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ABSTRACT	25 

Parentage	exclusion	probability	is	usually	calculated	to	evaluate	the	informativeness	of	26 
a	set	of	markers	for,	and	the	statistical	power	of,	a	parentage	analysis.	Equations	for	27 
parentage	exclusion	probability	have	been	derived	in	various	scenarios	such	as	28 
paternity	exclusion	when	maternity	is	known	or	unknown	or	when	candidate	males	are	29 
unrelated	or	loosely	related	(being	from	the	same	subpopulation)	to	the	father.	All	30 
previous	work	assumes	a	diploid	species.	Although	marker-based	parentage	analyses	31 
have	been	conducted	in	haploidiploid	species	(such	as	ants,	bees	and	wasps)	for	diploid	32 
offspring	at	the	individual	level	or	haploid	offspring	at	the	class	level,	rigorously	derived	33 
formulations	of	parentage	exclusion	probability	for	haploid	offspring	at	the	individual	34 
level	are	lacking,	which	prevents	the	precise	evaluation	of	the	informativeness	for	and	35 
the	statistical	power	of	a	parentage	analysis.	In	this	study	we	derive	equations	for	the	36 
exclusion	probability	of	maternity	of	a	haploid	male	when	multiple	mother	candidates	37 
(workers	or	queens)	are	unrelated	or	fullsibs	to	the	mother.	The	usefulness	of	the	38 
equations	is	exemplified	by	numerical	examples,	and	the	results	are	discussed	in	the	39 
context	of	the	study	of	worker	reproductivity	in	eusocial	haplodiploid	species.	The	40 
results	are	especially	valuable	for	an	optimal	experimental	design	in	determining	41 
sampling	intensities	(e.g.	number	of	markers	and	number	of	individuals)	to	achieve	42 
satisfactory	statistical	power	of	a	parentage	analysis	in	investigating	workers'	43 
reproductivity	in	eusocial	haplodiploid	species.	44 

		45 

	 	46 
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1.	Introduction	47 

Genetic	marker-based	parentage	analysis	has	been	widely	applied	in	human	and	48 
wildlife	forensics	(Ogden	et	al.,	2009),	in	studies	of	social	behaviour,	social	organization,	49 
reproductive	success,	mating	systems,	dispersal	and	spatial	genetic	structure	in	natural	50 
populations	of	wild	species	(Hughes,	1998;	Coltman	et	al.,	1999;	Garant	et	al.,	2001;	51 
Avise	et	al.,	2002;	Robledo-Arnuncio	and	Gil,	2005;	Bretman	and	Tregenza,	2005),	in	the	52 
conservation	management	of	endangered	species	in	captivity	and	in	the	wild	(Moran	et	53 
al.,	2021),	and	in	the	selective	breeding	of	domestic	animals	and	crops	(Heaton	et	al.,	54 
2014).	Both	exclusion	and	likelihood	approaches	have	been	developed	to	assign	the	55 
parentage	of	an	offspring	to	a	candidate	using	the	genotype	data	of	the	individuals	at	56 
some	marker	loci	(Flanagan	and	Jones,	2019).		57 

In	the	experimental	design	stage	of	a	parentage	study	in	determining,	among	58 
other	things,	the	appropriate	sampling	intensities	of	markers	and	individuals,	a	statistic	59 
called	parentage	exclusion	probability	(PE)	is	usually	calculated	to	evaluate	the	marker	60 
informativeness	for,	and	the	statistical	power	of,	a	parentage	analysis	(e.g.	Dodds	et	al.,	61 
1996;	Jamieson	and	Taylor,	1997).	PE	is	usually	defined	as	the	average	probability	that	a	62 
randomly	selected	individual	is	excluded	from	the	parentage	of	a	randomly	selected	63 
offspring	based	on	their	genotypes	at	a	set	of	marker	loci.	The	individual	is	excluded	64 
from	the	parentage	of	the	offspring	if	they	have	genotypes	that	mismatch	at	one	or	more	65 
marker	loci,	and	is	unexcluded	if	they	have	completely	matched	genotypes.	A	low	PE	66 
means	an	individual	who	is	unrelated	to	an	offspring	is	excludable	from	the	parentage	67 
of	the	offspring	at	a	low	probability,	signifying	that	the	set	of	markers	used	in	68 
calculating	PE	is	not	informative	and	the	parentage	analysis	using	the	markers	is	69 
powerless.	In	contrast,	a	high	PE	means	an	individual	who	is	unrelated	to	an	offspring	is	70 
excludable	from	the	parentage	of	the	offspring	at	a	high	probability,	signifying	that	the	71 
set	of	markers	has	sufficient	information	and	the	parentage	analysis	using	the	markers	72 
is	powerful	enough	to	yield	accurate	parentage	assignments.	Although	PE	is	based	on	73 
exclusion,	it	is	relevant	to	a	parentage	analysis	regardless	of	the	methods,	exclusion	or	74 
likelihood.		75 

	 Formulas	for	PE	have	been	derived	in	the	literature	for	diallelic	(e.g.	Wiener	et	al.,	76 
1930)	and	multiallelic	(e.g.	Jamieson,	1965;	Ohno	et	al.,	1982;	Dodds	et	al.,	1996)	77 
markers,	for	excluding	an	individual	who	is	unrelated	to	(e.g.	Jamieson	and	Taylor,	78 
1997)	or	is	loosely	related	to	(being	from	the	same	subpopulation,	e.g.	Ayres,	2002)	the	79 
sampled	individuals	involved	in	a	parentage	analysis,	and	for	excluding	a	close	relative	80 
of	the	true	parent	(MacCluer	and	Schull,	1963;	Salmon	and	Brocteur,	1978;	Thompson	81 
and	Meagher,	1987;	Double	et	al.,	1997;	Fung	et	al.,	2002;	Hu	et	al.,	2005).	Among	many	82 
insights	gleaned	from	these	formulations,	it	was	shown	that	the	exclusionary	capability	83 
of	a	set	of	markers	is	much	reduced	by	genetic	relatedness	between	the	alleged	and	true	84 
parents.		85 
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	 In	a	parentage	analysis,	usually	many	individuals	are	candidates	for	parentage	86 
assignment	of	an	offspring,	and	all	but	one	must	be	excluded	before	the	unexcluded	one	87 
can	be	confidently	assigned	parentage.	When	these	candidates	are	unrelated	to	the	true	88 
parent	and	unrelated	among	themselves,	the	probability	of	multiple	candidate	89 
exclusions	of	an	offspring	can	be	easily	calculated	from	that	of	single	exclusion	90 
(Chakraborty	et	al.,	1988),	PE;	The	probability	of	excluding	n	such	unrelated	candidates	91 
is	simply	𝑃!(#) = (𝑃!)#.	When	multiple	candidates	are	close	relatives,	say	fullsibs,	to	the	92 

true	parent,	however,	the	probability	of	excluding	all	of	them	can	no	longer	be	93 
calculated	from	the	probability	of	excluding	a	single	candidate.	Until	now	there	have	94 
been	no	algebraic	derivations	of	the	probability	of	excluding	multiple	(n)	close	relatives	95 
to	the	true	parent	in	a	parentage	analysis,	𝑃!(#).	In	the	absence	of	formulas,	Double	et	al.	96 

(1997)	used	simulations	instead	to	evaluate	𝑃!(#)	for	excluding	multiple	relatives	to	the	97 

