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On the Convergence of Stochastic Gradient Descent for Linear Inverse Problems
in Banach Spaces*
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Abstract. In this work we consider stochastic gradient descent (SGD) for solving linear inverse problems in
Banach spaces. SGD and its variants have been established as one of the most successful optimization
methods in machine learning, imaging, and signal processing, to name a few. At each iteration
SGD uses a single datum, or a small subset of data, resulting in highly scalable methods that are
very attractive for large-scale inverse problems. Nonetheless, the theoretical analysis of SGD-based
approaches for inverse problems has thus far been largely limited to Euclidean and Hilbert spaces.
In this work we present a novel convergence analysis of SGD for linear inverse problems in general
Banach spaces: we show the almost sure convergence of the iterates to the minimum norm solution
and establish the regularizing property for suitable a priori stopping criteria. Numerical results are
also presented to illustrate features of the approach.
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1. Introduction. This work considers (stochastic) iterative solutions for linear operator
equations of the form

\bfA x= y,(1.1)

where \bfA : \scrX \rightarrow \scrY is a bounded linear operator between Banach spaces \scrX and \scrY (equipped
with the norms \| \cdot \| \scrX and \| \cdot \| \scrY , respectively), and y\in range(\bfA ) is the exact data. In practice,
we only have access to noisy data y\delta = y+ \bfitxi , where \bfitxi denotes the measurement noise with
a noise level \delta \geq 0 such that \| y\delta  - y\| \scrY \leq \delta . Linear inverse problems arise naturally in many
applications in science and engineering, and also form the basis for studying nonlinear inverse
problems. Hence, design and analysis of stable reconstruction methods for linear inverse
problems have received much attention.

Iterative regularization is a powerful algorithmic paradigm that has been successfully em-
ployed for many inverse problems [14, Chapters 6 and 7], [30]. Classical iterative methods for
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672 BANGTI JIN AND \v ZELJKO KERETA

inverse problems include the (accelerated) Landweber method, conjugate gradient method,
Levenberg--Marquardt method, and Gauss--Newton method, to name a few. The per-iteration
computational bottleneck of many iterative methods lies in utilizing all the data at each
iteration, which can be of a prohibitively large size. For example, this occurs while com-
puting the derivative of an objective. One promising strategy to overcome this challenge is
stochastic gradient descent (SGD), due to Robbins and Monro [40]. SGD decomposes the
original problem into (finitely many) subproblems, and then at each iteration uses only a
single datum, or a minibatch of data, typically selected uniformly at random. This greatly
reduces the per iteration computational complexity and enjoys excellent scalability with re-
spect to data size. In the standard, and best-studied, setting, \scrX and \scrY are finite-dimensional
Euclidean spaces and the corresponding data fitting objective is the (rescaled) least squares
\Psi (x) = 1

2N \| \bfA x - y\| 2\scrY = 1
N

\sum N
i=1

1
2\| \bfA ix - yi\| 2\scrY . In this setting SGD takes the form

xk+1 = xk  - \mu k+1\bfA 
\ast 
ik+1

(\bfA ik+1
xk  - yik+1

), k= 0,1, . . . ,

where \mu k > is the step-size, ik+1 is a randomly selected index, \bfA i is the ith row of a matrix
\bfA , and yi is the ith entry of y. In the seminal work [40], Robbins and Monro presented SGD
as a Markov chain, laying the groundwork for the field of stochastic approximation [32]. SGD
has since had a major impact on statistical inference and machine learning, especially for the
training of neural networks. SGD has been extensively studied in the Euclidean setting; see
[2] for an overview of the convergence theory from the viewpoint of optimization.

SGD has also been a popular method for image reconstruction, especially in medical
imaging. For example, the (randomized) Kaczmarz method is a reweighted version of SGD
that has been extensively used in computed tomography [18, 37]. Other applications of SGD
and its variants include optical tomography [6], phonon transmission coefficient recovery [15],
positron emission tomography [31], as well as general sparse recovery [42, 43]. For linear
inverse problems in Euclidean spaces, Jin and Lu [24] gave a first proof of convergence of SGD
iterates towards the minimum norm solution, and analyzed the regularizing behavior in the
presence of noise; see [22, 25, 26, 34, 39] for further convergence results, a posteriori stopping
rules (discrepancy principle), nonlinear problems, general step-size schedules, etc.

Iterative methods in Euclidean and Hilbert spaces are effective for reconstructing smooth
solutions but fail to capture special features of the solutions, such as sparsity and piecewise
constancy. In practice, many imaging inverse problems are more adequately described in
non-Hilbert settings, including sequence spaces \ell p(\BbbR ) and Lebesgue spaces \scrL p(\Omega ), with p \in 
[1,\infty ]\setminus \{ 2\} , which requires changing either the solution, the data space, or both. For example,
inverse problems with impulse noise are better modeled by setting the data space \scrY to a
Lebesgue space \scrL p(\Omega ) with p \approx 1 [11], whereas the recovery of sparse solutions is modeled
by doing the same to the solution space \scrX [4]. Thus, it is of great importance to develop
and analyze algorithms for inverse problems in Banach spaces, and this has received much
attention [41, 46]. For the Landweber method for linear inverse problems in Banach spaces,
Sch\"opfer, Louis, and Schuster [44] were the first to prove strong convergence of the iterates
under a suitable step-size schedule for a smooth and uniformly convex Banach space \scrX and an
arbitrary Banach space \scrY . This has since been extended and refined in various aspects, e.g.,
regarding acceleration [45, 49, 17, 51], nonlinear forward models [12, 35], and Gauss--Newton
methods [29].
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ON SGD FOR BANACH SPACE LINEAR INVERSE PROBLEMS 673

In this work, we investigate SGD for inverse problems in Banach spaces, which has thus
far lagged behind due to outstanding challenges in extending the analysis of standard Hilbert
space approaches to the Banach space setting. The main challenges in analyzing SGD-like
gradient-based methods in Banach spaces are twofold:

1. The use of duality maps results in nonlinear update rules, which greatly complicates
the convergence analysis. For example, the (expected) difference between successive
updates can no longer be identified as the (sub)gradient of the objective.

2. Due to geometric characteristics of Banach spaces, it is more common to use the
Bregman distance for the convergence analysis, which results in the loss of useful alge-
braic tools, e.g., triangle inequality and bias-variance decomposition, that are typically
needed for the analysis.

In this work, we develop an SGD approach for the numerical solution of linear inverse
problems in Banach spaces, using the subgradient approach based on duality maps, and present
a novel convergence analysis. We first consider the case of exact data and show that SGD
iterates converge to a minimizing solution (first almost surely and then in expectation) under
standard assumptions on summability of step-sizes, and geometric properties of the space
\scrX ; cf. Theorems 3.8 and 3.10. This solution is identified as the minimum norm solution
if the initial guess x0 satisfies the range condition \scrJ \scrX 

p (x0) \in range(\bfA \ast ). Further, we give
a convergence rate in Theorem 3.14 when the forward operator \bfA satisfies a conditional
stability estimate. In the case of noisy observations, we show the regularizing property of
SGD for properly chosen stopping indices; cf. Theorem 4.3. The analysis rests on a descent
property in Lemma 3.6 and the Robbins--Siegmund theorem for almost supermartingales. In
addition, we perform extensive numerical experiments on a model inverse problem (linear
integral equation) and computed tomography (with parallel beam geometry) to illustrate
distinct features of the proposed Banach space SGD, and we examine the influence of various
factors, such as the choice of the spaces \scrX and \scrY , minibatch size, and noise characteristics
(Gaussian or impulse).

When finalizing the paper, we became aware of the independent and simultaneous work
[27] on a stochastic mirror descent method for linear inverse problems between a Banach
space \scrX and a Hilbert space \scrY . The method is a randomized version of the well-known
Landweber--Kaczmarz method. The authors prove convergence results under a priori stopping
rules, and also establish an order-optimal convergence rate when the exact solution x\dagger satisfies
a benchmark source condition, by interpreting the method as a randomized block gradient
method applied to the dual problem. Thus, the current work differs significantly from [27] in
terms of problem setting, main results, and analysis techniques.

The rest of the paper is organized as follows. In section 2, we recall background materials
on the geometry of Banach spaces, e.g., duality maps and Bregman distance. In section 3, we
present the convergence of SGD for exact data, and in section 4, we discuss the regularizing
property of SGD for noisy observations. Finally, in section 5, we provide some experimental
results on a model inverse problem and computed tomography. In the appendix we collect
several useful inequalities and auxiliary estimates.

Throughout, let \scrX and \scrY be two real Banach spaces, with their norms denoted by \| \cdot \| \scrX 
and \| \cdot \| \scrY , respectively. \scrX \ast and \scrY \ast are their respective dual spaces, with their norms denoted
by \| \cdot \| \scrX \ast and \| \cdot \| \scrY \ast , respectively. For x\in \scrX and x\ast \in \scrX \ast , we denote the corresponding duality
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674 BANGTI JIN AND \v ZELJKO KERETA

pairing by \langle x\ast ,x\rangle = \langle x\ast ,x\rangle \scrX \ast \times \scrX = x\ast (x). For a continuous linear operator \bfA : \scrX \rightarrow \scrY , we use
\| \bfA \| \scrX \rightarrow \scrY to denote the operator norm (often with the subscript omitted). The adjoint of \bfA is
denoted by \bfA \ast :\scrY \ast \rightarrow \scrX \ast , and it is a continuous linear operator, with \| \bfA \| \scrX \rightarrow \scrY = \| \bfA \ast \| \scrY \ast \rightarrow \scrX \ast .
The conjugate exponent of p \in (1,\infty ) is denoted by p\ast , such that 1/p+ 1/p\ast = 1 holds. The
Cauchy--Schwarz inequality of the following form holds for any x\in \scrX and x\ast \in \scrX \ast :

(1.2) | \langle x\ast ,x\rangle | \leq \| x\ast \| \scrX \ast \| x\| \scrX .
For reals a, b we write a\wedge b=min\{ a, b\} and a\vee b=max\{ a, b\} . By (\scrF k)k\in \BbbN , we denote the natu-
ral filtration, i.e., a growing sequence of \sigma -algebras such that \scrF k \subset \scrF k+1 \subset \scrF for all k \in \BbbN and
a \sigma -algebra \scrF , and \scrF k. In the context of SGD, k \in \BbbN is the iteration number and \scrF k denotes
the iteration history generated by random indices ij for j \leq k, that is, it denotes information
available at time k. For a given initialization x0, we can identify \scrF k = \sigma (x1, . . . ,xk). For a
filtration (\scrF k)k\in \BbbN we denote by \BbbE k[\cdot ] =\BbbE [\cdot | x1, . . . ,xk] the conditional expectation with respect
to \scrF k. A sequence of random variables (xk)k\in \BbbN (adapted to the filtration (\scrF k)k\in \BbbN ) is a called
supermartingale if \BbbE k[xk+1]\leq xk. Throughout, the notation a.s. denotes almost sure events.

2. Preliminaries on Banach spaces. In this section we recall relevant concepts from
Banach space theory and the geometry of Banach spaces.

2.1. Duality map. In a Hilbert space \scrH , for every x \in \scrH , there exists a unique x\ast \in \scrH \ast 

such that \langle x\ast ,x\rangle = \| x\| \scrH \| x\ast \| \scrH \ast and \| x\ast \| \scrH \ast = \| x\| \scrH by the Riesz representation theorem. For
Banach spaces, however, such an x\ast is not necessarily unique, motivating the notion of duality
maps.

Definition 2.1 (duality map). For any p > 1, a duality map \scrJ \scrX 
p :\scrX \rightarrow 2\scrX 

\ast 
is the subdiffer-

ential of the (convex) functional 1
p\| x\| 

p
\scrX ,

\scrJ \scrX 
p (x) =

\Bigl\{ 
x\ast \in \scrX \ast : \langle x\ast ,x\rangle = \| x\| \scrX \| x\ast \| \scrX \ast ,and \| x\| p - 1

\scrX = \| x\ast \| \scrX \ast 

\Bigr\} 
,(2.1)

with gauge function t \mapsto \rightarrow tp - 1. A single-valued selection of \scrJ \scrX 
p is denoted by \jmath \scrX p .

In practice, the choice of the power parameter p depends on geometric properties of the
space \scrX . For single-valued duality maps, we use \scrJ \scrX 

p and \jmath \scrX p interchangeably. Next we recall
standard notions of smoothness and convexity of Banach spaces. For an overview of Banach
space geometry, we refer the interested reader to the monographs [9, 10, 46].

Definition 2.2. Let \scrX be a Banach space. \scrX is said to be reflexive if the canonical map
x \mapsto \rightarrow \widehat x between \scrX and the bidual \scrX \ast \ast , defined by \widehat x(x\ast ) = x\ast (x), is surjective. \scrX is smooth if
for every 0 \not = x \in \scrX there is a unique x\ast \in \scrX \ast such that \langle x\ast ,x\rangle = \| x\| \scrX and \| x\ast \| \scrX \ast = 1. The
function \delta \scrX : (0,2]\rightarrow \BbbR , defined as

\delta \scrX (\tau ) = inf
\Bigl\{ 
1 - 1

2\| z+w\| \scrX : \| z\| \scrX = \| w\| \scrX = 1,\| z - w\| \scrX \geq \tau 
\Bigr\} 
,

is the modulus of convexity of \scrX . A space \scrX is said to be uniformly convex if \delta \scrX (\tau )> 0 for
all \tau \in (0,2], and p-convex, for p > 1, if \delta \scrX (\tau )\geq Kp\tau 

p for some Kp > 0 and all \tau \in (0,2]. The
function \rho \scrX : [0,\infty )\rightarrow [0,\infty ), defined as

\rho \scrX (\tau ) = sup
\Bigl\{ \| z+ \tau w\| \scrX + \| z - \tau w\| \scrX 

2
 - 1 : \| z\| \scrX = \| w\| \scrX = 1

\Bigr\} 
,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ON SGD FOR BANACH SPACE LINEAR INVERSE PROBLEMS 675

is the modulus of smoothness of \scrX , and is a convex and continuous function such that \rho \scrX (\tau )
\tau is

a nondecreasing function with \rho \scrX (\tau )\leq \tau . \scrX is said to be uniformly smooth if lim\tau \searrow 0
\rho \scrX (\tau )

\tau = 0,
and p-smooth, for p > 1, if \rho \scrX (\tau )\leq Kp\tau 

p for some Kp > 0 and all \tau \in (0,\infty ).

The following relationships between Banach spaces and duality maps will be used extensively.

Theorem 2.3 ([46, Theorems 2.52 and 2.53 and Lemma 5.16]).

(i) For every x\in \scrX , the set \scrJ \scrX 
p (x) is nonempty, convex, and weakly- \star closed in \scrX \ast .

(ii) \scrX is p-smooth if and only if \scrX \ast is p\ast -convex. \scrX is p-convex if and only if \scrX \ast is
p\ast -smooth.

(iii) \scrX is smooth if and only if \scrJ \scrX 
p is single valued. If \scrX is convex of power type and

smooth, then \scrJ \scrX 
p is invertible and (\scrJ \scrX 

p ) - 1 = \scrJ \scrX \ast 

p\ast . If \scrX is uniformly smooth and

uniformly convex, then \scrJ \scrX 
p and \scrJ \scrX \ast 

p\ast are both uniformly continuous.

(iv) Let \scrX be a uniformly smooth Banach space with duality map \scrJ \scrX 
p with p \geq 2. Then,

for all x,\widetilde x\in \scrX , there holds

\| \scrJ \scrX 
p (x) - \scrJ \scrX 

p (\widetilde x)\| p\ast 

\scrX \ast \leq Cmax\{ 1,\| x\| \scrX ,\| \widetilde x\| \scrX \} p \rho \scrX (\| x - \widetilde x\| \scrX )p\ast 
,

where \rho \scrX (\tau ) = \rho \scrX (\tau )/\tau is a modulus of smoothness function such that \rho (\tau )\leq 1.

Next we list some common Banach spaces, the corresponding duality maps, and convexity
and smoothness properties.

Example 2.4.

(i) A Hilbert space \scrX is 2-smooth and 2-convex, and \scrJ \scrX 
2 is the identity.

(ii) If \scrX is smooth, then \scrJ \scrX 
p is the Gateaux derivative of the functional x \mapsto \rightarrow 1

p\| x\| 
p
\scrX .

(iii) If \scrX = \ell r(\BbbR ) with 1< r <\infty , then \scrJ \scrX 
p is single-valued, and the duality map is given

by \scrJ \scrX 
p (x) = \| x\| p - r

r | x| r - 1sign(x). Moreover, \scrJ \scrX 
p =\nabla (1p\| \cdot \| 

p
\scrX ) since \scrX is smooth.

