
Classifying depression symptom severity: Assessment of speech
representations in personalized and generalized machine learning models.

Edward L. Campbell1,2, Judith Dineley2, Pauline Conde2, Faith Matcham2,3, Katie M. White2,
Carolin Oetzmann2, Sara Simblett2, Stuart Bruce4, Amos A. Folarin2,5,6, Til Wykes2,5, Srinivasan

Vairavan7, Richard J.B. Dobson2,6, Laura Docı́o-Fernández1, Carmen Garcı́a-Mateo1, Vaibhav A.
Narayan8, Matthew Hotopf2,5, Nicholas Cummins2, The RADAR-CNS Consortium9

1 GTM research group, AtlanTTic Research Center, University of Vigo, Spain
2 Institute of Psychiatry, Psychology and Neuroscience, King’s College London, UK

3 School of Psychology, University of Sussex, Falmer, UK
4 RADAR-CNS Patient Advisory Board, King’s College London, UK

5 NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and
King’s College London, UK

6 Institute of Health Informatics, University College London, UK
7 Janssen Research and Development LLC, Titusville, NJ, United States

8 Davos Alzheimer’s Collaborative
9 www.radar-cns.org

ecampbell@gts.uvigo.es, nick.cummins@kcl.ac.uk

Abstract
There is an urgent need for new methods that improve the man-
agement and treatment of Major Depressive Disorder (MDD).
Speech has long been regarded as a promising digital marker in
this regard, with many works highlighting that speech changes
associated with MDD can be captured through machine learn-
ing models. Typically, findings are based on cross-sectional
data, with little work exploring the advantages of personaliza-
tion in building more robust and reliable models. This work
assesses the strengths of different combinations of speech rep-
resentations and machine learning models, in personalized and
generalized settings in a two-class depression severity classi-
fication paradigm. Key results on a longitudinal dataset high-
light the benefits of personalization. Our strongest performing
model set-up utilized self-supervised learning features and con-
volutional neural network (CNN) and long short-term memory
(LSTM) back-end.
Index Terms: Major depressive disorder, personalization, self-
supervised learning, remote monitoring technologies

1. Introduction
Due to the prevalence and high socioeconomic costs associated
with Major Depressive Disorder, several digital health initia-
tives have started to explore new ways to improve the manage-
ment and treatment of MDD [1, 2, 3]. Speech is uniquely placed
as a health signal in such projects due to its pyramidal structure
of information [4, 5]. This structure runs from acoustic infor-
mation at the lowest level, then onto prosodic, phonetic and fi-
nally conversational at the highest level [4, 5]. The acoustic,
phonetic and prosodic levels have been of particular interest in
speech-based depression detection, with a rich set of supporting
literature strengthening the case for speech to be considered a
valuable marker of depression [6, 7].

The majority of machine learning works in this field have
focused on developing generalizable machine learning models

to detect the presence or absence of depression in speech sam-
ples from cross-sectional datasets [8, 9]. However, the com-
plexity of speech and the natural variety of human voices make
robust extraction of speech patterns associated with depression
a highly non-trivial task. Adding this is the ordinal nature of
depression scores, meaning we cannot assume a continuous and
well-behaved relationship between changes in speech features
and assessment scores [10]. Given these difficulties, there is a
strong case for exploring personalization to improve the perfor-
mance of speech-based systems [11].

Herein, we compare the performance of different speech
representations and machine learning models in generalized and
personalized settings. The main focus of the work is the 2-class
automatic speech-based classification of MDD severity. We
use a experimental corpus of scripted and free-response speech
samples collected longitudinally over a period of 18 months
from 271 individuals with a history of recurrent MDD [1]. Our
goal is to demonstrate the advantages of personalized models
as opposed to generalizable methods. Additionally, we show-
case the discriminative ability of features obtained through self-
supervised models compared to conventional acoustic features.
We also create systems that are not reliant on specific tasks and
can be applied to real-world situations.

2. Experimental Corpus
Due to a lack of large, clinical longitudinal datasets [6, 7], we
could not use publicly available corpora in our analysis. Our
experimental data was collected as part of a large observational
cohort study of individuals with a history of recurrent MDD [1].
Briefly, core eligibility criteria for inclusion in the study were
meeting the DSM-5 diagnostic criteria [12] for non-psychotic
MDD within the two years prior to enrolment and having re-
current MDD (lifetime history of at least two episodes). Ex-
clusion criteria included having a history of bipolar disorder,
schizophrenia, MDD with psychotic features, or schizoaffective
disorder; having dementia; and moderate or severe drug or al-
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Table 1: Sociodemographic characteristics, audio files distri-
bution and depression score distribution of the RADRA-MDD
used in this paper.

