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Abstract

Hyperspectral image (HSI) unmixing is a challenging research problem
that tries to identify the constituent components, known as endmem-
bers, and their corresponding proportions, known as abundances, in
the scene by analysing images captured by hyperspectral cameras.
Recently, many deep learning based unmixing approaches have been
proposed with the surge of machine learning techniques, especially
convolutional neural networks (CNN). However, most of these meth-
ods rely on the general-purpose CNN structures and it is unclear how
to design an efficient network for unmixing purposes. In this work,
we first address the structural issue by proposing new unmixing net-
works that leverage algorithm unrolling techniques to the Alternating
Direction Method of Multipliers (ADMM) solver of a constrained sparse
regression problem underlying a linear mixture model. However, like
many other methods in the literature, there is no guarantee that the net-
work could generate physically meaningful unmixing results. To solve
this problem, we proposed a novel blind unmixing network using dou-
ble DIP techniques (BUDDIP) which consists of two DIP sub-networks
to estimate the endmember and abundance respectively, which are
coined as EDIP and ADIP. The network is trained in an end-to-end
manner by minimizing a novel composite loss function. Finally, we pro-
pose a novel unmixing algorithm that can address both issues, simul-
taneously. Specifically, we first propose a novel MatrixConv Unmixing
(MCU) Model for endmember and abundance estimation, respectively,

which can be solved via certain iterative solvers. We then unroll these
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solvers to build two unfolding based sub-networks, which are coined
as UEDIP and UADIP, to generate the estimation of endmember and
abundance, respectively. The overall network is then constructed by
assembling these two sub-networks. To further improve the unmixing
quality, we also add explicitly a regulariser for endmember and abun-
dance estimation, respectively. Experimental results on both synthetic
and real HSI data show that the proposed method achieves state-of-

the-art performance compared to other unmixing approaches.
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Impact Statement

HSI data is a valuable tool for characterizing the materials present in a
given scene, but the process of unmixing the data to accurately identify
these materials can be complex and challenging. The successful ap-
plication of machine learning techniques in various research areas has
inspired the development of many machine learning-based algorithms
for HSI unmixing purposes. However, most of these methods rely on
the general-purpose CNN structure and lack the ability to guarantee
the generation of physically meaningful unmixing results. Hence, it is
necessary to develop new unmixing networks that are designed specif-
ically for HSI unmixing problems and can effectively deliver physically
meaningful unmixing results.

In this work, we solve the above problems by proposing a novel
framework that can build network structures specifically for unmixing
purposes and generate physically meaningful unmixing results by lever-
aging the guidance provided by existing unmixing algorithms. Our ap-
proach has the potential to significantly advance the state-of-the-arts in
HSI data analysis, as it allows for more accurate and efficient charac-
terization of the materials present in a given scene. This has numerous
practical applications in various domains, such as remote sensing, art
investigation and medical imaging, where accurate identification and
quantification of materials is critical.

Our methodology will have implications in both academia and in-
dustry. In specific, the proposed framework provides a systematic way

to build novel neural networks by unrolling the ADMM solver to the
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underling physical model. Our results illustrate that it delivers state-of-
the-art unmixing performance compared to the competing approaches.
In addition, the proposed methodology provides a novel way to incor-
porate the existing algorithms to guide the training of neural networks,
which, after training, can deliver not only physically meaningful results
but also better results than the guidance itself. Overall, the work pre-
sented in this thesis has the potential to make a significant impact on
a wide range of fields and applications, and we believe it represents a

valuable contribution to the scientific community.
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1. Introduction

Chapter 1

Introduction

Hyperspectral imaging (HSI), also known as imaging spectroscopy, is
a technique that captures and analyzes the light reflected or emitted
from a scene or object [3]. It has been widely applied in fields such as
remote sensing [4], mineralogy [5], environmental monitoring [6] and
art investigation [7]. Unlike traditional imaging methods, which capture
just several narrow band of wavelengths, an HSI image generally con-
tains hundreds of narrow wavelength bands, covering a wide range of
wavelengths across the electromagnetic spectrum, typically from the
visible to the infrared range [8], which is depicted in Fig. 1.1. This
results in a "spectral signature" for each pixel in the image, allowing
for the preservation of important information in the spectrum, such as
the shape of narrow absorption bands. This rich spectral information
makes it possible to identify and analyze a wide range of materials and
substances that are invisible or difficult to detect using other imaging
methods, without physical contact. This relies on the fact that different
materials within a scene reflect electromagnetic radiation differently,
so that, when the radiation captured by sensors is measured at each
wavelength over a sufficiently broad spectral band, the resulting spec-
tral signature can be used to uniquely identify and characterize the
constituent materials within the scene [9].

Due to the low spatial resolution of hyperspectral sensors and the
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Figure 1.1: Human Vision vs. Hyperspectral Camera. HSI can capture
richer spectral information than human vision.

heterogeneity of the landscape, the spectral vectors obtained are not
pure, but rather a mixture of the spectral signatures of the materials
present in the scene [8]. This calls for methods capable of quantita-
tively decomposing, or unmixing, the captured spectral signature onto
the pure spectral signatures of the constituent materials in the scene
also known as endmembers and their proportions within the mixture
also known as abundances [10].

As outlined in [8], the HSI unmixing problem generally consists of
two main tasks: (a) endmember estimation (EE) and (b) abundance
estimation (AE). EE algorithms focus on identifying endmember spec-
tral signatures that are present within the HSI image. Many EE meth-
ods are geometrically-based approaches, which assume that the data
is embedded in a simplex, the vertices of which are the endmembers.
Popular examples of such methods include vertex component analy-
sis (VCA) [11] and simplex volume maximization (SiVM) [1]. AE al-
gorithms, on the other hand, aim to determine the proportion of each
endmember within each pixel in the HSI image. There are popular
AE methods such as fully constrained least square (FCLS) [2] which
assumes the endmembers are known beforehand, for example, ex-
tracted by the EE methods. In addition, there are also methods known
as blind unmixing methods [12], which perform endmember estimation
and abundance estimation simultaneously. For example, nonnegative
matrix factorization (NMF) [13—16] and nonnegative tensor factoriza-

tion (NTF) [17] are very popular blind unmixing methods that map
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1. Introduction

the HSI unmixing problem onto a matrix/tensor factorization problem
by imposing various constraints, such as total-variation constraint, on
endmember signatures or their abundances. However, these tradi-
tional model-based approaches can be computationally complex.

More recently, there has been a surge of interest in the application
of machine learning, particularly neural networks, for addressing the
HSI unmixing challenge [18-23]. These approaches can be broadly
divided into two categories: supervised learning-based and unsuper-
vised learning-based methods. Supervised learning-based approaches
assume the availability of a labeled dataset, consisting of pairs of HSI
reflectance and corresponding abundance [24—26]. Whereas, unsu-
pervised learning-based approaches [27—33] instead attempt to learn
a function that can estimate both the endmembers and abundances
from the HSI reflectance data alone. These blind unmixing meth-
ods are usually based on an autoencoder network structure with a
linear decoder, which takes only the HSI spectra as input and en-
forces the output to reconstruct HSI spectra. Despite the promising
developments in this area, it is still unclear how to design network ar-
chitectures specifically for the purpose of unmixing. Moreover, with-
out proper guidance, deep learning-based methods may not generate
physically meaningful unmixing results [4].

Recently, algorithm unrolling or unfolding techniques [34, 35] have
been proposed as a potential solution to design interpretable network
structures. With these techniques, the unmixing task is first modelled
as an optimization problem, which is typically solved by an iterative
solver. Each step of the iterative solver is then converted to a network
operation and the network is constructed by concatenating several iter-
ations (or layers) of such operations. For example, [18,26] proposed
unmixing networks, MNN-AE and MNN-BU, which apply the unfold-

ing technique to an iterative shrinkage-thresholding algorithm (ISTA)
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for HSI unmixing. However, ISTA based unmixing networks [18, 26]
are not very efficient and there are many iterative solvers other than
ISTA. To avoid generating physically meaningless unmixing results,
some recent works like UnDIP [36] have proposed to use existing al-
gorithms like simplex volume maximization to extract endmembers and
use them to guide the training of an abundance estimation network us-
ing a deep image prior (DIP). However, existing unmixing networks
trained with guidance can be limited by the quality of the guidance
and most learning algorithms lack the ability to generalize from linear
unmixing problems to nonlinear ones because they are based on the
autoencoder structure to solve either linear or nonlinear problems.
This work endeavors to investigate the following questions in the

field of HSI unmixing:

» Can we improve the unmixing performance by leveraging other
iterative algorithms in algorithm unrolling approaches to deliver

state-of-the-art unmixing neural network architectures?

» Can we surpass the performance limitations of existing guidance

based unmixing approaches?

» Can we design an unmixing network that can be applied to both

linear and nonlinear blind unmixing problems?

This work aims to bridge the gap in the current literature by addressing
these questions, and contribute to the advancement of more efficient

and effective techniques for HSI unmixing.

1.1 Contributions

In particular, we make the following contributions:

1. We propose a novel neural network architecture for HSI linear

unmixing, which builds upon the sparsity-driven model and is de-
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rived from unrolling an ADMM algorithm. The network is trained
using supervised principles and a composite loss function that
incorporates additional terms such as an abundance angle dis-
tance (AAD) and an abundance information divergence (AID)
term. The proposed network has a richer and lighter structure
compared to state-of-the-art methods, achieving faster conver-

gence, better unmixing performance, robustness, and interpretabil-
ity.

2. Furthermore, we propose an autoencoder-like neural network
trained using unsupervised principles to yield both endmembers
and abundances directly from HSI data. The proposed blind un-
mixing network offers improved performance compared to state-

of-the-art algorithms.

3. We propose a general framework, BUDDIP, for linear and nonlin-
ear blind unmixing using deep image prior (DIP) techniques [37].
BUDDIP consists of three modules: an endmember estimation
DIP (EDIP) module, an abundance estimation DIP (ADIP) mod-
ule, and a mixing module (MM). Unlike other DIP-based meth-
ods [36, 37] that use random input, BUDDIP uses a meaningful
input by leveraging existing unmixing methods, resulting in more

efficient network structures and improved performance.

4. Furthermore, we propose a composite loss function for BUDDIP
that ensures physically meaningful unmixing results and outper-
forms existing guidance based methods. Additionally, for nonlin-
ear unmixing, we introduce an adaptive loss weight strategy for

better results.

The above contributions have resulted in the following manuscripts

during the course of the PhD study:

1. C. Zhou and M. R. D. Rodrigues, "An ADMM Based Network
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for Hyperspectral Unmixing Tasks," ICASSP 2021 - 2021 |IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), Toronto, ON, Canada, 2021, pp. 1870-1874,
doi: 10.1109/ICASSP39728.2021.9414555.

2. C. Zhou and M. R. D. Rodrigues, "ADMM-Based Hyperspec-
tral Unmixing Networks for Abundance and Endmember Estima-
tion," in IEEE Transactions on Geoscience and Remote Sens-
ing, vol. 60, pp. 1-18, 2022, Art no. 5520018, doi: 10.1109/T-
GRS.2021.3136336.

3. C.Zhou and M. R. D. Rodrigues, "Blind Unmixing Using A Double
Deep Image Prior," ICASSP 2022 - 2022 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP),
Singapore, Singapore, 2022, pp. 1665-1669, doi: 10.1109/I-
CASSP43922.2022.9747545.

1.2 Organisation

This thesis is organised as follows:

In Chapter 2, we provide relevant background information about
the HSI unmixing problem. We introduce both linear and non-
linear mixing models and discuss traditional model-based ap-
proaches as well as modern learning-based approaches. Fur-
thermore, we examine the challenges in current research on HSI

unmixing to provide a comprehensive understanding of the topic.

In Chapter 3, we propose a novel HSI unmixing algorithm that
combines both model- and learning-based approaches. Specifi-
cally, we employ algorithm unrolling techniques to the Alternating
Direction Method of Multipliers (ADMM) solver of a constrained

sparse regression problem underlying a linear mixture model.
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We then introduce a neural network structure for abundance esti-
mation that can be trained using supervised learning techniques
with a composite loss function. Additionally, we propose another
neural network structure for blind unmixing that can be trained

using unsupervised learning techniques.

In Chapter 4, we propose a general unsupervised framework in-
spired by Deep-lmage-Prior (DIP), which is applicable to both
linear and nonlinear blind unmixing problems. Specifically, our
framework involves three modules: (1) an Endmember estima-
tion module using a DIP (EDIP), (2) an Abundance estimation
module using a DIP (ADIP), and (3) a Mixing module (MM). The
EDIP and ADIP modules are responsible for generating end-
members and abundances respectively, whereas the MM, which
is constructed based on the postulated mixing model, generates
a reconstruction of the HSI observations. In order to generate
meaningful unmixing results, we also propose a composite loss
function, which, again, applies to both linear and nonlinear un-
mixing models. We also propose an adaptive loss weight strat-

egy to yield better unmixing results in nonlinear mixing scenarios.

In Chapter 5, we offer several variations of BUDDIP aimed at
further enhancing its performance. One approach involves con-
structing the EDIP and ADIP structure through the incorporation
of unfolding techniques applied to a novel MatrixConv Unmix-
ing (MCU) Model. Another approach entails the addition of ex-
plicit regularizations to the network, resulting in improved perfor-

mance.

In Chapter 6, we evaluate the effectiveness of the proposed meth-
ods by comparing them with some state-of-the-art approaches

on three real HSI| datasets.
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In Chapter 7, we provide a summary of this thesis and suggest

future directions for research.

1.3 Notation

In this thesis, we use lowercase letters, bold lowercase letters, and
bold capital letters to represent scalars, vectors, and matrices respec-
tively. Specifically, a scalar is represented by x, a vector is represented
by x, and a matrix is represented by X. x; correspond to the k"
column vector of matrix X. x,; correspond to the element of i*" row
and j** column of matrix X. The symbol * represents the convolu-
tional operator, while x represents the matrix multiplication operator.
The symbol ® represents the element-wise (Hadamard) product. The
Frobenius norm of matrix X is represented as || X||», and the ¢; norm
of matrix X is represented as || X||;. The transform of matrix X is rep-

resented as X”.
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Chapter 2

Background

In this Chapter, we first define the HSI unmixing problem and introduce
the general mixing model: Linear mixing model (LMM) and Nonlinear
mixing model (NLMM). We then briefly review various model-based

and learning-based unmixing approaches in the literature.

2.1 HSI unmixing Problem

spectral dimension

Figure 2.1: HSI Data cube. It can be visualised as a collection of
images, where each image represents the radiance measured in a
particular spectral band.

Hyperspectral imaging (HSI) can be interpreted as the acquisition

of a stack of images, each of which represents the radiance in a spe-
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cific band [3]. These images form a data cube, as shown in Fig. 2.1,
where each pixel provides a spectrum that characterizes the materials
within that pixel. The objective of HSI is to identify and segregate ma-
terials based on their unique reflective properties when observed over
a wide range of wavelengths. However, the observed reflectance is
typically a mixture of the spectral signatures of the materials present in
the scene, due to the heterogeneity of the scene [8]. This necessitates
the use of methods capable of quantitatively decomposing, or unmix-
ing, the captured spectral signature into its spectral constituents, also
known as "endmembers", and their corresponding proportions within
the mixture, also known as "abundances" [9]. In the application of
remote sensing, as illustrated in Fig. 2.2, endmembers can include

various materials such as Tree, Water, Dirt, Road, etc [9].

0

M\ ree il

AN\ M /1
/ Vo [

wavelength

Figure 2.2: Hyperspectral imaging spectroscopy in remote sensing.
The spectra of each pixel provide a characterization of the materials
present within the corresponding pixel.

In general, HSI unmixing analysis involves three main steps as il-

lustrated in Fig. 2.3:

Dimension reduction. Hyperspectral data is frequently characterized
by high dimensionality, as a result of the oversampling of the

spectral and spatial signal performed by the sensors to ensure
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Figure 2.3: Procedures of spectral unmixing analysis

the capturing of any narrow features. In order to mitigate this
issue, a pre-processing step of dimensionality reduction is re-
quired, which can be achieved through either feature selection or
extraction techniques. This dimensionality reduction process is
beneficial in terms of reducing the computational overhead as-
sociated with subsequent analyses. The most widely employed
reduction algorithms [8] include Principal Component Analysis

(PCA) and Minimum Noise Fraction (MNF).

Endmember estimation. The second step of HSI unmixing analysis
concerns the identification of an appropriate vector basis to de-
scribe all the materials present in the image. The literature on
this topic presents a variety of approaches [8], which can be
broadly classified into two groups. The first group of approaches
aims to find the most extreme spectra, which are typically the
purest and best describe the vertices of the data simplex. The
second group of approaches, on the other hand, looks for the

spectra that are the most statistically distinct.

Abundance estimation. The final step of HSI unmixing analysis is
the estimation of the proportions of materials, known as abun-
dance, present in each image pixel through the process of model
inversion. This step typically involves the use of linear or nonlin-
ear regression techniques. A wide range of methods, including

linear regression, neural networks and support vector regres-
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sion, are commonly employed for this purpose. The inversion
step is based on solving a constrained least squares problem,
which aims to minimize the residual between the observed spec-

tral vectors and the reconstructions based on the endmembers.

In the thesis, the focus is mainly on the second and third steps
of HSI unmixing analysis. Dimensionality reduction is not explored in
detail because it is a common data pre-processing step in all signal
processing problems and is considered as a well-established step in

the literature.

2.2 Mixing Models

Analytical models for the mixing of disparate materials serve as the
foundation for the development of techniques to estimate the endmem-
bers and corresponding abundances from mixed pixels. Mixture mod-
elling is based on the assumption that within a given scene, the surface
is dominated by a limited number of distinct materials that possess rel-
atively constant spectral properties [9]. In light of this principle, vari-
ous mixing models have been proposed in the literature, which can be
broadly classified into two categories: 1) Linear mixing models (LMM);
2) Nonlinear mixing models (NLMM). In the following, we will provide a

brief introduction to these two models.

2.2.1 Linear mixing model (LMM)

The linear model is often the first and simplest model employed in var-
ious research problems [8]. In this context, the reflectance model is
represented as a checkerboard mixture, where any incident radiation
interacts only with one component, as depicted in Fig. 2.4. If the sur-
face of the corresponding pixel radiation reflectance can be viewed as

a combination proportional to the abundance of each endmember, the
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reflectance will convey the characteristics of each endmember present
in that pixel with the same proportion. In this setup, there is a linear
relationship between the fractional abundance of materials present in
the pixel and the spectra in the reflected radiation [9]. In other words,
the spectrum of a mixed pixel is a linear combination of the endmem-
ber spectra weighted by their corresponding fractional abundance in

the pixel. Therefore, it is referred to as linear mixing model (LMM).

o~ )

a, a, a,
Figure 2.4: lllustration of linear mixing process

Mathematically, the LMM can be described as:
y=Ea+n (2.2.1)

where y € RP*! is the reflectance for a specific pixel captured with
p spectral bands. The endmember matrix, E = [ey,...,e,] € R,
contains the spectral signatures of » endmembers across p spectral
bands, with each endmember’s spectral signature represented by e; €
RP*! where i = 1,....,r. a € R"™! is the corresponding abundance
vector containing the abundances of r different endmembers present
in the pixel. n € R?*! models the additive white Gaussian noise.

