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Developing Deep Transfer and Machine Learning Models of Chest X-ray for Diagnosing 

COVID-19 Cases using Probabilistic Single-Valued Neutrosophic Hesitant Fuzzy 
 

Abstract 
This study presents a novel dynamic localisation-based decision (DLBD) with fuzzy weighting with zero 

inconsistency (FWZIC) under a probabilistic single-valued neutrosophic hesitant fuzzy set (PSVNHFS) 

environment to benchmark Hybrid Multi Deep Transfer and Machine Learning (HMDTML) models. The 

novel DLBD method is proposed to generate a dynamic localisation decision matrix based on the upper and 

lower boundaries and the length of the scale. The superiority of DLBD derives from its ability to manage 

dynamic changes with boundary value consequences. In addition, the utilization of PSVNHFS in 

conjunction with DLBD and FWZIC has proven to effectively address the challenges posed by vagueness, 

uncertainty and hesitancy in the benchmarking procedure. The proposed methodology consists of three 

primary three steps: i) the adaptation of 48 HMDTML models, including 4 deep transfer learning models 

and 12 machine learning models trained on a dataset of 936 chest X-ray images obtained from both COVID-

19 patients and individuals without the disease. Then, these models were evaluated based on seven 

evaluation criteria, and a decision matrix was proposed. ii) The development of a PSVNH–FWZIC to assign 

weights to the evaluation criteria. iii) The formulation of a PSVNH–DLBD for the purpose of benchmarking 

HMDTML models. Results of the PSVNH–FWZIC revealed that AUC and time were the most important 

evaluation criteria, while precision was the least important. Furthermore, the results from PSVNH–DLBD, 

reveal that Model M24 (Painters-Decision Tree) earned the highest rank when 𝜆 = 2, 3, 4, 5	and		6 , 

followed by Model M25 (SqueezeNet-AdaBoost) and Model M34 (DeepLoc-kNN), while Model M39 

(DeepLoc-SVM) had the lowest rank (rank=48) across all 𝜆 values. The proposed method underwent 

sensitivity and comparison analyses to confirm its reliability and robustness.  

Keywords— Chest X-Ray Images, COVID-19, Deep Transfer Machine Learning Models, FWZIC, and 

MCDM.  

1 Introduction 
Early diagnosis is an essential public health strategy in all situations because it allows for treatment at 

the earliest stage possible, increasing the likelihood of a positive outcome (Rong et al., 2020). Mortality 

rates can be dramatically lowered through detection and treatment at an early stage (Medhat & El Kassas, 

2020). Although a conventional diagnosis provides a quick diagnostic process for patients, it may pose a 

significant risk to radiographers. Accordingly, medical imaging techniques such as X-ray and computed 

tomography (CT)-based screening are reasonably safe, efficient and accessible (Khammas et al., 2022; 



Maghdid et al., 2021). CT and X-ray imaging methods have been widely used for a variety of disease 

screens, resulting in significant advancements in early diagnosis (Ammas et al., 2020; Ravi et al., 2021). 

However, X-ray scanning is widely accessible, especially in rural areas, and requires less imaging time and 

a lower cost (Abdul et al., 2021; Pereira et al., 2020). Given the absence of dependable automated toolkits, 

the demand for more diagnostic tools has increased. Accordingly, X-ray imaging scans are beneficial for a 

variety of diagnostics and procedures (Nayak et al., 2021). These scans aid in the noninvasive and painless 

diagnosis of a disease, therapy monitoring and surgical treatment planning (Kaplan, 2016). According to 

the Global Market Insights, it is anticipated that the worldwide medical X-ray market will attain a valuation 

of USD 16.5 billion by the year 2025 (Nkurunziza et al., 2022). The growing prevalence of cancer and other 

chronic diseases has stimulated the expansion of the medical X-ray market. Therefore, it is imperative to 

develop an automated and timely diagnostic system that can provide expeditious decisions and significantly 

mitigate diagnostic inaccuracies (Ravi et al., 2021). 

Around the world, the COVID-19 epidemic has had catastrophic effects on people's health, economies, 

and societies. The COVID-19 virus continues to be a worry after vaccinations. As a result, various 

investigations on the early detection of COVID-19 have been carried out (Rahaman et al., 2020; Rubin et 

al., 2020). These investigations were conducted on X-ray images of COVID-19 patients in order to identify 

the critical elements for disease diagnosis. Additionally, radiologists noted that COVID-19-infected 

individuals exhibit chest radiograph abnormalities, suggesting that chest X-ray (CXR) images may disclose 

visual indicators associated with infection (Makris et al., 2020; Nour et al., 2020). The imaging tool is 

deemed to be a quick screening method for the instant identification of patients who may be epidemic 

suspects. Artificial intelligence (AI) methods, notably deep learning algorithms, have recently made the use 

of CXR images a practical screening tool (Bouchareb et al., 2021; Fusco et al., 2021; Nayak et al., 2021). 

Furthermore, AI is one of the most effective computing environments that can assist the medical 

community in analysing abnormal symptoms and alerting patients and healthcare authorities (López-

Cabrera et al., 2021). Applying relevant AI algorithms aid in the construction of a new system for the 

diagnosis and management of COVID-19 cases as well as quicker and more cost-effective decision-making 

(Ozturk et al., 2020). More so, by using medical imaging techniques including X-ray, CT, and magnetic 

resonance imaging scans of human body parts, AI can help in the diagnosis of infected patients (Caobelli, 

2020). In light of this, a number of COVID-19 detections have been suggested in the academic literature 

and published based on different AI models (López-Cabrera et al., 2021; Nayak et al., 2021; Ozturk et al., 

2020). Radiological imaging and cutting-edge AI algorithms may successfully identify this virus with high 

accuracy. The COVID-19 outbreak's quick spread made it necessary to have knowledge in this field, which 

raised interest in the creation of AI-based automated detection systems (Malik et al., 2021). Providing high-



quality medical care to all hospitals is difficult due to the existing shortage of radiologists. AI models that 

are simple, precise and quick can aid in immediately solving this challenge and assisting patients. Therefore, 

AI can also be beneficial in addressing the shortage of qualified healthcare providers in remote areas. 

The utilisation of machine learning algorithms for automated medical diagnostics has become 

increasingly prevalent serving as a complementary tool for physicians and other healthcare practitioners  

(Shibly et al., 2020). A particular branch of AI technology, known as deep learning, has gained widespread 

recognition for its ability to produce comprehensive learning structures and algorithms, thereby yielding 

desired results from unprocessed data, without the need for manual feature extraction (Jain et al., 2021). 

Deep Transfer Learning (DTL), as defined by (Panigrahi et al., 2021), denotes the process of knowledge 

transfer from a well-trained source domain, possessing a substantial quantity of training samples, to a target 

domain with a relatively smaller set of training samples. Moreover, DTL involves the transfer of specific 

layers from a Convolutional Neural Network (CNN) model that has been pretrained on a vast number of 

images (Ahuja et al., 2021). The network architecture in this context generally excludes the fully connected 

classification output layer, retaining all the other layers for a new classification task. 

Feature extraction in a CNN is responsible for gathering visual information from input images, which 

the neural network uses for subsequent classification. The final classification outcomes for the input image 

are contingent upon these extracted features (Liu, 2018). Numerous hybrid multi-deep transfer and machine 

learning (HMDTML) models, purposed for detecting and diagnosing COVID-19 cases from CXR images, 

have been presented in the literature, evaluated using various metrics (Alqudah et al., 2020; He et al., 2021; 

Minaee et al., 2020; Panwar et al., 2020; Pathan et al., 2021; Sethy et al., 2020; Toğaçar et al., 2020).  

Hence, further analysis is necessary to identify the existing HMDTML models and the evaluation metrics 

used to evaluate the proposed models in the literature. The study's originality can be further described as 

follows: 

§ The PSVNH-FWZIC method has been devised and established for the purpose of address the 

challenges posed by vagueness, uncertainty and hesitancy in ascertaining the evaluation criteria 

weights of the HMDTML models. 

§ A novel Multiple Criteria Decision Making (MCDM) ranking method named DLBD is proposed to 

manage dynamic changes with boundary value consequences and extended under a PSVNHF 

environment, to effectively address the challenges posed by vagueness, uncertainty and hesitancy in 

the benchmarking procedure. 

§ A new benchmarking process of HMDTML models is proposed by integrating PSVNH–FWZIC and 

PSVNH–DLBD with respect to the adopted decision matrix. 



The structure of this manuscript is organized as follows. Section 2 encompasses a review of literature 

pertinent to this study. In Section 3, the research methodology employed to benchmark the HMDTML 

models for COVID-19 diagnosis, utilizing the PSVNH–FWZIC and PSVNH–DLBD methods is discussed. 

The outcomes and subsequent discussion pertaining to the benchmarking of HMDTML models are 

delineated in Section 4. Section 5 is dedicated to conducting sensitivity and comparative analyses, with the 

aim of assessing and validating the efficacy of the proposed method. The  practical implication and 

limitations of the proposed method are discussed in Sections 6 and 7, respectively. Finally, Section 8 

provides the conclusion of the manuscript. 

2 Related Work 

2.1 Research Gap, Challenges and Issues 

As previously mentioned, the HMDTML model-based CXR images for detecting and diagnosing 

COVID-19 cases are available in the literature and evaluated on the basis of the different evaluation metrics 

(Alqudah et al., 2020; He et al., 2021; Minaee et al., 2020; Panwar et al., 2020; Pathan et al., 2021; Sethy 

et al., 2020; Toğaçar et al., 2020). 

The utilization of CNN algorithms in the diagnosis of a range of diseases, as demonstrated by (Pathan 

et al., 2021), has inspired researchers to employ them in the context of COVID-19. (He et al., 2021) 

employed a COVID-19 CT dataset to evaluate and compare the efficacy of 3D and 2D CNN models. The 

authors of this study utilized four evaluation metrics, namely accuracy, precision, sensitivity, and F1-score, 

to rank the models. (Alqudah et al., 2020) introduced a hybrid framework that incorporated CNN and 

machine learning techniques, specifically support vector machine (SVM) and k-nearest neighbours (kNN), 

for the purpose of detecting COVID-19 disease through the analysis of CXR images. This study employed 

six evaluation metrics, namely accuracy, sensitivity, specificity, precision, F1-score, and Matthews 

correlation coefficient.  In their study, (Sethy et al., 2020) utilized a combination of 13 CNN models and 

SVM to extract intricate features from X-ray images and subsequently detect cases of COVID-19. The 

evaluation of the integrated models was conducted based on four metrics, specifically accuracy, sensitivity, 

false-positive rate, and F1-score. (Toğaçar et al., 2020) used a transfer learning approch to train deep 

learning models, namely MobileNetV2 and SqueezeNet, in conjunction with SVM on the dataset of CXR 

images for COVID-19 detection. The authors employed sensitivity, F1-score, specificity, precision, and 

accuracy metrics for the assessment of their proposed models. In their study, (Minaee et al., 2020) used 

DTL to train several models including DenseNet-121, SqueezeNet, ResNet18, and ResNet50 on the CXR 

COVID-19 dataset. The authors then assessed the performance of these models using sensitivity and 

specificity metrics. In their study, (Panwar et al., 2020) trained a deep learning neural network named 



nCOVnet on the CXR COVID-19 dataset. The performance of the model was assessed using metrics such 

as accuracy and the area under the curve (AUC).  

Another group of researchers utilized optimization algorithms to effectively identify the optimal 

combination of hyperparameters for deep CNNs. In (Cai et al., 2023; Hu et al., 2021), the Chimp 

optimisation algorithm was employed to train the fully connected layers of deep CNNs for Covid19 

diagnosis using CXR images from the COVID-Xray-5k and COVIDetectionNet datasets. The study authors 

employed seven evaluation metrics, including standard deviation (STD), sensitivity, specificity, accuracy, 

AUC, precision-recall, and processing time, to validate their model. In the studies proposed by (Saffari et 

al., 2022; Wang et al., 2022) whale optimisation algorithm was used, in conjunction with a fuzzy system, 

which utilised to train the fully connected layers of deep CNNs for the purpose of diagnosing Covid-19 

from CXR images sourced from the COVID-Xray-5k dataset. The study authors employed seven evaluation 

metrics, including accuracy, processing time, STD, ROC, precision-recall, and F1-Score, to validate their 

model. The study of (Khishe et al., 2021) utilized a heuristic optimization technique to efficiently determine 

the optimal combination of hyperparameters for CNNs. This framework began by optimizing a foundational 

CNN, serving as the initial stage of the evolutionary process. Afterwards, a maximum of two extra 

convolutional layers are incrementally incorporated into the existing convolutional structure during an 

additional optimization phase. The model was trained using COVID-19 CXR images obtained from the 

COVID X-ray-5k dataset. The researchers used six evaluation metrics, namely accuracy, processing time, 

STD, ROC, and precision-recall, to validate their model. Despite the remarkable achievements of these 

works, there has been a lack of proposing dynamic decision matrix that allows for benchmarking the models 

against others by considering all matrices simultaneously. Furthermore, the importance of these matrices 

was not taken into consideration. According to the preceding discussion, different deep learning and 

machine learning models were presented and evaluated using multiple criteria as individual processes, 

which is considered a research gap. 

