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ABSTRACT
Optical networks generate a vast amount of diagnostic, control, and performance monitoring data. When information is extracted from these
data, reconfigurable network elements and reconfigurable transceivers allow the network to adapt not only to changes in the physical infras-
tructure but also to changing traffic conditions. Machine learning is emerging as a disruptive technology for extracting useful information
from these raw data to enable enhanced planning, monitoring, and dynamic control. We provide a survey of the recent literature and highlight
numerous promising avenues for machine learning applied to optical networks, including explainable machine learning, digital twins, and
approaches in which we embed our knowledge into machine learning such as physics-informed machine learning for the physical layer and
graph-based machine learning for the networking layer.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0070838

I. INTRODUCTION

Machine learning (ML) is the study of computer algorithms
that can learn to achieve a given task via experience and data with-
out being explicitly programmed.1 ML has been a topic of research
within statistics and computer science since at least the 1950s, with
early iterations of many algorithms used today invented in the last
30 years.2 However, as a result of the increase in the availability of
data and computing power over time, the use of ML has recently
become ubiquitous across all disciplines of science and engineering.
Optical fiber communications is no exception—there are now a great
many works utilizing a range of ML techniques to solve a range of
problems within the domain. This is reflected in a large number of
review and tutorial papers that have been published on the subject of
ML applied to optical networks.3–8 However, given the rapid accel-
eration of the usage of ML within optical networks, there have been
many works published in the domain that leverage ML since these
reviews were conducted. Moreover, certain ML applications have
recently begun to increase in popularity for optical networks prob-
lems, which we address in this Tutorial. Thus, in this Tutorial, we
introduce the reader to ML, highlight the key ML techniques being

deployed within optical fiber communication systems presently, and
outline recent impactful works within each application sub-domain.

Optical fiber communication systems form the backbone of
communications, having been deployed across the globe since the
early 1980s.9 At a basic level, the edges of optical fiber networks
are composed of optical fibers carrying modulated laser light, with
optical amplifiers to combat loss of laser signal power incurred dur-
ing propagation. The nodes of optical networks are comprised of
transmitters, receivers, and switches. Loosely, the job of network
operators is to carry messages between these nodes such that the
quality of service agreed to customers is met. Different modulated
laser signals, known as channels, are assigned different individual
wavelengths and can then be transmitted through the same fiber link
simultaneously—this is known as wavelength division multiplexing
(WDM). Telecommunication systems are split into conceptual lay-
ers defined by the open systems interconnection model,10 and in
this Tutorial, we reference applications of ML in layers one and two,
which we refer to as the physical layer and the network layer, respec-
tively. In short, the physical layer concerns how raw bits are trans-
mitted across a link between two nodes, also known as a light path.
Contrastingly, network layer applications concern how to transfer
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data across the physical layer between given nodes. As an example,
one can control aspects such as the route taken through the network,
meaning the sequence of edges and nodes traversed, and the chosen
wavelength channel that is used to carry the information between
two nodes. Additionally, optical networks research is commonly car-
ried out on specific network types, which are primarily defined by
their scale. In ascending order of transmission length, these net-
work types are access networks, which connect individual users to
other users and data centers, metro networks at city scale, backbone
networks at the scale of large countries and continents, and sub-
marine systems, for connecting continents. Each of these network
types has different constraints, for example, access networks have
stringent monetary cost and complexity limits, whereas submarine
systems have very strong power constraints. There are also data cen-
ter networks, which are significantly different from all these network
types due to their highly configurable topologies and extremely short
reach links. In this Tutorial, we discuss works considering backbone,
metro, and access networks.

Optical fiber communication systems facilitate the transfer of
information at high data rates, currently 10–100 s (and in some
cases, greater than 1000) of Mb/s,11 enabling many data-hungry
applications. In fact, Cisco predicts that there will be 5.3 × 109

internet users by 2023, an increase from 3.9 × 109 in 2018.11

Moreover, the average connection speed is expected to rise from
45.9 Mb/s in 2018 to 110.4 Mb/s by 2023.11 The optical fiber com-
munication domain faces a number of key challenges that must be
overcome to bring about this growth. First, optical fibers exhibit
nonlinear behavior, governed by the optical Kerr effect.12,13 This
means that the refractive index seen by a given wavelength of laser
light propagating through the fiber is dependent on the electric field
strength in the fiber. As a result, channels interfere in a nonlinear
way both with other channels on the same fiber and with themselves.
These nonlinear noise-like distortions due to channel interference
are power-dependent, meaning that there exists a trade-off between
the optical power of the signal and the strength of these nonlin-
ear interactions.14 This introduces a level of complexity that makes
physics-based modeling challenging in practical systems, making
ML approaches look promising. Estimating the strength of nonlin-
ear interaction and mitigating its effects form the basis of much
of the research in optical fiber communication systems, including
a large amount of works in which ML is applied. Furthermore,
attempts to extend the range of wavelengths used to carry informa-
tion beyond the traditional C−band, known as wide-band systems,
require one to deal with some extra physical effects. Among them are
the wavelength dependencies of fiber parameters, such as fiber loss
(mainly, the elastic Rayleigh scattering15), higher-order fiber dis-
persion effects, and the influence of the frequency-dependent fiber
effective mode area.16 In addition, higher-order Kerr-type nonlin-
earities manifesting themselves as stimulated inelastic light scatter-
ing effects, i.e., stimulated Raman scattering (for very short opti-
cal pulses)17–19 and stimulated Brillouin scattering (for very large
launch powers),20,21 should also be taken into consideration. ML
approaches have shown potential in helping to deal with such
effects, which may facilitate the use of wide-band systems in future
networks.

Another critical problem in optical fiber communications is the
high complexity of optical networks, which poses a significant oper-
ational challenge.22 As networks have evolved over time to carry a

higher information throughput, the modeling of the optical com-
munication channel has become more difficult due to the increased
number of adjustable design and operational parameters.3 Perhaps
the biggest driving force behind this has been the introduction of
coherent technologies,23 which increased the complexity of trans-
mitters and receivers significantly. Moreover, the configurability of
the network layer has increased due to advances such as software
defined networking (SDN).24 In addition, future optical networks
will be more dynamic, requiring automation as requests must be sat-
isfied on shorter time scales.25 As a result, investigating the extent to
which ML can help with modeling and network control has been the
subject of a large volume of research. In this Tutorial, we focus on
introducing the ML techniques that appear in the works we outline.
Furthermore, we introduce a classification of algorithms in order to
clarify the relationship between these techniques as well as outlin-
ing trends within optical communications such as which algorithm
classes are used within each optical communication sub-domain.

The rest of this Tutorial is organized as follows. In Sec. II A, we
introduce the general concept and nomenclature of ML, followed
by a description of the specific techniques utilized by the works dis-
cussed in this Tutorial in Sec. II B. We then outline key research
problems and selected interesting work within the physical layer in
Sec. III, followed by an equivalent survey for network layer prob-
lems in Sec. IV. Selected opportunities for future research across
both physical and network layer problems are highlighted in Sec. V,
and concluding remarks are included in Sec. VI.

II. INTRODUCTION TO SELECTED MACHINE LEARNING
TECHNIQUES
A. Categorization of machine learning

First, algorithms can be categorized based on the type of prob-
lem that is being solved, i.e., whether it is a regression or classifi-
cation problem.26 Regression algorithms make continuous predic-
tions, such as the signal-to-noise ratio (SNR) of a light path in an
optical network, and may have continuous or discrete inputs, also
known as features. Classifier algorithms, instead, predict the class
associated with a given set of inputs, for example, whether a request
to connect two nodes in a network can be satisfied or rejected. A sec-
ond distinction can be made based on whether the data are labeled or
unlabeled.26 Algorithms requiring labeled data are known as super-
vised, for instance, a dataset of SNR as a function of the signal power
for an optical channel. Each datum in this set has a label, the mea-
sured SNR, which the algorithm can use as a target when learning.
Contrastingly, unsupervised algorithms involve learning from unla-
beled data. This can be done by attempting to group these data based
on similarity—known as clustering, or compressing the data by find-
ing the features that are most important for distinguishing between
examples and removing the remaining features—known as princi-
pal component analysis.26 An example of unlabeled data might be
traffic flows in a network, which can be grouped into classes that
are not pre-determined, but rather determined by the algorithm
based on similarities in various features. There also exists another
formulation of ML that is distinct from supervised and unsuper-
vised learning, known as reinforcement learning (RL).27 In RL, the
goal is to learn a policy for achieving a given task by interacting
with the environment. Every action taken affects the environment
and returns a reward, the value of which quantifies how successful
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the given action was in the context of the overall goal. Formula-
tions of RL and various algorithms are discussed in Sec. II B 4. An
example of an application of RL in optical fiber networking might be
an agent that learns an optimal routing policy, which maximizes the
total throughput of the network, given a series of requests. Here, the
environment may consist of the current network state and outstand-
ing requests, and the action space (the set of allowed agent actions)
may consist of a set of candidate routes and channel wavelengths to
choose from.

A categorization of different ML techniques discussed in this
Tutorial is outlined in Fig. 1. This diagram reflects the fact that
supervised learning is more commonly used within optical com-
munications than RL and unsupervised learning and that unsuper-
vised learning is the least-used class of algorithms. Moreover, for
physical layer applications, regression is more popular than classi-
fication, as we are often interested in predicting continuous target
signals. Classifier algorithms are predominantly used in network
layer applications where we are often interested in distinguish-
ing candidate light paths that are suitably high quality from those
that are not and predicting source and destination nodes of net-
work traffic. Similarly, the majority of works applying RL in opti-
cal communications address network layer applications, which are
often formulated as dynamic control problems. However, these
are not absolute rules and there are exceptions. For example,
Generative adversarial networks (GANs) and graph neural net-
works (GNNs) are commonly used in a regression formulation
to tackle problems in network traffic prediction and generation.
Rather, these are the general trends seen in the literature by the
authors.