Under matrix notation, Eq. (2.2.1) can be re-formulated as follows:
Y=EA+N (2.2.2)

where Y = [y, ...,y € RP*" is the HSI observations, which contains

the reflectance spectra of n pixels across p spectral bands. The "
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pixel's spectra is represented by y; € RP*!. A = [a;,...,a,] € R™" is
the corresponding fractional abundance matrix, i.e., a; € R™! is the
abundance vector containing the abundances of r different endmem-
bers present in the i*" pixel; and N € RP*" is the additive white Gaus-
sian noise. Typically, the value of r is in the order of tens, the value of p
is in the order of hundreds, and the value of n is in the order of ten thou-
sand. It is important to note that, unless otherwise specified, for the
sake of simplicity in notation, the HSI data cube Y, abundance map A,
and noise N discussed in this thesis are represented in their flattened
forms, i.e. Y € RP*", A € R™" and N € RP*". However, in reality,
the HSI image being analyzed is of size n; x ny, i.e. Y € Rp*m1xn2
A € Rmxm2 gnd N € RP*™>*m2_ Thig distinction should be kept in
mind when interpreting the results presented in this thesis.

Generally, the abundance is constrained by two properties: the
non-negative constraint (ANC) and the sum-to-one constraint (ASC).
The ANC requires that all elements of the abundance matrix, A, are
non-negative, i.e. A > 0. The ASC requires that the abundance of
each pixel sums up to one, i.e. AT1, = 1,,, where 1, is an all-one vec-
tor with size r x 1. The imposition of the ASC constraint is driven by the
desire to provide a plausible description of the mixture components for
each pixel in the image. It emphasizes that the observed reflectance
spectrum is fully composed of endmember reflectance spectra. Simi-
larly, the endmember matrix, E, is also subject to the non-negative con-
straint (ENC) to ensure physical meaning, i.e. E > 0. Although shar-
ing similarities with blind source separation, the model (2.2.2) how-
ever possesses unique characteristics and difficulties due to physical
constraints and endmember dependence [8]. Moreover, the unmixing
problem is often ill-posed, lacking a unique solution, and the variabil-
ity in spectral signatures caused by various factors complicates accu-

rate endmember identification and modeling. Nonlinear spectral mix-
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ing processes further contribute to the complexity of the problem.

The objective of blind unmixing is to estimate the appropriate end-
member signature, E, and fractional abundance matrix, A, based on
the observed reflectance vector, Y, which can be formulated as opti-

misation problems as follows:
1
réligliﬂY ~EA||% st,E>0A>0A"1,=1, (2.2.3)

In some cases, the endmember signature, E, is known in advance in
the form of a spectral library and the estimation objective is restricted to
determining the abundance, A. The linear mixing process is illustrated
in Fig. 2.4.

The simplicity of such model has led to the development of humer-
ous algorithms [18,29,31,32]. However, it is not suitable for handling
more complex scenarios, where the reflectance acquired by sensors
is the result of interactions with multiple materials at various depths or

layers [8].

2.2.2 Nonlinear mixing model (NLMM)

As an alternative to the LMM, the nonlinear mixing model (NLMM) has
been proposed as a model that accounts for nonlinear effects by incor-
porating additional nonlinear interaction terms into the LMM. Typically,

an NLMM can be represented as follows:
Y=EA+O+N (2.2.4)

Where Y,E, AN are equivalent to the same quantities appearing
in Eq. (2.2.2), and O denotes the additional term accounting for non-
linear mixing effects. Eq. (2.2.4) is also known as the robust Linear
Mixing Model (rLMM), and the term O is used to denote the outlier

terms in [13]. The goal of blind nonlinear unmixing is to estimate E, A,
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and sometimes O, given only Y, which can be solved by minimizing

the following objective function [13]:

1
min —||Y — EA — O||% + R(O)
E.A,02 (2.2.5)
st.E>0,0>0A>0A"1,=1,

where R(O) is a regularizer imposed on the nonlinear component O.

Figure 2.5: Bilinear model

A variety of NLMM has been proposed in the literature of hyper-
spectral imaging, which differs from each other based on how the term
O is modelled. For instance, the Bilinear model is a variant of NLMM
that aims to capture the nonlinear interactions that occur in multilay-
ered scenes [38]. As shown in Fig. 2.5, the reflectance captured by
the sensor comes not only from the interaction within a single compo-
nent but also from the interaction between components. This model

represents the observed spectra y;, for the £ pixel as follows:

r—1 r

yi=Ea,+Y > Bijrei©e;+ny (2.2.6)

i=1 j=i+1

where, y;., a5, n;, correspond to the k** column vector of Y, A, N in Eq.

(2.2.4), respectively. The symbol ® represents the Hadamard (element
wise) product. The coefficient j3; ;. captures the degree of nonlinear
interactions between the endmembers e; and e;. Different constraints
on the coefficients ay, 3; ; . have been studied in the literature. For ex-

ample, the Fan Model (FM), which is the primary focus in this work, is
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proposed in [39] by imposing the following constraints:

akZO

S ai =1 (2.2.7)

ﬁi,j,k = Q; Qj k

A model known as the Nascimento Model (NM) [40] is proposed,

which imposes the constraints as follows:

akZ();

Bijk >0, Vi#j (2.2.8)

—1

This model considers e; ® e; as additional pure endmembers. How-
ever, the model above does not generalize the Linear Mixture Model
(LMM). To overcome this limitation, the Generalized Bilinear Model
(GBM) [41] is proposed as a generalization of both the LMM and the
Bilinear Model. Mathematically, in GBM, the observed spectrum of a

pixel y, can be written as follows:

r—1 r

Y = Eak -+ Z Z Yi,j, ki kA5 k€ ® €; + ng (229)

i=1 j=i+1

where the interaction coefficient ~; ; € (0,1) quantifies the nonlinear
interaction between the spectral components e; and e;. The abun-
dance vector a,, is also subjected to ANC and ASC.

The Modified Generalized Bilinear Model (MGBM) [42, 43] is pro-
posed to address the lack of consideration for within-endmember in-
teractions e; © e; in the above bilinear models. The MGBM describes

the observed spectrum of a pixel y, as follows:

Vi = Ea;, + Z Z Q%kei ® e; +ny (221 0)

i=1 j=i
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where, (; ;1 € [0,1]. The abundance vector a; is also subject to ANC

and ASC.

Figure 2.6: Intimate model

The intimate model, as illustrated in Fig. 2.6, is another widely
adopted nonlinear mixing model used to model scenarios where end-
members are mixed at a scale smaller than the path of photons in the
mixture. The most effective methods for solving this model are those
proposed by Hapke in [44], due to their physically meaningful quanti-
ties. For further details on this model and its applications, please refer

to [45, 46].

2.3 Model-based unmixing approaches

As previously discussed in Sec. 2.1, the process of hyperspectral im-
age (HSI) unmixing typically involves the extraction of endmembers
and the estimation of their corresponding abundances. This has led
to the development of various model-based approaches in the litera-
ture. In this section, we conduct a literature review on these model-
based approaches. We begin by examining approaches that focus on
the estimation of endmembers [1,11,47-50]. We then present ap-
proaches that focus on the estimation of abundances [12,51]. Finally,
we conclude this section by introducing blind unmixing methods such
as non-negative matrix factorization (NMF) [16] and Entropic Descent

Archetypal Analysis (EDAA) [52], which simultaneously estimate both
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endmembers and abundances.

2.3.1 Endmember estimation methods

The process of endmember estimation in HSI unmixing typically con-
sists of two sub-steps: (1) determining the number of endmembers,
r, present in the HSI data, and (2) estimating the r distinct endmem-
ber signatures from the HSI data. In literature, it is often assumed
that the number of endmembers, r, is known. For further informa-
tion on methods for determining » from HSI data, please refer to [8].
In terms of endmember estimation methods, these can be classified
into two categories: geometry-based approaches and statistics-based
approaches. The categorization of different types of endmember esti-
mation algorithms is shown in Fig. 2.7.

Geometry-based endmember estimation algorithms are based on
the principle that Hyperspectral Imaging (HSI) data is embedded within
a simplex, with the vertices of the simplex representing the endmem-
bers to be estimated. This concept of simplex is illustrated in Fig. 2.8.
As such, the endmember estimation problem can be framed as iden-
tifying this simplex, which can be further divided into two categories:
pure-pixel and minimum-volume approaches. The former assumes the
presence of at least one pure pixel for each endmember in the HSI
data, as illustrated in the left of Fig. 2.9. A plethora of pure-pixel based
algorithms have been proposed in literature [8], which can be further
classified into two types: projection-based approaches and maximum-
volume based approaches. Projection-based approaches leverage the
idea that endmembers should always be the extreme points when the
HSI data is projected onto any subspace or direction. Representa-
tive projection-based algorithms include Pixel Purity Index (PPI) [47]
and Vertex Component Analysis (VCA) [11]. Maximum-volume based

approaches rely on the insight that the simplex with » HSI vectors as
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vertices should reach the maximum volume when those » HSI vectors
are endmembers. Representative maximum-volume based algorithms

include N-FINDER [48], simplex growing algorithm (SGA) [49], and se-

quential maximum angle convex cone (SMACC) [50].

€1

= conv(E)
=2-Simplex

€9

Figure 2.8: Simplex illustration. A 2-simplex S shown in shallow blue
color is the convex hull of E. The red circles represents the vertices of
simplex and corresponding endmembers. Orange circles denote the
HSI reflectance.

Figure 2.9: lllustration of (left) pure pixel approach; (middle) minimum-
volume approach; (right)statistics approach. Blue points are HSI data
and red point are endmembers.

The algorithms previously discussed are not suitable when there
are no pure pixels present in the HSI dataset. However, it is still pos-
sible to extract endmembers by finding the minimum simplex that fits
the HSI data, as long as there are at least » — 1 HSI spectral vectors

on each facet of the simplex. This concept is illustrated in the mid-
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dle of Fig. 2.9. The idea of searching for a minimum volume simplex,
first introduced by [53], has inspired numerous geometrically-based
extraction algorithms. The minimum-volume based algorithms can be

formulated using the following formula:
%ﬁjg; IY —EA|% 4 \V(E),s.,A > 0,AT1, =1,  (23.1)

Here, V(E) represents the volume of the simplex formed by the end-
member matrix. One possible definition of V' (E) is based on the as-
sumption that the data has been projected onto a subspace of dimen-
sion r, and that the columns of E within this subspace are affinely

independent [10]. This definition is given by

_ |det(E)]

V(E) o

(2.3.2)

Alternatively, the volume can be defined using a different approach
that involves shifting the data to the origin and then working in the
subspace of dimension »—1. In this case, the volume can be calculated

as follows:
vE) =t | N (2.3.3)
= et 3.
(r—1)! e - e

Different definitions of V(E) and optimization schemes can lead
to various types of algorithms, such as the iterative constrained end-
members (ICE) algorithm [54] and the minimum volume transform-
nonnegative matrix factorization (MVC-NMF) [15]. For more variants
of these ideas, please refer to [10].

The right of Fig. 2.9 illustrates another type of HSI data, where the
data is highly mixed and there are neither pure pixels nor spectral vec-
tors near the facet present. In such cases, pure-pixel and minimum-
volume based algorithms may not be effective, as the simplex found

by these methods is smaller than the true one. To address this issue,
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statistical-based algorithms have been proposed. These algorithms
infer statistical information from the HSI data, providing valuable in-
formation about the endmembers. Bayesian methods are particularly
popular in this field. One example of such an algorithm is the depen-
dent component analysis method (DECA) [55], which assumes that
the abundance vectors are drawn from a Dirichlet distribution and em-
ploys a generalized expectation maximization (GEM) algorithm to in-
fer the endmember signatures. For a more in-depth understanding of

statistical-based endmember estimation methods, please refer to [8].

2.3.2 Abundance estimation methods

After the estimation of endmember signatures, the HSI unmixing prob-
lem simplifies to an abundance estimation problem. This problem can
be broadly classified into two categories: (1) linear approaches, which
are based on the linear unmixing model, and (2) sparse approaches,
which assume that the endmembers are known a priori through the
use of a rich spectral library. We now provide a brief overview of these
methods.

The linear approaches aim to estimate the abundance vector a for
a mixed pixel in the linear model 2.2.1, given the observation y and the
endmember signature matrix E. This can be achieved by solving the

following fully constrained least square (FCLS) problem:
min ;Hy —Ea|; st,a>0,a’l, =1 (2.3.4)

While the non-negativity constraint (ANC) is relatively easy to deal
with, the sum-to-one constraint (ASC) is more challenging since it
results in a set of inequalities that can only be solved by numerical
methods. As a result, no closed-form solution can be derived for this

problem. [2] proposed to solve the FCLS problem by resorting to an
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iterative solver, which is commonly known as the FCLS solver.
Sparse-based approaches, which are inspired by popular sparse
regression algorithms [56, 57], assume that the endmember matrix is
known in the form of a rich spectral library. In this case, the abundance
estimation problem becomes a constrained sparse regression (CSR)

problem, as follows:
1 9
min §||y — Ea|;+\|aly st.,a>0 (2.3.5)

This problem has been solved by the renowned SunSAL algorithm [12]
using the alternating direction method of multipliers (ADMM) solver [58]

as follows:

altl = (BTE + uI) " (E"y + p (w/ + d))

w/ ! = max {0, soft (a/™' —d? \/u)} (2.3.6)

A = d — (alt! — witY)

where 1 is the ADMM free parameter. The operator Soft is the soft-
threshold operator given by, soft(z,0) = sign(x)(|x|—60);. Since its
introduction, a plethora of sparsity-induced unmixing algorithms has
been proposed, including CLSUNSAL [59], IRWSU [60], and TV-RSNMF [61].
These methods continue to be an active area of research in the field

of HSI unmixing.

2.3.3 Blind Unmixing methods

There are also methods that perform endmember estimation and abun-
dance estimation simultaneously, known as blind unmixing. This type
of problem has a natural connection to nonnegative blind source sep-
aration (nBSS) methods [62], which are unsupervised learning tech-
niques that extract nonnegative sources from mixed signals. One pop-

ular nBSS technique is nonnegative independent component analysis
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(nICA) [63], which has been applied to the HSI unmixing problem in
literature [64]. However, the success of nICA relies on the assump-
tion that the sources (endmembers in HSI) are mutually independent,
which is not always the case in HSI unmixing due to the sum-to-one
constraint on the abundance vectors.

One of the most widely-used and successful nBSS methods for HSI
unmixing is Nonnegative Matrix Factorization (NMF) [65]. This method
aims to decompose a nonnegative observations matrix into two non-
negative matrices, which are interpreted as the endmember signature
matrix and abundance matrix, respectively, in the context of HSI. One
common approach [15] to solving the NMF problem is by formulat-
ing an optimization problem that minimizes the Euclidean distance be-
tween the observations matrix Y and the product of endmember and

abundance matrices EA, as shown below:
1
%ngliHY ~EA|%, st,E>0,A>0A"1,=1, (2.3.7)

This type of method is demonstrated in Fig. 2.10. However, the objec-
tive function of NMF is non-convex, making the algorithm susceptible
to finding local optima. To overcome this limitation, various regulariza-
tions have been proposed to enhance the performance of NMF based

HSI unmixing methods.

Pixels T reshape T
Bands .. m— co x
HSI Endmember Abundance
reflectance matrix map

Figure 2.10: lllustration of NMF based unmixing framework.
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A significant number of NMF based unmixing methods have sought
to incorporate both spatial and spectral information through the imple-
mentation of additional constraints on endmembers and abundances.
As previously discussed in Sec. 2.3.1, endmembers should take the
form of a simplex that has the smallest volume among all simplices that
encompass the HSI data. This concept has led to the development of
the widely-used Minimum Volume Constrained NMF (MVC-NMF) ap-
proaches [15], which solves a constrained optimization problem, as

shown below:

1
min -||Y — EA|% + AJ(E)
EA 2 (2.3.8)
st,E>0A>0AT1, =1,

The penalty term J(E) is used to constrain the volume of the sim-
plex determined by the estimated endmembers. In MVC-NMF, the
endmembers’ dimensionality is first reduced by adopting the princi-
ple component analysis (PCA), which keeps the » — 1 most significant
principle components (PCs) out of p. The term J(E) is then formulated
as follows:

1T

1 r
J(E):mdet2( . ) (2.3.9)

where Ep is the endmember matrix after PCA. To solve the optimiza-
tion problem in Eq. (2.3.8), the alternating nonnegative least squares
method is used [15]. Subsequently, various MVC-NMF algorithms
have been extensively studied in literature [66—69] by incorporating
additional constraints and regularizers, such as Total Variation (TV).
Another way to enhance the performance of NMF-based HSI un-
mixing methods is to incorporate more flexibility that takes into account
more intricate structures and details. For instance, there can be a
substantial disparity in the number of pixels associated with different
endmembers. Weighted NMF methods [70] provide a way to account

for this information by introducing a weight matrix generated from the
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results of clustering. Other forms of generalizations of NMF-based
methods, such as nonnegative tensor factorization (NTF) which factors
a 3D structured tensor, or kernelized NMF that addresses nonlinear-
ities, are also available. For a comprehensive survey of NMF-based

HSI unmixing methods, it is recommended to refer to [71].

Figure 2.11: Visualisation of Archetypal Analysis, where observations
are represented by black dots, extreme points by green dots, and the
ground truth endmembers by red dots.

Recently, another widely used nBSS method, known as Archetypal
Analysis (AA) [72], has gained popularity in the field of HSI analysis.
This method is based on the concept that data is generated by a linear
combination of a small number of archetypes, which are the extreme
points of the data. In HSI unmixing, AA can be utilized to identify
the endmember signatures and their corresponding abundances by
assuming that the endmembers are the archetypes of the HSI data. In
particular, AA formulates the problem by constraining the endmembers
to be convex combinations of the pixels present in Y, which can be
expressed as E = YB, where B € R"*". The formulation of AA in HSI

unmixing can be expressed as an optimization problem as follows:

1
min = ||Y — YBA|%,
AB 2 (2.3.10)
st., A>0AT1,=1,B>0B"1,=1,
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This concept is illustrated in Fig. 2.11. The characteristic of AA, which
represents each endmember as a convex combination of a limited
number of pixels present in the HSI, offers a number of advantages.
Firstly, it provides improved interpretability when compared to tradi-
tional NMF. Additionally, it has been demonstrated that AA can deliver
estimations that are more robust to noise and spectral variability when
compared to pure pixel methods [52].

One of the pioneering works that employed AA for solving the HSI
unmixing problem is likely the study by [73]. They proposed a ker-
nelized version of AA, which increases the model’s flexibility but intro-
duces the bandwidth of the kernel function as an additional parameter.
In order to further mitigate the effects of noise and outliers, [74] pro-
posed a robust kernel archetypal analysis (RKADA) method for blind
hyperspectral unmixing. This method imposes a binary sparse con-
straint on the pixels’ contributions in the standard AA formulation. An-
other approach, as proposed by [75], is to increase the sparsity of the
abundances through an /¢; sparsity-constrained AA algorithm. How-
ever, this formulation may result in abundances that do not add up to
one, which negatively affects the physical interpretability of the unmix-
ing results. A recent study by [52] introduced the Entropic Descent
Archetypal Analysis (EDAA) for blind hyperspectral unmixing. EDAA

solves Eq. (2.3.10) by performing the alternating updates as follows:

At = softmax (log (A +n,BTY' (Y - YBAJ))
(2.3.11)

B/*! = softmax (log (BY) +n,Y" (Y — YBB’A) AT)

Here, log (A7) applies the logarithm function to each element of A/,
and the softmax function is applied column-wise on the matrix log (A7)+
n;BTY T (Y — YBAY). This method employs an entropic gradient de-
scent strategy and an ensembling mechanism to improve the unmix-

ing performance. The study demonstrates that EDAA performs better
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than traditional archetypal analysis algorithms and is robust to hyper-
parameter choices while maintaining a reasonable level of computa-
tional complexity.

In summary, model-based HSI unmixing methods have proven to
be successful in identifying endmember signatures and abundances.
However, these methods tend to be dependent on a range of assump-
tions and iterative optimization processes. Currently, there is no uni-
versal framework that can accommodate both linear and nonlinear un-

mixing scenarios.

