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ABSTRACT

Parentage exclusion probability is usually calculated to evaluate the informativeness of
a set of markers for, and the statistical power of, a parentage analysis. Equations for
parentage exclusion probability have been derived in various scenarios such as
paternity exclusion when maternity is known or unknown or when candidate males are
unrelated or loosely related (being from the same subpopulation) to the father. All
previous work assumes a diploid species. Although marker-based parentage analyses
have been conducted in haploidiploid species (such as ants, bees and wasps) for diploid
offspring at the individual level or haploid offspring at the class level, rigorously derived
formulations of parentage exclusion probability for haploid offspring at the individual
level are lacking, which prevents the precise evaluation of the informativeness for and
the statistical power of a parentage analysis. In this study we derive equations for the
exclusion probability of maternity of a haploid male when multiple mother candidates
(workers or queens) are unrelated or fullsibs to the mother. The usefulness of the
equations is exemplified by numerical examples, and the results are discussed in the
context of the study of worker reproductivity in eusocial haplodiploid species. The
results are especially valuable for an optimal experimental design in determining
sampling intensities (e.g. number of markers and number of individuals) to achieve
satisfactory statistical power of a parentage analysis in investigating workers'
reproductivity in eusocial haplodiploid species.
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1. Introduction

Genetic marker-based parentage analysis has been widely applied in human and
wildlife forensics (Ogden et al., 2009), in studies of social behaviour, social organization,
reproductive success, mating systems, dispersal and spatial genetic structure in natural
populations of wild species (Hughes, 1998; Coltman et al., 1999; Garant et al., 2001;
Avise et al., 2002; Robledo-Arnuncio and Gil, 2005; Bretman and Tregenza, 2005), in the
conservation management of endangered species in captivity and in the wild (Moran et
al,, 2021), and in the selective breeding of domestic animals and crops (Heaton et al,,
2014). Both exclusion and likelihood approaches have been developed to assign the
parentage of an offspring to a candidate using the genotype data of the individuals at
some marker loci (Flanagan and Jones, 2019).

In the experimental design stage of a parentage study in determining, among
other things, the appropriate sampling intensities of markers and individuals, a statistic
called parentage exclusion probability (Pg) is usually calculated to evaluate the marker
informativeness for, and the statistical power of, a parentage analysis (e.g. Dodds et al.,
1996; Jamieson and Taylor, 1997). Pg is usually defined as the average probability that a
randomly selected individual is excluded from the parentage of a randomly selected
offspring based on their genotypes at a set of marker loci. The individual is excluded
from the parentage of the offspring if they have genotypes that mismatch at one or more
marker loci, and is unexcluded if they have completely matched genotypes. A low Pg
means an individual who is unrelated to an offspring is excludable from the parentage
of the offspring at a low probability, signifying that the set of markers used in
calculating P is not informative and the parentage analysis using the markers is
powerless. In contrast, a high Pr means an individual who is unrelated to an offspring is
excludable from the parentage of the offspring at a high probability, signifying that the
set of markers has sufficient information and the parentage analysis using the markers
is powerful enough to yield accurate parentage assignments. Although Pr is based on
exclusion, it is relevant to a parentage analysis regardless of the methods, exclusion or
likelihood.

Formulas for Pr have been derived in the literature for diallelic (e.g. Wiener et al.,
1930) and multiallelic (e.g. Jamieson, 1965; Ohno et al., 1982; Dodds et al., 1996)
markers, for excluding an individual who is unrelated to (e.g. Jamieson and Taylor,
1997) or is loosely related to (being from the same subpopulation, e.g. Ayres, 2002) the
sampled individuals involved in a parentage analysis, and for excluding a close relative
of the true parent (MacCluer and Schull, 1963; Salmon and Brocteur, 1978; Thompson
and Meagher, 1987; Double et al., 1997; Fung et al,, 2002; Hu et al,, 2005). Among many
insights gleaned from these formulations, it was shown that the exclusionary capability
of a set of markers is much reduced by genetic relatedness between the alleged and true
parents.
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In a parentage analysis, usually many individuals are candidates for parentage
assignment of an offspring, and all but one must be excluded before the unexcluded one
can be confidently assigned parentage. When these candidates are unrelated to the true
parent and unrelated among themselves, the probability of multiple candidate
exclusions of an offspring can be easily calculated from that of single exclusion
(Chakraborty et al.,, 1988), Pr; The probability of excluding n such unrelated candidates
is simply Pg(,,y = (Pg)™. When multiple candidates are close relatives, say fullsibs, to the
true parent, however, the probability of excluding all of them can no longer be
calculated from the probability of excluding a single candidate. Until now there have
been no algebraic derivations of the probability of excluding multiple (n) close relatives
to the true parent in a parentage analysis, Pg ). In the absence of formulas, Double et al.
(1997) used simulations instead to evaluate Pg ) for excluding multiple relatives to the
true parent in diploid species.