true	parent	in	diploid	species.	98 

	 Previous	studies	calculating	PE,	as	well	as	empirical	applications,	assume	diploid	99 
species	(e.g.	Dodds	et	al.,	1996;	Double	et	al.,	1997;	Jamieson	and	Taylor,	1997).	100 
However,	it	is	also	desirable	to	conduct	parentage	analysis	in	eusocial	insects	including	101 
the	ants,	bees	and	wasps	(Hymenoptera),	all	of	which	are	haplodiploid.	In	some	studies	102 
of	eusocial	Hymenoptera,	individual-level	parentage	analyses	have	been	conducted	103 
assigning	diploid	offspring	to	potential	mothers,	e.g.	worker	offspring	to	coexisting	104 
mother	queens	(Hammond	et	al.,	2006).	In	many	species	of	eusocial	Hymenoptera,	105 
workers	are	capable,	through	haplodiploidy,	of	producing	unfertilized	eggs	that	develop	106 
into	males,	which	may	occur	in	the	queen's	presence	(queenright	conditions)	or	more	107 
frequently	in	colonies	consisting	of	workers	remaining	after	the	mother	queen	has	died	108 
(queenless	conditions)	(Bourke,	1988;	Ratnieks	et	al.,	2006;	Friend	and	Bourke,	2014).	109 
Nearly	all	studies	of	male	parentage	in	eusocial	Hymenoptera	have	assigned	males	to	110 
queens	or	workers	as	a	class	(e.g.	Foster	et	al.,	2001;	Hammond	et	al.,	2003;	Alaux	et	al.,	111 
2004).	A	single	pioneering	study	of	the	ant	Pachycondyla	villosa	aimed	to	assign	males	112 
to	individual	worker	parents	(Trunzer	at	al.,	1999),	and	this	used	experimentally-113 
established	groups	of	unrelated	workers	although	the	study	species,	as	is	almost	114 
universal	in	eusocial	Hymenoptera,	lives	in	colonies	of	related	workers.	The	lack	of	115 
studies	aiming	to	exclude	related	reproductive	workers	as	parents	of	worker-produced	116 
males	at	the	individual	level	is	attributable	to	the	inherent	difficulty	of	performing	such	117 
exclusions	when	potential	worker	mothers	may	be	related	to	one	another	by	values	as	118 
high	as	0.75	(i.e.	full	sister	relatedness	in	workers	produced	by	a	single,	once-mated	119 
queen).	In	fact,	no	analytical	expressions	have	previously	been	derived	to	perform	such	120 
exclusions,	despite	potential	applications	for	understanding	the	distribution	of	direct	121 
fitness	(i.e.	individual	production	of	sons)	among	workers	in	the	same	eusocial	colony.		122 

In	this	study,	we	derive	equations	for	the	probability	of	excluding	(for	parentage)	123 
an	arbitrary	number	of	N	(>0)	workers	who	are	either	unrelated	or	related	as	full	sibs	to	124 
the	true	mother	of	a	male	using	codominant	marker	data.	In	the	latter	case,	all	candidate	125 
mothers	as	well	as	the	true	mother	of	a	male	are	full	sib	workers	who	are all daughters of 126 
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one, singly-mated queen,	and	therefore	a	candidate	mother	is	an	aunt	of	the	male.	The	127 
validity	of	the	equations	is	verified	by	simulations	and	the	power	of	excluding	multiple	128 
aunts	as	the	mother	of	a	male	is	investigated	using	some	numerical	examples.	The	129 
results	should	be	useful	for	the	experimental	design	and	execution	of	studies	of	worker	130 
reproduction	by	a	parentage	analysis	of	marker	data	at	the	individual	worker	level	in	131 
eusocial	Hymenoptera,	and	should	be	valuable	in	assessing	the	informativeness	of	132 
markers	for,	and	the	power	of	parentage	analysis	in,	haplodiploid	species	in	general.	133 

2.	Derivation	of	exclusion	probability	134 

We	consider	the	exclusion	of	maternity	of	a	haploid	male	in	haplodiploid	species	first	135 
when	the	candidate	diploid	females	are	unrelated	among	themselves	and	are	unrelated	136 
to	the	true	mother,	and	then	when	the	candidate	diploid	females	are	full	siblings	to	the	137 
true	mother	(i.e.	the	aunts	of	the	male).	The	case	of	unrelated	candidate	diploid	females	138 
is	rare	in	eusocial	Hymenoptera,	which	typically	consist	of	colonies	of	related	queens	139 
and	workers	(Ross,	2001;	Rubenstein	and	Abbot,	2017), but is nonetheless included in 140 
this study for comparison with the focal case of full-sib candidate females. This focal case 141 
arises when worker offspring of one, singly-mated queen produce male offspring in queenless 142 
conditions, these males being grandsons of the departed queen, as occurs relatively frequently 143 
in eusocial Hymenoptera (see Introduction).  144 

2.1	Excluding	candidates	unrelated	to	the	true	mother	of	a	male	145 

We	assume	N	candidate	females	(workers	or	queens)	compete	for	maternity	146 
assignment	to	a	male,	and	these	females	are	unrelated	among	themselves	and	unrelated	147 
to	the	true	mother.	Females	are	diploid,	while	males	are	haploid	and	have	developed	148 
from	unfertilized	eggs	laid	by	a	female	(queen	or	worker).	All	individuals	are	genotyped	149 
at	L	codominant	marker	loci.	In	the	absence	of	mutations	and	genotyping	errors,	the	150 
allele	of	a	male	at	each	locus	should	be	found	in	its	mother	genotype.	In	other	words,	the	151 
true	mother	will	always	have	a	genotype	compatible	with	that	of	its	male	offspring	at	all	152 
loci.	Specifically,	at	a	given	locus,	a	female	of	genotype	AiAj	will	have	sons	of	genotypes	153 
Ai	or	Aj	at	frequencies	of	½	and	½,	respectively.	If	a	candidate	female	is	not	the	mother	154 
of	a	male,	then	it	possibly	has	genotypes	incompatible	or	mismatched	with	those	of	the	155 
male	at	one	or	more	loci.	When	such	an	event	occurs,	the	candidate	is	excluded	from	the	156 
maternity	of	the	male.	Otherwise,	it	is	not	excluded.	When	all	but	one	of	the	N	candidate	157 
mothers	are	excluded	of	the	maternity	of	a	male	and	the	markers	used	in	the	analysis	is	158 
sufficiently	informative,	then	the	male’s	maternity	is	assigned	confidently	to	the	159 
unexcluded	candidate.	Given	a	set	of	markers	with	known	allele	frequencies,	we	160 
calculate	the	average	probability	that	a	randomly	selected	female	(worker	or	queen)	161 
who	is	unrelated	to	the	true	mother	is	excluded	from	the	maternity	of	a	randomly	162 
selected	male,	PE1.	The	value	of	PE1	(from	0	to	1)	signifies	the	information	content	of	the	163 
set	of	markers	for,	and	measures	the	power	of,	a	parentage	analysis.		164 

Consider	a	locus	l	with	𝑘% 	codominant	alleles,	Ai,	for	i=1,	2,	…,	𝑘% .	The	frequency	of	165 

allele	Ai	in	the	population	is	denoted	by	𝑝%& ,	with	𝑝%& > 0	and	∑ 𝑝%& = 1'!	
&)* .	Therefore,	a	166 
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male	taken	at	random	from	the	population	will	have	allele	Ai	with	probability	𝑝%& .	Given	167 
the	male	genotype,	a	random	candidate	can	be	excluded	as	the	mother	of	the	male	if	its	168 
genotype	does	not	contain	allele Ai, which will occur with probability	(1 − 𝑝%&)+	in	a	169 
population	with	random	mating.	The	overall	exclusion	probability	considering	all	170 

possible	genotypes	of	the	male	is	∑ 𝑝%&(1 − 𝑝%&)+
'!
&)* .	171 

Now	consider	a	number	of	L	loci.	Exclusion	occurs	when	the	male	and	the	172 
candidate	mother	have	incompatible	genotypes	at	1	or	more	loci.	The	exclusion	173 
probability	considering	L	loci	is	thus	174 

𝑃!* = 1 −∏ -1 − ∑ 𝑝%&(1 − 𝑝%&)+
'!
&)* .,

%)* .	 	 	 	 	 	 	 (1)	175 

This	formula	gives	the	probability	that	a	female	(worker	or	queen)	is	excluded	from	the	176 
maternity	of	a	male	based	on	their	genotypes	at	L	loci	with	known	allele	frequencies	𝑝%& 	177 
(for	l=1,	2,	…L;	i=1,	2,	…,	kl).	(1)	can	be	further	simplified	to	178 

𝑃!* = 1 −∏ (2𝑎%+ − 𝑎%-),
%)* ,		 	 	 	 	 	 	 	 (2)	179 

where	𝑎%.	is	the	sum	of	powers	of	allele	frequencies	at	locus	l,	with	𝑎%. = ∑ 𝑝%&.
'!
&)* 	for	𝑏 =180 

2, 3.	181 

Now	consider	the	probability	of	excluding	N	random	workers	who	are	not	the	182 
mother	and	are	unrelated	to	the	mother	of	a	male.	It	is	simply	calculated	from	(2)	as	183 

	𝑃!*(/) = (𝑃!*)/ = (1 − ∏ (2𝑎%+ − 𝑎%-),
%)* )/ .	 	 	 	 	 	 (3)	184 

𝑃!*(/)	depends	on	the	allele	frequencies	at	each	of	the	L	loci.	It	is	maximized	when	each	185 

locus	l	(l=1,	2,	…,	L)	has	kl	equal-frequency	alleles	(i.e.	𝑝%& = 1/𝑘% 	for	i=1,	2,	…,	kl).	In	such	186 
a	situation,	2𝑎%+ − 𝑎%-	in	(3)	is	minimized	to	(2𝑘% − 1)/𝑘%+	(Appendix	1),	and	𝑃!*(/)	is	187 

maximized	to	188 

𝑃!*(/) = 51 −∏ +'!0*
'!
"

