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Abstract. In this work we consider stochastic gradient descent (SGD) for solving linear inverse problems in
Banach spaces. SGD and its variants have been established as one of the most successful optimization
methods in machine learning, imaging, and signal processing, to name a few. At each iteration
SGD uses a single datum, or a small subset of data, resulting in highly scalable methods that are
very attractive for large-scale inverse problems. Nonetheless, the theoretical analysis of SGD-based
approaches for inverse problems has thus far been largely limited to Euclidean and Hilbert spaces.
In this work we present a novel convergence analysis of SGD for linear inverse problems in general
Banach spaces: we show the almost sure convergence of the iterates to the minimum norm solution
and establish the regularizing property for suitable a priori stopping criteria. Numerical results are
also presented to illustrate features of the approach.
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1. Introduction. This work considers (stochastic) iterative solutions for linear operator
equations of the form

(1.1) Ax=y,

where A : X — Y is a bounded linear operator between Banach spaces X and ) (equipped
with the norms |- || x and || - ||y, respectively), and y € range(A) is the exact data. In practice,
we only have access to noisy data y° =y + &, where & denotes the measurement noise with
a noise level § > 0 such that |y’ —y|ly<d. Linear inverse problems arise naturally in many
applications in science and engineering, and also form the basis for studying nonlinear inverse
problems. Hence, design and analysis of stable reconstruction methods for linear inverse
problems have received much attention.

Iterative regularization is a powerful algorithmic paradigm that has been successfully em-
ployed for many inverse problems [14, Chapters 6 and 7], [30]. Classical iterative methods for
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inverse problems include the (accelerated) Landweber method, conjugate gradient method,
Levenberg—Marquardt method, and Gauss—Newton method, to name a few. The per-iteration
computational bottleneck of many iterative methods lies in utilizing all the data at each
iteration, which can be of a prohibitively large size. For example, this occurs while com-
puting the derivative of an objective. One promising strategy to overcome this challenge is
stochastic gradient descent (SGD), due to Robbins and Monro [40]. SGD decomposes the
original problem into (finitely many) subproblems, and then at each iteration uses only a
single datum, or a minibatch of data, typically selected uniformly at random. This greatly
reduces the per iteration computational complexity and enjoys excellent scalability with re-
spect to data size. In the standard, and best-studied, setting, X and ) are finite-dimensional
Euclidean spaces and the corresponding data fitting objective is the (rescaled) least squares
U(x) = 55 || Ax — yl@ =+ Zfil HIAX— ylﬂg, In this setting SGD takes the form

*
Xp+1 = Xk — /~‘k+1Aik+1 (Aikﬂxk - yikH), k= 0, 1, ey

where py, > is the step-size, ixy1 is a randomly selected index, A; is the ith row of a matrix
A, and y, is the ith entry of y. In the seminal work [40], Robbins and Monro presented SGD
as a Markov chain, laying the groundwork for the field of stochastic approximation [32]. SGD
has since had a major impact on statistical inference and machine learning, especially for the
training of neural networks. SGD has been extensively studied in the Euclidean setting; see
[2] for an overview of the convergence theory from the viewpoint of optimization.

SGD has also been a popular method for image reconstruction, especially in medical
imaging. For example, the (randomized) Kaczmarz method is a reweighted version of SGD
that has been extensively used in computed tomography [18, 37]. Other applications of SGD
and its variants include optical tomography [6], phonon transmission coefficient recovery [15],
positron emission tomography [31], as well as general sparse recovery [42, 43]. For linear
inverse problems in Euclidean spaces, Jin and Lu [24] gave a first proof of convergence of SGD
iterates towards the minimum norm solution, and analyzed the regularizing behavior in the
presence of noise; see [22, 25, 26, 34, 39] for further convergence results, a posteriori stopping
rules (discrepancy principle), nonlinear problems, general step-size schedules, etc.

Iterative methods in Euclidean and Hilbert spaces are effective for reconstructing smooth
solutions but fail to capture special features of the solutions, such as sparsity and piecewise
constancy. In practice, many imaging inverse problems are more adequately described in
non-Hilbert settings, including sequence spaces P(R) and Lebesgue spaces LP(Q2), with p €
[1,00]\ {2}, which requires changing either the solution, the data space, or both. For example,
inverse problems with impulse noise are better modeled by setting the data space Y to a
Lebesgue space LP(Q2) with p &~ 1 [11], whereas the recovery of sparse solutions is modeled
by doing the same to the solution space X' [4]. Thus, it is of great importance to develop
and analyze algorithms for inverse problems in Banach spaces, and this has received much
attention [41, 46]. For the Landweber method for linear inverse problems in Banach spaces,
Schopfer, Louis, and Schuster [44] were the first to prove strong convergence of the iterates
under a suitable step-size schedule for a smooth and uniformly convex Banach space X and an
arbitrary Banach space ). This has since been extended and refined in various aspects, e.g.,
regarding acceleration [45, 49, 17, 51], nonlinear forward models [12, 35], and Gauss—Newton
methods [29)].
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In this work, we investigate SGD for inverse problems in Banach spaces, which has thus
far lagged behind due to outstanding challenges in extending the analysis of standard Hilbert
space approaches to the Banach space setting. The main challenges in analyzing SGD-like
gradient-based methods in Banach spaces are twofold:

1. The use of duality maps results in nonlinear update rules, which greatly complicates
the convergence analysis. For example, the (expected) difference between successive
updates can no longer be identified as the (sub)gradient of the objective.

2. Due to geometric characteristics of Banach spaces, it is more common to use the
Bregman distance for the convergence analysis, which results in the loss of useful alge-
braic tools, e.g., triangle inequality and bias-variance decomposition, that are typically
needed for the analysis.

In this work, we develop an SGD approach for the numerical solution of linear inverse
problems in Banach spaces, using the subgradient approach based on duality maps, and present
a novel convergence analysis. We first consider the case of exact data and show that SGD
iterates converge to a minimizing solution (first almost surely and then in expectation) under
standard assumptions on summability of step-sizes, and geometric properties of the space
X; cf. Theorems 3.8 and 3.10. This solution is identified as the minimum norm solution
if the initial guess xq satisfies the range condition JPX (xp) € range(A*). Further, we give
a convergence rate in Theorem 3.14 when the forward operator A satisfies a conditional
stability estimate. In the case of noisy observations, we show the regularizing property of
SGD for properly chosen stopping indices; cf. Theorem 4.3. The analysis rests on a descent
property in Lemma 3.6 and the Robbins—Siegmund theorem for almost supermartingales. In
addition, we perform extensive numerical experiments on a model inverse problem (linear
integral equation) and computed tomography (with parallel beam geometry) to illustrate
distinct features of the proposed Banach space SGD, and we examine the influence of various
factors, such as the choice of the spaces X and ), minibatch size, and noise characteristics
(Gaussian or impulse).

When finalizing the paper, we became aware of the independent and simultaneous work
[27] on a stochastic mirror descent method for linear inverse problems between a Banach
space X and a Hilbert space ). The method is a randomized version of the well-known
Landweber—Kaczmarz method. The authors prove convergence results under a priori stopping
rules, and also establish an order-optimal convergence rate when the exact solution x! satisfies
a benchmark source condition, by interpreting the method as a randomized block gradient
method applied to the dual problem. Thus, the current work differs significantly from [27] in
terms of problem setting, main results, and analysis techniques.

The rest of the paper is organized as follows. In section 2, we recall background materials
on the geometry of Banach spaces, e.g., duality maps and Bregman distance. In section 3, we
present the convergence of SGD for exact data, and in section 4, we discuss the regularizing
property of SGD for noisy observations. Finally, in section 5, we provide some experimental
results on a model inverse problem and computed tomography. In the appendix we collect
several useful inequalities and auxiliary estimates.

Throughout, let X and ) be two real Banach spaces, with their norms denoted by ||-||x
and ||-||y, respectively. X* and Y* are their respective dual spaces, with their norms denoted
by |- || x~ and ||-||y+, respectively. For x € X and x* € X*, we denote the corresponding duality
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pairing by (x*,x) = (x*,X)x-xx = x*(x). For a continuous linear operator A : X — ), we use
|A || x—y to denote the operator norm (often with the subscript omitted). The adjoint of A is
denoted by A*: Y* — X*, and it is a continuous linear operator, with ||A|lx—y = [[A"||y« -
The conjugate exponent of p € (1,00) is denoted by p*, such that 1/p+ 1/p* =1 holds. The
Cauchy—Schwarz inequality of the following form holds for any x € X and x* € X*:

(1.2) [ %) | < [l

For reals a,b we write aAb=min{a,b} and aVVb=max{a,b}. By (Fi)ken, we denote the natu-
ral filtration, i.e., a growing sequence of o-algebras such that Fj C Fi1 C F for all k€ N and
a o-algebra F, and Fj. In the context of SGD, k € N is the iteration number and F; denotes
the iteration history generated by random indices ¢; for j <k, that is, it denotes information
available at time k. For a given initialization xg, we can identify F; = o(x1,...,Xx). For a
filtration (Fj)ren we denote by Ex[-] =E[- | x1, ..., xx] the conditional expectation with respect
to Fi. A sequence of random variables (zx)ren (adapted to the filtration (Fy)ren) is a called
supermartingale if Ex[zp11] < xp. Throughout, the notation a.s. denotes almost sure events.

X||X.

2. Preliminaries on Banach spaces. In this section we recall relevant concepts from
Banach space theory and the geometry of Banach spaces.

2.1. Duality map. In a Hilbert space H, for every x € H, there exists a unique x* € H*
such that (x*,x) = ||x]||||x*|l2 and ||x*||%~ = ||x||z by the Riesz representation theorem. For
Banach spaces, however, such an x* is not necessarily unique, motivating the notion of duality
maps.

Definition 2.1 (duality map). For any p > 1, a duality map ij : X —= 2% s the subdiffer-
ential of the (convez) functional %HXHP ,

X * * * * —1 *
(2.1) Tt = {x" € 1 (x",x) =[x llx - and x5 = x" - }
with gauge function t+— tP~1. A single-valued selection of ij is denoted by ];)Y.

In practice, the choice of the power parameter p depends on geometric properties of the
space X. For single-valued duality maps, we use ij and jff interchangeably. Next we recall
standard notions of smoothness and convexity of Banach spaces. For an overview of Banach
space geometry, we refer the interested reader to the monographs [9, 10, 46].