Previous studies calculating Pg, as well as empirical applications, assume diploid
species (e.g. Dodds et al., 1996; Double et al., 1997; Jamieson and Taylor, 1997).
However, it is also desirable to conduct parentage analysis in eusocial insects including
the ants, bees and wasps (Hymenoptera), all of which are haplodiploid. In some studies
of eusocial Hymenoptera, individual-level parentage analyses have been conducted
assigning diploid offspring to potential mothers, e.g. worker offspring to coexisting
mother queens (Hammond et al., 2006). In many species of eusocial Hymenoptera,
workers are capable, through haplodiploidy, of producing unfertilized eggs that develop
into males, which may occur in the queen's presence (queenright conditions) or more
frequently in colonies consisting of workers remaining after the mother queen has died
(queenless conditions) (Bourke, 1988; Ratnieks et al., 2006; Friend and Bourke, 2014).
Nearly all studies of male parentage in eusocial Hymenoptera have assigned males to
queens or workers as a class (e.g. Foster et al,, 2001; Hammond et al., 2003; Alaux et al.,
2004). A single pioneering study of the ant Pachycondyla villosa aimed to assign males
to individual worker parents (Trunzer at al., 1999), and this used experimentally-
established groups of unrelated workers although the study species, as is almost
universal in eusocial Hymenoptera, lives in colonies of related workers. The lack of
studies aiming to exclude related reproductive workers as parents of worker-produced
males at the individual level is attributable to the inherent difficulty of performing such
exclusions when potential worker mothers may be related to one another by values as
high as 0.75 (i.e. full sister relatedness in workers produced by a single, once-mated
queen). In fact, no analytical expressions have previously been derived to perform such
exclusions, despite potential applications for understanding the distribution of direct
fitness (i.e. individual production of sons) among workers in the same eusocial colony.

In this study, we derive equations for the probability of excluding (for parentage)
an arbitrary number of N (>0) workers who are either unrelated or related as full sibs to
the true mother of a male using codominant marker data. In the latter case, all candidate
mothers as well as the true mother of a male are full sib workers who are all daughters of
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one, singly-mated queen, and therefore a candidate mother is an aunt of the male. The
validity of the equations is verified by simulations and the power of excluding multiple
aunts as the mother of a male is investigated using some numerical examples. The
results should be useful for the experimental design and execution of studies of worker
reproduction by a parentage analysis of marker data at the individual worker level in
eusocial Hymenoptera, and should be valuable in assessing the informativeness of
markers for, and the power of parentage analysis in, haplodiploid species in general.

2. Derivation of exclusion probability

We consider the exclusion of maternity of a haploid male in haplodiploid species first
when the candidate diploid females are unrelated among themselves and are unrelated
to the true mother, and then when the candidate diploid females are full siblings to the
true mother (i.e. the aunts of the male). The case of unrelated candidate diploid females
is rare in eusocial Hymenoptera, which typically consist of colonies of related queens
and workers (Ross, 2001; Rubenstein and Abbot, 2017), but is nonetheless included in
this study for comparison with the focal case of full-sib candidate females. This focal case
arises when worker offspring of one, singly-mated queen produce male offspring in queenless
conditions, these males being grandsons of the departed queen, as occurs relatively frequently
in eusocial Hymenoptera (see Introduction).

2.1 Excluding candidates unrelated to the true mother of a male

We assume N candidate females (workers or queens) compete for maternity
assignment to a male, and these females are unrelated among themselves and unrelated
to the true mother. Females are diploid, while males are haploid and have developed
from unfertilized eggs laid by a female (queen or worker). All individuals are genotyped
at L codominant marker loci. In the absence of mutations and genotyping errors, the
allele of a male at each locus should be found in its mother genotype. In other words, the
true mother will always have a genotype compatible with that of its male offspring at all
loci. Specifically, at a given locus, a female of genotype A;A; will have sons of genotypes
A;or A; at frequencies of %2 and %%, respectively. If a candidate female is not the mother
of a male, then it possibly has genotypes incompatible or mismatched with those of the
male at one or more loci. When such an event occurs, the candidate is excluded from the
maternity of the male. Otherwise, it is not excluded. When all but one of the N candidate
mothers are excluded of the maternity of a male and the markers used in the analysis is
sufficiently informative, then the male’s maternity is assigned confidently to the
unexcluded candidate. Given a set of markers with known allele frequencies, we
calculate the average probability that a randomly selected female (worker or queen)
who is unrelated to the true mother is excluded from the maternity of a randomly
selected male, Pg1. The value of Pg1 (from 0 to 1) signifies the information content of the
set of markers for, and measures the power of, a parentage analysis.

Consider a locus I with k; codominant alleles, A;, for i=1, 2, ..., k;. The frequency of
allele A; in the population is denoted by p;;, with p;; > 0 and Zf’il pii = 1. Therefore, a
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male taken at random from the population will have allele A; with probability p;;. Given
the male genotype, a random candidate can be excluded as the mother of the male if its
genotype does not contain allele A;, which will occur with probability (1 — p;)? ina
population with random mating. The overall exclusion probability considering all

possible genotypes of the male is Z;‘il pu(1 —p)?.

Now consider a number of L loci. Exclusion occurs when the male and the
candidate mother have incompatible genotypes at 1 or more loci. The exclusion
probability considering L loci is thus

Ppy =1—[1i=,(1— Z?L pu (1 — pi)?). e

This formula gives the probability that a female (worker or queen) is excluded from the
maternity of a male based on their genotypes at L loci with known allele frequencies p;;
(forI=1, 2, ...L; i=1, 2, ..., ki). (1) can be further simplified to

Pg,=1- HLL=1(25112 —a;3), (2)

where a;;, is the sum of powers of allele frequencies at locus [, with a;;, = Zf‘il pp forb =
2,3.