In the broader applied ML community, the types of data used
can be categorized as structured tabular data, text data for nat-
ural language processing, image data consisting of sets of pixels,
and time series data. The structure within tabular data may include

spatial information, such as a graph, which can be represented as
a matrix of edges and weights. Within optical fiber communica-
tions, the most common data types used are tabular and time series
data. Furthermore, a further distinction can be drawn between batch
and online learning. The more traditional batch learning approach
involves learning from the whole training dataset, before deploying
this model on new examples. Alternatively, online learning involves
learning as data become available, updating the current model with
information obtained from new examples.28 In the case of a NN
model, for instance, online learning would involve adapting the
weights of a trained model based on a small volume of data. One
could therefore train the NN initially on a large historical dataset
before fine-tuning the weights using new data from monitors via
online learning. In the supervised case, the new data will be labeled
with an example of a label being the SNR for a given set of operat-
ing parameters. Unsupervised online learning is also possible, and
online algorithms for principal component analysis and clustering
using neural networks are available.29 Here, the basic idea is to begin
with a dataset that has been compressed in the case of principal com-
ponent analysis or grouped in the case of clustering and modify the
compression or grouping based on a new datum as it becomes avail-
able, rather than for all the data at once. Thus, the new datum is also
compressed or grouped, which may, in turn, also change how the
other data are compressed or grouped. A related approach to online
learning is transfer learning, where we utilize information obtained
from training a model for one task in order to reduce the compu-
tational effort required in training a model to perform another sim-
ilar task.30 In other words, transfer learning involves starting with
a trained model for an old task and adapting it for the new target
task, rather than starting from scratch. For example, one can modify
the weights of a NN that has been trained for another task, rather
than starting with untrained weights, reducing the computational
requirements of training.

FIG. 1. Categorization of ML tech-
niques discussed in this Tutorial. In gen-
eral, supervised regression algorithms
are more common in physical layer
applications, whereas supervised classi-
fiers and RL are more popular for net-
work layer problems. Some techniques
appear more than once as they can be
formulated for different problem types
(ANN: artificial neural network, ELM:
extreme learning machine, CNN: convo-
lutional neural network, GNN: graphical
neural network, RNN: recurrent neural
network, LSTM: long-short term mem-
ory, GRU: gated recurrent unit, GAN:
generative adversarial network, MPNN:
message-passing neural network, GP:
Gaussian process, CBR: case-based
reasoning, GCN: graph convolutional
network, SVM: support vector machine,
DT: decision tree, RF: random forest,
KNN: K-nearest neighbor, PW: Parzen
window, LDA: linear discriminant analy-
sis, DQN: deep Q-network, and DDPG:
deep deterministic policy gradient).
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Finally, explainable ML is a growing field of ML that is cru-
cial for ML applications as explainability increases confidence in ML
systems.31 In this work, we follow the definition of explainability
given by Roscher et al.32 Specifically, explainable ML is transparent
and interpretable and leverages domain knowledge. In this context,
transparency means that the design of the ML model can be justified
beyond empirical performance on the testing dataset; interpretabil-
ity means that the ML model output is human understandable—we
can reason as to why the model makes a given prediction for a given
input; and domain knowledge broadly encompasses all the knowl-
edge of the problem we possess before we have seen the data. A
black box is a model for which the decision processes are not inter-
pretable by humans and the design cannot be easily justified.33 There
are two main approaches to explainability. First, there are those
that accept that the underlying model is a black box and analyze
the model’s input–output relationship, in order to explain how it
makes decisions and infer its internal structure.34–36 Alternatively,
there are those that try to replace the black box with a more simplis-
tic or more mathematically principled model that is inherently more
understandable. The former are commonly known as post-hoc tech-
niques. Thus, a black box method can be made more explainable
using extra add-on techniques or one can design the method from
the ground up to be explainable.

B. Machine learning techniques
1. Neural networks

Neural networks (NNs) are universal function approximators,
meaning that a sufficiently large NN structure can approximate any
function.37 The structure of NNs is analogous to that of animal
brains, consisting of a network of units, called neurons, connected
via edges with associated weights. The neurons can send signals to
one another along these weighted edges and process these signals.
The most commonly used type of NN in ML applications is a feed-
forward NN (FFNN). The mathematical structure of such networks
is given by an input layer, followed by a series of layers of neurons,
each representing a function that is applied to the previous layer in a
chain rule-fashion.38 The final layer yields the model output, and the
layers in between the input and output layers are known as hidden
layers. As an example, consider a supervised NN model with a single
hidden layer f (1) and an output layer f (2),

f (x ∣W(1), b(1),W(2), b(2)) = f (2)[ f (1)(x)], (1)

f (i) ≜ g(i)(WT(i) x(i) + b(i)), (2)

where x(i) is the input vector for layer i such that x(1) = x, W(i) is the
matrix of weights in layer i, bi is a vector of additive constants known
as biases in layer i, g(i) is the activation function applied element-wise
to yield a vector output for layer i, and (⋅)T denotes the transpose of
a given matrix. A pictorial representation of this NN, adapted from
the work of Bishop,26 is given in Fig. 2.

For this example network, nonlinear and linear activation func-
tions may be applied to the hidden layer and output layer, respec-
tively. If both g(1) and g(2) are linear, the entire NN model is
itself simply a linear function of x. Therefore, nonlinear activation
functions are crucial for approximating interesting functions.

FIG. 2. Pictorial representation of the NN described in Eq. (1), with one hid-
den layer. The nodes depict the input variables x i and hidden variables zi . The
edges represent the matrices of weights W(1) and W(2), whereas the biases
are represented by the weights from the additional variables x0 and z0.

The term deep learning (DL) refers to NNs with at least one
hidden layer—often, networks with multiple hidden layers are used.
Choosing the structure of the NN, including the activation func-
tions, is often done in an ad hoc trial and error fashion. As a result,
NNs are often viewed as being black box opaque models, which
are difficult for humans to interpret. In fact, the highly nonlinear
layered structure of NNs is what makes them so flexible and pow-
erful. Training NNs—the process of obtaining the optimal set of
weights that solve a given problem and generalize well, for data
not seen during training—can be achieved in multiple ways, the
most commonly used of which is backpropagation and gradient
descent.39 To train NNs, we first have to define a loss function that,
for supervised learning, measures how far the predictions of the net-
work are from the measured data; a commonly used loss function
is the mean squared error (MSE). In backpropagation, the gradi-
ent of the loss function can be computed efficiently for a given
training example input–output pair, allowing for NNs to be trained
using gradient descent—update the weights in the opposite direc-
tion to that of the gradient, in order to move toward the local
minimum.40

There are many extensions to the simple NNs described above,
designed to solve a range of specific problems. However, the basic
structure and methodology for learning remain the same. One such
example is the autoencoder, which can be either supervised or unsu-
pervised. An unsupervised autoencoder learns an efficient encoding
of unlabeled data, whereas a supervised autoencoder can be used to
obtain the set of inputs that yields a desired output. An autoencoder
consists of a FFNN with two parts: the encoder that learns to map
the input data to an optimal representation and the decoder that
learns to decode this representation and recover the initial data.38

This structure is outlined in Fig. 3.
In optical fiber communication systems, there are a number of

monitors that provide network operators with time series data, and
hence, time series ML techniques are of particular interest. Recur-
rent NNs (RNNs) are a class of NNs that exhibit temporal dynamic
behavior, meaning that they can be used to approximate functional
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FIG. 3. Diagram outlining the structure of an autoencoder model, adapted from the
work of Li et al.96 and Goodfellow et al.38 The input is fed into a NN, known as the
encoder, that learns an internal representation or code. A second NN, the decoder,
learns to map this code to the output.

relationships found in time series data.41 This is achieved by consid-
ering the previous state of the network and the current input when
determining the current state of the network. A schematic outlining
the basic structure of a RNN is shown in Fig. 4. RNN models can
maintain state information, allowing them to perform tasks such as
traffic sequence prediction that are beyond the ability of a standard
FFNN. However, RNNs are affected by gradient explode or gradient
vanish problems42 that prevent complete learning of the time series.
Due to this issue, special cases of RNNs such as Gated Recurrent
Units (GRUs)43 and long-short term memory (LSTMs)44 have been
proposed that are capable of adaptively capturing dependencies on
different time scales.

FIG. 4. An example RNN model architecture including context nodes u1, u2, . . . , un

associated with each node in hidden layer vector zt with fixed weights of one.
Similarly to FFNNs [Eq. (2)], at each time step t, the input xt is fed forward and a
learning rule is applied. Additionally, the fixed back-connections save a copy of the
previous values of the hidden nodes in the context nodes.171

Furthermore, as optical networks have a topological structure
that can be represented by a graph, it is natural to utilize graph-
based machine learning techniques, such as Graph NNs (GNNs)
that leverage the network structure.45 GNNs combine graph the-
ory with NNs in a way that draws parallels with RNNs. There are
two key sequential steps involved in updating a GNN for a given
node: aggregation of the of the states of neighboring nodes, includ-
ing the target node itself, followed by an update to the state of the
node, depending on the specific analysis goal of the GNN.46 Figure 5
describes an example GNN model for node-based prediction tasks.
Based on the variations of the aggregation and update functions,
several models of GNNs have been proposed in the recent litera-
ture, such as message-passing NNs,47 graph convolutional networks
(GCNs),48 graph attention networks,49 and gated graph NNs.50

Examples of applications include classification and regression on
nodes or edges, i.e., predicting classes or continuous values for these
elements of a given graph. GNNs can also be supervised or unsu-
pervised, providing some flexibility with regard to the application
domain.

Another NN that has been used in network layer applications
is the generative adversarial network (GAN).51 GANs achieve their
unique capabilities owing to their design based on zero-sum game
theory. At a high level, they are composed of two NNs, the dis-
criminator and the generator, which compete against each other. A
schematic showing the structure of a GAN is shown in Fig. 6. GANs
are designed for realistic data generation and have been successfully
used for both image and video data generation in the recent litera-
ture. Thus, GANs show potential for traffic data generation in optical
networks.

2. Gaussian processes
Gaussian processes (GPs) are a probabilistic ML approach

in which the uncertainty associated with predictions is well-
quantified.52 This makes them attractive for optical fiber commu-
nication systems, in which the accepted failure rate is low and thus
knowledge of the limitations of ML models is desirable. GPs can be
used for regression or classification and are non-parametric meth-
ods,53 meaning that no specific parametric form is assumed for the
model but rather Bayes theorem is used to search the space of func-
tions directly. In the context of GPs, the Bayes theorem can be stated
as52

posterior ≜ prior × likelihood
marginal likelihood

, (3)

where the posterior is the predictive distribution we wish to obtain,
the prior contains the information we know about the target func-
tion before we have seen the data, and the likelihood includes infor-
mation from the measured data. In general, we wish to condition our
prior on the measured data in order to obtain the predictive poste-
rior distribution. Figure 7, adapted from the work of Rasmussen and
Williams,52 demonstrates a function drawn from an uninformative
GP prior, which is then conditioned on data to produce an accurate
model.