2.4 Learning-based unmixing approaches

Recently, with the advancements in machine learning techniques, par-
ticularly deep neural networks (DNNs), a number of learning-based
approaches have been proposed for HSI unmixing tasks [19-23, 76].
These methods can generally be classified into two categories: super-

vised and unsupervised. We now give a brief review of these methods.

2.4.1 Supervised learning approaches

Supervised methods [24, 25, 76] involve the use of a labeled dataset
comprising N HSI reflectances and corresponding abundances, de-
noted as {y;, a; }Y,, for training a neural network f,. The model param-
eters, denoted by 6, are learned by minimizing the objective function
given by:

oLy 2 241
—ﬁgﬂfe(yi)—ai’b (2.4.1)

Once the model is trained, the model can be utilized for predicting the
abundances of new, previously unseen HSI reflectances y, which is
achieved by calculating a = fs(y). Fig. 2.12 provides an illustration
of this process using supervised unmixing networks. However, such

methods require the availability of true abundance data, which may
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not always be readily accessible.

T

NN
©» — Jo

Figure 2.12: Supervised unmixing network.

2.4.2 Unsupervised learning approaches

In contrast to supervised methods, unsupervised methods for HSI un-
mixing do not require labeled data, and instead, the learning algorithm
is designed to estimate both endmembers and abundances from the
HSI reflectances alone. These blind unmixing methods [27-33] often
employ an autoencoder network structure with a linear decoder, which
takes the HSI spectra y; as input and is trained to reconstruct the input
spectra. Specifically, assuming that the encoder f, has learnable pa-
rameters 6, and the decoder g, also has learnable parameters ¢, the

autoencoder operates as follows:

Encoder : &; = fo(y;) (2.4.2)

Decoder : §; = g4(&;)

Here, a; represents the bottleneck of the autoencoder, and y; repre-
sents the reconstructed HSI spectra. The decoder is typically a linear
operation given by g¢,4(a;) = ¢a,. Usually, the autoencoder is trained

on a dataset of N HSI observations {y;} , by minimizing the following
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objective:
1 N

Lig.gy = ON ;Hf’i - Yi||§ (2.4.3)
After training, the bottleneck of the autoencoder a; provides an es-
timation of the abundances, while the weights of the linear decoder ¢
give the endmember estimation. This is illustrated in Fig. 2.13. An ex-
ample of an unsupervised method is the Deep Autoencoder Network
(DAEN) [32]. This method utilizes the traditional Vertex Component
Analysis (VCA) algorithm to generate a set of pure endmember can-
didates, which are then used to train a stack of autoencoders. This
generates a good initialization for the parameters in the variational au-
toencoder, allowing for improved unmixing performance. In the work of
uDAS [29], a sparsity constraint is applied on the encoder and a mDA
denoising constraint is imposed on the neural network to enhance the
unmixing performance. Additionally, EndNet [31] incorporates an ad-
ditional layer using a projection metric in lieu of inner product in order
to improve unmixing results. The loss function used in this method
is composed of KullbackLeibler (KL) divergence, SAD similarity, and
a sparsity penalty on the estimates. To further enhance the unmixing
results, some methods [20,21] have introduced the use of adversarial
autoencoders, where the unmixing autoencoder is trained in an adver-

sarial manner using an additional discriminator.

Encoder Decoder

Figure 2.13: Unsupervised unmixing network.
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2.4.3 Model-aware learning approaches

Despite the advancements in machine learning techniques for HSI un-
mixing, there are still several challenges to be addressed. One major
issue is the lack of a systematic approach to designing network ar-
chitectures, particularly the encoder network. Additionally, neural net-
works often lack interpretability, making it difficult to incorporate prior
knowledge about the task into the design of the network.

Recently, algorithm unrolling or unfolding techniques [34, 35] have
emerged as a potential solution to design interpretable network struc-
tures for unmixing tasks. A seminal work in this area is by [35], which
aims to solve the sparse coding problem. Specifically, the problem is

to minimize the following objective function:
1 2
min [y — Wx|[3+ x| (2.4.4)

where y is the observation vector, W is an over-complete dictionary,
and x is a sparse code with as many coefficients as possible encour-
aged to be zero or small in magnitude. The Iterative Shrinkage and
Thresholding Algorithms (ISTA) [77] is a popular method for solving

this problem, which involves performing the following iterations:
j+1 | Lo
X7 = Soft | (T— ~W'W)x/ + ~WTy, A (2.4.5)
Ju It

where Soft is the soft-thresholding operator, I is the identity matrix,
and u is a free parameter.
By defining W, = I- . W"W and W. = W7, the above iterations

can be expressed as a single layer neural network:
x/ 1 = Soft (thj + W.y, )\) (2.4.6)

Here W, W, and )\ are learnable parameters and the layer involves
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matrix-vector multiplication, summation, and soft-thresholding (nonlin-
ear) operations, similar to a neural network. By cascading L such
layers together, an L-layer deep network can be interpreted as execut-
ing L iterations of ISTA. This is illustrated in Fig. 2.14. The resulting
network structure is interpretable and can leverage insights of the un-

derlying model into network construction.

L—Ti wio1twrw YW @
soft(- ;W,.u)J W, = lvslrLT :|-

T — W

DSed

Figure 2.14: lllustration of algorithm unrolling/unfolding techniques.

Building on this approach, [18, 26] have proposed using the ISTA
Algorithm to design unmixing networks, known as MNN-AE and MNN-
BU. These networks are constructed by converting each step in the
ISTA solver, which is used to solve a constrained sparsity linear regres-
sion unmixing problem, into a network operation. The network is then
formed by concatenating multiple iterations (or layers in network lan-
guage) of this operation. Similarly, [22] proposed an unmixing network
by unrolling an alternating optimization algorithm of a sparsity con-
strained nonnegative matrix factorization model. It has been demon-
strated in [78—80] that networks unfolded from iterative algorithms can

deliver state-of-the-art performance, surpassing existing methods.
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2.4.4 Challenges

Despite the recent advancements, it remains an active area of re-
search to investigate whether the performance can be further improved
by incorporating other advanced iterative solvers in algorithm unrolling
techniques. Additionally, the methods mentioned above are limited to
linear blind unmixing problems. To address nonlinear blind unmixing
problems, [19] have proposed a deep autoencoder which involves an
additive nonlinear mixture part. Likewise, a novel nonlinear autoen-
coder structure proposed by [23] combines a cross-product layer to
account for nonlinear mixing mechanisms. However, these methods
rely on an autoencoder architecture that assumes endmembers are
embedded in the decoder’s weights, which limits their flexibility to in-
corporate additional constraints or regularization on the endmembers
and may not handle complex unmixing models. Furthermore, most
of the current learning algorithms rely on autoencoder architectures
for addressing either linear or nonlinear unmixing problems and fall
short in effectively tackling both. Moreover, despite the success of
deep learning-based methods in unmixing problems, these methods
may not always produce physically meaningful results without proper
guidance [4]. More specifically, these methods have the potential to
generate arbitrary unmixing results wherein the retrieved reflectances
do not align with any authentic endmembers. To address this issue,
researchers have proposed methods that utilize existing algorithms
to extract endmembers, which are then used to guide the training of
an abundance estimation network. One such method is UnDIP [36],
which utilizes the simplex volume maximization algorithm (SiVM) [1]
to extract endmembers and uses them to guide the training of a deep
image prior-based network, as shown in Fig. 2.15. Another approach
is EGU-Net [4], which develops a two-stream deep network that learns

from endmembers extracted from HSI data using existing methods,
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and models nonlinear unmixing as general errors and spectral vari-
ability. Despite the advancements in the field, a major challenge in
training unmixing networks with guidance is that the performance is

often constrained by the quality of the guidance.
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Figure 2.15: lllustration of UnDIP techniques.
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2.5 Summary

In this Chapter, we provide a comprehensive overview of the hyper-
spectral image unmixing problem. We introduced the concept of un-
mixing and different types of mixing models, including linear and non-
linear models. We then reviewed traditional model-based unmixing ap-
proaches, including methods that focus on endmember estimation and
abundance estimation. Additionally, we also discussed fully blind un-
mixing methods. Lastly, we introduced recent developments in learning-
based unmixing approaches and highlighted the challenges that cur-
rent methods face. Overall, this Chapter serves as a foundation for the
subsequent chapters where we will delve deeper into the proposed

unmixing methods.
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Chapter 3

ADMM based unmixing

network

In this chapter, we present a neural network approach for abundance
estimation using a constrained sparse regression (CSR) formulation of
the unmixing problem. By unrolling the Alternating Direction Method of
Multipliers (ADMM) solver to the CSR objective, we construct a neural
network that can be trained using supervised learning techniques with
a new proposed composite loss function. Additionally, we propose an-
other neural network structure for blind unmixing that can be trained
using unsupervised learning techniques. In comparison with other un-
mixing architectures, our proposed neural networks have a structure
that is both lightweight and rich, characterized by a reduced number of

learnable parameters and an increased number of skip connections.

3.1 Problem formulation

In this chapter, we consider the HSI LMM model using the pixel-wise
formulation, as given in Eq. (2.2.1). We begin by formulating the HSI
unmixing problem using the CSR formulation. According to Eq. (2.3.5),
when the endmember matrix is available in the form of a spectral li-

brary [81], the recovered abundance vector for a pixel’s reflectance

71 of 206



3.1. Problem formulation 3. ADMM based unmixing network

tends to be sparse. To recover the abundances from the reflectance,

we adopt the CSR-based optimization problem [18], which is given by:
1 5
malniHy—Ea\|2+)\|]a|]1,s.t.,a2 0 (8.1.1)

where A > 0 is a regularization parameter that controls the sparsity of
solutions. It is worth mentioning that the ASC constraint is not imposed
in Eq. (3.1.1), because otherwise, it would reduce to the FCLS problem
as given in Eq. (2.3.4). Additionally, imposing ASC constraint along
with /; regularization would constrain the sparsity to be constant, which
is unnecessary when formulating a CSR problem [12].

The solution to the CSR optimization problem in Eqg. (3.1.1) can
be achieved through various solvers. One commonly used method is
the ADMM algorithm, which results in the well-known SunSAL algo-
rithm [12]. By introducing an auxiliary variable z and a dual variable
d, with the constraint a = z, the ADMM algorithm provides an iterative
scheme to compute the solution of the CSR problem in Eq. (3.1.1).

The specific steps are as follows:

a’t! = (ETE + puI)"Y(Ely + u(z’ + d7)) (3.1.2)

7/ = max (soft (aj+1 —d’, /\> ,0) (3.1.3)
i

4t = @i — (aj+1 _ Zj+1> (3.1.4)

where a’ is the value of variable a at j iteration (same for z/, d’)
and . > 0 is a parameter that is usually chosen to be an upper bound
to the largest eigenvalue of ETE. The operator Soft in Eq. (3.1.3) is

the soft-threshold operator given by, soft(z,8) = sign(z)(|x|—6).

72 of 206



3.2. Abundance Estimation Networl8. ADMM based unmixing network

3.2 Abundance Estimation Network

We present the construction of our ADMM-based network structure for
abundance estimation, followed by the introduction of the initialisation

and training techniques for this proposed network.

3.2.1 Unfolding ADMM into a Neural Network Layer

The proposed network’s layer operations are derived from unrolling
the three separate iterative operations of the ADMM solver as outlined
in Eq. (8.1.2), Eq. (3.1.3), and Eq. (3.1.4), leading to three separate

components.

A-Update Component

The A-update component at the (j + 1)*" layer of the neural network is
derived by unfolding Eq. (3.1.2). Specifically, the (j + 1) iteration of

a’*! can be expressed as a function of the ;" estimates z/, d/, and y

as follows:
a/t' = f4(z’,d’,y; W, B)
(3.2.1)
=Wy + B(z/ +d)
where
W = (E'E + puI)'E"
(3.2.2)

B=EE+u) 'u

To enhance flexibility, we will employ learnable parameters W/t ¢
R™? and B+t € R™" in this (j + 1) layer, replacing the fixed param-
eters W and B. This approach allows for the parameters W’*! and
B’*! to deviate from the original W and B in Eq. (3.1.1) to better align
with the data’s characteristics.

It's worth mentioning that the A-update component can also be in-
terpreted as a typical linear layer in a neural network [82]. The struc-

ture of the A-update component in a neural network layer is depicted
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Figure 3.1: A-update component structure.

in Fig. 3.1.

Z-Update Component

The Z-update component of the (j + 1) neural network layer is ob-
tained by unfolding Eq. (3.1.3). Specifically, the (j + 1) iteration z/*!
is calculated from the (j + 1) estimate a’*! and the ;' estimate d’
using a soft-thresholding operation with parameter \/u followed by a
max operation. We propose re-writing Eq. (3.1.3) as follows:
gt — fz(aj-H?dj;gj—f—l)
(3.2.3)
= max (soft (ajH —d’, 9j+1> ,O)

Where ¢! € R is a learnable parameter that varies between layers.
This parameter ¢’*! serves as a replacement for the parameter % of-
fering the advantage of being able to be learned from data, allowing for

better adaptation to the characteristics of a specific unmixing problem.

It is worth noting that the operation performed by the Z-update com-

ponent, as illustrated in Fig. 3.2, can also be expressed as:

2t = ReLU(a’™! — d/ — ¢7+'1) (3.2.4)
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y=s0ft(x,0) y=max(soft(x, §),0) y=ReLU(x)

Figure 3.2: soft function vs. maxsoft function vs. ReLU function.

where ReLU(-) is a component-wise rectified linear unit operation [82].
This means that the Z-update component — which also ensures the
satisfaction of the ANC constraint — acts as a ReLU operation in a
standard neural network. The Z-update component of a neural net-
work layer is illustrated in Fig. 3.3.

— g T —{ReLU 2

Z-Update

Figure 3.3: Z-update component structure.

D-Update Component

—(O—n" d

D-Update

O

Figure 3.4: D-update component structure.

Finally, the D-Update Component of the (j + 1) neural network
layer is derived from Eq. (3.1.4). Specifically, the (j+1)"" iterate d’*! is

calculated as the difference between the ;' iterate d’ and the (;j + 1)
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iterates a’*! and z’*!. However, we suggest re-expressing Eq. (3.1.4)
as:
dj+1 — fD(aj+17 Zj+1, dj’ ,r]j—l—l)

(3.2.5)

=d - nj—l—l(aj—i-l o Zj+1)

where n’*! is a learnable parameter, which functions as a step-size
that can be adjusted for better adaptation to the unmixing problem.
The D-Update Component of a neural network layer is illustrated in

Fig. 3.4.

Overall Neural Network Layer

By combining the A-update, Z-update, and D-update components, the

structure of a neural network layer is formed, as shown in Fig. 3.5.

l j+1 l jr1
A-Update altl Z-Update ZJ D-Update d

d,] P> fa(zd, dly; fZ(aj+17 dj; fo(altt, 2+, &; >
W”l,Bj“) 0j+1) n;+l)

@ -

P

A 4

G+1)" layer

i1 541 ’ i3 i1 11 i1 1
dJ aZJ - fAD]\"T]\»T(yadJaZJ7WJ 7BJ 79] ?n] )

Figure 3.5: The neural network layer derived from the ADMM solver,
replicating an iteration of the ADMM algorithm. Upon receiving inputs
of y,d’,z/, the layer executes the process defined in Eq. (3.2.6) and
generates outputs of d’*1, z/ 1. The layer encompasses learnable pa-
rameters, @71 = {Witl Bitl gitl pitil,

Corresponding to one iteration of the ADMM algorithm, each net-

work layer performs operations as follows:

dj+1a Zj+1 = fADMM(Y7 dJa ZJ; WjJrlv Bj+17 0j+17 anrl) (326)

where, fapum performs Eq. (3.2.1), Eq. (3.2.3) and Eq. (3.2.5) con-
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secutively. However, the network layers have learnable parameters
@/ = {witl B+l gitl i1l while each iteration of the ADMM al-
gorithm has fixed parameters {A, u, A}. This learnable parameteriza-
tion allows for a more compact network architecture, since fewer layers
are needed to achieve the desired performance compared to the num-
ber of iterations in the ADMM algorithm.

In Fig. 3.5, there are four shortcuts: one from d’ to both Z-update
and D-update components, one from a’*! to the D-update component,
one from z/*! to the A-update component of the next layer, and one
from the input y. This is in contrast to conventional neural networks,
where the output of each component is only connected to the next
component and the network input y is usually only connected to the

first layer.

3.2.2 Abundance Estimation Network Structure

Previously, we proposed that each iteration of the ADMM algorithm can
be viewed as a neural network layer and that the ADMM model pa-
rameters {A, u, A} can be replaced with learnable ones in each layer.
As a result, two different feed-forward neural networks can be con-
structed by concatenating J iteration blocks, imitating .J iterations of
the ADMM algorithm. While learned parameters have the potential to
capture complex relationships and patterns in the data, this does not
always lead to improved unmixing outcomes because it also introduces
the risk of overfitting.

Our first network, referred to as UAENet-, is formed by stacking J
iteration blocks, each consisting of A-Update, Z-Update, and D-Update
components. The learnable parameters are shared across all layers of
the network, i.e., ® = {W’' . B',¢' '} for j € [1, J]. A visualization of a
J-layer UAENet-1 can be found in Fig. 3.6a.

Our second network, designated as UAENet-Il, is also constructed
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by concatenating J iteration blocks. However, the learnable param-
eters are specific to each layer, rather than being shared across the
network, i.e., ® = {W/ B’ ¢/ '} ,Vj € [1, J]. UAENet-Il exhibits in-
creased capacity and flexibility, which may lead to improved unmixing
results compared to UAENet-1. The architecture of a J-layer UAENet-II
is illustrated in Fig. 3.6b.

In both of our networks (UAENet-1 and UAENet-11), the input to the
network is the HSI spectrum y and the accompanying pseudo inputs
z° and d°, both of which are set to 0 as per the standard approach
in ADMM algorithms. These inputs are processed through J network
layers with the set of learnable parameters ® = {©7}7_,. The network
output is derived from the Z-Update component in the last iteration
block as this component ensures compliance with the ANC constraint.
We then further normalize the output using /; normalization to satisfy
the ASC constraint. Denote the unnormalized network output as z, the

component-wise calculation of the normalized output a is given by:

(3.2.7)

Since z is the output of the ReLU operator, it is guaranteed to be non-
negative. This normalization step is added as the ASC constraint is

not directly incorporated into the optimization formulation.

3.2.3 Network Initialization and Training strategies
Initialization Approach

Given the interpretable parameterization, the neural networks are trained
using warm initialization instead of random initialization to accelerate
the training process. Specifically, the parameters of the network are ini-
tialized by utilizing the original parameters associated with the ADMM

algorithms as follows:
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« The parameters W’ and B’ for the A-update component of each
layer are initialized according to Eq. (3.2.2). The endmember
signature matrix E can be either selected from an appropriate
spectral library or estimated using existing algorithms such as
VCA [11]. Any relevant candidate signatures can then be con-

catenated with E.

« The parameter ¢’ for the Z-update component of each layer is
initialised using A/u, where X and . are parameters associated

with the ADMM algorithm.

- Finally, the parameter »’ associated with the D-update compo-
nent of each layer has no direct equivalent in the ADMM algo-

rithm. Nonetheless, it is set to one for initialisation purposes.

It is worth noting that with this initialization strategy, a .J-layer UAENet

is equivalent to J iterations of the ADMM algorithm.