(iv) Lebesgue spaces \scrL p(\Omega ), Sobolev spaces W s,p(\Omega ), with s > 0 (for an open bounded
domain \Omega ), and sequence spaces \ell p(\BbbR ) are p\wedge 2-smooth and p\vee 2-convex for 1< p<\infty .
For p\in \{ 1,\infty \} , they are neither smooth nor strictly convex.

2.2. Bregman distance. Due to the geometry of Banach spaces, it is often more con-
venient to use the Bregman distance than the standard Banach space norm \| \cdot \| \scrX in the
convergence analysis.

Definition 2.5 (Bregman distance). For a smooth Banach space \scrX , the functional

\bfB p(z,w) =
1

p\ast 
\| z\| p\scrX +

1

p
\| w\| p\scrX  - 

\bigl\langle 
\scrJ \scrX 
p (z),w

\bigr\rangle 
is called the Bregman distance, where 1/p+ 1/p\ast = 1.

Note that the dependence of the Bregman distance \bfB p(z,w) on the space \scrX is omitted,
which is often clear from the context. The Bregman distance does not satisfy the triangle
inequality and is generally non-symmetric. Thus, it is not a norm. The next theorem lists
useful properties of the Bregman distance which show the relationship between the geometry
of the underlying Banach space and duality maps.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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676 BANGTI JIN AND \v ZELJKO KERETA

Theorem 2.6 ([46, Theorem 2.60, Lemmas 2.62 and 2.63]). The following properties hold:

(i) If \scrX is smooth and reflexive, then \bfB p(z,w) =\bfB p\ast (\scrJ \scrX 
p (w),\scrJ \scrX 

p (z)).
(ii) Bregman distance satisfies the three-point identity

\bfB p(z,w) =\bfB p(z,v) +\bfB p(v,w) +
\bigl\langle 
\scrJ \scrX 
p (v) - \scrJ \scrX 

p (z),w - v
\bigr\rangle 
.(2.2)

(iii) If \scrX is p-convex, then it is reflexive, p\geq 2, and there exists Cp > 0 such that

\bfB p(z,w)\geq p - 1Cp\| w - z\| p\scrX .(2.3)

(iv) If \scrX \ast is p\ast -smooth, then it is reflexive, p\ast \leq 2, and there exists Gp\ast > 0 such that

\bfB p\ast (z\ast ,w\ast )\leq (p\ast ) - 1Gp\ast \| w\ast  - z\ast \| p
\ast 

\scrX \ast .(2.4)

(v) \bfB p(z,w)\geq 0, and if \scrX is uniformly convex, we have \bfB p(z,w) = 0 if and only if z=w.
(vi) \bfB p(z,w) is continuous in the second argument. If \scrX is smooth and uniformly con-

vex, then \scrJ \scrX 
p is continuous on bounded subsets and \bfB p(z,w) is continuous in its first

argument.

3. Convergence analysis for exact data. Now we develop an SGD-type approach for
problem (1.1) and analyze its convergence. Throughout, we make the following assumption
on the Banach spaces \scrX and \scrY , unless indicated otherwise.

Assumption 3.1. The Banach space \scrX is p-convex and smooth, and \scrY is arbitrary.

To recover the solution x\dagger , we minimize a least-squares-type objective
argminx\in \scrX 

1
p\| \bfA x - y\| p\scrY for some p > 1. By \scrX \mathrm{m}\mathrm{i}\mathrm{n}, we denote the (nonempty) set of

minimizers over \scrX . Among the elements of \scrX \mathrm{m}\mathrm{i}\mathrm{n}, the regularization theory focuses on the
so-called minimum norm solution.

Definition 3.2. An element x\dagger \in \scrX is called a minimum norm solution (MNS) of (1.1) if

\bfA x\dagger = y and \| x\dagger \| \scrX = inf\{ \| x\| \scrX : x\in \scrX , \bfA x= y\} .

The MNS x\dagger is not unique for general Banach spaces. The following lemma states sufficient
geometric assumptions on \scrX for uniqueness.

Lemma 3.3 ([46, Lemma 3.3]). Let Assumption 3.1 hold. Then there exists a unique MNS
x\dagger . Furthermore, \scrJ \scrX 

p (x\dagger ) \in range(\bfA \ast ) for 1 < p < \infty . If some \widehat x \in \scrX satisfies \scrJ \scrX 
p (\widehat x) \in 

range(\bfA \ast ) and \widehat x - x\dagger \in null(\bfA ), then \widehat x= x\dagger .

By Lemma 3.3, the MNS x\dagger is unique modulo the null space of\bfA , under certain smoothness
and convexity assumptions on \scrX . These conditions exclude, for example, Lebesgue space
\scrL 1(\Omega ) and and sequence space \ell 1(\BbbR ); cf. Example 2.4(iv). The standard Landweber method
[33, 44] constructs an approximation to the MNS x\dagger by running the iterations

xk+1 =\scrJ \scrX \ast 

p\ast 

\bigl( 
\scrJ \scrX 
p (xk) - \mu k+1\bfA 

\ast \jmath \scrY p (\bfA xk  - y)
\bigr) 
, k= 0,1, . . . ,(3.1)

where \mu k+1 > 0 is the step-size. Asplund's theorem [46, Theorem 2.28] allows for charac-
terizing the duality map as the subdifferential, \scrJ \scrX 

p = \partial (1p\| \cdot \| 
p
\scrX ) for p > 1. This identifies

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ON SGD FOR BANACH SPACE LINEAR INVERSE PROBLEMS 677

the descent direction \bfA \ast \jmath \scrY p (\bfA xk  - y) as the subgradient of the objective: \bfA \ast \jmath \scrY p (\bfA xk  - y) =
\partial (1p\| \bfA \cdot  - y\| \scrY )(xk). Note that \scrJ \scrX 

p is single-valued by Assumption 3.1 and Theorem 2.3,

though \scrJ \scrY 
p is not. For well-selected step-sizes, Landweber iterations (3.1) converge to an

MNS of (1.1) [44, Theorem 3.3].
The evaluation of the subgradient \bfA \ast \jmath \scrY p (\bfA xk  - y) represents the main per-iteration cost

of the iteration (3.1). In this work, we consider the following Kaczmarz-type setting:

\bfA =

\left(   \bfA 1

...
\bfA N

\right)   and \bfA x=

\left(   \bfA 1x
...

\bfA Nx

\right)   =

\left(   y1
...
yN

\right)   ,(3.2)

where \bfA i : \scrX \rightarrow \scrY i, yi \in \scrY i, for i \in [N ] = \{ 1, . . . ,N\} . Problem (3.2) is defined on the direct
product (\otimes N

i=1\scrY i, \ell 
r), equipped with the \ell r-norm, for r\geq 1,

\| y\| \scrY := \| (y1, . . . ,yN )\| \scrY = \| (\| y1\| \scrY 1
, . . . ,\| yN\| \scrY N

)\| \ell r =
\Bigl( N\sum 

i=1

\| yi\| r\scrY i

\Bigr) 1/r
.(3.3)

Below we identify \scrY i =\scrY for notational brevity and use \| \cdot \| \scrY to denote both the norm of the
direct product space and the component spaces, though all the relevant proofs and concepts
easily extend to the general case. Then the objective \Psi (x) is given by

\Psi (x) =
1

N

N\sum 
i=1

\Psi i(x), with \Psi i(x) =
1

p
\| \bfA ix - yi\| 

p
\scrY .

Note that for many common imaging problems we use \scrY = \ell p(\BbbR ), which then naturally gives
\Psi (x) = 1

pN \| \bfA x - y\| p\scrY . To reduce the computational cost per iteration, we exploit the finite-
sum structure of the objective \Psi (x) and adopt SGD iterations of the form

xk+1 =\scrJ \scrX \ast 

p\ast 

\bigl( 
\scrJ \scrX 
p (xk) - \mu k+1gk+1

\bigr) 
,(3.4)

where gk+1 = g(xk,y, ik+1) is the stochastic update direction given by

g(x,y, i) =\bfA \ast 
i \jmath 

\scrY 
p (\bfA ix - yi) = \partial 

\Bigl( 
1
p\| \bfA i \cdot  - yi\| 

p
\scrY 

\Bigr) 
(x),(3.5)

and the random index ik is sampled uniformly over the index set [N ], independent of xk.
Clearly, it is an unbiased estimator of the subgradient \partial \Psi (x), i.e., \BbbE [g(x,y, i)] = \partial \Psi (x), and
the per-iteration cost is reduced by a factor of N .

Remark 3.4. In the model (3.2), if \scrY admits a complemented sum \scrY =
\sum N

i=1\scrY i, we can take
the (internal ) direct sum (\oplus N

i=1\scrY i, \ell 
r), so that y= y1 + \cdot \cdot \cdot + yN and the corresponding norm

\| y\| = \| (\| Proj\scrY 1
(y)\| \scrY 1

, . . . ,\| Proj\scrY N
(y)\| \scrY N

)\| r. With this identification the spaces (\otimes N
i=1\scrY i, \ell 

r)
and (\oplus N

i=1\scrY i, \ell 
r) are isometrically isomorphic [48] and the norms are equivalent for all r\geq 1.

We now collect some useful properties about the objective \Psi and the Bregman divergence.
Throughout, L\mathrm{m}\mathrm{a}\mathrm{x} =maxi\in [N ] \| \bfA i\| . Note that cN = 1/N if \scrY =\scrL p(\Omega ) or \ell p(\BbbR ).
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678 BANGTI JIN AND \v ZELJKO KERETA

Lemma 3.5. For all i\in [N ], x\in \scrX , and any \widehat x\in \scrX \mathrm{m}\mathrm{i}\mathrm{n} (such that \bfA \widehat x= y), we have

\langle \partial \Psi i(x),x - \widehat x\rangle = p\Psi i(x) and \langle \partial \Psi (x),x - \widehat x\rangle = p\Psi (x).(3.6)

Moreover, \Psi i(x)\leq \| \bfA i\| p

Cp
\bfB p(x,\widehat x), \Psi (x)\leq Lp

\mathrm{m}\mathrm{a}\mathrm{x}

Cp
\bfB p(x,\widehat x), and for some CN > 0 we have \Psi (x)\geq 

CN

p \| \bfA x - y\| p\scrY .
Proof. It follows from the identity \bfA \widehat x= y that

\langle \partial \Psi i(x),x - \widehat x\rangle = \bigl\langle \bfA \ast 
i \jmath 

\scrY 
p (\bfA ix - yi),x - \widehat x\bigr\rangle = \bigl\langle \jmath \scrY p (\bfA ix - yi),\bfA ix - yi

\bigr\rangle 
= p\Psi i(x).

Since \partial \Psi (x) = 1
N

\sum N
i=1 \partial \Psi i(x), the second identity in (3.6) follows from the linearity of the

dual product. By the p-convexity of the space \scrX and Theorem 2.6(iii), we get

\Psi i(x) =
1

p
\| \bfA ix - yi\| 

p
\scrY =

1

p
\| \bfA i(x - \widehat x)\| p\scrY \leq \| \bfA i\| p

p
\| x - \widehat x\| p\scrX \leq \| \bfA i\| p

Cp
\bfB p(x,\widehat x).

The second claim follows since \Psi (x) = 1
N

\sum N
i=1\Psi i(x). Lastly, by the norm equivalence (3.3)

for 1< r <\infty , there exists CN > 0 such that

\Psi (x) =
1

N

N\sum 
i=1

1

p
\| \bfA ix - yi\| 

p
\scrY \geq CN

p
\| \bfA x - y\| p\scrY .

We now focus on the convergence study of the iterations (3.4), without and with noise in
the data, and discuss convergence rates under conditional stability.

3.1. Convergence for the Kaczmarz model. Below, the notation \BbbE [\cdot ] denotes taking ex-
pectation with respect to the sampling of the random indices ik, and \BbbE k[\cdot ] denotes taking
conditional expectation with respect to \scrF k. The remaining variables, e.g., x and y, are mea-
surable with respect to the underlying probability measure. To study the convergence of SGD
(3.4), we first establish a descent property in terms of the Bregman distance.

Lemma 3.6. Let Assumption 3.1 hold. For any \widehat x\in \scrX , the iterates in (3.4) satisfy

\bfB p(xk+1,\widehat x)\leq \bfB p(xk,\widehat x) - \mu k+1

\bigl\langle 
gk+1,xk  - \widehat x\bigr\rangle + Gp\ast 

p\ast 
\mu p\ast 

k+1\| gk+1\| 
p\ast 

\scrX \ast .(3.7)

Proof. Let \Delta k :=\bfB p(xk,\widehat x). By Definition 2.5 and expression (3.4), we have

\Delta k+1 =
1

p
\| \widehat x\| p\scrX +

1

p\ast 
\| xk+1\| p\scrX  - 

\bigl\langle 
\scrJ \scrX 
p (xk+1),\widehat x\bigr\rangle 

=
1

p
\| \widehat x\| p\scrX +

1

p\ast 
\| \scrJ \scrX \ast 

p\ast 

\bigl( 
\scrJ \scrX 
p (xk) - \mu k+1gk+1

\bigr) 
\| p\scrX  - 

\bigl\langle 
\scrJ \scrX 
p (xk+1),\widehat x\bigr\rangle .

Using Definition 2.1, the identity p(p\ast  - 1) = p\ast , and Theorem 2.3(iii), we deduce

\Delta k+1 =
1

p
\| \widehat x\| p\scrX +

1

p\ast 
\| \scrJ \scrX 

p (xk) - \mu k+1gk+1\| 
p(p\ast  - 1)
\scrX \ast  - 

\bigl\langle 
\scrJ \scrX 
p (xk) - \mu k+1gk+1,\widehat x\bigr\rangle 

=
1

p
\| \widehat x\| p\scrX +

1

p\ast 
\| \scrJ \scrX 

p (xk) - \mu k+1gk+1\| 
p\ast 

\scrX \ast  - 
\bigl\langle 
\scrJ \scrX 
p (xk) - \mu k+1gk+1,\widehat x\bigr\rangle .
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ON SGD FOR BANACH SPACE LINEAR INVERSE PROBLEMS 679

Since \scrX is p-convex, \scrX \ast is p\ast -smooth; cf. Theorem 2.3(i). By [9, Corollary 5.8], this implies

1

p\ast 
\| x\ast  - \~x\ast \| p

\ast 

\scrX \ast \leq 
1

p\ast 
\| x\ast \| p

\ast 

\scrX \ast +
Gp\ast 

p\ast 
\| \~x\ast \| p

\ast 

\scrX \ast  - 
\bigl\langle 
\scrJ \scrX \ast 

p\ast (x\ast ),\~x\ast 
\bigr\rangle 

\forall x\ast ,\~x\ast \in \scrX \ast .

Using identities p\ast (p - 1) = p and (\scrJ \scrX 
p ) - 1 =\scrJ \scrX \ast 

p\ast (cf. Theorem 2.3(iii)), we get

1

p\ast 
\| \scrJ \scrX 

p (xk) - \mu k+1gk+1\| 
p\ast 

\scrX \ast \leq 
1

p\ast 
\| \scrJ \scrX 

p (xk)\| p
\ast 

\scrX \ast +
Gp\ast 

p\ast 
\| \mu k+1gk+1\| 

p\ast 

\scrX \ast  - 
\bigl\langle 
\mu k+1gk+1,xk

\bigr\rangle 
=

1

p\ast 
\| xk\| p\scrX +

Gp\ast 

p\ast 
\mu p\ast 

k+1\| gk+1\| 
p\ast 

\scrX \ast  - \mu k+1

\bigl\langle 
gk+1,xk

\bigr\rangle 
.

Combining the preceding estimates gives the desired assertion through

\Delta k+1 \leq 
1

p
\| \widehat x\| p\scrX +

1

p\ast 
\| xk\| p\scrX \ast  - 

\bigl\langle 
\scrJ \scrX 
p (xk),\widehat x\bigr\rangle + Gp\ast 

p\ast 
\mu p\ast 

k+1\| gk+1\| 
p\ast 

\scrX \ast  - \mu k+1

\bigl\langle 
gk+1,xk  - \widehat x\bigr\rangle 

=\Delta k  - \mu k+1

\bigl\langle 
gk+1,xk  - \widehat x\bigr\rangle + Gp\ast 

p\ast 
\mu p\ast 

k+1\| gk+1\| 
p\ast 

\scrX \ast .