The integration of MCDM methods was employed in a study conducted by (M. Mohammed et al., 

2020) to rank the HMDTML using (Nanni et al., 2017) datasets. The authors employed TOPSIS and entropy 

to compare the performance of machine learning models trained on the COVID-19 CXR dataset. The 

assessment metrics utilized for these models encompassed AUC, precision, F1-score, recall, accuracy, true-

positive (TP), true-negative (TN), false-positive (FP), false-negative (FN), and time. This study was found 

to have a limitation in its use of recall and TP as evaluation metrics, as they share similarities in their 

approach and mathematical equations. Furthermore, the TOPSIS technique is confronted with three 

fundamental obstacles, namely the utilization of Euclidean distance, normalization techniques, and the 

absence of a mechanism to determine the relative importance of criteria. (Alamleh et al., 2022; Ramleh, 



Yatim, et al., 2022). Accordingly, the entropy method employed in the study conducted by (M. Mohammed 

et al., 2020) for resolving the weighting problem pertaining to criteria importance is an objective method 

that relies on data distribution while disregarding the experts' opinion of the criteria. This approach renders 

the weighting process unreasonable. Thus, there is a need to employ human approaches to address this 

issue.  

In 2022, a novel method known as fuzzy-weighted zero-inconsistency (FWZIC) (R. T. Mohammed et 

al., 2022) was introduced and is regarded as the most effective subjective approach for estimating the 

weights of evaluation criteria. The initial iteration of FWZIC, as presented by R. T. Mohammed et al. 

(2022), employed triangular fuzzy numbers (TFNs). However, this approach was deemed impractical for 

two reasons. Firstly, the definition of membership values in TFNs was found to be difficult (Liao, 2015). 

Secondly, TFNs were unable to effectively account for and address the impact of data uncertainty (Mathew 

et al., 2020). The vagueness, uncertainty and hesitancy concerns have a great influence on the ultimate 

evaluation of the alternatives within the framework of MCDM (Dalic et al., 2020; Deveci, Pamucar, & 

Delen, 2023; Zaidan et al., 2023). These concerns commonly arise from the viewpoints of individuals in 

positions of authority who make decisions. Therefore, reasonably assessing and benchmarking HMDTML 

models trained on COVID-19 CXR images remains an open challenge from the theoretical perspective. 

2.2 Theoretical Justifications 

Salih et al., (2020) introduced a novel MCDM approach, referred to as the fuzzy decision by opinion 

score method (FDOSM), which utilizes the closeness of the ideal solution for each criterion to the other 

values within that criterion as a means of addressing the challenge of measuring distance. This method 

effectively resolves discrepancies that arise from the use of various normalising techniques. Thus, this 

particular method effectively addresses the primary limitations associated with mathematical 

methodologies employed in the TOPSIS method. The utilisation of expert guidance in conjunction with an 

opinion matrix facilitates the streamlining of the decision-making process by determining the ideal value 

for each criterion. Moreover, this method compares the ideal value of a certain criterion to the other values 

of each alternative under that criterion. The method proposed by Salih et al., (2020) exhibits superiority due 

to several reasons: (i) minimising the processing time required for comparisons; (ii) avoiding comparing 

unrelated criteria (unnatural comparisons); (iii) tackling the problem of inconsistency, which is the primary 

issue with subjective methods; (iv) solving the missing values problem; (v) implicitly estimating the criteria 

weights; and (vi) solving the problem of immeasurable values. In addition, FDOSM addressed the 

vagueness, uncertainty and hesitancy of information by employing fuzzy sets (FSs) including but not 

limited to q-rung orthopair fuzzy rough sets (Deveci et al., 2023), Pythagorean FSs (Rozi et al., 2023), and 

fermatean probabilistic hesitant FS (Zaidan et al., 2023). Notwithstanding its benefits, FDOSM is impeded 



by two inherent deficiencies. 

First, FDOSM lacks the ability to assign precise weights for assessing criteria in terms of their 

significance and necessitates the use of an external approach to fulfil this requirement (Rozi et al., 2022; 

Baqer et al., 2023). Accordingly, the amalgamation of FDOSM and FWZIC has been employed by 

researchers to tackle diverse intricate MCDM problems in the literature (Rozi et al., 2022; Z. K. Mohammed 

et al., 2023). As previously mentioned, FWZIC exhibits an inability to effectively process information that 

is characterised by vagueness, uncertainty, and hesitancy. Therefore, FWZIC has been extended under to 

various classical (e.g. TFN (R. T. Mohammed et al., 2022) and trapezoidal fuzzy numbers) and traditional 

(e.g. q-rung orthopair fuzzy rough sets, neutrosophic cubic FSs, Pythagorean FSs, interval-valued spherical 

fuzzy rough sets, and fermatean probabilistic hesitant FS) environments (Qumar et al., 2022). In addition 

to addressing the vagueness, ambiguity and hesitancy of information, all of these traditional fuzzy 

environments are used with FWZIC to solve issues experienced with earlier versions of FWZIC that 

employed classical fuzzy environments. Despite the considerable efforts made, the unresolved issues of 

informational vagueness, ambiguity, and hesitancy persist. 

Second, the original version of FDOSM has been used on subjective and objective evaluation matrices 

and tested on communication and sport case studies (Dalic et al., 2020). However, subjectively evaluating 

objective values is unreasonable. Consequently, FDOSM is incapable of handling a dynamic change with 

the consequences of boundary values. As previously mentioned, FDOSM’s methodology relies on the 

selection of the ideal solution for each criterion and the comparison of that ideal to other values under that 

criterion, with the assistance of experts. Accordingly, subjectively comparing and evaluating dynamic 

measured values are impractical. For instance, if C1 is a benefit criterion with boundary values between 0 

and 100, then selecting the optimal solution, which is 100, does not require the opinion of experts. Thus, a 

new MCDM method capable of handling dynamic change with boundary value consequences must be 

developed. 

In this work, a new method named dynamic localisation-based decision (DLBD) which consists of 

three main steps has been developed. This method generates a dynamic localisation decision matrix based 

on the upper and lower boundaries of the scale and the length of the scale. This method can handle a 

dynamic change with the consequences of boundary values. Considering the advantages of FDOSM, the 

DLBD method can reduce the variance of outcomes across normalisation methods. Additionally, this 

method decreases the processing time required to perform localisation. Furthermore, this method uses upper 

and lower boundaries to overcome the distance measurement problem. The DLBD method can also 

automatically estimate the implicit weights for the set of values in each criterion by using scale values. 

However, the DLBD method still requires an external method to estimate the explicit weight of the criteria. 



Accordingly, this mechanism is integrated with FWZIC in this study to evaluate and benchmark HMDTML 

models trained on COVID-19 CXR images based on seven evaluation criteria. The most important 

contribution of this work is the enrichment of the entire field of decision-making through the development 

of a novel method that will aid experts in addressing complex MCDM problems. 

FSs including FDOSM (Rozi et al., 2022; Salih et al., 2020) are necessary for DLBD to handle the 

ambiguity, uncertainty and hesitancy of information when the dynamic localisation process has been 

performed within the lower and upper boundaries for each scale. Several novel forms of FS theory have 

been formulated, including but not limited intuitionistic FSs, hesitant FSs, dual hesitant FSs, interval-valued 

intuitionistic FSs, and dual hesitant fuzzy probability. Incorporating statistical uncertainty into actual 

productions is imperative. The efficacy of the probabilistic method may be limited in addressing epistemic 

uncertain problems. Accordingly, these issues motivate scholars to integrate FS and probabilistic theories 

to create a new fuzzy concept. Shao et al. (2018) proposed the concept of probabilistic single-valued 

neutrosophic hesitant FS (PSVNHFS) based on hesitant FS, probabilistic dual hesitant FS, neutrosophic FS 

and interval neutrosophic hesitant FS to solve MADM problems. The authors integrated the SVNHFS and 

probability information by concurrently expressing the membership degree values of truth, indeterminacy, 

and falsity alongside their corresponding probability values. The PSVNHFS provides additional 

information to aid in the decision-making process (Şahin & Altun, 2020). 

To the authors’ best knowledge, the existing MCDM ranking methods are unable to handle the 

dynamic change with consequences of boundary values of the HMDTML models. In addition, 

informational vagueness, uncertainty and hesitancy issues remain unsolved in the MCDM ranking and 

weighting methods. Accordingly, this study proposed and developed a novel combined DLBD with FWZIC 

under a PSVNHFS environment to benchmark the HMDTML models. The novel DLBD method is 

proposed to generate a dynamic localisation decision matrix based on the upper and lower boundaries and 

the length of the scale. The superiority of DLBD derives from its ability to manage dynamic changes with 

boundary value consequences. In addition, the employment of PSVNHFS with DLBD and FWZIC could 

successfully overcome the vagueness, uncertainty and hesitancy of information issues in the benchmarking 

process. Given the aforementioned rationales and benefits associated with utilising PSVNH-FWZIC and 

PSVNH-DLBD as means of ascertaining criteria weight and establishing benchmarks for alternatives, we 

are motivated to suggest a novel fuzzy MCDM approach for resolving the issue pertaining to the selection 

of HMDTML models. 

3 Developing a Deep Transfer and Machine Learning Models 
The developing a deep transfer and machine learning models applied in this study is illustrated in Fig. 

1. Section 3.1 outlines the construction of the decision matrix for the HMDTML model. The application of 



the COVID-19 case study is presented in Section 3.2.  This section is divided into two subsections. Section 

3.2.1 presents the PSVNH-FWZIC method's developmental process, which is utilized for the purpose of 

assigning weights to the performance evaluation criteria of the HMDTML models. Section 3.2.2 presents 

development of the PSVNH–DLBD ranking method. 

 
Fig. 1. Research methodology. 

3.1 Decision Matrix Formulation 

The formulation of the decision matrix is summarised in the following four steps: 

Step 1: Create and define alternatives 

(M. Mohammed et al., 2020) integrated a single DTL model (e.g. Inception v3) with twelve supervised 

machine learning algorithms (e.g. naive Bayes, neural network, SVM [linear], radial basis function [RBF], 

kNN, stochastic gradient descent [SGD], logistic regression, random forest, decision tree, AdaBoost, CN2 

rule inducer and SVM [Polynomial]). In this study, the alternatives are created by integrating four DTL 

models, Painters, VGG19, DeepLoc and SqueezeNet, which are well-known and widely used in different 

studies (Yadav et al., 2022) with the same set of supervised machine-learning algorithms. The process of 

extracting valuable features from unprocessed input data is an essential step in acquiring precise and 

meaningful representations. In addition, DTL is a technique that enables the training of data at a lower 

calculation cost and with fewer datasets. The transfer learning technique is used to transfer the information 



obtained by a pretrained model on a large dataset to the model to be trained on a new dataset (Khan & Aslam, 

2020). Deep learning models are used to automatically extract features to tackle a certain problem. The 

features extracted by deep learning, known as learned features, are incredibly effective. Models that extract 

and classify features using deep learning outperform models that classify manually derived features by a 

large margin (Nanni et al., 2017). VGG19 and SqueezeNet are pretrained by an ImageNet dataset. However, 

DeepLoc and Painters are pretrained using images of yeast cells and artwork, respectively. These models 

are most frequently used in numerous deep-learning image classification problems. Moreover, the selected 

models are preferable because they are simple to implement and computationally less expensive, making 

them excellent building blocks for learning purposes. In addition, the twelve supervised machine learning 

algorithms are applied to improve feature detection and to match the new HMDTML model with the most 

exhaustive and thoroughly researched algorithms. The selected algorithms are feasible due to their high 

accuracy and adaptability for achieving superior outcomes. In (M. Mohammed et al., 2020) is provided further 

details about each of the employed supervised machine learning algorithms. Forty-eight HMDTML models 

are obtained, as shown in Fig. 2. 

 

Fig. 2. Intersection process between four DTL models with twelve supervised machine learning 

algorithms. 