Training Approach

The proposed neural networks are trained with a supervised learning
approach using a training set, D = {y;,a;}~,, of N reflectance spec-
tra, y;, and their corresponding abundances, a;. A new composite loss
function, instead of the commonly used mean-squared error (MSE)
loss function [18], is proposed to train the networks. This composite

loss function is defined as:

L@ = Q7 - Ll + Qo - L2 + Qs - L3 (328)

where a1, as, and az are hyper-parameters that control the contribution
of each component, Ly, Ly, and L3, to the loss function.

The first component of the loss function incorporates the well-known
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MSE as follows:

L, = MSE({a;,a;},)

2]1[ > la—aiy)ll (3.2.9)

{y%ai}eD

Here y; is the i*" reflectance spectrum in the training set, a; is the
corresponding ‘" abundance, and a;(y;) represents the network’s es-
timate of a; given y;. This loss function is often utilised for training
neural networks for unmixing purposes [26].

The second component of the loss function is derived from the

abundance angle distance (AAD) [14,15, 25,29, 83], as follows:

L, = AAD({a;,a:}Y )

. cos_1< a; ai(y:) ) (3:2.10)

{yi,a;}eD llai]2]|ai(yi) |2

The third component of the loss function originates from the abun-
dance information divergence (AID) [15,29] and is formulated as fol-

lows:

Ly = AID({a;, a:}Y )
-+ Y KI(ajay) +KL(a(y)a)  @211)
N i|A\Yi 1\J 1 7’
{yi,ai}eD

where K L(x|x) calculates the Kullback — Leibler divergence between

two probabilities x and x as follows:

KLx%) = Y <xm log (%)) (3.2.12)

m=1 Lm

It's important to note that the second and third components of the loss
function serve as additional metrics for measuring the discrepancy be-
tween the recovered abundance and the true abundance.

We introduce two additional components to the loss function for the
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following reasons: (1) The MSE loss implicitly assumes [84] that the
abundance estimates generated by the neural network follow a Gaus-
sian distribution, which is not appropriate given that abundance vectors
are subject to both ANC and ASC constraints. In contrast, the AAD
metric, which measures the angle between vectors, does not make
this assumption. (2) Given the ANC and ASC constraints, abundance
vectors can be considered to have a probabilistic interpretation. The
KL divergence is commonly used to measure the distance between
two probability distributions, such as two abundance vectors. The AID
metric is @ symmetric version of the KL divergence that can also be
used to quantify the difference between two abundance vectors. In
prior research [27, 31], similar spectral information divergence (SID)
and spectral angle distance (SAD) losses have been used to assess
hyperspectral image reflectance reconstruction performance. How-
ever, we opt for a more comprehensive combination of loss functions
to better capture abundance estimation performance. The results of
our experiments demonstrate that this more robust combination leads

to improved performance.

Parameter Update Rule

The parameters of the proposed networks, UAENet-I and UAENet-Il,
are learned by minimizing the loss function Leg defined in Eq. (3.2.8)
using the stochastic gradient descent algorithm ADAM [85]. The hyper-
parameters are optimized via cross-validation techniques, resulting in
a; = 1.0, ay = 1077, and a3 = 1075, The stochastic gradient algorithm

updates the learnable parameters © as follows:

dLe,,
— @ — | 2ete 2.1
Gnew @old la@old (3 3)

where [ is the learning rate. The gradient of each learnable parameter

in ® is computed using the back-propagation algorithm [82]. The for-
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ward computation of the J-layer network progresses from the input to
the output, following the pathy — ©! — ... - ©® — ... - @/ — a.
The back-propagation algorithm calculates the gradient for the param-

eters in each layer in reverse order as follows:

dLle 0OLe 0a 0eJt1
00  da 007 0O

,j=1-- J—=1 (3.2.14)

For example, the gradient for parameter 67 in the last layer can be

calculated as follows:

dLe 0JLe 0Oa
007 — 0a 067 (3.2.15)
where, according to Eq. (3.2.8) and Eq. (3.2.3),
dLe 0L, 0Lsy 0L3
94 = Ja +a2 a —1—61/3 94 (3216)
da _ 0 J qJ-1.pnJ

It is noteworthy that the right-hand side of Eq. (3.2.17) is represented
by f7 instead of f4 as the network output a is derived from the last
layer's Z-Update component. The gradient for the other parameters
can be calculated in a similar fashion.

The stochastic gradient algorithm will continue until predetermined
termination conditions are met. Upon completion of training, the net-
work is capable of efficiently estimating the abundance vector for a new

HSI spectrum with a single forward computation.

3.3 Blind unmixing Network

We can also construct a neural network that can estimate both end-
members and their abundances from HSI reflectance data through un-

supervised training.
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3.3.1 Blind Unmixing Network Structure

Our ADMM-based blind unmixing network draws inspiration from the
previously proposed abundance estimation network. Specifically, in
line with Eq. (2.2.1), the network architecture is an extension of the
UAENet by incorporating an additional linear layer, resulting in the re-
construction of the original HSI spectrum through the estimation of the

abundances, as outlined below:

v = Ea (3.3.1)

where a represents the estimated abundance by UAENet, and y repre-
sents the reconstructed reflectance spectrum. The matrix E, which is
the weight of the additional linear layer, models the endmember signa-
tures and must be non-negative due to physical constraints. It is worth
noting that this auto-encoder-like structure has also been utilized in
methods such as uDAS [29] and MNN-BU [18]. In contrast to uDAS,
which employs a traditional auto-encoder with a black-box encoder,
and MNN-BU, which utilizes an auto-encoder with an ISTA-based en-
coder, our network originates from unfolding the ADMM algorithm.
Two separate blind unmixing networks can be constructed in cor-
respondence with the prior abundance estimation networks. The net-
work is referred to as UBUNet-I if the parameters are shared across
its layers, and as UBUNet-Il if the parameters are not shared where
the acronym BU stands for blind unmixing. The structure of a J-layer

UBUNet is illustrated in Fig. 3.7.

3.3.2 Network Initialization and Training strategies
Initialization Approach

The neural networks are initialised using warm initialization instead of

random initialization for the parameters. The parameters related to
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3.3. Blind unmixing Network
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the A-update, Z-update and D-update component in each layer of the
UBUNet are initialized using the same method employed for initializing
the corresponding parameters in the UAENet. Conversely, the addi-
tional decoding layer in the UBUNet is initialized to correspond to an
estimate of the endmember signature matrix, which can be acquired

through the process described in Sec. 3.2.3.

Training Approach

The proposed networks, similar to well-known auto-encoders, can be
trained in an unsupervised manner. Given access to a training set
D = {y;}}X, consisting of N reflectance spectra y;, the network is

trained by minimising the loss function as follows:

- 1 .
Lo = MSE({y:,yi}iL1) = v 2 lyi—willz (3.3.2)

{y:}eD

where y; is defined in Eq. (3.3.1). Note that this loss function is simpler
than the previous one because the lack of abundance in the training
set prohibits the use of either AAD or AID.

After training, the UBUNet will output a reconstruction of reflectance
spectra y;. In line with Eq. (3.3.1), the UBUNet is built by combining
UAENet and a linear decoder layer with parameter E, hence ¥, can be

represented as:

yi =Efap(y:) (3.3.3)

where far(y;) is the output of UAENet and represents the estimated
abundance for the reflectance spectra y;, i.e. a; = far(y;). The pa-

rameter E is the estimated endmember matrix.

Parameter Update Rule

The parameters of the network are optimized using the stochastic gra-

dient descent algorithm ADAM [85]. The gradients for each parameter
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are computed through the back-propagation algorithm. Specifically,
the gradient of the loss function with respect to the decoder parame-

ters E and the encoder output &, are expressed as follows:

OLe 2 . B
OE N 3%p
oL D o
a;) = B (Ea; - y)) (3.3.5)

The remaining gradients are calculated in the same manner as for
UAENet. It is important to note that during each update, the decoder

parameter E is constrained to be non-negative, consistent with physi-

cal constraints.

3.4 Network Structure/Complexity Analysis

In this section, we will examine network complexity from both structural

and parametric perspectives.

3.4.1 Network Structure

It is noteworthy to compare the structure of the ADMM-based layer
with other layers used in networks that solve the unmixing problem. As
shown in Fig. 3.8, we compare three network structures: (1) a typical
ResNet [86] known for its improved performance through skip connec-
tions, (2) a network layer derived from solving the CSR problem using
the ISTA solver [26], and (3) a network layer derived from solving the
CSR problem using the proposed ADMM method. The ADMM-based
layer has significantly more shortcuts and skip connections than the
competing layers, as ResNet only skip-connect adjacent operations
and the ISTA-based layer includes only shortcuts from the input. This
advantage of the ADMM-based layer is expected to lead to better un-

mixing results, as previous research has shown that rich connections
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improve neural network performance [87-90].
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Figure 3.8: Comparison of layer structures of various networks. (a)
ResNet layer structure, which introduces shortcuts between adjacent
operations. (b) ISTA based layer structure, which includes skipping
connections only from the input. (c) Our ADMM based layer structure,
which contains both types of connections.

3.4.2 Network Complexity

It is also worthwhile to compare the number of learnable parameters in
the proposed UAENet-1 & Il with existing state-of-the-art architectures.
The number of parameters serves as an indicator of network complex-
ity. As shown in [18], unfold networks generally have fewer parameters
compared to conventional networks. Here, we briefly compare our pro-

posed UAENet with other networks derived from unfolding ISTA [18].

Table 3.1: Number of learnable parameters: Abundance estimation

method MNN-AE-1 MNN-AE-2 UAENet-l UAENet-lI
i 13x10° 27x10° 13x10% 2.7 x 103

Table 3.2: Number of learnable parameters: Blind Unmixing

method MNN-BU-1 MNN-BU-2  UBUNet-I

f 2.7 x 103 5.4 x 103 2.7 x 10?
method UBUNet-lI unDIP EGU-Net-pw
# 54x10° 1.3 x 10° 1.9 x 10°
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In UAENet-1, where parameters are shared across layers, the to-
tal number of parameters is (r? + rp + 2), where r? corresponds to
B’, rp corresponds to W', and the remaining parameters relate to the
scalars ¢ and /. In UAENet-1l, where parameters are specific to each
layer, there are (r* + rp + 2).J learnable parameters, with .J being the
number of iteration blocks/layers in the network. In comparison, in
networks derived from unfolding ISTA such as MNN-AE-1 (parameters
shared) and MNN-AE-2 (parameters specific), the number of param-
eters is (r* + rp + 1) and (r* + rp + 1)J, respectively. The number
of parameters for various abundance estimation and blind unmixing
networks are reported in Table 3.1 and Table 3.2, respectively.

In conclusion, the proposed network has fewer parameters than
most state-of-art unmixing networks such as UnDIP and EGU-Net.
This lighter model is less likely to overfit [84] and is expected to out-

perform competing networks.

3.5 Experiments

We now assess the efficacy of our proposed methods UAENet and
UBUNet by comparing them with some of the state-of-the-art unmixing

techniques.

3.5.1 Performance Metrics

To evaluate the performance of different algorithms, we use commonly
accepted metrics from the literature, such as the root mean square
error (RMSE) and abundance angle distance (AAD) [15], between the
true abundance vector a,, for the £ pixel and its estimated value a,.

These metrics are given by:

RMSEk:\lZ alk—azk (351)
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AAD, = 180 cos ! (al{élf) (3.5.2)
m [EHPYERE
These metrics are then averaged over all pixels to obtain the final
scalar values.
For endmember estimation, we use the Spectral Angle Distance
(SAD) between a true endmember signature e; and its estimated value

é; to measure dissimilarity. SAD is defined as:

Ts.
54D, = 180 os (“) (3.5.3)
T

lleill2]| ]2

This metric is then averaged over all endmembers to obtain the final

scalar value.

3.5.2 Data

To evaluate the performance of various unmixing algorithms, we em-
ployed the HSI dataset synthesis procedure as outlined in [18] for as-
sessing the efficacy of linear unmixing algorithms. The procedure in-

volves the following steps:

! —— Chilorite HS179.3B
0.9 —— Carnallite NMNH98011
0.8 Brucite HS247.3B
Axinite HS342.3B
Ammonio-Jarosite SCF-NHJ
Almandine WS478

Reflectance
=)
9

0 50 100 150 200
Channels

Figure 3.9: Endmember signatures for synthetic data.

* Endmember generation. Endmembers are selected from the
USGS spectral library (splib06) [81], which contains spectral re-
flectance values for different minerals over 224 channels. Six
spectral signatures are randomly selected and form a 224 x 6

endmember matrix, as shown in Fig. 3.9.
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« Abundance generation. A synthetic image of size a? x a? pixels is
divided into a? disjoint patches of size a x a pixels. Two endmem-
bers are randomly selected for all pixels of a patch and assigned
with fractions vy and 1 — v, while the remaining four endmembers
are assigned with a value of 0. The abundance map is then con-
volved with a Gaussian filter of size (a+1) x (a+ 1) with variance
2, followed by a pixel-wise re-scaling to meet the ASC constraint.

In this thesis, we set a« = 10 and v = 0.8.

* Mixing process. We generate synthetic data for linear mixing

models by following the linear model in Eq. (2.2.2).

* Noise contamination. Finally, we add additive white Gaussian
noise (AWGN) to the generated HSI data. The signal-to-noise ra-
tio (SNR) is defined as SN R = 10log,, (E[x"x]/E[n"n]), where
x represents the original, noise-free HSI data, and n is the added

noise.

3.5.3 Experiments setup

We now present the efficacy of UAENet and UBUNet for linear abun-
dance estimation and linear blind unmixing tasks, respectively. We
compare our UAENet-1 and UAENet-1l approaches with the unfolding-
based learning algorithms MNN-AE-1 and MNN-AE-2 [18] for the task
of abundance estimation. The experiments, unless otherwise speci-
fied, use the default setup where the synthetic HSI dataset is contami-
nated with AWGN noise with an SNR of 15 dB. The network is trained
using a training set comprised of 1000 randomly selected pixels from
the synthetic HSI dataset, with the remaining pixels reserved for test-
ing. The hyperparameters a;, ae, a3 in Equation (3.2.8) are determined
through experimentation on the training dataset. The reported perfor-

mance is based on the evaluation of the test dataset. The networks,
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UAENet and MNN-AE, consist of two layers (iteration blocks), as we
have found that additional layers do not lead to significant performance
improvements [18]. We train the networks using the Adam optimizer
with a learning rate of 1e — 4, a batch size of 64, and 500 epochs.

In the blind unmixing scenario, we evaluate our proposed unsu-
pervised UBUNet against several state-of-the-art learning-based blind
unmixing algorithms, including MNN-BU [18], UnDIP [36], and EGU-
Net-pw [4]. In this experiment, by default, the synthetic HSI dataset is
contaminated with AWGN noise of an SNR of 25 dB. The network is
trained and evaluated on the entire dataset, as it is an unsupervised
learning algorithm. The UBUNet and MNN-BU models consist of two
layers (iteration blocks) followed by a linear (decoding) layer and are
trained using the Adam optimizer with a learning rate of 1e — 4, batch
size of 64, and 500 epochs.

In our proposed methods, we adopt the training strategies, initial-
ization strategies, and hyper-parameter settings that have been previ-
ously reported. On the other hand, the competing methods employ the

default hyper-parameter settings as outlined in their original papers.

3.5.4 Impact of the proposed composite loss

In this experiment, we assess the effect of the proposed composite
loss function Eq. (3.2.8) on the abundance estimation task. The pro-
posed composite loss function is compared with other loss function
combinations, such as MSE+AAD, MSE+AID, and AAD+AID, to high-
light the improvement it brings. We largely follow the default experi-
mental settings, except that the number of training data is set to 256.
The abundance RMSE metric as a function of training epoch is pre-
sented in Fig. 3.10. Although similar trends are observed for other
metrics, such as the mean absolute error (MAE), we specifically re-

port the results using RMSE to maintain consistency with the other
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comparative analyses presented in this study. It can be observed that
for both network structures, the new composite loss function delivers
better and more stable results. This is due to the fact that the MSE
loss function has an implicit assumption [84] of a Gaussian distribu-
tion for the estimated abundance, which is inconsistent with ASC and
ANC constraints. In contrast, the proposed new loss function reduces
the impact of such assumptions. It is worth noting that with sufficient
training duration, alternative combinations of loss functions may also

achieve comparable performance to the proposed approach.

0.07 —+— UAENet-| with MSE —+— UAENet-Il with MSE
UAENet-1 with new loss 0.075 - UAENet-Il with new loss |7
—* UAENet-| with MSE+AAD -* UAENet-Il with MSE+AAD

UAENet-1 with MSE+AID UAENet-Il with MSE+AID
0.085 -+ UAENet-| with AAD+AID || 0.07 -+ UAENet-Il with AAD+AID
w w
5} ® 0.065 -
S 0.06% / =
o o
Iy
" N
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___________________ _ R
0.055 S s Sl 3 -—% ST
itk g R T == =¥
0.055
0.05 | ! | | | |
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Figure 3.10: The impact of different composite loss on abundance es-
timation performance. (a) UAENet-I. (b) UAENet-II.

3.5.5 Impact of number of layers

In this experiment, we assess the effect of the number of layers on the
abundance estimation performance of various approaches. We use
the default experimental setup previously described, with the excep-
tion of varying the number of layers from 1 to 7. The performance of
the approaches, as measured by the RMSE metric, is presented in
Fig. 3.11 as a function of the number of layers. It is evident that for
an unfolding-based unmixing network, the number of layers does not
significantly affect the final performance, unlike a conventional neural
network that usually benefits from a deeper structure [82]. This dif-

ference can be attributed to the strong inductive bias inherent in the
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Figure 3.11: The impact of layers on abundance estimation perfor-
mance.

unfolding network architecture, allowing for a strong performance to
be achieved with only a small number of layers. Thus, we choose to

use 2 layers in our subsequent experiments.

3.5.6 Impact of epochs

In this study, we evaluate the convergence performance of our pro-
posed methods in comparison to other competing methods. The abun-
dance estimation case is evaluated by varying the number of training
epochs from 0 to 500, while the blind unmixing case is evaluated by
setting the number of epochs to range from 0 to 1000. In Fig. 3.12a, the
abundance estimation performance of UAENet and MNN-AE is pre-
sented as a function of epoch. Fig. 3.12b and Fig. 3.12¢c show the
blind unmixing performance vs. the number of epochs.

Our proposed methods show faster convergence compared to MNN-
AE and MNN-BU. Specifically, in the abundance estimation case, UAENet
converges in around 100 training epochs, while MNN-AE networks

take 300 training epochs to converge. In the blind unmixing case,
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Figure 3.12: The impact of training epochs on the performance. (a)
Abundance estimation case: RMSE versus epochs. (b) Blind unmix-
ing case: Abundance RMSE versus epochs. (c) Blind unmixing case:
Endmember SAD versus epochs.

95 of 206



3.5. Experiments 3. ADMM based unmixing network

UBUNet achieves impressive performance at around 200 epochs, while
MNN-BU needs around 600 epochs. We attribute this to the faster
convergence of ADMM-based solvers compared to ISTA-based ones
and the more complex weighted loss function adopted in our learn-
ing algorithms that promotes additional dissimilarity. It is worth noting
that prior to training, at epoch 0, the proposed ADMM-based unmix-
ing network has an RMSE of approximately 0.2, while the RMSE of
the ISTA-based unmixing networks MNN-AE and MNN-BU is around
0.25, highlighting the superiority of the proposed ADMM-based un-
mixing network architecture. Although the state-of-the-art UnDIP and
EGU-Net achieve a similar convergence speed, our proposed blind
unmixing networks show better unmixing performance. Particularly, in
terms of SAD, our network achieves 2.5 while both UnDIP and EGU-
Net have a value of 5.0, resulting in 2X better performance than the
state-of-the-art methods. This improvement in performance is a result
of the fact that UnDIP and EGU-Net depend on endmember extraction

algorithms for guidance, limiting their overall performance.