Definition 2.2. Let X be a Banach space. X is said to be reflerive if the canonical map
x = X between X and the bidual X**, defined by X(x*) = x*(x), is surjective. X is smooth if
for every 0 #x € X there is a unique x* € X* such that (x*,x) = ||x||x and ||x*||x~ =1. The
function dx : (0,2] - R, defined as

a(r) =inf {1 = Jlz+wllx: 1zl = Wl = 1,1z = wlle > 7},

is the modulus of convexity of X. A space X is said to be uniformly convex if dx(7) >0 for
all 7 € (0,2], and p-convex, for p>1, if dx (1) > Kp7P for some K, >0 and all T € (0,2]. The
function py :[0,00) — [0,00), defined as

z4+TW||lx + ||z —TW||x
pre(r) =sup { IZFTIA 2 =TIy — i =1,
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1s the modulus of smoothness of X', and is a convex and continuous function such that p%(T) 18
a nondecreasing function with px (1) < 7. X is said to be uniformly smooth 4f lim\ p%m =0,

and p-smooth, for p>1, if px (1) < Kp7? for some K, >0 and all 7 € (0,00).
The following relationships between Banach spaces and duality maps will be used extensively.

Theorem 2.3 ([46, Theorems 2.52 and 2.53 and Lemma 5.16]).

(i) For every x € X, the set J;¥(x) is nonempty, convex, and weakly-x closed in X*.

(ii) X is p-smooth if and only if X* is p*-conver. X is p-convex if and only if X* is
p*-smooth.

(iii) X is smooth if and only if JPX is single valued. If X is convex of power type and
smooth, then JPX is inwvertible and (ij)_l = jp)f*. If X is uniformly smooth and
uniformly convez, then ij and jp)f " are both uniformly continuous.

(iv) Let X be a uniformly smooth Banach space with duality map ij with p > 2. Then,
for all x,x € X, there holds

I17:¥ () = T;F @) < Cmax{L, |x . Xl }” 2 (Ix = X[ )",

where py(T) = px(7)/T is a modulus of smoothness function such that p(7) < 1.

Next we list some common Banach spaces, the corresponding duality maps, and convexity
and smoothness properties.

Example 2.4.

(i) A Hilbert space & is 2-smooth and 2-convex, and J3' is the identity.
(i) If X is smooth, then J;¥ is the Gateaux derivative of the functional x — %HXH’;(
(iii) If X =¢"(R) with 1 <r < oo, then ij is single-valued, and the duality map is given
by T (x) = [[x||F~"|x|""Lsign(x). Moreover, J;¥ = V(%HHQ) since X is smooth.
(iv) Lebesgue spaces LP(2), Sobolev spaces W*P(), with s > 0 (for an open bounded
domain ), and sequence spaces /P (R) are pA2-smooth and pV 2-convex for 1 < p < co.
For p € {1,000}, they are neither smooth nor strictly convex.

2.2. Bregman distance. Due to the geometry of Banach spaces, it is often more con-
venient to use the Bregman distance than the standard Banach space norm |||y in the
convergence analysis.

Definition 2.5 (Bregman distance). For a smooth Banach space X, the functional
1 p 1 P X
By(z,w) = ];HZHX + Z;HWHX — (7 (2),w)

is called the Bregman distance, where 1/p+1/p*=1.

Note that the dependence of the Bregman distance B,(z,w) on the space X’ is omitted,
which is often clear from the context. The Bregman distance does not satisfy the triangle
inequality and is generally non-symmetric. Thus, it is not a norm. The next theorem lists
useful properties of the Bregman distance which show the relationship between the geometry
of the underlying Banach space and duality maps.
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Theorem 2.6 ([46, Theorem 2.60, Lemmas 2.62 and 2.63|). The following properties hold:

(i) If X is smooth and reflezive, then B,(z,w) = Bp*(JpX(w), ij(z)).
(ii) Bregman distance satisfies the three-point identity

(2.2) B,(z,w) =B, (z,v) + B,(v,w) + (T, (v) — T;* (), w — v).
(iii) If X is p-convex, then it is reflexive, p > 2, and there exists Cp, >0 such that
(2.3) By(z,w) Zp_10p||w—z||€(.
(iv) If X* is p*-smooth, then it is reflexive, p* <2, and there exists Gp- >0 such that
%

w'—z

(2.4) By (z",w") < () ' G

(v) Bp(z,w) >0, and if X is uniformly convez, we have B,(z,w) =0 if and only if z=w.

(vi) By(z,w) is continuous in the second argument. If X is smooth and uniformly con-
vez, then ij is continuous on bounded subsets and By(z,w) is continuous in its first
argument.

3. Convergence analysis for exact data. Now we develop an SGD-type approach for
problem (1.1) and analyze its convergence. Throughout, we make the following assumption
on the Banach spaces X and ), unless indicated otherwise.

Assumption 3.1. The Banach space X is p-convex and smooth, and ) is arbitrary.

To recover the solution x', we minimize a least-squares-type objective
argminxeX%HAx—YHSJ, for some p > 1. By Xnin, we denote the (nonempty) set of
minimizers over X. Among the elements of X, the regularization theory focuses on the
so-called minimum norm solution.

Definition 3.2. An element x' € X is called a minimum norm solution (MNS) of (1.1) if

Ax' =y and ||x'||x =inf{||x||x:x€ X, Ax=y}.

The MNS x is not unique for general Banach spaces. The following lemma states sufficient
geometric assumptions on X for uniqueness.

Lemma 3.3 ([46, Lemma 3.3]). Let Assumption 3.1 hold. Then there exists a unique MNS
x'.  Furthermore, ij(xT) € range(A*) for 1 < p < oo. If some X € X satisfies T;¥(X) €
range(A*) and X — x| € null(A), then X =x'.

By Lemma 3.3, the MNS x' is unique modulo the null space of A, under certain smoothness
and convexity assumptions on X. These conditions exclude, for example, Lebesgue space

L£1(9) and and sequence space ¢!(R); cf. Example 2.4(iv). The standard Landweber method
[33, 44] constructs an approximation to the MNS x' by running the iterations

(3]‘) Xk+1 :jp‘/\:* (ij(xk) _:uk-i-lA*]:;)))(Axk _y)) ’ k:0717‘”7

where p;11 > 0 is the step-size. Asplund’s theorem [46, Theorem 2.28] allows for charac-
terizing the duality map as the subdifferential, ij = (%HH&) for p > 1. This identifies
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the descent direction A* j?)] (Axj; —y) as the subgradient of the objective: A* ]13; (Ax, —y) =
0(%||A- —y|ly)(xx). Note that J;' is single-valued by Assumption 3.1 and Theorem 2.3,
though jpy is not. For well-selected step-sizes, Landweber iterations (3.1) converge to an
MNS of (1.1) [44, Theorem 3.3].

The evaluation of the subgradient A* j?j (Axy —y) represents the main per-iteration cost
of the iteration (3.1). In this work, we consider the following Kaczmarz-type setting:

(32) A= : and Ax=| : |=[:],
Ay Apnx YN

where A;: X — Vi, y; € Vi, for i € [N]={1,...,N}. Problem (3.2) is defined on the direct
product (®§V:1yi,1z’“), equipped with the ¢"-norm, for r > 1,

S}i)m.

Below we identify }; = Y for notational brevity and use ||-||y to denote both the norm of the
direct product space and the component spaces, though all the relevant proofs and concepts
easily extend to the general case. Then the objective ¥(x) is given by

N
(3-3) Iylly = l[Cyrs - ym)lly = 1yallyes s lywlly)lle = (Z [yl
i=1

N
1 . 1
U(x) = D Wi(x),  with ¥(x) = EHAix —yill%-
=1

Note that for many common imaging problems we use ) = ¢P(R), which then naturally gives
U(x) = piNHAx —y|%. To reduce the computational cost per iteration, we exploit the finite-
sum structure of the objective ¥(x) and adopt SGD iterations of the form

(3.4) Xg+1 = jp)f* (ij(Xk) — [k +18k41) »

where g, 1 = g(X, Y, ix+1) is the stochastic update direction given by

(3.5) gx,y,3) = AL (Ax—y;) = (L1 Ai - —y,5) (x),

and the random index iy is sampled uniformly over the index set [IN], independent of xy.
Clearly, it is an unbiased estimator of the subgradient 0¥(x), i.e., E[g(x,y,7)] = 0¥(x), and
the per-iteration cost is reduced by a factor of V.

Remark 3.4. In the model (3.2), if ) admits a complemented sum ) = Zf\il Vi, we can take
the (internal ) direct sum (&Y ;);, "), so that y=1y; + -+ +yy and the corresponding norm
lyll = I(IProjy, (W) |yys- - -, [IProjy, (¥)|lyx ) lr- With this identification the spaces (@Y, (")
and (®X,V;,¢") are isometrically isomorphic [48] and the norms are equivalent for all > 1.

We now collect some useful properties about the objective ¥ and the Bregman divergence.
Throughout, Limax = max;ey) [|Aill. Note that cy =1/N if Y = LP(Q) or £P(R).
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Lemma 3.5. For alli € [N], x€ X, and any X € Xpin (such that AX=Yy), we have

(3.6) OV;(x),x —X) =p¥;(x) and (0¥(x),x —X)=pV¥(x).

—

Moreover, ¥;(x) < H‘(szlpo(x,?), U(x) < Lg‘—‘:"Bp(x,/i), and for some Cn >0 we have ¥(x) >
O | Ax— yl,
Proof. 1t follows from the identity AX =y that

(OWi(x),x = %) = (A7) (Aix —y;), x = X) = (5 (Aix — ), Aix — y;) = p¥;(x).

Since O¥(x) = + Zi\il 0¥;(x), the second identity in (3.6) follows from the linearity of the
dual product. By the p-convexity of the space X and Theorem 2.6(iii), we get

1 1 < AP || A [P <
U(x) = ~[[Aix — y;[[5 = = | As(x = X) ||, < T ||x = %[5 < “—-B,(x,X).
i(x) pH X =yl pll ix =Xl < ) [Ix —x[[y < c, p(%,X)
The second claim follows since ¥(x) = 4 SV W(x). Lastly, by the norm equivalence (3.3)
for 1 <r < oo, there exists Cy > 0 such that
N
1 1 Cn
_ v P> N _ vl
‘I’(x)—Nizlp”AzX yilly, > » [Ax —yl[}- u
We now focus on the convergence study of the iterations (3.4), without and with noise in
the data, and discuss convergence rates under conditional stability.

