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S U M M A R Y

B A C K G R O U N D : It is very difficult to observe tubercu-

losis (TB) transmission chains and thus, identify super-

spreaders. We investigate cough duration as a proxy

measure of transmission to assess the presence of

potential TB superspreaders.

D E S I G N : We analyzed six studies from China, Peru, The

Gambia and Uganda, and determined the distribution of

cough duration and compared it with several theoretical

distributions. To determine factors associated with

cough duration, we used linear regression and boosted

regression trees to examine the predictive power of

patient, clinical and environmental characteristics.

R E S U LT S : We found within-study heterogeneity in

cough duration and strong similarities across studies.

Approximately 20% of patients contributed 50% of

total cough days, and around 50% of patients contrib-

uted 80% of total cough days. The cough duration

distribution suggested an initially increasing, and subse-

quently, decreasing hazard of diagnosis. While some of

the exposure variables showed statistically significant

associations with cough duration, none of them had a

strong effect. Multivariate analyses of different model

types did not produce a model that had good predictive

power.

C O N C L U S I O N : We found consistent evidence for the

presence of supercoughers, but no characteristics pre-

dictive of such individuals.

K E Y W O R D S : cough duration; superspreading; TB

FOR MANY INFECTIOUS DISEASES, the distribu-
tion of secondary infections caused by an infectious
host is heavily skewed and not well characterized by
the average. Most infectious individuals infect none
or few susceptible contacts, whereas a small propor-
tion of individuals infect the majority of secondary
cases. The latter are commonly referred to as super-
spreaders.1–3

In the case of tuberculosis (TB), there is some
evidence for superspreaders.4–8 However, it is diffi-
cult to directly measure the number of secondary
infections for TB due to the long and variable latent
period among contacts and the inability to determine
the strain causing their latent infection. Instead, it
might be possible to reconstruct this quantity through
indirect means. The transmission potential of an
individual can be quantified by an individual‘s
reproductive number, R. R is the product of the rate
at which an infectious person has contact with

susceptible individuals, the per contact probability

that transmission occurs, and the total duration of the

infectious period. Heterogeneity in all of these

components is likely among TB patients.9,10 In the

present study, we focus on the duration of the

infectious period. We used the duration of cough

before treatment (hereafter, referred to as cough

duration) as a proxy for the duration of the infectious

period.11

Previous studies have found that cough duration

can be considerable for TB patients (see e.g., the

reviews of12–17). We aimed to analyze the cough

duration distribution in greater detail. Using data

from six different TB patient populations, we

examined the distribution of cough duration to

determine the extent of heterogeneity among patients

within and between studies and the factors associated

with cough duration.
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METHODS

Study setting, population and data collection

Data from six studies conducted in different popula-
tions, calendar years, and settings were used for this
analysis. The studies spanned a 20-year period from
1995 to 2016. Three of the studies were conducted in
Kampala, Uganda, one in the Banjul region of The
Gambia, one in Lima, Peru, and one in Nanjing, China.

While some of the studies were different in design,
the data used for this analysis were obtained in
essentially the same way in each study. In household
contact studies, we only included index cases
diagnosed in a hospital or clinic and then queried
about their cough duration status. The patients in the
retrospective study designs were also recruited from
hospitals or clinics. The method of patient recruit-
ment is therefore the same. Patients that had been
diagnosed with TB and started on treatment were
enrolled and asked a set of questions, including the
duration of their cough prior to survey administra-
tion. Questions were asked at diagnosis or within 2
weeks of treatment initiation for each study.

All studies used microbiologic evidence for diagno-
sis of TB, either sputum microscopy or mycobacterial
culture, or both. For more details, see 18,19 for the ‘U-
Kawempe’ study,20 for the ‘U-Steps’ study,21 for the
‘The Gambia’ study,22 for the ‘Peru’ study and 23 for
the ‘China’ study. The ‘U-Cohsonet’ study has not been
published yet; the design and data collection on index
cases are identical to the ‘U-Kawempe’ study.