Step 2: Define and identify performance evaluation criteria 

The performance measurements are essential in determining how the proposed HMDTML models 

effectively fulfil the objective. (M. Mohammed et al., 2020) evaluated their HMDTML models using ten 

metrics as mentioned in Section 2.1. In this study, seven metrics are used to evaluate the developed 

HMDTML models: AUC (C1), accuracy (C2), F1-score (C3), precision (C4), recall (C5), time (C6) and 

specificity (C7). Typically, due to, TP, TN, FP and FN are used to formulate these metrics. Accordingly, 



the comparison between the different models on those four typical options is considered implicitly, and 

there is no need to consider them in the decision matrix. In addition, specificity is used in this study, as it 

can be calculated from TP and TN to test the probability of a negative test, conditioned on truly being 

negative. The term "TP" denotes the count of accurately labelled positive samples, while "TN" signifies the 

count of accurately identified negative samples. "FP" refers to the negative samples that were inaccurately 

identified as positive, and "FN" represents the positive samples that were predicted as negative. The 

equations for deriving the values of these metrics are shown in (1), (2), (3), (4), (5) and (6) (Goel et al., 2021; 

M. Mohammed et al., 2020). 
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where 𝑇𝑜 represents the time of processing to obtain outputs, and 𝑇𝑖 represents the sample input.  
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Step 3: Case study 

Datasets selection. The present study employs the proposed methods to a case study on COVID-19 

as a means of demonstrating their feasibility. As mentioned in the Introduction section, there is only one 

study (M. Mohammed et al., 2020) used MCDM methods as an integrated process to rank the HMDTML 

based on (Goel et al., 2021) dataset. However, the dataset exclusively comprises individuals who have tested 

positive for COVID-19, as well as those who have tested negative for COVID-19, including cases of MERS, 

SARS, and ARDS. In the present study, the training of HMDTML is based on the individuals who have 

tested positive for COVID-19 and non-infected individuals. Consequently, in accordance with the studies 

conducted by (Loey et al., 2020; M. Mohammed et al., 2020), two publicly available datasets were selected as 

the main sources of CXR images. The 1st dataset (Cohen et al., 2020) contains 660 CXR images, 468 of which 

depict COVID-19-positive patients and the remaining depict COVID-19-negative patients (including 

MERS, SARS and ARDS). It should be noted that this study exclusively enrolled individuals who tested 

positive for COVID-19 and those who were deemed healthy. Additional instances of pneumonia caused by 

viruses and bacteria were eliminated from consideration. Thus, the CXRs of the healthy individuals were 



not used from this dataset. The 2nd dataset (Kermany et al., 2018) consists of 5679 CXR images divided into 

two categories: normal images with 1406 samples and pneumonia images with 4273 samples. A total of 

468 out of 1406 images were selected from the normal category. To address the data imbalance, the images 

are evenly distributed between the two categories, namely positive and non-infected COVID-19 

individuals. The total collection had 936 images, including 468 cases of positive COVID-19 patients and 

468 cases of normal individuals. Fig. 3 shows the CXR image samples of a patient infected with COVID-

19 and normal cases extracted from the selected datasets. 

  
(a)                                                    (b) 

Fig. 3. CXR images (a) Normal and (b) COVID-19. 

Datasets Preprocessing. The following is a description of the preprocessing steps employed in this 

study. First, the CXR images had different sizes. Therefore, these images were resized to 224 × 224 pixels. 

Second, all images are converted from RGB to greyscale. Third, data normalisation was conducted for 

improved model learning. Fourth, binary classification is employed because the dataset is divided into two 

categories: normal and COVID-19. Finally, the dataset is divided into a training set (75% of the images) 

and a testing set (25% of the images). The resulting dataset is fed into the HMDTML models for training. 

Step 4: Construct a uniform dynamic decision matrix 

The decision matrix encompasses an important part of HMDTML model benchmarking. The 48 HMDTML 

models (M1, M2, …, M48) represent the alternatives in the decision matrix, whereas the seven predefined 

metrics represent the evaluation criteria. The formulation of the uniform dynamic decision matrix is based 

on the crossover between the 48 HMDTML models and the seven evaluation criteria. Table 1 presents the 

formulation of the uniform dynamic decision matrix. 

 



Table 1 
Uniform dynamic decision matrix of HMDTML model formulation. 

HMDTML Models/Criteria C1 C2 C3 C4 C5 C6 C7 

M1 Painters-Naive Bayes … … … … … … … 

M2 Painters-Neural Network … … … … … … … 

M3 Painters-SVM (linear) … … … … … … … 

M4 Painters-RBF … … … … … … … 

M5 Painters-kNN … … … … … … … 

M6 Painters-SGD … … … … … … … 

M7 Painters-Logistic Regression … … … … … … … 

M8 Painters-Random Forest … … … … … … … 

M9 Painters-Decision Tree … … … … … … … 

M10 Painters-AdaBoost … … … … … … … 

M11 Painters-CN2 rule inducer … … … … … … … 

M12 Painters-SVM (Polynomial) … … … … … … … 

M13 VGG19-Naive Bayes … … … … … … … 

M14 VGG19-Neural Network … … … … … … … 

M15 VGG19-SVM (linear) … … … … … … … 

M16 VGG19-RBF … … … … … … … 

M17 VGG19-kNN … … … … … … … 

M18 VGG19-SGD … … … … … … … 

M19 VGG19-Logistic Regression … … … … … … … 

M20 VGG19-Random Forest … … … … … … … 

M21 VGG19-Decision Tree … … … … … … … 

M22 VGG19-AdaBoost … … … … … … … 

M23 VGG19-CN2 rule inducer … … … … … … … 

M24 VGG19-SVM (Polynomial) … … … … … … … 

M25 DeepLoc-Naive Bayes … … … … … … … 

M26 DeepLoc-Neural Network … … … … … … … 

M27 DeepLoc-SVM (linear) … … … … … … … 

M28 DeepLoc-RBF … … … … … … … 

M29 DeepLoc-kNN … … … … … … … 

M30 DeepLoc-SGD … … … … … … … 

M31 DeepLoc-Logistic Regression … … … … … … … 

M32 DeepLoc-Random Forest … … … … … … … 

M33 DeepLoc-Decision Tree … … … … … … … 

M34 DeepLoc-AdaBoost … … … … … … … 

M35 DeepLoc-CN2 rule inducer … … … … … … … 

M36 DeepLoc-SVM (Polynomial) … … … … … … … 

M37 SqueezeNet-Naive Bayes … … … … … … … 

M38 SqueezeNet-Neural Network … … … … … … … 

M39 SqueezeNet-SVM (linear) … … … … … … … 

M40 SqueezeNet-RBF … … … … … … … 

M41 SqueezeNet-kNN … … … … … … … 

M42 SqueezeNet-SGD … … … … … … … 



M43 SqueezeNet-Logistic Regression … … … … … … … 

M44 SqueezeNet-Random Forest … … … … … … … 

M45 SqueezeNet-Decision Tree … … … … … … … 

M46 SqueezeNet-AdaBoost … … … … … … … 

M47 SqueezeNet-CN2 rule inducer … … … … … … … 

M48 SqueezeNet-SVM (Polynomial) … … … … … … … 

 
3.2 Application of the COVID-19 case study 

The data of the uniform dynamic decision matrix were numerically obtained from the evaluation 

criteria representing an objective process. All evaluation criteria were beneficial (the height value was the 

best) such as AUC, accuracy, F1-score, precision, recall and specificity, except that the time was costly (the 

lower value was the best). Evaluating and benchmarking HMDTML models are challenging if not 

impossible from a human perspective. This process is also difficult due to three primary issues (M. 

Mohammed et al., 2020): multiple evaluation criteria, data variance and importance of criteria and trade-offs 

between various criteria. However, the existing MCDM ranking methods are unable to handle the dynamic 

change with the consequences of boundary values of the HMDTML models. In addition, informational 

vagueness, uncertainty and hesitancy issues remained unsolved in the MCDM ranking and weighting 

methods. Accordingly, the proposed study comes out with the solution. The application of the proposed 

method to the COVID-19 case study is performed as follows: 

i. The preprocessed dataset is fed to 48 HMDTML models for training them on COVID-19-positive 

or COVID-19-negative (normal) cases. 

ii. The performance of the 48 HMDTML models is measured using the seven preselected metrics (i.e. 

AUC, accuracy, F1-score, precision, recall, time and specificity). The collected data represent the 

values of the uniform dynamic decision matrix. 

iii. The developed PSVNH–FWZIC method is applied to the performance evaluation criteria to 

determine their importance level (Section 3.2.1) 

iv. The proposed PSVNH–DLBD method is applied to the uniform dynamic decision matrix to 

benchmark HMDTML models (Section 3.2.2). 

3.2.1 PSVNH–FWZIC Weighting Method Formulation 

In the context of MCDM, FWZIC (R. T. Mohammed et al., 2022) is a new subjective method for 

estimating the relative importance of criteria with zero inconsistencies. In many real-world applications, 

input data cannot be precisely measured. Factors such as indirect measurements, model estimation, 

subjective interpretation, decision-makers’ (experts’) judgement and the availability of information from 

multiple sources can contribute to imprecision and ambiguity.The precise weight that should be associated 



with a certain  criterion is difficult to identify in the presence of uncertainty. The FWZIC supports decision-

makers in overcoming their own subjectivity when estimating the importance level of the criteria. 

Therefore, FWZIC is developed to solve these issues and estimate the criteria weights of the HMDTML 

models under the PSVNHFS environment. The steps of PSVNH–FWZIC formulation and development are 

as follows: 

Step 1: Evaluation Criteria Analysis 

The set of evaluation criteria used for evaluating and benchmarking the HMDTML models is analysed 

and examined. 

Step 2: Structured expert judgement (SEJ) 

In this step, four sequential substeps are needed: (i) experts with prior knowledge of the study’s subject 

are identified and recruited. Three experts were recruited to evaluate the evaluation criteria. (ii) A form of 

evaluation is created and subsequently approved by the enlisted experts. This form has undergone testing 

and received endorsement from the three experts who were enlisted in the preceding step. (iii) The experts 

used five linguistic expressions (e.g. very important [VI], important [I], average [Av], low important [LI] 

and very low important [VLI]) to assign the degrees of importance to all criteria (see Table 2). These terms 

denote the opinions of experts, which are gathered through the evaluation form. (iv) The collected data 

(linguistic expressions) are replaced with their equivalent numerical scale (see Table 2). 

Table 2 
Linguistic expressions, numerical scale and PSVNHFNs. 

Linguistic 

expressions 

Numerical 

scale/scale 

values 

PSVNHFNs 

𝑇(𝑥)|𝑃!(𝑥) 𝐼(𝑥)|𝑃"(𝑥) 𝐹(𝑥)|𝑃#(𝑥) 

𝛼$ 𝑃%!
!  𝛼& 𝑃%"

!  𝛽$ 𝑃'!
"  𝛽& 𝑃'"

"  𝛾$ 𝑃(!
"  𝛾& 𝑃("

"  

VI 1 0.95 0.8 0.9 0.2 0.05 0.8 0.1 0.2 0.05 0.8 0.1 0.2 

I 2 0.75 0.7 0.7 0.3 0.25 0.7 0.3 0.3 0.25 0.7 0.3 0.3 

AV 3 0.55 0.5 0.5 0.5 0.45 0.5 0.5 0.5 0.45 0.5 0.5 0.5 

LI 4 0.35 0.7 0.25 0.3 0.65 0.7 0.75 0.3 0.65 0.7 0.75 0.3 

VLI 5 0.15 0.8 0.1 0.2 0.85 0.8 0.9 0.2 0.85 0.8 0.9 0.2 

 

Step 3: Establishment of Expert Decision Matrix (EDM) 

In this step, the EDM is constructed. The primary constituents of the EDM consist of the evaluation 

criteria for the HMDTML models and the experts involved in the process. The experts’ evaluations of the 

𝑚-criteria {𝐶9 , 𝑖 = 1,… ,𝑚} form the EDM matrix, as shown in Eq. (7). In the proposed method, the EDM 

serves as the basis for further analysis. 



EDM =	

							

;
𝐸:: ⋯ 𝐸:;
⋮ ⋱ ⋮
𝐸<: ⋯ 𝐸=;

@,                                                                                                                        (7) 

where 𝐸9> is the numerical scale corresponding to the linguistic expression (VI, I, AI, LI, VLI) given by the 
𝑗-th expert to the 𝑖-th criterion. 

Step 4: Application of PSVNHFS 

PSVNHFS theory is applied on the produced EDM to create PSVNHFS–EDM as follows: 

 EDMB =

							

C
𝐸D:: ⋯ 𝐸D:;
⋮ ⋱ ⋮
𝐸D<: ⋯ 𝐸D=;

E                                                                                                                        (8) 

In this context, all numerical values within the EDM are replaced with their associated probabilistic 

single-valued neutrosophic hesitant fuzzy numbers (PSVNHFNs) given in Table 2. The robustness of 

PSVNHFS can be traced back to its ability to cope with complex and ambiguous data. The description of 

PSVNHFS and PSVNHFN are provided in Definition 1. 