In general Bayesian inference, this involves numerical integra-
tion to calculate the required posterior. However, in GP regression,
we assume that the likelihood function is a Gaussian, which means
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FIG. 5. An example architecture of a GNN for node-based predictions. The computational graph for target node A is shown on the right, where N(A) represents the
neighborhood of node A, h(1) and h(2) represent hidden layers 1 and 2, respectively, and Γ and U represent the aggregation and update functions,46 respectively. The
complete GNN may comprise computational graphs for multiple nodes of interest.

that these integrals then become analytical and thus much less com-
putationally expensive. This assumption is not valid for GP classifi-
cation, however, making it more computationally demanding than
GP regression models.

GPs are a kernel-based ML method, in which the kernel
trick—the fact that it is more computationally efficient to work in the
space of inner products than fixed coordinates—is leveraged.26 As a
result, the user must specify the kernel function at the design stage,
which means making an assumption about the features we expect to
see in the data. For instance, a commonly used kernel function is a
squared exponential kernel plus a white Gaussian noise (GN) kernel,
giving

k(xi, xj) = ν exp(− ∥xi − xj∥2

2μ
) + Ξ(σ2), (4)

where ν and μ are scalar hyperparameters controlling the absolute
scale and the length scale of the target function, xi and xj are data

points, ∥⋅∥ denotes the Euclidean distance operator, and Ξ(σ2)
∼ 𝒩 (0, σ2) if i = j and 0 otherwise, where 𝒩 (0, σ2) denotes a zero-
mean Gaussian distribution with variance σ2. Choosing this kernel
means assuming a priori, meaning before we have seen the data,
that the function we are trying to learn has one length scale and
white Gaussian noise. More complex kernels exist to describe fea-
tures such as periodicity and decay, and one can design a kernel by
noting that the sum of any two valid kernel functions is itself a valid
kernel function.

GPs are trained by finding the optimal kernel hyperparame-
ters via maximizing the log marginal likelihood in order to find
the most likely interpretation of the data.52 Once optimal hyper-
parameters are found, the predictive distribution of the GP can
be calculated using Algorithm 2.1 of Rasmussen and Williams.52

The predictive mean function and predictive variance of the GP
can then be used to make probabilistic inferences about the
data.

FIG. 6. An example architecture of a GAN model.
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FIG. 7. Example adapted from Fig. 2.2 of
the work of Rasmussen and Williams,52

demonstrating how the GP prior, in this
case chosen to be weak uninformative
prior, is conditioned on data to produce
a predictive posterior. (a) Function drawn
at random from the GP prior. (b) The pre-
dictive posterior distribution after condi-
tioning on the data. A confidence region
is also shown, corresponding to two
standard deviations or 95% confidence.

One of the major issues associated with using GPs is the com-
putational complexity, which is O(n3), where n is the number of
training examples. It is possible to use sparse approximations that
reduce this computational burden,54 at the cost of some accuracy.

3. Support vector machines
Another kernel-based ML method is the support vector

machine (SVM), a method which can be used for supervised regres-
sion and classification26 and for unsupervised learning.55 However,
the vast majority of SVM use within optical networking is for clas-
sification, and therefore, we focus on SVM classifiers here. Unlike
standard GPs, SVMs are sparse kernel methods, meaning that the
model predictions do not require evaluation of the kernel function
for all training examples, but rather we only need to evaluate the
kernel for a subset of the training data.

SVM classifiers work by constructing a decision boundary that
separates the labeled data into distinct classes such that the mar-
gin, defined as the perpendicular distance between the closest data
points in each of the classes and the decision boundary, is maxi-
mized. These points that are closest to the boundary are known as
the support vectors, so-called because they directly specify the posi-
tion of the boundary. Being the closest to the optimal boundary,
these points are also the most difficult to classify. Figure 8 shows
the example of a binary SVM classifier, with the decision boundary
and support vectors highlighted.

FIG. 8. Diagram showing the support vectors for a binary SVM classifier, where the
data are labeled 1 or −1, adapted from Bishop Chapter 726. The margin is also
shown, which we maximize in order to find the most general decision boundary.

As a demonstrative example to provide intuition for SVMs, we
follow Bishop26 and consider the simple case of a binary classifier,
with data labeled as one of the two classes, tn ∈ (−1, 1), modeled by
a linear decision boundary model of the form

y(x) =wTϕ(x) + b, (5)

where w is a vector of weights, x is the vector of inputs, ϕ repre-
sents a fixed transformation in the input space, and b is a constant.
A data point is classified depending on the sign of y(x). It can be
shown that, as the distance of the points xn to the decision boundary
is invariant under linear transformation, all data points satisfy the
constraints

tn(wTϕ(x) + b ) ≥ 1, (6)

and the distance from point xn to the decision boundary is given by

tn y(xn)
∥w ∥ . (7)

Thus, we find the decision boundary by solving the constrained
optimization

arg min ∥w ∥2. (8)

It can be shown that this is a quadratic programming problem, which
can be tackled using Lagrange multipliers. Once the optimal decision
boundary is found, new examples can be classified by their position
in the input space relative to the boundary. This is an oversimpli-
fication of the SVMs used, in practice, but should give the reader
some intuition for how an optimal decision boundary can be found.
In practice, SVMs are formulated in terms of kernel space, as this
allows us to keep the computational load reasonable by working in
terms of inner products between the input variables. The kernel is
defined in terms of the fixed transformation in Eq. (5) as

k(x, x′) = ϕ(x) ϕ(x′). (9)

Moreover, the method described above finds a hard decision bound-
ary, which only exists for linearly separable data. In general, SVMs
are formulated to find a soft boundary, allowing for some degree of
misclassification. Finally, SVMs are not limited to binary classifica-
tion and can be constructed to facilitate multiple-output classes.
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4. Reinforcement learning
RL is a discipline of ML that involves a learner known as the

agent that learns interactively by taking actions in its environment,
where the environment consists of everything outside of the agent.56

The environment can be simulated or experimental; a simple exam-
ple for the case of optical fiber communication networks could be
the currently established light paths, current requests, and the SNR
of these light paths.

Here, we outline the key concepts of RL, following Chap. 3 of
Sutton and Barto.27 The agent interacts with its environment at a
series of time steps t, t + 1, t + 2, . . .. At each time step t, the agent
takes as input some representation of the state of the environment
St ∈ S and chooses an action At ∈A, where S is the set of all possible
states and A is the set of all actions that are possible given a state
St , respectively. In the proceeding time step, the agent reaches a new
state St+1 and receives a reward Rt+1 ∈ R ⊂ R. The method by which
the agent selects the action At given a state St is called the policy,
denoted as Πt , a mapping from states to probabilities of selecting
each possible action. Informally, the goal of the agent is to maximize
the cumulative reward received over time. A schematic showing how
the agent interacts with its environment, adapted from the work of
Sutton and Barto,27 is shown in Fig. 9.

We also make a distinction between two types of
agent–environment interaction: continuous tasks in which the
number of time steps is infinite and episodic tasks, for which the
interaction consists of a series of episodes each with a terminal
time step. We denote this terminal step as T, and as RL has been
applied to both continuous and episodic tasks in optical networks,
we introduce a general notation that is valid for both types, in which
a continuous task is represented by T =∞. Thus, the agent aims to
maximize the expected discounted return,

Gt =
T−t−1

∑
τ=0

κτ Rt+τ+1, (10)

where κ ∈ [0, 1) is a parameter called the discount factor, which con-
trols the value of future rewards at the present time step. If κ = 0,
the agent will learn to maximize the immediate reward, whereas
as κ approaches 1, the agent will strongly weight future rewards

FIG. 9. Diagram showing the interaction between the RL agent and the environ-
ment. At time step t, the agent receives a state St from the environment and
chooses to take an action At . In the proceeding time step, this yields a state St+1
and returns a reward Rt+1. By iterating through this process, the agent learns to
maximize the long-term reward.

when choosing a policy. An important element of the RL frame-
work is that we desire to have a state representation that conveys
to the agent all relevant information about the environment such
that the probability of entering a specific new state at t + 1 can be
defined only in terms of the state and action representations at t.
In other words, we do not need the entire set of previous states
and actions to find an optimal policy, but only the state and action
at the previous time step. State representations that satisfy this are
said to have the Markov property, and tasks that involve learning
with a Markov state are called Markov decision processes (MDPs).
For a finite MDP, meaning an MDP for which the state and action
spaces are finite, we can completely determine the dynamics by the
probability distribution

p(s′, r ∣ s, a) = P[ St+1 = s′, Rt+1 = r ∣ St = s, At = a ], (11)

where s and a are a given state and action, s′ is the new state, and r is
the reward received. Here, it is assumed that s ∈ S, a ∈A, and r ∈ R.
Using Eq. (11), we can compute all other quantities needed by the
RL agent.

In order to learn an optimal policy, RL algorithms attempt to
estimate the value function, defined as the expected value of the
cumulative reward obtained by starting in a state s and following
policy Π,

νΠ(s) = EΠ[Gt ∣ St = s]. (12)
Crucially, it can be shown that Eq. (12) follows a recursive relation-
ship that has the form of a Bellman equation,27,57

νΠ(s) =∑
a

Π(a ∣ s)∑
s′ , r

p(s′, r ∣ s, a)[r + κ νΠ(s′) ]. (13)

This relationship allows the agent to compute an approximation to
νΠ. The agent’s goal of maximizing the long-term cumulative reward
can be stated as finding the policy that has an optimal value function,
and we can write a Bellman equation

ν∗(s) ≜ max
Π

νΠ(s)

= max
a∈A(s)

∑
s′ , r

p(s′, r ∣ s, a)[ r + κ ν∗(s′) ]. (14)

Here, ν∗ denotes the optimal value function, which may be achieved
by more than one policy but will always exist for a finite MDP. In
practice, the computational cost of computing ν∗ exactly is too high,
and thus, we learn a suitably good approximation.