All study participants provided informed consent,
and all studies were approved by their respective
ethics and Institutional Review Board committees.

Data analysis

Data were cleaned and pre-processed as described in
the Supplementary Data. The size of the final data set
for each study used for analysis is shown in Table 1, a
list of all predictors included for the analysis of each
study are shown in Supplementary Table S1. Code-
books and data cleaning R scripts for each data set are

provided as Supplementary Data and contain expla-
nations as comments to the code describing how data
was cleaned and which predictors were removed and
the reasons for doing so.

We used a descriptive analysis to investigate the
distribution of cough duration for each study popula-
tion. To illustrate the heterogeneity of cough duration,
we sorted patients based on cough duration and
plotted the cumulative cough duration for all patients
as a function of the cumulative number of patients.

We investigated the potential underlying generat-
ing process of the observed cough duration by fitting
exponential, gamma, Weibull, and log-logistic distri-
butions to the data. An exponential distribution
corresponds to a constant hazard of receiving
treatment, independent of the time since onset of
cough. A Weibull distribution has an increasing
hazard as cough duration increases. A Gamma
distribution is the sum of exponential distributions
and can represent multiple care-seeking steps before
treatment,20 each with constant hazard. A log-logistic
distribution allows an initially increasing and subse-
quently decreasing hazard of receiving treatment.
Model fit was compared using Akaike’s Information
Criterion.

For the analysis of correlations between outcome
and predictors, we fitted the continuous variable of
cough duration (measured in days) to all predictors
available for a given study. As the studies were
conducted by different teams in different locations, it
is likely that even predictor variables which claim to
measure the same quantity might not be fully
comparable. We therefore did not feel confident that
an analysis of data across studies was justified and
decided not to pursue it. Instead, we analyzed each
study independently. We first performed bivariate
analyses to check for correlations. We then tested the
predictive power of the different variables with two
types of statistical models. First, we built linear
models for each study. A genetic algorithm was used
to perform efficient subset selection of models with

Table 1 Summary description of studies included in analysis

Study name China* Peru The Gambia U-Cohsonet U-Kawempe U-Steps

Country China* Peru The Gambia Uganda Uganda Uganda
Year 2014 2010–2013 2002–2004 2012–2015 1995–2006 2014
Setting Hospital Hospital Clinics Hospital Hospital Clinics
Design Retrospective

cohort
Household

contact
Household

contact
Household

contact
Household

contact
Retrospective

cohort
Diagnostic method Smear or

culture
Smear or

culture
Smear or

culture
Smear or

culture
Smear or

culture
Smear or

culture
Participants, n 178 603 316 68 539 264
Predictor variables, n 13 14 5 23 27 20
Age, years, median

(range)
41.0 (18–85) NA 28.5 (14–86) 28.0 (17–59) 29.0 (0–67) 30.0 (18–70)

Smokers, % 34.3 15.6 34.2 13.2 21.5 12.9
HIV-positive, % NA 5.3 NA 4.4 46.6 31.4
Smear-positive, % NA 90.7 100.0 94.1 97.0 NA

* Cases were confirmed using either culture or smear; however, data on culture or smear outcomes were not recorded.
NA¼ not available; HIV¼ human immunodeficiency virus.
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different combinations of predictors included or
excluded. Performance of each sub-model was
assessed using 10-fold cross validation, 10 times re-
sampled.24 Models were chosen based on minimiza-
tion of the mean squared error (MSE) on the hold-out
set in the cross-validation approach. A model with a
certain number of predictors was considered superior
to another model with different predictors if the mean
across all 100 samples of the MSE on the hold-out set
was smaller. Model performance was reported using
the coefficient of determination (R2). We also fitted
each data set to a boosted regression tree model, a
machine-learning approach that typically provides
strong predictive performance.24 This model was
fitted and tuned using the same approach as for the
linear model. All analyses were performed in R
software (R Computing, Vienna, Austria). The
statistical and machine learning analysis was done
using the mlr package.25 All analysis code is available
in the Supplementary Data.