Definition 1. (Shao et al., 2018) Let 𝑋 be a fixed set. A PSVNHFS on 𝑋 is defined as follows: 

𝑁𝑃 = {⟨𝑥, 𝑇(𝑥)|𝑃"(𝑥), 𝐼(𝑥)|𝑃?(𝑥), 𝐹(𝑥) ∣ 𝑃&(𝑥)⟩ ∣ 𝑥 ∈ 𝑋}. 

The potential elements are represented in three distinct components, denoted as 

𝑇(𝑥)|𝑃"(𝑥), 𝐼(𝑥)|𝑃?(𝑥), 𝐹(𝑥) ∣ 𝑃&(𝑥). 𝑇(𝑥), 𝐼(𝑥) and 𝐹(𝑥) are finite subsets of [0,1] representing the 

hesitant degrees of possible truth, indeterminacy, and falsity of 𝑥  with respect to the set 𝑋 . The 

corresponding probabilistic information for the aforementioned three categories of degrees are 

represented by 𝑃"(𝑥), 𝑃?(𝑥) and 𝑃&(𝑥), which are also subsets of [0,1] and having the same cardinality 

as their associated degrees sets. For  𝛼@ ∈ 𝑇(𝑥), 𝛽A ∈ 𝐼(𝑥), and 𝛾B ∈ 𝐹(𝑥), the following conditions are 

satisfied: 

𝑃C#
" ∈ 𝑃"(𝑥), 𝑃D$

? ∈ 𝑃?(𝑥), 𝑃E%
& ∈ 𝑃&(𝑥); Z 𝑃C&

"

|"(F)|

9G:

≤ 1, Z  
|?(F)|

9G:

𝑃D&
? ≤ 1, Z  

|&(F)|

9G:

𝑃E&
& ≤ 1, 

and 

0 ≤ 𝛼$ + 𝛽$ + 𝛾$ ≤ 3, 

where 𝛼$ = 𝑚𝑎𝑥{𝑇(𝑥)}, 𝛽$ = 𝑚𝑎𝑥{𝐼(𝑥)} and 𝛾$ = 𝑚𝑎𝑥{𝐹(𝑥)}; and |. | denotes the cardinality of a set. 

An element in 𝑁𝑃 is called a PSVNHFN and is represented as: 

〈a𝛼:b𝑃C'
" , … 𝛼|"(F)|b𝑃C|)(+)|

" c , a𝛽:b𝑃D'
? , … 𝛽|?(F)|b𝑃D|-(+)|

? c , a𝛾:b𝑃E'
& , … 𝛾|&(F)|b𝑃E|.(+)|

& c	〉, 

for 𝑥 ∈ 𝑋. For convenience, hereafter a PSVNHFN is denoted by 𝑁 = 〈Tb𝑃H, 𝐼b𝑃I, F ∣ 𝑃J〉. 

Step 5: Calculation of Evaluation Criteria Weight  

This step calculates the final weights of the evaluation criteria (𝑤:, 𝑤!, . . . , 𝑤;)" as follows: 



(i) The fuzzy weights of the evaluation criteria are determined by aggregating the PSVNHFNs present in 

the PSVNHFS-EDMs of the 𝑙 experts who were enlisted for the task. The probabilistic single-valued 

neutrosophic hesitant fuzzy weighted averaging (PSVNHFWA) operator (Shao et al., 2018) shown in 

Eq. (9) is modified, and a probabilistic single-valued neutrosophic hesitant fuzzy averaging (PSVNHFA) 

operator shown in Eq. (10) is used for the aggregation. 

Let 𝑁> = 〈𝑇>b𝑃"/ , 𝐼>b𝑃?/ , 𝐹> ∣ 𝑃&/〉 , for 𝑗 = 1,… , 𝑟 , be PSVNHFNs. Then, the PSVNHFWA operator is 

defined as follows: 

PSVNHFWA (𝑁:, 𝑁!, … , 𝑁K) = 𝑤:𝑁:⊕𝑤!𝑁!⊕… .⊕𝑤K𝑁K , 

where 𝑤 = (𝑤:, 𝑤!, … . , 𝑤K)" represents the weights vector with ∑  K
>G: 𝑤> = 1. Subsequently, the 

outcome of aggregation utilising PSVNHFWA can be achieved as follows: 
PSVNHFWA (𝑁!, 𝑁", … , 𝑁#) =

'
⋃ )1 −∏  #

$%! .1 − 𝛼$0
&! 	|	Π$%!# 𝑃'!

(!5)'!*!"#,…,&	∈(#×('×…×(&
,

⋃  )/!*!"#,…,&	∈	0#×0'×…×0&
)∏  #

1%! .𝛽10
2( 	|	Π$%!# 𝑃/!

0!5		 , ⋃  )3!*!"#,…,&	∈	4#×4'×…×4&
)∏  #

$%! .𝛾$0
&!|	Π$%!# 𝑃3!

4!5	
8.              (9) 

In particular, if 𝑤 = a:
K
, :
K
, ⋯ , :

K
c
"

, then the PSVNHFWA	operator is reduced to the PSVNHFA operator 

as follows: 
PSVNHFA (𝑁!, 𝑁", … , 𝑁#) =

:
⋃ )1 −∏  #

$%! .1 − 𝛼$0
!/#	|	Π$%!# 𝑃'!

(!5)'!*!"#,…,&	∈(#×('×…×(&
,

⋃  )/!*!"#,…,&	∈	0#×0'×…×0&
;∏  #

1%! .𝛽$0
#
&	|	Π$%!# 𝑃/!

0!<		 , ⋃  )3!*!"#,…,&	∈	4#×4'×…×4&
)∏  #

$%! .𝛾10
!/#|	Π$%!# 𝑃3!

4!5	
=.              (10) 

The aggregation of the PSVNHFNs present in the PSVNHFS-EDMs in (8) is then 𝐸l> =

𝑃𝑆𝑉𝑁𝐻𝐹𝐴q𝐸D:> , 𝐸D!> , … , 𝐸D<>r, for 𝑗 = 1,… ,𝑚. 

(ii) The evaluation criteria's fuzzy weights are transformed into crisp weights through the utilisation of the 

PSVNHFS score function (Shao et al., 2018), as shown in Eq. (11). For any PSVNHFN 𝑁 =

〈𝑇|𝑃" , 𝐼|𝑃? , 𝐹|𝑃&〉, a score function is defined as 

𝑠(𝑁) =
L '
|)|∑  0∈) OC⋅#0)QR$S

'
|-|∑ (:TD)⋅ 2∈-	 #2

- U$S '|.|∑  4∈. (:TE)⋅#4.U

'
.                                                                   (11) 

(iii) The criteria’s cumulative weights are set to one. If this condition is not satisfied, then the weights are 

rescaled using Eq. (12). 

𝑤$ = 	𝑠.𝐸@𝑗0	/∑ 𝑠.𝐸@𝑗06
$%! ,                                                                                                                                          (12) 

where 𝐸l> is the aggregated PSVNHFN evaluated using the PSVNHFA operator in (i), for 𝑗 = 1,… ,𝑚. 

The computed criteria weights are then input into PSVNH–DLBD to benchmark the HMDTML 

models. In the subsequent section, this step is described in detail. The pseudocode of the PSVNH–FWZIC 



method is shown in Algorithm 1. 

Algorithm 1: PSVNH-FWZIC method  
1: Step 1: Define the evaluation criteria. 
2: Identify 𝐶[𝑗]                                                      
3: Step 2: SEJ: 

4: Define 𝐸𝑥𝑝[𝑖]                                                                          //Identify the experts involved in the evaluation process. 
5: Define EF, Imp                                                                       //Identify the evaluation form. 
6: 𝑙  ←length (𝐸𝑥𝑝) 

7: For 𝑖 =1:	𝑙 do 

8:         if 𝐸𝑥𝑝(𝑖)	is true then 

9:                𝐸𝑥𝑝(𝑖) 	← 𝐸𝐹	(𝑖) 

10:         endif 

11: End for 

12: Step 3: Constructing EDM: 

13: Initialize    𝐸𝐷𝑀[𝑖, 𝑗] ← 𝐸𝑥𝑝 ⊎ 𝐶          

14: 𝑚   ←  length (𝐶)  

15: For 𝑖 =1:	𝑙		do 

16:       For 𝑗 =1:m do 

17:               EDM	[𝑖, 𝑗] ← Imp	(𝐸𝑥𝑝[𝑖]|𝐶(𝑗)) 

18:       End for 

19: End for 
20: Step 4: Apply PSVNH: 
21: For 𝑖 =1:	𝑙		do 

22:       For 𝑗 =1: 𝑚	do 

23:               𝐸k[𝑖, 𝑗] ← 𝐸𝐷𝑀[𝑖, 𝑗]                                                    // Fuzzification using Table 2. 

24:       End for 

25: End for 

26: Step 5: Compute criteria weight: 

27: Step 5.1: Aggregate the criteria fuzzy values: 

28: For 𝑗 =1:	𝑚		do 

29:          𝐸l) ← 𝑃𝑆𝑉𝑁𝐻𝐹𝐴O𝐸k[1, 𝑗], 𝐸k[2, 𝑗], … , 𝐸k[𝑙, 𝑗]Q                 //Aggregation using (10) 

30: End for 
31: Step 5.2: compute the score values of each criterion.  
32: For 𝑗 =1:	𝑚		do 

33:           𝑆[𝑗] = 𝑠O𝐸l)Q                                                                //Score calculation using (11) 

34: End for 

35: Step 5.3: Rescale the ultimate weight values. 

36: For 𝑗 =1:	𝑚		do 

37:          𝑤[𝑗] = 	𝑆[𝑗]/	∑ 𝑆[𝑗]*
)+$                                                //Rescaling 

38:  End for 

3.2.2 PSVNH–DLBD Benchmarking Method Formulation 

In this section, a novel DLBD benchmarking method is proposed. The DLBD method is based on 

defining the length of scale using the maximum and minimum values of each criterion. The lower and upper 

boundaries for each scale are determined on the basis of the defined length of scale, and a dynamic 



localisation decision matrix is formulated. Then, DLBD is extended under an FS environment (PSVNHF 

is used in this study) to generate a fuzzy dynamic localisation decision matrix. Finally, the alternatives are 

ranked to identify the best and worst alternatives. The proposed method could objectively benchmark the 

alternatives. The steps of PSVNH–DLBD formulation and development are as follows: 

Step 1: Dynamic Localisation Decision Matrix Construction 

(i) The initial decision matrix is formulated, as shown in Eq. (13). In this study, a uniform dynamic 

decision matrix of HMDTML models is constructed in Section 3.1 and employed in this section to 

create a dynamic localisation decision matrix. The decision matrix for 𝑛 alternatives and 𝑚 criteria 

has the following form: 
						𝐶:								𝐶! 				⋯					𝐶;
𝐴:
𝐴!
⋮
𝐴y

u

𝑥:: 𝑥:! ⋯ 𝑥:;
𝑥!: 𝑥!! … 𝑥!;
⋯ ⋯ ⋯ ⋯
𝑥y: 𝑥y! ⋯ 𝑥y;

v,                                                                                                                                      (13) 

where 𝑥9> is the 𝑖-th alternative (𝐴9) evaluation based on the 𝑗-th criterion (𝐶>). 

(ii) The length of scale (𝐿>) is computed for each criterion in this step. In this context, each criterion’s 

maximum value is subtracted from its minimum value, and the resulting value is divided by the number 

of scales (𝑛z), as shown in Eq. (14). 𝑛z is set to five in the experiment based on the five-point Likert 

scale. 

𝐿> =
{|}
&5',…,8

F&/T {~�
&5',…,8

F&/

y9
	                                                                                                                         (14) 

(iii) The lower bound (𝐿𝑏) for each scale is computed, recursively. Under the cost-type criteria, the 

minimum value under a given criterion represents 𝐿𝑏  of the positive ideal solution ( 𝑘 = 1 ). 