,
%)* 6

/
.	 	 	 	 	 	 	 	 											(4a)	189 

When	all	L	loci	have	the	same	number	of	alleles,	k,	and	the	same	equal	allele	frequency	190 
of	1/k,	the	exclusion	probability	is	further	simplified	to	191 

𝑃!*(/) = 71 − 51 − 81 − *
'
9
+
6
,
:
/

.	 	 	 	 	 	 	 												(4b)	192 

2.2	Excluding	candidates	who	are	full	siblings	to	the	true	mother	of	a	male	193 

Excluding	aunts	(i.e.	full-sibling	to	the	mother)	from	being	assigned	as	the	mother	of	a	194 
haploid	male	is	much	more	difficult,	as	they	have	genotypes	similar	to	that	of	the	true	195 
mother	and	thus	inclined	to	be	compatible	with	those	of	the	male.	Specifically,	at	a	given	196 
locus,	workers	that	are	daughters	of	a	mother	queen	of	genotype	AiAj,	who	has	mated	197 
singly	with	a	male	of	genotype	Am,	will	be	of	genotypes	AiAm	or	AjAm	at	frequencies	of	½	198 
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and	½,	respectively,	and	their	male	offspring	will	be	of	genotypes	Ai,	Aj	or	Am	at	199 
frequencies	of	¼,	¼	and	½,	respectively.	Most	often	a	male	may	have	a	genotype	(allele)	200 
at	a	locus	that	produces	no	maternity	exclusion	of	its	aunts. Occasionally,	however,	it	201 
may	have	a	genotype	(allele)	that	is	absent	from	the	genotypes	of	some	aunts	who	are	202 
then	excluded	from	the	maternity	of	the	male.	A	schematic	illustration	of	a	pedigree	in	203 
which	some	males	may	and	others	may	not	allow	maternity	exclusion	of	their	aunts	is	204 
shown	in	Figure	1.	In	general,	the	exclusion	power	of	a	single	locus	is	rather	poor,	and	205 
many	loci	are	needed	to	confidently	exclude	assigning	maternity	to	the	aunts	of	males.			206 

It	is	more	difficult	to	derive	the	equation	for	excluding	multiple	aunts	from	the	207 
maternity	of	a	male,	because	the	aunts	are	highly	related	(relatedness	0.75)	among	208 
themselves,	and	thus	cannot	be	considered	independently	as	in	the	previous	case	209 
involving	multiple	unrelated	workers	taken	at	random	from	the	population.		Many	more	210 
markers	are	therefore	required	to	provide	sufficient	information	for	excluding	multiple	211 
aunts	from	the	maternity	of	a	male. 212 

Consider	a	locus	l	having	𝑘% 	codominant	alleles	Ai	with	frequencies	𝑝%& 	for	i=1,	213 
2,	…,	𝑘% .	A	male	taken	at	random	from	the	population	will	have	allele	Ai	with	probability	214 
𝑝%& .	It	could	come	from	a	mother	produced	from	four	possible	grandparent	mating	types	215 
(Table	1).	Only	two	of	the	four	grandma-grandpa	mating	types	(i.e.	the	mating	type	of	[i]	216 
the	queen	producing	the	workers	and	[ii]	the	queen's	mate)	could	produce	a	grandson	217 
that	allows	the	exclusion	of	its	aunts	being	assigned	as	the	mother.	The	two	mating	218 
types,	together	with	the	pooled	type	of	matings	that	do	not	allow	maternity	exclusion,	219 
are	detailed	below.	220 

2.2.1.	Grandma-grandpa	mating	type	1:	AiAj×Ai		221 

This	produces	two	types	of	workers,	AiAj	and	AiAi,	at	an	equal	frequency	of	½,	as	222 
depicted	in	Figure	1.	A	male	from	the	workers	of	this	mating	type	has	a	genotype	Aj	with	223 
a	probability	of	¼.	This	is	the	only	male	type	that	allows	exclusion	of	its	aunts	when	224 
they	display	the	genotype	AiAi	(i.e.	having	no	male	allele,	Aj,	in	their	genotype).	225 

The	overall	frequency	of	this	mating	type	is	226 

𝑞* = ∑ 2𝑝%&+(1 − 𝑝%&)
'!
&)* = 2(𝑎%+ − 𝑎%-),	227 

where	𝑎%.	is	the	sum	of	powers	of	allele	frequencies	at	locus	l	as	shown	above.	For	equal	228 

allele	frequency	𝑝%& =
*
'
	at	a	locus	with	k	alleles,	𝑞*	reduces	to	229 

𝑞* =
+('0*)
'"

.	230 

2.2.2.	Grandma-grandpa	mating	type	2:	AiAj×Am		231 

In	this	mating	type,	the	grandpa	has	an	allele,	Am,	different	from	any	of	the	two	alleles	of	232 
the	grandma’s	heterozygous	genotype,	AiAj.	This	mating	type	occurs	only	when	a	locus	233 
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has	more	than	two	alleles.	It	produces	two	types	of	workers,	AiAm	and	AjAm,	at	an	equal	234 
frequency	of	½.	A	male	from	a	AiAm	worker	has	a	genotype	Ai	with	a	probability	of	½,	235 
and	this	male	allows	the	exclusion	of	an	aunt	when	she	has	the	genotype	AjAm.	Similarly,	236 
a	male	from	a	AjAm	worker	has	a	genotype	Aj	with	a	probability	of	½,	and	this	male	237 
allows	the	exclusion	of	an	aunt	when	she	has	the	genotype	AiAm.		238 

The	overall	frequency	of	this	mating	type	is	239 

𝑞+ = ∑ ∑ 2𝑝%&𝑝%1-1 − 𝑝%& − 𝑝%1.
'!
1)&2*

'!
&)* = 1 − 3𝑎%+ + 2𝑎%-.	240 

For	a	locus	with	k	equal-frequency	alleles,	𝑝%& =
*
'
,	the	overall	frequency	of	this	mating	241 

type	reduces	to	242 

𝑞+ = 1 − -
'
+ +

'"
.	243 

2.2.3.	Grandma-grandpa	mating	type	3:	All	others	244 

The	rest	of	the	mating	types	are	pooled	to	form	mating	type	3,	which	does	not	allow	any	245 
exclusion.	Grandmas	from	this	pooled	mating	type	are	always	homozygotes	and	thus	all	246 
females	(i.e.	the	mother	and	aunts	of	a	male)	produced	from	the	mating	type	are	of	the	247 
same	genotype	(Table	1).	The	frequency	of	this	pooled	mating	type	is	248 

𝑞- = 1 − 𝑞* − 𝑞+ = 1 − 2(𝑎%+ − 𝑎%-) − (1 − 3𝑎%+ + 2𝑎%-) = 𝑎%+.	249 

For	a	locus	with	k	equal-frequency	alleles,	𝑝%& =
*
'
,	it	reduces	to	250 

𝑞- =
*
'
.	251 

2.2.4.	Summing	the	3	mating	types	252 

The	three	mating	type	frequencies	sum	to	1,	𝑞* + 𝑞+ + 𝑞- ≡ 1,	as	expected.	The	relative	253 
frequencies	of	mating	types	1,	2	and	3	depend	on	the	number	and	frequencies	of	alleles	254 
at	a	locus.	For	diallelic	markers,	we	have	𝑞+ ≡ 0	and	𝑞- ≥ 𝑞*	with	𝑞- − 𝑞* = (1 − 2𝑝%*)+.	255 
When	𝑝%* = 𝑝%+ = 0.5,	𝑞- = 𝑞* = 0.5.	Otherwise,	𝑞- > 𝑞*,	and	the	difference	increases	256 
with	an	increasing	departure	from	the	equifrequency	𝑝%* = 𝑝%+ = 0.5.	With	more	than	2	257 
alleles	at	a	locus,	𝑞+ > 0	and	the	sum	of	frequencies	of	exclusion-permitting	mating	258 
types,	𝑞* + 𝑞+ = 1 − 𝑎%+,	is	always	larger	than	𝑞- = 𝑎%+.	The	higher	is	the	polymorphism	259 
(with	a	larger	k	and	a	more	even	allele	frequency	distribution)	of	a	marker,	the	greater	260 
are	the	frequencies	of	exclusion-permitting	mating	types	and	thus	the	higher	is	the	261 
information	content	of	the	marker	for	parentage	analysis.	This	is	an	intuitive	conclusion	262 
that	is	partially	verified	by	numerical	analysis	(Figures	2	and	3	in	Results	below).			263 

Now	consider	a	male	genotype	at	L	loci,	each	having	k	alleles	of	the	same	264 
frequencies	{𝑝*, 𝑝+, … , 𝑝'}	(the	subscript	l	for	locus	is	thus	dropped	out	hereafter).	The	265 
probability	that,	among	the	L	alleles	in	a	male	genotype,	n1,	n2	and	𝑛- = 𝐿 − 𝑛* − 𝑛+	266 
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come	from	grandma-grandpa	mating	types	1,	2,	and	3	follows	the	multinomial	267 
distribution	268 

𝑃[𝑛*, 𝑛+, 𝑛-] =
,!