3.5.7 Impact of training size

We evaluate the performance of the various methods in relation to the
number of training data points. For both abundance estimation and
blind unmixing, we use a training set composed of randomly selected
pixels (signatures) ranging from 256 to 4096, while maintaining the
default settings for other experimental conditions.

The performance of abundance estimation and endmember esti-
mation vs. training size are presented in Fig. 3.13. Our proposed meth-
ods exhibit superior performance compared to competing methods
when the size of the training dataset is small. Specifically, for the abun-
dance estimation scenario, UAENet outperforms MNN-AE when the

size of the training dataset is as low as 256, which may be attributed to
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Figure 3.13: The impact of train size on the performance. (a) Abun-
dance estimation case: RMSE. (b)Blind unmixing case: RMSE. (c)
Blind unmixing case: SAD in degree.

the more complex structure in the ADMM-based network compared to

ISTA-based networks and the more complex loss function. In the blind
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unmixing scenario with a small training dataset, UBUNet also demon-
strates superior performance in terms of both abundance estimation
(RMSE) and endmember estimation (SAD). As expected, the perfor-
mance of most networks improves with an increase in the training set
size.

Nevertheless, state-of-the-art algorithms such as UnDIP and EGU-
Net generally have poorer unmixing performance. For instance, the
SAD for UnDIP and EGU-Net is approximately 4.0, while the SAD for
the proposed method is around 2.0. This is due to the fact that UnDIP
and EGU-Net are reliant on the guidance provided by existing end-

member extraction algorithms, thereby limiting their performance.

3.6 Summary

We have introduced new hyperspectral unmixing networks based on
unfolding techniques. By taking the traditional constrained sparse re-
gression approach to linear unmixing, we demonstrate how the ADMM
solver can be converted to a neural network architecture with inter-
pretable learning modules that have a similar counterpart in machine
learning. Our approach unifies the benefits of both model-based and
learning-based unmixing methods and can be trained in a supervised
or unsupervised manner with newly proposed weighted loss functions.
Additionally, the proposed neural network architecture has a rich struc-
ture, including skipping connections and residual blocks, and a small
number of learnable parameters, leading to superior performance in
image analysis and processing tasks. The effectiveness of the pro-
posed methods is further supported by the experimental results. Al-
though the technique may yield unmixing outcomes, there is no guar-
antee of their physical significance. Furthermore, this approach ex-

hibits inadequacy in addressing complex scenarios involving nonlinear
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mixing effects.
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Chapter 4

Blind unmixing using double

deep image prior

The unmixing network described in Chapter 3 has an efficient and in-
terpretable design, but it cannot always ensure physically plausible
unmixing results. Additionally, it lacks the capability to tackle nonlin-
ear unmixing problems. To address these limitations, we present a
general unsupervised framework that can handle both linear and non-
linear blind unmixing scenarios, based on the Deep-Image-Prior (DIP)
technique. To obtain meaningful unmixing results, we also propose a
composite loss function that can be used in both linear and nonlinear
unmixing scenarios. We now present the proposed general framework
for linear and nonlinear blind hyperspectral unmixing tasks using dou-

ble deep image prior (BUDDIP).

4.1 Problem Formulation

In this chapter, we employ the matrix formulation for solving the hy-
perspectral image (HSI) unmixing problem as described in Eq. (2.2.2)
and Eq. (2.2.4) for linear and nonlinear cases, respectively. Our discus-
sion begins by focusing on the linear case, while the nonlinear case will

be addressed naturally as we develop BUDDIP. The objective of blind
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linear unmixing is to estimate the endmembers E and abundances A
based solely on HSI reflectances Y. A commonly used approach is to

minimize the following equation [91]:

R 1

E,A = argmin —||[Y — EA|3+R(A)
EA 2 (4.1.1)

st,E>0,A>0A"T1,=1,

where R(A) represents a regularization term that depends on the abun-
dance matrix A, such as total variation (TV) [91]. The selection of R
is often influenced by prior knowledge of the task. The optimisation
problem Eq. (4.1.1) is usually solved using the multiplicative update
rule [14] or a two-stage cyclic descent method [91], alternating be-

tween optimizing A for fixed E and vice versa.

4.2 BUDDIP

The proposed BUDDIP network is a self-supervised end-to-end net-
work comprised of three modules: EDIP, ADIP, and MM, as illustrated
in Fig. 4.1(a). EDIP is dedicated to determining endmember estimates,
while ADIP focuses on estimating abundances. Upon obtaining the
endmember and abundance estimates, the outputs of both EDIP and
ADIP, E and A, are integrated into the MM module to generate a re-
constructed hyperspectral spectrum, Y.

The proposed BUDDIP is a versatile unmixing technique that offers
the option to choose a mixing module (MM). If MM chose to be LMM,
it becomes linear BUDDIP (L-BUDDIP) and can effectively handle lin-
ear unmixing tasks. If NLMM is chosen, it transforms into non-linear
BUDDIP (NL-BUDDIP) and can tackle non-linear unmixing problems.
To achieve meaningful unmixing results, BUDDIP is trained with the
guidance of endmembers and abundances, generated from any preva-

lent unmixing methods such as SiVM [1] + FCLS [2]. However, un-
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Figure 4.1: (a) The general architecture of the proposed BUDDIP. It
consists of three modules: endmember estimation DIP (EDIP), abun-
dance estimation DIP (ADIP) and mixing module (MM). The output of
EDIP is denoted by the green arrow while that of ADIP is by the blue ar-
row. (b) when MM performs LMM as defined in Eq. (4.2.5), we coined
the whole model in (a) as L-BUDDIP, which can solve the linear blind
unmixing problem. (c) While MM performs NLMM as defined in Eq.
(4.2.6), we coined the whole model in (a) as NL-BUDDIP, which can
solve the nonlinear blind unmixing problem. f;, and fy; are defined
in Eq. (4.2.7) and Eq. (4.2.8), respectively.

like other guidance-based unmixing networks such as UnDIP [36] and

EGU-Net [4], BUDDIP has the potential to outperform the guidance it

was trained with.

4.2.1 Endmember Estimation using DIP

We first present how to construct EDIP using DIP techniques. Similar
to the two-stage cyclic descent method [91], we assume that, during
the endmember estimation stage, we have access to an estimation of
the abundance matrix As. This can be obtained through the use of

any existing abundance estimation algorithms such as FCLS [2]. As a
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Figure 4.2: The architecture of the proposed EDIP. We propose to give
a meaningful input Tz = E;, where E; is an estimation of endmember
generated by existing methods, such as SiVM [1]. The outputs of the
main branch and the skipped input are added and forwarded to the
final output block.

result, the optimization problem in Eq. (4.1.1) can be reduced to:
N 1
E= argmin §||Y—EA0H% st,E>0 (4.2.1)

In this work, based on the concept of DIP, we propose to estimate the
endmembers through a DIP network (EDIP) fy, with learnable param-
eters 6 and an input Tz. This results in the following optimization
problem:

o1
0 = argrgjlgn iHY — ng(TE)AgH% (4.2.2)

In the original DIP [37] and the unmixing work using DIP UnDIP [36],
the network is fed with a random input, i.e., Tg = zg, where zg is
either Gaussian noise [36] or uniform noise between 0 and 0.1 [37].
However, this random input strategy has a major drawback: it does
not contain any relevant information about the task or data at hand.
Additionally, as noted in [92], when the network is given both noisy ob-
servations and random noise, it tends to ignore the noise. In this work,
we aim to provide the DIP network with a more meaningful input rather
than random noise. Given the numerous impressive unmixing works in

the hyperspecitral literature, we propose to use existing unmixing algo-
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rithms, such as SiVM [1], to generate an estimate of the endmembers,
E;, which is then used as the input to the proposed EDIP network, i.e.,
Tr = E;. This can be seen as a noisy estimation of the true endmem-
bers.

With the proposed input strategy, the network will have a good start-
ing point and only need to learn the difference between the desired
output and the input. This further drives the design of the EDIP net-
work fo,.. In particular, we adopt a ResNet-like architecture [86] as
the skip-connections in ResNet can facilitate the network in learning
the difference between input and output. Unlike the traditional ResNet
structures used in DIP and UnDIP, we use a simpler network structure
as depicted in Fig. 4.2.

The proposed EDIP network fy,. is based on a block, which is com-
prised of a Convolutional layer, a Batch normalization layer, and an
Activation layer. This type of block is widely used in neural network ar-
chitectures such as ResNet [37,93]. However, unlike the conventional
2D Convolutional layer in literature, we use a 1D Convolutional layer
in the proposed EDIP. This is because 2D Convolutional networks are
typically applied to image-related problems represented as 3D tensors,
whereas the input and output in the proposed EDIP network are end-
member signatures represented as 2D matrices. The 1D Convolution
is performed over the spectral band dimension p to capture the spectral
information, as there is no spatial information in the endmember ma-
trix. The block is repeated twice. The skip connection shown in Fig. 4.2
is used to force the network to learn the difference between input and
desired output. The output from the main branch and the skip connec-
tion are added and then fed into the final output block. This block is
similar to the previous one, except that the activation layer is replaced
with the Sigmoid activation layer to satisfy the ENC constraint. After

the parameters 67, are learned, the estimated endmember is given by
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Figure 4.3: The architecture of the proposed ADIP. We propose to give
a meaningful input T4 = A, where A; is an estimation of abundances
generated by existing methods, such as FCLS [2]. The outputs of the
skip connection and the main branch are concatenated and forwarded
to the final output block.

In this section, we present the derivation of the DIP network for
abundance estimation, known as the Abundance DIP (ADIP) network.
We start with the assumption that, at the abundance estimation stage,
an estimate of the endmembers, Eg, is available through a method
such as SiVM [1]. The optimization problem Eq. (4.1.1) then is reduced
to the abundance estimation problem formulated as:

A= argmin ;HY — E¢A|:2+R(A)

(4.2.3)
st,A>0AT1, =1,

We propose estimating the abundances using the ADIP network,
fo., With learnable parameters 6, and input T4. The resulting opti-

mization problem is given by:
" 1
OA = argr%iniﬂY—EGng(TA)H% (424)

The regulariser R(-) is dropped according to the DIP techniques. As

105 of 206



4.2. BUDDIP 4. Blind unmixing using double deep image prior

with the EDIP network, we aim to provide the ADIP network with a
meaningful input, rather than random noise. To this end, we use an
existing unmixing algorithm to generate an estimate of the abundance,
A, which serves as the input for the ADIP network: T, = A;.

Similar to the EDIP network, the architecture of the ADIP network
is designed to learn the difference between the input and desired out-
put, The ADIP network, shown in Fig. 4.3, consists of four blocks to
capture the rich information in the abundance maps, which are repre-
sented as a 3D tensor (see Eq. (2.2.2)). Unlike the EDIP network, the
ADIP network uses a 2D convolutional layer to capture spatial informa-
tion. Additionally, the output layer of the ADIP network uses softmax to
satisfy ASC and ANC constraints. After learning the parameters, 6%,

the estimated abundance is given by A = for (Ap).

4.2.3 Blind Unmixing using Double DIP

Finally, we present the proposed general framework for blind unmixing
using double DIP (BUDDIP). Upon obtaining the estimated endmem-
ber and abundance matrices, E and A, through EDIP and ADIP, re-
spectively, they can be fed into a Mixture Module (MM) to immediately
generate a reconstruction of the observed HSI image. The MM, which
will be detailed later, has a flexible structure that depends on the se-
lected physical model. After integrating MM with EDIP and ADIP, the
resulting architecture of the proposed general BUDDIP framework is
depicted in Fig. 4.1. This framework can be utilized to tackle both lin-

ear and nonlinear unmixing problems by applying different MM models.

Linear BUDDIP (L-BUDDIP)

In the case of LMM, the MM performs the linear mixing process as
specified in Eq. (2.2.2). Specifically, the MM computes the reconstruc-

tion of the observed HSI image, Y, using the estimated endmember
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and abundance, E and A, by simply multiplying them as follows:

A,

Y =EA (4.2.5)

This process is visualized in Fig. 4.1(a) and (b). We refer to this con-

figuration of the proposed general framework as the L-BUDDIP.

Nonlinear BUDDIP (NL-BUDDIP)

In the case of NLMM, the observed HSI image can be reconstructed by
feeding E, A into the MM, which performs the nonlinear mixing process
as described in Eq. (2.2.4). Specifically, the HSI reconstruction Y is
obtained by:

Y = fu(B,A) + fyo(B A) (4.2.6)

where f,(E, A) represents the linear part of the mixing process, given
by:
fo(E,A)=EA (4.2.7)

On the other hand, the nonlinear part, fNL(E, A) given by

fvr(BE,A) =0 (4.2.8)

A

is responsible for the nonlinear effects in NLMM, where O = [01,...,0,] €
RP*™ It can be adjusted depending on the selected nonlinear model.
For example, in the case of the FM model, as described in Eq. (2.2.6)

and Eq. (2.2.7), fx., outputs O as follows:

r—1 r

6k = Z Z Q5 kA5 k€ ©O) €; (429)

i=1 j=i+1

Fig. 4.1(a)&(c) depicts the architecture of the proposed NL-BUDDIP.
In other nonlinear models with additional parameters, such as the GBM

model, these parameters can be learned through another DIP network
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according to [93].

4.3 Training Details

In this section, we delve into the optimization of parameters for BUD-

DIP.

Loss function

As previously discussed, BUDDIP generates three outputs: E for end-
members, A for abundances, and Y for reconstructed HSI observation
as illustrated in Fig.4.1. To train the network effectively, we employ six
loss terms, two for each output. To clarify the notation used later, a

summary of relevant notations is provided in Table 4.1.

Table 4.1: Summary of some notations.

E;, A; meaningful input for EDIP and ADIP respectively
Eq, Ag training guidance for ADIP and EDIP respectively
E, A estimation of endmembers and abundances by the

proposed network

Y, Y, HSI observation and its reconstruction by the
YE YA MM, EDIP, ADIP module, respectively

0z, 0, || learnable parameters of proposed EDIP and ADIP network

To estimate endmembers E by EDIP, in accordance with optimiza-
tion problem Eq. (4.2.2), we can immediately propose the use of the

following loss function
1
Leprp(0r) = SY - for(Er)Ac|7 (4.3.1)

As previously discussed, the EDIP network fy, receives a meaningful
input E;, which is an estimate of endmembers obtained from exist-

ing unmixing algorithms, and produces an estimate of endmembers
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E = f,,(E;). The abundance matrix A, also obtained from existing
unmixing algorithms, serves as a guide for training the EDIP network,
ensuring that it generates a meaningful estimate of endmembers. In
this work, E; and A, are obtained using unmixing methods such as
SiVM [1] and FCLS, respectively.

However, as discussed in Eq. (3.2.8), the MSE loss term has cer-
tain limitations and the unmixing performance can be further improved
by incorporating additional loss terms based on other measurements,
such as geometrical or information measurements. Therefore, we are
motivated to propose an extension to the loss function Eq. (4.3.1) by
including additional angle distance loss terms. Specifically, we suggest

utilizing the following loss function:

Liprp(0p) = a1 - Lemse + a2 - Lpang (4.3.2)

where,
1 N
Leymse = §||Y -Y"|%

Loy = £ 32 oot ([ L)
ni3T INAIPLINZAP (4.3.3)

YP =EAg

E = fo,(E)
The hyperparameters «; and a5 in Eq. (4.3.2) control the relative im-
portance of the corresponding loss term. Here, Y” represents the HSI
reconstruction by EDIP f,, with the guidance of A.. Additionally, y
and yZ are the k' pixel of HSI observation Y and HSI reconstruction
Y7, respectively. The proposed loss function in Eq. (4.3.2) extends the
one in Eqg. (4.3.1) by including an additional angle distance loss. The
first loss term, Lgyse, in EQ. (4.3.2) minimizes the discrepancy be-
tween Y and Y in Euclidean distance. On the other hand, the second

loss term, Lya,,4, provides a measure of the disparity from a geometric

perspective. As previously demonstrated in [94], the inclusion of this
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additional angle loss term can enhance the performance of the unmix-
ing network. It is possible to introduce an information divergence term
similar to Eq. (3.2.8). However, doing so would require adding another
loss weight, which could be computationally demanding to fine-tune.
We propose using a similar approach for abundance estimation A.

Specifically, we suggest employing the loss function given by:
Laprp(04) = a3 Lavse + a - Laang (4.3.4)

where,
1 .
Layvse = 5”Y - Y%

1 L180 Iy
Laang = — Z —cos ! <ykyfA )
n [yell20197 12

k=1 T (4.3.5)
Y4 =E-A
A - f9A (AI)

and o3 and oy are loss weights of Ly sp and Laa,,. Similar to the
EDIP, Y4 is the HSI reconstruction by ADIP f,,, given the guidance
Ec. yi. and yi are the k™ pixel of HSI observation Y and HSI recon-
struction Y4, respectively. Moreover, the ADIP network also requires
meaningful input and guidance during training, which is denoted by A ;
and E¢, respectively. Like before, these estimations are generated by
existing unmixing methods, such as SiVM [1] and FCLS.

Additionally, for the reconstructed HSI observation Y defined in Eq.
(4.2.5) and Eq. (4.2.6), we impose an extra loss function called the

blind unmixing (BU) loss, given by:
Lpy(0g,04) = o5 - Lpumse + & - Lpuang (4.3.6)

where,
1 .
Lpumse = §||Y - Y|
1 X 180 T
2OV oL < YieYk )

L = - y
BU Ang ”k; - [yell2l|Fell2

(4.3.7)
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and a5 and o4 are the loss weights. y;.,y, are the k' pixel of HSI
observation Y and HSI reconstruction Y, respectively. The inclusion
of this additional BU loss is crucial as, without it, EDIP and ADIP would
produce endmember and abundance estimates that closely align with
the guidance E¢ and Ag.

The final loss function is a combination of the above losses, as
follows:

L(0g,04) = Leprp + Laprp + Lpu (4.3.8)

where, Leprp, Laprp, Ly are defined in Eq. (4.3.2), Eq. (4.3.4) and Eq.
(4.3.6). It is worth mentioning that the final loss function deviates from
the one described in the publication [95] by incorporating an additional
trigonometric discrepancy measurement. From the perspective of un-
mixing, the terms Lgp;p and Lap;p in the composite loss function en-
sure that the network produces meaningful endmembers and abun-
dances, in the sense that £, A cannot deviate too much from E¢, A¢.
At the same time, Lpy allows the network to have the freedom to
search for better estimations than the guidance E, A,. From the per-
spective of network training, Lrprp and Lap;p can be interpreted as
regularizations on the outputs of the BUDDIP network, £ and A, with
Ly serving as the data fidelity term. This composite loss function can
therefore alleviate the need for regularisation techniques in other DIP
methods such as early stopping [37] and exponentially averaging over
different runs [36]. By properly choosing the hyperparameters oy,
the network outputs will eventually reach an equilibrium state between
inducing small fitting error (Lgy), and regularisation penalty, (Lgp;rp
and Laprp).

In this work, the proposed loss function in Eq. (4.3.8) is utilized
in both linear and nonlinear blind unmixing scenarios. Although in
nonlinear unmixing, the form of Lzp;p and L,p;p could potentially

be changed to accommodate nonlinear reconstruction, for the sake
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of simplicity and consistency, the same linear form is adopted for both
scenarios. However, the purpose of Lgp;p and Lap;p is to ensure that
the network produces meaningful output, which is still valid under non-
linear conditions without the need for modification. This is because the
nonlinear model Eq. (2.2.4) still contains a linear component. For the
same reason, the input E; and A; and training guidance E; and Ag
are generated via the same unmixing algorithms, SiVM [1] and FCLS,
for both linear and nonlinear cases.