Lemma 3.6 allows showing that the sequence of Bregman distances (\bfB p(xk,\widehat x))k\in \BbbN forms
an almost supermartingale (in the Robbins--Siegmund sense defined below) for \widehat x \in \scrX \mathrm{m}\mathrm{i}\mathrm{n} and
well-chosen step-sizes (\mu k)k\in \BbbN . We will show almost sure convergence of the iterates using the
Robbins--Siegmund theorem.

Theorem 3.7 (Robbins--Siegmund theorem on the convergence of almost supermartingales [38,
Lemma 11]). Consider a filtration (\scrF k)k\in \BbbN and four nonnegative, (\scrF k)k\in \BbbN adapted processes
(\alpha k)k\in \BbbN , (\beta k)k\in \BbbN , (\gamma k)k\in \BbbN , and (\delta k)k\in \BbbN . Let (\alpha k)k\in \BbbN be an almost supermartingale, i.e., for
all k we have \BbbE k[\alpha k+1]\leq (1+ \beta k)\alpha k + \gamma k  - \delta k. Then the sequence (\alpha k)k\in \BbbN converges a.s. to a
random variable \alpha \infty , and

\sum \infty 
k=1 \delta k <\infty a.s. on the set \{ 

\sum \infty 
k=1 \beta k <\infty ,

\sum \infty 
k=1 \gamma k <\infty \} .

We can now show that under certain conditions on x0, the limit of the iterations (3.4) is
the MNS x\dagger . Below, \BbbE k denotes the conditional expectation with respect to the filtration \scrF k.

Theorem 3.8. Let (\mu k)k\in \BbbN satisfy
\sum \infty 

k=1 \mu k = \infty and
\sum \infty 

k=1 \mu 
p\ast 

k < \infty , let Assumption 3.1
hold, and let x\dagger be the MNS. Then the sequence (xk)k\in \BbbN converges a.s. to a solution of (1.1):

\BbbP 
\Bigl( 

lim
k\rightarrow \infty 

inf\widetilde x\in \scrX \mathrm{m}\mathrm{i}\mathrm{n}

\| xk  - \widetilde x\| \scrX = 0
\Bigr) 
= 1.

Moreover, if \scrJ \scrX 
p (x0)\in range(\bfA \ast ), we have limk\rightarrow \infty \bfB p(xk,x

\dagger ) = 0 a.s.

Proof. By Lemma 3.5, we have \langle \partial \Psi (xk),xk  - x\dagger \rangle = p\Psi (xk). Moreover,

\| g(x,y, i)\| \scrX \ast = \| \bfA \ast 
i \jmath 

\scrY 
p (\bfA ix - yi)\| \scrX \ast \leq \| \bfA i\| \| \jmath \scrY p (\bfA ix - yi)\| \scrY \ast \leq L\mathrm{m}\mathrm{a}\mathrm{x}\| \bfA ix - yi\| 

p - 1
\scrY ,

with L\mathrm{m}\mathrm{a}\mathrm{x} =maxi\in [N ] \| \bfA i\| . Thus, since p\ast (p - 1) = p, we have

\BbbE [\| g(x,y, i)\| p
\ast 

\scrX \ast ]\leq pLp\ast 

\mathrm{m}\mathrm{a}\mathrm{x}

1

N

N\sum 
i=1

1

p
\| \bfA ix - yi\| 

p
\scrY = pLp\ast 

\mathrm{m}\mathrm{a}\mathrm{x}\Psi (x).
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680 BANGTI JIN AND \v ZELJKO KERETA

Upon taking the conditional expectation \BbbE k[\cdot ] of the descent property (3.7) (with \widehat x= x\dagger ), and
using the measurability of xk with respect to \scrF k, we deduce

\BbbE k[\Delta k+1]\leq \Delta k  - p\mu k+1\Psi (xk) + pLp\ast 

\mathrm{m}\mathrm{a}\mathrm{x}

Gp\ast 

p\ast 
\mu p\ast 

k+1\Psi (xk).

Using Lemma 3.5 again we have \Psi (xk)\leq Lp
\mathrm{m}\mathrm{a}\mathrm{x}

Cp
\Delta k, which yields

\BbbE k[\Delta k+1]\leq 
\biggl( 
1 +Lp\ast +p

\mathrm{m}\mathrm{a}\mathrm{x}

p

Cp

Gp\ast 

p\ast 
\mu p\ast 

k+1

\biggr) 
\Delta k  - p\mu k+1\Psi (xk).

Since
\sum \infty 

k=1 \mu 
p\ast 

k <\infty by assumption, we can apply Theorem 3.7 and deduce that the sequence
(\Delta k)k\in \BbbN converges a.s. to a random variable \Delta \infty and

\sum \infty 
k=0 \mu k+1\Psi (xk) < \infty a.s. Let \Omega be

the measurable set on which (\Delta k)k\in \BbbN converges,
\sum \infty 

k=0 \mu k+1\Psi (xk) <\infty , and \BbbP (\Omega ) = 1. Next
we show lim infk\Psi (xk) = 0 a.s. Consider an event \omega on which this is not the case, i.e., where
lim infk\Psi (xk)> 0. Then there exist \epsilon > 0 and k\epsilon \in \BbbN such that for all k\geq k\epsilon , \Psi (xk)\geq \epsilon , giving\sum 

k\geq k\epsilon 
\mu k+1\Psi (xk)\geq \epsilon 

\sum 
k\geq k\epsilon 

\mu k+1. If \omega were in \Omega Since for all events in \Omega this would lead to a
contradiction---the right-hand side diverges (

\sum \infty 
k=1 \mu k =\infty by assumption), whereas the left-

hand side is the remainder of a convergent series. Thus, we conclude \omega \not \in \Omega . Since \BbbP (\Omega c) = 0,
we have lim infk\Psi (xk) = 0 a.s. For every event in the set where lim infk\Psi (xk) = 0 holds we can
then find a subsequence (xnk

)k\in \BbbN such that limk\rightarrow \infty \Psi (xnk
) = 0. Define also \widehat \Psi (x) =

\sum N
i=1
\widehat \Psi i(x),

with \widehat \Psi i(x) = \| \bfA ix - yi\| \scrY . We have lim infk \widehat \Psi (xk) = 0 and limj\rightarrow \infty \widehat \Psi (xnj
) = 0 (on the same

subsequence), since by Young's inequality,\Biggl( 
N\sum 
i=1

\| \bfA ix - yi\| 
p
\scrY 

\Biggr) 1/p

\leq 
N\sum 
i=1

\| \bfA ix - yi\| \scrY \leq N

\Biggl( 
1

N

N\sum 
i=1

\| \bfA ix - yi\| 
p
\scrY 

\Biggr) 1/p

.

Moreover, \widehat \Psi (x)p \leq pNp\Psi (x). The following argument is understood pointwise on the a.s. set
\Omega where (\Delta k)k\in \BbbN converges,

\sum \infty 
k=0 \mu k+1\Psi (xk) < \infty , and lim infk \widehat \Psi (xk) = 0. Since (\Delta k)k\in \BbbN 

converges it is bounded. By the coercivity of the Bregman distance (see Lemma A.3), so are
(xk)k\in \BbbN and (\scrJ \scrX 

p (xk))k\in \BbbN . By further passing to a subsequence, we can find a subsequence

of (xnk
)k\in \BbbN , which we denote the same, such that (\| xnk

\| \scrX )k\in \BbbN is convergent, (\scrJ \scrX 
p (xnk

))k\in \BbbN is
weakly convergent, and

lim
k\rightarrow \infty 

\widehat \Psi (xnk
) = 0 and \widehat \Psi (xnk

)\leq \widehat \Psi (xn) \forall n< nk.(3.8)

The latter can be obtained by setting n1 = 1, and then recursively defining nk+1 = min\{ k >
nk : \Psi (xk) \leq \Psi (xnk

)/2\} for k \in \BbbN . Any following subsequence satisfies the same property.
Using Theorem 2.6(ii), we have, for k > \ell ,

\bfB p(xn\ell 
,xnk

)=
1

p\ast 

\Bigl( 
\| xn\ell 

\| p\scrX  - \| xnk
\| p\scrX 
\Bigr) 
+
\Bigl\langle 
\scrJ \scrX 
p (xnk

) - \scrJ \scrX 
p (xn\ell 

),x\dagger 
\Bigr\rangle 
+
\Bigl\langle 
\scrJ \scrX 
p (xnk

) - \scrJ \scrX 
p (xn\ell 

),xnk
 - x\dagger 
\Bigr\rangle 
.

Since the first two terms involve Cauchy sequences, it suffices to treat the last term, denoted
by Ik,\ell . Using telescopic sum and applying the iterate update rule, we have

Ik,\ell =

nk - 1\sum 
n=n\ell 

\Bigl\langle 
\scrJ \scrX 
p (xn+1) - \scrJ \scrX 

p (xn),xnk
 - x\dagger 

\Bigr\rangle 
=

nk - 1\sum 
n=n\ell 

\mu n+1

\Bigl\langle 
\bfA \ast 

in+1
\jmath \scrY p (\bfA ik+1

xn  - yin+1
),xnk

 - x\dagger 
\Bigr\rangle 
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ON SGD FOR BANACH SPACE LINEAR INVERSE PROBLEMS 681

=

nk - 1\sum 
n=n\ell 

\mu n+1

\bigl\langle 
\jmath \scrY p (\bfA in+1

xn  - yik+1
),\bfA in+1

xnk
 - yin+1

\bigr\rangle 
.

By the Cauchy--Schwarz inequality and properties of the duality map, we get

| Ik,\ell | \leq 
nk - 1\sum 
n=n\ell 

\mu n+1\| \bfA in+1
xn - yin+1

\| p - 1
\scrY \| \bfA in+1

xnk
 - yin+1

\| \scrY \leq 
nk - 1\sum 
n=n\ell 

\mu n+1
\widehat \Psi in+1

(xn)
p - 1\widehat \Psi in+1

(xnk
).

Since \widehat \Psi i(x)\leq \widehat \Psi (x) for all i\in [N ], we use (3.8) and get

| Ik,\ell | \leq 
nk - 1\sum 
n=n\ell 

\mu n+1
\widehat \Psi (xn)

p - 1\widehat \Psi (xnk
)\leq 

nk - 1\sum 
n=n\ell 

\mu n+1
\widehat \Psi (xn)

p.

Since \widehat \Psi (x)p \leq pNp\Psi (x), the right-hand side of the inequality converges to 0 as n\ell \rightarrow \infty .
Therefore, by [44, Theorem 2.12(e)], it follows that (xnk

)k\in \BbbN is a Cauchy sequence, and thus
converges strongly to an \widehat x such that \Psi (\widehat x) = 0.

The above argument showing the a.s. convergence of (\Delta k)k\in \BbbN can be applied pointwise
to any solution. Namely, on the event where (xnk

)k\in \BbbN converges strongly to an \widehat x\in \scrX \mathrm{m}\mathrm{i}\mathrm{n} (i.e.,
\bfA \widehat x= y), define \widehat \Delta k :=\bfB p(xk,\widehat x). By repeating the argument using Lemma 3.5, we deduce

\widehat \Delta k+1 \leq 
\biggl( 
1 +Lp\ast +p

\mathrm{m}\mathrm{a}\mathrm{x}

p

Cp

Gp\ast 

p\ast 
\mu p\ast 

k+1

\biggr) \widehat \Delta k  - p\mu k+1\Psi ik(xk).

Since
\sum \infty 

k=1 \mu 
p\ast 

k < \infty , it follows that the (deterministic) sequence (\widehat \Delta k)k\in \BbbN converges to a\widehat \Delta \infty \geq 0. The continuity of the Bregman distance in the first argument (Theorem 2.6(vi))
gives limj\rightarrow \infty \bfB p(xnj

,\widehat x) =\bfB p(\widehat x,\widehat x) = 0, and thus \widehat \Delta \infty = 0. Moreover, by the p-convexity of \scrX 
(Theorem 2.6(iii)), we have 0\leq \| xk  - \widehat x\| p\scrX \leq p

Cp

\widehat \Delta k. From the squeeze theorem it follows that

limk\rightarrow \infty \| xk  - \widehat x\| \scrX = 0. Thus, for every event in an a.s. set \Omega , the sequence (xk)k\in \BbbN strongly
converges to some minimizing solution, that is,

\BbbP 
\Bigl( 

lim
k\rightarrow \infty 

inf\widetilde x\in \scrX \mathrm{m}\mathrm{i}\mathrm{n}

\| xk  - \widetilde x\| \scrX = 0
\Bigr) 
= 1.

Next assume \scrJ \scrX 
p (x0) \in range(\bfA \ast ). From (3.4), it follows that \scrJ \scrX 

p (xk) \in range(\bfA \ast ) holds

for all k\geq 1. By the continuity of \scrJ \scrX 
p , we have \scrJ \scrX 

p (\widehat x)\in range(\bfA \ast ). Thus, from \bfA (\widehat x - x\dagger ) = 0

and Lemma 3.3 it follows that \widehat x= x\dagger .

The assumptionsand conclusions of Theorem 3.8 can be broken down into two parts. The
step-size conditions

\sum \infty 
k=1 \mu k = \infty and

\sum \infty 
k=1 \mu 

p\ast 

k < \infty are required to show the a.s. conver-
gence of (\bfB p(xk,\widehat x))k\in \BbbN to 0 for some nondeterministic \widehat x \in \scrX \mathrm{m}\mathrm{i}\mathrm{n}. The remaining assumption
\scrJ \scrX 
p (x0)\in range(\bfA \ast ) is needed to identify this limit as the MNS x\dagger , as the Landweber method

[44, Remark 3.12]. If \scrJ \scrX 
p (x0) \not \in range(\bfA \ast ), we can commonly establish convergence to an MNS

relative to x0, i.e., a solution which minimizes \| x - x0\| \scrX , analogous to the Euclidean case [24].

Remark 3.9. The step-size conditions
\sum \infty 

k=1 \mu k =\infty and
\sum \infty 

k=1 \mu 
p\ast 

k <\infty are satisfied by a
polynomially decaying step-size schedule (\mu k)k\in \BbbN = (\mu 0k

 - \beta )k\in \BbbN , with
1
p\ast <\beta \leq 1.
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682 BANGTI JIN AND \v ZELJKO KERETA

Theorem 3.8 states sufficient conditions ensuring the a.s. convergence of (\bfB p(xk,x
\dagger ))k\in \BbbN to

0. To strengthen this to the convergence in expectation, we require an additional assumption to
ensure that (\bfB p(xk,x

\dagger ))k\in \BbbN is a uniformly integrable supermartingale. Note that removing the
assumptions of Theorem 3.8 from Theorem 3.10 would still result in convergence in expectation
to some nonnegative random variable, but not necessarily to 0. Recall that a family (Xt)t of
random variables is uniformly integrable provided limk\rightarrow \infty supt\BbbE [\| Xt\| | \bfone \| Xt\| \geq k] = 0, where
\bfone (\cdot ) is the indicator function.

Theorem 3.10. Let the conditions of Theorem 3.8 hold with \scrJ \scrX 
p (x0) \in range(\bfA \ast ) and let

\mu p\ast  - 1
k \leq p\ast 

Gp\ast L
p\ast 
\mathrm{m}\mathrm{a}\mathrm{x}

for all k \in \BbbN . Then there holds limk\rightarrow \infty \BbbE [\bfB p(xk,x
\dagger )] = 0. Moreover, for

1\leq r\leq p, we have limk\rightarrow \infty \BbbE [\| xk  - x\dagger \| r\scrX ] = 0, and if \scrX is additionally uniformly smooth, then

limk\rightarrow \infty \BbbE [\| \scrJ \scrX 
p (xk) - \scrJ \scrX 

p (x\dagger )\| p
\ast 

\scrX \ast ] = 0.

Proof. The step-size conditions allow us to apply Lemma A.2, which yields \bfB p(xk,x
\dagger ) \leq 

\bfB p(x0,x\dagger ) for all k. It follows that (\bfB p(xk,x
\dagger ))k\in \BbbN is bounded, and is thus uniformly integrable,

and by Theorem 3.8 it converges a.s. to 0. Then, by Vitali's convergence theorem [1, Theorem
4.5.4], we deduce that (\Delta k)k\in \BbbN converges to 0 in expectation as well. Using now the p-convexity
of \scrX and the monotonicity of expectation, we have

0\leq Cp

p
lim
k\rightarrow \infty 

\BbbE [\| xk  - x\dagger \| p\scrX ]\leq lim
k\rightarrow \infty 

\BbbE [\bfB p(xk,x
\dagger )] = 0.

By the continuity of the power function and the Lyapunov inequality for 1\leq r\leq p, we have

0\leq lim
k\rightarrow \infty 

\BbbE [\| xk  - x\dagger \| r\scrX ]\leq lim
k\rightarrow \infty 

(\BbbE [\| xk  - x\dagger \| p\scrX ])
r/p = 0.