Meanwhile, 𝐿𝑏 of the second scale (𝑘 = 2) is determined by summing the 𝐿𝑏 value of the preceding 

scale and the 𝐿> value of that criterion. The 𝐿𝑏 values of the subsequent scale (𝑘 = 3, 4, … , 𝑛z) are 

similarly determined, as shown in Eq. (15). The cost criterion in this study is log loss. If criterion 𝐶> 

is cost-type, then the 𝐿𝑏 values are 

z
𝐿𝑏: = min

9G:,…,y
𝑥9> 																																		

𝐿𝑏= = 𝐿𝑏=T: + 𝐿> , for	𝑘 = 2,… , 𝑛z
                                                                                                      (15) 

The 𝑈𝑏 for each scale is computed. Under the cost-type criteria, the 𝑈𝑏 of the positive ideal solution 

(𝑘 = 1) is determined by subtracting the 𝜖 value from the 𝐿𝑏 of the second scale (𝑘 = 2). Meanwhile, the 

𝐿𝑏 of the second scale (𝑘 = 2) is determined by summing the 𝑈𝑏 value of the preceding scale and the 𝐿> 

value of that criterion and subtracting the 𝜖 value from the resulting value. The 𝑈𝑏 values of the subsequent 

scale (𝑘 = 3, 4, … , 𝑛z) are similarly determined, as shown in Eq. (16). If criterion 𝐶> is cost-type, then                                  



�
𝑈𝑏: = 𝐿𝑏! − 𝜖																																													
𝑈𝑏= = 𝑈𝑏=T: + 𝐿> + 𝜖, for	𝑘 = 2,… , 𝑛z

,                                                                                             (16) 

where 𝜖 is a small positive number which separates the scales from each other. 

(iv)  Under the benefit-type criteria, the maximum value under a given criterion represents the 𝑈𝑏 of the 

positive ideal solution (𝑘 = 1). Meanwhile, the 𝑈𝑏 of the second scale (𝑘 = 2) is determined by 

subtracting the 𝐿> value of that criterion from the 𝑈𝑏 value of the preceding scale. The 𝑈𝑏 values of 

the subsequent scale (𝑘 = 3, 4, … , 𝑛z) are similarly determined, as shown in Eq. (17). If criterion 𝐶> is 

benefit-type 

z
𝑈𝑏: = max

9G:,…,y
𝑥9> 																																		

𝑈𝑏= = 𝑈𝑏=T: − 𝐿> , for	𝑘 = 2,… , 𝑛z
                                                                                                    (17) 

Under the benefit-type criteria, 𝐿𝑏 of the positive ideal solution (𝑘 = 1) is determined by subtracting 

the 𝜖  value (small value to separate scales) from the upper bound (𝑈𝑏) of the second scale (𝑘 = 2). 

Meanwhile, 𝐿𝑏 of the second scale (𝑘 = 2) is determined by subtracting the 𝐿> value from the 𝐿𝑏 value of 

the preceding scale and subtracting the resulting value from the 𝜖 value. The 𝐿𝑏 values of the subsequent 

scale (𝑘 = 3, 4, … ,𝑁𝑠) are similarly determined, as shown in Eq. (18). The benefit criteria in this study are 

accuracy, specificity, precision, F1-score, recall and AUC. If criterion 𝐶> is benefit-type, then the 𝐿𝑏 values 

are 

�
𝐿𝑏: = 𝑈𝑏! − 𝜖																																													
𝐿𝑏= = 𝐿𝑏=T: + 𝐿> + 𝜖, for	𝑘 = 2,… , 𝑛z

,                                                                                             (18) 

where 𝜖 is a small positive number which separates the scales from each other. 

(v) The initial decision matrix, which is a uniform dynamic decision matrix of HMDTML models, is 

transformed into a dynamic localisation decision matrix as follows: 

𝐷 =

						𝐶:								𝐶! 				⋯					𝐶;
𝐴:
𝐴!
⋮
𝐴y

u

𝑑:: 𝑑:! ⋯ 𝑑:;
𝑑!: 𝑑!! … 𝑑!;
⋯ ⋯ ⋯ ⋯
𝑑y: 𝑑y! ⋯ 𝑑y;

v,                                                                                                                                  (19) 

where 𝑑9> = �𝑘																												if						𝑥9> ∈ [𝐿𝑏= 	, 𝑈𝑏=]
0																											otherwise																				

. 

According to Eq. (19), each value in the decision matrix is replaced with a scale value (𝑘 = 1, 2, … , 𝑛z) 

with respect to the upper and lower bounds of that scale. 

Step 2: Fuzzy Dynamic Localisation Decision Matrix Creation 

In this step, the scale values within the dynamic localisation decision matrix 𝐷, defined in Eq. (19), 



are replaced with their associated PSVNHFNs to create a fuzzy dynamic localisation decision matrix, as 

shown in Eq. (20). Table 2 reports the scale values and their corresponding PSVNHFNs. 

𝑑�9> = qTq𝑑9>r|𝑃"q𝑑9>r, Iq𝑑9>r|𝑃?q𝑑9>r, Fq𝑑9>r|𝑃&q𝑑9>r
	r,                                                                    (20) 

where	𝑇(𝑥), 𝐼(𝑥)	and	𝐹(𝑥)	 represent the hesitant degrees of possible truth, indeterminacy, and falsity for 

each scale, respectively. 

Step 3: Benchmarking HMDTML Models 

(i) The PSVNHFNs within the fuzzy dynamic localisation decision matrix are aggregated to find the 

fuzzy score value of each HMDTML model. Zhou et al. (Zhou et al., 2019) proposed an interval-valued 

neutrosophic Frank aggregation operator. The Probabilistic Single-valued Neutrosophic Hesitant 

Fuzzy Frank-weighed Averaging Aggregation (PSVNHFWA) operator is proposed in this work to 

find the fuzzy score value of each model based on their proposed aggregation operator, as shown in 

Eq. (21). 

Let 𝑁> = 〈𝑇>b𝑃"/ , 𝐼>b𝑃?/ , 𝐹> ∣ 𝑃&/〉, for 𝑗 = 1,… , 𝑟, be PSVNHFNs, the PSVNHFWA operator aggregates 

𝑟 PSVNHFN into single PSVNHFN using a predefined weights 𝑤 = (𝑤:, 𝑤!, … . , 𝑤K)"  as follows: 
PSVNHFFWA (𝑁1, 𝑁2, … ,𝑁𝑟) =
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,            (21) 

where 𝜆 > 1. 

(ii) The fuzzy score values of all alternatives are defuzzied and turned into a numeric score value using 

the PSVNHFS score function shown in Eq. (11). 

(iii) The models are reordered in a descending manner based on their score values, and the model with the 

highest score value is recommended (rank=1). 

The pseudocode of the PSVNH–DLBD method is shown in Algorithm 2. 

Step 2: Fuzzy Dynamic Localisation Decision Matrix Creation 

In this step, the scale values within the dynamic localisation decision matrix are replaced with their 

associated PSVNHFNs to create a fuzzy dynamic localisation decision matrix, as shown in Eq. (20). Table 

2 reports the scale values and their corresponding PSVNHFNs. 

𝑑𝑙𝑚� 9,> ≈ q�̃�(𝑥), �̃�(𝑥), 𝑓�(𝑥)	r,                                                                                                                     (20) 



where	�̃�(𝑥), 𝚤̃(𝑥)	and	𝑓�(𝑥)	 represent the hesitant degrees of possible truth, indeterminacy and falsity for 

each scale, respectively. 

Step 3: Benchmarking HMDTML Models 

(iv) The PSVNHFNs within the fuzzy dynamic localisation decision matrix are aggregated to find the 

fuzzy score value of each HMDTML model. Zhou et al. (Zhou et al., 2019) proposed an interval-valued 

neutrosophic Frank aggregation operator. The Probabilistic Single-valued Neutrosophic Hesitant 

Fuzzy Frank-weighed Averaging Aggregation (PSVNHFWA) operator is proposed in this work to 

find the fuzzy score value of each model based on their proposed aggregation operator, as shown in 

Eq. (21). 

Let ℵ�� = a�̃���b𝑃�
�
��, �̃���b𝑃��

�̃, 𝑓���b𝑃��
��c	(𝐽� = 1,2, … , 𝑟)	 be any group of PSVNHFNs and PSVNHFWA 

operator: PSVNHFNr →PSVNHFN. Then, the PSVNHFFWA operator can be described as follows: 

PSVNHFFWA (ℵ:, ℵ!, … , ℵK) = W:	.& ℵ:⊕& W!	.& ℵ!⊕& … .⊕& WK 	.& ℵK 

where W = (W:,W!, … . ,WK)" are the weights of ℵ�� ∈ [0,1] with ∑  K
��G: W�� = 1. Then, the aggregation 

result using PSVNHFFWA is as follows: 
PSVNHFFWA (ℵ!, ℵ", … , ℵ#) =
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,                      (21) 

where 𝜆 > 1 

(v) The fuzzy score values of all alternatives are defuzzied and turned into a numeric score value using 

the PSVNHFS score function shown in Eq. (11). 

(vi) The models are reordered in a descending manner based on their score values, and the model with the 

highest score value is recommended (rank=1). 

The pseudocode of the PSVNH–DLBD method is shown in Algorithm 2. 

Algorithm 2:  PSVNH–DLBD Benchmarking Method 
Input: Models, performance evaluation criteria and criteria weights, numbers of scale (𝑛,), epsilon value (𝜖) 
Output: Benchmark Models 
1: Step 1: Decision Matrix Formulation: 

2: Identify 𝐶[𝑗]                                                                               //Criteria 

3: Identify A [𝑖]	                                                                              //Alternatives 

4: n   ←   length (C) 

5: m  ←  length (A) 



6: 𝑋[𝑖, 𝑗] 	← 𝐴 ∩ 𝐶                                                                               //Decision Matrix              

7: Step 1.1: Input criteria Categorisation (Benefit [𝑩𝒆] and Cost [𝑪𝒐])   

8: Step 1.2: Calculate the length of scale for each criterion. 

9: Identify 𝑛,                                                                                             //Number of scales 

10: Identify 𝜖                                                                                             //Small number for separation 

11: For 𝑗 = 1:𝑚 

12:        𝐿[𝑗] = ( max
-+$,…,0

𝑋[𝑖, 𝑗] − min
-+$,…,0

𝑋[𝑖, 𝑗])/𝑛, 

13: End for 

14: Step 1.3: Calculate the 𝑳𝒃 and 𝑼𝒃  for each scale. 

15: For 𝑗 = 1:𝑚 

16:            𝐿𝑏[1] = min
-+$,…,0

𝑋[𝑖, 𝑗]	 

17:            For 𝑘 = 2: 𝑛,		 

18:                   𝐿𝑏[𝑘] = 𝐿𝑏[𝑘 − 1] + 𝐿[𝑗] 

19:            End for 

20:             𝑈𝑏[1] = 𝐿𝑏[2] − 𝜖 

21:           For 𝑘 = 2: 𝑛,		 

22:                   𝑈𝑏[𝑘] = 𝑈𝑏[𝑘 − 1] + 𝐿[𝑗] + 𝜖 

23:            End for 

24:        If 𝑪[𝒋] is benefit type 

25:            𝐿𝑏	 ← 𝐟𝐥𝐢𝐩(𝐿𝑏) 

26:            𝑈𝑏	 ← 𝐟𝐥𝐢𝐩(𝑈𝑏) 

27:         End If 

28: Step 1.4: Transform the decision matrix into dynamic localisation decision matrix. 

29:        For 𝑖 = 1: 𝑛 

30:               For 𝑘 = 1: 𝑛, 

31:                    If 			𝑋[𝑖, 𝑗] ∈ 	 [𝐿𝑏[𝑘], 𝑈𝑏[𝑘]] 

32:                          𝐷[𝑖, 𝑗] = 𝑘	 

33:                    End if 

34:                End for 

35:         End for 

36: End For 

37: Step 2: Transform dynamic localisation decision matrix into Fuzzy Dynamic Localisation Decision Matrix Creation 

38: For 𝑖 = 1: 𝑛 

39:         For 𝑗 = 1:𝑚 

40:               𝐷¤[𝑖, 𝑗] = O𝑇(𝐷[𝑖, 𝑗])|𝑃!(𝐷[𝑖, 𝑗]), 𝐼(𝐷[𝑖, 𝑗])|𝑃"(𝐷[𝑖, 𝑗]), 𝐹(𝐷[𝑖, 𝑗])|𝑃#(𝐷[𝑖, 𝑗])Q    

41:         End for 

42: End for 

43: Step 3: Compute the scores of the alternatives: 

44: Identify 𝜆 

45: Step 3.1: Find the aggregation value for each alternative. 

46: For 𝑖 = 1: 𝑛 

47:          𝐴𝑔𝑔[𝑖] = PSVNHFFWAO𝐷¤[𝑖, 1], … , 𝐷¤[𝑖, 𝑚]Q                               // Aggregation using (21) and  

48:                                                                                                                   //weight coefficients imported from Algorithm 1 

49: End for 

50: Step 3.2: Find the score value for each alternative. 



51: For 𝑖 = 1: 𝑛 

52:         𝑆𝑐𝑜𝑟𝑒[𝑖] = 𝑠(𝐴𝑔𝑔[𝑖])                                                                      //Score calculation using (11)          

53:  End for 

54: Step 3.3: Benchmark HMDTML Models. 