3.1. Convergence for the Kaczmarz model. Below, the notation E[-] denotes taking ex-
pectation with respect to the sampling of the random indices iy, and Ex[-] denotes taking
conditional expectation with respect to .. The remaining variables, e.g., x and y, are mea-
surable with respect to the underlying probability measure. To study the convergence of SGD
(3.4), we first establish a descent property in terms of the Bregman distance.

Lemma 3.6. Let Assumption 3.1 hold. For any X € X, the iterates in (3.4) satisfy

- - R G« o= .
(3.7) Bp(ka,X) < Bp(xk,x) — HEk41 <gk+1vxk - x> + pfiﬂﬁﬂ”gk—s—l”i’)\’*'

Proof. Let Ay :=By(xg,X). By Definition 2.5 and expression (3.4), we have

*

1. 1
=—|x|% + =
p 't p

1, . 1 ~
Apr1= ];||X||§( + ;ka+1\|§( —{T;F (%p41), %)
ij/};* (ij(Xk) - Mk+1gk+1) Hgf - <~7pX(Xk+1)7§>-
Using Definition 2.1, the identity p(p* — 1) = p*, and Theorem 2.3(iii), we deduce
A _lAp i X _ p(p*=1) _ / 7x _ =
ket —p||X||X +p* 1Ty (%K) — b 1811l - (T3 (Xk) = [ths18p11,X)

1 . 1 ¥ . x ~
= ];”XHI;V + E"jp (xk) — Mk+1gk+1”€w - <~7p (xk) — /j’k+1gk+17x>-
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Since X is p-convex, X* is p*-smooth; cf. Theorem 2.3(i). By [9, Corollary 5.8], this implies

1 Jp— 1 * (€ “ - -
el = < e T (T 605 v e

*

Using identities p*(p — 1) = p and (ij)_l = jp“’f* (cf. Theorem 2.3(iii)), we get

Mk+1gk+1||§c* - <Nk+1gk+17xk>

1 ¥ . 1 o . G. .
— |7 (k) = prr18ri1 - < = I1T° (i) 5 + —2-
b p b
— i P Gp* p* p*

_p*”kaX+ D" :“k+1Hgk+1HX* M1 <gk‘+17xk>'

Combining the preceding estimates gives the desired assertion through

1. 1 o Gy e . -
Apgr < EHXHQ + JZ;”Xka . <~7pX(Xk)7X> + p%ﬂ£+1”gk+1wj\f* — fk+1 8k Xk —X)

R G o .
= Ap — fgt1 <gk+1v X — X> + p%#i+1 ”gk+1 ||€z*- u

Lemma 3.6 allows showing that the sequence of Bregman distances (B (xx,X))ren forms
an almost supermartingale (in the Robbins-Siegmund sense defined below) for X € X, and
well-chosen step-sizes (pug)ren. We will show almost sure convergence of the iterates using the
Robbins—-Siegmund theorem.

Theorem 3.7 (Robbins—Siegmund theorem on the convergence of almost supermartingales [38,
Lemma 11]). Consider a filtration (Fi)ken and four nonnegative, (Fy)ren adapted processes

() ken, (Be)rens (Vk)kens and (Ok)ken. Let (ax)ken be an almost supermartingale, i.e., for
all k we have Eg[ag11] < (14 Br)ak + vk — dk. Then the sequence (ay)ken converges a.s. to a

random variable oo, and Y g 0k <00 a.s. on the set {d poq Br <00, > peq Yk < 0O}

We can now show that under certain conditions on xg, the limit of the iterations (3.4) is
the MNS x'. Below, E;, denotes the conditional expectation with respect to the filtration Fj.

Theorem 3.8. Let (pg)ken satisfy Y peq pte = 00 and Y po ,ui* < 00, let Assumption 3.1
hold, and let x! be the MNS. Then the sequence (X )ren converges a.s. to a solution of (1.1):

1@( lim _inf ka—;\|X:o):1.

k—00XEXmin

Moreover, if JpX(xo) € range(A*), we have limy_,o Bp(x,x") =0 a.s.

Proof. By Lemma 3.5, we have (0W(x3,),x; — x!) = p¥(x;). Moreover,

Y+ < Linax||Aix — Yz‘HI)))_17

lg(x y. ) [l 2= = AT 5 (Aix —y;)llae- < [[A][l7 (Aix — ;)]

with Liax = max;e(n) [[Aql. Thus, since p*(p — 1) =p, we have

N
- 1 :
Eflgy: D)ll-] < pLinax 37 > EHAiX = Yill5 = PLE U (%)
=1
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Upon taking the conditional expectation Ex[-] of the descent property (3.7) (with X = x'), and
using the measurability of x; with respect to F, we deduce

G s
Er[Api1] < Mg — ppes19 (xi) + pLE o pi foy 1 ¥ (Xp)-

Using Lemma 3.5 again we have ¥(xy) < "‘”‘ Ak, which yields

G «
Er[Ap] < <1+Lfn£(p£ * k+1> Ap = ppoe+1Y (xg).-

Since Y7, ,ui* < 00 by assumption, we can apply Theorem 3.7 and deduce that the sequence
(Ag)ren converges a.s. to a random variable Ay and > "7 1P (xg) < 0o a.s. Let © be
the measurable set on which (Ag)gen converges, Y po o k1P (x) < 00, and P(Q) = 1. Next
we show lim infg ¥ (x;) =0 a.s. Consider an event w on which this is not the case, i.e., where
lim inf;, U(xx) > 0. Then there exist € >0 and k. € N such that for all k£ > k., ¥(x) > ¢, giving
D oksk, M1V (Xk) > €D psp fey1- If w were in € Since for all events in  this would lead to a
contradiction—the right-hand side diverges (3 32 pux = oo by assumption), whereas the left-
hand side is the remainder of a convergent series. Thus, we conclude w ¢ ). Since P(Q¢) =0,
we have lim inf, W (x;) =0 a.s. For every event in the set where lim inf ¥(x;,) = 0 holds we can
then find a subsequence (xy, )ken such that limy_,oc ¥(xy, ) = 0. Define also U(x) = EZ]L T, (x),
with W;(x) = ||Aix — y;|ly. We have lim inf,¥(x;) = 0 and lim;j o0 \/ﬁ(xnj) =0 (on the same
subsequence), since by Young’s inequality,

N 1/p N 1 N 1/p
(Siamovig) <3 haoniyen (3 1amnit)
i=1 i=1 i=1
Moreover, \Tl(x)p < pNPU(x). The following argument is understood pointwise on the a.s. set
Q where (Ag)gen converges, > oo pr+1¥(xg) < 0o, and lim infpW(x;) = 0. Since (Ag)ken
converges it is bounded. By the coercivity of the Bregman distance (see Lemma A.3), so are
(xx)ken and (ij (x))ken. By further passing to a subsequence, we can find a subsequence
of (Xp, )ken, which we denote the same, such that (||x,,||x)ken is convergent, (JpX(xnk))keN is

weakly convergent, and
(3.8) lim U(x,,)=0 and U(x,)<V¥(x,) Vn<ng.

k—o0

The latter can be obtained by setting ny = 1, and then recursively defining ng,; = min{k >
ng : Y(xg) < ¥(xp,)/2} for k£ € N. Any following subsequence satisfies the same property.
Using Theorem 2.6(ii), we have, for k > ¢,

Byt )= (0 = 6 ) 5 ) = T3 (00 ) T ) = T3 (00 =)

Since the first two terms involve Cauchy sequences, it suffices to treat the last term, denoted
by I. Using telescopic sum and applying the iterate update rule, we have

nkfl

Ik,é — Z <\.7pX(Xn+1)_ij(xn s Xn, —X > Z Hn+1 < Zn+1 (AikHXn - yin_,_l)axnk - XT>

n=ny n=ny
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’I’Lkl

= Z Hn+41 <]p Zn+1 yik+1)7 Ain+1xnk - yi"+1> .

n=ny

By the Cauchy—Schwarz inequality and properties of the duality map, we get

nk—l nk—l
1 ~ PPN
‘Ik,d < Zﬂn+1||Ain+1xn_yin+1 Hp ||A7/n+1 yi”+1||y < Z lu’n'i‘l\IJinJrl (xn)p I\Iliwrl (Xnk)
n=ng n=ne

Since W;(x) < ¥(x) for all i € [N], we use (3.8) and get

TL}C—I Nne— 1
’Ik,€| < Z NnJrl\I/(xn)p Xnk Z Hn+1‘1/ Xy, )P
n=ny n=ne

Since \Tl(x)p < pNPU(x), the right-hand side of the inequality converges to 0 as ny — oo.
Therefore, by [44, Theorem 2.12(e)], it follows that (x,, )ken is a Cauchy sequence, and thus
converges strongly to an X such that ¥(x) =0.

The above argument showing the a.s. convergence of (Ag)ren can be applied pointwise
to any solution. Namely, on the event where (x,, )ren converges strongly to an X € Xy (i.e.,
Ax=Yy), define Ay = B, (xx,X). By repeating the argument using Lemma 3.5, we deduce

~ p Gp
Ak—l—l < <1 + Lfn;_(pc D k+1> Ak p/“’k"‘l‘l;ik (Xk)

Since > 77, ui* < o0, it follows that the (deterministic) sequence (ﬁk)keN converges to a
A > 0. The continuity of the Bregman distance in the first argument (Theorem 2.6(vi))
gives lim;_,oc By (X, ,X) = B,(X,X) =0, and thus ﬁoo = 0. Moreover, by the p-convexity of X
(Theorem 2.6(iii)), we have 0 < ||x; — |/, < & Ak From the squeeze theorem it follows that
limy o0 ||Xg — X||x = 0. Thus, for every event in an a.s. set €, the sequence (Xx)ken strongly
converges to some minimizing solution, that is,

IP( lim inf |xg — X[ = o) =1.
k—00 XEXmin

Next assume J;* (xo) € range(A*). From (3.4), it follows that J;¥(xx) € range(A*) holds
for all k> 1. By the continuity of J;¥, we have J;*(X) € range(A*). Thus, from A(x—x') =0
and Lemma 3.3 it follows that X = x. [ |

The assumptionsand conclusions of Theorem 3.8 can be broken down into two parts. The
step-size conditions Y po ;i = 00 and Y po, ,uz* < 0o are required to show the a.s. conver-
gence of (By(xy,X))ren to 0 for some nondeterministic X € Xpin. The remaining assumption
T;¥ (xo) € range(A*) is needed to identify this limit as the MNS x', as the Landweber method
[44, Remark 3.12]. If ij (xo) & range(A*), we can commonly establish convergence to an MNS
relative to xo, i.e., a solution which minimizes ||x — x¢|| x, analogous to the Euclidean case [24].