##!#"!#$!
𝑞*
##𝑞+

#"𝑞-
#$ .	269 

Suppose	a	male	has	a	genotype	with	n1	alleles	(loci)	coming	from	grandma-grandpa	270 
mating	type	1.	The	probability	that,	among	these	n1	loci,	each	of	n11	(=0,1,…,	n1)	loci	has	271 
an	allele	permitting	exclusion	follows	a	binomial	distribution,	and	can	be	derived	from	272 
Table	1	as	273 

𝑅*[𝑛**, 𝑛* − 𝑛**] =
##!

###!(##0###)!
-#%.

###-$%.
##0### .	274 

Similarly,	the	probability	that,	among	the	n2	loci	of	mating	type	2,	each	of	n21	(=0,1,…,	n2)	275 
loci	has	an	allele	permitting	exclusion	is	276 

𝑅+[𝑛+*, 𝑛+ − 𝑛+*] =
#"!

#"#!(#"0#"#)!
-#".

#"#-#".
#"0#"# = #"!

#"#!(#"0#"#)!
-#".

#" .	277 

Given	a	male	with	n11	and	n21	loci	displaying	exclusionary	alleles	coming	from	mating	278 
type	1	and	2	respectively,	the	probability	that	its	N	aunts	are	excluded	is			279 

𝑄[𝑛**, 𝑛+*] = 81 − -#".
###2#"#9

/
.	280 

The	overall	exclusion	probability	considering	all	possible	male	genotypes	from	all	281 
possible	grandma-grandpa	mating	types	is	282 

𝑃!+(/) = H H 𝑃[𝑛*, 𝑛+, 𝐿 − 𝑛* − 𝑛+]
,0##

#")4

,

##)4

×	283 

															 H 𝑅*[𝑛**, 𝑛* − 𝑛**]
##

###)4

H 𝑅+[𝑛+*, 𝑛+ − 𝑛+*]
#"

#"#)4

𝑄[𝑛**, 𝑛+*]	284 

= H H
𝐿!

𝑛*! 𝑛+! (𝐿 − 𝑛* − 𝑛+)!
𝑞*
##𝑞+

#"𝑞-
,0##0#"

,0##

#")4

,

##)4

H
𝑛*!

𝑛**! (𝑛* − 𝑛**)!
8*
5
9
###

8-
5
9
##0###

##

###)4

	285 

					∑ #"!
#"#!(#"0#"#)!

-#".
#"#"

#"#)4 81 − -#".
###2#"#9

/
.	 	 	 	 	 	 (5)	286 

In	equation	(5),	a	male	genotype	has	n1,	n2	and	𝐿 − 𝑛* − 𝑛+	alleles	(loci)	coming	from	287 
grandma-grandpa	mating	type	1,	2	and	3,	respectively.	Therefore,	n1	varies	between	0	288 
and	L	(number	of	loci),	while	n2	varies	between	0	and	𝐿 − 𝑛*.	Among	these	n1	loci	from	289 
mating	type	1,	n11	(=0,1,…,	n1)	loci	have	alleles	that	make	it	possible	to	exclude	290 
maternity.	Similarly,	among	these	n2	loci	from	mating	type	2,	n21	(=0,1,…,	n2)	loci	have	291 
alleles	that	make	it	possible	to	exclude	maternity.	q1,	q2	and	q3	are	the	frequencies	of	292 
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grandpa	with	grandma	mating	types	1,	2	and	3	as	described	in	sections	2.2.1,	2.2.2	and	293 
2.2.3.	The	computational	load	of	(5)	increases	rapidly	with	L,	and	becomes	substantial	294 
even	when	L	is	as	small	as	10.	To	facilitate	its	application,	(5)	is	implemented	in	295 
software	(see	below).				296 

For	the	diallelic	marker	case,	𝑞+ ≡ 0	and	𝑛+ ≡ 0	(such	that	the	sums	over	n2	and	297 
over	n21	are	both	empty),	and	(5)	reduces	to	298 

𝑃!+(/) = ∑ ,!
##!(,0##)!

𝑞*
##𝑞-

,0##,
##)4 ∑ ##!

###!(##0###)!
-#%.

###-$%.
##0#####

###)4 -1 − -#".
###.

/
.							(6)	299 

	300 

3.	Simulations		301 

To	check	the	validity	of	the	formula,	we	conducted	some	Monte	Carlo	simulations.	For	302 
these	numerical	examples,	the	formula	and	simulations	agree	very	well	(Table	2).	For	a	303 
given	allele	frequency	distribution	(equal	frequency,	or	frequencies	in	a	triangular	304 
distribution	where	the	frequency	of	allele	j,	𝑝1 ,	is	proportional	to	j	for	j	=	1,	2,	…,	k	at	a	305 

locus	with	k	alleles),	exclusion	probabilities	increase	rapidly	with:	a	decreasing	number	306 
of	potential	candidate	parents	(aunts);	an	increasing	number	of	loci;	and	an	increasing	307 
number	of	alleles	per	locus.	At	the	same	number	of	alleles	at	a	locus,	the	same	number	308 
of	loci	and	the	same	number	of	candidates,	equal	allele	frequency	distribution	leads	to	a	309 
substantially	higher	exclusion	probability	than	a	triangular	distribution	of	allele	310 
frequencies.		311 

	 Simulations	were	also	conducted	to	investigate	the	impact	of	genome	size	312 
(linkage)	on	the	exclusion	probabilities	of	a	set	of	markers.	In	deriving	equations	(3)	313 
and	(5),	we	assumed	no	linkage	among	the	markers.	This	is	a	very	good	approximation	314 
when	the	number	of	markers	(L)	is	small.	However,	with	a	large	L,	some	markers	might	315 
be	physically	linked	(located	on	the	same	chromosome),	and	(3)	and	(5)	may	316 
overestimate	the	exclusionary	power	of	the	L	markers.	To	understand	the	impact	of	317 
linkage,	we	simulated	a	genome	of	various	map	lengths	(m,	from	1	to	32	Morgans)	and	318 
assumed	the	L	markers	are	equally	spaced	in	the	genome.	The	number	of	crossovers	in	319 
generating	a	gamete	from	a	diploid	female	was	drawn	from	a	Poisson	distribution	with	320 
parameter	m,	and	the	locations	where	crossovers	occurred	were	randomly	chosen	321 
without	interference	between	different	crossover	events.	The	results	in	Table	2	show	322 
that	linkage	can	decrease	the	exclusionary	power	of	a	set	of	L	markers	substantially	323 
when	roughly	3m	<	L,	which	means	that	when	the	genome	size	m	is	small	or	the	number	324 
of	markers	L	is	large	such	that	on	average	3	or	more	markers	are	located	on	1	Morgan	of	325 
the	genome.	For	the	range	of	L	(10-80)	considered	in	the	simulation,	a	genome	with	326 
m≥16	is	hardly	affected	by	linkage	in	determining	exclusion	probabilities.	327 

4.	Results	328 

4.1	Exclusion	of	candidates	unrelated	to	the	true	mother	329 
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Confirming	the	proof	in	Appendix	1,	the	maximal	exclusion	probability	is	attained	when	330 

all	alleles	at	a	locus	l	have	the	same	frequency	of	 *
'!
.	For	the	case	of	a	diallelic	marker	331 

(𝑘% = 2),	for	example,	𝑃!*	as	a	function	of	allele	frequencies	is	shown	in	Figure	2.	A	locus	332 
with	rare	alleles	contributes	little	to	maternity	exclusion.	For	L	diallelic	loci	with	allele	333 
frequencies	{𝑝, 1 − 𝑝},	𝑃!*	reduces	to	𝑃!* = 1 − (1 − 𝑝 + 𝑝+), .	The	number	(L)	of	loci	334 
with	a	rare	allele	frequency	p	required	to	attain	the	same	exclusion	probability	as	a	335 
single	diallelic	locus	with	equal	allele	frequency	(0.5)	can	be	solved	from	the	equation	336 
1 − (1 − 𝑝 + 𝑝+), = 1 − (1 − 0.5 + 0.5+)*.	Figure	3	plots	L	as	a	function	of	p,	where	L	is	337 
solved	from	the	previous	equation.	L	increases	loglinearly	with	a	decreasing	p.	Loci	with	338 
rare	alleles	have	little	exclusionary	power.	For	example,	about	6	diallelic	loci	with	allele	339 
frequencies	(0.05,	0.95)	or	29	diallelic	loci	with	allele	frequencies	(0.01,	0.99)	have	340 
roughly	the	same	exclusion	power,	𝑃!* = 0.25,	as	a	single	diallelic	locus	with	341 
equifrequent	(0.5,	0.5)	alleles.		342 