Task Scripted Unscripted
Participants 271 258
Gender M/F 59/212 56/202
Mean Age 45(±16)
No. Files 4,504 3,500
Size (hours) 17.62 18.92
Files per participant 12(±9) 11(±8)
Mean file length 14.5s 19.0s
Median PHQ-8 Score (IQR) 8 (4–13)

cohol use in the six months prior to enrolment. All participants
were aged over 18, and were able to give informed consent.
The full eligibility and exclusion criteria are published in [1].
Ethical approval was obtained from the Camberwell St. Giles
Research Ethics Committee (17/LO/1154) in London.

2.1. Speech Collection and Preparation

English speech data was collected in the study for a period of
18 months, from 2019 to 2021. During this time study partici-
pants were asked to complete two speech-recording tasks every
two weeks. First, a purpose-built smartphone application [13]
produced notifications each time speech recordings were sched-
uled. Before starting each recording task, participants were re-
minded, via on-screen instructions, to find a quiet place and to
complete two recordings in their normal voice.

The first recording was a scripted task, in which the partici-
pants read aloud an extract from Aesop’s fable, The North Wind
and the Sun [14]. The other task was Free Response, partici-
pants were asked to speak about something they were looking
forward to in the next seven days. Once recorded, the speech
data were encrypted and sent to a secure server. When on the
server the collected data were separated into the respective tasks
and decrypted into 16 kHz, 16-bit mono Waveform Audio File
Format (WAV) files. All files under five seconds in length were
not considered in our analysis. The total number of participants
and information on the distribution of the audio files used in our
analysis are presented in Table 1.

2.2. Depression Severity Scores

We assigned a level of depression severity to each file using con-
currently collected 8-item Patient Health Questionnaire (PHQ-
8) scores [15]. The PHQ-8 is a standardized and validated self-
report questionnaire for MDD detection [15]. We divided the
speech files into two classes: (i) a low class (PHQ-8 < 10); and
(ii) a high class (PHQ-8 ≥ 10). Visualizations of the PHQ-8 dis-
tribution are given in Figure 1, with the matching median PHQ
scores and Interquartile Range given in Table 1.

2.3. Patient Involvement

The experimental protocol was co-developed with a patient ad-
visory board who shared their opinions on several user-facing
aspects of the study, including the choice and frequency of sur-
vey measures, the usability of the study app, participant-facing
documents, selection of optimal participation incentives, selec-
tion, and deployment of wearable device as well as the data
analysis plan. The speech task and subsequent analysis have
been discussed specifically with a Patient Advisory Board.

Table 2: Total number of parameters in, and average training
time of the neural networks used in Section 4.3.

System Parameters Train Time
ComParE (MLP) 9,177 19.46 sec
TRILLsson (CNN-LSTM) 856,705 9.6 min
WAV2VEC2 (CNN-LSTM) 955,009 51.65 min

Figure 1: PHQ-8 scores distributions collected concurrently
with the speech files

2.4. Data Availability

Due to the confidential nature of speech data, we are unable
to make our data publicly available. Access to the data can be
made through reasonable requests to the RADAR-CNS consor-
tium and will be subject to local ethics clearances. Please email
the senior author for details.

3. Methodology
3.1. Speech Representations and Models

The first system we used combines extended Geneva Minimal-
istic Acoustic Parameter Set (eGeMAPS) functionals [16] with
a support vector machine (SVM) classifier. We include this
model as it is a widely used ‘baseline’ system in paralinguistic
analysis. The second system utilizes Computational Paralin-
guistics Challenge (ComParE) functions [17] with a multilayer
perceptron (MLP) classifier, again this set-up has performed
well over a range of different paralinguistic task; e. g. [18]. Our
third and fourth systems are based on more contemporary rep-
resentations, in particular, self-supervised models. We assess
the efficacy of transfer learning from wav2vec 2.0 base archi-
tecture [19] and TRILLsson [20] models.

A context window and hop size of 5 seconds was applied
to extract sequences of TRILLsson and wav2vec 2.0 features
from each audio file. Records longer than 5 seconds, we split it
into entire sequences of 5 seconds. Both systems utilize a com-
bined Convolutional Neural Networks (CNN) and Long Short-
Term Memory(LSTM) back end to perform classification and
inference. We compute the average severity MDD score of the
sequences, which represents the final classification score of the
audio recording.
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Table 3: Comparison of speaker-independent (generalized) and speaker-dependent (personalized) 2-class depression severity detection.
Results, Accuracy (ACC), precision (PR) and recall (RCL), are the average after 10-Fold cross-validation.