There are a number of different algorithms for finding Π∗, and
these algorithms can be either model-based or model-free.58 Model-
based RL algorithms are concerned with computing an optimal pol-
icy for a MDP, assuming that a perfect model of the environment
is available. Contrastingly, model-free algorithms do not rely on the
assumption that such a model exists, but rather sample the MDP to
obtain statistical knowledge about the unknown model. Such algo-
rithms do not attempt to construct a model of the environment.
Moreover, RL algorithms can be further categorized: for on-policy
approaches, the agent will update its action-value function using
the action determined by the current policy, whereas for off-policy
approaches, a different policy is used to select the action.27 Com-
monly, off-policy algorithms will utilize the ε-greedy policy, in which
a threshold ε ∈ [0, 1] ⊂ R is selected, and at each time step, a ran-
dom real number is generated between 0 and 1. If the value of this
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number is greater than ε, the agent will perform the action that max-
imizes the expected cumulative reward; otherwise, it will perform
a random action. This demonstrates the trade-off between explo-
ration and exploitation that is crucial within RL—only exploiting
current knowledge leads to short-sighted policies, but we need to
refine successful policies to achieve high performance. Therefore, it
is important to allow some degree of continuous exploration of the
environment to achieve a policy that is optimal in the long-term.59

One final distinction that will be encountered in the RL literature
is that of value-based algorithms, in which the value function is
parameterized in order to find an approximation to the optimal
policy60 and policy-based algorithms, where the policy is parame-
terized instead.60 Finally, it is possible to combine these approaches
by utilizing two learners, known as the actor and the critic. The
actor learns the optimal action to take for a given state, and the
critic learns to compute the value function of a given action.27 Below,
we summarize the specific RL algorithms used by works referenced
in this Tutorial, highlighting useful references for the reader. The
algorithms included in this section are within the scope of deep rein-
forcement learning (DRL), a sub-field of RL that has become of great
interest in the recent literature owing to its successful adaptations in
several application domains.61 DRL relies on the intersection of rein-
forcement learning (RL) and deep learning (DL). In general, DRL
algorithms incorporate DL to solve MDPs, often representing the
policy or other learned functions as a NN.

Deep Q learning is a model-free value-based DRL algorithm
that involves trying to find an optimal action-value function for a
policy Π.62 The key idea is to use a deep NN (DNN) to estimate the
optimal action-value function,

qΠ(s, a; W) ≈ q∗Π(s, a). (15)

This method is best suited to solving RL problems with discrete low-
dimensional action spaces.63

Asynchronous advantage actor-critic, or A3C, is another
model-free DRL algorithm. In contrast to valued-based deep
Q−learning, A3C is policy-based and the policy is parameterized by
a NN in order to learn an approximation to the optimal policy,60

Π(a ∣ s) ≈ Π(s ∣ a; W). (16)

The asynchronous aspect of A3C comes from the fact that mul-
tiple agents are trained in parallel on copies of the environment,
providing asynchronous updates to the model weights. Crucially,
this results in greater exploration of the space and hence improved
performance over other algorithms such as deep Q learning for a
number of tasks.60

Another commonly used RL algorithm is deep deterministic
policy gradient (DDPG),63 an extension of the deterministic policy
gradient (DPG) algorithm64 inspired by deep Q learning. The key
idea behind DPG is to assume a deterministic policy, the gradient of
which can be shown to follow the gradient of the action-value func-
tion q(s, a). In DDPG, this is extended by using DNNs to parameter-
ize the actor function and by employing some innovative techniques
from deep Q learning and DL.64 The resulting algorithm is effective
for exploring continuous action spaces, addressing a shortcoming of
deep Q learning.

III. PHYSICAL LAYER APPLICATIONS
In this section, we outline several key research problems within

the physical layer and highlight selected applications of ML to these
problems from the literature. Specifically, we discuss quality of
transmission (QoT) estimation, digital twins, equalization in short
reach applications, and fiber nonlinear noise mitigation in long-haul
transmission systems. A summary of the works discussed detailing
the physical layer applications tackled and different ML techniques
proposed is given in Table I.

A. Quality of transmission estimation
One of the most widely researched applications of ML in opti-

cal fiber communications is QoT estimation, evidenced by a recent
survey focusing on this application alone.6 QoT is an umbrella
term for a number of metrics of the quality of a transmitted opti-
cal communication signal, including SNR, bit error rate (BER), and
Q-factor.65 ML techniques are a logical approach to QoT estima-
tion because of the numerous sources of uncertainty that make the
estimation and prediction of QoT challenging6 and the necessity of
QoT estimation for performing network level control, such as for
the routing and spectrum assignment of new light paths. A number
of models of QoT exist that are based on the physics of transmis-
sion within the fiber, which have varying degrees of accuracy. Two
commonly used examples are the Gaussian noise (GN) model66 and
split-step Fourier transform method (SSFTM).67 However, these are
plagued by limited applicability due to limited accuracy and high
computational requirements, respectively. Moreover, both are lim-
ited by uncertainty in the physical layer inputs, with the magni-
tude of these uncertainties varying between deployed networks. For
example, installed fibers can be accidentally damaged, before being
spliced back together, resulting in variations in the fiber attenuation.
Moreover, other components such as amplifiers and filters can suffer
degradation in performance as they age,68 which can change physical
layer parameters such as EDFA noise figure. Additionally, parame-
ters such as the fiber type and fiber chromatic dispersion (CD) may
not be known to the operator in deployed networks.69 ML can be
used either as a replacement for physics-based models or alongside
them in order to combat the input uncertainty and to reduce the
computational burden.

The QoT estimation sub-domain can be further divided into
three main problems. First, ML can be used to predict the QoT
from physical layer inputs, such as the number of channels, oper-
ating wavelength, modulation format, and number of spans. This
can be formulated as a regression problem, where the QoT itself is
the target, or as a classification problem where the goal is to predict
whether or not a given light path will have sufficient QoT. Second,
ML can be deployed to aid with QoT monitoring, commonly to learn
the mapping between the variables that are measured by using mon-
itors and the QoT, often for the purpose of prediction of failures.3,6

Finally, the modeling of the optical amplifiers used in optical fiber
communications presents a challenge due to the nonlinear depen-
dence of amplifier gain on wavelength, channel launch power, and
the number of channels. As amplifiers can have a significant effect
on the QoT, there have been a number of works in which ML has
been applied to modeling amplifiers.3,5,6

Here, we outline selected examples of ML applied to QoT
estimation from the literature that demonstrate what is typical in
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TABLE I. ML approaches to physical layer applications.

Application ML technique(s) Advantages References

QoT estimation Simple learning process, LMA Interpretable 72, 73, 75, and 87
GP Well-quantified uncertainty 76
CBR, NN Experimental demonstration 77–79
GP, NN Physics-informed ML, less data required,

and explainable
86 and 85

NN, SVM Self-adaptive and reduced computational
complexity

81 and 83

Digital twins for optical networks RNN, DRL, XGBoost Experimental data and general framework 41, 92, 94, 91, and 95
Short reach equalization DNN Outperform conventional equalizers 103 and 104

CNN Outperforms DNN 106 and 107
RNN, LSTM Improved performance compared to FFNN via

feedback
108–112

SVM Unsupervised and enable decoding of PAM-N
signals

113 and 114

DNN, RNN Low complexity FPGA implementation 105 and 111
Fiber nonlinear noise mitigation NN, ELM Reduced computational complexity 119 and 128

LSTM Better performance than six-step DBP 120
SVM, KNN, PW Increased optimal launch power 121, 122, and 124
K-means clustering Found required overhead for transmission 123
NN Physics-informed ML and explainable 129, 130, and 131
NN, transfer learning Increased flexibility and reduced computa-

tional load
137

K-means clustering Low complexity FPGA implementation 127

the field. Interesting works using regression include using a simple
learning process based on gradient descent40 to reduce the uncer-
tainty in the inputs to a physics-based QoT model.70 This represents
a hybrid approach where ML is used in concert with physical models
of the QoT, rather than relying solely on the data. A similar approach
was also demonstrated experimentally—a learning process was used
to update the parameters of a physical model based on measure-
ments of the Q-factor of an experimental system.71 Additionally, ML
based on the Levenberg–Marquardt algorithm72 (LMA) was recently
utilized for online optimization of the inputs to the GN model,
specifically the launch powers, for a simulated network.73 Interest-
ingly, the number of iterations used for the optimization is adap-
tive, which reduces the time and measurement resources required
to perform the optimization. Again, the role of ML here is to con-
figure the inputs to the physical model, rather than replacing it.
There are also approaches in which the goal is to replace the phys-
ical model. For example, a GP regression model has been used to
learn the functional relationship between the BER and system trans-
mission parameters, specifically the launch power, length of fiber
over which the signal is transmitted, symbol rate, and channel spac-
ing.74 This model was trained on both simulated and experimental
data, and it was shown that the model could make accurate pre-
dictions on a system with a different configuration to that upon
which it was trained. As many of the QoT estimation works uti-
lize NNs, this Tutorial highlights that more principled approaches
such as GPs with well-quantified predictive uncertainty can also be
used successfully for QoT estimation. Moreover, an experimental
network has been operated at a reduced margin via a case-based

reasoning (CBR) approach,75 where margin means the difference
between the minimum acceptable QoT and the current signal QoT.
In CBR, the QoT for established light paths is stored and used as
a lookup table to estimate the QoT of new light paths that take a
similar route through the network. This work is particularly inter-
esting as it demonstrates that ML, albeit a simple version of it, can
be useful for controlling an experimental optical fiber network—in
this case, it allows us to reduce the required margin. Another recent
experimental demonstration of the efficacy of ML-based QoT esti-
mation utilized NNs trained on synthetic QoT data to estimate the
SNR on a live network operated by Tele2 Estonia.76 Crucially, these
models demonstrated a maximum SNR error of 0.5 dB and were
able to compute the SNR estimate on microsecond scale, indicat-
ing that such models could feasibly be deployed in real networks.
DNNs have also been used recently to estimate the SNR based on
historical telemetry of the optical amplifiers in an experimental sys-
tem, focusing on the effect of the amplifiers, rather than the nonlin-
ear noise generated by transmission in a fiber, which they assume
can be estimated using a physical model.77 Moreover, a NN-driven
nonlinear SNR estimator was presented, for which the optimal com-
bination of input features was found.78 In this work, knowledge of
the physics of fiber transmission is used to aid with feature engi-
neering, in order to obtain the set of input features with the highest
efficacy.