To prove the last claim we use uniform smoothness of \scrX and Theorem 2.3(iv), to deduce

\| \scrJ \scrX 
p (xk) - \scrJ \scrX 

p (x\dagger )\| p
\ast 

\scrX \ast \leq Cmax\{ 1,\| xk\| \scrX ,\| x\dagger \| \scrX \} p \rho \scrX (\| xk  - x\dagger \| \scrX )p
\ast 
,

where \rho \scrX (\tau ) = \rho \scrX (\tau )/\tau is a modulus of smoothness function such that \rho (\tau ) \leq 1 and
lim\tau \rightarrow 0 \rho (\tau ) = 0; cf. Definition 2.2. By Lemmas A.2 and A.3 (\| xk\| p\scrX )k\in \BbbN is (uniformly)

bounded, giving that the sequence (\| \scrJ \scrX 
p (xk) - \scrJ \scrX 

p (x\dagger )\| p
\ast 

\scrX \ast )k\in \BbbN is bounded and thus uni-

formly integrable. Since limk\rightarrow \infty \BbbE [\| xk  - x\dagger \| \scrX ] = 0, it follows that \| xk  - x\dagger \| \scrX converges to
0 in probability, and thus by the continuous mapping theorem \rho \scrX (\| xk  - x\dagger \| \scrX )p

\ast 
also con-

verges to 0 in probability. Applying Vitaly's theorem to the uniformly integrable sequence
(\| \scrJ \scrX 

p (xk) - \scrJ \scrX 
p (x\dagger )\| p

\ast 

\scrX \ast )k\in \BbbN yields that it converges to 0 in measure, and the claim follows.

Remark 3.11. Note that the condition \scrJ \scrX 
p (x0) \in range(\bfA \ast ) on x0 is crucial for ensuring

that all the limits are the same. Landweber iterations converge for uniformly convex and
smooth \scrX , and any Banach space \scrY [44, Theorem 3.3]. In our analysis, we have assumed
that \scrX is p-convex to simplify the analysis. First, p-convexity is used in the proof of Lemma
3.6. If \scrX were only uniformly convex (and \scrX \ast only uniformly smooth), then we may use the
modulus of smoothness function \rho \scrX (cf. (2.2) and [46, Theorem 2.41]) to establish a suitable
analogue of the descent property (3.7). Second, p-convexity is used in the proof of Theorem
3.8, allowing a more direct application of the Robbins--Siegmund theorem by relating the
objective values to Bregman distances. Meanwhile, the Landweber method in [44] requires
step-sizes that depend on the modulus of smoothness, the current iterate, and the objective
value, which is more restrictive than the step-size regime used in this work.
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3.2. Convergence analysis for the generalized Kaczmarz model. Sch\"opfer, Louis, and
Schuster [44] studied general powers of the Banach space norm and subgradients of the form
\partial (1q\| \bfA \cdot  - y\| q\scrY )(x). Now we take an analogous perspective for the objective

\Psi (x) =
1

N

N\sum 
i=1

\Psi i(x), with \Psi i(x) :=
1

q
\| \bfA ix - yi\| 

q
\scrY ,

with 1 < q \leq 2. This model is herein called the generalized Kaczmarz model. (Note that
this is different from the randomized extended Kaczmarz method [53].) We shall show the
convergence of SGD with stochastic directions

g(x,y, i) =\bfA \ast 
i \jmath 

\scrY 
q (\bfA ix - yi) = \partial (1q\| \bfA i \cdot  - yi\| 

q
\scrY )(x).(3.9)

The descent property (3.7) is unaffected, and a direct computation again yields

(3.10) \bfB p(xk+1,x
\dagger )\leq \bfB p(xk,x

\dagger ) - \mu k+1

\Bigl\langle 
gk+1,xk  - x\dagger 

\Bigr\rangle 
+

Gp\ast 

p\ast 
\mu p\ast 

k+1\| gk+1\| 
p\ast 

\scrX \ast .

However, the Robbins--Siegmund theorem cannot be applied directly. Instead, we pursue a
different proof strategy by first establishing the uniform boundedness of iterates.

Lemma 3.12. Let Assumption 3.1 hold. Consider SGD with descent directions (3.9) for
1< q\leq 2, and assume that \mu p\ast  - 1

k < p\ast 

Gp\ast L
p\ast 
\mathrm{m}\mathrm{a}\mathrm{x}

holds for all k \in \BbbN and
\sum \infty 

k=1 \mu 
p\ast 

k =: \Gamma <\infty . Then

(\bfB p(xk,x
\dagger ))k\in \BbbN and (xk)k\in \BbbN are uniformly bounded.

Proof. Let \Psi i(x) = \| \bfA ix - yi\| 
q
\scrY and \Delta k = \bfB p(xk,x

\dagger ). Then we have \langle gk+1,xk  - x\dagger \rangle =

\Psi ik+1
(xk) and

\| gk+1\| 
p\ast 

\scrX \ast = \| \bfA \ast 
ik+1

\jmath \scrY q (\bfA ik+1
x - yik+1

)\| p
\ast 

\scrX \ast \leq Lp\ast 

\mathrm{m}\mathrm{a}\mathrm{x}\| \bfA ik+1
x - yik+1

\| p
\ast (q - 1)

\scrY 

\leq Lp\ast 

\mathrm{m}\mathrm{a}\mathrm{x}\Psi ik+1
(xk)

p\ast q - 1

q =Lp\ast 

\mathrm{m}\mathrm{a}\mathrm{x}\Psi ik+1
(xk)

p\ast 

q\ast ,

where q\ast \geq 2 is the conjugate exponent of q. Plugging this into (3.10) gives

\Delta k+1 \leq \Delta k  - \mu k+1\Psi ik+1
(xk) +Lp\ast 

\mathrm{m}\mathrm{a}\mathrm{x}

Gp\ast 

p\ast 
\mu p\ast 

k+1\Psi ik+1
(xk)

p\ast 

q\ast .(3.11)

Since 1< p\ast \leq 2 by Theorem 2.6(iii), and q\ast \geq 2, we have p\ast 

q\ast \leq 1. Now we define two sets of
indices

\scrI = \{ j \leq k : \Psi ij+1
(xj)\geq 1\} and \scrJ = \{ j \leq k : \Psi ij+1

(xj)< 1\} ,

so that \scrI \cap \scrJ = \emptyset , and \scrI \cup \scrJ = [k]. Note that \scrI and \scrJ actually depend on the current iterate
index k. Applying the inductive argument to (3.11) gives

\Delta k+1 \leq \Delta 0  - 
k\sum 

j=0

\mu j+1\Psi ij+1
(xj) +Lp\ast 

\mathrm{m}\mathrm{a}\mathrm{x}

Gp\ast 

p\ast 

k\sum 
j=0

\mu p\ast 

j+1\Psi ij+1
(xj)

p\ast 

q\ast 
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684 BANGTI JIN AND \v ZELJKO KERETA

=\Delta 0 - 
\sum 
j\in \scrI 

\mu j+1\Psi ij+1
(xj) +Lp\ast 

\mathrm{m}\mathrm{a}\mathrm{x}

Gp\ast 

p\ast 

\sum 
j\in \scrI 

\mu p\ast 

j+1\Psi ij+1
(xj)

p\ast 

q\ast 

\underbrace{}  \underbrace{}  
( \star )

 - 
\sum 
j\in \scrJ 

\mu j+1\Psi ij+1
(xj)\underbrace{}  \underbrace{}  

( \star  \star )

+Lp\ast 

\mathrm{m}\mathrm{a}\mathrm{x}

Gp\ast 

p\ast 

\sum 
j\in \scrJ 

\mu p\ast 

j+1\Psi ij+1
(xj)

p\ast 

q\ast 

\underbrace{}  \underbrace{}  
( \star  \star  \star )

.

Next we analyze these three terms separately. First, for j \in \scrI , we have \Psi ij+1
(xj)\geq 1 and since

p\ast 

q\ast < 1, we have \Psi ij+1
(xj)

p\ast 

q\ast \leq \Psi ij+1
(xj), giving

( \star )\leq  - 
\sum 
j\in \scrI 

\mu j+1\Psi ij+1
(xj)+Lp\ast 

\mathrm{m}\mathrm{a}\mathrm{x}

Gp\ast 

p\ast 

\sum 
j\in \scrI 

\mu p\ast 

j+1\Psi ij+1
(xj) = - 

\sum 
j\in \scrI 

\Bigl( 
1 - Lp\ast 

\mathrm{m}\mathrm{a}\mathrm{x}

Gp\ast 

p\ast 
\mu p\ast  - 1
j+1

\Bigr) 
\mu j+1\Psi ij+1

(xj).

Since \mu p\ast  - 1
j+1 < p\ast 

Gp\ast L
p\ast 
\mathrm{m}\mathrm{a}\mathrm{x}

holds by assumption, the term ( \star ) is nonpositive. Moreover, ( \star  \star ) is

trivially nonpositive. Since \Psi ij+1
(xj)< 1 for j \in \scrJ , the last term ( \star  \star  \star ) can be bounded as

Lp\ast 

\mathrm{m}\mathrm{a}\mathrm{x}

Gp\ast 

p\ast 

\sum 
j\in \scrJ 

\mu p\ast 

j+1\Psi ij+1
(xj)

p\ast 

q\ast \leq Lp\ast 

\mathrm{m}\mathrm{a}\mathrm{x}

Gp\ast 

p\ast 

\sum 
j\in \scrJ 

\mu p\ast 

j+1 \leq Lp\ast 

\mathrm{m}\mathrm{a}\mathrm{x}

Gp\ast 

p\ast 

\infty \sum 
j=1

\mu p\ast 

j =Lp\ast 

\mathrm{m}\mathrm{a}\mathrm{x}

Gp\ast 

p\ast 
\Gamma .

By combining the last three bounds on ( \star ), ( \star  \star ), and ( \star  \star  \star ), we get

\Delta k+1 \leq \Delta 0 +Lp\ast 

\mathrm{m}\mathrm{a}\mathrm{x}

Gp\ast 

p\ast 
\Gamma \forall k\geq 0.

Thus, (\Delta k)k\in \BbbN is uniformly bounded and by Lemma A.3, so is (xk)k\in \BbbN .

The proof of Lemma 3.12 exposes the challenge in extending the convergence results to
general stochastic directions. Namely, in the proof of Theorem 3.8, we showed the convergence
by taking the conditional expectation of (3.7), recasting the resulting expression as an almost
supermartingale, and then relating objective values to Bregman distances via \Psi (xk) \leq C\Delta k

for some C > 0. Here, using q
q\ast = q - 1 and p\ast 

p = p\ast  - 1, we instead have

\Psi (xk)
p\ast 

q\ast \leq C\Delta 
(p\ast  - 1)(q - 1)
k , with C = q - 

p\ast 

q\ast Lp\ast (q - 1)
\mathrm{m}\mathrm{a}\mathrm{x}

\Bigl( p

Cp

\Bigr) (p\ast  - 1)(q - 1)
,

which gives

\BbbE k[\Delta k+1]\leq \Delta k +CLp\ast 

\mathrm{m}\mathrm{a}\mathrm{x}q
p\ast 

q\ast 
Gp\ast 

p\ast 
\mu p\ast 

k+1\Delta 
(p\ast  - 1)(q - 1)
k  - q\mu k+1\Psi (xk).

Here 0 < (p\ast  - 1)(q  - 1) < 1, provided p\ast \not = 2 and q \not = 2. Therefore, the Robbins--Siegmund
theorem cannot be applied directly. Nonetheless, we still have the following analogue of
Theorem 3.10.
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Theorem 3.13. Consider iterations (3.4) with descent directions (3.9) for 1 < q \leq 2, let
Assumption 3.1 hold, and let x\dagger be the MNS. Let the step-sizes (\mu k)k\in \BbbN satisfy

\sum \infty 
k=1 \mu k =\infty ,\sum \infty 

k=1 \mu 
p\ast 

k <\infty , and \mu p\ast  - 1
k < p\ast 

Gp\ast L
p\ast 
\mathrm{m}\mathrm{a}\mathrm{x}

for all k \in \BbbN . Then the sequence (xk)k\in \BbbN converges a.s.

to a solution of (1.1):

\BbbP 
\Bigl( 

lim
k\rightarrow \infty 

inf\widetilde x\in \scrX \mathrm{m}\mathrm{i}\mathrm{n}

\| xk  - \widetilde x\| \scrX = 0
\Bigr) 
= 1.

Moreover, if \scrJ \scrX 
p (x0)\in range(\bfA \ast ), we have

lim
k\rightarrow \infty 

\bfB p(xk,x
\dagger ) = 0 a.s. and lim

k\rightarrow \infty 
\BbbE [\bfB p(xk,x

\dagger )] = 0.

Proof. To establish the a.s. convergence of iterates, we first take the conditional expecta-
tion of the descent property (3.10) and obtain

(3.12) \BbbE k[\Delta k+1]\leq \Delta k  - \mu k+1

\Bigl\langle 
\BbbE k[gk+1],xk  - x\dagger 

\Bigr\rangle 
+

Gp\ast 

p\ast 
\mu p\ast 

k+1\BbbE k[\| gk+1\| 
p\ast 

\scrX \ast ].

We now have \langle \BbbE k[gk+1],xk  - x\dagger \rangle = \langle \partial \Psi (xk),xk  - x\dagger \rangle = q\Psi (xk), and

\| g(x,y, i)\| \scrX \ast \leq L\mathrm{m}\mathrm{a}\mathrm{x}\| \bfA ix - yi\| 
q - 1
\scrY .

Then taking the conditional expectation of \| g(x,y, i)\| p
\ast 

\scrX \ast yields

\BbbE [\| g(x,y, i)\| p
\ast 

\scrX \ast ]\leq Lp\ast 

\mathrm{m}\mathrm{a}\mathrm{x}\BbbE 
\Bigl[ 
\| \bfA ix - yi\| 

p\ast (q - 1)
\scrY 

\Bigr] 
=Lp\ast 

\mathrm{m}\mathrm{a}\mathrm{x}\BbbE 
\Bigl[ 
(\| \bfA ix - yi\| 

q
\scrY )

p\ast 

q\ast 

\Bigr] 
.

We have 0 < p\ast 

q\ast \leq 1, with the equality achieved only if p\ast = q\ast = 2. In the latter case, it

trivially follows that \BbbE [\| g(x,y, i)\| p
\ast 

\scrX \ast ] \leq qLp\ast 

\mathrm{m}\mathrm{a}\mathrm{x}\Psi (x). If 0 < p\ast 

q\ast < 1, by Jensen's inequality, we
have

\BbbE [\| g(x,y, i)\| p
\ast 

\scrX \ast ]\leq Lp\ast 

\mathrm{m}\mathrm{a}\mathrm{x}\BbbE 
\Bigl[ 
(\| \bfA ix - yi\| 

q
\scrY )

p\ast 

q\ast 

\Bigr] 
\leq Lp\ast 

\mathrm{m}\mathrm{a}\mathrm{x}(\BbbE [\| \bfA ix - yi\| 
q
\scrY ])

p\ast 

q\ast \leq Lp\ast 

\mathrm{m}\mathrm{a}\mathrm{x}q
p\ast 

q\ast \Psi (x)
p\ast 

q\ast .

Plugging this estimate into the conditional descent property (3.12) yields

\BbbE k[\Delta k+1]\leq \Delta k  - q\mu k+1\Psi (xk) +Lp\ast 

\mathrm{m}\mathrm{a}\mathrm{x}q
p\ast 

q\ast 
Gp\ast 

p\ast 
\mu p\ast 

k+1\Psi (xk)
p\ast 

q\ast .

Since the sequence (xk)k\in \BbbN is uniformly bounded by Lemma 3.12, so is (\Psi (xk))k\in \BbbN , and we
thus have

\infty \sum 
k=0

\mu p\ast 

k+1\Psi (xk)
p\ast 

q\ast \leq C

\infty \sum 
k=0

\mu p\ast 

k+1 <\infty .

Thus, we can apply the Robbins--Siegmund theorem for almost supermartingales, and de-
duce that (\Delta k)k\in \BbbN converges a.s. to a nonnegative random variable \Delta \infty . Moreover,\sum \infty 

k=0 \mu k+1\Psi (xk) < \infty holds a.s. By repeating the argument for Theorem 3.8, there exists
a subsequence (xkj

)j\in \BbbN that a.s. converges to some \widehat x \in \scrX \mathrm{m}\mathrm{i}\mathrm{n}, and hence \Delta \infty = 0, as desired.
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686 BANGTI JIN AND \v ZELJKO KERETA

Moreover, by Lemma 3.12, the sequence (\Delta k)k\in \BbbN is bounded, and thus uniformly integrable.
Since it converges to 0 a.s., from Vitali's theorem it follows that limk\rightarrow \infty \BbbE [\bfB p(xk,x

\dagger )] = 0.