Some	numerical	examples	of	(4)	are	shown	in	Figure	4.	For	markers	with	343 
equifrequent	alleles,	the	number	of	alleles	of	a	locus	has	a	large	impact	on	the	exclusion	344 
probability.	A	diallelic	locus	affords	the	smallest	amount	of	information	for	maternity	345 
exclusions.	It	can	be	shown	using	(4)	that	a	locus	with	10	equifrequent	alleles	has	the	346 
same	exclusionary	capability	as	2.8	triallelic	loci	with	equifrequency	or	5.8	diallelic	loci	347 
with	equifrequency.	𝑃!*(/)	decreases	rapidly	with	an	increasing	N	and	a	decreasing	L.		348 

4.2	Exclusion	of	candidates	who	are	full	sibs	to	the	true	mother	349 

The	results	from	(5)	for	some	parameter	combinations	are	shown	in	Figure	5.	Similar	to	350 
the	case	of	excluding	candidate	females	who	are	unrelated	to	the	mother,	the	351 
probability	of	excluding	aunts	as	mother	increases	rapidly	with	both	the	number	of	loci	352 
(L)	and	the	number	of	alleles	per	locus	(k).	However,	excluding	aunts	is	much	more	353 
difficult	than	excluding	females	unrelated	to	the	mother.	To	attain	the	same	exclusion	354 
power,	many	more	loci	are	necessary	when	the	candidate	females	are	aunts	rather	than	355 
unrelated	individuals.	For	markers	with	each	having	5	or	more	equifrequent	alleles,	356 
about	10	loci	are	required	to	yield	a	probability	0.99	for	excluding	100	unrelated	357 
females.	However,	when	the	candidate	females	are	aunts,	about	50	such	loci	are	358 
required	to	yield	the	same	exclusion	power.	Diallelic	markers,	such	as	SNPs,	have	a	359 
much	reduced	exclusion	power	than	multiallelic	markers.	For	the	above	example,	about	360 
150	diallelic	loci	with	equifrequent	alleles	are	required	to	exclude	100	aunts	as	the	361 
mother	at	a	probability	of	0.99.	This	is	because,	when	k=2,	only	one	mating	type	362 
(AiAj×Ai)	instead	of	two	(when	k	>	2)	can	generate	males	that	may	allow	exclusions.	363 

Similar	to	the	case	of	unrelated	candidates,	the	maximal	exclusion	probability	is	364 

attained	when	all	alleles	at	a	locus	l	have	the	same	frequency	of	 *
'!
.	Figure	2	shows	the	365 

probability	of	excluding	N	=	10	aunts	from	the	maternity	of	a	male	using	L=10,	20,	40	366 
and	160	diallelic	markers	(𝑘% = 2)	as	a	function	of	allele	frequencies.	Again,	a	locus	with	367 
a	rare	allele	contributes	little	to	maternity	exclusion.	For	example,	to	exclude	10	aunts	368 
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from	the	maternity	of	a	male	at	a	probability	of	0.996	would	require	120,	162,	340	and	369 
650	diallelic	markers	with	each	having	an	allele	frequency	equal	to	0.5,	0.25,	0.1	and	370 
0.05,	respectively.	Compared	with	the	exclusion	of	unrelated	candidate	workers	(Figure	371 
2),	excluding	aunts	from	maternity	of	a	male	is	much	more	difficult.	At	the	same	allele	372 
frequency	distribution,	roughly	L	and	4L	diallelic	markers	afford	the	same	probability	of	373 
excluding	N	unrelated	candidates	and	N	aunts	of	a	male,	respectively.	374 

5.	Discussion	375 

Although	marker-based	parentage	analyses	have	been	conducted	in	haplodiploid	376 
species	(for	diploid	offspring	at	the	individual	level	and	haploid	offspring	at	the	class	377 
level),	previously	there	has	been	no	study	in	haplodiploids	on	the	average	probability	of	378 
marker-based	parentage	exclusion	for	haploid	offspring	at	the	individual	level.	All	379 
studies	on	parentage	exclusion	at	the	individual	level	in	the	literature	assume	a	diploid	380 
species	(see	Introduction).	Herein	we	investigated	the	exclusion	of	maternity	of	a	381 
haploid	male	in	haplodiploid	species	when	multiple	candidate	mothers	to	be	excluded	382 
are	unrelated	or	are	full	siblings	to	the	mother.	These	equations	are	especially	useful	for	383 
the	study	of	worker	reproductivity,	where	many	fullsib	females	(e.g.	workers	produced	384 
by	one,	singly-mated	queen)	may	compete	for	maternity	of	a	male.	385 

	 As	shown	by	the	numerical	examples	(Figures	2	and	3),	a	marker	with	386 
equifrequent	alleles	affords	the	maximal	exclusionary	power.	A	marker	with	rare	alleles	387 
(i.e.	allele	frequencies	close	to	zero)	holds	little	exclusion	capability.	This	is	388 
understandable	from	an	inspection	of	Table	1,	which	shows	that	a	male	from	a	389 
homozygous	grandma	or	a	homozygous	mother	does	not	allow	maternity	exclusion	of	390 
any	aunts.	Homozygosity	is	expected	to	increase	with	allele	frequencies	departing	391 
increasingly	from	an	equifrequent	distribution	or	with	the	frequency	of	one	allele	392 
approaching	1	and	the	frequencies	of	the	other	alleles	approaching	0.		393 

	 As	is	the	case	for	parentage	exclusion	in	diploid	species	(Salmon	and	Brocteur,	394 
1978;	Double	et	al.,	1997),	maternity	exclusion	of	a	male	in	haplodiploid	species	395 
becomes	much	more	difficult	when	the	female	candidates	are	fullsibs	of	the	mother	396 
rather	than	random	individuals	unrelated	to	the	mother.	This	is	because,	being	from	the	397 
same	pair	of	parents,	aunts	and	the	true	mother	share	similar	genotypes.	Hence	aunts	398 
are	more	likely	to	have	genotypes	compatible	with	those	of	their	nephew	than	unrelated	399 
females	drawn	at	random	from	a	population.	Therefore,	hundreds	of	diallelic	loci	are	400 
required	to	exclude	100	aunts	as	the	mother	of	a	male	at	a	probability	of	0.99.	However,	401 
nowadays	SNPs	from	next	generation	sequencing	can	easily	provide	hundreds	of	402 
diallelic	loci	for	parentage	and	similar	analyses	(Helyar	et	al.,	2011),	and	as	studies	403 
characterising	SNPs	in	eusocial	Hymenoptera	grow	in	number	(e.g.	Theodorou	et	al.,	404 
2018;	Southon	et	al.,	2019),	parentage	analyses	involving	haploid	offspring	using	405 
hundreds	of	markers	will	become	increasingly	feasible.	406 

	 Following	previous	work	we	assume	marker	data	are	perfect	in	maternity	407 
exclusion	analysis.	Unfortunately,	in	reality,	genotyping	errors	and	mutations	are	rules	408 
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rather	than	exceptions.	Regardless	of	genotyping	methods	(e.g.	by	PCR	for	microstellites	409 
or	by	sequencing	for	SNPs),	typing	errors	are	ubiquitous	(Pompanon	et	al.,	2005).	False	410 
maternity	exclusion	might	occur	because	the	mother’s	genotype	and	the	male’s	411 
genotype	may	mismatch	at	one	or	more	loci	due	to	genotyping	abnormality	or	412 
mutations.	To	reduce	false	exclusion,	a	common	convention	is	to	exclude	putative	413 
mothers	only	when	they	have	genotypes	that	mismatch	with	male	genotypes	at	two	or	414 
more	loci.	By	making	this	mismatch	allowance,	the	exclusionary	power	of	a	set	of	415 
markers	could	be	substantially	reduced	(Double	et	al.,	1997).	To	obtain	a	given	416 
probability	(say,	0.99)	of	excluding	all	false	mothers,	therefore,	a	few	more	markers	417 
than	that	determined	from	(3)	or	(5)	for	the	case	of	perfect	markers	would	be	required.	418 