Classifiers have also been leveraged for QoT estimation, such
as a binary NN classifier trained on historical network data, which
was used to determine whether or not a given request will have suf-
ficient QoT to be established.79 The performance of this classifier
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was compared to that of an analytical QoT model80 and was found
to efficiently replace this model, while providing a key benefit of self-
adaptivity to changes in the network conditions. Another work81 uti-
lized an SVM classifier model, again as a binary classifier designed to
label light paths as having sufficiently high QoT to be established or
not. Simulated data are used for training, as is common in network-
scale research due to the lack of availability of detailed datasets from
deployed networks.

Furthermore, an interesting research avenue within QoT esti-
mation is the use of physics-based models in concert with ML. This
can be done in a number of ways, for instance, our physical models
can be embedded into the ML directly. For example, a methodology
for the training of NNs that obey physical laws defined by partial dif-
ferential equations was recently presented.82 The first steps toward
using this in optical fiber communications have been taken, where a
physics-informed NN was used to solve the nonlinear Schrödinger
equation (NLSE) in an optical fiber and model pulse evolution.83 An
alternative approach is the physics-informed GP regression method,
in which a physical model, in this case the SSFTM, is embedded
within the GP.84 This allows one to train GPs with fewer measure-
ments of the system and represents an explainable ML approach
with a well-quantified prediction uncertainty. Additionally, there
are works such as those described above,70,71 which focus on learn-
ing more accurate inputs to a physics-based QoT model. A similar
approach has been applied to nonlinearity estimation.85 Specifically,
ML is utilized to reduce physical model errors and to combine mod-
eling and monitoring schemes for nonlinearity estimation. More-
over, it is possible to use our knowledge of system physics to improve
ML in other ways, such as to engineer higher performing input
features.78

Finally, a recent paper86 highlights the remaining roadblocks
that stand in the way of effective deployment of ML in QoT esti-
mation. Specifically, due to competition-related concerns, telecom-
munication companies are not willing to give external researchers
access to real network datasets, resulting in a reliance on simu-
lated data, or data that are produced using a lab setup. Due to
the limitations of physics-based models outlined above and the
fact that a lab-based network is always going to be more idealized
than a deployed network, such data may not be fully representa-
tive of deployed network data. As a result, the true efficacy of ML
approaches for deployed networks is unknown. Moreover, many
of the applications of ML in optical networks utilize error metrics
that are standard in ML but may not be suited to optical networks.
For example, it has been found that for optical network applica-
tions of ML, using only the mean squared error may result in an
inflated measure of model efficacy and novel error metrics have
been recently proposed to address this.87 Thus, although the first
problem is tricky to address and is largely up to network opera-
tors, the second problem provides an interesting avenue for further
research.

B. Digital twins
Digital twins are models that act as a virtual copy or “twin”

of a real system. They are inherently data-driven,88 taking as input
measurements from the real system to build up a model of its gov-
erning physical laws, states, and behavior. Information drawn from
the digital twins can then be passed to the real system in the form

of changes to its operational configuration. This framework is out-
lined in Fig. 10. As we move toward higher levels of automation in
optical communication network design and operation, digital twins
are gaining increasing popularity within the research community.89

It is hoped that digital twins can help bridge the gap between the
ideal physical layer that is commonly assumed in optical commu-
nications and physical layer behavior in deployed networks, which
is far from ideal. Although ML is not a required component of
digital twins, due to their data-driven nature it is natural that ML
approaches can be useful for creating digital twin models. ML can
be used as the basis for the digital twin itself—we can take mea-
surements from the real network and train a sufficiently complex
ML algorithm to emulate the behavior of the network. Alternatively,
we can build the digital twin from physics-based models and uti-
lize ML to reduce the gap between these models and reality. For
example, we can use ML to reduce the uncertainty in the model
inputs, as discussed in Sec. III A. Additionally, ML can also be
used in order to extract more information from network moni-
tors, which may allow for the development of more detailed digital
twins.

A framework for applying digital twins in optical networks has
recently been proposed,89 focusing on three crucial applications:
fault prediction, hardware configuration, and simulation of trans-
mission. Different ML approaches from the literature are proposed
for each of these applications. For fault prediction and diagnosis, two
models are proposed, a RNN to extract the operating state from time
series data taken from monitors90 and an XGBoost91 model to map
information from network monitors to new features to aid with fault
diagnosis.92 Moreover, DRL is proposed to learn an optimal strategy
for hardware optimization.93 Specifically, the agent learns to control
the configuration of the programmable optical transceiver in order
to maximize the QoT for varying operating conditions. Finally, a
RNN-based approach is proposed to learn a model of the physical
layer transmission in the network as a function of time series mon-
itoring data.94 Thus, the digital twin is created by combining these
models, continually updating them with new data and using them
to control the network.89 Another recent work demonstrated a dig-
ital twin model based on an autoencoder, which is trained on an
open-source dataset of power spectral density (PSD) profiles before
and after transmission through an experimental optical network.95,96

Specifically, this model is used to find the input PSD that produces

FIG. 10. Schematic showing the digital twin framework adapted from the work of
Wang et al.89 Monitoring data from the physical network is stored in a database,
and useful information is extracted from these data from which a virtual model is
built. This model is used to provide feedback to the physical network, while any
changes to the network state are mapped back to the virtual model.
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a desired output PSD. Thus, this model can be used as part of a
digital twin to achieve optimal control of the network. It should
also be noted that PSD may be a less widely understandable QoT
metric and that methods to obtain the optical signal-to-noise ratio
(OSNR) from PSD data have been proposed that could be used to
convert these data, either before or after training the autoencoder.
Other works have successfully utilized autoencoders for end-to-end
learning of an intensity modulation direct-detection (IM/DD) opti-
cal communication system, outperforming conventional signal pro-
cessing techniques.97 This has been recently extended to include
optimization of the symbol distribution for coherent systems.98 Such
techniques may be of use in the development of digital twins as they
constitute an end-to-end virtual model of the system with inherent
mapping and feedback between the virtual model and the physical
system.

C. Equalization in short reach applications
Optical short reach systems, defined as having a length less than

100 km, are applied in server-to-server, intra-data center, inter-data
center, access, and metro links. Due to stringent requirements of low
complexity and cost, minimal power consumption, and small carbon
footprint, IM combined with DD with simple on–off keying (OOK)
or pulse amplitude modulation (PAM)-4 modulation format is still
a preferable transceiver technology compared to coherent systems.99

Increasing demand for high data rate short reach applications
such as IM/DD based systems causes several performance limit-
ing factors that need to be addressed. A schematic of a short reach
link with possible sources of linear and nonlinear impairments is
shown in Fig. 11. First, chromatic dispersion (CD) severely lim-
its the link power budget margin. With a high symbol rate and
several kilometers of transmission, the interaction of CD and DD
causes a power-fading effect and the detected signal may contain

FIG. 11. Schematic showing a IM/DD-based short reach link and possible sources
of impairments (DSP: digital signal processing, DAC: digital to analog converter,
DML: directly modulated laser, EML: electro-absorption modulator, VCSEL: vertical
cavity surface emitting laser, MMF: multi-mode fiber, SMF: single-mode fiber, SOA:
semiconductor optical amplifier, APD: avalanche photodiode, TIA: transimpedence
amplifier, and ADC: analog-to-digital converter).

frequency notches. DD is based on square law detection, which
complicates the CD equalization, as we cannot simply multiply
the received signal spectrum with the inverse of the CD trans-
fer function as in coherent systems. Another common impair-
ment in short reach systems is considerable low-pass filtering
effects due to the insufficient bandwidth of various components,
which can cause severe inter-symbol interference. Furthermore, as
short reach systems often have constrained financial budgets, low-
cost components produce non-idealities, resulting in performance
degradation. Similarly, low-cost devices such as lasers, modulators,
photodiodes, and trans-impedance amplifiers also produce nonlin-
ear distortions, such as level-dependent skew and level-dependent
noise.100

For equalization of linear impairments, a feed-forward equal-
izer (FFE), usually based on a finite impulse response filter, is com-
monly used. The effect of frequency notches cannot be mitigated by
using a FFE, although a decision feedback equalizer (DFE) can be
added after a FFE to combat such an effect. However, DFEs may suf-
fer from error propagation and instability due to the decision feed-
back scheme. Moreover, FFEs/DFEs cannot mitigate the nonlinear
effects. Volterra nonlinear equalizers are an effective way to mitigate
both fiber nonlinearity and component nonlinearities.101 However,
the major drawback of this equalizer is the large implementation and
computational complexity.