The results in Theorem 3.13 are similar to that of Theorem 3.10, but the generality of
the latter is compensated for by an additional step-size assumption ensuring boundedness of
iterates (xk)k\in \BbbN .

3.3. Convergence rates for conditionally stable operators. Theorem 3.10 states the con-
ditions needed for the convergence of Bregman distances in expectation. However, it does not
provide convergence rates. In order to obtain convergence rates, one needs additional condi-
tions on the MNS x\dagger , which are collectively known as source conditions. One approach is via
conditional stability: for a locally conditionally stable operator, we can extract convergence
in expectation and quantify the convergence speed. Conditional stability is known for many
inverse problems for PDEs and has been used extensively to investigate regularized solutions
[8, 13]. It is useful for analyzing ill-posed problems that are locally well-posed, and in case of
a (possibly) nonlinear forward operator F it is of the form

\| x1  - x2\| \scrX \leq \Phi (\| F (x1) - F (x2)\| \scrY ) \forall x1,x2 \in \scrM \subset \scrX ,(3.13)

where \Phi : [0,\infty ) \rightarrow [0,\infty ) with \Phi (0) = 0 is a continuous, nondecreasing function, and \scrM is
typically a ball in the ambient norm [19] that is stronger than \scrX , and is thus conditional. In
Banach space settings, the conditional stability needs to be adjusted by replacing the left-hand
side of (3.13) with a nonnegative error measure [7]. Since the most relevant error measure for
Banach space analysis is the Bregman distance \bfB p(x1,x2), a H\"older-type stability estimate
then reads as follows: for some \alpha \geq 1 and C\alpha > 0

(3.14) \bfB p(x,x
\dagger )\alpha \leq C - 1

\alpha \| \bfA x - \bfA x\dagger \| p\scrY , \forall x\in \scrX .

Note that we relaxed the condition x \in \scrM \subset \scrX to x \in \scrX , which makes the problem
well-posed. Now we give a convergence rate under conditional stability bound (3.14). The
constant CN appears in Lemma 3.5 and denotes the norm equivalence constant.

Theorem 3.14. Let the forward operator \bfA satisfy the conditional stability bound (3.14) for
some \alpha \geq 1 and C\alpha > 0. Let \scrJ \scrX 

p (x0)\in range(\bfA \ast ), and for Ck =CNC\alpha (1 - Lp\ast 

\mathrm{m}\mathrm{a}\mathrm{x}
Gp\ast 

p\ast \mu p\ast  - 1
k )> 0,

the step-sizes satisfy
\sum \infty 

k=1 \mu kCk =\infty . Then there holds

lim
k\rightarrow \infty 

\BbbE [\bfB p(xk,x
\dagger )] = 0.

Moreover,

\BbbE [\bfB p(xk,x
\dagger )]\leq 

\left\{               

\bfB p(x0,x\dagger )\Bigl( 
1 + (\alpha  - 1)\bfB p(x0,x\dagger )\alpha  - 1

\sum k
j=1 \mu jCj

\Bigr) 1

\alpha  - 1

if \alpha > 1,

exp
\Bigl( 
 - 

k\sum 
j=1

\mu jCj

\Bigr) 
\bfB p(x0,x

\dagger ) if \alpha = 1.

Proof. Let \Delta k :=\bfB p(xk,x
\dagger ). The proof of Theorem 3.8 and the conditional stability bound

(3.14) imply

\BbbE k[\Delta k+1]\leq \Delta k  - p\mu k+1

\biggl( 
1 - Lp\ast 

\mathrm{m}\mathrm{a}\mathrm{x}

Gp\ast 

p\ast 
\mu p\ast  - 1
k+1

\biggr) 
\Psi (xk)(3.15)
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ON SGD FOR BANACH SPACE LINEAR INVERSE PROBLEMS 687

\leq \Delta k  - p\mu k+1
CNC\alpha 

p

\Bigl( 
1 - Lp\ast 

\mathrm{m}\mathrm{a}\mathrm{x}

Gp\ast 

p\ast 
\mu p\ast  - 1
k+1

\Bigr) 
\Delta \alpha 

k ,

since by Lemma 3.5, there exists a CN > 0 such that \Psi (x) \geq CN

p \| \bfA x - y\| p\scrY . Taking the full
expectation and using Jensen's inequality lead to

\BbbE [\Delta k+1]\leq \BbbE [\Delta k] - \mu k+1Ck+1\BbbE [\Delta k]
\alpha .

Since Ck+1 > 0 by assumption, (\BbbE [\Delta k])k\in \BbbN is a monotonically decreasing sequence. By the
convexity of the function x \mapsto \rightarrow x\alpha (for \alpha \geq 1), for any \epsilon > 0 and x\geq \epsilon , we have \epsilon \alpha \geq \epsilon 

xx
\alpha . We

claim that for every \epsilon > 0, there exists a k\epsilon \in \BbbN such that \BbbE [\Delta k]\leq \epsilon for all k \geq k\epsilon . Assuming
the contrary, \BbbE [\Delta k]\geq \epsilon for all k, gives

\BbbE [\Delta k+1]\leq \BbbE [\Delta k] - \mu k+1Ck+1\BbbE [\Delta k]
\alpha \leq \BbbE [\Delta k] - \mu k+1Ck+1\epsilon 

\alpha \leq \Delta 0  - \epsilon \alpha 
k+1\sum 
j=1

\mu jCj \rightarrow  - \infty ,

since
\sum \infty 

j=1 \mu jCj =\infty by assumption, which is a contradiction. Therefore, limk\rightarrow \infty \BbbE [\Delta k] = 0.
For \alpha > 1, by Polyak's inequality (cf. Lemma A.1), we have

\BbbE [\Delta k+1]\leq 
\Delta 0\Bigl( 

1 + (\alpha  - 1)\Delta \alpha  - 1
0

\sum k+1
j=1 \mu jCj

\Bigr) 1

\alpha  - 1

.

Meanwhile, for \alpha = 1, using the inequality 1 - x\leq e - x for x\geq 0, a direct computation yields

\BbbE [\Delta k+1]\leq (1 - \mu k+1Ck+1)\BbbE [\Delta k]\leq 
k+1\prod 
j=1

(1 - \mu jCj)\Delta 0 \leq exp

\left(   - 
k+1\sum 
j=1

\mu jCj

\right)  \Delta 0,

completing the proof of the theorem.

Remark 3.15. We have the following comments on Theorem 3.14:

(i) The estimates for \alpha > 1 and \alpha = 1 in Theorem 3.14 are consistent in the sense that

lim
\alpha \searrow 1

\bfB p(x0,x\dagger )\Bigl( 
1 + (\alpha  - 1)\bfB p(x0,x\dagger )\alpha  - 1

\sum k
j=1 \mu jCj

\Bigr) 1

\alpha  - 1

= exp

\left(   - 
k\sum 

j=1

\mu jCj

\right)  \bfB p

\Bigl( 
x0,x

\dagger 
\Bigr) 
.

(ii) While it might seem counterintuitive, \alpha = 1 gives a better convergence rate than \alpha > 1,
because of the following:

\bfB p(x,x
\dagger )\alpha \geq \bfB p(x,x

\dagger )\~\alpha if and only if \alpha log\bfB p(x,x
\dagger )\geq \~\alpha log\bfB p(x,x

\dagger ).

Hence, whenever \bfB p(x,x\dagger )< 1, we have \bfB p(x,x\dagger )\geq \bfB p(x,x\dagger )\alpha for \alpha > 1. Plugging this
into the conditional stability bound (3.14) yields

\bfB p(x,x
\dagger )\alpha \leq \bfB p(x,x

\dagger )\leq C - 1
1 \| \bfA x - \bfA x\dagger \| p\scrY =C - 1

1 pN\Psi (x).

Meanwhile, the proof of Theorem 3.14 uses the conditional stability bound to establish
a relationship between the objective value and the Bregman distance to the MNS x\dagger ;
cf. (3.15). Putting these together gives that \alpha = 1 provides a greater decrease of the
expected Bregman distance, once we are close enough to the solution.
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688 BANGTI JIN AND \v ZELJKO KERETA

The conditional stability estimate (3.14) for a linear operator \bfA implies its injectivity,
and that the objective \Psi (x) is strongly convex. Under condition (3.14), there can indeed be
only one solution: if \bfA \~x=\bfA x, then \bfB p(\~x,x) = 0 follows from (3.14). The step-size condition\sum \infty 

k=1 \mu kCk = \infty is weaker than that in Theorem 3.10. Namely, it follows from step-size
conditions in Theorem 3.8, since

\infty \sum 
k=1

\mu kCk =CNC\alpha 

\Biggl( \infty \sum 
k=1

\mu k  - Lp\ast 

\mathrm{m}\mathrm{a}\mathrm{x}

Gp\ast 

p\ast 

\infty \sum 
k=1

\mu p\ast 

k

\Biggr) 
=\infty 

holds if
\sum \infty 

k=1 \mu k = \infty and
\sum \infty 

k=1 \mu 
p\ast 

k < \infty . Further, if there exists a C > 0 such that 1  - 
Lp\ast 

\mathrm{m}\mathrm{a}\mathrm{x}
Gp\ast 

p\ast \mu p\ast  - 1
k > C holds for all k \in \BbbN , e.g., if \mu k is a constant satisfying this condition,

then
\sum \infty 

k=1 \mu kCk = \infty is weaker than the conditions in Theorem 3.8, since the condition\sum \infty 
k=1 \mu 

p\ast 

k <\infty is no longer needed for convergence, and
\sum \infty 

k=1 \mu k =\infty suffices. Moreover, we

can choose constant step-sizes. Instead, setting \mu k = \mu 0, with 1 - Lp\ast 

\mathrm{m}\mathrm{a}\mathrm{x}
Gp\ast 

p\ast \mu p\ast  - 1
0 = 1

2 so that

Ck =
CNC\alpha 

2 ,, we get an exponential convergence rate for \alpha = 1, since Ck =
CNC\alpha 

2 , we have

\BbbE [\Delta k+1]\leq (1 - \mu 0Ck+1)\BbbE [\Delta k]\leq 
\biggl( 
1 - 2 - 1 - 1/(p\ast  - 1)L - p\ast /p\ast  - 1

\mathrm{m}\mathrm{a}\mathrm{x}

\Bigl( p\ast 

Gp\ast 
CNC\alpha 

\Bigr) 1/p\ast  - 1
\biggr) k

\BbbE [\Delta 0]

\leq 
\biggl( 
1 - 2 - pL - p

\mathrm{m}\mathrm{a}\mathrm{x}

\Bigl( p\ast 

Gp\ast 

\Bigr) p\ast /p
CNC\alpha 

\biggr) k

\Delta 0.

Note that this convergence rate is largely comparable with that in the Hilbert case: the
conditional stability bound implies the strict convexity of the quadratic objective \Psi (x), and
the SGD is known to converge exponentially fast (see, e.g., [16, Theorem 3.1]), with the rate
determined by a variant of the condition number.

Remark 3.16. The conditional stability bound (3.14) is stated globally. However, such
conditions are often valid only locally. A local definition could have been employed in (3.14),
with minor modifications of the argument. Indeed, by the argument of Theorem 3.10, we
appeal to Lemma A.2, showing that the Bregman distances of the iterates are nonincreasing.
Thus, it suffices to assume that the initial point x0 is sufficiently close to the MNS x\dagger .

Remark 3.17. Conditional stability is intimately tied with classical source conditions. For
example, as shown in [41], assuming \alpha = 1 in (3.14) allows us to show a variational inequality:\Bigl\langle 

\scrJ \scrX 
p (x\dagger ),x - x\dagger 

\Bigr\rangle 
\leq \| x\dagger \| p - 1

\scrX C - 1
\alpha (pC - 1

p )1/p\| \bfA (x - x\dagger )\| \scrY .

Then the Hahn--Banach theorem and [41, Lemma 8.21] give the canonical range--type condi-
tion \scrJ \scrX 

p (x\dagger ) = \bfA \ast w for w \in \scrX such that \| w\| \scrX \leq 1. Connections between source conditions
and conditional stability estimates have been studied, e.g., for linear operators in Hilbert spa-
ces [47] and in \scrL p spaces [5]. Moreover, variational source conditions often imply conditional
stability estimates [20], and in case of bijective and continuous operators they are trivially in-
ferred by a standard source condition (albeit, possibly only in a small neighborhood around the
solution). See the book [50] about the connections between source conditions and conditional
stability estimates, and [21] for inverse problems for differential equations.
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ON SGD FOR BANACH SPACE LINEAR INVERSE PROBLEMS 689

4. Regularizing property. In practice, we often do not have access to the exact data y but
only to noisy observations y\delta , such that \| y\delta  - y\| \scrY \leq \delta . The convergence study in the presence
of observational noise requires a different approach, since the sequence of objective values
(\| \bfA x\delta k  - y\delta \| p\scrY )k\in \BbbN generally will not converge to 0. In this section we show that SGD has a

regularizing effect, in the sense that the expected error \BbbE [\bfB p(x\delta k(\delta ),x
\dagger )] converges to 0 as the

noise level \delta decays to 0 for properly selected stopping indices k(\delta ).
Let (xk)k\in \BbbN and (x\delta k)k\in \BbbN be the noiseless and noisy iterates, defined respectively by

xk+1 =\scrJ \scrX \ast 

p\ast 

\bigl( 
\scrJ \scrX 
p (xk) - \mu k+1gk+1

\bigr) 
, with gk+1 = g(xk,y, ik+1),(4.1)

x\delta k+1 =\scrJ \scrX \ast 

p\ast 

\Bigl( 
\scrJ \scrX 
p (x\delta k) - \mu k+1g

\delta 
k+1

\Bigr) 
, with g\delta k+1 = g(x\delta k,y

\delta , ik+1).(4.2)

The key step in proving the regularizing property is to show the stability of SGD iterates
with respect to noise. The noise enters into the iterations through the update directions g\delta k+1,
and thus the stability of the iterates requires that of update directions. This, however, requires
imposing suitable assumptions on the observation space \scrY since in general the single-valued
duality maps \jmath \scrY p are continuous only at 0. If \scrY is uniformly smooth, the corresponding duality
maps are also smooth. This assumption is also needed for deterministic iterates; cf. [46,
Proposition 6.17] or [35, Lemma 9]. Thus, we make the following assumption.

Assumption 4.1. The Banach space \scrX is p-convex and uniformly smooth, and \scrY is uni-
formly smooth.

Using Assumption 4.1 we can show the following stability result on the iterates with
respect to noise, whose elementary but lengthy proof is deferred to the appendix.

Lemma 4.2. Let Assumption 4.1 hold. Consider the iterations (4.1) and (4.2) with the
same initialization x\delta 0 = x0, and following the same path (i.e., using same random indices ik).
Then, for any fixed k \in \BbbN , we have

lim
\delta \searrow 0

\BbbE [\bfB p(x
\delta 
k,xk)] = lim

\delta \searrow 0
\BbbE [\| x\delta k  - xk\| \scrX ] = lim

\delta \searrow 0
\BbbE [\| \scrJ \scrX 

p (x\delta k) - \scrJ \scrX 
p (xk)\| \scrX \ast ] = 0.

Now we show the regularizing property of SGD for suitable stopping indices k(\delta ).

Theorem 4.3. Let Assumption 4.1 hold, and the step-sizes (\mu k)k\in \BbbN satisfy
\sum \infty 

k=1 \mu k = \infty ,\sum \infty 
k=1 \mu 

p\ast 

k <\infty , and 1 - Lp\ast 

\mathrm{m}\mathrm{a}\mathrm{x}
Gp\ast 

p\ast \mu p\ast  - 1
k >C > 0. If lim\delta \searrow 0 k(\delta ) =\infty and lim\delta \searrow 0 \delta 

p
\sum k(\delta )

\ell =1 \mu \ell = 0,
then

lim
\delta \searrow 0

\BbbE [\bfB p(x
\delta 
k(\delta ),x

\dagger )] = 0.