In contrast to the two-stage-cyclic descent method [91], the pro-
posed network is trained in an end-to-end manner using the gradient
descent optimizer, ADAM [85]. Given only the HSI image Y, the learn-
able parameters 6,0 4 are learned by minimizing the composite loss

in Eq. (4.3.8).

Adaptive loss weight strategy for NL-BUDDIP

We also propose an adaptive loss weight strategy to enhance the per-
formance of nonlinear unmixing. The conventional approach of setting
fixed weights for all the loss terms, i.e., Lgp;p, Laprp, and Lgy, can
lead to suboptimal results. If a4 are given greater weight, the network
might simply follow the guidance E and A, while if a6 is given more
weight, the network may output meaningless endmembers and abun-
dances. To overcome this challenge, our proposed strategy adjusts
the weights adaptively throughout the training process. Initially, the
network is given more weight to converge quickly to the guidance, with
ay~4 being larger. Once the network has approached the guidance,
the weights are adjusted to give the network more freedom to search
for a better solution by reducing «;.4 and increasing as.¢. To ensure
stability, a threshold is set for the loss weights. The steps involved in

this strategy are outlined in Algorithm 1.
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Algorithm 1: Adaptive Loss Weight Strategy for enhanced
loss function Eq. (4.3.8).
Input:

* '™ - the initial value of loss weights

* v1,72 - the rate of updating loss weights
* Qmin, maz - the boundary of loss weights
* ¢ - update gap

» K - the number of training epochs.

Train:

|n|t|al|se N1 < Qﬁiﬁ%,

for k +— 1to K do
train the proposed network with «ag;
if k mod g == 0 then

[Oé1~4, CY5~6] — [Oé1~4 * 71, 045~6/V2];
A1~6 — Cllp (a1~67 ®min, amax);

4.4 Experiment

To evaluate the effectiveness of our proposed approach, BUDDIP, we
will compare it with several state-of-the-art unmixing methods. We will
use the same performance metrics as discussed in Sec. 3.5.1, namely,
RMSE and AAD for abundance estimation and SAD for endmember

estimation.

4.4.1 Data

We evaluate the performance of different unmixing algorithms using

various datasets.

Synthetic Dataset 1

To evaluate the effectiveness of both linear and nonlinear unmixing
algorithms, we utilized the HSI dataset synthesis approach proposed
in [18]. To adapt the procedure for assessing the performance of non-
linear unmixing algorithms, we modified the linear mixing process to its

nonlinear counterpart. The procedure consists of the following steps:
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Figure 4.4: Endmember signatures for synthetic data.

« Endmember generation. We selected six spectral signatures
from the USGS spectral library (splib06) [81], which provides
spectral reflectance values for various minerals across 224 chan-
nels. These signatures formed a 224 x 6 endmember matrix, as

illustrated in Fig. 4.4.

 Abundance generation. We divided a synthetic HSI of size a? x a?
pixels into a* non-overlapping patches of size a x a pixels. For
each patch, we randomly assigned two endmembers and their
corresponding abundances v and 1 — ~, while the other four end-
members were set to zero. We then convolved the abundance
map with a Gaussian filter of size (a + 1) x (a + 1) and variance
2, and scaled the abundance values to satisfy the abundance
sum-to-one constraint (ASC). Throughout this experiment, we

seta =10 and v = 0.8.

* Mixing process. We synthesized HSI data for both linear and
nonlinear mixing models, by applying either the linear model in Eq.
(2.2.2) or the nonlinear model in Eq. (2.2.4) to the generated end-

members and abundances.

» Noise contamination. We added additive white Gaussian noise
(AWGN) to the synthetic HSI data. The signal-to-noise ratio
(SNR) was defined as SN R = 101log,, (E[x"x]/E[n"n]), where

x represents the original, noise-free HSI data, and n is the added
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noise.

Synthetic Dataset 2

In order to evaluate the effectiveness of HSI unmixing methods in
the absence of pure pixels in the dataset, we adopted the synthetic
procedure described in [96—99]. In this procedure, a purity measure
for an observed pixel y; is defined as p, = |lax|l.€ [1//, 1], where
a, € R™! represents the corresponding true abundance for y;, and
the range [1/4/r,1] is a result of the ANC and ASC constraints. A
higher value of p, indicates greater purity of the pixel y,. The pu-
rity level of a dataset with n observed pixels {y}}_, is denoted by p,
where p — 0.1 < p, < p,Vk € [1,n]. The synthetic generation proce-
dure is similar to that of synthetic dataset 1, with the exception of the

abundance generation process, which is outlined as follows:

» Randomly sampling K = 10n abundance vectors from a Dirichlet

distribution D(u) where p = (1/r)1,, that is,

Q= {aglap ~ D(p),Vk=1,..., K} (4.4.1)

and calculate the corresponding purity p; for all k.

» Construct a set of n abundance vectors with purity level p by

randomly choosing n samples from Q2 subject to p, € [p — 0.1, p).

4.4.2 Effectiveness of BUDDIP

We demonstrate the effectiveness of our proposed BUDDIP unmixing
framework using the synthetic HSI dataset 1 with dimensions 100x100
pixels that are contaminated with AWGN noise to achieve an SNR of
30 dB. The structure of BUDDIP is summarized in Table 4.2. To evalu-
ate the performance of L-BUDDIP in linear unmixing, we use the Adam

optimizer with a learning rate of 5¢ — 3 and train for 6000 epochs. We
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compare the results of L-BUDDIP with state-of-the-art learning-based
methods such as UnDIP [36] and EGU-Net-ss [4] that are trained with
guidance, using the synthetic dataset 1 under the linear mixing model.
We also include the traditional method SiVM [1] + FCLS [2] for refer-
ence as it is used to generate the guidance. In the case of nonlin-
ear unmixing, we evaluate the performance of NL-BUDDIP using the
synthetic dataset 1 under the FM model. The Mixing Module in the
proposed network uses the FM model defined in Eq. (2.2.6) and Eq.
(2.2.7), while the structure of BUDDIP remains the same as outlined
in Table 4.2. By default, we train NL-BUDDIP for 12000 epochs, as the

nonlinear unmixing case is more challenging than the linear case.

Table 4.2: Hyperparameters of BUDDIP structure.

EDIP
In Channel Out Channel kernel size stride pad
D 256 3 1 same
ConviD 256 p 3 1 same
D D 1 1 same
ADIP
In Channel Out Channel kernel size stride pad
r 32 3 1 same
32 64 3 1 same
ConvaD 64 64 3 1 same
64 r 3 1 same
2r r 1 1 same
Activation LeakyRelLU negative_slope=0.1

Linear Unmixing

* Hyperparameter Study: In this study, we explore the effect of
the hyperparameters ;. in the proposed composite loss func-
tion Eq. (4.3.8) by varying them within {0.0,0.001,0.01, 0.1, 1.0}. It
is worth noting that when oy, = ay = ag = 0, the loss function Eq.
(4.3.8) deactivates all the additional angle loss terms. The un-

mixing performance in terms of abundance AAD and endmember
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SAD are presented in Fig. 4.5. The figure illustrates that deacti-
vating Lgprp and L4p;p by setting a;..4 = 0.0 leads to meaning-
less unmixing results. On the other hand, when a5 = ag = 0.0
and any of a;.4 is set to 1.0, the network outputs unmixing results

that are similar to those obtained by SiVM+FCLS guidance.

Additionally, when deactivating Lgang, Laang: Lpuang @and acti-
vating Leyse, Lavse, Lumse With ay = a4 = ag = 0 and
a1 = 0.1,a3 = 0.01, a5 = 1, the proposed method achieves im-
proved unmixing performance with an AAD of 5.67 and SAD of
1.88. Moreover, the composite loss function Eq. (4.3.8) with all
six loss terms activated via o, = 0.001, ay = 0.01, ag = 0.1, and
a1 = az = a5 = 1 yields the best unmixing performance with an

AAD of 4.65 and SAD of 1.68.

Henceforth, we adopt the default settings of the composite loss
function Eq. (4.3.8), where o, = 0.001, ay = 0.01, ag = 0.1, and
a1 = az = ay = 1, for the subsequent experiments. This experi-
ment also suggests that the proposed method is highly sensitive
to hyperparameters a;.¢ as they determine the relative impor-

tance of each loss term.

30
(a1,(12,ozs,
25
a4,a5,(16)
o)
<
%)
6,
(0.1,0,0.01, @ (1,00,
0,1,0) / 0,0,0)
| o
8 L (1,01,
(1,0.001,1, 0.1,0)
. 0.01,1,0.1) ‘ ‘ ‘
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AAD

Figure 4.5: The impact of hyperparameter «;.¢ on linear unmixing per-
formance.
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» Performance Limitation of Guidance: We now assess the im-
pact of the guidance on various guidance-based unmixing net-
works. Our proposed methods use the default training settings.
On the other hand, competitors such as EGU-Net [4] and UnDIP [36]
utilize different traditional unmixing methods, VCA+FCLS and
SiVM, respectively, to generate their training guidance. To en-
sure a fair comparison, we use the training guidance generated
by SiVM+FCLS for all methods in this study. The results of un-
mixing performance by different methods are illustrated in Fig. 4.6.
It can be observed that the proposed methods outperform the
guidance SiVM+FCLS, while the performance of the competitors
is limited by the guidance. This is because the proposed meth-
ods are capable of finding better unmixing solutions while the

competitors simply aim to imitate the guidance.
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Figure 4.6: Linear unmixing performance of various guidance-based
networks. (a) Abundance RMSE versus epoch. (b) Abundance AAD
versus epoch. (c) Endmember SAD versus epoch.

» Impact of Noise: We aim to assess the impact of noise on the
network training process by varying the SNR in the range of
(15,20, 25, 30, inf] dB while maintaining the default settings. To
this end, we monitor the progress of the training process, includ-
ing the total loss, abundance RMSE, abundance AAD, and end-
member SAD versus epochs, as shown in Fig. 4.7. It is evident
that the loss and various metrics decrease as the SNR increases.

Moreover, the network gradually requires slightly more epochs to
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loss
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achieve convergence as the SNR increases. This observation
aligns with the findings presented in [37], where the network re-
quires more epochs to tackle image reconstruction tasks in low-
noise conditions. To strike a balance between training efficiency

and unmixing quality, we set the epoch number to 6000.
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Figure 4.7: Impact of noise on network training for linear unmixing.
(a) total loss versus epoch. (b) Abundance RMSE versus epoch. (c)
Abundance AAD versus epoch. (d) Endmember SAD versus epoch.

» Convergence Analysis: In this section, we aim to analyze the
convergence of the proposed method by comparing the training
process under two different settings. In Setting 1, we train the

network without guidance by deactivating Lzp;p and Laprp US-

ing a1os = 0,5 = 1, and oy

0.1. In Setting 2, we activate the

guidance terms by using a; = a3 = a5 = 1.0, = 0.001, 4 =
0.01,a6 = 0.1. The rest of the settings remain the same as the

default settings except for the number of epochs, which we set
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to 12000 for analysis purposes. We evaluate the training pro-
cess and corresponding unmixing performance as a function of

the number of epochs, which we present in Fig. 4.8.

As shown in Fig. 4.8, Setting 1 results in the smallest fitting er-
ror Lpynse and converges at around 1200 epochs. However, it
also delivers the worst unmixing performance with an AAD of 62
(see Fig. 4.8c) and a SAD of 31 (see Fig. 4.8d). Moreover, the
endmember SAD values exhibit an increasing trend with more
epochs, suggesting the occurrence of overfitting. Correspond-
ingly, the loss/regularisation terms Lgyse, Lamse, LEang: Laang

in Fig. 4.8a and Fig. 4.8b are large.

On the other hand, in Setting 2, where all the loss terms are
activated, the network reaches an equilibrium state at around
epoch 6000, where it minimizes all six loss terms. This setting
also results in improved unmixing performance, with an abun-
dance AAD of approximately 4.4 and a SAD of 1.67. Further-
more, the proposed method’s unmixing performance, measured
by AAD and SAD, remains stable even with additional training
epochs, as the Lgprp and Laprp terms serve as effective regu-
larizations. Hence, the proposed approach eliminates the need
for conventional techniques such as early stopping [37] or expo-
nentially weighted averaging of outputs from multiple runs [36],
which are commonly used in DIP-based methods. A trade-off be-
tween training efficiency and unmixing quality leads us to choose

6000 epochs for training.

« Comparison of Different Input: In this section, we assess the
efficacy of the proposed meaningful input strategy. We maintain
the default BUDDIP settings, except for the input type, where
we compare the network’s performance using two input types:

Gaussian input as suggested by UnDIP [36], and the proposed
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Figure 4.8: Convergence analysis for linear unmixing case. In setting
1, we train the network with a5 = 1,06 = 0.1,a1.4 = 0, that is, the
guidance Lgprp and Laprp are deactivated. In setting 2, we activate
the guidance Lgprp and Luprp by using a1 = a3 = a5 = 1.0,ap =

0.001,

ay = 0.01,a6 = 0.1. (a) various MSE loss versus epochs, (b)

various angle distance loss versus epochs, (¢) Abundance AAD versus
epochs, (d) Endmember SAD versus epochs.

input. The unmixing performance of the network as a function
of training epochs is depicted in Fig. 4.9. It can be observed
that with the proposed input strategy, the network achieves bet-
ter unmixing performance when the number of epochs is small,
i.e., 300. This improvement can be attributed to the proposed
input, which can be viewed as a noisy observation of the under-
lying ground truth. Therefore, the network’s task is to generate
more refined unmixing results given the noisy input. In compari-
son, when using Gaussian input, the network needs to generate
unmixing results given non-informative input. Additionally, it is

worth noting that BUDDIP with the proposed input delivers better
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Figure 4.9: Linear unmixing performance of BUDDIP with different in-
put strategies: gaussian input and the proposed input. (a) Abundance
RMSE versus epoch. (b) Abundance AAD versus epoch. (c) Endmem-
ber SAD versus epoch.

Nonlinear Unmixing

* Fixed vs. Adaptive Loss Weight Strategy: We now evaluate

the impact of the proposed adaptive loss weight strategy in Al-
gorithm 1 under the nonlinear unmixing case. Specifically, we
vary the hyperparameters o’ o ~, ~,, while the remaining
hyperparameters in Algorithm 1 are set to o = 100, o™ =
10, a2 = 1,0 = 0.1, apin = le — 3, Qumae = le + 2, g = 300 by
grid search techniques. The unmixing performance is reported
in Fig. 4.10. The data points where ~; = v, = 1 represent the
outcomes of the fixed loss weight strategy, while the remaining
data points correspond to the adaptive loss weight strategy. It
is evident that utilizing the fixed strategy enables the network to
generate unmixing results that surpass the guidance. However,
the proposed adaptive loss weight strategy yields better unmix-
ing performance in terms of both endmember SAD and abun-
dance AAD when o = 1,a/" = 10,y = 0.8,72 = 0.9. Con-
sequently, we will utilize these hyperparameter settings as our

default configuration in the subsequent experiments.

» Impact of Noise: In this study, we assess the impact of noise on
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Figure 4.10: Fixed versus adaptive loss weight strategy under the non-
linear unmixing case. The X axis is abundance AAD and Y axis is
endmember SAD. The dots with v; = 75, = 1 are the fixed loss weight
strategy, while the remaining are adaptive loss weight strategy.

the nonlinear unmixing network training process by altering SNR
in the range of [15, 20, 25, 30, in f] dB, while retaining the default
settings. We then monitor the training progress, including the
abundance RMSE, abundance AAD, and endmember SAD over
epochs, as illustrated in Fig. 4.11. The results indicate that the
network necessitates more epochs to achieve convergence as
the SNR increases, similar to the linear unmixing case. However,
for low SNR scenarios such as 15 dB, the network may overfit the
data after approximately 8000 epochs. It should be highlighted
that the hyperparameters employed in this experiment are opti-
mized for an SNR of 30 dB. However, by fine-tuning the hyper-
parameters correspondingly, it is possible to mitigate the issue
of overfitting and improve the performance for varying SNR lev-
els. Ultimately, for SNRs larger than 30 dB, the network can still
enhance the unmixing quality even after 8000 epochs. These ex-
periments illustrate that while the adaptive loss weight strategy
can enhance performance, improper setting of hyperparameters

can result in overfitting.
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Figure 4.11: Impact of noise on network training for nonlinear unmix-
ing. (a) Abundance RMSE versus epoch. (b) Abundance AAD versus
epoch. (c) Endmember SAD versus epoch.

» Convergence Analysis: In this section, we analyze the conver-

gence of the proposed method for nonlinear unmixing by com-
paring the training process under two different settings. In Set-
ting 1, we train the network utilizing the fixed loss weight strategy

with a; = 100, a3 = 10, a5 = 71 = %2 = 1.0, ag = 0.1, and
as = a4 = 0.01. In Setting 2, we train the network employing
the adaptive loss weight strategy with a; = 100, a3 = a4 = 10,
as = a5 = 1.0, ag = 0.1, v = 0.8, and 7, = 0.9. The remain-
ing settings remain unaltered, adhering to the default configura-
tion. We evaluate the corresponding unmixing performance as a
function of the number of epochs, which we present in Fig. 4.12.
As demonstrated in Fig.4.10, the SiVM+FCLS guidance method
achieved an abundance AAD of 15.5 and an endmember SAD
of 5.45. In contrast, the fixed strategy of NL-BUDDIP obtained
superior unmixing performance, with an abundance AAD of 7.76
and an endmember SAD of 3.12, reaching faster convergence
around epoch 2400. Nevertheless, by implementing the adap-
tive strategy in Setting 2, we further improved the unmixing per-

formance, achieving an AAD of 2.6810 and a SAD of 0.7257,

despite a slower convergence rate at around 12000 epochs.
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Figure 4.12: Convergence analysis for the nonlinear unmixing case.
In setting 1, we train the network with the fixed loss weight strategy.
In setting 2, we use the adaptive loss weight strategy. (a) Abundance
RMSE versus epochs, (b) Abundance AAD versus epochs, (c) End-
member SAD versus epochs.

4.4.3 Comparing with state-of-the-arts methods

In this section, we compare our proposed methods BUDDIP against
various state-of-the-art unmixing techniques, including network-based
methods UnDIP [36], EGU-Net-ss [4], MNN-BU-2 [18], CNNAEU [100],
and MiSiCNet [101], as well as traditional methods SiVM [1]+FCLS [2],
rNMF [13], HyperCSI [96], HiSun [62], and EDAA [52]. We also com-
pare our method with UBUNet-1l, which was proposed in previous work.
Unless stated otherwise, we conduct experiments under the default
setting, where the structure of our proposed network is summarized
in Table 4.2. SiVM [1]+FCLS [2] is used to generate the training guide
for those methods that need guidance or initialisation.

For the linear unmixing case, we train the proposed L-BUDDIP net-
work using the Adam optimizer to minimize the loss function Eq. (4.3.8)
with an, = 0.001, ay = 0.01, ag = 0.1, and a; = a3 = a5 = 1. We set
the learning rate to 5e — 3 and the number of epochs to 6000. The
synthetic HSI image dataset for both synthetic datasets 1&2 is con-
structed under the linear mixing model, consisting of 100 x 100 pixels.
We also contaminate these HSI reflectances with AWGN, resulting in
SNR = 30 dB.

For the nonlinear unmixing case, we train the proposed NL-BUDDIP

network using the Adam optimizer to minimize the loss function Eq.
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(4.3.8) using adaptive loss Algorithm 1 with a learning rate set to 5e — 3
and the number of epochs set to 12000. The hyperparameters for Al-
gorithm 1 are set to /™" = 100, o™ = o™ = 1, o™ = o = 10,
alMt = 0.1, 11 = 0.8, %2 = 0.9, Qpin = le — 3, apae = le + 2, and
g = 300. The synthetic HSI image dataset for both synthetic datasets
1&2 is constructed under the FM model, consisting of 100 x 100 pixels.
We also contaminate these HSI reflectances with AWGN, resulting in
SNR = 30 dB. In our proposed network, the Mixing Module (MM) cor-
respondingly uses the FM model defined in Eq. (2.2.6) and Eq. (2.2.7).