	 The	formula	for	exclusion	probabilities,	(3)	and	(5),	are	derived	by	assuming	the	419 
absence	of	linkage	among	markers.	However,	in	the	case	of	many	markers	(L)	in	a	small	420 
genome	(m	Morgans	in	genetic	map	length),	some	of	the	markers	are	inevitably	located	421 
on	the	same	chomosome	and	are	thus	physically	linked.	As	shown	by	our	simulations,	422 
linked	markers	could	have	a	substantially	reduced	exclusionary	power	compared	to	423 
unlinked	markers	(Table	2).	When	roughly	L	≥	3m,	the	predictions	by	(3)	and	(5)	should	424 
be	taken	as	an	upper	limit	of	the	exclusionary	power	of	the	L	markers.	For	maternity	425 
exclusion	of	unrelated	females,	eqn	(3)	should	be	largely	valid	for	any	species	because	L	426 
is	generally	small.	However	for	maternity	exclusion	of	many	aunts,	eqn	(5)	might	be	too	427 
optimistic	because	L	can	be	larger	than	3m	in	some	species.	Species	of	ants,	for	example,	428 
show	huge	variation	in	the	number	of	chromosomes,	from	only	one	chromosome,	as	in	429 
the	males	of	the	Australian	bulldog	ant	Myrmecia	croslandi,	to	as	many	as	60	430 
chromosomes,	as	in	the	males	of	the	giant	Neotropical	ant	Dinoponera	lucida	(Cardoso	431 
and	Cristiano,	2021).	With	60	chromosomes,	(5)	should	be	accurate	except	when	L	is	432 
extremely	high,	say	L	>	180.	With	1	chromosome,	on	the	contrary,	(5)	may	always	433 
overestimate	the	power	of	a	set	of	L	markers	because	they	are	likely	to	be	closely	linked.		434 

	 It	should	be	emphasized	that	(3)	or	(5)	give	the	average	probability	of	excluding	435 
a	randomly	drawn	sample	of	candidates	(who	are	unrelated	or	fullsibs	to	the	mother)	as	436 
the	mother	of	a	male	drawn	at	random	from	a	population.	The	actual	exclusion	437 
probability	varies	depending	on	the	genotypes	of	the	males	and	the	genotypes	of	the	438 
candidate	females,	as	shown	for	diploid	species	(Chakraborty	et	al.,	1988).	For	a	male	439 
with	genotypes	coming	from	mothers	homozygous	at	an	exceptionally	high	proportion	440 
of	loci,	it	is	difficult	to	exclude	false	maternity	because	the	loci	at	which	the	maternal	441 
genotypes	are	heterozygous	could	be	too	few	to	allow	maternity	exclusion.	For	this	442 
reason	and	others	(such	as	the	presence	of	population	genetic	structure,	e.g.	443 
subdivision),	the	average	exclusion	probability	calculated	by	(3)	or	(5)	could	be	too	444 
liberal	and	a	few	more	markers	than	those	determined	by	the	equations	are	required	to	445 
yield	accurate	parentage	analysis	results.	446 

	 Maternity	exclusion	is	different	from	maternity	assignment.	The	probability	of	447 
exclusion	depends	on	the	genetic	structure	of	a	population,	calculable	from	the	allele	448 
frequencies	of	the	markers	in	the	population.	It	can	be	determined	before	genotype	data	449 
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are	acquired,	and	therefore	is	valuable	in	experimental	design	in	optimizing	the	450 
sampling	intensities	of	markers	and	individuals.	The	probability	of	maternity	451 
assignment	depends	on	the	genotypes	of	candidate	females,	males	and	their	relatedness	452 
as	well	as	allele	frequencies	in	the	population.	Two	approaches	can	be	used	to	make	453 
maternity	assignments.	One	is	based	on	exclusion.	When	all	candidate	females	except	454 
for	one	are	excluded	from	the	maternity	of	a	male,	then	the	maternity	can	be	assigned	to	455 
the	unexcluded	female	(Jones	et	al.,	2010).	The	confidence	of	the	assignment	is	456 
determined	by	the	quantity	and	quality	of	marker	data.	However,	implementing	457 
exclusion-based	parentage	assignment	can	be	tricky	due	to	complexities	such	as	the	458 
presence	of	genotyping	errors	and	mutations,	and	the	approach	is	rarely	powerful	459 
enough	to	assign	parentage	unambiguously	in	reality.	Quite	often	more	than	one	460 
candidate	may	remain	unexcluded	from	the	parentage	of	an	offspring	based	on	their	461 
genotype	data.		462 

A	more	powerful	and	flexible	approach	to	parentage	assignment	is	based	on	463 
likelihood.	It	can	optimally	use	allele	frequency	and	genotyping	error	rate	information,	464 
in	addition	to	genotype	data	as	used	by	the	exclusion	approach,	in	calculating	the	465 
probability	of	each	candidate	being	the	parent	of	an	offspring	(Marshall	et	al.,	1998;	466 
Wang	and	Santure,	2009).	For	example,	the	sharing	of	rare	alleles	between	a	candidate	467 
female	and	an	offspring	is	strong	evidence	that	they	are	a	mother-offspring	dyad	in	the	468 
likelihood	approach,	but	this	allele	frequency	information	is	wasted	in	the	exclusion	469 
approach.	Frequently	parentage	assignment	can	be	determined	with	confidence	by	the	470 
likelihood	approach	in	situations	where	parentage	assignment	is	inconclusive	by	the	471 
exclusion	approach.	Although	exclusion	probability	described	above	and	in	the	472 
literature	is	based	on	exclusion	or	genotype	mismatches,	it	is	informative	for	likelihood	473 
parentage	analysis	in	helping	determine	the	sufficiency	of	marker	information	for,	and	474 
the	power	of,	a	parentage	analysis.		475 

	 As	the	formula	calculating	the	probability	of	excluding	an	arbitrary	number	of	476 
aunts	from	the	maternity	of	a	haploid	male,	(5),	is	complicated,	it	is	implemented	in	477 
software	AuntExclusion	available	for	free	download	from	478 
https://www.zsl.org/science/software/auntexclusion.	It	has	a	Windows	GUI	for	data	479 
and	parameter	input	and	for	analysis	results	visualization.	The	software	also	includes	a	480 
simulation	module	which	can	be	used	to	simulate	the	probability	of	excluding	multiple	481 
aunts	from	maternity	of	a	male	in	haplodiploid	species	and	in	diploid	species.		482 

	483 
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	Table	1:	Maternity	exclusion	of	aunts	of	a	haploid	male	from	different	598 
grandparent	mating	types.	(Freq.	=	frequency)	599 

	600 

	 	601 

Grandparent	Mating	 Sibling	Worker	

from	Mating	

Male	Produced	

by	Worker	

Excluded	

Genotype	

Exclusion	

Probability	

	Type	 Freq.	 Type	 Freq.	 Type	 Freq.	

AiAi×Ai	 𝑝%&- 	 AiAi	 1	 Ai	 1	 -	 0	

AiAi×Aj		

(j≠i)	

𝑝%&+(1 − 𝑝%&)	 AiAj	 1	 Ai	

Aj	

½	

½	

-	

-	

0	

0	

AiAj×Ai		

(j≠i)	

2𝑝%&+(1

− 𝑝%&)	

AiAi	 ½	 Ai	 1	 -	 0	

AiAj	 ½	 Ai	

Aj	

½	

½	

-	

AiAi	

0	

½	

AiAj×Am		

(j≠i,m≠i,m≠j)	

𝑝%&𝑝%1-1

− 𝑝%& − 𝑝%1.	

AiAm	 ½	 Ai	

Am	

½	

½	

AjAm	

-	

½	

0	

AjAm	 ½	 Aj	

Am	

½	

½	

AiAm	

-	

½	

0	
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Table	2:	Check	of	equation	(5)	by	simulations	with	and	without	linkage	602 

Note	each	of	the	L	loci	is	assumed	to	have	k	alleles	with	either	equal	frequencies	(=1/k)	
or	frequencies	in	a	triangular	distribution	(i.e.	frequency	of	allele	j	is	proportional	to	j	
for	j	=	1,	2,	…,	k).	The	average	probability	of	excluding	N	aunts	from	maternity	of	a	male	
taken	at	random	from	the	population	is	calculated	by	equation	(5)	and	simulations.	For	
simulations,	the	genome	size	is	assumed	to	be	1,	2,	4,	…	32	Morgans	in	genetic	map	
length	or	to	be	∞	for	free	recombination.	The	average	in	simulation	is	taken	over	
10000000	replicates.	