Now consider the probability of excluding N random workers who are not the
mother and are unrelated to the mother of a male. It is simply calculated from (2) as

Ppivy = Pe)Y = (1~ lL=1(2a12 —a;)V. (3)

Pg1(v) depends on the allele frequencies at each of the L loci. It is maximized when each
locus I (I=1, 2, ..., L) has k; equal-frequency alleles (i.e. p;; = 1/k; for i=1, 2, ..., ki). In such
a situation, 2a;, — a;3 in (3) is minimized to (2k; — 1)/k? (Appendix 1), and Pgivy is
maximized to

N
2k;—1
Ppiwy = (1 - lL=1 kllz ) . (4a)

When all L loci have the same number of alleles, k, and the same equal allele frequency
of 1/k, the exclusion probability is further simplified to

Perw) = (1 ~(1-(1- i)z)L)N- (4b)

2.2 Excluding candidates who are full siblings to the true mother of a male

Excluding aunts (i.e. full-sibling to the mother) from being assigned as the mother of a
haploid male is much more difficult, as they have genotypes similar to that of the true
mother and thus inclined to be compatible with those of the male. Specifically, at a given
locus, workers that are daughters of a mother queen of genotype A;A;, who has mated
singly with a male of genotype A, will be of genotypes A;Am or AjAm at frequencies of %2

7
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and Y, respectively, and their male offspring will be of genotypes A;, Aj or A, at
frequencies of %, ¥ and %, respectively. Most often a male may have a genotype (allele)
at a locus that produces no maternity exclusion of its aunts. Occasionally, however, it
may have a genotype (allele) that is absent from the genotypes of some aunts who are
then excluded from the maternity of the male. A schematic illustration of a pedigree in
which some males may and others may not allow maternity exclusion of their aunts is
shown in Figure 1. In general, the exclusion power of a single locus is rather poor, and
many loci are needed to confidently exclude assigning maternity to the aunts of males.

It is more difficult to derive the equation for excluding multiple aunts from the
maternity of a male, because the aunts are highly related (relatedness 0.75) among
themselves, and thus cannot be considered independently as in the previous case
involving multiple unrelated workers taken at random from the population. Many more
markers are therefore required to provide sufficient information for excluding multiple
aunts from the maternity of a male.

Consider a locus [ having k; codominant alleles A; with frequencies p;; for i=1,
2, ..., k;. A male taken at random from the population will have allele A; with probability
pui- It could come from a mother produced from four possible grandparent mating types
(Table 1). Only two of the four grandma-grandpa mating types (i.e. the mating type of [i]
the queen producing the workers and [ii] the queen's mate) could produce a grandson
that allows the exclusion of its aunts being assigned as the mother. The two mating
types, together with the pooled type of matings that do not allow maternity exclusion,
are detailed below.

2.2.1. Grandma-grandpa mating type 1: AiAjxA;

This produces two types of workers, A;Ajand A;A;, at an equal frequency of %, as
depicted in Figure 1. A male from the workers of this mating type has a genotype A; with
a probability of %4. This is the only male type that allows exclusion of its aunts when
they display the genotype A;A; (i.e. having no male allele, Aj, in their genotype).

The overall frequency of this mating type is
¢ = Xity 2pA(1 — pu) = 2(a, — @),

where q;;, is the sum of powers of allele frequencies at locus I as shown above. For equal

allele frequency p;; = % at a locus with k alleles, g; reduces to

_ 2(k-1)
1= k2

2.2.2. Grandma-grandpa mating type 2: AiAjxAm

In this mating type, the grandpa has an allele, An, different from any of the two alleles of
the grandma’s heterozygous genotype, AiA;. This mating type occurs only when a locus

8
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has more than two alleles. It produces two types of workers, AiA» and AjAn, at an equal
frequency of %. A male from a A;Am worker has a genotype A; with a probability of 2,
and this male allows the exclusion of an aunt when she has the genotype AjAn. Similarly,
a male from a AjAn worker has a genotype Aj with a probability of %2, and this male
allows the exclusion of an aunt when she has the genotype AiAm.

The overall frequency of this mating type is
qz = Zﬁl Z?l:iﬂ 2P (1 —pi —p1j) = 1 — 3a;; + 2a;3.

For a locus with k equal-frequency alleles, p;; = %, the overall frequency of this mating

type reduces to
3 2
q, = 1-— E + F
2.2.3. Grandma-grandpa mating type 3: All others

The rest of the mating types are pooled to form mating type 3, which does not allow any
exclusion. Grandmas from this pooled mating type are always homozygotes and thus all
females (i.e. the mother and aunts of a male) produced from the mating type are of the
same genotype (Table 1). The frequency of this pooled mating type is

g3 =1-q —q;=1-2(a;, —ap) — (1 —3a; + 2a;3) = ap.