Recently, ML techniques attracted significant attention for
equalization of short reach systems. Among different ML-based
techniques, NN-based equalization is in the center of this inter-
est. A sufficiently large NN having at least one hidden layer can
approximate any function and thus can be used as an equalizer
of both linear and nonlinear impairments. Usually, the input vec-
tor of the equalizer corresponds to a set of consecutive sampled
symbols. The length of vector should be long enough to consider
the channel memory. The NN can be structured with a single hid-
den layer and large number of nodes or multiple hidden layers
(i.e., a DNN) with relatively fewer nodes. The choice of nonlinear
activation function in each hidden layer is important as it enables
approximation of nonlinear functions to deal with the distortion
of short reach systems. The commonly used hidden layer activa-
tion functions are the sigmoid function, the rectified linear unit
(ReLU), and the hyperbolic tangent (tanh) function. On the other
hand, the Softmax activation function is usually chosen for the out-
put layer, as this function facilitates making symbol decisions for any
PAM-N signal in addition to the equalization.102 In several experi-
mental demonstrations, it has been shown that NN-based equaliz-
ers outperform conventional equalizers, such as FFE and Volterra
nonlinear equalizers.102,103 In addition, a field programmable
gate array (FPGA) implementation of a fixed point DNN-
based equalizer was demonstrated for high-speed passive optical
networks.104

The CNN-based equalizer was also investigated by Li et al.105

As the convolution layer acts as a multi-channel nonlinear learned
local pattern detector, it allows the equalizer to overcome the
inter-symbol interference and device nonlinearity. In CNN-based
nonlinear compensation, the time series input signal is converted
to a 1D input array with N elements comprising (N − 1)/2 past
and post-symbols, followed by the multiple convolutional layers
and fully connected layers with a nonlinear activation function.
Experimental demonstrations showed that the CNN-based
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approach yields a considerable performance improvement as
compared to a DNN-based approach.105,106

NNs also exhibit powerful equalization capabilities com-
pared to feed-forward Multilayer perceptron (MLP) or CNNs,
as they can use the feedback of past output values as an addi-
tional input while calculating the present output value.107,108

With such additional feedback information, RNNs perform bet-
ter than FFNNs, which is analogous to the performance improve-
ment given by the combination of FFE and DFE compared to
FFE only. Auto-regressive RNN and layer RNN are two com-
monly used types of RNN, and the former has better equal-
ization performance.109 An RNN-based equalizer with parallel
outputs was investigated using an FPGA implementation for
100 Gb/s passive optical network application.110 As a variant of
RNNs, LSTMs were also demonstrated for the equalization of a 50
Gb/s PAM-4 transmission system.111

In addition to various NN-based equalizers, SVM-based
approaches have been demonstrated as an effective tool for mit-
igation of nonlinear impairments in a short reach application
scenario.112,113

The computational complexity of the nonlinear equalizer is
a critical issue for short reach in optical communications because
the equalizer needs to be implemented in real-time operating
at an extremely high symbol rate. It has been shown that a
NN-based equalizer with a single hidden layer can provide bet-
ter performance with lower computational complexity compared to
a Volterra equalizer.114,115 However, a comprehensive analysis of
computational complexity and performance for various advanced
ML-based equalization approaches is required. In addition, the tech-
niques for reduction in complexity need to be explored. Given that
there is significant potential for practical NN-based equalizers to
be implemented on digital signal processing (DSP) ASICs, ML-
based equalization may become the mainstream technology for next
generation short reach IM/DD-based systems.

D. Fiber nonlinear noise mitigation in long-haul
transmission systems

In long-haul fiber transmission systems, the optical signal suf-
fers from fiber nonlinear noise-like distortions due to the optical
Kerr effect. Generally, the following system of coupled NLSEs is
used to describe the evolution of complex-valued envelopes of the
electrical field in the optical fiber:116
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(17)

where E(z, t) = [Ex(z, t), Ey(z, t)]T is the Jones vector, α is the fiber
loss coefficient, β2 is the fiber group velocity dispersion coefficient,
and γ denotes the fiber nonlinear coefficient.

Although the SSFTM can be used to numerically solve the
NLSE, the accuracy is low when the interplay among signal,
noise, nonlinearity, and dispersion effects is considered. Therefore,

the performance improvement of the conventional digital back-
propagation (DBP) method based on the NLSE is limited.117 Since
the performance improvement is related to the modeling accuracy,
ML techniques can be applied to describe the evolution of the opti-
cal signal after long-haul transmission. Specifically, ML techniques
are applied to find a nonlinear function f that can map the received
symbol to the transmitted symbol under certain criteria.

Unlike in short reach transmission scenarios, the nonlinear
function f has to be obtained by separating the I and Q branches
of the complex-valued signal. In the early works,118 an artifi-
cial neural network (ANN) has been used in a coherent receiver
after CD compensation with extreme learning machine (ELM)-
based training techniques. The simulation results for 27.59 GBd/s
return-to-zero (RZ) quadrature phase shift keying (QPSK) show
that the ELM-based technique can provide similar performance
to conventional DBP with much lower computational complex-
ity after 2000 km standard single-mode fiber (SSMF) transmission.
Recently, LSTMs have been proposed to mitigate the fiber non-
linear impairments in dual polarization WDM transmission sys-
tems. It was shown in simulation that LSTMs can provide better
performance than conventional DBP techniques with six steps per
span.119

It is known that the nonlinear noise is non-Gaussian dis-
tributed. Therefore, conventional linear boundaries are not effec-
tive in the nonlinear fiber channels. One general idea of ML-based
coherent receivers is to design nonlinear decision boundaries. These
are assumed to be more suitable for the nonlinear fiber channel
because the nonlinear noise generated in the fiber channel need not
be a Gaussian distribution. A few techniques have been applied to
design such nonlinear classifiers. An M-ary SVM has been intro-
duced to mitigate the nonlinear phase noise in the single-channel
single-polarization (SCSP) 16-QAM coherent optical systems. Com-
pared with the linear channel equalization case, the simulation
results show that M-ary SVMs can increase the optimal launch
power by around 4 dB and extend the transmission distance by
around 1200 km.120 The K-nearest neighbor (KNN) algorithm has
also been utilized to mitigate the channel impairments, including the
laser phase noise and nonlinear fiber noise. The simulation results
show that the optimal launch power can be enhanced by ∼0.4 dB in
the SCSP 16-QAM coherent transmission system.121 Another work
using K-means clustering122 experimentally investigated the require-
ments of the length of the training symbols for the fiber nonlinear
mitigation in the SCSP 64-QAM 80-km transmission scheme. It
was observed that a 10% training overhead is sufficient to obtain
the optimal performance. Another recent publication utilizing non-
linear classification is based on the Parzen window (PW) classifier
technique, which is inherently a multi-class technique and can be
implemented in online learning mode.123 Considering the DBP tech-
nique as a benchmark, simulation results prove that a PW classi-
fier can further improve the performance by ∼0.35 and ∼0.2 dB for
16-QAM after 1600 km and 64-QAM after 480-km fiber trans-
mission. A density-based spatial clustering of applications with
noise algorithm was employed for blind fiber nonlinearity com-
pensation.124 The experimental result showed that this algorithm
can provide up to 0.83 and 8.84 dB enhancement in the Q-
factor when compared to conventional k-means clustering and
linear equalization, respectively, in a 40 Gb/s 16-QAM system
after 50-km SSMF transmission. A histogram-based clustering
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algorithm was also demonstrated in a coherent optical long reach
passive optical network, which achieves a Q-factor 0.57 dB higher
than that achieved using maximum likelihood and 0.21 dB higher
than that obtained using k-means clustering.125 In another recent
work, an FPGA-based real-time fiber nonlinearity compensator
using the sparse K-means++ clustering algorithm was experimen-
tally demonstrated in a 40 Gb/s 16-QAM self-coherent optical sys-
tem. This resulted in a 3 dB improvement in the Q-factor compared
to linear equalization at 50-km transmission.126 More recently, a
DNN-based nonlinear classifier with a cross-entropy cost function
was used as a soft-demapper for soft-decision forward error correc-
tion (FEC).127 In optical coherent 92 GBd dual polarization 64-QAM
950 Gb/s back-to-back measurements, the DNN-based nonlinear
classifier is shown to have better performance than pruned Volterra
nonlinear equalizers by 0.35 dB in OSNR with equal complexity
or achieve the similar performance with 65% less computational
complexity.

The above ML techniques in optical communications are oper-
ated as a black box to obtain the data-driven models with unparal-
leled performance. Therefore, some works have tried to contribute
more insights into how the nonlinear fiber noise is mitigated by the
ML techniques. Recently, the structure of a NN is designed to be sim-
ilar to the DBP structure, which is called a learned DBP algorithm.128

It is known that the conventional DBP algorithm is a cascade of
linear filters D−1 for CD compensation and nonlinear operations
N−1 for nonlinear phase derotation, as shown in Fig. 12(a). Each
linear filter D−1 is given by the frequency-domain transfer func-
tion Hk(ω) = exp[−(α + i ω2β2) Lk / 2 ], where Lk is the length of
the kth span. The nonlinear operation N−1 for the kth span is given
by δk(x) = x exp(− i γ ξk ∣x∣2), where ξk is a scaling factor. It should
be noted that practical implementation of the linear filter D−1 is

FIG. 12. (a) Classical DBP structure with interleaving operations of CD compensa-
tion and nonlinear-phase derotation. (b) DBP structure as an ANN with interleaving
linear and nonlinear operations.

realized based on a time-domain finite impulse response filter and
the filter coefficients are adjusted during training of the NN. There-
fore, the interleaving linear and nonlinear processing in DBP can
be regarded as the linear and nonlinear operations in the multi-
layer NN, as shown in Fig. 12(b), where the input is the received
samples and the output is the estimated symbol sequence. In this
case, the parameters ξk and the filter coefficients of D−1 can all
be optimized via ML techniques. An experimental demonstration
is also conducted to evaluate the effectiveness of the learned DBP
algorithm in a DP 5 channel WDM transmission system consid-
ering other channel impairments in a coherent transmission sys-
tem, including frequency offset and laser phase noise.129 The exper-
imental results show that 1-steps per span and 2-steps per span
learned DBP provide an additional gain of 0.25 and 0.45 dB over
conventional 50-steps per span DBP and a total gain of 0.85 and
1 dB over linear equalization, respectively. It is also shown that
learned DBP can give an insight into how and what the NN learns,
which may guide people to analyze the interplay between CD, non-
linearity, and noise more closely. As of the complexity, it is shown
that the performance of learned DBP based on 1 step per span
is better than conventional DBP with 50 steps per span.130 Note
that the performance improvements of learned DBP originate from
optimizing the parameters in DBP, and it incurs no additional
computational complexity.

In another method, perturbation terms are used to analyze the
fiber nonlinear terms, which can be expressed as130

⎡⎢⎢⎢⎢⎢⎣

Ex(z, 0)
Ey(z, 0)

⎤⎥⎥⎥⎥⎥⎦
=∑

m,n
P3/2

0 (HnH∗m+nHm + VnV∗m+nVm)Cm,n, (18)

where P0, Hm, Vm, Cm,n are the optical power, sample sequences for
x and y polarization, and the perturbation coefficients, respectively.
In the conventional method,131 the perturbation coefficients Cm,n
can be analytically computed, given the link parameters and sig-
nal pulse duration/shaping factors. Alternatively, the perturbation
coefficients Cm,n can be obtained via a two-layer NN, which can
describe the model with higher accuracy by taking into account
higher-order nonlinearities. In a single-channel 32 GBd DP-16QAM
transmission system, ∼0.6 dB Q-factor improvement is observed
after 2800-km SSMF transmission when the transmitted symbols
are pre-distorted based on the estimated perturbation coefficients
via NN.