RESULTS

Summary of studies

The six study populations are summarized in Table 1.
All patients were recruited in the same manner. Once
they presented to either a clinic or hospital and were
confirmed to have TB, they were approached and
recruited to enter the study. The average age was
similar among the African study samples, and approx-
imately 10 years older for the study from China;
however, the reported age range was similar. The
prevalence of smoking varied by study group, with the
highest proportion among patients in The Gambia and
China. Co-infection with human immunodeficiency
virus (HIV) differed across groups, with the highest
prevalence among two study populations in Uganda.

Distribution of cough duration

The distribution of cough duration was skewed for
each of the study populations (Figure 1, Supplemen-

tary Figure S1), with the mean above the median
(Supplementary Table S2). Most patients reported a
cough duration less than the group mean, while a few
patients had a much longer cough duration. This
heterogeneity in cough duration is also seen when the
cumulative amount of cough time is plotted as a
function of the cumulative number of patients, after
patients are sorted by descending order of cough
duration (Figure 2).

For each of the studies, the heterogeneity in cough
duration was such that approximately 20% of
patients contributed 50% of cough time, and 50%
of patients contributed 80% of cough time (indicated
by the dashed lines). Thus, a small number of patients
contributed a large amount to the total cough time.
The median cough duration in the three Ugandan
studies was between 2 and 3 months, while the mean
was close to 4 months. The median in the remaining
three studies was around 1 month and the mean
around 1.5 months. The maximum duration for the
three Uganda studies was 1.5–2 years, while it was
around �1 year for the other three studies.

While there is strong heterogeneity in the duration
of cough within each study, and absolute values differ
between studies, there is a remarkable consistency in
the shape of the cumulative cough time distribution
across studies (Figure 3).

Characterization of cough duration distribution

To gain insights into potential processes leading to the
observed cough duration distribution, we fitted several
theoretical distributions to each data set (Figure 4,
Supplementary Figure S2). For five of the six studies,
the distribution of cough duration is best described by
a log-logistic function with initially increasing hazard,
with a maximum value at around 10–12 weeks for the
Uganda studies and around 4–6 weeks for the other
studies, followed by a declining hazard.

Variables associated with cough duration

We first performed a bivariate analysis of each

Figure 1 Cough time distribution for each study. Distribution of data are indicated by box and
violin plots. Black dots indicate mean of cough duration for each study. The shape for the data
from Peru and the Gambia studies stem from the fact that the data were reported in weeks.
Conversion to days kept this discretisation, with values being multiples of 7.
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predictor with cough duration as the outcome for

each data set. While several predictors showed

statistical significance (P , 0.05), the strength of

the association (as measured by R2) was weak for all

predictors (Supplementary Table S1). Only three

predictors had a value above 0.1. These were the

Karnovsky score in the U-Cohsonet study and the

variables measuring fraction of visits with either

non-TB healthcare providers or social contacts

before final diagnosis in the U-Steps study. Full
results for all predictors are shown in Supplementary
Table S1.

In a next step, we wanted to determine if a
combination of variables might be predictive of
cough duration. To assess this, we chose a cross-
validation approach in which the ability of a model to
predict variation in cough duration is assessed using
independent data not used for model building. The
evaluation of a model on a part of the data not used
for model building provides a more conservative
estimate of the strength of the association and is used
if one wants to make predictive inferences—which
would be valuable from a practical point of view to
plan interventions.

Due to differences between studies, we analyzed
each study independently and used a study-internal
validation process through repeated cross-validation.
For each data set, the performance of the best linear
model (LM) was poor (Table 2). Only the U-Steps
study has a value that is meaningfully larger than
zero, with the R2 value, indicating that the predictor
variables explain below 30% of the variability in
cough duration. The gradient boosted regression tree
model (GBM) showed a similar pattern (Table 2).
This suggests that it is the lack of predictive power of
the variables available in each study, and not an

Figure 2 Cumulative cough time distribution as function of a cumulative number of patients for each of the study. Dotted line
indicates expected distribution if every patient had the same cough duration. Solid line shows data. Dashed vertical and horizontal
lines show the level of 20% patients contributing 50% of cough time and 50% patients contributing 80% cough time.