4 Results and Discussion 

4.1 Results of Uniform Dynamic Decision Matrix  

This section reports the results of the uniform dynamic decision matrix. Four pretrained CNN models 

(Painters, VGG19, DeepLoc and SqueezeNet) are integrated with 12 machine learning algorithms (Naive 

Bayes, Neural Network, SVM [linear], RBF, kNN, SGD, Logistic Regression, Random Forest, Decision 

Tree, AdaBoost, CN2 rule inducer and SVM [Polynomial]). The resulting forty-eight HMDTML models 

are used to detect COVID-19 CXR images. The results of the HMDTML models are evaluated using seven 

performance evaluation criteria (AUC, accuracy, F1-score, precision, recall, time and specificity). Table 

A.1 (Appendix A) presents an evaluation of the 48 HMDTML models based on the seven evaluation 

criteria. The resulting uniform dynamic decision matrix is fed to the PSVNH–DLBD benchmarking method 

to rank the HMDTML model alternatives. 

4.2 Weight estimation of HMDTML Model Criteria 

The performance evaluation criteria of the HMDTML models, which have been defined and identified 

in Section 3.1 for benchmarking the HMDTML model, have been subjected to weighting through the 

PSVNH-FWZIC method, resulting in achievement of outcomes. One of the main advantages of utilising 

PSVNH-FWZIC is the consistencies in the calculated weights. As described in Section 3.2.1, the PSVNH–

FWZIC method has five steps. In the first step, the set of evaluation criteria was examined and investigated. 

In the second step, three experts were recruited to evaluate all the evaluation criteria using five linguistic 

expressions and an evaluation form. Table 3 depicts the outcome of this particular step, which is the SEJ. 

In the third step, the EDM has been built by replacing with a numerical scale, as given in Table 3. In the 

fourth step, the PSVNHFS–EDM was constructed by replacing a numeric scale with PSVNHFNs. In the 

fifth and last step, the final weights have been calculated by aggregating and defuzzing the PSVNHFNs of 

each criterion within the PSVNHFS–EDMs, as given in Table 3. 

Table 3 
Criterion weighting results of HMDTML models. 

Criteria/Experts 
SEJ EDM 

Final Weights  
Expert 1 Expert 2 Expert 3 Expert 1 Expert 2 Expert 3 

C1 VI VI VI 1 1 1 0.1555 

C2 I I VI 2 2 1 0.1455 

C3 I I I 2 2 2 0.1354 



C4 LI Av Av 4 3 3 0.1265 

C5 Av LI I 3 4 2 0.1306 

C6 VI VI VI 1 1 1 0.1555 

C7 I VI VI 2 1 1 0.1510 

As presented in Table 3, AUC (C1) and Time (C6) were the criteria that achieved the highest weighting 

value, specifically 0.1555. This was closely followed by the Specificity criterion (C7) which was assigned 

a weighting of 0.1510. Further, the weighting value attributed to the Classification Accuracy criterion (C2) 

was 0.1455. Subsequently, the F1-score (C3) and Recall (C5) criteria received weighting values of 0.1354 

and 0.1306 respectively. The Precision criterion (C4) was assigned the lowest weighting value, at 0.1265. 

As previously detailed, these generated weights, in conjunction with the uniform dynamic decision matrix, 

are utilized in ranking methodologies to benchmark the HMDTML models. 

4.3 HMDTML Model Benchmarking Results 

This section reports the benchmarking results of the HMDTML models using the PSVNH–DLBD 

method detailed in Section 3.2.2. The PSVNH–DLBD method consisted of three main steps: dynamic 

localisation decision matrix construction, fuzzy dynamic localisation decision matrix creation and 

benchmarking HMDTML models. In the first step, the uniform dynamic decision matrix of the HMDTML 

models formulated in Section 3.1 is employed to create a dynamic localisation decision matrix. 

Subsequently, the length of scale (𝐿>) was calculated for each criterion, as given in Table 4. Then, the lower 

bound (𝐿𝑏) and upper bound (𝑈𝑏) were calculated for each scale based on the maximum and minimum 

values of each criterion and the calculated 𝐿>, as given in Table 4. 

Table 4 
Resulting 𝐿> , 𝑚𝑖𝑛,𝑚𝑎𝑥, 𝐿𝑏		𝑎𝑛𝑑	𝑈𝑏 values with their associated scales. 

Criteria 𝐿) 𝑚𝑖𝑛 𝑚𝑎𝑥 𝐿𝑏 𝑈𝑏 Scale 

C1 0.0141 0.9292 0.9998 

0.9857 0.9998 1 

0.9716 0.9857 2 

0.9575 0.9716 3 

0.9434 0.9575 4 

0.9292 0.9434 5 

C2 0.0676 0.6570 0.9948 

0.9272 0.9948 1 

0.8596 0.9272 2 

0.7921 0.8596 3 

0.7245 0.7921 4 

0.6570 0.7245 5 

C3 0.0765 0.6121 0.9948 

0.9182 0.9948 1 

0.8417 0.9182 2 

0.7652 0.8417 3 



0.6886 0.7652 4 

0.6121 0.6886 5 

C4 0.0405 0.7920 0.9948 

0.9542 0.9948 1 

0.9137 0.9542 2 

0.8731 0.9137 3 

0.8326 0.8731 4 

0.7920 0.8326 5 

C5 0.0676 0.6570 0.9948 

0.9272 0.9948 1 

0.8596 0.9272 2 

0.7921 0.8596 3 

0.7245 0.7921 4 

0.6570 0.7245 5 

C6 0.5634 0.0187 2.8356 

0.0187 0.5821 1 

0.5821 1.1454 2 

1.1454 1.7088 3 

1.7088 2.2722 4 

2.2722 2.8356 5 

C7 0.0676 0.6570 0.9948 

0.9272 0.9948 1 

0.8596 0.9272 2 

0.7921 0.8596 3 

0.7245 0.7921 4 

0.6570 0.7245 5 

Thereafter, the uniform dynamic decision matrix of the HMDTML models was transformed into a 

dynamic localisation decision matrix, as presented in Table A.2 (Appendix A). In the second step, the fuzzy 

dynamic localisation decision matrix was created by replacing the scale values within the dynamic 

localisation decision matrix with their corresponding PSVNHFNs. In the third step, these PSVNHFNs were 

aggregated using the PSVNHFWA operator and defuzzied, and the final score values were achieved, as 

given in Table 5. Finally, the alternatives were ranked based on their score values, with the alternative with 

the highest score value ranked first. 

Table 5 
Benchmarking results of HMDTML models (𝝀 = 𝟐). 

HMDTML Models Scores Ranks HMDTML Models Scores Ranks 

M1 Painters-Naive Bayes 0.2438 6 M25 DeepLoc-Naive Bayes 0.2474 2 

M2 Painters-Neural Network 0.2386 19 M26 DeepLoc-Neural Network 0.2386 19 

M3 Painters-SVM (linear) 0.2386 19 M27 DeepLoc-SVM (linear) 0.2386 19 

M4 Painters-RBF 0.2413 14 M28 DeepLoc-RBF 0.2438 6 

M5 Painters-kNN 0.2386 19 M29 DeepLoc-kNN 0.2386 19 

M6 Painters-SGD 0.2386 19 M30 DeepLoc-SGD 0.2386 19 

M7 Painters-Logistic Regression 0.2386 19 M31 DeepLoc-Logistic Regression 0.2386 19 

M8 Painters-Random Forest 0.2432 10 M32 DeepLoc-Random Forest 0.2432 10 



M9 Painters-Decision Tree 0.2456 4 M33 DeepLoc-Decision Tree 0.2352 47 

M10 Painters-AdaBoost 0.2386 19 M34 DeepLoc-AdaBoost 0.2474 3 

M11 Painters-CN2 rule inducer 0.2386 19 M35 DeepLoc-CN2 rule inducer 0.2386 19 

M12 Painters-SVM (Polynomial) 0.2438 6 M36 DeepLoc-SVM (Polynomial) 0.2400 17 

M13 VGG19-Naive Bayes 0.2386 19 M37 SqueezeNet-Naive Bayes 0.2386 19 

M14 VGG19-Neural Network 0.2386 19 M38 SqueezeNet-Neural Network 0.2386 19 

M15 VGG19-SVM (linear) 0.2386 19 M39 SqueezeNet-SVM (linear) 0.2055 48 

M16 VGG19-RBF 0.2432 10 M40 SqueezeNet-RBF 0.2432 13 

M17 VGG19-kNN 0.2392 18 M41 SqueezeNet-kNN 0.2432 9 

M18 VGG19-SGD 0.2386 19 M42 SqueezeNet-SGD 0.2386 19 

M19 VGG19-Logistic Regression 0.2386 19 M43 SqueezeNet-Logistic Regression 0.2386 19 

M20 VGG19-Random Forest 0.2413 14 M44 SqueezeNet-Random Forest 0.2413 14 

M21 VGG19-Decision Tree 0.2386 19 M45 SqueezeNet-Decision Tree 0.2386 19 

M22 VGG19-AdaBoost 0.2386 19 M46 SqueezeNet-AdaBoost 0.2386 19 

M23 VGG19-CN2 rule inducer 0.2386 19 M47 SqueezeNet-CN2 rule inducer 0.2386 19 

M24 VGG19-SVM (Polynomial) 0.2509 1 M48 SqueezeNet-SVM (Polynomial) 0.2453 5 

Table 5 presents the score and rank values of each alternative when 𝜆 = 2. Table A.3 (Appendix A) 

presents the benchmarking result of the HMDTML models when 𝜆 = 3, 𝜆 = 4, 𝜆 = 5, 𝜆 = 6, 𝜆 = 7, 𝜆 =

8, 𝜆 = 9			and	𝜆 = 10. According to Table 5 and Table A.3, Model M24 (VGG19-SVM [Polynomial]) 

earned the highest rank (rank=1) when 𝜆 = 2, 3, 4, 5	and			6 with score values of 0.2509, 0.2523, 0.2532, 

0.2538 and 0.2543, respectively, and it dropped to the second rank (rank=2) when 𝜆 = 7, 8, 9	and	10 with 

score values of 0.2548, 0.2551, 0.2554 and 0.2557, respectively. Model M25 (DeepLoc-Naive Bayes) 

received the second rank when 𝜆 = 2, 3, 4, 5	and	6 with score values of 0.2474, 0.2499, 0.2516, 0.2528 and 

0.2538, respectively; however, it raised to the first rank when 𝜆 = 7, 8, 9, 10 with score values of 0.2546, 

0.2553, 0.2559, and 0.2564, respectively. Model M34 (DeepLoc-AdaBoost) obtained the third rank when 

𝜆 = 2, 3, 4, 5	and	6 had score values of 0.2474, 0.2495, 0.2510, 0.2520 and 0.2529; however, it dropped to 

the fourth rank when 𝜆 = 7 had a score value of 0.2535 and to the fifth rank when 𝜆 = 	8, 9	and	10 had 

score values of 0.2541, 0.2546 and 0.2550. Model M39 (SqueezeNet-SVM [linear]) had the lowest rank 

(rank=48) across all 𝜆 values, with score values of 0.2055, 0.2081, 0.2099, 0.2112, 0.2122, 0.2131, 0.2138, 

0.2144 and 0.2149. The ranking results of the remaining models were distributed between the highest and 

lowest models. Overall, the 𝜆 values were set to 2, 3, 4, 5, 6, 7, 8, 9 and 10 to explore the changes in the 

final ranking results.  

5 Evaluation and Validation 

5.1 Sensitivity analysis 

The proposed PSVNH-FWZIC and PSVNH-DLBD methods are subjected to sensitivity analysis test 

to evaluate their robustness. This test has been employed by various researchers to verify their innovations 



(Qumar, et al., 2022). Upon calculation of the weight value for each criterion through the employment of 

PSVNH-FWZIC (see Table 3), the criterion deemed as the 'most important' was identified for the purpose 

of conducting sensitivity analysis. The objective of the test is to assess the impact of the "most significant 

criterion" on the benchmarking outcomes of the proposed method. According to Pamucar et al. (2020) 

identified the proportionality of the criteria's weights during sensitivity analysis using Eq. (22) and 

determined the elasticity coefficient (𝑒B). The 𝑒B value was used the relative modification of the remaining 

weight coefficients as a result to the changes in the weight coefficient of the important criterion. 

𝑤B = 𝑤B« − 𝛿	𝑒B,                                                                                                                                        (22) 

where 𝑒B = 1/(1 − 𝑤𝑠
0) and 𝑤z« is the weight of the most important criterion. The criteria weights obtained 

through the PSVNH-FWZIC method are represented by 𝑤B«, while 𝛿 is a parameter controlling the size of 

the change in the weight. 