Proof. Let \Delta k = \bfB p(xk,x
\dagger ) and \Delta \delta 

k = \bfB p(x\delta k,x
\dagger ). Take any \delta > 0 and k \in \BbbN . By the

three-point identity (2.2), we have

\Delta \delta 
k =\bfB p(x

\delta 
k,xk) +\Delta k +

\Bigl\langle 
\scrJ \scrX 
p (xk) - \scrJ \scrX 

p (x\delta k),xk  - x\dagger 
\Bigr\rangle 

\leq \bfB p(x
\delta 
k,xk) +\Delta k + \| \scrJ \scrX 

p (xk) - \scrJ \scrX 
p (x\delta k)\| \scrX \ast \| xk  - x\dagger \| \scrX .(4.3)

Consider a sequence (\delta j)j\in \BbbN decaying to zero. Taking any \epsilon > 0, it suffices to find a j\epsilon \in \BbbN 
such that for all j \geq j\epsilon we have \BbbE [\Delta \delta j

k(\delta j)
] \leq 4\epsilon . By Theorem 3.10, there exists a k\epsilon \in \BbbN such

that for all k\geq k\epsilon we have
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690 BANGTI JIN AND \v ZELJKO KERETA

\BbbE [\Delta k]< \epsilon and \BbbE [\| xk  - x\dagger \| \scrX ]< \epsilon 1/2.(4.4)

Moreover, for any fixed k\epsilon , by Lemma 4.2, there exists j1 \in \BbbN such that for all j \geq j1 we have

\BbbE [\bfB p(x
\delta j
k\epsilon 
,xk\epsilon 

)]< \epsilon and \BbbE [\| \scrJ \scrX 
p (xk\epsilon 

) - \scrJ \scrX 
p (x

\delta j
k\epsilon 
)\| \scrX \ast ]< \epsilon 1/2.(4.5)

Thus, plugging the estimates (4.4) and (4.5) into (4.3), we have \BbbE [\Delta \delta j
k\epsilon 
] < 3\epsilon for all j \geq j1.

Note, however, that the same does not necessarily hold for all k \geq k\epsilon , and it thus also does
not hold for a monotonically increasing sequence of stopping indices k(\delta j), since \BbbE [\Delta \delta j

k(\delta j)
] are

not necessarily monotonic. Instead, taking the expectation of the descent property (3.7) with
respect to \scrF k yields

\BbbE k[\Delta 
\delta 
k+1]\leq \Delta \delta 

k  - \mu k+1

\Bigl\langle 
\BbbE k[g

\delta 
k+1],x

\delta 
k  - x\dagger 

\Bigr\rangle 
+ pLp\ast 

\mathrm{m}\mathrm{a}\mathrm{x}

Gp\ast 

p\ast 
\mu p\ast 

k+1\Psi (x\delta k).

Then we decompose the middle term into\Bigl\langle 
\BbbE k[g

\delta 
k+1],x

\dagger  - x\delta k

\Bigr\rangle 
=

1

N

N\sum 
i=1

\Bigl\langle 
\jmath \scrY p (\bfA ix

\delta 
k  - y\delta i ), - (\bfA ix

\delta 
k  - y\delta i ) + yi  - y\delta i

\Bigr\rangle 
= - p\Psi (x\delta k) +

1

N

N\sum 
i=1

\Bigl\langle 
\jmath \scrY p (\bfA ix

\delta 
k  - y\delta i ),yi  - y\delta i

\Bigr\rangle 
\leq  - p\Psi (x\delta k) +

1

N

N\sum 
i=1

\| \bfA ix
\delta 
k  - y\delta i \| 

p - 1
\scrY \| yi  - y\delta i \| \scrY 

\leq  - p\Psi (x\delta k) + \delta 
1

N

N\sum 
i=1

\| \bfA ix
\delta 
k  - y\delta i \| 

p - 1
\scrY ,

where we used (2.1) and the Cauchy--Schwarz inequality. Taking the full expectation gives

\BbbE [\Delta \delta 
k+1]\leq \BbbE [\Delta \delta 

k] - p\mu k+1\BbbE [\Psi (x\delta k)]+pLp\ast 

\mathrm{m}\mathrm{a}\mathrm{x}

Gp\ast 

p\ast 
\mu p\ast 

k+1\BbbE [\Psi (x\delta k)]+\delta \mu k+1
1

N

N\sum 
i=1

\BbbE [\| \bfA ix
\delta 
k  - y\delta i \| 

p - 1
\scrY ]

=\BbbE [\Delta \delta 
k] - p\mu k+1Ck+1\BbbE [\Psi (x\delta k)] + \delta \mu k+1

1

N

N\sum 
i=1

\BbbE [\| \bfA ix
\delta 
k  - y\delta i \| 

p - 1
\scrY ],

where Ck=1 - Lp\ast 

\mathrm{m}\mathrm{a}\mathrm{x}
Gp\ast 

p\ast \mu p\ast  - 1
k >C > 0. Now using the Lyapunov inequality

1

N

N\sum 
i=1

\BbbE [\| \bfA ix
\delta 
k  - y\delta i \| 

p - 1
\scrY ]\leq 1

N

N\sum 
i=1

\Bigl( 
\BbbE [\| \bfA ix

\delta 
k  - y\delta i \| 

p
\scrY ]
\Bigr) (p - 1)/p

= p1/p
\ast 1

N

N\sum 
i=1

\Bigl( 
\BbbE [\Psi i(x

\delta 
k)]
\Bigr) 1/p\ast 

,

we deduce

\BbbE [\Delta \delta 
k+1]\leq \BbbE [\Delta \delta 

k] - p\mu k+1Ck+1\BbbE [\Psi (x\delta k)] + \delta \mu k+1p
1/p\ast 1

N

N\sum 
i=1

\Bigl( 
\BbbE [\Psi i(x

\delta 
k)]
\Bigr) 1/p\ast 

.(4.6)

Next we remove the exponent in the last term. Using Young's inequality ab\leq ap

p \omega 
 - p+ bp

\ast 

p\ast \omega p\ast 
,

with a= \delta and b=\BbbE [\Psi i(x\delta k)]
1/p\ast 

, we have
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ON SGD FOR BANACH SPACE LINEAR INVERSE PROBLEMS 691

1

N

N\sum 
i=1

\delta 
\Bigl( 
\BbbE [\Psi i(x

\delta 
k)]
\Bigr) 1/p\ast 

\leq \delta p
\omega  - p

p
+\BbbE 

\Bigl[ 1
N

N\sum 
i=1

\Psi i(x
\delta 
k)
\Bigr] \omega p\ast 

p\ast 
\leq \delta p

\omega  - p

p
+\BbbE [\Psi (x\delta k)]

\omega p\ast 

p\ast 
.

Plugging this back into (4.6) gives

\BbbE [\Delta \delta 
k+1]\leq \BbbE [\Delta \delta 

k] - p\mu k+1Ck+1\BbbE [\Psi (x\delta k)] + p1/p
\ast 
(p\ast ) - 1\omega p\ast 

\mu k+1\BbbE [\Psi (x\delta k)] + p - 1/p\delta p\omega  - p\mu k+1.

Taking \omega > 0 small enough so that \omega p\ast \leq p\ast p1/pCk (which can be made uniformly on k,
thanks to the positive lower bound on Ck), replacing k+1 with k(\delta ), and using the inductive
argument, we have

\BbbE [\Delta \delta 
k(\delta )]\leq \BbbE [\Delta \delta 

k(\delta ) - 1] + p - 1/p\omega  - p\delta p\mu k(\delta ) \leq \BbbE [\Delta \delta 
k\epsilon 
] + p - 1/p\omega  - p\delta p

k(\delta )\sum 
\ell =1

\mu \ell .

Since lim\delta \searrow 0 \delta 
p
\sum k(\delta )

\ell =1 \mu \ell = 0 and lim\delta \searrow 0 k(\delta ) =\infty , there exists j2 \in \BbbN such that for all j \geq j2
we have k(\delta j)\geq k\epsilon and p - 1/p\omega  - p\delta pj

\sum k(\delta j)
\ell =1 \mu \ell < \epsilon . Taking j\epsilon = j1 \vee j2 shows \BbbE [\Delta \delta j

k(\delta j)
]< 4\epsilon for

all j \geq j\epsilon , and hence the desired claim follows.

Remark 4.4. In the constant step-size regime, such as in the case of conditionally stable
operators, the correspondence between the noise level and the step-size regime takes a more
standard form. Namely, the condition in Theorem 4.3 reduces to lim\delta \searrow 0 \delta 

pk(\delta ) = 0. In other
words, we have k(\delta ) =\scrO (\delta  - p), mirroring the traditional conditions in Euclidean spaces. Note
that the condition on k(\delta ) is fairly broad and does not give useful concrete stopping rules
directly. Generally, the issue of a posterior stopping rules for stochastic iterative methods
is completely open, even for the Hilbert setting [22]. For polynomially decaying step-sizes

(\mu k)k\in \BbbN = (c0k
 - \beta )k\in \BbbN , the conditions 1

p\ast < \beta \leq 1 and c0 < ( p\ast 

Lp\ast 
\mathrm{m}\mathrm{a}\mathrm{x}Gp\ast 

)
1

p\ast  - 1 give a valid step-size

choice, and the stopping index k(\delta ) should satisfy lim\delta \searrow 0 k(\delta ) =\infty and lim\delta \searrow 0 k(\delta )\delta 
p

1 - \beta = 0.

Remark 4.5. It is of much interest to derive a convergence rate for noisy data under a
conditional stability condition as in Theorem 3.14, as a natural extension of the regularizing
property. However, this is still unavailable. Within the current analysis strategy, deriving
the rate would require quantitative versions of stability estimates in Lemma 4.2 in terms of \delta 
and k. Generally the convergence rate analysis for iterative regularization methods in Banach
space remains a very challenging task, and much more work is still needed.

5. Numerical experiments. We present numerical results on two sets of experiments to
illustrate distinct features of the SGD (3.4). The first set of experiments deals with an integral
operator and the reconstruction of a sparse signal in the presence of either Gaussian or impulse
noise. In this model example, we investigate the impact of the number of batches and the
choice of the spaces \scrX and \scrY on the performance of the algorithm. To simplify the study
we investigate spaces \scrX and \scrY that are smooth and convex of power type, and thus the
corresponding duality maps are singletons. To facilitate a direct comparison of the SGD with
the Landweber method, we count the computational complexity with respect to the number
of epochs, i.e., the partition size Nb defined below. Note, moreover, that our implementation
of the Landweber method does not use the stepsizes described in [44, Method 3.1], since the
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latter requires knowledge of quantities that are inconvenient to compute in practice. The
second set of experiments is about tomographic reconstruction, with respect to different types
of noise. All the shown reconstructions are obtained with a single stochastic run, as is often
done in practice, and the stopping index is determined in a trial-and-error manner so that the
corresponding reconstruction yields small errors.

5.1. Model linear inverse problem. We first consider the following model inverse problem
studied in [28]. Let \kappa : \Omega \times \Omega \rightarrow \BbbR +, with \Omega = (0,1), be a continuous function, and define an
integral operator \scrT \kappa :\scrL r\scrX (\Omega )\rightarrow \scrL r\scrY (\Omega ), for 1< r\scrX , r\scrY <\infty , by

(\scrT \kappa x)(t) =
\int 
\Omega 
\kappa (t, s)x(s)ds.(5.1)

This is a compact linear operator between \scrL r\scrX (\Omega ) and \scrL r\scrY (\Omega ), with the adjoint \scrT \ast 
\kappa :\scrL r\ast \scrY (\Omega )\rightarrow 

\scrL r\ast \scrX (\Omega ) given by (\scrT \ast 
\kappa y)(s)=

\int 
\Omega \kappa (t, s)y(t)dt. To approximate the integrals, we subdivide the

interval \Omega into N=1000 subintervals [ kN , k+1
N ] for k=0,. . .,N - 1, and then use quadrature, giv-

ing a finite-dimensional model \bfA x=y, with \bfA = 1
N

\Bigl( 
\kappa 
\Bigl( 
j - 1
N , 2k - 1

N

\Bigr) \Bigr) N
j,k=1

and x=
\Bigl( 
x
\Bigl( 
2j - 1
2N

\Bigr) \Bigr) N
j=1

.

For SGD we use Nb \leq N minibatches. To obtain equisized batches, we assume that Nb divides
N . The minibatch matrices \bfA j are then constructed by taking every Nbth row of \bfA , shifted
by j, resulting in well-balanced minibatches, in the sense that the norm \| \bfA j\| is (nearly)
independent of j.

The kernel function k(t, s) and the exact signal x\dagger are defined, respectively, by

\kappa (t, s) =

\Biggl\{ 
40t(1 - s) if t\leq s,

40s(1 - t) otherwise
and x\dagger (s) =

\left\{     
1 if s\in [ 940 ,

11
40 ]\cup [2940 ,

31
40 ],

2 if s\in [1940 ,
21
40 ],

0 otherwise.

This is a sparse signal, and we expect sparsity promoting norms to perform well. To illus-
trate this, we compare the following four settings: (a) \scrX = \scrY = \scrL 2(\Omega ); (b) \scrX = \scrL 2(\Omega ) and
\scrY = \scrL 1.1(\Omega ); (c) \scrX = \scrL 1.5(\Omega ) and \scrY = \scrL 2(\Omega ); (d) \scrX = \scrL 1.1(\Omega ) and \scrY = \scrL 2(\Omega ). Setting
(a) is the standard Hilbert space setting, suitable for recovering smooth solutions from mea-
surement data with independent and identically distributed Gaussian noise, whereas settings
(b)--(d) use Banach spaces. Settings (c) and (d) both aim at sparse solutions, and we ex-
pect the latter to yield sparser solutions, since spaces \scrL r(\Omega ) progressively enforce sparser
solutions as the exponent r gets closer to 1. In the experiments, we employ the step-size
schedule \mu k =

L\mathrm{m}\mathrm{a}\mathrm{x}

1+0.05(k/Nb)1/p
\ast +0.01 , with L\mathrm{m}\mathrm{a}\mathrm{x} =maxj\in [Nb] \| \bfA j\| . This satisfies the summability

conditions
\sum \infty 

k=1 \mu k = \infty and
\sum \infty 

k=1 \mu 
p\ast 

k < \infty required by Theorem 3.8. The operator norm

\| \bfA j\| = \| \bfA j\| \scrL r\scrX \rightarrow \scrL r\scrY =maxx\not =0
\| \bfA jx\| \scrL r\scrY 
\| x\| \scrL r\scrX 

is estimated using Boyd's power method [3]. All the
reconstruction algorithms are initialized with a zero vector.

In Figure 1, we compare the reconstructions with settings (a)--(d) for exact data. We
observe from Figure 1(a) that settings (a) and (b), with \scrX = \scrL 2(\Omega ), result in smooth solu-
tions that fail to capture the sparsity structure of the true signal x\dagger . In contrast, the choice
\scrX = \scrL 1.5(\Omega ) recovers a sparser solution, and the choice \scrX = \scrL 1.1(\Omega ) gives a truly sparse
reconstruction, but with peaks that overshoot the magnitude of x\dagger . This might be related to
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(\mathrm{a}) \mathrm{C}\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{g}\mathrm{i}\mathrm{n}\mathrm{g} \scrX \mathrm{a}\mathrm{n}\mathrm{d} \scrY \mathrm{f}\mathrm{o}\mathrm{r} Nb = 100 (\mathrm{b}) \mathrm{P}\mathrm{r}\mathrm{o}\mathrm{g}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n} \mathrm{o}\mathrm{f} \mathrm{i}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{s} \mathrm{f}\mathrm{o}\mathrm{r} \scrX = \scrL 1.1(\Omega )

Figure 1. Comparison of reconstructed solutions after 500 epochs.
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(\mathrm{a}) \scrX = \scrL 1.1(\Omega ) \mathrm{a}\mathrm{n}\mathrm{d} \scrY = \scrL 2(\Omega ) (\mathrm{b}) \scrX = \scrL 1.5(\Omega ) \mathrm{a}\mathrm{n}\mathrm{d} \scrY = \scrL 2(\Omega )

Figure 2. The variation of 1
p

\sum Nb
i=1 \| \bfA ixk  - yi\| 

p
\scrY with respect to the number of batches Nb.

the fact that x\dagger exhibits a cluster structure in addition to sparsity, which is not accounted
for in the choice of the space \scrX = \scrL 1.1(\Omega ) [52, 23]. Figure 1(b) indicates that early stopping
would result in lower peaks and significantly reduces the overshooting, but a more explicit
form of regularization [52, 23] might allow faster convergence.