For a locus with k equal-frequency alleles, p;; = %, it reduces to

1
a3 =+
2.2.4. Summing the 3 mating types

The three mating type frequencies sumto 1, g; + g, + g3 = 1, as expected. The relative
frequencies of mating types 1, 2 and 3 depend on the number and frequencies of alleles
at a locus. For diallelic markers, we have g, = 0 and g5 = gq; with g3 — g; = (1 — 2p;;)?.
When p;; = p;; = 0.5, g3 = g; = 0.5. Otherwise, q; > q;, and the difference increases
with an increasing departure from the equifrequency p;; = p;; = 0.5. With more than 2
alleles at a locus, g, > 0 and the sum of frequencies of exclusion-permitting mating
types, q; + q; = 1 — a5, is always larger than g; = a;,. The higher is the polymorphism
(with a larger k and a more even allele frequency distribution) of a marker, the greater
are the frequencies of exclusion-permitting mating types and thus the higher is the
information content of the marker for parentage analysis. This is an intuitive conclusion
that is partially verified by numerical analysis (Figures 2 and 3 in Results below).

Now consider a male genotype at L loci, each having k alleles of the same
frequencies {p4, p, ..., px} (the subscript [ for locus is thus dropped out hereafter). The
probability that, among the L alleles in a male genotype, ni,nzandn; =L —n; —n,
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come from grandma-grandpa mating types 1, 2, and 3 follows the multinomial
distribution

P[ny,ny,n3] = ‘h CI2 Q3 .

nq 'nz 'n3

Suppose a male has a genotype with n1 alleles (loci) coming from grandma-grandpa
mating type 1. The probability that, among these n1 loci, each of n11 (=0,1,..., n1) loci has
an allele permitting exclusion follows a binomial distribution, and can be derived from
Table 1 as

Ri[nyy,ny —ngql =

vl O AN 6 B

Similarly, the probability that, among the n> loci of mating type 2, each of nz1 (=0,1,..., n2)
loci has an allele permitting exclusion is

T = S O™

na1!(ny—nzq)!

n11'(n1—n11)'

R,In,,n, — n =
2[ 21, 12 21] n21,(n2 n21),

Given a male with n11 and n2: loci displaying exclusionary alleles coming from mating
type 1 and 2 respectively, the probability that its N aunts are excluded is

Qlny, nanl = (1 - (%)n11+n21)N.

The overall exclusion probability considering all possible male genotypes from all
possible grandma-grandpa mating types is

L L-mn

Prony = Z Z P[ny,n,, L —ny —n,] X

n1=0n,=0

nq ns
Z Ri[nyq,ny —ny4] Z Ry[ny1,mp — npp] Qnygg,np4]

n11=0 n21=0
L L-n ng
Z Z qnlqnqu ni—msp Z n1! (1)n11 (3)n1_n11
1 2 3 n "
n1'"2'(L ny —ny)! nyq! (ng —nyg)! 4 4
n1=0n,=0 Nnq11=0
an ( )nz ( ( )n11+n21)N 5
n21=0 n21'(n2—n21)' ' ( )

In equation (5), a male genotype has ni, nz and L — n; — n, alleles (loci) coming from
grandma-grandpa mating type 1, 2 and 3, respectively. Therefore, n1 varies between 0
and L (number of loci), while n; varies between 0 and L — n;. Among these n1 loci from
mating type 1, n11 (=0,1,..., n1) loci have alleles that make it possible to exclude
maternity. Similarly, among these nz loci from mating type 2, n21 (=0,1,..., n2) loci have
alleles that make it possible to exclude maternity. q1, gz and g3 are the frequencies of

10
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grandpa with grandma mating types 1, 2 and 3 as described in sections 2.2.1, 2.2.2 and
2.2.3. The computational load of (5) increases rapidly with L, and becomes substantial
even when L is as small as 10. To facilitate its application, (5) is implemented in
software (see below).

For the diallelic marker case, g, = 0 and n, = 0 (such that the sums over nz and
over nz1 are both empty), and (5) reduces to

N
PEZ(N) an 0 I(L ny)! q?lq'a’ anl_o nlll(nl_nll)l( )nll( )nl " (1 - G)nll) : (6)

3. Simulations

To check the validity of the formula, we conducted some Monte Carlo simulations. For
these numerical examples, the formula and simulations agree very well (Table 2). For a
given allele frequency distribution (equal frequency, or frequencies in a triangular
distribution where the frequency of allele j, p;, is proportional to j forj=1, 2, ..., kata
locus with k alleles), exclusion probabilities increase rapidly with: a decreasing number
of potential candidate parents (aunts); an increasing number of loci; and an increasing
number of alleles per locus. At the same number of alleles at a locus, the same number
of loci and the same number of candidates, equal allele frequency distribution leads to a
substantially higher exclusion probability than a triangular distribution of allele
frequencies.

Simulations were also conducted to investigate the impact of genome size
(linkage) on the exclusion probabilities of a set of markers. In deriving equations (3)
and (5), we assumed no linkage among the markers. This is a very good approximation
when the number of markers (L) is small. However, with a large L, some markers might
be physically linked (located on the same chromosome), and (3) and (5) may
overestimate the exclusionary power of the L markers. To understand the impact of
linkage, we simulated a genome of various map lengths (m, from 1 to 32 Morgans) and
assumed the L markers are equally spaced in the genome. The number of crossovers in
generating a gamete from a diploid female was drawn from a Poisson distribution with
parameter m, and the locations where crossovers occurred were randomly chosen
without interference between different crossover events. The results in Table 2 show
that linkage can decrease the exclusionary power of a set of L markers substantially
when roughly 3m < L, which means that when the genome size m is small or the number
of markers L is large such that on average 3 or more markers are located on 1 Morgan of
the genome. For the range of L (10-80) considered in the simulation, a genome with
m=16 is hardly affected by linkage in determining exclusion probabilities.