System
Generalized Personalized

Scripted Free Response Scripted Free Response
ACC PR RCL ACC PR RCL ACC PR RCL ACC PR RCL

eGeMAPS (SVM) 59.56 56.11 47.82 62.86 62.53 52.47 73.30 71.34 64.50 72.01 68.78 58.63
ComParE (MLP) 63.57 56.09 43.04 67.10 68.97 62.32 70.78 68.37 61.39 70.41 66.78 55.96
WAV2VEC2 (CNN-LSTM) 72.19 73.77 58.59 69.31 74.48 58.50 70.87 68.26 62.11 70.53 68.01 56.22
TRILLsson (CNN-LSTM) 66.77 58.61 45.03 64.63 68.35 55.65 70.77 68.08 62.74 70.73 66.34 58.85

3.2. Models configuration

The SVM model was configured using scikit-learn [21] as a
non-linear classifier with a radial basis function kernel. We
tested cost values between 0.1 and 20, optimal model perfor-
mance was achieved at 5. The neural network models were ini-
tialized by a uniform distribution and optimized by the ADAM
algorithm [22]. One cycle learning rate policy [23] was applied
to decrease the training convergence time, setting the maximum
learning rate to 0.1 and 1e-4 for the MLP and CNN-LSTM
models, respectively. Early stopping criteria was applied to
all networks’ training. Training was terminated once a model
achieved a binary-cross entropy loss of 0.1.

The MLP contains a hidden layer with 100 neurons. In ini-
tial experimentation, we analyzed 3 other set-ups that included
increasing the number of hidden neurons and layers. However,
the performance did not improve, and as a result, we decided to
use an architecture that was less complex but more effective.
The CNN-LSTM architecture was: a one-dimensional CNN
and MaxPooling layers (applied across frequencies) with a ker-
nel size of 3, two-bidirectional LSTM layers (128 hidden units
each) and two dropout layers with a rate of 30%, one before
the CNN block and another before the LSTM blocks. Finally, it
is worth noting that we evaluated a sequence-to-sequence sys-
tem with local/global attention mechanisms. Its performance
was quite similar to the CNN-LSTM but its execution time was
about 10 times slower. As a result, we made the decision to
exclude this system from our experimental framework.

All systems were implemented on Python 3.8.16. Extrac-
tion of eGeMAPS and ComParE was done by openSMILE
software [24]. Wav2vec 2.0 were extracted by the torchau-
dio.pipelines module packages and the pre-trained TRILLsonn
model was downloaded from 1 and run with TensorFlow 2.4.
Torch 1.13.1 was used for the development of the MLP and
CNN-LSTM classifiers. The number of model parameters and
average training time of our networks are given in Table 2.

4. Results and Discussion
We report all model performances in terms of accuracy, preci-
sion and recall.

4.1. Personalised and speaker-independent cross-
validation experiments.

The aim of the work in this section is to compare the perfor-
mance of various speech representations and ML classifiers and
in speaker-independent (generalized) and speaker-dependent
(personalized) modeling paradigms for the 2-class classification
of MDD symptom severity. We did this testing separately for

1https://tfhub.dev/google/
nonsemantic-speech-benchmark/trill/2

the scripted and free-response prompts, with all results verified
using 10-fold cross-validation (Table 3). To help ensure that the
personalized models learned patterns related to MDD severity
symptoms and not speaker identity, we included samples from
both low and high MDD classes per speaker in training.

We observed that the personalized training led to higher
performance in most systems, as evidenced by higher accu-
racy, recall, and precision values. Moreover, results across tasks
(i. e. scripted / free-response) were more steady. The CNN-
LSTM model featuring self-supervised features, especially the
wav2vec 2.0 feature, had comparable effectiveness across the
personalized and speaker-independent approaches. This high-
lights the robustness of self-supervised features. The SVM-
based system achieved the highest performance scores among
the classifiers evaluated. This could be due to the amount of
available training data being better suited to the lower complex-
ity of the SVM.

4.2. Predictive modeling per collection year

In a second set of experiments, we explore the effects of gen-
eralization and personalization in two different prediction mod-
eling tests. In these tests, samples are arranged and classified
according to collection year, which also allows us to observe
the effect of training set size on our models. To limit uncer-
tainty due to acoustic variability in these tests, only recordings
from the scripted tasks are analyzed.

Experiment 1 - Generalized: Models are first trained and
evaluated with samples collected in 2019 and 2020 respectively.
As a second step, the training set size is increased by adding
samples collected from 2020 and using samples from 2021 as
an evaluation set. The goal is to analyze the influence of the
corpus size on the MDD severity detection rate. Additionally,
speakers who are already present in the training set are deleted
from the testing set. This experiment also allows for assessing
the speaker-independent ability of the trained models.

