
  95% CI [– 0.127, 0.161] [– 0.116, 0.017] [– 0.121, 0.077] [– 0.169, 0.003]

 ΔFA
  B, p – 0.045, 0.486 0.036, 0.198 0.040, 0.355 0.024, 0.511
  95% CI [– 0.174, 0.083] [– 0.019, 0.090] [– 0.045, 0.124] [– 0.047, 0.094]

 ΔMD
  B, p – 0.068, 0.410 0.039, 0.314 – 0.024, 0.696 0.099, 0.050
  95% CI [– 0.230, 0.095] [– 0.037, 0.116] [– 0.142, 0.095] [0.000, 0.198]

 ΔAD
  B, p – 0.130, 0.086 0.109, 0.009** – 0.002, 0.977 0.203, < 0.001***
  95% CI [– 0.279, 0.019] [0.027, 0.190] [– 0.132, 0.128] [0.103, 0.302]

 ΔRD
  B, p – 0.008, 0.919 – 0.010, 0.783 – 0.041, 0.468 0.025, 0.582
  95% CI [– 0.162, 0.146] [– 0.081, 0.061] [– 0.153, 0.071] [– 0.065, 0.115]

 ΔNDI
  B, p 0.018, 0.820 – 0.026, 0.497 – 0.011, 0.856 – 0.046, 0.338
  95% CI [– 0.135, 0.170] [– 0.102, 0.050] [– 0.133, 0.110] [– 0.139, 0.048]

 ΔODI
  B, p 0.087, 0.150 – 0.066, 0.066 – 0.023, 0.679 – 0.113, 0.017
  95% CI [– 0.032, 0.206] [– 0.136, 0.004] [– 0.133, 0.087] [– 0.205, – 0.021]

 ΔMWFa

  B, p 0.038, 0.493 – 0.050, 0.307 – 0.010, 0.898 – 0.104, 0.079
  95% CI [– 0.071, 0.147] [– 0.148, 0.047] [– 0.162, 0.142] [– 0.220, 0.012]

 ΔQSMb
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white matter tract damage drives cortical neurodegeneration 
in early RRMS.
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