4. Results

4.1 Exclusion of candidates unrelated to the true mother

11
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Confirming the proof in Appendix 1, the maximal exclusion probability is attained when

all alleles at a locus I have the same frequency of kl For the case of a diallelic marker
l

(k; = 2), for example, Pz, as a function of allele frequencies is shown in Figure 2. A locus
with rare alleles contributes little to maternity exclusion. For L diallelic loci with allele
frequencies {p, 1 — p}, Pg, reduces to P;; = 1 — (1 — p + p?)~. The number (L) of loci
with a rare allele frequency p required to attain the same exclusion probability as a
single diallelic locus with equal allele frequency (0.5) can be solved from the equation
1-(1-p+p?)t=1-(1-0.5+0.52) Figure 3 plots L as a function of p, where L is
solved from the previous equation. L increases loglinearly with a decreasing p. Loci with
rare alleles have little exclusionary power. For example, about 6 diallelic loci with allele
frequencies (0.05, 0.95) or 29 diallelic loci with allele frequencies (0.01, 0.99) have
roughly the same exclusion power, Pz; = 0.25, as a single diallelic locus with
equifrequent (0.5, 0.5) alleles.

Some numerical examples of (4) are shown in Figure 4. For markers with
equifrequent alleles, the number of alleles of a locus has a large impact on the exclusion
probability. A diallelic locus affords the smallest amount of information for maternity
exclusions. It can be shown using (4) that a locus with 10 equifrequent alleles has the
same exclusionary capability as 2.8 triallelic loci with equifrequency or 5.8 diallelic loci
with equifrequency. Pgq(y) decreases rapidly with an increasing N and a decreasing L.

4.2 Exclusion of candidates who are full sibs to the true mother

The results from (5) for some parameter combinations are shown in Figure 5. Similar to
the case of excluding candidate females who are unrelated to the mother, the
probability of excluding aunts as mother increases rapidly with both the number of loci
(L) and the number of alleles per locus (k). However, excluding aunts is much more
difficult than excluding females unrelated to the mother. To attain the same exclusion
power, many more loci are necessary when the candidate females are aunts rather than
unrelated individuals. For markers with each having 5 or more equifrequent alleles,
about 10 loci are required to yield a probability 0.99 for excluding 100 unrelated
females. However, when the candidate females are aunts, about 50 such loci are
required to yield the same exclusion power. Diallelic markers, such as SNPs, have a
much reduced exclusion power than multiallelic markers. For the above example, about
150 diallelic loci with equifrequent alleles are required to exclude 100 aunts as the
mother at a probability of 0.99. This is because, when k=2, only one mating type
(AiAjxA;) instead of two (when k > 2) can generate males that may allow exclusions.

Similar to the case of unrelated candidates, the maximal exclusion probability is

attained when all alleles at a locus [ have the same frequency of kl Figure 2 shows the
l

probability of excluding N = 10 aunts from the maternity of a male using L=10, 20, 40
and 160 diallelic markers (k; = 2) as a function of allele frequencies. Again, a locus with
a rare allele contributes little to maternity exclusion. For example, to exclude 10 aunts

12
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from the maternity of a male at a probability of 0.996 would require 120, 162, 340 and
650 diallelic markers with each having an allele frequency equal to 0.5, 0.25, 0.1 and
0.05, respectively. Compared with the exclusion of unrelated candidate workers (Figure
2), excluding aunts from maternity of a male is much more difficult. At the same allele
frequency distribution, roughly L and 4L diallelic markers afford the same probability of
excluding N unrelated candidates and N aunts of a male, respectively.

5. Discussion

Although marker-based parentage analyses have been conducted in haplodiploid
species (for diploid offspring at the individual level and haploid offspring at the class
level), previously there has been no study in haplodiploids on the average probability of
marker-based parentage exclusion for haploid offspring at the individual level. All
studies on parentage exclusion at the individual level in the literature assume a diploid
species (see Introduction). Herein we investigated the exclusion of maternity of a
haploid male in haplodiploid species when multiple candidate mothers to be excluded
are unrelated or are full siblings to the mother. These equations are especially useful for
the study of worker reproductivity, where many fullsib females (e.g. workers produced
by one, singly-mated queen) may compete for maternity of a male.

As shown by the numerical examples (Figures 2 and 3), a marker with
equifrequent alleles affords the maximal exclusionary power. A marker with rare alleles
(i.e. allele frequencies close to zero) holds little exclusion capability. This is
understandable from an inspection of Table 1, which shows that a male from a
homozygous grandma or a homozygous mother does not allow maternity exclusion of
any aunts. Homozygosity is expected to increase with allele frequencies departing
increasingly from an equifrequent distribution or with the frequency of one allele
approaching 1 and the frequencies of the other alleles approaching 0.