	 	

Allele	

Frequency	

N	 k	 L	 Simulated	exc.	prob.	for	a	genome	in	size	(Morgan)	 Eqn	

(5)	1	 2	 4	 8	 16	 32	 ∞	

Equal	 10	 5	 10	 0.1915	 0.2712	 0.3297	 0.3401	 0.3408	 0.3411	 0.3409	 0.3408	

	 10	 5	 20	 0.2770	 0.4398	 0.6277	 0.7650	 0.7999	 0.7965	 0.7962	 0.7964	

	 100	 5	 20	 0.1028	 0.1698	 0.2619	 0.3424	 0.3526	 0.3546	 0.3554	 0.3547	

	 100	 5	 40	 0.1774	 0.3034	 0.5124	 0.7630	 0.9118	 0.9398	 0.9361	 0.9362	

	 10	 2	 10	 0.0545	 0.0580	 0.0550	 0.0533	 0.0536	 0.0535	 0.0536	 0.0536	

	 10	 2	 20	 0.1343	 0.1798	 0.2134	 0.2220	 0.2226	 0.2228	 0.2228	 0.2228	

	 100	 2	 40	 0.0697	 0.1045	 0.1450	 0.1766	 0.1796	 0.1808	 0.1808	 0.1809	

	 100	 2	 80	 0.1384	 0.2321	 0.3816	 0.5711	 0.7199	 0.7711	 0.7689	 0.7688	

Triangular	 10	 5	 10	 0.1729	 0.2380	 0.2792	 0.2841	 0.2847	 0.2847	 0.2847	 0.2848	

	 10	 5	 20	 0.2641	 0.4144	 0.5856	 0.7071	 0.7346	 0.7317	 0.7317	 0.7317	

	 100	 5	 20	 0.0908	 0.1459	 0.2154	 0.2650	 0.2649	 0.2672	 0.2675	 0.2675	

	 100	 5	 40	 0.1651	 0.2823	 0.4760	 0.7127	 0.8633	 0.8897	 0.8860	 0.8860	

	 10	 2	 10	 0.0451	 0.0461	 0.0427	 0.0416	 0.0418	 0.0419	 0.0418	 0.0418	

	 10	 2	 20	 0.1185	 0.1535	 0.1757	 0.1785	 0.1792	 0.1791	 0.1791	 0.1792	

	 100	 2	 40	 0.0595	 0.0860	 0.1122	 0.1268	 0.1224	 0.1243	 0.1244	 0.1243	

	 100	 2	 80	 0.1263	 0.2099	 0.3407	 0.5050	 0.6314	 0.6670	 0.6651	 0.6652	
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Figure	1:	A	schematic	illustration	of	a	pedigree	in	which	a	male	has	possible	genotypes	
that	may	or	may	not	allow	the	maternity	exclusion	of	its	aunts.	A	male	who	has	a	
genotype	(Aj)	that	allows	the	exclusion	of	some	aunts	(with	genotype	AiAi)	as	its	mother	
is	depicted	in	a	black	solid-lined	box,	while	a	male	who	has	a	genotype	(Ai)	that	does	not	
allow	the	exclusion	of	any	aunts	as	its	mother	is	depicted	in	a	grey	dashed-lined	box.	
The	figures	beside	the	arrowed	lines	are	the	corresponding	transmission	probabilities	
from	a	parental	to	an	offspring	genotype.	 	
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Figure	2:	Average	maternity	exclusion	probability	of	males	as	a	function	of	allele	
frequencies	at	diallelic	loci.	(A)	N=10	candidate	females	unrelated	to	the	true	mother	of	
a	male,	and	(B)	N=10	candidates	who	are	full	siblings	to	the	true	mother	of	a	male,	are	
to	be	excluded	as	the	mother	of	the	male	using	L	=	10,	20,	40,	160	loci	with	each	locus	
having	K=2	codominant	alleles	of	frequencies	shown	on	the	x	axis.	Eqns	(3)	and	(6)	are	
used	in	calculating	the	average	maternity	exclusion	probabilities	in	cases	(A)	and	(B)	
respectively.	
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Figure	3:	Number	of	loci	L	(y	axis)	with	rare	allele	frequency	p	(x	axis)	required	to	attain	
the	same	exclusion	probability	as	a	single	diallelic	locus	with	equifrequent	(0.5,	0.5)	
alleles.	Note	that	the	axes	have	logarithmic	scales.	Eqn	(3)	is	used	in	the	calculations.	
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Figure	4:	The	probability	of	excluding	N	(10	or	100)	candidate	females	unrelated	to	a	
male	as	the	maternity	of	the	male.	The	exclusion	probability	is	calculated	by	eqn	(4b)	
using	L	loci	(on	x	axis),	each	having	K=2,	5	or	10	equifrequent	codominant	alleles.	

	 	

L	

𝑷
𝑬𝟏
(𝑵
) 

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1.

 Line         N       K 
                10       2 
                10       5 
                10      10  
                100     2 
                100     5 
                100     10 



26 
 

 	

	

	

	

Figure	5:	The	probability	of	excluding	N	(10	or	100)	candidate	females	who	are	full	
siblings	to	the	true	mother	of	a	male	as	maternity	of	the	male.	The	exclusion	probability	
is	calculated	by	eqn	(5)	using	L	loci	(on	x	axis),	each	having	K=2,	5	or	10	equifrequent	
codominant	alleles.	
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Appendix 1: Proof that 𝟐𝒂𝒍𝟐 − 𝒂𝒍𝟑 is minimized at an equal allele frequency 605 

We provide a proof that 2𝑎!" − 𝑎!# in equation (3) is minimized to "$!%&
$!
"  and therefore the exclusion 606 

probability is maximized to $1 −∏ "$!%&
$!
"

'
!(& '

)
 of equation (4a) when locus l has an equal allele 607 

frequency of 1/𝑘!. For clarity, we drop the subscript l and consider a locus with k ≥ 2 alleles of 608 
frequencies 𝑝* for i=1, 2, …, k, where 𝑝* is apparently subject to the constraints 0 < 𝑝* < 1 and 609 
∑ 𝑝* ≡ 1$
*(& .  610 

When 𝑝$ is replaced by 1 − 𝑞$%&, where 𝑞$%& = ∑ 𝑝*$%&
*(& , the quantity 2𝑎" − 𝑎#, denoted by 611 

𝑋$, is reduced to 612 

𝑋$ = 2𝑎" − 𝑎# = 22𝑝*"
$%&

*(&

+ 2(1 − 𝑞$%&)" −2𝑝*#
$%&

*(&

− (1 − 𝑞$%&)#. 613 

To derive the minimum value of 𝑋$ and the corresponding values of 𝑝*, we first obtain the critical 614 
points of 𝑋$ by setting its first derivatives to zero and solving the resultant equations. We then 615 
examine these points and choose the points that satisfy the constraints 0 < 𝑝* < 1 and ∑ 𝑝* ≡ 1$

*(& . 616 
The chosen valid critical points are then used in the second derivative test to determine whether 617 
function 𝑋$ attains a minimum, a maximum or otherwise at the critical points. We first consider the 618 
simplest cases of a diallelic (k=2) and triallelic (k=3) locus, and then the general case of any number 619 
of alleles (k ≥ 2) at a locus. 620 

1. Two alleles, k = 2 621 

In the simplest case of a diallelic locus with k=2 alleles, function 𝑋$ reduces to 622 

𝑋$ = 2𝑝&" + 2(1 − 𝑝&)" − 𝑝&# − (1 − 𝑝&)#. 623 

By setting the first derivative to zero, 624 

+,#
+-$

= 2𝑝& − 1 = 0, 625 

we obtain the sole critical point 𝑝&=1/2. Apparently, the point 𝑝&=1/2 (and thus 𝑝" = 1 − 𝑝&=1/2) is 626 
valid, satisfying the constraints 0 < 𝑝* < 1 and ∑ 𝑝* ≡ 1$

*(& . The second derivative of 𝑋$ is 2, which 627 
is a positive value and signifies that 𝑋$ attains a minimum value at the critical point {𝑝&=1/2, 𝑝" =628 

1/2}. The minimal value of 𝑋$ at point 𝑝* = 1/2 (i=1, 2) is "$%&
$"

=¾. 629 

2. Three alleles, k=3 630 

For a triallelic locus with k=3 alleles, function 𝑋$ reduces to 631 

𝑋$ = 2∑ 𝑝*""
*(& + 2(1 − 𝑞")" −∑ 𝑝*#"