Performance vs. HSI data purity

In this section, we explore the impact of varying purity level p on the
unmixing performance of various methods using synthetic dataset 2.
To this end, similar to [96], we set the purity p to vary in the range of
[0.8,0.9,1.0], where p = 0.8 corresponds to a highly mixed HSI data
scenario and p = 1.0 represents highly pure pixels. Furthermore,
we evaluate the proposed L-BUDDIP method with guidance generated
from two methods, SiVM+FCLS and HyperCSlI, respectively. Table 4.3
and Table 4.4 present the results of both linear and nonlinear unmixing,
respectively.

Regarding linear unmixing, the results indicate that HyperCSI out-
performs other competing methods when the data is highly mixed,
i.e., p = 0.8 and p = 0.9. However, when the proposed method is
trained with guidance from HyperCSl, it significantly improves the per-
formance by almost 1.6 times better than HyperCSI. Specifically, at
p = 0.8, the proposed method improves the abundance AAD from 2.19
to 1.97 and the endmember SAD from 0.80 to 0.49 compared to Hy-
perCSl. Additionally, although SiVM+FCLS fails to deliver satisfactory
unmixing performance, the proposed method can utilize the unmixing

results from SiVM+FCLS as training guidance and improve the per-
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formance by three times, from an abundance AAD of 11.4 to 3.82.
At a purity level of p = 1.0, the proposed BUDDIP guided with SiVM
achieves the lowest RMSE and AAD, as well as the second-best SAD.
These results suggest that the quality of the guidance used during
training significantly impacts the proposed method’s performance, with
higher quality guidance leading to better performance.

For nonlinear unmixing, the results indicate that at the purity level
of p = 0.8, HyperCSI outperforms other competing methods. How-
ever, although SiVM+FCLS only achieves moderate performance, the
proposed NL-BUDDIP can utilize those unmixing results as guidance
and deliver seven times better performance with an AAD of 3.9959
and SAD of 0.8752, even better than HyperCSI with an AAD of 4.6
and SAD of 1.5. When p increases to 0.9 and 1.0, the proposed NL-
BUDDIP achieves the best performance among all competitors.

Overall, the proposed BUDDIP demonstrates excellent performance
across different purity levels for both linear and nonlinear unmixing
cases. Moreover, the proposed method can utilize the unmixing re-
sults of state-of-the-art methods as training guidance (E; and Ag) to

further improve its performance.

Processing Time Comparison

In this section, we present a comparison of the processing time of dif-
ferent unmixing methods. The experiments were conducted on a test
platform comprising Intel Xeon Gold 6248 CPU 2.50GHz, Tesla V100
GPU, and 503GB RAM. The average processing times for the linear
unmixing case and the nonlinear unmixing case are reported in Table
4.3 and Table 4.4, respectively. The results are obtained by averag-
ing over ten independent runs. Notably, the network-based unmixing
methods generally outperform traditional unmixing methods in terms

of processing time, except for HyperCSI. Among the network-based
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methods, MiSiCNet stands out as the fastest nonlinear unmixing ap-
proach, while our proposed methods demonstrate the fastest process-

ing time to state-of-the-art methods in the linear unmixing case.

Network Complexity Comparison

In this section, we analyze the complexity of various unmixing networks
by comparing the number of learnable parameters, which are summa-
rized in Table 4.5. It is evident that the proposed BUDDIP network
has fewer learnable parameters than other guidance-based unmixing
networks, such as UnDIP and EGU-Net-ss. Although unfolding-based
networks, such as MNN-BU and UBUNet, have fewer learnable pa-
rameters, the proposed method delivers better unmixing performance.
The reduction in network complexity primarily arises from the fact that,
with the proposed input strategy, we can design a more efficient net-
work structure.

Table 4.5: Number of learnable parameters

method || CNNAEU | UnDIP | BUDDIP | MiSiCNet
i 3.2x10° | 1.3 x 10% | 4.6 x 10° | 1.7 x 10°
method MNN UBUNet | EGU-Net -
-BU-2 -1l -SS
i 5.4 x 10% | 5.4 x 103 | 3.56 x 10° -

Significance Test

In this experiment, we conducted significance tests to assess the per-
formance of the proposed BUDDIP method and compare it with vari-
ous other methods, including the proposed UBUNet, in terms of abun-
dance estimation mean squared error (MSE) using the F-test and ad-
justed R-squared metrics with synthetic dataset 1. The F-test be-
tween competitors and BUDDIP was employed to determine if the

complex model BUDDIP significantly outperformed the simpler com-
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petitor model, with a larger F statistic and smaller p-value indicating a
notable improvement in data fit. A larger adjusted R-squared indicated
a better fit of the model to the data.

To ensure fairness in the comparison, we employed existing meth-
ods SiVM+FCLS, for generating initialization in the unmixing networks
MNN-BU, UBUNet, MiSiCNet, UnDIP and EGU-Net. The results are
summarized in Table 4.6. It is noteworthy that MiSiCNet and UnDIP
lacked F-statistic and p-values due to having more free parameters
than the proposed BUDDIP, yet the proposed BUDDIP demonstrated
superior performance. Conversely, EGU-Net-ss lacked adjusted R-
squared, F-statistic, and p-value due to an excess of free parameters
compared to the number of data points.

The table clearly demonstrates that the proposed BUDDIP method
achieved the largest adjusted R-squared value of 0.984, while the pro-
posed UBUNet obtained the second-largest value of 0.977. Moreover,
when comparing BUDDIP with methods that have fewer free param-
eters, the F-test reveals an extremely small p-value of 1.11 x 10716,
indicating that BUDDIP’s improvement is statistically significant with a
99.99% confidence level based on the evaluation data.

Table 4.6: Significane Test

method adjusted R-squared | F-statistic p-value
CNNAEU —1.963 2700.85 | 1.11 x 10716
UnDIP 0.832 - -
BUDDIP 0.984 - -
MiSiCNet 0.279 - -
MNN-BU-2 0.945 13.32 1.11 x 10716
UBUNet-lI 0.977 3.19 1.11 x 10716
EGU-Net-ss - - -
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Performance vs. SNR

We conducted an evaluation of various methods for their robustness
against noise contamination using synthetic dataset 1 for both linear
and nonlinear unmixing cases. The default experimental settings were
retained except for varying the signal-to-noise ratio (SNR) in the range
of [15,20,25,30,inf] dB. To ensure a fair comparison, existing meth-
ods were used to generate an initialization for the unmixing networks
MNN-BU and UBUNet, MiSiCNet, like UnDIP and EGU-Net, using
SiVM+FCLS. The linear and nonlinear unmixing performances are pre-
sented in Fig. 4.13 and Fig. 4.14, respectively.

For the linear case, we observed that HiSun delivers better abun-
dance estimation than other methods when the SNR is low, such as
at SNR = 15 dB. As the SNR increases, the proposed UBUNet-Il and
L-BUDDIP benefit from the reduction in noise and achieve state-of-
the-art performance when the SNR reaches 25 dB. However, when
the SNR is 30 dB, HyperCSI achieves the best performance among
the compared methods, but its performance deteriorates significantly
when there is no noise.

Regarding the nonlinear case, UnDIP and EGU-Net-ss performed
similarly to SiVM+FCLS, while the proposed method showed better
unmixing results when the SNR was relatively large. When the SNR is
low, such as at 20 dB, HiSun performs the best in terms of abundance
estimation. On the other hand, the proposed method, NL-BUDDIP,
demonstrated the best performance among all the compared methods
when the SNR was greater than 25 dB.

These results suggest that the proposed method achieves state-of-

the-art robustness for both linear and nonlinear unmixing cases.
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Figure 4.13: Linear unmixing performance of various unmixing meth-
ods versus SNR (dB). (a) Abundance RMSE versus SNR. (b) Abun-
dance AAD versus SNR. (c) Endmember SAD versus SNR.
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Figure 4.14: Nonlinear unmixing performance of various unmixing
methods versus SNR (dB). (a) Abundance RMSE versus SNR. (b)
Abundance AAD versus SNR. (c) Endmember SAD versus SNR.

4.5 Summary

In this chapter, a general neural network approach has been presented
for solving the hyperspectral blind unmixing problem. Unlike the pop-
ular autoencoder structure, the proposed method leverages the Deep
Image Prior (DIP) techniques and is comprised of three modules: an
Endmember Estimation module (EDIP), an Abundance Estimation mod-
ule (ADIP), and a Mixing Module (MM). The EDIP and ADIP modules
produce estimates for the endmembers and abundances, respectively,
while the MM, based on the unmixing model, creates a reconstruc-
tion of the observed HSI reflectances. Instead of using the general
noise input employed in DIP techniques, the proposed method uses
the estimations from existing unmixing methods as input, resulting in a
more efficient DIP network structure with fewer learnable parameters.

A new composite loss function has been proposed for both linear and
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nonlinear unmixing cases, to ensure meaningful unmixing results and
enhance performance. In the nonlinear case, an adaptive loss weight
strategy has also been proposed to further improve performance. The
effectiveness of the proposed methods has also been demonstrated
through experiments. Although experiments have demonstrated the
effectiveness of the proposed method, there exist certain limitations
that should be taken into consideration. Firstly, the method’s sensitiv-
ity to the hyperparameters used in the composite loss functions can
significantly impact its performance. Secondly, the quality of the guid-
ance employed during training also plays a crucial role in achieving
better performance, with higher quality guidance leading to superior
results. Lastly, the proposed adaptive loss weight strategy, while capa-
ble of delivering improved performance, can result in overfitting without

meticulous tuning of the hyperparameters.
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Chapter 5

Variations of BUDDIP

Despite the accomplishments of the BUDDIP framework mentioned
previously, there are still a number of research questions that remain
unanswered. Firstly, it continues to depend on the conventional CNN
architecture, and it is unclear how to construct the DIP framework for
the purpose of unmixing. Although unfolding techniques have emerged
as a promising solution, existing unfolding based unmixing methods
are based on a linear mixing model (LMM) and do not utilize convolu-
tion based techniques which are recognized as powerful tools in image
processing tasks [82]. Secondly, it is unclear whether the performance
can be further enhanced through the use of explicit regularizers.

In this chapter, we propose solutions to address these issues. To
address the structural issue, we propose a new Network for Blind un-
mixing using ADMM unfolding (NBA). Specifically, we introduce a novel
MatrixConv Unmixing (MCU) Model for both endmember estimation
(EE) and abundance estimation (AE) tasks. This model has the abil-
ity to capture both global and local features through multiplication and
convolution operations. To solve each task, we propose to use the al-
ternating direction method of multipliers (ADMM) solver. We then ap-
ply algorithm unrolling techniques to each solver to construct two new
unrolling-based DIP architectures, UEDIP and UADIP, for endmember

and abundance estimation, respectively. Our final network, NBA, is
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constructed by combining these two DIP networks. In addition, we
also present a BUDDIP framework, which is unrolled from LMM-based
ADMM solvers, for comparison purposes.

To tackle the second issue, we incorporate an explicit regularizer
by denoising (RED) [102,103] for endmember and abundance estima-
tions. These additional regularizers can further enhance the network’s

performance.

5.1 MatrixConv Unmixing (MCU) Model

Our first method is the introduction of NBA, a novel unfolding-based
network structure. Before we delve into the construction of UEDIP and
UADIP, we will first introduce the MCU model that we propose for both
endmember and abundance estimation tasks. This model serves as
the basis for our network constructions. This chapter is devoted to
the linear unmixing problem Eq. (4.1.1), since the nonlinear case, as
discussed in NL-BUDDIP, can be viewed as a natural extension within

the BUDDIP framework.

5.1.1 MCU-based EE

The blind unmixing problem represented by Eq. (4.1.1), is reduced to
the EE problem when the abundance A is known a priori, which can
be either given as ground truth or estimated by existing methods. The

goal of the EE problem is to solve the following optimization:
1
mEiniHYT—ATETHQF, st,E>0 (5.1.1)

where the transpose form of Eq. (4.1.1) has been used for the sake of

simplicity in the following derivation. Suppose that E? is obtained as
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the result of convolutional sparse coding (CSC):
E"=Y"dl o) (5.1.2)
=1

where, d¥ and af are the " 1D convolutional kernel of size kx and
the corresponding sparse code, respectively. mg is the number of
convolutional kernels. As convolution is a linear operation, it can be
represented as a linear operator according to [104]. Specifically, the

convolution operation in Eq. (5.1.2) can be expressed as:

> dfxaf =Dglg (5.1.3)

=1

Here, Dy and I'p are the convolutional dictionary and corresponding
sparse code that encompass the sets of {d”}% and {af}Z, respec-
tively.

Assuming Dg is known, which will subsequently be substituted
with learnable parameters through unfolding techniques, the EE prob-
lem Eq. (5.1.1) is equivalent to an MCU problem, which can be formu-
lated as:

o1
1{11}511§HYT—ATDEI‘EH%—F)\HI‘EHI (5.1.4)

Iterative update algorithms like ISTA and ADMM can be used to solve
the above problem. We opt for the ADMM solver as recent studies
have shown that unfolding ADMM-based networks perform better than
unfolding ISTA-based networks [94]. The scaled form of augmented

Lagrangian of Eq. (5.1.4) is given as:
1
SIYT = ATDpQu ATl + 0 T — 25 + w7 (5.1.5)

where Qg, ug, pp are variables introduced by the ADMM algorithm.
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And ADMM updates become:

Q?‘l = argming,, %HYT — ATDEQEH%—FPTEHF% —Qpt u%H%
I‘%H = argminr,, )\||1_‘EH1+p7E||I‘E - Qg_l + quH%“

Jj+1 _ g Jj+1 7j+1
uy =up+ (g —Q5)

(5.1.6)

The ADMM solver for the problem above is expressed as follows:

Q3" =((A"Dg)" (ATDg) + ppl) ™!

(ADp)™Y" + pp(T + )
B | L (5.1.7)
Iy = Softy (1 — %) + 22( — )

where Soft,(x) = sign(x) - (Jz|—=2) is the soft-threshold operator.

5.1.2 MCU-based AE

Similarly, when the endmember E is known in advance, the blind un-
mixing problem is reduced to the abundance estimation (AE) problem.

The latter involves minimizing
1
min 5||Y —~EA|}, st,A>0A"T1,=1, (5.1.8)

Based on DIP techniques [37], we can remove the regularization
term in Eq. (4.1.1). In contrast to model Eq. (5.1.2), we assume that
the abundance is a result of nonnegative convolutional sparse coding

(NCSC), expressed as follows:

ma
A=Y d'*af, where af>0, Vi (5.1.9)

=1

Here, d#* and o denote the i*" 2D convolutional kernel and its corre-

sponding sparse code, respectively. m 4 is the number of convolutional
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kernels. We employ nonnegative sparse code since we experimen-
tally find that it achieves better performance in the abundance estima-
tion problem. This could be attributed to the inherent non-negativity
of abundance. Furthermore, since convolution is a linear operation, it

can be transformed into the following form:
mA
Yo dxa) =Dy, (5.1.10)
=1

The matrix D4 is formed by concatenating the Toeplitz matrices that
unroll the set {d#'}, while T4 is the corresponding sparse code that un-
rolls {a'}. Assuming D 4 is known, the abundance estimation problem

in Eq. (5.1.8) can be transformed into an MCU problem as follows:
1
min 5||Y —EDT 4|7 + A|Tall1, st.,T4>0 (5.1.11)
A

Similarly, we introduce the auxiliary variable €24, u4, p4 to obtain the

augmented Lagrangian of Eq. (5.1.11) as follows:
1
SIY = EDAQulF4AIDali+ R (Da) + 2404 — 4+ wal} (5.1.12)

where R, (I"4) represents the non-negative constraint. To solve this
problem, we can use the ADMM solver, which involves three steps as

follows:

QQH = argming , %HY - EDAQAH%WL%A||F]f.1 — Qa4+ uJAH%

L™ = argming, AT alli+R(Ta) + 4| Ta — Q47 +wll?

Jj+l g j+1 j+1
w o =uy + (0 —Q))

(5.1.13)
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and ADMM solver proceeds as follows:

Y, =((ED,)" (EDy4) + pal) ™
(EDA)"Y + pa(Ty + )

T = max (Softs (1 — 42)T + 24(Q4 — u))),0)

G+l JEs| 1
w, =uy + (T - Q)

5.2 Unfolding based EDIP

In this section, we outline the process of constructing the UEDIP struc-
ture through the unfolding of the ADMM solver presented in Eq. (5.1.7).

Using unfolding techniques, we can introduce learnable parame-
ters A, Ay, Fy, Fy, F3, 51, s9, and s3 that are designed to replace the
parameters in Eq. (5.1.7). Specifically, the operations F; « A; and F5
A, x F4 serve as replacements for (A”Dy)” and ((A”Dy)" (ATDy) +
pel)~!, respectively. The parameters s, s,, and sz are used to sub-
stitute for pg, A\/L, and pg/L in Eq. (5.1.7). It is worth noting that
the linear matrices A; and A, are employed alongside the convolu-
tional dictionaries F, F5, and F3, which are obtained by reversing Eq.
(5.1.3). Thus, we define the operation of a network layer, as illustrated

in Fig. 5.1, given by

Qij_l =Fy%x Ay x F3x (Fl * Ay x YT + Sl(I‘jE + uJE))

T = Soft,, ((1 — s3)T% + s3(Q4 " —ud)) (5.2.1)

Gl 41 ol
uy =up+ (I —Qp)

As depicted in Fig. 5.1, it is important to note that we exclude F x A; x
YT from the layer-wise operations, as this value is shared among dif-
ferent layers to reduce the number of learnable parameters. Each layer
takes as input Y, I, ', u}; ' and outputs updated estimations of I}, and

u),. It is important to emphasize that this UEDIP structure is different
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from that of a general-purpose deep neural network (DNN) or convolu-
tional neural network (CNN), as it combines matrix multiplication (i.e.,
A4, A,) with convolutions (i.e., Fq, Fy, F3). In contrast, a general DNN
does not involve convolutions, and in a general CNN, the linear ma-

trix multiplication is usually added after a series of convolution layers,

b

[j”’ layer

-
|

which serves as the output layer.

DA

E

HglSHs

@)@l E@)

[ Qe-Update T;:-Update u;-Update layer

Figure 5.1: UEDIP layer-wise operations.

Fig. 5.2 illustrates the J; = 3-layer unfolding ADMM-based EDIP
(UEDIP) structure, which takes Y as input and outputs the endmember
estimation E. In the first layer, we initialize T'%, and u}, as zeros. In the
last layer, we obtain the endmember estimation by passing the sparse
code I', through a convolutional operator F3, as shown in Fig. 5.2, and
then applying a Sigmoid activation to satisfy the ENC constraint. The
learnable parameters in each layer are untied. The UEDIP network is
denoted as f0x(Y), where 8 represents the learnable parameters in
UEDIP.

Building upon the concept of DIP [36], we can assume that the
abundance estimation A is available through existing algorithms like

FCLS [2]. Once we obtain the endmember estimation E using the
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UEDIP network fy,,, the learning problem can be formulated as follows:
1
Oy = 3fQIT(91]iEH§|’Y—feE(Y)AGH% (5.2.2)

Once the parameters 6}, have been learned, UEDIP is capable of es-

timating the endmember by computing E = fo; (Y).