Figure 3 Percentage of cumulative cough time distribution as
function of the percentage of patients for all studies. Dashed
vertical and horizontal lines show the level of 20% patients
contributing 50% of cough time and 50% patients contributing
80% cough time.
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inherent limitation of the simple linear model, that
failed to produce good predictions. Both for the linear
model and GBM, the U-Steps variable with the most
predictive power used to measure the fraction of visits
a person made to health providers who were not
trained to provide TB care (e.g., herbal healers,
pharmacies). As this information can only be
obtained after a patient has been diagnosed, it could
not be used in a truly predictive manner.

DISCUSSION

Identifying and targeting infectious individuals who
contribute a high proportion to transmission is a
potentially promising and efficient control strategy. It
is difficult to identify chains of TB transmission, and
thus patients who might be responsible for the bulk of

transmission. For this reason, other methods are
necessary to identify whether some individuals
account for more transmission than others. The
duration of infectiousness is likely an important
factor of overall transmission potential.

We analyzed cough duration as a surrogate measure
of infectiousness duration. For all analyzed studies, we
found consistent within-population heterogeneity in
cough duration, with a pattern that could be
summarized as the ‘‘20/50/80’’ rule, with 20% of
patients responsible for 50% of the cumulative cough
time and 50% of individuals contributing 80%. The
shape of the cumulative cough duration distribution
was similar across studies. The theoretical distribution
which best described the observed cough duration was
a log-logistic function with initially increasing hazard,
followed by a declining hazard. This might be because
the majority of the people become increasingly
concerned as their coughing prolongs and seek care
after several weeks of coughing, while a small fraction
of individuals does not get diagnosed and treated for
an extended period of time. However, as most of the
theoretical distributions provided visually similar fits,
the process leading to the observed distribution needs
further investigation.

Cough duration could be affected by a variety of
factors, e.g., comorbidites, smoking status, type of TB
strain, sex. In line with previous studies (see the
reviews of12,13,15–17), we found statistically signifi-

Figure 4 Cumulative cough time distribution and fit of an exponential, Weibull, Gamma and log-logistic distribution. Legend show
AIC for each fit and each data set. Smaller AIC indicates statistically better model. Exp ¼ exponential; AIC ¼ Akaike’s Information
Criterion; Llog¼ log-logistic.

Table 2 Model performance as measured by cross-validated
R2 for best performing LM and GBM for each data set*

Study R2 (LM) R2 (GBM)

China �0.012 �0.014
Peru 0.000 �0.004
The Gambia 0.004 0.000
U-Cohsonet 0.059 �0.015
U-Kawempe 0.027 0.004
U-Steps 0.288 0.265

* Values close to zero indiciate no predictive power of the models. Negative
values indicate over-fitting on the training data.
LM¼ linear model; GBM¼ gradient boosted regression tree model.
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cant correlations between cough duration and several
patient and environmental characteristics. However,
none of the individual predictors had a strong effect
on the outcome. Our analysis of different multivar-
iate models did not find any combination of variables
that performed well at predicting cough duration.
The variable measuring the fraction of care-seeking
steps with providers not trained in TB care from the
U-Steps study had some predictive power. This
quantity can only be determined once a person is
diagnosed and as such is of no use in early
identification.

In all analyzed studies, cough duration is self-
reported, which means bias might be present. Patients
that cough for longer will likely remember the onset of
cough with less precision. However, over- and
underestimation of cough duration seem equally likely.
Survival bias in the data might have been present if the
risk of death increases with the duration of cough,
which would lead to less individuals contributing to
the right tail of the observed distribution.