As is the case for parentage exclusion in diploid species (Salmon and Brocteur,
1978; Double et al., 1997), maternity exclusion of a male in haplodiploid species
becomes much more difficult when the female candidates are fullsibs of the mother
rather than random individuals unrelated to the mother. This is because, being from the
same pair of parents, aunts and the true mother share similar genotypes. Hence aunts
are more likely to have genotypes compatible with those of their nephew than unrelated
females drawn at random from a population. Therefore, hundreds of diallelic loci are
required to exclude 100 aunts as the mother of a male at a probability of 0.99. However,
nowadays SNPs from next generation sequencing can easily provide hundreds of
diallelic loci for parentage and similar analyses (Helyar et al., 2011), and as studies
characterising SNPs in eusocial Hymenoptera grow in number (e.g. Theodorou et al,,
2018; Southon et al., 2019), parentage analyses involving haploid offspring using
hundreds of markers will become increasingly feasible.

Following previous work we assume marker data are perfect in maternity
exclusion analysis. Unfortunately, in reality, genotyping errors and mutations are rules
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rather than exceptions. Regardless of genotyping methods (e.g. by PCR for microstellites
or by sequencing for SNPs), typing errors are ubiquitous (Pompanon et al.,, 2005). False
maternity exclusion might occur because the mother’s genotype and the male’s
genotype may mismatch at one or more loci due to genotyping abnormality or
mutations. To reduce false exclusion, a common convention is to exclude putative
mothers only when they have genotypes that mismatch with male genotypes at two or
more loci. By making this mismatch allowance, the exclusionary power of a set of
markers could be substantially reduced (Double et al., 1997). To obtain a given
probability (say, 0.99) of excluding all false mothers, therefore, a few more markers
than that determined from (3) or (5) for the case of perfect markers would be required.

The formula for exclusion probabilities, (3) and (5), are derived by assuming the
absence of linkage among markers. However, in the case of many markers (L) in a small
genome (m Morgans in genetic map length), some of the markers are inevitably located
on the same chomosome and are thus physically linked. As shown by our simulations,
linked markers could have a substantially reduced exclusionary power compared to
unlinked markers (Table 2). When roughly L = 3m, the predictions by (3) and (5) should
be taken as an upper limit of the exclusionary power of the L markers. For maternity
exclusion of unrelated females, eqn (3) should be largely valid for any species because L
is generally small. However for maternity exclusion of many aunts, eqn (5) might be too
optimistic because L can be larger than 3m in some species. Species of ants, for example,
show huge variation in the number of chromosomes, from only one chromosome, as in
the males of the Australian bulldog ant Myrmecia croslandi, to as many as 60
chromosomes, as in the males of the giant Neotropical ant Dinoponera lucida (Cardoso
and Cristiano, 2021). With 60 chromosomes, (5) should be accurate except when L is
extremely high, say L > 180. With 1 chromosome, on the contrary, (5) may always
overestimate the power of a set of L markers because they are likely to be closely linked.

It should be emphasized that (3) or (5) give the average probability of excluding
a randomly drawn sample of candidates (who are unrelated or fullsibs to the mother) as
the mother of a male drawn at random from a population. The actual exclusion
probability varies depending on the genotypes of the males and the genotypes of the
candidate females, as shown for diploid species (Chakraborty et al., 1988). For a male
with genotypes coming from mothers homozygous at an exceptionally high proportion
of loci, it is difficult to exclude false maternity because the loci at which the maternal
genotypes are heterozygous could be too few to allow maternity exclusion. For this
reason and others (such as the presence of population genetic structure, e.g.
subdivision), the average exclusion probability calculated by (3) or (5) could be too
liberal and a few more markers than those determined by the equations are required to
yield accurate parentage analysis results.

Maternity exclusion is different from maternity assignment. The probability of
exclusion depends on the genetic structure of a population, calculable from the allele
frequencies of the markers in the population. It can be determined before genotype data
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are acquired, and therefore is valuable in experimental design in optimizing the
sampling intensities of markers and individuals. The probability of maternity
assignment depends on the genotypes of candidate females, males and their relatedness
as well as allele frequencies in the population. Two approaches can be used to make
maternity assignments. One is based on exclusion. When all candidate females except
for one are excluded from the maternity of a male, then the maternity can be assigned to
the unexcluded female (Jones et al., 2010). The confidence of the assignment is
determined by the quantity and quality of marker data. However, implementing
exclusion-based parentage assignment can be tricky due to complexities such as the
presence of genotyping errors and mutations, and the approach is rarely powerful
enough to assign parentage unambiguously in reality. Quite often more than one
candidate may remain unexcluded from the parentage of an offspring based on their
genotype data.

A more powerful and flexible approach to parentage assignment is based on
likelihood. It can optimally use allele frequency and genotyping error rate information,
in addition to genotype data as used by the exclusion approach, in calculating the
probability of each candidate being the parent of an offspring (Marshall et al., 1998;
Wang and Santure, 2009). For example, the sharing of rare alleles between a candidate
female and an offspring is strong evidence that they are a mother-offspring dyad in the
likelihood approach, but this allele frequency information is wasted in the exclusion
approach. Frequently parentage assignment can be determined with confidence by the
likelihood approach in situations where parentage assignment is inconclusive by the
exclusion approach. Although exclusion probability described above and in the
literature is based on exclusion or genotype mismatches, it is informative for likelihood
parentage analysis in helping determine the sufficiency of marker information for, and
the power of, a parentage analysis.

As the formula calculating the probability of excluding an arbitrary number of
aunts from the maternity of a haploid male, (5), is complicated, it is implemented in
software AuntExclusion available for free download from
https://www.zsl.org/science/software/auntexclusion. It has a Windows GUI for data
and parameter input and for analysis results visualization. The software also includes a
simulation module which can be used to simulate the probability of excluding multiple
aunts from maternity of a male in haplodiploid species and in diploid species.