In Figure 2, we investigate the convergence of the objective value with respect to the
number of batches Nb and the choice of the solution space \scrX . As expected, having a larger
number of batches results in a faster initial convergence, but also in increased variance, as
shown by the oscillations. Moreover, the variance is lower in the case of a smoother space \scrX 
(promoting smoother solutions), where the variance existing in early epochs is dramatically
reduced later on. This observation can be explained by the gradient expression g(x,y, i) =
\bfA \ast 

i \jmath 
\scrY 
p (\bfA ix - yi), which tends to zero as SGD iterates converge to the true solution x\dagger , as does

its variance, and the larger the exponent p, the faster the convergence.
Next we examine the performance of the algorithm when the observational data y\delta contains

(random-valued) impulse noise (cf. Figure 3), which is generated by

y\delta i =

\left\{     
y\dagger i , with probability 1 - p,

(1 - \xi )y\dagger i , with probability p/2,

1.4\xi + (1 - \xi )y\dagger i , with probability p/2,
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(\mathrm{a}) \mathrm{D}\mathrm{a}\mathrm{t}\mathrm{a} \mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h} \mathrm{i}\mathrm{m}\mathrm{p}\mathrm{u}\mathrm{l}\mathrm{s}\mathrm{e} \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{e} (\mathrm{b}) \mathrm{R}\mathrm{e}\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s} \mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h} \mathrm{r}\mathrm{e}\mathrm{s}\mathrm{p}\mathrm{e}\mathrm{c}\mathrm{t} \mathrm{t}\mathrm{o} \scrX \mathrm{a}\mathrm{n}\mathrm{d} \scrY 

Figure 3. The reconstruction performance in case of impulse noise. The algorithms utilized Nb = 100
batches and were run for 250 epochs.
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(\mathrm{a}) \mathrm{S}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{a}\mathrm{r}\mathrm{d} \mathrm{v}\mathrm{s} \mathrm{g}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{l}\mathrm{i}\mathrm{s}\mathrm{e}\mathrm{d} \mathrm{K}\mathrm{a}\mathrm{c}\mathrm{z}\mathrm{m}\mathrm{a}\mathrm{r}\mathrm{z} (\mathrm{b}) \mathrm{C}\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{g}\mathrm{i}\mathrm{n}\mathrm{g} \scrX \mathrm{i}\mathrm{n} \mathrm{g}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{l}\mathrm{i}\mathrm{s}\mathrm{e}\mathrm{d} \mathrm{K}\mathrm{a}\mathrm{c}\mathrm{z}\mathrm{m}\mathrm{a}\mathrm{r}\mathrm{z}

Figure 4. The dependence of the reconstructions in the case of impulse noise on the choice of q parameter
in the generalized model (3.9). The results are obtained using Nb = 100 batches after 250 epochs.

where p\in (0,1) denotes the percentage of corruption (which is set to 0.05 in the experiment)
and \xi \sim Uni(0.1,0.4) follows a uniform distribution over the interval (0.1,0.4). It is known that
\scrL r(\Omega ) fittings with r close to 1 is suitable for impulsive noise. This allows us to investigate
the role of not only the space \scrX but also \scrY . The results in Figure 3(b) show that the choice
\scrY = \scrL r\scrY (\Omega ), with r\scrY close to 1, performs significantly better. Indeed, the Hilbert setting
\scrX = \scrY = \scrL 2(\Omega ) produces overly smooth, nonsparse solutions with pronounced artifacts. In
sharp contrast, setting \scrX =\scrY =\scrL 1.1(\Omega ) yields solutions that can correctly identify the sparsity
structure of the true solution, and have no artifacts. Similarly as before, the reconstruction
in this setting overestimates the signal magnitude on its support, which is exacerbated as the
exponent r\scrY gets closer to 1.

Lastly, we investigate the convergence behavior of the method for the generalized model
(3.9) in section 3.2, where stochastic directions g(x,y, i) are defined as g(x,y, i) =\bfA \ast 

i \jmath 
\scrY 
q (\bfA ix - 

yi), with q = r\scrY different from the convexity parameter p of the space \scrX . The results in
Figure 4 show that this can indeed be beneficial for the performance of the method: the
reconstructions are more accurate not only in terms of the solution support, but also in terms
of the magnitudes of the nonzero entries. However, the precise mechanism of the excellent
performance remains largely elusive.
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(\mathrm{a}) \mathrm{O}\mathrm{r}\mathrm{i}\mathrm{g}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{l} \mathrm{p}\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{t}\mathrm{o}\mathrm{m} (\mathrm{b}) \mathrm{G}\mathrm{a}\mathrm{u}\mathrm{s}\mathrm{s}\mathrm{i}\mathrm{a}\mathrm{n} \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{e} \mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}\mathrm{u}\mathrm{r}\mathrm{e}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}
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(\mathrm{c}) \mathrm{L}\mathrm{o}\mathrm{w} \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{e} \mathrm{s}\mathrm{a}\mathrm{l}\mathrm{t}-\mathrm{a}\mathrm{n}\mathrm{d}-\mathrm{p}\mathrm{e}\mathrm{p}\mathrm{p}\mathrm{e}\mathrm{r} \mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}\mathrm{u}\mathrm{r}\mathrm{e}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t} (\mathrm{d}) \mathrm{H}\mathrm{i}\mathrm{g}\mathrm{h} \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{e} \mathrm{s}\mathrm{a}\mathrm{l}\mathrm{t}-\mathrm{a}\mathrm{n}\mathrm{d}-\mathrm{p}\mathrm{e}\mathrm{p}\mathrm{p}\mathrm{e}\mathrm{r} \mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}\mathrm{u}\mathrm{r}\mathrm{e}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}

Figure 5. The plot in (a) shows the phantom to be recovered, and (b)--(d) show noisy measurements used
in the recovery: in (b), random Gaussian noise was added, and (c)--(d) are sinogram data degraded by salt-and-
pepper noise in the low (5\%) and high (10\%) noise regimes.

5.2. Computed tomography. Now we numerically investigate the behavior of SGD on
computed tomography (CT), with respect to the model spaces \scrX and \scrY and data noise. In CT
reconstruction, we aim at determining the density of cross-sections of an object by measuring
the attenuation of X-rays as they propagate through the object [36]. Mathematically, the
forward map is given by the Radon transform. In the experiments, the discrete forward
operator \bfA is defined by a 2D parallel beam geometry, with 180 projection angles on a 1
angle separation, 256 detector elements, and pixel size of 0.1. The sought-for signal x\dagger is a
(sparse) phantom; cf. Figure 5(a). After applying the forward operator \bfA , either Gaussian
(with mean zero and variance 0.01) or salt-and-pepper noise is added. In the latter setting
we consider low (with 5\% of values changed to either salt or pepper values) and high (10\% of
values changed) noise regimes. The resulting sinograms (i.e., measurement data) are shown
in Figure 5(b)--(d).The experiments were conducted using the Core Imaging Library for the
tomographic backend. Note that standard quality metrics in image assessment, such as peak
signal-to-noise ratio or mean squared error, are computed using the distance between images in
the \ell 2-norm, which have an implicit bias towards Hilbert spaces and smooth signals, whereas
using a metric that emphasizes sparsity is more pertinent to sparsity promoting spaces. To
provide a balanced comparison, we report the following two metrics based on normalized \ell 1-
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(\mathrm{a}) \scrX = \scrY = \scrL 2 (\mathrm{b})\scrX = \scrL 1.1, \scrY = \scrL 2 (\mathrm{c}) \scrX = \scrY = \scrL 1.1

\delta 1(\bfsansx )/\delta 2(\bfsansx ): 2.643/0.528 \delta 1(\bfsansx )/\delta 2(\bfsansx ): 0.711/0.341 \delta 1(\bfsansx )/\delta 2(\bfsansx ): 2.195/0.620

Figure 6. The reconstruction of the phantom from the observed sinograms degraded by Gaussian noise; cf.
Figure 5 (b). The algorithms use Nb = 60 batches and were run for 200 epochs.
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(\mathrm{a}) 5 \mathrm{e}\mathrm{p}\mathrm{o}\mathrm{c}\mathrm{h}\mathrm{s} (\mathrm{b}) 50 \mathrm{e}\mathrm{p}\mathrm{o}\mathrm{c}\mathrm{h}\mathrm{s} (\mathrm{c}) 200 \mathrm{e}\mathrm{p}\mathrm{o}\mathrm{c}\mathrm{h}\mathrm{s}

\delta 1(\bfsansx )/\delta 2(\bfsansx ): 0.702/0.627 \delta 1(\bfsansx )/\delta 2(\bfsansx ): 0.263/0.235 \delta 1(\bfsansx )/\delta 2(\bfsansx ): 0.604/0.308

Figure 7. The evolution of the quality of reconstruction from sinograms degraded by Gaussian noise with
respect to the number of epochs. The algorithm uses \scrX =\scrY =\scrL 1.1 and p\scrY = 1.1, with Nb = 60 batches.

and \ell 2-norms: \delta 1(x) = \| x\dagger  - x\| \ell 1/\| x\dagger \| \ell 1 and \delta 2(x) = \| x\dagger  - x\| \ell 2/\| x\dagger \| \ell 2 .
First, we show the performance on Gaussian noise, where we compare the Hilbert setting

(\scrX = \scrY = \scrL 2) with two Banach settings (\scrX = \scrL 1.1, \scrY = \scrL 2, and \scrX = \scrY = \scrL 1.1). In the

reconstruction, we employ step-sizes \mu k = L\mathrm{m}\mathrm{a}\mathrm{x}/2
1+0.05(k/Nb)1/p

\ast +0.01 , with L\mathrm{m}\mathrm{a}\mathrm{x} = maxj\in [Nb] \| \bfA j\| .
Figure 6 shows exemplary reconstructions. In all three settings much of the noise is retained
in the reconstruction, and whereas the Hilbert setting is better at recovering the magnitude
of nonzero entries, the Banach settings are better at recovering the support. Moreover, we
observe that the Banach setting with a sparse signal space \scrX =\scrL 1.1 and a smooth observation
space \scrY = \scrL 2, has the best performance in terms of \delta 1 and \delta 2 metrics. The Hilbert model
performs better than the fully sparse model \scrX = \scrY = \scrL 1.1 in terms of the smooth metric \delta 2,
but worse in the sparsity promoting metric \delta 1. We also consider the Banach setting for the
generalized model (3.9), with \scrX = \scrY = \scrL 1.1 and p\scrY = 1.1, where we study the effects of early
stopping. Figure 7 shows that this setting recovers the support more accurately (and actually
does so very early on) and recovers the magnitudes better, but that a form of regularization
(through, e.g., early stopping) can be beneficial, since in the later epochs SGD iterates again
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(\mathrm{a}) \scrX = \scrY = \scrL 2 \mathrm{i}\mathrm{n} \mathrm{l}\mathrm{o}\mathrm{w} \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{e} (\mathrm{b})\scrX = \scrY = \scrL 1.1 \mathrm{i}\mathrm{n} \mathrm{l}\mathrm{o}\mathrm{w} \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{e} (\mathrm{c}) \scrX = \scrY = \scrL 1.1, p\scrY = 1.1 \mathrm{i}\mathrm{n} \mathrm{l}\mathrm{o}\mathrm{w} \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{e}

\delta 1(\bfsansx )/\delta 2(\bfsansx ): 18.67/3.71 \delta 1(\bfsansx )/\delta 2(\bfsansx ): 1.80/0.544 \delta 1(\bfsansx )/\delta 2(\bfsansx ): 2.43/3.68 \cdot \mathrm{e}-3
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(\mathrm{a}) \scrX = \scrY = \scrL 2 \mathrm{i}\mathrm{n} \mathrm{h}\mathrm{i}\mathrm{g}\mathrm{h} \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{e} (\mathrm{b}) \scrX = \scrY = \scrL 1.1 \mathrm{i}\mathrm{n} \mathrm{h}\mathrm{i}\mathrm{g}\mathrm{h} \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{e} (\mathrm{c}) \scrX = \scrY = \scrL 1.1, p\scrY = 1.1 \mathrm{i}\mathrm{n} \mathrm{h}\mathrm{i}\mathrm{g}\mathrm{h} \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{e}

\delta 1(\bfsansx )/\delta 2(\bfsansx ): 26.61/5.19 \delta 1(\bfsansx )/\delta 2(\bfsansx ): 5.37/1.54 \delta 1(\bfsansx )/\delta 2(\bfsansx ): 3.72/6.03 \cdot \mathrm{e}-3

Figure 8. The reconstruction of the phantom from the observed sinograms, degraded with low (top) and high
(bottom) salt-and-pepper noise, respectively, obtained using the Hilbert space model (\scrX = \scrY = \scrL 2) (left), the
Banach model (\scrX = \scrY = \scrL 1.1) (middle), and the Banach model (\scrX = \scrY = \scrL 1.1) with the generalized Kaczmarz
scheme (p\scrY = 1.1) (right). The algorithms use Nb = 60 batches and were run for 200 epochs.

tend to overshoot on the support. Similar behavior can observed for other studied Banach
space settings, but not for the Hilbert space setting, which does not recover the support.

We next investigate the performance for low and high salt-and-pepper noise. We compare
the Hilbert setting with two Banach settings: the standard SGD with \scrX = \scrY = \scrL 1.1 and the
generalized model (3.9) with \scrX = \scrY = \scrL 1.1 and p\scrY = 1.1. For the reconstruction, we employ
step-sizes \mu k =

0.5
1+0.05(k/Nb)1/p

\ast +0.01 . The results in Figure 8 show the reconstructions after 200
epochs with Nb = 60 batches. In the low noise regime, the Hilbert setting can reconstruct
the general shape of the phantom, but retains a lot of the noise and exhibits streaking ar-
tifacts in the background. The reconstruction in the high noise regime is of much poorer
quality. The standard Banach SGD shows good behavior in the low noise setting, recon-
structing well both the sparsity structure and the magnitudes, but its performance degrades
in the high noise setting. In sharp contrast, the model (3.9) shows a nearly perfect recon-
struction performance---the phantom is well recovered, with intensities on the correct scale,
for both low and high noise regimes. Similarly as before, we observe that Banach methods
tend to slightly overestimate the overall intensities, though the recovered values are compara-
ble to the true solution. Overall, the Hilbert setting shows a qualitatively and quantitatively
worst performance, in both the \ell 1- and \ell 2-norm sense, and the model (3.9) shows the best
performance.
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Figure 9. The phantoms and sinograms for the forward model with both pre- and postmeasurement noise.
The phantom on the left is degraded by Gaussian noise. After applying the forward operator, either Gaussian
(middle) or salt-and-pepper noise (right) is added to the sinogram.
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(\mathrm{a}) \scrX = \scrY = \scrL 2 (\mathrm{b}) \scrX = \scrY = \scrL 1.1, p\scrY = 1.1 (\mathrm{c}) \scrX = \scrL 1.1, \scrY = \scrL 1.9, p\scrY = 1.9

\delta 1(\bfsansx )/\delta 2(\bfsansx ): 5.65/1.12 \delta 1(\bfsansx )/\delta 2(\bfsansx ): 3.16/0.632 \delta 1(\bfsansx )/\delta 2(\bfsansx ): 2.99/0.561

Figure 10. The reconstruction of the phantom from the observed sinograms with pre- and postmeasurement
Gaussian noise. The algorithms use Nb = 60 batches and were run for 200 epochs.

Lastly, we investigate a more challenging setting with noise affecting not only the sino-
grams, but also the original phantoms. Then the ground-truth image is only approximately
sparse. The phantom is degraded with Gaussian noise (zero mean and variance 0.01) after
which we apply the forward operator to the resulting noisy phantom. We then add either
Gaussian (zero mean and variance 0.01) or salt-and-pepper noise (affecting 3\% of measure-
ments); see Figure 9 for representative images. The reconstruction algorithms use SGD with
a decaying step-size schedule, \mu k =

0.2
1+0.05(k/Nb)1/p

\ast +0.01 .
The reconstructions for data with Gaussian noise in both the phantom and the sinogram

are shown in Figure 10. As before, reconstructions in the Hilbert setting are comparable, but
slightly worse than those computed with the Banach settings. Banach methods are better at
recovering the sparsity structure of the solution and have better reconstruction quality metrics,
though they do not completely remove the noise. In the second setting, with the Gaussian
noise affecting the phantom and salt-and-pepper noise affecting the sinogram, the difference
in reconstruction quality in the Hilbert space and Banach space settings is significantly more
pronounced; cf. Figure 11. In both settings, the choice of spaces \scrX and \scrY can have a
big impact on the reconstruction quality, especially on the amount of noise retained in the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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(a) \scrX = \scrY = \scrL 2 (b)\scrX = \scrY = \scrL 1.3, p\scrY = 1.3 (c) \scrX = \scrY = \scrL 1.1, p\scrY = 1.1
\delta 1(\bfsansx )/\delta 2(\bfsansx ): 17.48/3.52 \delta 1(\bfsansx )/\delta 2(\bfsansx ): 3.46/0.86 \delta 1(\bfsansx )/\delta 2(\bfsansx ): 3.14/0.62

Figure 11. The reconstructed phantom from the sinograms with a Gaussian premeasurement and a salt-
and-pepper (post)measurement noise. The algorithms use Nb = 60 batches and were run for 400 epochs.

background. Moreover, further improvements can be achieved by explicitly penalizing the
objective function.