Remark 3.9. The step-size conditions Y ;- ; iy =00 and Y oo, ,uk* < oo are satisfied by a
polynomially decaying step-size schedule (u3)ren = (p0k™?)pen, with - <g<1.
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Theorem 3.8 states sufficient conditions ensuring the a.s. convergence of (B (xy,x"))ren to
0. To strengthen this to the convergence in expectation, we require an additional assumption to
ensure that (B, (xs,x"))ken is a uniformly integrable supermartingale. Note that removing the
assumptions of Theorem 3.8 from Theorem 3.10 would still result in convergence in expectation
to some nonnegative random variable, but not necessarily to 0. Recall that a family (X;); of
random variables is uniformly integrable provided limy, oo sup, E[[| X¢[| [ 1) x,>%] = 0, where
1(-) is the indicator function.

Theorem 3.10. Let the conditions of Theorem 3.8 hold with ij(xo) € range(A*) and let
ui*_l < g f’LP* for all k € N. Then there holds limkﬁooE[Bp(xk,xT)] = 0. Moreover, for
1<r<p, we have limg o0 E[||xx — xT||%] =0, and if X is additionally uniformly smooth, then
limny o0 B[|T;¥ (x1) = T5¥ (<) [5.] = 0.

Proof. The step-size conditions allow us to apply Lemma A.2, which yields B, (xz,x") <
B, (xo, x1) for all k. Tt follows that (Bp(x, x"))ren is bounded, and is thus uniformly integrable,
and by Theorem 3.8 it converges a.s. to 0. Then, by Vitali’s convergence theorem [1, Theorem
4.5.4], we deduce that (Ag)gen converges to 0 in expectation as well. Using now the p-convexity
of X and the monotonicity of expectation, we have

*

C
0<—2 lim E[||x; —x'[|%] < lim E[B N =0.
<~ dm (I3 —x"[%] < lim E[By(xk, x")]
By the continuity of the power function and the Lyapunov inequality for 1 <r<p, we have
0< lim Ef|[x —x[|%] < lim (E[|x, - x'[5])"7” =o0.
k—00 k—o0
To prove the last claim we use uniform smoothness of X and Theorem 2.3(iv), to deduce

17 (xi) — ¥ (D) 1B, < Cmax{1, xg]l s x| B (xi — xT[[2)7",

where py(7) = px(7)/7 is a modulus of smoothness function such that p(7) < 1 and
lim, ,op(7) = 0; cf. Definition 2.2. By Lemmas A.2 and A.3 (||xg|/%)ken is (uniformly)
bounded, giving that the sequence (||JpX(xk) —ij(XT)Hgg*)keN is bounded and thus uni-
formly integrable. Since limy o, E[||xx — x'||x] = 0, it follows that |x; —x'||x converges to
0 in probability, and thus by the continuous mapping theorem 5y (||xx — x'||x)P" also con-
verges to 0 in probability. Applying Vitaly’s theorem to the uniformly integrable sequence
(ITE (xe) — ¥ (xT) 12 Jren yields that it converges to 0 in measure, and the claim follows. M

Remark 3.11. Note that the condition J;¥(xo) € range(A*) on xg is crucial for ensuring
that all the limits are the same. Landweber iterations converge for uniformly convex and
smooth X, and any Banach space ) [44, Theorem 3.3]. In our analysis, we have assumed
that X is p-convex to simplify the analysis. First, p-convexity is used in the proof of Lemma
3.6. If X were only uniformly convex (and X* only uniformly smooth), then we may use the
modulus of smoothness function py (cf. (2.2) and [46, Theorem 2.41]) to establish a suitable
analogue of the descent property (3.7). Second, p-convexity is used in the proof of Theorem
3.8, allowing a more direct application of the Robbins—Siegmund theorem by relating the
objective values to Bregman distances. Meanwhile, the Landweber method in [44] requires
step-sizes that depend on the modulus of smoothness, the current iterate, and the objective
value, which is more restrictive than the step-size regime used in this work.
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3.2. Convergence analysis for the generalized Kaczmarz model. Schopfer, Louis, and
Schuster [44] studied general powers of the Banach space norm and subgradients of the form
8(%||A- —y[%)(x). Now we take an analogous perspective for the objective

N
1 . 1
U(x) = D Wi(x),  with ¥y(x) = 5HAix —yill%,
=1

with 1 < ¢ < 2. This model is herein called the generalized Kaczmarz model. (Note that
this is different from the randomized extended Kaczmarz method [53].) We shall show the
convergence of SGD with stochastic directions

(3.9) g(x,y,1) = A7) (Aix —y;) = (L[| A; - —y;]15) (%).

The descent property (3.7) is unaffected, and a direct computation again yields

G * * *
(3.10) By (X 41,X1) < Bp(x,x") =ty <gkz+1axk - XT> + pfiNﬁHHng”iw

However, the Robbins—Siegmund theorem cannot be applied directly. Instead, we pursue a
different proof strategy by first establishing the uniform boundedness of iterates.

Lemma 3.12. Let Assumption 3.1 hold. Consider SGD with descent directions (3.9) for
1< ¢<2, and assume that pf, 1< g *pr* holds for all k €N and Y ;2 ph =:T <oo. Then
(Bp(xk,xf))keN and (Xx)ken are uniformly bounded.

Proof. Let W;(x) = [Aix —y;[% and Ay = B, (xx,x"). Then we have (g, 1,x; —X) =
U, . (xx) and

* * * * —1
gl = 1AL 27 (Aiex —yi, ). < Lol A x =y, 15 @Y

—_ P

* *g—1 * P
< Ly \Ijik+1 (Xk)p ¢ = Lglax\piwrl (Xk) “,

max
where ¢* > 2 is the conjugate exponent of ¢q. Plugging this into (3.10) gives

p*

— " G * * P
(3.11) A1 < Ak = pip1 Vi, (x5) + Lﬁlaxp%ﬂiﬂ‘l’im (Xk) o™ -

Since 1 < p* <2 by Theorem 2.6(iii), and ¢* > 2, we have g—: < 1. Now we define two sets of
indices

I:{]Sk iHl(xj)Zl} and j:{jgk ij+1(xj)<]'}7

so that ZNJ =0, and ZU J = [k]. Note that Z and J actually depend on the current iterate
index k. Applying the inductive argument to (3.11) gives

k k
— * G * * j2a
Apy1 <Ag — Z 'u’j‘f'l\llijﬂ (Xj) + Lﬁlaxp% Z N§+1\Pi1+1 (Xj) -
=0 =0
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= 80— i1 Wiy, (%)) + Ly p’: DT ()T =Y T (%)
JjET JjET jeTJ

(%) (%)

p
+Lﬁ1ax Zlu]—i-l G541 X])
JjeJ

(k)

Next we analyze these three terms separately. First, for j € Z, we have Ei;’ ..(xj) > 1 and since

P <1, we have U, (X )% <V, (x;), giving

— P Gy p_q —
_Z Mj+1\11ij+1(x] +Lfnax P ZMJ+1 i1 XJ) Z(l Lfnax pi M§+1 )/’Lj+1\I/ij+l (xj)'
JET jeT jezT

Since /1? +_11 < m holds by assumption, the term (x) is nonpositive. Moreover, (x*) is

trivially nonpositive. Since ¥, (x;) <1 for j € 7, the last term (% **) can be bounded as

o]
G-
p E : p E 2 p
max :u]+1 141 XJ) <L11.;1ax 'u]Jrl max max p* I
JjeTJ JjeTJ =

By combining the last three bounds on (%), (%), and (x % %), we get

Ap1 < Ao+ LE, G{f‘r vk > 0.

max

Thus, (Ag)ken is uniformly bounded and by Lemma A.3, so is (X )ken- [ |

The proof of Lemma 3.12 exposes the challenge in extending the convergence results to
general stochastic directions. Namely, in the proof of Theorem 3.8, we showed the convergence
by taking the conditional expectation of (3.7), recasting the resulting expression as an almost
supermartingale, and then relating objective values to Bregman distances via ¥(xy) < CAg
for some C' > 0. Here, using =4 1 and % =p* — 1, we instead have

p* *_ _ p* * *=1)(¢—1
W) <CAP VY i 0 =g o0 (2T,
CP

which gives

man -

2 Gy e _
Eg[Apg1] <A+ CLE e MiHA(p DAY g1 (xy).

Here 0 < (p* —1)(¢ — 1) < 1, provided p* # 2 and q # 2. Therefore, the Robbins—Siegmund
theorem cannot be applied directly. Nonetheless, we still have the following analogue of
Theorem 3.10.
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Theorem 3.13. Consider iterations (3.4) with descent directions (3.9) for 1 < ¢ < 2, let

Assumption 3.1 hold, and let x' be the MNS. Let the step-sizes (fig)ken SAtisfy Y peq ke =

Y e ui* < 0o, and ,ui*_l < —L—— for all k € N. Then the sequence (X)xen converges a.s.

Gy~ Lzr:)ax
to a solution of (1.1):

IP’( lim _inf ka—;uxzo):

k—ro0 3?6 Xmin

Moreover, if JpX(xo) € range(A*), we have

lim B,(xg,x") =0 a.s. and lim E[B,(x,x")] =0.

k—o0 k—o0

Proof. To establish the a.s. convergence of iterates, we first take the conditional expecta-
tion of the descent property (3.10) and obtain

Gy .
(3.12) Ex[Agy1] < Ag — prta <Ek[gk+1]7xk - XT> + piiﬂi+1]Ek[Hgk+1H€Y*]'
We now have (Eg). 1], xx — xT) = (00 (xx), x. — xT) = q¥(x), and

-1
l9(x,¥,9) 12+ < Linax | Aix — y; |5,

Then taking the conditional expectation of ||g(x,y,7)|[%.. yields

“(g—1 2*
Elllg(x,y,0)l5-] < L[| Aix — yill 5 O] = Lh B[ (1A — y,15)

We have 0 < < 1, with the equality achieved only if p* = ¢* = 2. In the latter case, it

trivially follows that E[||g(x,y,1 )||p ] < qLBa ¥ (x). If 0 < Z—* < 1, by Jensen’s inequality, we
have

*

Elllg(xy, i)l5-] < LiaE| (| Aix — YZH))) < Lia (B [I!Aix—yng;]) < L™ W(x) 7.