Data availability

No raw data are generated in this study. The software from this study is posted
on https://www.zsl.org/science/software /auntexclusion.
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Table 1: Maternity exclusion of aunts of a haploid male from different
grandparent mating types. (Freq. = frequency)
Grandparent Mating Sibling Worker | Male Produced | Excluded Exclusion
from Mating by Worker Genotype | Probability
Type Freq. Type Freq. | Type Freq.
AiAixA; D AiA; 1 A 1 - 0
AAxA; | pr(T—py) | Al 1 Ai V2 i 0
(j#1) A Y2 i 0
AiAjxA; 2pi(1 AiA; Y2 Ai 1 i 0
(j2i) — ) AA; % Ai Y - 0
A Y AiA; Yo
AiAjxAm PPy (1 AiAm 7 A; ¥ AjAm 7
Gzim#im#) | — py — pyj) Anm Y [ 0
AjAm Y2 A; Y2 AiAm Y
Anm Y2 - 0
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602 Table 2: Check of equation (5) by simulations with and without linkage

Allele N k L Simulated exc. prob. for a genome in size (Morgan) Eqn
Frequency 1 2 4 8 16 (32 | )
Equal 10 5 10 0.1915 | 0.2712 | 0.3297 | 0.3401 | 0.3408 | 0.3411 | 0.3409 | 0.3408
10 5 20 0.2770 | 0.4398 | 0.6277 | 0.7650 | 0.7999 | 0.7965 | 0.7962 | 0.7964
100 |5 20 0.1028 | 0.1698 | 0.2619 | 0.3424 | 0.3526 | 0.3546 | 0.3554 | 0.3547
100 |5 40 0.1774 | 0.3034 | 0.5124 | 0.7630 | 0.9118 | 0.9398 | 0.9361 | 0.9362
10 2 10 0.0545 | 0.0580 | 0.0550 | 0.0533 | 0.0536 | 0.0535 | 0.0536 | 0.0536
10 2 20 0.1343 | 0.1798 | 0.2134 | 0.2220 | 0.2226 | 0.2228 | 0.2228 | 0.2228
100 |2 40 0.0697 | 0.1045 | 0.1450 | 0.1766 | 0.1796 | 0.1808 | 0.1808 | 0.1809
100 |2 80 0.1384 | 0.2321 | 0.3816 | 0.5711 | 0.7199 | 0.7711 | 0.7689 | 0.7688
Triangular 10 5 10 0.1729 | 0.2380 | 0.2792 | 0.2841 | 0.2847 | 0.2847 | 0.2847 | 0.2848
10 5 20 0.2641 | 0.4144 | 0.5856 | 0.7071 | 0.7346 | 0.7317 | 0.7317 | 0.7317
100 |5 20 0.0908 | 0.1459 | 0.2154 | 0.2650 | 0.2649 | 0.2672 | 0.2675 | 0.2675
100 |5 40 0.1651 | 0.2823 | 0.4760 | 0.7127 | 0.8633 | 0.8897 | 0.8860 | 0.8860
10 2 10 0.0451 | 0.0461 | 0.0427 | 0.0416 | 0.0418 | 0.0419 | 0.0418 | 0.0418
10 2 20 0.1185 | 0.1535 | 0.1757 | 0.1785 | 0.1792 | 0.1791 | 0.1791 | 0.1792
100 |2 40 0.0595 | 0.0860 | 0.1122 | 0.1268 | 0.1224 | 0.1243 | 0.1244 | 0.1243
100 |2 80 0.1263 | 0.2099 | 0.3407 | 0.5050 | 0.6314 | 0.6670 | 0.6651 | 0.6652

Note each of the L loci is assumed to have k alleles with either equal frequencies (=1/k)
or frequencies in a triangular distribution (i.e. frequency of allele j is proportional to j
forj=1, 2, .., k). The average probability of excluding N aunts from maternity of a male
taken at random from the population is calculated by equation (5) and simulations. For
simulations, the genome size is assumed to be 1, 2, 4, ... 32 Morgans in genetic map
length or to be o for free recombination. The average in simulation is taken over
10000000 replicates.
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Grandparents

Mother, Aunts

Figure 1: A schematic illustration of a pedigree in which a male has possible genotypes
that may or may not allow the maternity exclusion of its aunts. A male who has a
genotype (4;) that allows the exclusion of some aunts (with genotype 4;4;) as its mother
is depicted in a black solid-lined box, while a male who has a genotype (4;) that does not
allow the exclusion of any aunts as its mother is depicted in a grey dashed-lined box.
The figures beside the arrowed lines are the corresponding transmission probabilities
from a parental to an offspring genotype.
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Figure 2: Average maternity exclusion probability of males as a function of allele
frequencies at diallelic loci. (A) N=10 candidate females unrelated to the true mother of
a male, and (B) N=10 candidates who are full siblings to the true mother of a male, are
to be excluded as the mother of the male using L = 10, 20, 40, 160 loci with each locus
having K=2 codominant alleles of frequencies shown on the x axis. Eqns (3) and (6) are
used in calculating the average maternity exclusion probabilities in cases (A) and (B)
respectively.
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Figure 3: Number of loci L (y axis) with rare allele frequency p (x axis) required to attain
the same exclusion probability as a single diallelic locus with equifrequent (0.5, 0.5)
alleles. Note that the axes have logarithmic scales. Eqn (3) is used in the calculations.
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Figure 4: The probability of excluding N (10 or 100) candidate females unrelated to a

using L loci (_), each having K=2, 5 or 10 equifrequent codominant alleles.
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Figure 5: The probability of excluding N (10 or 100) candidate females who are full

is calculated by eqn (5) using L loci|(on x axis), each having K=2, 5 or 10 equifrequent

codominant alleles.