The present study has identified AUC (C1) and time (C6) as the most important criteria, owing to their 

relatively higher weight value (w¬( =	w�9;® = 0.1555). Thereafter, the e¯ values corresponding to the 

criteria are established, as given in Table 6. 

Table 6 
Computed e¯ for changing weights. 

Criteria C1 C2 C3 C4 C5 C6 C7 
e¯ values 0.1842 0.1723 0.1603 0.1498 0.1547 0.1842 0.1788 

The 𝛿 values signify the extent of changes made to a set of criteria weight values, and it depends on 

the 𝑒B values. The values of 𝛿 could be either positive or negative, signifying an increase or decrease in 

relative importance, respectively. The bounds of 𝛿 are defined by the maximum adjustments in the weight 

of the most important criterion in both the positive and negative aspects. Accordingly, the 𝛿 limit values of 

C1 and C6 are determined by the interval [𝛿<A , 𝛿°A] =[−0.1555, 0.8445], where 𝛿<A = − max
>G:,…,;

𝑤>  and 

𝛿°A = 1 − max
>G:,…,;

𝑤> . The sensitivity analysis scenarios were identified based on the determined limit 

values. Accordingly, −0.1555 ≤ 𝛿 ≤ 	0.8445	was split into nine scenarios for (𝛿9)9G:,…,:±, where 

�
𝛿: = 𝛿<A																																																						
𝛿9 = 𝛿9T: +

²?$T²@$
³

,					for	2 ≤ 𝑖 ≤ 9
𝛿:± = 𝛿°A																																																		

.  

Table 7 highlights the criteria weight list utilised in the sensitivity analysis of the nine scenarios. It is 

necessary for the weight values to satisfy the condition of the summation of 𝑤B being equal to 1, and hence 

the weight of the most sensitive criteria is updated as 𝑤z = 1 −∑ 𝑤𝑐𝑐≠𝑠 . The table presents the new weights 

when the most important criterion AUC is set to zero in the first scenario and when the most important 

criterion time is set to zero in the first scenario. 



Table 7 
New criterion weights for sensitivity analysis. 

Criteria/scenarios PSVNH–FWZIC S1 S2 S3 S4 S5 S6 S7 S8 S9 

Th
e 

m
os

t i
m

po
rta

nt
 

 c
rit

er
io

n 
is

 A
U

C
.  

C1 0.1555 0.0000 0.1250 0.2500 0.3750 0.5000 0.6250 0.7500 0.8750 0.9999 

C2 0.1455 0.1723 0.1507 0.1292 0.1077 0.0861 0.0646 0.0431 0.0215 0.0000 

C3 0.1354 0.1603 0.1403 0.1202 0.1002 0.0802 0.0601 0.0401 0.0200 0.0000 

C4 0.1265 0.1498 0.1311 0.1124 0.0936 0.0749 0.0562 0.0375 0.0187 0.0000 

C5 0.1306 0.1547 0.1353 0.1160 0.0967 0.0773 0.0580 0.0387 0.0193 0.0000 

C6 0.1555 0.1842 0.1611 0.1381 0.1151 0.0921 0.0691 0.0460 0.0230 0.0000 

C7 0.1510 0.1788 0.1564 0.1341 0.1117 0.0894 0.0670 0.0447 0.0223 0.0000 

Th
e 

m
os

t i
m

po
rta

nt
  

cr
ite

rio
n 

is
 ti

m
e  

C1 0.1555 0.1842 0.1611 0.1381 0.1151 0.0921 0.0691 0.0460 0.0230 0.0000 

C2 0.1455 0.1723 0.1507 0.1292 0.1077 0.0861 0.0646 0.0431 0.0215 0.0000 

C3 0.1354 0.1603 0.1403 0.1202 0.1002 0.0802 0.0601 0.0401 0.0200 0.0000 

C4 0.1265 0.1498 0.1311 0.1124 0.0936 0.0749 0.0562 0.0375 0.0187 0.0000 

C5 0.1306 0.1547 0.1353 0.1160 0.0967 0.0773 0.0580 0.0387 0.0193 0.0000 

C6 0.1555 0.0000 0.1250 0.2500 0.3750 0.5000 0.6250 0.7500 0.8750 0.9999 

C7 0.1510 0.1788 0.1564 0.1341 0.1117 0.0894 0.0670 0.0447 0.0223 0.0000 

Fig.4 depicts the influence of the generated weight values (see Table 7) on the ranking orders of the 

initial 10 models (𝜆 = 2). The study conducted a comparison of the initial 10 models, namely M24, M25, 

M34, M9, M48, M1, M12, M28, M41, and M8, under the condition where the weight value of the AUC 

criterion is set to zero in the first scenario. The results indicate that Model M24 consistently maintained the 

top rank in five scenarios (S1-S5), while it was ranked second in S6, 38 in S7, and 42 in S8 and S9, as 

illustrated in Fig.4(a). Model M25 attained the second position in three out of five scenarios (S3-S5), 

whereas it was dropped in the remaining scenarios. The Model M34 was ranked third in four scenarios, 

namely S1 and S3-S5, whereas its ranking varied in the remaining scenarios. In four out of the total 

scenarios (S2-S5), Models M9 and M48 were placed in the fourth and fifth positions, respectively. 

However, these models were dropped in the remaining scenarios. The rankings of Models M1, M12, M28, 

M41 and M8 were completely changed in all scenarios. Figs. B1–B8 (Appendix B) present the influence 

of the new weight values (see Table 7) on the ranking order of the first 10 models for λ values of 3–10. 

According to the comparison of the first 10 models when the weight value of the time criterion is set 

to zero in the first scenario, Model M24 maintained the first rank in all scenarios, as shown in Fig.4(b). The 

M25 model achieved the second position in two scenarios, namely S3 and S4, whereas it was dropped in 

the remaining scenarios. The results indicate that Model M34 achieved the third rank in scenarios S3, S4, 

and S9, whereas it attained the second rank in the remaining scenarios. In scenarios S3 and S4, Model M9 

attained the fourth position, whereas it was dropped in the remaining scenarios. In one scenario, the rankings 

of Models M48 and M41 remained consistent at fifth and ninth place, respectively, whereas in the remaining 

scenarios, their rankings were altered. The models M1, M12, and M28 attained the sixth position in three 



distinct scenarios (S2-S4), whereas they were dropped in the remaining scenarios. According to the results, 

Model M8 exhibited a ranking of tenth place in scenarios S2, S3, and S5, whereas it demonstrated an 

increase in ranking in the remaining scenarios. Fig. B9–B16 (Appendix B) present the influence of the new 

weight values (see Table 7) on the ranking order of the first 10 models for λ values of 3–10. 

 
                                        (a)                                                                                           (b) 

Fig.4. Sensitivity analysis results (𝝀 = 𝟐) with the weight of the most important criteria (a) AUC and (b) 
time set to zero in the first scenario. 

The findings, as illustrated in Fig.4, demonstrate that the ranking order of the most models are modified 

by the application of the generated weight values in the nine scenarios. Therefore, it can be inferred that the 

suggested method is responsive to variations in weight values.  

The Spearman's rank correlation coefficient (SCC) is utilized to accurately assess the correlation 

between the new and initial outcomes, given that the proposed methodology has demonstrated sensitivity 

to variations in the criteria weights. Fig. 5 depicts the representation of the SCC values for the nine scenarios 

across all λ values. 

First, an evaluation was performed on the SCC values, with the weight value of the AUC criterion 

being set to zero in the first scenario, as illustrated in Fig. 5(a). In the initial scenario, strong and positive 

correlations were observed between the initial ranking results and the new one when λ values were set to 2, 

4, and 5. Moderate and positive correlations were observed when λ values were set to 3, 6, 7, 8, 9, and 10. 

The correlations exhibited a strong and positive association in the second and third scenarios, consistently 

across all λ values. The fourth and fifth scenarios exhibited moderate and positive correlations at λ=2, while 

the remaining λ values demonstrated strong and positive correlations. The sixth scenario exhibited moderate 

and positive correlations at λ=2 and λ=3, while the remaining λ values showed weak and positive 

correlations. The seventh, eighth, and ninth scenarios exhibited negative and weak correlations at λ=2, 
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while displaying weak and positive correlations at all other λ values. The study found that the mean of the 

SCC values for all scenarios was 0.6 when λ values were between 3 and 10, indicating a moderate positive 

correlation. However, when λ was 2, the mean of SCC values was 0.5, indicating a weak positive 

correlation. 

 
                                            (a)                                                                                          (b) 

Fig. 5. SCC results (𝝀 = 𝟐 − 𝝀 = 𝟏𝟎) with the weight of the most important criteria (a) AUC and (b) 
time set to zero in the first scenario. 

Second, an evaluation was performed on the SCC values, with the weight value of the time criterion 

is set to zero in the first scenario, as illustrated in Fig. 5(b). The initial ranking results exhibited strong and 

positive correlations with the new ranking results across all λ values in the first scenario, with the exception 

of λ=4, which demonstrated a moderate and positive correlation. Strong and positive correlations were 

observed across all λ values in the second, third, and fourth scenarios. Across all λ values, except for λ=2, 

the correlations exhibited a strong and positive association in the fifth scenario. However, for λ=2, the 

correlation was moderate and positive. In the sixth scenario, a moderate and positive correlation was 

observed at λ values of 2, 4, and 5, a strong and positive correlation at a λ value of 3, and a weak and 

positive correlation at all other λ values. Across all λ values, the correlations in scenarios seven, eight, and 

nine were negative and weak. The study found that the mean of SCC values was 0.6 for λ values of 2, 6, 7, 

8, 9, and 10, and 0.7 for λ values of 3, 4, and 5, indicating a moderate positive correlation. 

5.2 Comparative analysis 

This section includes two types of comparisons. The first comparison assessed the DLBD proposed 

with the FDOSM method (Salih et al., 2020). This evaluation was based on eleven theoretical points, as 

detailed in Section 5.2.1. The second comparison examined the present study in comparison to a previous 

study conducted by (M. Mohammed et al., 2020). This comparison focused on the application and theory 

aspects, as detailed in Section 5.2.2. 
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5.2.1 Comparative analysis based on theoretical points 

This section compares the proposed DLBD against FDOSM (Salih et al., 2020) based on the eleven 

theoretical points. The comparison points presented in Table 8 are summarised as follows: 

§ 1st point: Ranking method features: 

§ The first subpoint refers to the suitability of the ranking method (DLBD or FDOSM) for 

subjective or objective evaluation with a dynamic change in value. 

§ The second subpoint refers to the ideology of the ranking method. 

§ The 3rd subpoint refers to the nature of the generated matrix as the basis for evaluation. 

§ 2nd point: Processing time (Salih et al., 2020) refers to the time required to perform localisations or 

comparisons. 

§ 3rd point: Unnatural comparisons (Rozi et al., 2022; Salih et al., 2020) refer to the ability of the ranking 

method to compare two uncorrelated criteria based on a scale (e.g. one to nine) to indicate the number 

of times this specific criterion is better than the other criteria. 

§ 4th point: Inconsistency (Salih et al., 2020) refers to the ability of the ranking method to solve this 

problem, which is the primary issue with subjective methods. 

§ 5th point: Distance measurement problem (Salih et al., 2020) refers to the ability of the ranking method 

to solve this problem. 

§ 6th point: Normalisation (Rozi et al., 2022; Salih et al., 2020) refers to the requirement of the ranking 

method to normalise the values of the decision matrix, which is an issue owing to the availability of 

several normalisation formulas that affect the final ranking results. 

§ 7th point: Implicitly weighting criterion values (Salih et al., 2020) refers to the ability of the ranking 

method to implicitly weight certain criterion values. 

§ 8th point: Missing information (Rozi et al., 2022; Salih et al., 2020) refers to the ability of the ranking 

method to solve this problem. 

§ 9th point: Immeasurable values (Salih et al., 2020) refer to the efficiency of the ranking method to handle 

values that cannot be quantified, such as binomial criteria (e.g. yes/no), polynomial criteria (e.g. colours), 

textual data (e.g. brand names), and categorical criteria (e.g. interval values, ranges). 

§ 10th point: Vagueness and ambiguous information (Salih et al., 2020) refers to the ability of the ranking 

method to solve this problem. 

§ 11th point: Explicit weighting (Rozi et al., 2022; Salih et al., 2020) refers to the ability of the ranking 

method to explicitly estimate the weight of the evaluation criteria. 

§  



Table 8 
Comparison points between DLBD and FDOSM. 