*(& − (1 − 𝑞")#, 632 

where 𝑞" = ∑ 𝑝*"
*(& .	By setting the first derivatives to zero, 633 

+,#
+-$

= (𝑝& − 1 + 𝑞")(1 − 3𝑝& + 3𝑞") = 0, 634 
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+,#
+-"

= (𝑝" − 1 + 𝑞")(1 − 3𝑝" + 3𝑞") = 0, 635 

we obtain a set of two equations. Solving the equations, we obtain 4 critical points of {𝑝&, 𝑝"}, which 636 
are {1/3, 1/3}, {-1/3, 5/3}, {5/3, -1/3}, {-1/3, -1/3}. Except for the first point, all other points are 637 
invalid because they contain negative values which are infeasible for allele frequencies. The first point 638 
is the sole valid one that satisfies the constraints 0 < 𝑝* < 1 and ∑ 𝑝* ≡ 1$

*(& . From the constraints on 639 
allele frequencies, we obtain 𝑝# = 1/3 at the critical point. 640 

 The Hessian matrix is 641 

𝐻(𝑝&, 𝑝") = <2 + 6𝑞" − 6𝑝& −2 + 6𝑞"
−2 + 6𝑞" 2 + 6𝑞" − 6𝑝"

>, 642 

which becomes  643 

𝐻(𝑝&, 𝑝") = ?4 2
2 4A 644 

at the critical point {𝑝&, 𝑝"}={1/3, 1/3}. The eigenvalues of 𝐻(𝑝&, 𝑝") at the critical point are 6 and 2, 645 
which are both positive, signifying that function 𝑋$ attains a minimum value at the critical point 646 

{𝑝&, 𝑝"}={1/3, 1/3}. The minimum value of 𝑋$ at point 𝑝* = 1/3 (i=1, 2, 3) is "$%&
$"

= 5/9. 647 

3. Any number of alleles, k ≥ 2 648 

For a locus with an arbitrary number of k ≥ 2 alleles, the function 𝑋$ is 649 

𝑋$ = 2∑ 𝑝*"$%&
*(& + 2(1 − 𝑞$%&)" −∑ 𝑝*#$%&

*(& − (1 − 𝑞$%&)#, 650 

where 𝑞$%& = ∑ 𝑝*$%&
*(& . The partial derivatives of 𝑋$ with respect to 𝑝. are 651 

+,#
+-%

= B𝑝. − 1 + 𝑞$%&CB1 − 3𝑝. + 3𝑞$%&C, 652 

for j=1, 2, …, k-1. To obtain the critical points of function 𝑋$, we set these partial derivatives to zero, 653 

+,#
+-%

= B𝑝. − 1 + 𝑞$%&CB1 − 3𝑝. + 3𝑞$%&C = 0. 654 

Note that, in the above equation, the factor 1 − 3𝑝. + 3𝑞$%& = 1 + 3∑ 𝑝*
.%&
*(& + 3∑ 𝑝*$%&

*(./& > 1 as 655 
𝑝* > 0 for i=1, 2, …, k-1. Therefore, we have 𝑝. − 1 + 𝑞$%& = 0 and thus 𝑝. = 1 − 𝑞$%& for j=1, 656 
2, …, k-1. Hence, function 𝑋$ has only one valid critical point within the permissible parameter space 657 
defined by the constraints 0 < 𝑝* < 1 and ∑ 𝑝* ≡ 1$

*(& , which is 𝑝& = 𝑝" = ⋯ = 𝑝$ = 1/𝑘.  658 

We now show that function 𝑋$ reaches a minimum at this critical point of 𝑝* = 1/𝑘 for i=1, 659 
2, …, k. The Hessian matrix for function 𝑋$ is 660 

𝐻(𝑝&, 𝑝", … , 𝑝$%&) = G

2 + 6𝑞$%& − 6𝑝& 						− 2 + 6𝑞$%& 											…										− 2 + 6𝑞$%&
−2 + 6𝑞$%&						2 + 6𝑞$%& − 6𝑝" 													…										− 2 + 6𝑞$%&
…																											…																																		…																									…

−2 + 6𝑞$%& 																				− 2 + 6𝑞$%& 													… 						2 + 6𝑞$%& − 6𝑝$%&

H, 661 

At the critical point 𝑝* = 1/𝑘, the matrix becomes 662 
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𝐻(𝑝&, 𝑝", … , 𝑝$%&) = I

2𝑛				𝑛			 … 			𝑛
𝑛						2𝑛		 … 			𝑛
…				… 		 ⋱ 				…
		𝑛				𝑛				 … 		2𝑛

L, 663 

where 𝑛 = (4𝑘 − 6)/𝑘. This matrix is symmetrical, with an identical diagonal element 2𝑛 = 0$%&"
$

 664 

and an identical nondiagonal element 𝑛 = 1$%2
$

. We show, using Sylvester’s criterion (Roger et al., 665 

1990, p.439), that this matrix is positive definite, as each of the leading m × m minors are positive, i.e. 666 
the upper left m × m corner has positive determinant for each m = 1, . . . , k − 1. We show this by 667 
induction. 668 

Let am be the determinant of the upper left m × m corner. For the base case of m = 1, we have, 669 
for k ≥ 2, that 670 

𝑎& = det(2𝑛) = 2𝑛 = 0$%&"
$

> 0. 671 

For the inductive stage, suppose am > 0. The upper (m + 1) × (m + 1) corner is given by 672 

⎝

⎜
⎛
2𝑛					𝑛				 … 			𝑛
𝑛						2𝑛			 … 			𝑛
𝑛							𝑛				 … 			𝑛
…					… 			 ⋱ 		…
		𝑛						𝑛			 … 		2𝑛⎠

⎟
⎞

. 673 

Note that the determinant of a matrix is unchanged if we subtract a column by another (Roger et al., 674 
1990, p.10). Subtracting the second column from the first, we have 675 

𝑎3/& = det

⎝

⎜
⎛
2𝑛					𝑛				 … 			𝑛
𝑛						2𝑛			 … 			𝑛
𝑛							𝑛				 … 			𝑛
…					… 			 ⋱ 		…
		𝑛						𝑛			 … 		2𝑛⎠

⎟
⎞
= det

⎝

⎜
⎛
𝑛							𝑛				 … 			𝑛
−𝑛			2𝑛		 … 			𝑛
0								𝑛			 … 		𝑛
…					… 				 ⋱ 		…
	0						𝑛				 … 			2𝑛⎠

⎟
⎞

. 676 

Via cofactor expansion (Roger et al., 1990, p.8) along the first column, we find the determinant of this 677 
matrix as 678 

𝑎3/& = 𝑛 × detI

2𝑛					𝑛				 … 			𝑛
𝑛						2𝑛		 … 			𝑛
…					… 			 ⋱ 		…
		𝑛						𝑛			 … 		2𝑛

L − (−𝑛) × detW

𝑛						𝑛				 … 			𝑛
𝑛						2𝑛		 … 			𝑛
…					… 			 ⋱ 		…
		𝑛						𝑛			 … 		2𝑛

X. 679 

The left matrix is the same as the upper left m × m corner, so 680 

𝑎3/& = 𝑛𝑎3 + 𝑛 × detW

𝑛						𝑛				 … 			𝑛
𝑛						2𝑛		 … 			𝑛
…					… 			 ⋱ 		…
		𝑛						𝑛			 … 		2𝑛

X. 681 

By subtracting the top row from each of the other rows in the remaining matrix (which also preserves 682 
the determinant), we obtain 683 
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𝑎3/& = 𝑛𝑎3 + 𝑛 × detW

𝑛						𝑛				 … 			𝑛
0						𝑛				 … 			0
…					… 			 ⋱ 		…
0						0				 … 			𝑛

X. 684 

Finally, using cofactor expansion along the first column, this becomes 685 

𝑎3/& = 𝑛𝑎3 + 𝑛" × detI

𝑛						0				 … 			0
0						𝑛				 … 			0
…					… 			 ⋱ 		…
0						0				 … 			𝑛

L = 𝑛𝑎3 + 𝑛3/&. 686 

We can see 𝑎3/& > 0 since, for k ≥ 2, 𝑛3/& = ((4𝑘 − 6)/𝑘)3/& > 0  and 𝑛𝑎3 = (4𝑘 −687 
6)/𝑘)𝑎3 > 0 by our inductive hypothesis. This completes our induction, so 𝑎3 > 0 and each upper 688 
left m × m corner of H($#,…,

$
#) has a positive determinant for m = 1, . . . , k −1. 689 

Therefore, by Sylvester’s criterion, H($#,…,
$
#) is positive definite, so function 𝑋$ has an absolute 690 

minimum when p1 = · · · = pk = 1/k where k ≥ 2. 691 
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