To equate supercoughers with superspreaders, one
needs to assume that cough is a good indicator of
infectiousness. While transmission without cough is
likely possible,26 increased coughing27 and delay in
receiving treatment for TB has been found to lead to
increased transmission.28 Cough of patients with
pulmonary TB contain Mycobacterium tuberculo-
sis,29 and smear-positive cases are more likely to
infect their contacts than smear-negative cases.30,31

Estimates for the duration of infectiousness are often
many months or even years,32,33 which matches the
long cough duration we found in some individuals. If
the supercoughers we identified are indeed super-
spreaders, the ability to identify them would be very
valuable. However, none of the many measured host
or environmental variables were able to predict
individuals with longer cough duration.
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R É S U M É

C A D R E : En matière de tuberculose (TB), il est très

difficile d’observer les chaı̂nes de transmission et donc

d’identifier les super contaminateurs. Nous examinons

la durée de la toux comme mesure indirecte de

transmission afin d’évaluer la présence de super

contaminateurs potentiels.

S C H É M A : Nous avons analysé six études de Chine, du

Pérou, de Gambie et d’Ouganda et déterminé la

distribution de la durée de la toux et l’avons comparée

à plusieurs distributions théoriques. Pour déterminer les

facteurs associés à la durée de la toux, nous avons utilisé

une régression linéaire et des régressions arborescentes

renforcées afin d’étudier le pouvoir prédictif des

caractéristiques du patient, de la clinique et de

l’environnement.

R É S U LTAT S : Nous avons trouvé une hétérogénéité

intra étude, en termes de durée de la toux, et de fortes

similitudes entre études. Environ 20% des patients ont

contribué à 50% du total des jours de toux et autour de

50% des patients ont contribué à 80% du nombre total

de jours de toux. La distribution de la durée de la toux

a suggéré une chance de diagnostic initialement

croissante puis croissante. Si certaines variables

d’exposition ont mis en évidence des associations

statistiquement significatives avec la durée de la toux,

aucune d’elles n’a eu un effet puissant. Les analyses

multivariates de différents types de modèle n’ont pas

produit un modèle qui ait un bon pouvoir de

prédiction.

C O N C L U S I O N : Nous avons trouvé des preuves

cohérentes de la présence de super tousseurs, mais

aucune caractéristique prédictive de ces individus.

R E S U M E N

M A R C O D E R E F E R E N C I A: En el caso de la tuberculosis

(TB) es muy difı́cil la observación de las cadenas de

transmisión y con ello se complica el reconocimiento de

los casos superdiseminadores. Se investigó la duración

de la tos como una medida indirecta de transmisión, con

el fin de evaluar la eventual presencia de casos de TB

superdiseminadores.

M É T O D O: En seis estudios de China, Perú, Gambia y

Uganda se determinó la distribución de la duración de la

tos y se comparó con varias distribuciones teóricas. Con

el propósito de determinar los factores asociados con la

duración de la tos, se utilizó una regresión lineal y

árboles de regresión potenciados que examinaban la

capacidad pronóstica de las caracterı́sticas del paciente,

del cuadro clı́nico y del medio ambiente.

R E S U LTA D O S: Se observó heterogeneidad intraestudios

y similitudes considerables entre los diferentes estudios

con respecto a la duración de la tos. Cerca de 20% de los

pacientes aportaban 50% del total de dı́as de tos y

alrededor de 50% de los pacientes representaban 80%

del total de dı́as de tos. La distribución de la duración de

la tos indicó una posibilidad de diagnóstico que

aumentaba inicialmente con el tiempo y luego

disminuı́a. Aunque algunas de las variables de

exposición se asociaron con la duración de la tos de

manera estadı́sticamente significativa, ninguna ejerció

un efecto fuerte. Los análisis multivariantes de diferentes

tipos de modelos no generaron ningún modelo con una

potencia pronóstica adecuada.

C O N C L U S I Ó N: Se encontró evidencia constante en

favor de la presencia de casos de TB

superdiseminadores, pero no se reconoció ninguna

caracterı́stica que permita pronosticar cuáles son estas

personas.

TB supercoughers i


	t01
	t02