Comparison points DLBD FDOSM 

Ranking method features 

Objective evaluation with a dynamic change of 
values Subjective evaluation 

Employing upper and lower boundaries of each 
criterion. Employing ideal solutions of each criterion 

Dynamic localisation Opinion 

Processing time Minimise the processing time required for 
localisation Minimise the processing time required for comparisons 

Unnatural comparisons Not applicable 
Solved 

Inconsistency Not applicable Solved 

Distance measurement Solved Solved 

Normalisation Solved Solved 

Implicitly weighting 
criterion values 

Solved based on the localised values within their 
boundaries Solved based on experts’ opinion of each value 

Missing information Unconsidered for objective values Solved for subjective values 

Immeasurable value Not applicable Solved 

Ambiguous and 
vagueness Information Solved with applied FSs Solved 

Explicit weighting Require an external method Require an external method 

 

According to Table 8, the DLBD method was compared with FDOSM based on eleven theoretical 

points. The first point (ranking method features) compared the two ranking methods according to three 

subpoints. The first subpoint demonstrated that the DLBD method is most suitable to evaluate objective 

data with a dynamic change in values. Meanwhile, FDOSM is most suitable for evaluating subjective data. 

The second subpoint compared the ideology of the two methods. DLBD utilised the upper and lower 

boundaries of each criterion, whereas FDOSM used the positive and negative ideal solutions for each 

criterion. The third subpoint concerned the nature of the created matrix as the evaluation’s foundation. 

DLBD generates a dynamic localisation decision matrix as a basis for evaluating alternatives. Meanwhile, 

FDOSM generates an opinion matrix for the same purpose. The second point compared the processing time 

requirements of the two methods. DLBD reduces the processing time required for localisation, while 

FDOSM minimises the processing time required for comparison. The third and fourth points evaluated the 

ranking method’s ability to assess two uncorrelated criteria and overcome an inconsistency problem, 

respectively. These issues are raised with a subjective evaluation. Accordingly, FDOSM successfully 

handled both issues, but it is not applicable in objective evaluation. The fifth and sixth points referred to 

the ability of the ranking method to address distance measurement and normalisation problems, 



respectively. FDOSM used positive and negative ideal solutions to successfully solve these issues by 

eliminating the use of the normalisation method and distance measurement, while DLBD used lower and 

upper boundaries for the same purpose. The seventh point referred to the ability of the ranking method to 

implicitly weight certain criterion values. DLBD implicitly weighted certain criterion values based on 

localising values within their boundaries. Meanwhile, FDOSM implicitly weighted certain criterion values 

based on experts’ opinions of each value. The eighth point referred to the ability of the ranking method to 

solve missing information within a decision matrix. Salih et al. (Salih et al., 2020) stated that FDOSM 

handled this issue; nevertheless, they provided no instances of this issue. In addition, DLBD did not 

consider the missing information of objective values. Therefore, FDOSM and DLBD should consider this 

issue in the future. The ninth point referred to the ability of the ranking method to deal with immeasurable 

values. These types of values are experienced with subjective evaluation; hence, FDOSM successfully 

handled them, but it is not applicable in objective evaluation. The tenth point referred to the ability of the 

ranking method to solve vagueness and ambiguous information. The DLBD method solved this problem 

by applying FSs (e.g. PSVNH). However, the ideology of FDOSM must apply FS to overcome this 

problem. The eleventh point referred to the ability of the ranking method to explicitly estimate the weight 

of the evaluation criteria. Both methods required an external weighting method to explicitly estimate the 

weight of the evaluation criteria. 

Overall, the analysis of the comparisons revealed that the DLBD method and FDOSM solved most 

MCDM theoretical issues. However, the DLBD method is optimal for evaluating objective data with 

dynamic changes in values, whereas the FDOSM method is optimal for evaluating subjective data. 

5.2.2 Comparative analysis in terms of application and theory  

Many remarkable studies are available in the literature such as (Cai et al., 2023; Hu et al., 2021; Khishe 

et al., 2021; Saffari et al., 2022; Wang et al., 2022). However, they did not consider using MCDM methods 

to rank the proposed models based on the seven predefined matrices. Therefore, this section compares the 

proposed PSVNH-FWZIC and PSVNH-DLBD MCDM methods with the entropy and TOPSIS methods 

used in a previous study (M. Mohammed et al., 2020). The comparison is based on 18 points. The present 

comparison examines both the application and theory aspects of the evaluation and benchmarking of 

HMDTML alternatives in the context of MCDM. On the first hand, the application aspect focuses on 

comparing the MCDM issues associated with the evaluation and benchmarking of HMDTML alternatives. 

On the other hand, the theory aspect involves comparing the weighing and benchmarking methods 

employed in the current study with those used in (M. Mohammed et al., 2020). The application aspect 

encompasses three comparison points, while the theory aspect encompasses a total of 15 comparison points. 

Among these, seven points fall under the weighting perspective, while the remaining eight points fall under 



the ranking perspective. These comparison points are detailed in Table 9. 

Table 9  
Comparison points between the compared studies. 

Comparison Points 
The 

current 
study 

The study of 
(M. 

Mohammed 
et al., 2020) 

Application 
Aspect 

Several criteria (matrices) were considered. √ √ 
The criteria were evaluated according to their level of importance. √ √ 
The issue in data variations was addressed. √ √ 

Theory 
Aspect 

Weighting 
perspective 

The issue of inconsistency regarding the weighting method 
is handled. √ √ 

The utilization of pairwise comparisons is not required by 
the weighting method. √ √ 

The weighting method is characterised by its simplicity in 
implementation and its lack of dependence on data analysis. √ × 

The weighting method possesses inherent characteristics 
that enhance transparency. √ × 

The weighting method provides a degree of adaptability in 
accommodating a wide range of perspectives and values. √ × 

The issue concerning the vagueness, uncertainty and 
hesitancy that arise from data or expert preferences in the 
weighting method is effectively solved. 

√ × 

The utilization of FSs in the weighting method has a broad 
range of options.  √ × 

Benchmark
ing 
perspective 

The benchmarking method can assign weights to the 
evaluation attributes. × × 

The benchmarking method effectively manages dynamic 
changes by considering the consequences of boundary 
values. 

√ × 

The benchmarking method can reduce the variance of 
outcomes across normalization methods. √ × 

The benchmarking method decreases the processing time 
required to perform localization √ × 

The benchmarking method uses upper and lower 
boundaries to overcome the distance measurement problem √ × 

The benchmarking method can also automatically estimate 
the implicit weights for the set of values in each criterion by 
using scale values. 

√ × 

The issue concerning the vagueness, uncertainty and 
hesitancy that arise from data or expert preferences in the 
benchmarking method is effectively solved. 

√ × 

The utilization of FSs in the benchmarking method has a 
broad range of options.  √ × 

Total score 94.4% 27.8% 
Accumulative difference 5.6% 72.2% 

The present study and a previous study (M. Mohammed et al., 2020) have met the initial three points 

(100%) in terms of application, as shown in Table 9. Both studies examined the inconsistency associated 

with weighting methods and did not involve pairwise comparisons. 



 

However, the weighting method used in the present study differs from the one used in the previous 

study in terms of its simplicity and its ability to be implemented independently from data analysis. The 

weighting method used in this study has inherent characteristics that improve transparency. Transparency 

in the weighting method in the context of MCDM refers to the degree to which the decision-making process 

and the assignment of weights to criteria are clear, understandable, and explicit. The concept refers to the 

degree to which experts' preferences and judgments can be accurately understood and communicated to 

others involved in the decision-making process affected by these decisions. Furthermore, the weighting 

method used in this study allows for flexibility in incorporating diverse perspectives and values. In contrast, 

the weighting method used in the previous study may have limited flexibility in incorporating expert 

preferences. Unlike the previous study, this study has successfully addressed the problems of vagueness, 

uncertainty, and hesitancy that arise from data or expert preferences in the weighting method. Nevertheless, 

the present study demonstrates a broad range of options in the utilisation of FSs with the weighting method. 

Therefore, the present study meets all seven points (100%), while the previous study only met two points 

(28.6%) of the points under the weighting perspective. 

 

In terms of the benchmarking perspective, the present study does not have the capability to ascertain 

the relative significance of evaluation matrices. Hence, the present study meets seven of the eight points, 

representing 87.5% of the total points. The previous study's implementation of the TOPSIS method did not 

determine the relative importance of evaluation matrices. Furthermore, the previous study failed to address 

the dynamic changes that occur when considering the consequences of boundary values. The previous study 

required the use of the TOPSIS method, which involved normalizing the data and calculating distances. In 

addition, the previous study also did not employ any FSs with TOPSIS, which lacked the wide range of 

options to effectively handle the vagueness, uncertainty, and hesitancy issues. Hence, the previous study 

did not fulfill any point under benchmarking perspective. 

Overall, the present study successfully obtains 94.4% of the total points, specifically 17 out of 18 points, 

with a shortfall of only 5.6% represented by 1 point. By contrast, the previous study achieved a score of 

only 27.8% by meeting 5 out of 18 points, failing to meet the remaining 13 points, accounting for 72.2% of 

the total. The aforementioned findings suggest that the present study has successfully devised a rigorous 

approach to rank HMDTML alternatives and ascertain the most efficient model by considering key 

comparative points. 

 

 

 



 

 

6 Practical Implication  
Utilizing MCDM methods to rank HMDTML models for COVID-19 diagnosis using CXR images ensures 

a systematic, objective, and flexible approach to model selection. The practical implications of this 

approach are as follows: 

First, the proposed method enhanced the process of decision making. MCDM methods provide a systematic 

approach for comparing and ranking models using multiple criteria, thereby ensuring the decision-making 

process is robust, transparent, and objective. 

Second, the utilization of MCDM weighting method enables the prioritization of criteria by assigning 

weights according to their importance within a specific context. Healthcare providers have the ability to 

prioritize specific criteria, such as accuracy or recall, based on their specific requirements. 

Third, the MCDM approach can be easily updated to incorporate new data or criteria, thereby maintaining 

the relevance and up to date of model rankings. 

Fourth, the structured nature of MCDM method enables improved stakeholder communication. The clear 

rationale for selecting a specific model over others can inspire confidence in patients, clinicians, and other 

stakeholders. 

Fifth, the outcomes of MCDM can serve as valuable feedback for data scientists and model developers. 

Understanding the position of their models in relation to various criteria can help them determine where 

to concentrate their efforts for improvement. 

Sixth, healthcare providers can enhance patient outcomes by selecting the most effective model, which is 

determined by evaluating multiple criteria for accurate diagnoses. 

Seventh, healthcare institutions can optimize resource allocation by identifying the most efficient and 

effective models, enabling them to allocate server space or computational power accordingly. 

7 Study Limitations 
The proposed method exhibits certain limitations. First, the conversion of the EDM and dynamic 

localisation decision matrix into a PSVNHS-EDM and fuzzy dynamic localisation decision matrix, 

respectively, is constrained to the application of a single fuzzy method, specifically, PSVNHS. Second, a 

single aggregation operator and scoring function were utilised to establish the ultimate weighting through 

PSVNH-FWZIC and the benchmarking outcomes through PSVNH-DLBD. Third, the utilisation of FS with 

DBLD was deemed necessary due to imprecise and unclear data. The issue of missing information in a 

decision matrix with respect to objective values has not been taken into account. 



 

 

8 Conclusion 
This study combined DLBD with FWZIC under the PSVNHF environment to benchmark the 

HMDTML models based on seven evaluation criteria. The methodology process started with the selection 

and preprocessing of the 48 HMDTML models, including 4 multideep transfer learning models and 12 

multimachine learning models trained on 936 images, including 468 cases of positive COVID-19 patients 

and 468 cases of normal individuals, from two datasets. This was followed by the development of the 

HMDTML models and the construction of a uniform dynamic decision matrix. Then, PSVNH–FWZIC was 

formulated to estimate the weight of the evaluation criteria. Finally, the constructed matrix and the resulting 

weight values are fed to PSVNH–DLBD to the benchmark process.  

The sensitivity of the proposed method to variations in the weights of the criteria has been 

demonstrated, and the mean of SCC values indicated a moderate positive association. According to our 

results and two types of comparisons anaylsis, DBLD can generate a more reasonable ranking of models 

with objective values than other existing MCDM techniques. 

The findings of this study suggest that there are several possible directions for future exploration.  (i) 

applying different fuzzy sets (e.g. probabilistic dual hesitation FS, Fermatean fuzzy soft sets or q-rung 

orthopair fuzzy soft sets) to the EDM and dynamic localisation decision matrix, (ii) using other aggregation 

and score functions with PSVNH–FWZIC and PSVNH–FDOSM, (iii) examining other numbers of scales 

[Eq. (14)] on the basis of the fuzzy environment standard, (vi) examining the missing information problem 

with the DBLD method, (v) utilising a case study with a missing information problem and examining how 

FDOSM can address such a problem, and (vi) extending FDOSM under the PSVNH environment. 
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