Appendix A. Technical results and proofs.

Lemma A.1 ([38, Lemma 6]). Let (\delta n)n be a sequence of nonnegative scalars, let (\mu n)n be
a sequence of positive scalars, and let \alpha > 0. If

\delta n+1 \leq \delta n  - \mu n+1\delta 
1+\alpha 
n , \forall n= 0, . . . ,N,

then

\delta N \leq \delta 0

\Biggl( 
1 + \alpha \delta \alpha 0

N\sum 
n=1

\mu n

\Biggr)  - 1/\alpha 

.

A.1. Two elementary estimates. In this section, we present two elementary estimates on
the SGD iterates for exact data that are useful in establishing the regularizing property.

Lemma A.2. Let the sequence (xk)k\in \BbbN be generated by iterations (3.4), let the step-sizes
(\mu k)k\in \BbbN satisfy \mu p\ast  - 1

k \leq p\ast 

Gp\ast L
p\ast 
\mathrm{m}\mathrm{a}\mathrm{x}

for all k \in \BbbN , and let the stochastic update directions gk be

of the form (3.5). Then for any \widehat x \in \scrX \mathrm{m}\mathrm{i}\mathrm{n}, the sequence (\bfB p(xk,\widehat x))k\in \BbbN is nonincreasing. In
particular, if \bfB p(x0,\widehat x)\leq \rho , then \bfB p(xk,\widehat x)\leq \rho for all k.

Proof. Let \Delta k =\bfB p(xk,\widehat x). By Lemma 3.6, we have

\Delta k+1 \leq \Delta k  - \mu k+1

\bigl\langle 
gk+1,xk  - \widehat x\bigr\rangle + Gp\ast 

p\ast 
\mu p\ast 

k+1\| gk+1\| 
p\ast 

\scrX \ast .

By the definition of duality map and the choice of the update directions gk, we have\bigl\langle 
gk+1,xk  - \widehat x\bigr\rangle = \bigl\langle \jmath \scrY p (\bfA ik+1

xk  - yik+1
),\bfA ik+1

xk  - yik+1

\bigr\rangle 
= \| \bfA ik+1

xk  - yik+1
\| p\scrY ,

\| gk+1\| 
p\ast 

\scrX \ast = \| \bfA \ast 
ik+1

\jmath \scrY p (\bfA ik+1
xk  - yik+1

)\| p
\ast 

\scrX \ast \leq \| \bfA \ast 
ik+1

\| p\ast \| \jmath \scrY p (\bfA ik+1
xk  - yik+1

)\| p
\ast 

\scrY \ast 

\leq Lp\ast 

\mathrm{m}\mathrm{a}\mathrm{x}\| \bfA ik+1
xk  - yik+1

\| (p - 1)p\ast 

\scrY =Lp\ast 

\mathrm{m}\mathrm{a}\mathrm{x}\| \bfA ik+1
xk  - yik+1

\| p\scrY .
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700 BANGTI JIN AND \v ZELJKO KERETA

Consequently,

\Delta k+1 \leq \Delta k  - \mu k+1

\bigl\langle 
gk+1,xk  - \widehat x\bigr\rangle + Gp\ast 

p\ast 
\mu p\ast 

k+1\| gk+1\| 
p\ast 

\scrX \ast 

\leq \Delta k  - 
\Bigl( 
1 - Lp\ast 

\mathrm{m}\mathrm{a}\mathrm{x}

Gp\ast 

p\ast 
\mu p\ast  - 1
k+1

\Bigr) 
\mu k+1\| \bfA ik+1

xk  - yik+1
\| p\scrY .

Since \mu p\ast  - 1
k \leq p\ast 

Gp\ast L
p\ast 
\mathrm{m}\mathrm{a}\mathrm{x}

by assumption, \Delta k+1 \leq \Delta k \leq \Delta 0, completing the proof.

Lemma A.3 (coercivity of the Bregman distance). If \Delta k = \bfB p(xk,x
\dagger ) \leq C < \infty for all k,

then \| xk\| p\scrX \leq (2p\ast )p(\| x\dagger \| p\scrX \vee C) for all k \in \BbbN .

Proof. By the definition of \Delta k and the Cauchy--Schwarz inequality, we have

\Delta k \geq 
1

p\ast 
\| xk\| p\scrX +

1

p
\| x\dagger \| p\scrX  - \| x\dagger \| \scrX \| xk\| p - 1

\scrX .

Then we have \| xk\| p - 1
\scrX ( 1

p\ast \| xk\| \scrX  - \| x\dagger \| \scrX )\leq \Delta k. If now
1
p\ast \| xk\| \scrX  - \| x\dagger \| \scrX \leq 1

2p\ast \| xk\| \scrX , it follows
that \| xk\| p\scrX \leq (2p\ast )p\| x\dagger \| p\scrX . Otherwise, if 1

p\ast \| xk\| \scrX  - \| x\dagger \| \scrX \geq 1
2p\ast \| xk\| \scrX , we have

1

2p\ast 
\| xk\| p\scrX \leq \| xk\| p - 1

\scrX 

\biggl( 
1

p\ast 
\| xk\| \scrX  - \| x\dagger \| \scrX 

\biggr) 
\leq \Delta k.

Combining these two bounds gives \| xk\| p\scrX \leq (2p\ast )p(\| x\dagger \| p\scrX \vee \Delta k).

A.2. Proof of Lemma 4.2. To prove Lemma 4.2, we need the following simple fact.

Lemma A.4. For any fixed k \in \BbbN , the clean iterates xk generated by (4.1) are uniformly
bounded, i.e., there exists Ck > 0 such that sup\omega \in \scrF k

\| xk\| \scrX \leq Ck <\infty .

Proof. If step-sizes \mu k satisfy the conditions of Lemma A.2, the statement is direct from
Lemma A.3, and moreover Ck can be chosen to be independent of k. Otherwise we proceed by
induction. The induction basis is trivial. Indeed, by the triangle inequality and the definition
of duality maps, we have

\| xk+1\| p - 1
\scrX = \| \scrJ \scrX 

p (xk) - \mu k+1gk+1\| \scrX \ast 

\leq \| xk\| p - 1
\scrX +L\mathrm{m}\mathrm{a}\mathrm{x}\mu k+1\| \jmath \scrY p (\bfA ik+1

xk  - yik+1
)\| \scrY \ast 

\leq \| xk\| p - 1
\scrX +L\mathrm{m}\mathrm{a}\mathrm{x}\mu k+1\| \bfA ik+1

xk  - yik+1
\| p - 1
\scrY 

\leq \| xk\| p - 1
\scrX +Lp

\mathrm{m}\mathrm{a}\mathrm{x}\mu k+1\| xk  - x\dagger \| p - 1
\scrX .

Now under the inductive hypothesis sup\omega \in \scrF k
\| xk\| \scrX \leq Ck <\infty , we have

\| xk+1\| p - 1
\scrX \leq \| xk\| p - 1

\scrX +Lp
\mathrm{m}\mathrm{a}\mathrm{x}\mu k+1(\| xk\| p - 1

\scrX + \| x\dagger \| p - 1
\scrX )

\leq Cp - 1
k (1 +Lp

\mathrm{m}\mathrm{a}\mathrm{x}\mu k+1) +Lp
\mathrm{m}\mathrm{a}\mathrm{x}\mu k+1\| x\dagger \| p - 1

\scrX .

This directly proves the statement of the lemma.

Now we can present the proof of Lemma 4.2.
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ON SGD FOR BANACH SPACE LINEAR INVERSE PROBLEMS 701

Proof of Lemma 4.2. For any sequence (\delta j)j\in \BbbN , with limj\rightarrow \infty \delta j = 0, we consider a sequence

of random vectors (x
\delta j
k ,xk)j\in \BbbN . We will show by induction that (for any fixed k \in \BbbN ) the

sequence (\bfB p(x
\delta j
k ,xk))j is uniformly bounded, i.e., sup\omega \in \scrF k

\bfB p(x
\delta j
k ,xk) < \infty , converges to

0 pointwise, and that x
\delta j
k is uniformly bounded. The remaining two claims regarding the

convergence of \| x\delta k  - xk\| \scrX and \| \scrJ \scrX 
p (x\delta k) - \scrJ \scrX 

p (xk)\| \scrX \ast then follow directly. For notational
brevity, we also suppress the sequence notation \delta j , and only use \delta . For the induction base, by
Theorem 2.6(i) and (iv), we have

\bfB p(x
\delta 
1,x1) =\bfB p\ast 

\Bigl( 
\scrJ \scrX 
p (x1),\scrJ \scrX 

p (x\delta 1)
\Bigr) 

\leq Gp\ast 

p\ast 
\| \scrJ \scrX 

p (x0) - \scrJ \scrX 
p (x0) - \mu 1(g

\delta 
1  - g1)\| 

p\ast 

\scrX \ast =
Gp\ast 

p\ast 
\mu p\ast 

1 \| g\delta 1  - g1\| 
p\ast 

\scrX \ast ,

where g\delta 1 = g(x0,y\delta , i1) and g1 = g(x0,y, i1). Specifically, in the case (3.5), we have

\| g\delta 1 - g1\| 
p\ast 

\scrX \ast =\| \bfA \ast 
i1(\jmath 

\scrY 
p (\bfA i1x0 - y\delta i1) - \jmath \scrY p (\bfA i1x0 - yi1))\| 

p\ast 

\scrX \ast 

\leq Lp\ast 

\mathrm{m}\mathrm{a}\mathrm{x}\| \jmath \scrY p (\bfA i1x0 - y\delta i1) - \jmath \scrY p (\bfA i1x0 - yi1)\| 
p\ast 

\scrY \ast .

Since \scrY is by assumption uniformly smooth, by Theorem 2.3(iv), we have

\| \jmath \scrY p (\bfA i1x0 - y\delta i1) - \jmath \scrY p (\bfA i1x0 - yi1)\| \scrY \ast 

\leq Cmax\{ 1,\| \bfA i1x0 - y\delta i1\| \scrY ,\| \bfA i1x0 - yi1\| \scrY \} 
p - 1\=\rho \scrY (\| yi1 - y\delta i1\| \scrY ).

Upon maximizing over \scrF 1, the term in the maximum is uniformly bounded. Since \=\rho \scrY :=
\rho \scrY (\tau )/\tau \leq 1, \bfB p(x\delta 1,x1) is uniformly bounded. Since lim\tau \rightarrow 0 \=\rho \scrY (\tau ) = 0, it follows that
lim\delta \searrow 0\bfB p(x\delta 1,x1) = 0 pointwise. By the p-convexity of \scrX , we have

0\leq Cp

p
\| x\delta 1  - x1\| p\scrX \leq \bfB p(x

\delta 
1,x1).

Thus, \| x\delta 1  - x1\| \scrX is uniformly bounded and lim\delta \searrow 0 \| x\delta 1  - x1\| \scrX = 0 point-wise. By the uniform
boundedness of \| x\delta 1  - x1\| \scrX and Lemma A.4, the sequence x\delta 1 is also uniformly bounded:

\| x\delta 1\| \scrX \leq \| x\delta 1  - x1\| \scrX + \| x1\| \scrX .(A.1)

For some k > 0, assume that \bfB p(x\delta k,xk) is uniformly bounded and converges to 0 pointwise
as \delta \rightarrow 0+. Using the p-convexity of \scrX , it follows that \| x\delta k  - xk\| \scrX is uniformly bounded and
converges to 0 pointwise, and, using again Lemma A.4, it follows that x\delta k is also uniformly
bounded. Then by Theorem 2.6(i) and (iv), we have

\bfB p(x
\delta 
k+1,xk+1) =\bfB p\ast 

\Bigl( 
\scrJ \scrX 
p (xk+1),\scrJ \scrX 

p (x\delta k+1)
\Bigr) 

\leq Gp\ast 

p\ast 
\| \scrJ \scrX 

p (x\delta k) - \scrJ \scrX 
p (xk) - \mu k+1(g

\delta 
k+1  - gk+1)\| 

p\ast 

\scrX \ast 

\leq Gp\ast 

p\ast 
(\| \scrJ \scrX 

p (x\delta k) - \scrJ \scrX 
p (xk)\| \scrX \ast + \mu k+1\| g\delta k+1  - gk+1\| \scrX \ast )p

\ast 
.
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702 BANGTI JIN AND \v ZELJKO KERETA

Now we separately analyze the two terms in parentheses. First, using the uniform smoothness
of \scrX (and Theorem 2.3(iv) with \=\rho \scrX \ast (\tau )<C\tau p

\ast  - 1; cf. Definition 2.2), we have

\| \scrJ \scrX 
p (x\delta k) - \scrJ \scrX 

p (xk)\| \scrX \ast \leq Cmax\{ 1,\| x\delta k\| \scrX ,\| xk\| \scrX \} p - 1\=\rho \scrX (\| x\delta k  - xk\| \scrX ).(A.2)

Since the right-hand side is uniformly bounded and converges to 0 pointwise by the induction
hypothesis, the same holds for the left-hand side. Next we decompose the second term into a
sum of two perturbation terms,

\| g(x\delta k,y\delta , ik+1) - g(xk,y, ik+1)\| \scrX \ast \leq \| g(xk,y\delta , ik+1) - g(xk,y, ik+1)\| \scrX \ast 

+ \| g(x\delta k,y\delta , ik+1) - g(xk,y
\delta , ik+1)\| \scrX \ast := I + II.

First, by the assumption \scrY being uniformly smooth and Theorem 2.3(iv), we have

I = \| \bfA \ast 
ik+1

(\jmath \scrY p (\bfA ik+1
xk  - y\delta ik+1

) - \jmath \scrY p (\bfA ik+1
xk  - yik+1

))\| \scrX \ast 

\leq L\mathrm{m}\mathrm{a}\mathrm{x}\| \jmath \scrY p (\bfA ik+1
xk  - y\delta ik+1

) - \jmath \scrY p (\bfA ik+1
xk  - yik+1

)\| \scrY \ast 

\leq CL\mathrm{m}\mathrm{a}\mathrm{x}max\{ 1,\| \bfA ik+1
xk  - y\delta ik+1

\| \scrY ,\| \bfA ik+1
xk  - yik+1

\| \scrY \} p - 1\=\rho \scrY (\| yik+1
 - y\delta ik+1

\| \scrY ).

By the induction hypothesis and repeating the arguments from the base of induction, the
right-hand side is uniformly bounded and converges to 0 pointwise. Second, similarly, we have

II = \| \bfA \ast 
ik+1

(\jmath \scrY p (\bfA ik+1
x\delta k  - y\delta ik+1

) - \jmath \scrY p (\bfA ik+1
xk  - y\delta ik+1

))\| \scrX \ast 

\leq L\mathrm{m}\mathrm{a}\mathrm{x}\| \jmath \scrY p (\bfA ik+1
x\delta k  - y\delta ik+1

) - \jmath \scrY p (\bfA ik+1
x\delta k  - y\delta ik+1

)\| \scrY \ast 

\leq CL\mathrm{m}\mathrm{a}\mathrm{x}max\{ 1,\| \bfA ik+1
x\delta k  - y\delta ik+1

\| \scrY ,\| \bfA ik+1
xk  - y\delta ik+1

\| \scrY \} p - 1\=\rho \scrY (\| \bfA ik+1
(x\delta k  - xk)\| \scrY ).

By the same arguments, the right-hand side is uniformly bounded. Moreover,
\| \bfA ik+1

(x\delta k  - xk)\| \scrY \leq L\mathrm{m}\mathrm{a}\mathrm{x}\| x\delta k  - xk\| \scrX , which by the induction hypothesis converges point-
wise to 0. Putting all these bounds together yields that \bfB p(x\delta k+1,xk+1) is uniformly bounded
and converges pointwise to 0. Using Vitaly's theorem, the desired statement follows directly.
Since \bfB p(x\delta k,xk) is uniformly bounded and converges pointwise to 0 for any k, then so does
\| x\delta k  - xk\| \scrX , and consequently, by inequality (A.2) (and (A.1)), so does \| \scrJ \scrX 

p (x\delta k) - \scrJ \scrX 
p (xk)\| \scrX \ast .

The second part of the claim thus follows. This completes the proof of the induction step,
and hence also the lemma.
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