604

26



605

606

607

608
609
610

611
612

613

614
615
616
617
618
619
620

621

622

623

624

625

626
627
628

629

630

631

632

633

634

Appendix 1: Proof that 2a,, — a;3 is minimized at an equal allele frequency

: . : . 2k;—1 .
We provide a proof that 2a;, — a;3 in equation (3) is minimized to klz and therefore the exclusion
l

N
probability is maximized to (1 -1, 2’:—2_1> of equation (4a) when locus / has an equal allele
l

frequency of 1/k;. For clarity, we drop the subscript / and consider a locus with £ > 2 alleles of
frequencies p; for i=1, 2, ..., k, where p; is apparently subject to the constraints 0 < p; < 1 and

i‘{=1 pi =1

When py, is replaced by 1 — gy, where qx_; = Y51 p;, the quantity 2a, — a3, denoted by
Xy, 1s reduced to

k-1 k-1
Xy =20, —az3 =2 Z piz + 2(1 - Qk—l)z - Z pi3 - (1 - Qk—l)B-
i=1 i=1

To derive the minimum value of X}, and the corresponding values of p;, we first obtain the critical
points of X, by setting its first derivatives to zero and solving the resultant equations. We then
examine these points and choose the points that satisfy the constraints 0 < p; < 1 and Y¥_, p; = 1.
The chosen valid critical points are then used in the second derivative test to determine whether
function X}, attains a minimum, a maximum or otherwise at the critical points. We first consider the
simplest cases of a diallelic (k<=2) and triallelic (k~=3) locus, and then the general case of any number
of alleles (k> 2) at a locus.

1. Two alleles, k=2

In the simplest case of a diallelic locus with £/=2 alleles, function X}, reduces to

Xi =2pf +2(1 - p)® —pi — (1 —p2)*.
By setting the first derivative to zero,

Xy

6p1:2p1_1=0,

we obtain the sole critical point p;=1/2. Apparently, the point p;=1/2 (and thus p, = 1 — p;=1/2) is
valid, satisfying the constraints 0 < p; < 1 and Y¥_, p; = 1. The second derivative of X}, is 2, which
is a positive value and signifies that X}, attains a minimum value at the critical point {p;=1/2, p, =

1/2}. The minimal value of X, at point p; = 1/2 (i=1,2) is Z 7+ =%.

2. Three alleles, k=3
For a triallelic locus with &=3 alleles, function X} reduces to
X = 200108 +2(1—q2)* = 3 pd — (1 - q2)%,
where q, = Y2, p;. By setting the first derivatives to zero,

ax
6_1: =@ —1+q2)(1—-3p; +3q;) =0,
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[5):¢
apk = (p2—1+q2)(1 —3p; +3q2) =0,

we obtain a set of two equations. Solving the equations, we obtain 4 critical points of {p;, p,}, which
are {1/3, 1/3}, {-1/3, 5/3}, {5/3, -1/3}, {-1/3, -1/3}. Except for the first point, all other points are
invalid because they contain negative values which are infeasible for allele frequencies. The first point
is the sole valid one that satisfies the constraints 0 < p; < 1 and Zi-;l p; = 1. From the constraints on
allele frequencies, we obtain p; = 1/3 at the critical point.

The Hessian matrix is

H(Pl'pz)—[ —2+6q, 2+6q;—6p,)

which becomes
4 2
H(py,p2) = 2 4_]

at the critical point {p;, p,}={1/3, 1/3}. The eigenvalues of H(p,, p,) at the critical point are 6 and 2,

which are both positive, signifying that function X}, attains a minimum value at the critical point
2k-1

{p1, p2}={1/3, 1/3}. The minimum value of X, at point p; = 1/3 (i=1, 2, 3) is = 5/9.
3. Any number of alleles, k> 2
For a locus with an arbitrary number of £ > 2 alleles, the function X}, is
X =2Xi5 pf +2(1 = qe-0)® = 25 2 — (1= qr-a)’,
where q,_1 = Zi-‘;ll p;. The partial derivatives of X; with respect to p; are
oy = (s 1+ ) (1= 39y +30000)
for j=1, 2, ..., k-1. To obtain the critical points of function X}, we set these partial derivatives to zero,

We now show that function X, reaches a minimum at this critical point of p; = 1/k for i=1,

2, ..., k. The Hessian matrix for function X, is
2+ 6qk—1 - 6p1 -2+ 6qk—1 -2+ 6qk—1
-2+ 6qk—1 2+ 6qk—1 - 6p2 -2+ 6qk—1

H(P1, D2, ) P—1) = ’
-2+ 6qx_, —2+6qy_, w2+ 6qK_1 — 6P)_1

N ‘
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