Plugging this estimate into the conditional descent property (3.12) yields

*

o G e 2t
Ek[Aks1] < Ak = quup1 W (xk) + Liaxg p—iuﬁﬂ’(u) -

Since the sequence (xj)ren is uniformly bounded by Lemma 3.12, so is (¥(xg))ren, and we
thus have

Z“k-ﬂ Xk < CZMk+1 < 0.
k=0

Thus, we can apply the Robbins—Siegmund theorem for almost supermartingales, and de-
duce that (Ag)ren converges a.s. to a nonnegative random variable A,. Moreover,
> re o k+1P(x;) < oo holds a.s. By repeating the argument for Theorem 3.8, there exists
a subsequence (xi,)jen that a.s. converges to some X € Xpin, and hence Ay, =0, as desired.
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Moreover, by Lemma 3.12, the sequence (Ag)gen is bounded, and thus uniformly integrable.
Since it converges to 0 a.s., from Vitali’s theorem it follows that limkaE[Bp(xk,xT)} =0. |

The results in Theorem 3.13 are similar to that of Theorem 3.10, but the generality of
the latter is compensated for by an additional step-size assumption ensuring boundedness of
iterates (Xg)ken-

3.3. Convergence rates for conditionally stable operators. Theorem 3.10 states the con-
ditions needed for the convergence of Bregman distances in expectation. However, it does not
provide convergence rates. In order to obtain convergence rates, one needs additional condi-
tions on the MNS xf, which are collectively known as source conditions. One approach is via
conditional stability: for a locally conditionally stable operator, we can extract convergence
in expectation and quantify the convergence speed. Conditional stability is known for many
inverse problems for PDEs and has been used extensively to investigate regularized solutions
[8, 13]. It is useful for analyzing ill-posed problems that are locally well-posed, and in case of
a (possibly) nonlinear forward operator F it is of the form

(313) ”X1 — XQHX < (I)(”F(Xl) — F(Xg)Hy) VX1,X2 eMcC X,

where @ : [0,00) — [0,00) with ®(0) = 0 is a continuous, nondecreasing function, and M is
typically a ball in the ambient norm [19] that is stronger than X', and is thus conditional. In
Banach space settings, the conditional stability needs to be adjusted by replacing the left-hand
side of (3.13) with a nonnegative error measure [7]. Since the most relevant error measure for
Banach space analysis is the Bregman distance B (x1,x2), a Holder-type stability estimate
then reads as follows: for some a>1 and C,, >0

(3.14) B,(x,x")* <O |Ax — AxXT|]%, VxeX.

Note that we relaxed the condition x € M C X to x € X, which makes the problem
well-posed. Now we give a convergence rate under conditional stability bound (3.14). The
constant Cy appears in Lemma 3.5 and denotes the norm equivalence constant.

Theorem 3.14. Let the forward operator A satisfy the conditional stability bound (3.14) for
some a>1 and Cy > 0. Let ij(xo) € range(A*), and for Cy, = CNCa(l—LfnaXC;’i* 1 H>o,
the step-sizes satisfy > poq pCr = 00. Then there holds

lim E[B,(x,x")] =0.

k—o00
Moreover,

B, (xo, xT)

- ifa>1,

BB ol < | (T (@7 DBl i)™

k
exp ( - ZujCj)Bp(XQ,XT) ifa=1.
\ j=1
Proof. Let Ay :=B,(xg, x"). The proof of Theorem 3.8 and the conditional stability bound
(3.14) imply

o G e
(3.15) Eulun] £ A= (1= in S ) 0
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CnC, Gp- _
<A — ikt » . <1 — Lﬁlax Mi+11> e

since by Lemma 3.5, there exists a Cy > 0 such that ¥(x) > %"HAX —yl[}- Taking the full
expectation and using Jensen’s inequality lead to

E[Ag+1] SE[AR] = phe1 Cra E[Ag]%

Since Cg41 > 0 by assumption, (E[Ag])ken is @ monotonically decreasing sequence. By the
convexity of the function x +— 2 (for a > 1), for any € >0 and x > ¢, we have €* > £x*. We
claim that for every e > 0, there exists a k. € N such that E[Ag] <€ for all k> k.. Assuming
the contrary, E[Ag] > € for all k, gives
k+1
E[A11] SE[AR] = a1 Crat B[AK]* E[Ag] = i1 Chpae® < Ag— €Y 1 Cj— —o0,
j=1
since Z;’il p;Cj = oo by assumption, which is a contradiction. Therefore, limy_,oc E[A] =
For a > 1, by Polyak’s inequality (cf. Lemma A.1), we have
Ay

(14 @ 0ag Sk wey)

Meanwhile, for a =1, using the inequality 1 —x < e™* for x > 0, a direct computation yields

E[Ar1] <

k+1 k+1
E[Aps1] < (1= 1 Cra)E[A] < ] (1= 1) A0 <exp [ =) ;G5 | Ao,
Jj=1 j=
completing the proof of the theorem. |

Remark 3.15. We have the following comments on Theorem 3.14:

(i) The estimates for & >1 and o =1 in Theorem 3.14 are consistent in the sense that

B T
h\m1 »(X0,x") — exp Z'“J (xo,xT) )
(1+ (0= DBy (roxy 1S4y ™

(ii) While it might seem counterintuitive, &« = 1 gives a better convergence rate than a > 1,
because of the following:

B, (x,x")® > B, (x,x")% if and only if alogB,(x,x") > alog B,(x,x").
Hence, whenever By, (x,x!) < 1, we have B,(x,x") > B, (x,x")® for & > 1. Plugging this
into the conditional stability bound (3.14) yields
B, (x,x)* < B,(x,x") < C7 [ Ax — AxT|[}, = C7 ' pN ¥(x).

Meanwhile, the proof of Theorem 3.14 uses the conditional stability bound to establish
a relationship between the objective value and the Bregman distance to the MNS x';
cf. (3.15). Putting these together gives that oo =1 provides a greater decrease of the
expected Bregman distance, once we are close enough to the solution.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/20/23 to 144.82.114.194 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

688 BANGTI! JIN AND ZELJKO KERETA

The conditional stability estimate (3.14) for a linear operator A implies its injectivity,
and that the objective ¥(x) is strongly convex. Under condition (3.14), there can indeed be
only one solution: if Ax = Ax, then B,(x,x) =0 follows from (3.14). The step-size condition
Y peq kCr = oo is weaker than that in Theorem 3.10. Namely, it follows from step-size
conditions in Theorem 3.8, since

00 0o e 0o
ZMk’CkZCNCa <Z,uk_LZr)naX pi Z,LLZ)ZOO
k=1 k=1

k=1

holds if Y 72 i = oo and > ;2 ,ui* < oo. Further, if there exists a C' > 0 such that 1 —
L’gax%uﬁ*_l > C holds for all £k € N, e.g., if ux is a constant satisfying this condition,
then Zzozl piCr = oo is weaker than the conditions in Theorem 3.8, since the condition
ey Mi < oo is no longer needed for convergence, and Y ;2 | pu = oo suffices. Moreover, we

can choose constant step-sizes. Instead, setting ux = po, with 1 — Lﬁ:ax%ug*fl = % so that

CnCa
2

Cr= CNzc‘* ,, we get an exponential convergence rate for a =1, since Cy = , we have

. s * 1/pr—1\F
E[Ag11] < (1 — 10Chi1)E[AL] < (1 i) e L —1(%%0&) > E[Ao]

max
p

*

« k
< (1 . 2—pLI;gX(£ )p /chca> Ao.
"

Note that this convergence rate is largely comparable with that in the Hilbert case: the
conditional stability bound implies the strict convexity of the quadratic objective W(x), and
the SGD is known to converge exponentially fast (see, e.g., [16, Theorem 3.1]), with the rate
determined by a variant of the condition number.

Remark 3.16. The conditional stability bound (3.14) is stated globally. However, such
conditions are often valid only locally. A local definition could have been employed in (3.14),
with minor modifications of the argument. Indeed, by the argument of Theorem 3.10, we
appeal to Lemma A.2, showing that the Bregman distances of the iterates are nonincreasing.
Thus, it suffices to assume that the initial point x is sufficiently close to the MNS x.

Remark 3.17. Conditional stability is intimately tied with classical source conditions. For
example, as shown in [41], assuming a =1 in (3.14) allows us to show a variational inequality:

(FE o) ox—=xt) < x5 O o0y )7 AGx = x|y

Then the Hahn—Banach theorem and [41, Lemma 8.21] give the canonical range-type condi-
tion J;¥ (x') = A*w for w € X such that ||w|x < 1. Connections between source conditions
and conditional stability estimates have been studied, e.g., for linear operators in Hilbert spa-
ces [47] and in LP spaces [5]. Moreover, variational source conditions often imply conditional
stability estimates [20], and in case of bijective and continuous operators they are trivially in-
ferred by a standard source condition (albeit, possibly only in a small neighborhood around the
solution). See the book [50] about the connections between source conditions and conditional
stability estimates, and [21] for inverse problems for differential equations.
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4. Regularizing property. In practice, we often do not have access to the exact data y but
only to noisy observations y°, such that ||y‘5 —y||y<d. The convergence study in the presence
of observational noise requires a different approach, since the sequence of objective values
(J|AxS — y5|]§,)k€N generally will not converge to 0. In this section we show that SGD has a
regularizing effect, in the sense that the expected error E[Bp(xi( 6),XT)] converges to 0 as the
noise level ¢ decays to 0 for properly selected stopping indices k().

Let (xx)ken and (xg)keN be the noiseless and noisy iterates, defined respectively by

(4.1) i1 =T (T (%%) = pas18r41) » With g,y = g(Xe, ¥, k1),
(42) xli—s—l = jp/’g* (jpx(xi) - Nk—&-lgz—i—l) ) with gi—f—l = g(xia yéaik—&-l)-

The key step in proving the regularizing property is to show the stability of SGD iterates
with respect to noise. The noise enters into the iterations through the update directions gi 1
and thus the stability of the iterates requires that of update directions. This, however, requires
imposing suitable assumptions on the observation space ) since in general the single-valued
duality maps ]%} are continuous only at 0. If ) is uniformly smooth, the corresponding duality
maps are also smooth. This assumption is also needed for deterministic iterates; cf. [46,
Proposition 6.17] or [35, Lemma 9]. Thus, we make the following assumption.

Assumption 4.1. The Banach space X is p-convex and uniformly smooth, and ) is uni-
formly smooth.

Using Assumption 4.1 we can show the following stability result on the iterates with
respect to noise, whose elementary but lengthy proof is deferred to the appendix.