ML-based compensation for multicarrier modulation formats
has also been investigated. For the orthogonal frequency-division
multiplexing (OFDM) format, an ANN was proposed, which pro-
vides 2 dB Q-factor improvement for the 40 Gb/s 16-QAM signal
after 2000 km fiber link.132 This improvement increased to 4 dB
at the data rate of 70 Gb/s. A multiple-input and multiple-output-
DNN-based nonlinear dispersion compensator was also demon-
strated for the 40 Gb/s coherent OFDM system that achieved
significant power margin improvement over both a conventional
linear equalizer and a single-input single output DNN.133 Consid-
ering the same experimental setup, support vector regression shows
1 dB Q-factor improvement over the full-field DBP method for
40 Gb/s 16-QAM OFDM over 2000 km SSMF transmission.134

In a further work, a Newton-based SVM method that requires
significantly less computational load than a conventional SVM
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was proposed to extend the optimum launched optical power by
2 dB compared to the Volterra-based nonlinear equalizer.135 Finally,
we consider the issue of flexibility in NN-based nonlinear channel
equalizers. A general question concerning flexibility is whether we
need to repeat the training process when the channel conditions
(modulation format, launch power, transmission distance, etc.) are
changed. In order to solve this issue, transfer learning has been pro-
posed recently to reuse some parameters from the NN model trained
for the previous system to build a new NN model that fits the mod-
ified system with a smaller amount of training resources.136 The
simulation results indicate that the number of epochs or size of the
training dataset can be reduced by up to 99% when transfer learn-
ing is used. Therefore, a fast re-configurable nonlinear equalizer is
possible for the practical implementation of optical networks.

IV. NETWORK LAYER APPLICATIONS
In this section, we describe crucial research domains within

the network layer and highlight selected ML approaches to tackling
the problems in these domains from the literature. Namely, these
domains are network traffic prediction and generation and core net-
work parameter optimization. As detailed below, we find that super-
vised learning approaches have been successfully deployed in the
former domain, whereas RL approaches have shown great potential
in the latter. Table II summarizes these applications, highlighting the
advantages of the particular ML methods employed.

A. Network traffic prediction and generation
In the state-of-the-art optical networks, traffic is typically rep-

resented by demands.137–139 The optical network operates based on
a time scale and can be divided into time steps or iterations. In par-
ticular, in each time step/iteration, a number of demands arrive to
the network, some of which are established. Every demand can be

described by the time step in which it appears, a source node that
represents the demand initial node and a destination node that rep-
resents the demand final node, demand volume, and holding time.137

In a real-time flexible networking scenario such as elastic optical net-
works (EONs), where the network can adapt to accommodate the
incoming traffic,140 ML techniques coupled with dynamic routing
algorithms can improve the overall network performance signifi-
cantly.141 One of the key challenges in increasing the efficiency of
network operation is to predict the bandwidth requirement in the
next time step based on the measurement of traffic characteristics
in real time. When using ML methods, the goal is to forecast future
traffic rate variations as precisely as possible based on the measured
history.

NN-based approaches are the most commonly used ML tech-
nique in the literature of traffic prediction,141–145 with early research
utilizing standard ANNs.141 Following this, later research used dif-
ferent variations of NNs.142–145 Moreover, others employed NNs
with an improved optimizer such as Zhan et al.,146 who utilized a
NN model optimized by the adaptive artificial fish swarm algorithm
to predict tidal traffic.

Variations of NN approaches appearing in the state-of-the-art
of traffic prediction include RNNs, such as Gated Recurrent Units
(GRU) and LSTM owing to their capability of adaptively capturing
dependencies on different time scales (see Sec. II). GRU is studied
to make predictions of traffic matrices for a fixed-grid WDM net-
work142 and for a backbone EON.143 LSTM is studied for traffic
prediction in passive optical networks144 and for core networks.137

Figure 13 describes an example of a traffic prediction model based
on GRU.

Another recent type of NN studied in the traffic prediction lit-
erature is GNNs. In the context of network topology based traffic
data, the ability of GNNs to leverage a graphical representation to
learn inter-node dependencies of the network graph shows strong
potential for applicability in this domain. Gui et al.143 studied the

TABLE II. ML approaches to network layer applications.

Application ML technique(s) Advantages Reference(s)

Traffic prediction and generation FFNN Adaptive method and improved resource utilization 147 and 142
RNN (GRU, LSTM) Captures temporal aspects and more capacity available 143, 145, and 146
GP Improved efficiency and reduced traffic disruption 140 and 148
SVM, DT, RF, LDA Classification 138 and 139
GNN Captures graph structure 144
GAN Ability to generate realistic data 149

Core network parameter optimization RL Handles dynamic traffic request 161 and 162
GNN Leverages network structure and topology invariance 163 and 164

FIG. 13. An example traffic prediction
model based on GRUs.142 The Evalua-
tion Automation Module (EAM) consists
of the prediction error for both training
data and validation data at each epoch
and stores the best prediction model.
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pair-wise spatial correlations between optical network nodes using
a directed graph. The nodes of this graph represent switch traffic,
and the weights of edges denote connections among optical network
nodes. A GCN was then employed to leverage these spatial correla-
tions. Vinchoff et al.145 employed GCNs and GANs for prediction of
traffic bursts in the optical network. Three types of burst events were
modeled, namely, plateau, single-burst, and double-burst, represent-
ing steady traffic, a rapid traffic spike followed by a steady decrease,
and a rapid traffic spike followed by an unexpected greater traffic
spike, respectively.

Another ML approach that has been successfully applied to
traffic prediction is GPs. The ability of GPs to capture tempo-
ral aspects of traffic flows allows both the short term and long-
term prediction of input traffic. Studies have shown agile manage-
ment of resources in a core optical network using GP-based traffic
prediction.139,147

Recent comparative studies137,138,143 on traffic prediction high-
light the relative strengths of different ML methods used in the state
of the art. Szostak and Walkowiak137 compared the efficacy of differ-
ent ML methods, including FFNN, SVM, DT, random forest (RF),
and linear discriminant analysis (LDA), for the problem of predict-
ing source and destination for demands in a dynamic optical net-
work setting. Furthermore, this was extended by including the pre-
diction of traffic volume and holding time.138 They observed that the
best classifier for such tasks was LDA.137 Additionally, Gui et al.143

benchmarked their GCN-GRU based traffic prediction over several
approaches, including LSTM, CNN, and GRU, and the results sug-
gested that GCN-GRU has a greater prediction quality as compared
to these other approaches.

As introduced in Sec. II, GANs are designed for realistic data
generation and thus show potential in simulated traffic generation
for optical networks. In a GAN-based traffic data generation sce-
nario,148 the objective of the generator is to transfer the random
noise into the generated traffic data and attempt to make the charac-
teristics of generated traffic data close to those of the real world traf-
fic data. In contrast, the discriminator attempts to correctly deter-
mine whether the data are from the actual traffic dataset or the
generated traffic dataset. Via intense competition, the discriminator
and the generator are improved by each other and the generated traf-
fic data become increasingly similar to the actual real world traffic
data.

B. Core network parameter optimization
In this section, we intend to discuss the core optical network

parameter optimization given in the frameworks of RL. Core optical
networks play the most substantial role in the national and inter-
national communication infrastructure. They typically consist of
flexible devices, such as the re-configurable optical add/drop mul-
tiplexers (ROADMs) and bandwidth variable transponders (BVTs).
ROADMs are commonly used to transmit optical signals between
different nodes, whereas BVTs are used to adapt a large set of core
optical network parameters, such as signal modulation format, cod-
ing scheme, forward error correction overhead, and symbol rate,
based on the current optical link requirements. Adopting the core
optical network parameters is especially vital when attempting to
maximize the ultimate network information throughput. However,
this procedure requires the optimization of a large parameter space.

In addition, finding much more efficient use of core optical network
spectral resources is essential to cope with ever-growing bandwidth
demand.

Conventionally, in the case of fixed-grid WDM optical net-
works with a static traffic request assumption, the network parame-
ters adjustment can be realized via adapting launch power per chan-
nel and signal modulation format with regard to stochastic system
impairments in the physical layer.149 The typical core optical net-
work physical layer impairments occurred between its nodes are
the amplified spontaneous emission noise arising from the opti-
cal amplifiers and the nonlinear interference noise-like distortions
induced by the four-wave mixing process in Kerr-type nonlinear
media, i.e., in the optical fiber. In essence, the exact behavior of
optical data signals between two nodes can be obtained numeri-
cally by solving the NLSE/Manakov equation via the SSFTM, when
the step-size tends toward zero. However, the numerical solution
is a comparatively time-consuming process, especially for wide-
band transmission systems. Currently, the most widely used physical
layer impairments models are the family of the so-called Gaussian
noise (GN) models, which commonly rely on the first-order per-
turbation theory.66 Moreover, under fairly reasonable assumptions,
these models admit analytical closed-form approximations that sig-
nificantly speed up the evaluation of the physical layer impair-
ments. The resource allocation problem in the case of a single
flexible-grid fiber link via the GN model closed-form approxima-
tion was considered in Ref. 150. Here, it is also worth mentioning
that the possibility of quickly performing physical layer impair-
ments estimations is essential regardless of the type of optimization
frameworks.

RL has recently appeared as an alternative to conventional
approaches, such as integer linear programming (ILP),151,152 and
heuristics, such as simulated annealing, k-shortest path routing and
first-fit153 and the genetic algorithm (GA).154 Generally speaking,
RL is capable of efficiently overcoming a wide class of complex
optimization problems.155 However, in the context of core opti-
cal networks, RL cannot be applicable straight away, as it must be
generalized to learn over arbitrary network topologies with dynam-
ically changing scenarios, such as network topology, traffic, rout-
ing, and link failures. Over the last few years, some initial works
have suggested deep RL for solving various resource allocation
and dynamic routing problems in core optical networks,156–159 in
which the advantages of using RL-enabled methods over traditional
heuristic optimization algorithms were emphasized.