Experiment 2 - Personalized: The same procedures as Ex-
periment 1 are followed, except that the testing samples from
speakers who are already present in the training set are retained.
This means models can retain MDD severity symptoms specific
to the examined patient. We make sure the model learns pat-
terns related to MDD symptoms and not speaker identity, by
having samples from both classes (low/high MDD) per speaker
in training.

Table 4 shows the results of such experiments. The MDD
severity detection rate of every system increased when more
training samples were added for both experiments. However,
systems show more stable results in the personalized frame-
work. The recall values in particular in our generalized test-
ing do not appear stable. We suspect that this is related to the
smaller number of test instances used to ensure our models were
truly speaker independent (Table 5).
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Table 4: Personalized and generalization prediction modeling
experiments. Results are reported for Accuracy (ACC), preci-
sion (PR) and recall (RCL).

eGeMAPS (SVM)
Generalized Personalized

Test year ACC PR RCL ACC PR RCL
2020 57.19 54.89 54.27 60.39 60.51 60.73
2021 66.67 63.33 61.74 67.55 69.24 68.76

ComParE (MLP)
Generalized Personalized

Test year ACC PR RCL ACC PR RCL
2020 57.84 57.84 50.00 62.38 61.91 58.82
2021 63.49 31.75 50.00 67.24 66.83 66.49

WAV2VEC2 (CNN-LSTM)
Generalized Personalized

Test year ACC PR RCL ACC PR RCL
2020 59.09 59.93 89.72 63.36 61.03 40.16
2021 63.49 63.49 100.00 67.45 68.71 52.22

TRILLsson (CNN-LSTM)
Generalized Personalized

Test year ACC PR RCL ACC PR RCL
2020 61.66 61.43 85.65 61.02 57.47 35.87
2021 63.49 63.49 100.00 67.05 61.42 70.76

4.3. Personalised and task-independent training

In our final set of experiments, we assess the independent-task
ability (i. e. we combine the scripted and free-speech data) of the
proposed models in a personalized framework. In this analysis,
we add the Area Under the Curve (AUC) metric to highlight
the discriminative capacity of our models. Our results show
that all models achieve an increase in performance with an in-
creased amount of training data (Table 6). In particular, the
TRILLsson–CNN-LSTM system which achieves our strongest
accuracy (78.42%) and AUC (84.56%). These results highlight
the benefit of including both scripted and free-response data to
maximize the amount of available training data.

5. Conclusions
This paper presents a new experimental database for evaluat-
ing MDD severity symptoms using speech. This dataset con-
tains longitudinal speech samples from a clinical population
of individuals with a history of recurrent MDD. We used this
dataset to highlight the benefits of personalization when pre-
dicting MDD symptom severity from speech. In particular,
our prediction models demonstrated consistently higher perfor-
mance in the personalized setting. We observed that the best-
performing system depends on the amount of available train-
ing data, with our eGeMAPS and SVM set-up performing well
with fewer instances, while a combination of TRILLsson fea-
tures and CNN-LSTM-based classifier performed best when we
maximized training data by combining our scripted and free-
response samples.

A limitation of our work would be the binary nature of our
classification task and the smaller number of systems tested.
These were deliberate choices as this work represents the ini-
tial machine learning analysis on this data. In future work,
we will expand to regression analysis. To help achieve this,
we will explore augmentation strategies to increase the amount
of available data. Additionally, given the robustness of the
self-supervised frameworks, we will also explore the benefits

Table 5: Number of instances per class for prediction modeling
experiments 1 and 2. Low represents mild and moderate depres-
sion severity (PHQ-8 < 10). High represents moderately severe
and severe depression (PHQ-8 ≥ 10)

test-fold
Experiment 1 Experiment 2
Low High Low High

2020 129 177 1,809 1,357
2021 23 40 356 288

Table 6: Evaluation of the top-performing models in the fusion
corpus (Scripted & Free-response). Personalised 10-Fold cross-
validation experiment. Accuracy (ACC), precision (PR) and re-
call (RCL) are shown in percent

System ACC PR RCL AUC
eGeMAPS (SVM) 74.04 70.46 66.17 79.14
ComParE (MLP) 73.20 70.53 63.94 78.32
WAV2VEC2 (CNN-LSTM) 74.34 73.87 73.27 79.55
TRILLsson (CNN-LSTM) 78.42 75.42 72.8 84.56

of fine-tuning these features toward more MDD-specific latent
spaces. Such as approach could enhance the MDD severity clas-
sification system’s performance while also providing a more
precise representation of MDD speech patterns.
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