Lemma 4.2. Let Assumption 4.1 hold. Consider the iterations (4.1) and (4.2) with the
same initialization xg =Xq, and following the same path (i.e., using same random indices iy).
Then, for any fized k € N, we have

: d : 1) : X (0 X
N BBy (xi., k)] = lim E[[[xy, — x| ] = T B[ 75" (<) = T (xe) -] = 0.

Now we show the regularizing property of SGD for suitable stopping indices k().

Theorem 4.3. Let Assumption 4.1 hold, and the step-sizes (jug)ken Satisfy Y po fik = 00,
SR i <00, and 1— Lhax Gp pl N> C > 0. Iflims o k(6) = 00 and lims 0 67 S5 1y =0,
then

i 9 N =
%%E[Bp(ka),x )] =0.

Proof. Let Ay, = By(xg,x") and A = Bp(xi,xT). Take any 6 > 0 and k € N. By the
three-point identity (2.2), we have
A5 = Bp(xiaxk) + Ak + <ij(xk) - ij(Xi),Xk - XT>
(4.3) < By (X, %) + Ap + | T3 (xk) = T ()| -
Consider a sequence (0;);en decaying to zero. Taking any e > 0, it suffices to find a je € N

such that for all j > j. we have E[Ai"( 6‘)] < 4¢. By Theorem 3.10, there exists a k. € N such
that for all k£ > k. we have

X — XTHX.
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(4.4) E[Ai] <e and E[||x; —xT||x] <€'/2.
Moreover, for any fixed k., by Lemma 4.2, there exists j; € N such that for all j > j; we have
(4.5) EB, () x.)] <e and E[I7Y (xi,) — T ()] < €72

Thus, plugging the estimates (4.4) and (4.5) into (4.3), we have ]E[A '] < 3¢ for all j > ji.
Note, however, that the same does not necessarily hold for all k£ > k., and it thus also does
not hold for a monotonically increasing sequence of stopping indices k(;), since IE[A(s K, )} are
not necessarily monotonic. Instead, taking the expectation of the descent property (3.7) with
respect to Fy yields

G o

1) 1) S 1) 1)
Ex[Af 1] <AL — preta <Ek; 851, Xk — > + LB Z M1 P (X3).
Then we decompose the middle term into

N
<Ek[gi+1]7xT—Xi>=%Z<JP(Axk y), — (At —y]) +y; )

=1

N
1
W)+ S (B A -y
i=1
N

1 -1 5
< —p¥(x +NZ||AXk v 5y — yilly
. N
5 5 sp—1
S—P‘I’(Xk)+5NZ||Aixk—Yi||‘§; :
=1

where we used (2.1) and the Cauchy—Schwarz inequality. Taking the full expectation gives

N
G . 1 _
E[A 1] SE[AY]—puu 1 B[ (x))]+ LB pﬁ uﬁHE[‘I’(Xi)HMkHN > E[|Axg —yo 5
i=1

N
1 _
= E[AY] = ppiet 1 Cua B (x))] + Ohe+17 D ElAxg — oI5,

i=1
where Cy,=1 — L2y C;’;* ,u,z*_l > (C' > 0. Now using the Lyapunov inequality
N N N
1 1 1 (r—1)/p .1 1/p”
= CElAX -y 5 < 0 (BllAx) —yiI51) T =T (BIwax)])
i=1 i=1 i=1
we deduce
N
.1 1/p*
(46 EIM] <EIA] = ppen Cenn B OO+ 0per'’” 53 (Ewo)])

Next we remove the exponent in the last term. Using Young’s inequality ab < %w‘p + l;%:wp*,
with a = ¢ and b=E[¥;(x{)]'/?", we have
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1Y s\ 1/P" w” 1 o sy @P
N25(E[\Ili(xk)]> §5p7 +E[NZ\IM(X;€)} =
1=1

Plugging this back into (4.6) gives
E[Aiﬂ] < E[Ag] - pMkHCkHE[‘I’(Xi)] +p1/p* (p*)_lwl’*ﬂkHE[\P(xi)] + p_l/p5pw_p,uk+1-

Taking w > 0 small enough so that w?” < p*p!/PCy, (which can be made uniformly on k,
thanks to the positive lower bound on C}), replacing k + 1 with k(J), and using the inductive
argument, we have

k(5)
E[AY )] SE[AY ) 1]+ Pw PP sy <E[AL ] +p Pw PP .
/=1
Since limg\ o 67 2?31) pe =0 and limg\ g k() = oo, there exists jo € N such that for all j > jo
we have k(6;) > ke and p_l/pw_pcS? Z’;f{’ we < €. Taking je = j1 V jo shows E[Aij(éj)] < 4e for
all 7 > j., and hence the desired claim follows. |

Remark 4.4. In the constant step-size regime, such as in the case of conditionally stable
operators, the correspondence between the noise level and the step-size regime takes a more
standard form. Namely, the condition in Theorem 4.3 reduces to lims\ o 67k(5) = 0. In other
words, we have k(J) = O(67P), mirroring the traditional conditions in Euclidean spaces. Note
that the condition on k(d) is fairly broad and does not give useful concrete stopping rules
directly. Generally, the issue of a posterior stopping rules for stochastic iterative methods
is completely open, even for the Hilbert setting [22]. For polynomilally decaying step-sizes

() ken = (cok™P)gen, the conditions 1% <p<1and¢y< (ﬁ)
max I p*

choice, and the stopping index k() should satisfy lims\ o k(d) = oo and lims\ g k() 5 =0.

»"~1 give a valid step-size

Remark 4.5. It is of much interest to derive a convergence rate for noisy data under a
conditional stability condition as in Theorem 3.14, as a natural extension of the regularizing
property. However, this is still unavailable. Within the current analysis strategy, deriving
the rate would require quantitative versions of stability estimates in Lemma 4.2 in terms of ¢
and k. Generally the convergence rate analysis for iterative regularization methods in Banach
space remains a very challenging task, and much more work is still needed.

5. Numerical experiments. We present numerical results on two sets of experiments to
illustrate distinct features of the SGD (3.4). The first set of experiments deals with an integral
operator and the reconstruction of a sparse signal in the presence of either Gaussian or impulse
noise. In this model example, we investigate the impact of the number of batches and the
choice of the spaces X and ) on the performance of the algorithm. To simplify the study
we investigate spaces X and ) that are smooth and convex of power type, and thus the
corresponding duality maps are singletons. To facilitate a direct comparison of the SGD with
the Landweber method, we count the computational complexity with respect to the number
of epochs, i.e., the partition size N, defined below. Note, moreover, that our implementation
of the Landweber method does not use the stepsizes described in [44, Method 3.1], since the

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/20/23 to 144.82.114.194 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

692 BANGTI! JIN AND ZELJKO KERETA

latter requires knowledge of quantities that are inconvenient to compute in practice. The
second set of experiments is about tomographic reconstruction, with respect to different types
of noise. All the shown reconstructions are obtained with a single stochastic run, as is often
done in practice, and the stopping index is determined in a trial-and-error manner so that the
corresponding reconstruction yields small errors.

5.1. Model linear ilverge problem. We first consider the following model inverse problem
studied in [28]. Let x:Q x Q@ — R™, with Q= (0,1), be a continuous function, and define an
integral operator 7 : L7%(Q) — L™ (), for 1 <ry,ry < 0o, by

(5.1) (Toz)(t) = /Q (t, $)a(s)ds.

This is a compact linear operator between L7*(Q) and L™ (£2), with the adjoint T,: L™ (Q)—
L7%(Q) given by (T y)(s)= [q r( dt To approximate the integrals, we subdivide the
interval Q into N= 1000 submtervals [ ] for k=0,..., N—1, and then use quadrature, giv-

. N . N
ing a finite-dimensional model Ax=y, with A= (/—; (%, %)) and x= (:U (%))
For SGD we use N, < N minibatches. To obtain equisized batches]’kwe assume that Ny dlvides
N. The minibatch matrices A; are then constructed by taking every Nyth row of A, shifted
by j, resulting in well-balanced minibatches, in the sense that the norm ||A;|| is (nearly)
independent of j.
The kernel function k(t,s) and the exact signal z! are defined, respectively, by

if s € [40’411(%] U [%,%L

1
40t(1—s) ift<s
Kk(t,s) = - and .’L'TS: 92 1f3€£,§,
(t:5) {403(1 —t) otherwise (5) 0 th [‘%0 10
otherwise.

This is a sparse signal, and we expect sparsity promoting norms to perform well. To illus-
trate this, we compare the following four settings: (a) X =Y = £23(Q); (b) X = L2%(Q) and
Y= E“(Q) (c) X = L£Y(Q) and Y = £L2(Q); (d) X = LM(Q) and Y = L%(Q). Setting
(a) is the standard Hilbert space setting, suitable for recovering smooth solutions from mea-
surement data with independent and identically distributed Gaussian noise, whereas settings
(b)—(d) use Banach spaces. Settings (c¢) and (d) both aim at sparse solutions, and we ex-
pect the latter to yield sparser solutions, since spaces L"(2) progressively enforce sparser
solutions as the exponent r gets closer to 1. In the experiments, we employ the step-size
schedule py, = with Lmax =max;e|n,) [[A;|. This satisfies the summability

1+0.05(k§]‘§’f:}51/1)*+0-01 ,
conditions Y 72, pur = 0o and Y o uﬁ* < oo required by Theorem 3.8. The operator norm
| A || = [[Aj]| cra —cry = maxyezo % is estimated using Boyd’s power method [3]. All the
reconstruction algorithms are initialized with a zero vector.

In Figure 1, we compare the reconstructions with settings (a)-(d) for exact data. We
observe from Figure 1(a) that settings (a) and (b), with X = £2(Q), result in smooth solu-
tions that fail to capture the sparsity structure of the true signal xf. In contrast, the choice

= L15(Q) recovers a sparser solution, and the choice X = £!'1(Q) gives a truly sparse

reconstruction, but with peaks that overshoot the magnitude of x'. This might be related to
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(a) Changing X’ and Y for N, = 100 (b) Progression of iterates for X = £1-1(Q)

Figure 1. Comparison of reconstructed solutions after 500 epochs.
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(a) X = £M1(Q) and Y = £2(Q) (b) X = £15(Q) and Y = L2(Q)

Figure 2. The variation of % Zﬁ’l |[Aixx —y;|15, with respect to the number of batches N.

the fact that x! exhibits a cluster structure in addition to sparsity, which is not accounted
for in the choice of the space X = £11(Q2) [52, 23]. Figure 1(b) indicates that early stopping
would result in lower peaks and significantly reduces the overshooting, but a more explicit
form of regularization [52, 23] might allow faster convergence.