Yet, more interesting examples of using an RL framework for
maximizing the point-to-point link capacity by means of adjusting
controllable parameters in core optical networks have been recently
reported in Refs. 160 and 161, where the heuristic GA based results
were used as a performance benchmark. The predicted performance
of these two approaches remains very similar. However, after an
initial training phase, the computation time of BVT parameters opti-
mization to maximize the overall network throughput based on the
RL approach is up to 1 second on average, while traditional heuristic
algorithms may take in the order of minutes to hours. Additionally,
preliminary investigations into network routing and parameter opti-
mization show promising potential in leveraging the ability of GNNs
to learn and model graph-structured information.162,163 Such mod-
els are able to generalize over arbitrary network topologies, routing
schemes, and traffic intensity.
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V. FUTURE DIRECTIONS
A number of ML-driven future research directions are emerg-

ing within optical networks across both the physical layer and the
network layer. In this section, we outline selected future directions
within the physical layer, the network layer, and those spanning both
layers.

A. Physical layer
An emerging theme within applied ML that is interesting

in the context of optical networks is explainable ML,32 a subset
of explainable artificial intelligence164 that aims to make the pro-
cesses by which ML algorithms make decisions more understand-
able to humans. Optical networks are operated with high availabil-
ity, meaning that light paths must stay within the accepted QoT
ranges often at least 99.999% of the time, which translates to just
over 5 minutes of downtime per year.165 This is enforced by ser-
vice level agreements, which mean that operators must deliver the
quality of service that customers have paid for. As a result, ML
approaches deployed on optical networks must meet the stringent
reliability requirements that are already satisfied by conventional
techniques. Thus, understanding how ML algorithms work is cru-
cial for adoption. Both post-hoc explainability methods and inher-
ently explainable ML approaches have potential to yield substan-
tial benefits for ML applied within optical communication net-
works. There are now open-source libraries that provide implemen-
tations of post-hoc techniques,166 making their application conve-
nient. It may be better to have a more easily interpretable model
with slightly worse performance in some situations if operators
can understand how it makes decisions and therefore can be more
confident in its reliability. Additionally, probabilistic ML methods
such as GPs provide well-quantified predictive uncertainties that can
aid with the interpretation of ML model predictions, which would
be greatly beneficial for many applications of ML within optical
networks.

Another interesting avenue for future research is the combina-
tion of physical models with ML, so as to embed our knowledge of
system physics into models such as NNs and GPs, as discussed in
Sec. III A. For example, physics-informed ML approaches to QoT
estimation can allow us to train models with fewer measurements of
the system and enhance model explainability. Additionally, we can
use our knowledge of the physics to design more effective model
architectures. For example, NNs can be designed using the DBP
structure for nonlinear noise mitigation. Certainly, the concept of
utilizing the information available before we have seen the data and
the data itself, rather than discarding this and relying solely on the
data, presents an interesting research direction.

A further promising future research direction is digital
twins—having been shown to be effective in other research areas,
such as healthcare technology, manufacturing, and smart cities,88

there are many open research questions for the development of
digital twins for optical networks. The realization of true digital
twins for optical networks, meaning a high-fidelity virtual copy
of a deployed network, will require the amalgamation of mod-
els of all aspects of optical networks discussed in this Tutorial.
It will also require access to high-quality datasets that are repre-
sentative of deployed networks, as described above. Additionally,
there is an important question regarding how fast digital twins will

operate and whether a truly real-time digital twin is realizable. This
depends on two factors—how dynamic installed networks become
in the future and how operator confidence in ML approaches evolves
over time. As networks become increasingly more dynamic, mean-
ing that light paths are established and torn down with greater fre-
quency, the time required to accurately measure the network may
begin to form a bottleneck for how fast a digital twin can respond to
a change in the network. Moreover, the time taken to retrain mod-
els may also limit this responsivity, meaning that online and transfer
learning will likely be needed to ensure that ML models remain accu-
rate as the network changes and to support rapid modeling of new
light paths. Operator confidence in ML is also crucial as a true digi-
tal twin framework requires automatic control of the network based
on data. As a result, explainability techniques are important for the
development of digital twins as they will increase confidence in the
ML models upon which the digital twins are built.

Furthermore, work is required to reduce the complexity of ML
algorithms, in order for them to be successfully deployed with a
reasonable use of computational resources. For example, in short
reach equalizer applications, lower complexity ML is desirable due
to the requirements for real-time equalization at high symbol rates.
In general, ML techniques will need to have sufficiently low com-
plexity in order to adapt to increasingly dynamic networks. One
solution to this may be online learning, where ML models can be
trained offline before deployment and adapt to monitoring data
once deployed without completely re-training the model. An addi-
tional related challenge is the flexibility of ML algorithms—to what
extent can the deployed models generalize to cover different net-
work scenarios? One potential solution to this issue is transfer
learning, which has been proposed as a method for increasing the
flexibility of NNs for fiber nonlinear noise mitigation by re-using
some of the initial trained network weights to adapt to a new
situation.

An additional future direction is provided by hardware-driven
ML approaches to equalization and nonlinearity compensation
problems in optical networks. Due to the challenging require-
ments to operate at real-time data rates, the use of specialist hard-
ware such as FPGAs is crucial for these applications. Low com-
plexity implementations of ML architectures, such as DNN and
RNN equalizers104,110 and real-time nonlinearity compensation126

discussed in Sec. III, present an interesting future direction for
performing such signal processing tasks in next generation optical
networks.

B. Network layer
As in the physical layer, explainable ML is a promising field of

research within network layer applications. Similarly, reduction in
ML algorithm complexity is also an interesting future direction for
network layer applications, particularly for any methods which are
required to work in an online scenario.

Obtaining sufficiently detailed datasets from deployed net-
works remains a significant challenge for ML research in optical
networks. Such data may often be difficult to find, as network oper-
ators may not be able to grant researchers access to detailed net-
work data without a non-disclosure agreement, due to competition-
related concerns. In the cases where such data are provided,167,168

it could still be insufficiently detailed to be of use. As discussed in
Sec. IV, GANs show potential to address this issue to some extent
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with their ability to generate larger datasets from a small amount of
input data. To this end, GANs have been successful in generating
data that are indistinguishable from real world input data in opti-
cal network traffic generation applications148 and numerous other
applications in the computer vision domain.169

An additional promising research direction in network rout-
ing and parameter optimization is leveraging the ability of GNNs
to learn and model graph-structured information to create mod-
els that are able to generalize over arbitrary network topologies,
routing schemes, and traffic intensity.162,163 Furthermore, the pre-
liminary works applying RL techniques in dynamic parameter opti-
mization have shown strong potential, with faster response time
and similar quality of solutions compared to conventional optimiza-
tion approaches.156 To this end, it would be interesting to investi-
gate the means of bringing the strengths of RL and GNNs together
in a data-driven network routing and parameter optimization
scenario.

Moreover, within traffic prediction and generation, future
work includes extending the proposed methodologies to networks
of different scales, such as core and access networks. Another
potential direction is the introduction of novel methods that have
been used successfully in time series forecasting problems in other
domains, such as echo state networks,170 and combining existing ML
approaches to develop more effective hybrid methods. For example,
hybrid models of GNNs and LSTMs could be investigated as these
harness both the knowledge of the network structure and the tempo-
ral aspects of the traffic, respectively. Finally, integrating traffic pre-
diction and simulation modules with other modules in a SDN setting
will aid in achieving high performance in increasingly dynamic and
flexible networks.

VI. CONCLUSIONS
In this Tutorial, we have outlined the key research challenges in

optical networks that exist today, the ML techniques that have been
proposed to solve these problems, and interesting works from the
literature that have applied ML. We have introduced the crucial con-
cepts required to navigate ML literature and highlighted techniques
that are commonly used in optical networks: various forms of NNs,
Bayesian approaches such as GPs, classifiers such as SVMs, and RL
techniques such as deep Q-learning. In the physical layer, we have
surveyed the literature applying ML to QoT estimation, digital twins,
equalization for short reach networks, and nonlinear noise mitiga-
tion for long-haul systems. In the network layer, we have presented
exemplary work tackling network traffic prediction and generation
and the optimization of core network parameters. Thus, there has
been a significant progress in ML applied to optical networks, with
a vast range of methods utilized, each yielding benefits over previ-
ous approaches. There remain a number of interesting avenues for
future research as discussed above, which will be crucial in deliver-
ing the next generation of optical networks and meeting the service
requirements of the future.
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NOMENCLATURE

ADC analog-to-digital converter
ANN artificial neural network
APD avalanche photodiode
BER bit error rate
BVT bandwidth variable transponder
CBR case-based reasoning
CD chromatic dispersion
CNN convolutional neural network
DBP digital back-propagation
DD direct detection
DDPG deep deterministic policy gradient
DFE decision feedback equalizer
DL deep learning
DML directly modulated laser
DNN deep neural network
DP dual polarization
DQN deep Q-network
DRL deep reinforcement learning
DSP digital signal processing
DT decision tree
ELM extreme learning machine
EML electro-absorption modulator
EON elastic optical network
FFE feed-forward equalizer
FFNN feed-forward neural network
FPGA field programmable gate array
GA genetic algorithm
GAN generative adversarial network
GCN graph convolutional network
GN Gaussian noise
GNN graph neural network
GRU gated recurrent unit
ILP integer linear programming
IM intensity modulation
KNN K-nearest neighbor
LDA linear discriminant analysis
LMA Levenberg–Marquardt algorithm
LSTM long-short term memory
MDP Markov decision process
ML machine learning
MMF multi-mode fiber
NLSE nonlinear Schrödinger equation
NN neural network
OFDM orthogonal frequency-division multiplexing
OOK on–off keying
OSNR optical signal-to-noise ratio
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PAM pulse amplitude modulation
PSD power spectral density
PW Parzen window
QAM quadrature amplitude modulation
QoT quality of transmission
QPSK quadrature phase shift keying
ReLU rectified linear unit
RF random forest
RL reinforcement learning
RNN recurrent neural network
ROADM re-configurable optical add/drop multiplexer
RZ return-to-zero
SCSP single-channel single polarization
SDN software defined network
SMF single-mode fiber
SNR signal-to-noise ratio
SOA semiconductor optical amplifier
SSFTM split-step Fourier transform method
VCSEL vertical cavity surface emitting laser
WDM wavelength division multiplexing
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