In Figure 2, we investigate the convergence of the objective value with respect to the
number of batches Ny and the choice of the solution space X. As expected, having a larger
number of batches results in a faster initial convergence, but also in increased variance, as
shown by the oscillations. Moreover, the variance is lower in the case of a smoother space X
(promoting smoother solutions), where the variance existing in early epochs is dramatically
reduced later on. This observation can be explained by the gradient expression g(x,y,i) =
AY j%) (A;x —y;), which tends to zero as SGD iterates converge to the true solution x', as does
its variance, and the larger the exponent p, the faster the convergence.

Next we examine the performance of the algorithm when the observational data y° contains
(random-valued) impulse noise (cf. Figure 3), which is generated by

y;, with probability 1 —p,
y? = (1-— g)yT with probability p/2,
L4€+ (1 —€)y!, with probability p/2,
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14 noisy data =
exact data
1.2 2.0
1.0 15
0.8
1.0
0.6
10

0.0

).5
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 1.

(a) Data with impulse noise (b) Reconstructions with respect to X and Y

Figure 3. The reconstruction performance in case of impulse noise. The algorithms utilized Ny = 100
batches and were run for 250 epochs.

,,,,, xi e

X=L2Y=LMpy=11 ~ X =LY Y=L py=11
2.0 + — X=rLy=cH — X =LY =LY py=11
— X=L2 Y=L py=11

0.0 0.2 0.4 0.6 08 1.0 0.0 0.2 04 0.6 08 10

1.0

0.5

0.0

(a) Standard vs generalised Kaczmarz (b) Changing X in generalised Kaczmarz

Figure 4. The dependence of the reconstructions in the case of impulse noise on the choice of q parameter
in the generalized model (3.9). The results are obtained using Ny =100 batches after 250 epochs.

where p € (0,1) denotes the percentage of corruption (which is set to 0.05 in the experiment)
and £ ~ Uni(0.1,0.4) follows a uniform distribution over the interval (0.1,0.4). It is known that
L7(Q) fittings with r close to 1 is suitable for impulsive noise. This allows us to investigate
the role of not only the space X but also Y. The results in Figure 3(b) show that the choice
Y = L (), with ry close to 1, performs significantly better. Indeed, the Hilbert setting
X =Y = £%(Q) produces overly smooth, nonsparse solutions with pronounced artifacts. In
sharp contrast, setting X =) = £1'1(Q) yields solutions that can correctly identify the sparsity
structure of the true solution, and have no artifacts. Similarly as before, the reconstruction
in this setting overestimates the signal magnitude on its support, which is exacerbated as the
exponent ry gets closer to 1.

Lastly, we investigate the convergence behavior of the method for the generalized model
(3.9) in section 3.2, where stochastic directions g(x,y, i) are defined as g(x,y,i) = A} 7Y (Ax —
y;), with ¢ = ry different from the convexity parameter p of the space X. The results in
Figure 4 show that this can indeed be beneficial for the performance of the method: the
reconstructions are more accurate not only in terms of the solution support, but also in terms
of the magnitudes of the nonzero entries. However, the precise mechanism of the excellent
performance remains largely elusive.
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(a) Original phantom (b) Gaussian noise measurement

(¢) Low noise salt-and-pepper measurement (d) High noise salt-and-pepper measurement

Figure 5. The plot in (a) shows the phantom to be recovered, and (b)—(d) show noisy measurements used
in the recovery: in (b), random Gaussian noise was added, and (c)—(d) are sinogram data degraded by salt-and-
pepper noise in the low (5%) and high (10%) noise regimes.

5.2. Computed tomography. Now we numerically investigate the behavior of SGD on
computed tomography (CT), with respect to the model spaces X and ) and data noise. In CT
reconstruction, we aim at determining the density of cross-sections of an object by measuring
the attenuation of X-rays as they propagate through the object [36]. Mathematically, the
forward map is given by the Radon transform. In the experiments, the discrete forward
operator A is defined by a 2D parallel beam geometry, with 180 projection angles on a 1
angle separation, 256 detector elements, and pixel size of 0.1. The sought-for signal x! is a
(sparse) phantom; cf. Figure 5(a). After applying the forward operator A, either Gaussian
(with mean zero and variance 0.01) or salt-and-pepper noise is added. In the latter setting
we consider low (with 5% of values changed to either salt or pepper values) and high (10% of
values changed) noise regimes. The resulting sinograms (i.e., measurement data) are shown
in Figure 5(b)—(d).The experiments were conducted using the Core Imaging Library for the
tomographic backend. Note that standard quality metrics in image assessment, such as peak
signal-to-noise ratio or mean squared error, are computed using the distance between images in
the £2-norm, which have an implicit bias towards Hilbert spaces and smooth signals, whereas
using a metric that emphasizes sparsity is more pertinent to sparsity promoting spaces. To
provide a balanced comparison, we report the following two metrics based on normalized ¢!-
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(a) X =Y =12 b)X = £t Yy =2 yxX=Y=r,11
81(x)/02(x): 2.643/0.528 61(x)/(52(x). 0.711/0.341 51(x)/52(x). 2.195/0.620

-0.2

Figure 6. The reconstruction of the phantom from the observed sinograms degraded by Gaussian noise; cf.
Figure 5(b). The algorithms use Ny =60 batches and were run for 200 epochs.
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(a) 5 epochs (b) 50 epochs ) 200 epochs
81(x)/82(x): 0.702/0.627 81(x)/82(x): 0.263/0.235 51(x)/52(x). 0.604/0.308

Figure 7. The evolution of the quality of reconstruction from sinograms degraded by Gaussian noise with
respect to the number of epochs. The algorithm uses X =Y = L' and py = 1.1, with N, = 60 batches.

and £2-norms: d1(x) = ||xT — x|l /||xT||er and d2(x) = ||xT — x||¢2 /|| xT || 2.

First, we show the performance on Gaussian noise, where we compare the Hilbert setting
(X =Y = £?) with two Banach settings (¥ = £}, Y = £% and X = Y = £!!). In the
reconstruction, we employ step-sizes pp = 1+0‘05(]]i’/“;,’;<12/p*+0.01, with Limax = max;en,] [[A4]-
Figure 6 shows exemplary reconstructions. In all three settings much of the noise is retained
in the reconstruction, and whereas the Hilbert setting is better at recovering the magnitude
of nonzero entries, the Banach settings are better at recovering the support. Moreover, we
observe that the Banach setting with a sparse signal space X = £ and a smooth observation
space ) = L2, has the best performance in terms of §; and 5 metrics. The Hilbert model
performs better than the fully sparse model X =) = £! in terms of the smooth metric do,
but worse in the sparsity promoting metric 6;. We also consider the Banach setting for the
generalized model (3.9), with X =Y = £l and py = 1.1, where we study the effects of early
stopping. Figure 7 shows that this setting recovers the support more accurately (and actually
does so very early on) and recovers the magnitudes better, but that a form of regularization
(through, e.g., early stopping) can be beneficial, since in the later epochs SGD iterates again

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/20/23 to 144.82.114.194 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

ON SGD FOR BANACH SPACE LINEAR INVERSE PROBLEMS 697

1.2 05
1.0
08 0.4
0.6 0.3
0.4

0.2
0.2
0.0 0.1
-0.2

0.0

Y X =YY= £2 in low noise b)X = y £11 in low noise Y X =YY= cr, py = 1.1 in low noise
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Figure 8. The reconstruction of the phantom from the observed sinograms, degraded with low (top) and high
(bottom) salt-and-pepper noise, respectively, obtained using the Hilbert space model (X =Y = L£?) (left), the
Banach model (X =Y = L") (middle), and the Banach model (X =Y = L) with the generalized Kaczmarz
scheme (py = 1.1) (right). The algorithms use Ny =60 batches and were run for 200 epochs.

tend to overshoot on the support. Similar behavior can observed for other studied Banach
space settings, but not for the Hilbert space setting, which does not recover the support.

We next investigate the performance for low and high salt-and-pepper noise. We compare
the Hilbert setting with two Banach settings: the standard SGD with X =) = £'! and the
generalized model (3.9) with X =) = £!"! and py = 1.1. For the reconstruction, we employ
step-sizes up = 1 005k /(])\'2)1 oot~ Lhe results in Figure 8 show the reconstructions after 200
epochs with N, = 60 batches. In the low noise regime, the Hilbert setting can reconstruct
the general shape of the phantom, but retains a lot of the noise and exhibits streaking ar-
tifacts in the background. The reconstruction in the high noise regime is of much poorer
quality. The standard Banach SGD shows good behavior in the low noise setting, recon-
structing well both the sparsity structure and the magnitudes, but its performance degrades
in the high noise setting. In sharp contrast, the model (3.9) shows a nearly perfect recon-
struction performance—the phantom is well recovered, with intensities on the correct scale,
for both low and high noise regimes. Similarly as before, we observe that Banach methods
tend to slightly overestimate the overall intensities, though the recovered values are compara-
ble to the true solution. Overall, the Hilbert setting shows a qualitatively and quantitatively
worst performance, in both the ¢!- and £2.norm sense, and the model (3.9) shows the best
performance.
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a) Noisy Phantom (b) Gaussian measurement noise (c) Salt-and-pepper measurement noise

Figure 9. The phantoms and sinograms for the forward model with both pre- and postmeasurement noise.
The phantom on the left is degraded by Gaussian noise. After applying the forward operator, either Gaussian
(middle) or salt-and-pepper noise (right) is added to the sinogram.

0.8

0.8 0.8
0.6
0.4 0.6 0.6
0.2 0.4 0.4
0.0

0.2 0.2
-0.2

() X =Y =L =LY py =11 ()X =Lt y=r19py,=19
81(x)/d2(x): 5.65/1.12 51 (x)/52(x). 3.16/0.632 51(x)/d2(x): 2.99/0.561

Figure 10. The reconstruction of the phantom from the observed sinograms with pre- and postmeasurement
Gaussian noise. The algorithms use Ny = 60 batches and were run for 200 epochs.

Lastly, we investigate a more challenging setting with noise affecting not only the sino-
grams, but also the original phantoms. Then the ground-truth image is only approximately
sparse. The phantom is degraded with Gaussian noise (zero mean and variance 0.01) after
which we apply the forward operator to the resulting noisy phantom. We then add either
Gaussian (zero mean and variance 0.01) or salt-and-pepper noise (affecting 3% of measure-
ments); see Figure 9 for representative images. The reconstruction algorithms use SGD with
a decaying step-size schedule, pp = 1+0.05(k/(])vz)1/p*+0‘01.

The reconstructions for data with Gaussian noise in both the phantom and the sinogram
are shown in Figure 10. As before, reconstructions in the Hilbert setting are comparable, but
slightly worse than those computed with the Banach settings. Banach methods are better at
recovering the sparsity structure of the solution and have better reconstruction quality metrics,
though they do not completely remove the noise. In the second setting, with the Gaussian
noise affecting the phantom and salt-and-pepper noise affecting the sinogram, the difference
in reconstruction quality in the Hilbert space and Banach space settings is significantly more
pronounced; cf. Figure 11. In both settings, the choice of spaces X and )Y can have a
big impact on the reconstruction quality, especially on the amount of noise retained in the
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Figure 11. The reconstructed phantom from the sinograms with a Gaussian premeasurement and a salt-
and-pepper (post)measurement noise. The algorithms use Ny =60 batches and were run for 400 epochs.

background. Moreover, further improvements can be achieved by explicitly penalizing the
objective function.

Appendix A. Technical results and proofs.

Lemma A.1 ([38, Lemma 6]). Let (6n)n be a sequence of nonnegative scalars, let (pn)n be
a sequence of positive scalars, and let o> 0. If

On+1 S(Sn_,un+15711+a, Vn=0,...,N,

then

N -1/
5N§50<1+a58‘2un) .

n=1

A.1l. Two elementary estimates. In this section, we present two elementary estimates on
the SGD iterates for exact data that are useful in establishing the regularizing property.

Lemma A.2. Let the sequence (Xk)ken be generated by iterations (3.4), let the step-sizes

Uk ) ken satisfy pb Pl P forallke N, and let the stochastic update directions g, be
k Gy k

of the form (3.5). Then for any X € Xpmin, the sequence (B, (Xg,X))ken is nonincreasing. In
particular, if B,(xo,X) < p, then By(xx,X) < p for all k.

Proof. Let Ay =B,(x;,X). By Lemma 3.6, we have
o Gy .
Api1 < Ap — pis1 (Grar Xk — X) + p_*ﬂk+1||gk+1||x*'
By the definition of duality map and the choice of the update directions g;., we have

<gk+lvxk > < 2k+1 yik+1)7Aik+1x - yik+1> ”Alk+1 yik_HH?))}?
lgrs % = 1A, .57 (Amlxk - yml)llp <AL PN (A Xk = ¥
< LExlA

p*
y*

lk+1 Yik+1 ||y = Lﬁlax||AZk+l yik+1 ||§)
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Consequently,
A A o Gy .
k1 S A — g1 <gk+1axk - X> + pTMk+1|‘gk+1||X*
A p* GP* p*—1 p
Since uﬁ*fl <z pL*p* by assumption, Agi1 < A < Ag, completing the proof. |

Lemma A.3 (coercivity of the Bregman distance). If Ay = B,(xg,x") < C < oo for all k,
then ||xx|/% < (2p*)P(||IxT||5 v ©) for all k € N.

Proof. By the definition of A and the Cauchy—Schwarz inequality, we have
A, > 1 P f p—1
k= EHXka + ];HX e = X e lxe [

xpllx = xT]x < 5=

|lx > %kaﬂx, we have

Then we have [[x |5 (& Ixk |2 — x| x) < Ag. If now %

that ||x|/% < (2p*)?||xT||%. Otherwise, if Z% Xi|lx — ||x

Xg||x, it follows

1 2 ( : >
P P T
Xg |y < |[xk xpllx =[xy | <Ak
Zp*H 1% < lIxkll% p*H [ — [Ix"]]

Combining these two bounds gives ||x || < (2p%)P(||xT|[5 V A). [ |

A.2. Proof of Lemma 4.2. To prove Lemma 4.2, we need the following simple fact.

Lemma A.4. For any fized k € N, the clean iterates xj, generated by (4.1) are uniformly
bounded, i.e., there exists Cy >0 such that sup,,cz, ||xk|lx < Cp < oo.

Proof. If step-sizes uy, satisfy the conditions of Lemma A.2, the statement is direct from
Lemma A.3, and moreover C}, can be chosen to be independent of k. Otherwise we proceed by
induction. The induction basis is trivial. Indeed, by the triangle inequality and the definition
of duality maps, we have

-1
Ixe+1l% = HJPX(Xk) — P18 [l -
—1
< ||Xk:”§( + Lmaxﬂk—&-l”]%}(Aikﬂxk - yik+1)||y*
—1 -1
< HXkHI;y + Liaxfth+1 [ Ay Xk — Yipia HS’;

< el Lt e — x5
Now under the inductive hypothesis sup,¢ 7, [[xx||x < C) < 00, we have

1 -1 —1 —1
%1 |5 < kel + Lottt (I1xel 5+ x5 )
—1 —1
< C/f (1 + Lglax:u‘k-f-l) + Lglax:u’k-i-l ||XTH§( .

This directly proves the statement of the lemma. |

Now we can present the proof of Lemma, 4.2.
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Proof of Lemma 4.2. For any sequence (§;);en, with lim;_,+, §; =0, we consider a sequence

of random vectors (xij,xk)jeN. We will show by induction that (for any fixed k& € N) the
0, . . . &

sequence (Bp(x,/,x;)); is uniformly bounded, i.e., sup,cr Bp(x,’,xx) < oo, converges to
0 pointwise, and that xij is uniformly bounded. The remaining two claims regarding the
convergence of ||x} — x|+ and 17;¥ (x9) — T;¥ (xk) ||l v+ then follow directly. For notational
brevity, we also suppress the sequence notation d;, and only use d. For the induction base, by
Theorem 2.6(i) and (iv), we have

Bp(x(lsv xl) = Bp*(ij(xl)a ij(x{D
< Gr

=

" G o« "
) 1)
17, (x0) — T, (%0) — pa(g) — &) ll%. = pﬁ 1 1|g) — g1 l%-

where g = g(xo,y’,i1) and g, = g(xo,y,71). Specifically, in the case (3.5), we have

5 - 5 .
g0 —gill%. =I1AT (5 (Asxo—y?) — 0 (Aixo—y; )%
<LEL 7Y (Aixo—y)) — 5 (Aixo—y; I3

Y=

Since Y is by assumption uniformly smooth, by Theorem 2.3(iv), we have

127 (Aixo—Yy2) =70 (Aixo—Y; |y
5 1 5
< Cmax{1, || Asxo—yi |y [ Aixo—yi v}~ oy (llys, =¥, lly)-

Upon maximizing over Fi, the term in the maximum is uniformly bounded. Since py :=
py(1)/7 < 1, By(x$,x1) is uniformly bounded. Since lim,_,py(7) = 0, it follows that
lims~ o B,(x{,x1) =0 pointwise. By the p-convexity of X', we have

C,
0< ?pHXiS —x1[% <Bp(x), x1).

Thus, [|x{ — xi || x is uniformly bounded and lims g [|x{ — x1 || ¥ = 0 point-wise. By the uniform
boundedness of ||x} — x|+ and Lemma A.4, the sequence x{ is also uniformly bounded:

) )
(A1) I3[ < [|x] —xalla + %1l x-

For some k > 0, assume that Bp(xi,xk) is uniformly bounded and converges to 0 pointwise
as § — 07, Using the p-convexity of X, it follows that ||x{ — xx||x is uniformly bounded and
converges to 0 pointwise, and, using again Lemma A.4, it follows that xi is also uniformly
bounded. Then by Theorem 2.6(i) and (iv), we have

By (<1 Xk4+1) = By (T3 (0041), T (xh1))

Gy .
< pi ij(Xi) - JpX(Xk) — fik1 (81 — 1) 1B

Gp- 5 5 -
<L ( \ij(Xk) - ij(Xk)HX* =+ Nlc+1Hgk+1 - gk—f—lHX*)p .

=T
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Now we separately analyze the two terms in parentheses. First, using the uniform smoothness
of X (and Theorem 2.3(iv) with px-(7) < C7P"~L; cf. Definition 2.2), we have

(A.2) 7Y (x4) = ¥ (i) e < Cmaxc{ L, |3 L el 3~ pac (I — x| )-

Since the right-hand side is uniformly bounded and converges to 0 pointwise by the induction
hypothesis, the same holds for the left-hand side. Next we decompose the second term into a
sum of two perturbation terms,

g(x%, Y% ikt1) — 9(xe Vs ksl aee < 19k ¥ k1) — G(%0s ¥ 1) || -
+ 19X, Y0 k1) — Gy ¥ g 1) || - =T+ 1L

First, by the assumption ) being uniformly smooth and Theorem 2.3(iv), we have

1)
I= HA1k+1 (.]p (Aik+1xk - yikH) - J;)(Aik“xk - yik+1))HX*
1)
< Lmax”]p ( ’ik+1xk - yik+1) - j%;(Aik+1X - YikJrl)Hy
) )
< CLmax max{1, | Ai,  xk = Yo, 1y 1A Xk = Yo 103 00 (19, — Yo, [19)-

By the induction hypothesis and repeating the arguments from the base of induction, the
right-hand side is uniformly bounded and converges to 0 pointwise. Second, similarly, we have

1 1 1
II = ‘|A"Lk+1 (,]p (A2k+1xk} - yik+1) - jIJ)) (A‘ik+1xk - yik+1 )) ||X*
5 1 ) )
< Lmax”]p ( ik+1 - yik+1) - ]%;(Aik+1x - Yik+1)||y
< CLmax max{1, ||Azk+1 —¥0 s 1A 3k = ¥2 L Y oy (A, (4 = x0) 1)-

By the same arguments, the right-hand side is uniformly bounded. Moreover,
Ay (X2 = %) ||y < Liax||x¢ — xg|lx, which by the induction hypothesis converges point-
wise to 0. Putting all these bounds together yields that Bp(xi 41> Xk+1) is uniformly bounded
and converges pointwise to 0. Using Vitaly’s theorem, the desired statement follows directly.
Since Bp(xi,xk) is uniformly bounded and converges pointwise to 0 for any k, then so does
X}, — x| x, and consequently, by inequality (A.2) (and (A.1)), so does || 7;¥ (x)) — T;¥ (x) || x+-
The second part of the claim thus follows. This completes the proof of the induction step,
and hence also the lemma. |
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