5.3 Unfolding based ADIP

To construct a UADIP structure, we will employ unfolding techniques
to the ADMM solver presented in Eq. (5.1.14). Specifically, we will
define learnable parameters, namely E;, E,, Uy, Uy, Uz, and vy, v, v3,
such that U, = E; and U, * E; x Us can replace the role of (ED,4)”
and (ED,)"(ED,) + p4I)~! in Eq. (5.1.14), while v;, vy, v3 can play
the role of p4, A\/L, pa/L in the same equation. It should be noted that
since max(Soft(-)) is equivalent to a shifted ReLU, we can define a

layer of network operation as follows:

Q" = Us By x U (U % Ey X Y + 0 (T + u)y))

/" = ReLU((1 — vs)TY, + vg(QT — uly) — ) (5.3.1)

J+l _ g Jj+1 741
wy =uwy+ (T — Q%)

Fig. 5.3 illustrates the layer-wise operation, where we exclude U x
E; x Y, since it is shared among different layers. Each layer produces
updated estimations of I' y and u 4.

An unfolding ADMM based ADIP (UADIP) structure with three lay-
ers (J4 = 3) is illustrated in Fig. 5.4. It takes Y as input and outputs
abundance estimation A. We use zero initialization for T% and u% in
the first layer, and in the last layer, the sparse code I'® is generated
and passed through a convolutional operator Uj; to estimate the abun-

dance, following our model in Eq. (5.1.9). Finally, a Softmax activation
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Figure 5.3: UADIP layer-wise operations.

is used to impose the ASC and ANC constraints. Similar to UEDIP, we
adopt the untied parameterisation strategy for different layers in UADIP.
The UADIP network is denoted as fy,(Y), where 8, represents the
learnable parameters in UADIP.

Assuming that we have the endmember estimation E. from exist-
ing algorithms such as SiVM [1], after generating the abundance esti-
mation A using UADIP network fo, We arrive at the learning problem
given by:

0 = arguin _[[Y ~ B fo, (¥)} (5.3.2)

Once the parameters 07, are learned, UADIP can estimate the abun-

dance as A = fp- (Y).

5.4 Network for Blind-unmixing using ADMM
unfolding (NBA)

In this section, we propose the Double DIP Network for Blind-Unmixing
using ADMM unfolding (NBA), which combines the UEDIP and UADIP
models. Given the linear model Eq. (2.2.2), we first estimate the end-
member and abundance using UEDIP and UADIP, respectively, result-

ing in E and A. We then obtain the reconstructed HSI observations by
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computing:

A,

Y =EA (5.4.1)

The overall structure of the proposed NBA network is illustrated in
Fig. 5.5, where we denote the learnable parameters in the NBA net-
work as ® = {0z, 04}, where 65, 0,4 correspond to the learnable pa-
rameters in UEDIP and UADIP, respectively. It is important to note that
while our focus is on linear unmixing, the NBA framework can also be
readily applied to nonlinear unmixing problems, similar to the BUDDIP

method.

—>UEDIP fy,—>(E) --------- .
2 e

1BULoss
_>®- i 5\)Y - Y%

ADIP Loss
——>»UADIP f@A _________ > l”ny(VAHQ
5 AR

Figure 5.5: The proposed NBA framework.

Similar to BUDDIP, the NBA network provides three outputs: end-
member estimation E, abundance estimation A and HSI reconstruc-
tions Y when given an HSI image Y. To train the NBA network in
an end-to-end manner, we propose using the composite loss function,

similar to Eq. (4.3.8), which is defined as follows:

L(®)=ay-Lgpip+ as- Laprp + as- Lpy

1
where, Leprp(05) = §||Y — fou (Y)Aq|7
: (5.4.2)
LADIP<9A) = §HY - EGfeA (Y>H%

1 .
Lpy(©) = §||Y - Y|

The loss weights, a1, as, as, play a crucial role in controlling the im-
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portance of each loss term in the overall loss function. In addition,
To guide the training process, we generate the endmember and abun-
dance guidance terms, denoted by E; and A, respectively, using
established unmixing techniques such as SiVM [1] and FCLS [2]. By
incorporating these guidance terms into the loss function, the network
produces meaningful estimates of endmembers and abundances, while
still allowing for the exploration of better solutions beyond the guidance
provided by E; and Ag. It should be noted that in Eq. (5.4.2), we have
excluded the angle loss terms in Eq. (4.3.8) to simplify the hyperpa-

rameter tuning and facilitate faster experimental validation.

5.5 BUDDIP unrolled from LMM

To demonstrate the efficacy of the MCU model, we also introduce a
variant of the BUDDIP network, denoted as LA-BUDDIP, that is un-
rolled from LMM-based ADMM solvers instead of MCU-based ones. To
begin with, we consider the linear endmember estimation (EE) model Eq.
(5.1.1) and linear abundance estimation (AE) model Eq. (5.1.8), and
develop ADMM solvers for them. Following the unfolding technique,
we can construct the EDIP and ADIP modules for the LA-BUDDIP net-
work by unrolling the corresponding ADMM solvers. Therefore, we will
focus on the construction of the EDIP and ADIP modules in the follow-

ing, while the remaining part remains unchanged from the BUDDIP.

5.5.1 Unrolling for EDIP

We begin by introducing the auxiliary variable Xz and reformulating

the linear EE model Eq. (5.1.1) as follows:

1
min §HYT — ATXL|2+ARL(ET), st. XL =E (5.5.1)

EXEg
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where, R, (E) denotes the constraint {E : E > 0}. For the sake of
simplicity, the transform notation 7" is omitted and the objective is re-

formulated in augmented Lagrangian form as follows:
1
min = |[Y — AXp|24AR (E) + Zllup + E — X2 (5.5.2)
EXg 2 2

The problem can be tackled using the ADMM Solver, which yields the

following iterative updates:

X5 = (ATA + pI)"Y(ATY + p(E + u}))

Eit! = max(E — p(E/ +ul, — X4, 0) (5.5.3)

gL _ i j+1 I+l
uy =up+ (B - X5)

Utilizing unfolding techniques, we can define the learnable parameters
W g, Bg, 0 and ng, and subsequently rephrase the equation above

as follows:

X3 = WY + Bg(E 4 u))

Bt = max((1 — 0)E + 0p(X3 —ul,),0) (5.5.4)

wi = g (B - X5

Here, W takes the place of (ATA + pI)~'AT, By acts as (ATA +
pI)~1p, and 6z corresponds to p. Additionally, nz is used as a step-size
in a manner similar to Eq. (3.2.5) to enhance adaptability to the specific
problem at hand. Analogous to UEDIP, the operation of a network layer
is defined by Eq. (5.5.4), and the EDIP with J, ¢ layers in LA-BUDDIP is
created by concatenating J; ; consecutive operations described in Eq.
(5.5.4). The framework with J r = 3 is illustrated in Fig. 5.6. As with

UEDIP, the parameters in each layer are untied.
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5.5.2 Unrolling for ADIP

We will now explain in detail the ADIP construction for LA-BUDDIP. To
achieve this, we will introduce an auxiliary variable X 4 and reformulate

the linear AE model Eq. (5.1.8) as follows:
1
min §||Y — EX4||5+ARA(A), st,X4=A (5.5.5)

where R4(A) represents the constraint in the linear AE model Eq.
(5.1.8), {A: A >0,A"1, = 1,}. We re-write the model in augmented

Lagrangian form as follows:
1
min =Y — EX 4|24 R4(A) + 2flus + A — X 42 (5.5.6)
AXy 2 2

An effective approach to solving this problem is by using the ADMM

Solver, which results in the following iterative updates:

X" = (E"E + pI) H(ETY + p(A7 + )

A7 = Softmax(AJ — p(A7 + ) — X%H)) (5.5.7)

an S j+1 i+l
w, =uy + (AT - X5

where Softmax is used to impose the constraint R4(A). We can de-
fine the learnable parameters W 4, B4, 04, and n4 using unfolding
techniques. Then, we can rewrite the aforementioned equation as fol-

lows:

XA = WY + Ba(A7 + )
AT = Softmax((1 — 0.4)AT — 0wy — X)) (5.5.8)

Wit (A )

Specifically, W , replaces (ETE+pI)'E”, B, replaces (ETE+pI)~!p,

and 04 corresponds to p. Additionally, n4 acts as a step-size, similar
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to Eq. (3.2.5), to enhance adaptability to the specific problem at hand.

Similar to UADIP, the operation of a network layer is defined by Eq.
(5.5.8). By concatenating J; 4 consecutive operations described in Eq.
(5.5.8), we can construct the ADIP with .J, 4 layers in LA-BUDDIP,
which is depicted in Fig. 5.7 for the case where J;, = 3. Like UADIP,

the parameters in each layer are untied.

5.6 Explicit Regularisations

According to the DIP technique described in [37], the explicit regular-
izer R(-) in a recovery problem, such as the one in Eq. (4.1.1), can
be dropped. The neural network parameterization instead, can implic-
itly capture the prior. Later work by [103] found that the performance
of DIP networks can be further improved by adding an explicit RED
regularizer [102]. This is because RED provides an additional explicit
regularization in addition to the implicit one. In this study, we take
this one step further by introducing two RED regularizers into double
DIP network structures to further enhance the network’s performance.
Specifically, we propose adding explicit RED regularization to both E

and A in Eq. (5.4.2). This results in the following loss function:
Lg =L+ pE)+as-p(A) (5.6.1)

For the sake of simplicity, we have omitted the network parameters
® in the loss function L. The RED regularizer p(x) in Eq. (5.6.1) is

defined as follows:

1

ple) = ng(iB — fo(x)) (5.6.2)

where fp(-) is the denoiser function, which can be any well-established
method such as Non-Local Means (NLM) [105] or BM3D [106]. The

RED regularizer minimizes the inner product between the image « and
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5.6. Explicit Regularisations
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its denoising residual  — fp(x). RED can represent a variety of regu-
larizations by incorporating different image denoisers fp. In this work,
we use NLM as our default denoiser. We note that RED is intended
for 3D image data, while the endmembers are embedded in 2D space,
E € RP*E. To address this issue, we expand the endmembers to 3D
space, R**F*f and treat them as grey-image-like data.

It is worth noting that the loss function defined in Eqg. (5.6.1) can
improve not only the performance of the NBA network, but also that of
the BUDDIP network. As depicted in Fig. 4.1 and Fig. 5.5, these two
networks differ only in their structures and inputs. This observation is

further illustrated in Fig. 5.8.
BUDDIP

Figure 5.8: The proposed explicit regularisations to enhance BUD-
DIP/NBA network.

After adding the RED regularizers, it is not straightforward to train
the network with the objective in Eq. (5.6.1). Therefore, in this work,
we propose using the ADMM solver [102,103] to solve Eq. (5.6.1). We
first rewrite the objective in the form of a scaled Augmented Lagrangian

(AL):

L+ai-p(Xg) + 5[ Xp — B - dal}
(5.6.3)
a5 - p(Xa) + 5H[Xa — A~ dal?
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where, {Xg, X4,dg,d4} are auxiliary variables introduced via AL, and
1E, s are also the hyperparameters of AL. The ADMM solver to Eq.

(5.6.3) gives the following iterative update rules:

! = argmin L + /%EHXE —E—dy|%
b ) (5.6.4)
+5 1% — A = di&
XX = arg min aq - p(Xp) + a5 - p(Xa)
+0 X B —dpl (5.65)
HA A
+5 X — AT — I

{di!, iy = {d + (B = XE,
(5.6.6)

th + (At+1 . Xf4+1>}

The optimization of the first objective Eq. (5.6.4) is performed through

Algorithm 2: ADMM solver of Objective Eq. (5.6.3).
Parameters:

* oy ~ ay - loss weights
* ug, pa - ADMM hyper-parameters
* T - the maximum number of ADMM iterations.
Init: d%,d%, X%, X5 < 0,0,0,0, t < 0, and initialise network
randomly.

fort <+ 1to 7 do
Update ©: solving Eq. (5.6.4) via training network.
L Update X, X 4: using fixed point strategy Eq. (5.6.7).
Update dz,d4: using Eq. (5.6.6).

network training, where the outputs E and A depend on ©. For the
second objective Eq. (5.6.5), there are two possible solutions: fixed-
point based or gradient-descent based [102, 103]. In this study, we

employ the fixed-point based solution, which is formulated as follows:

Xt = ——(ufp(X%) + pp(ET + df))
(5.6.7)

X4 = (s fo(XYy) + (A 4 dYy))
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Finally, the last update of Eqg. (5.6.6) is a simple update of the La-
grangian multiplier. The overall steps of our proposed approach are

summarized in Algorithm 2.

5.7 Experiment

In this section, we will evaluate the efficacy of the proposed meth-
ods using the same performance metrics as discussed in Sec. 3.5.1.
These metrics include RMSE and AAD for abundance estimation and

SAD for endmember estimation.

5.7.1 Data

We evaluated the effectiveness of our proposed methods using a syn-
thesized HSI dataset generation procedure, based on the method out-

lined in [18]. The process consists of the following steps:

! —— Chlorite HS179.3B
09 ——— Carnallite NMNH9801 1
0.8 Brucite HS247.3B
07 s <N Axinite HS342.3B

)l \ Ammonio-Jarosite SCE-NHJ
/\ V\ Almandine WS478
il

V)

Reflectance
=)
Y

0 50 100 150 200
Channels

Figure 5.9: Endmember signatures for synthetic data.

« Endmember generation. Firstly, we generated endmembers by
randomly selecting six spectral signatures from the USGS spec-
tral library (splib06) [81], which contains spectral reflectance val-
ues for various minerals over 224 channels. These six signatures

formed a 224 x 6 endmember matrix, as shown in Fig. 5.9.

* Abundance generation. we generated abundances for a syn-

thetic image of size a* x a? pixels. We divided the image into a?
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disjoint patches of size a x a pixels and assigned two endmem-
bers randomly to all pixels of a patch with fractions v and 1 — ~,
while the remaining four endmembers were assigned a value of
0. The abundance map was then convolved with a Gaussian fil-
ter of size (a+1) x (a+1) with variance 2, followed by a pixel-wise
re-scaling to meet the abundance sum-to-one (ASC) constraint.

In this experiment, we set a = 10 and v = 0.8.

* Mixing process. We employ the linear mixing model described
in Eq. (2.2.2) to generate synthetic data for linear unmixing prob-

lems.

* Noise contamination. Finally, we added additive white Gaussian
noise (AWGN) to the generated HSI data. The signal-to-noise
ratio (SNR) was defined as SNR = 10log,, (E[x"x]/E[n"n]),
where x represents the original, noise-free HSI data, and n is

the added noise.

5.7.2 Effectiveness of NBA

We investigated the effectiveness of the proposed NBA for linear un-
mixing on the synthetic dataset contaminated with additive white Gaus-
sian noise (AWGN) at an SNR of 30 dB. The dataset comprised 100 by
100 pixels. The UADIP and UEDIP networks used in our experiments
had J, = 3 layers, m, = 128 kernels, and a kernel size of k4, = 5,
and Jr = 1 layer, mg = 128 kernels, and a kernel size of kg = 5, re-
spectively. Our networks were trained to minimize the composite loss
function Eq. (5.4.2) using the Adam optimizer with a learning rate of
le — 3 for 5000 epochs. As default hyperparameters, we set a; = 0.1,
as = 0.01, and a3 = 1.0 in the composite loss function Eq. (5.4.2). The

training guidance is generated via SiVM+FCLS.

156 of 206



5.7. Experiment 5. Variations of BUDDIP

Network Depth

The network performance is usually heavily dependent on the net-
work depth. In this study, the impact of network depth on the un-
mixing performance of the NBA network is evaluated and reported
in Table 5.2. The default settings are used except for the depth of the
UEDIP and UADIP networks, which are varied between 1 and 5. The
corresponding numbers of learnable parameters for various network
depths are shown in Table 5.1. The results show that the best SAD
is achieved with Jp = 2, J4 = 5, and the best RMSE/AAD is achieved
with J; = 4,J4 = 2. However, both settings have over 11.5 x 10°
learnable parameters. Therefore, for a balance between network per-
formance and complexity, Jr = 1,J4 = 3 is chosen as the default

setting for subsequent experiments.

Table 5.1: The number of learnable parameters with different network
depth.

UADIP depth J4
# learnable
parameters: x10° 1 2 3 4 5
712 | 750 | 7.89 | 8.27 | 8.65
9.98 | 10.37 | 10.75 | 11.14 | 11.52
12.85 | 13.24 | 13.62 | 14.00 | 14.39
15.72 | 16.10 | 16.49 | 16.87 | 17.26
18.59 | 18.97 | 19.36 | 19.74 | 20.12

UEDIP depth Jg

a A 0N =

Kernel Size

In this experiment, we investigate the impact of the convolutional kernel
size on the performance of the NBA network. The default settings are
retained while varying the kernel size in the range of [1,3,5,7,9]. The
results are reported in Table 5.3. It is clear that when kg = k4 = 5,
the proposed NBA network delivers the best AE performance, i.e., the

RMSE and AAD are 0.027 and 4.719, respectively. In the meantime,
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the best SAD of EE is 1.705 when kr = k4 = 3. In this work, we set
the default kernel size to be kg = k4 = 5 for a good trade-off between

the accuracy of AE and EE.

Number of kernels

In this experiment, we investigate the effect of the number of kernels
on the final unmixing performance of the NBA network. We keep the
default settings except for varying the number of kernels in the range
of [32,64,128,256]. The results are presented in Table 5.4. The re-
sults demonstrate that the proposed NBA network achieves the best
abundance estimation performance with an RMSE of 0.027 and AAD
of 4.705 when mg = 32 and m4 = 128. Meanwhile, the best SAD of
1.740 is obtained with mg = 32, m4 = 64 and mg = 128, m4 = 256. We
choose mgp = m4 = 128 as our default settings because it provides a

balance between the accuracy of AE and EE.

Impact of NCSC

We now assess the impact of NCSC Eq. (5.1.9) by comparing the per-
formance of two blind linear unmixing networks: NBA and NBA with
CSC. The ADIP network of NBA is unfolded from the NCSC model,
while the ADIP of NBA with CSC is unfolded from the CSC model. We
used SiVM+FCLS to generate training guidance for both networks de-
noted as E., A and set identical hyperparameters for both networks.
To ensure a fair comparison, we trained both networks using the com-
posite loss function Eq. (5.4.2) with weights «; = 0.1, ap = 0.001,
and a3 = 1.0. Fig. 5.10 shows various metrics versus epochs during
the training process, and we report all performance measurements by
averaging 10 independent runs. The results indicate that NBA with
NCSC outperforms NBA with CSC in estimating abundance due to the
ANC and ASC constraints.
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14
1 ——NBA from CSC
| NBA from NCSC
12

(a) RMSE versus epoch  (b) AAD versus epoch (c) SAD versus epoch

Figure 5.10: The impact of NCSC Eq. (5.1.9) on blind unmixing perfor-
mance. The metrics are drawn with the corresponding log value. (a)
Abundance RMSE versus epoch. (b) Abundance AAD versus epoch.
(c) Endmember SAD versus epoch.

Comparison between BUDDIP and NBA

We aim to evaluate the effectiveness of the proposed unfolding struc-
ture by comparing the performance of two blind linear unmixing net-
works: BUDDIP, a classical Resnet-like network, and NBA, an unfolding-
based network. We generated the training guidance for both networks,
denoted as Eg, A, using SiVM+FCLS, and set the hyperparameters
of NBA and BUDDIP to their default values. To ensure a fair com-
parison and reduce the computational burden of hyperparameter tun-
ing, we train both BUDDIP and NBA using only the MSE-type loss
terms. Specifically, BUDDIP is trained with the composite loss func-
tion Eq. (4.3.8) where the weights are set as a; = 0.1, a3 = 0.01, and
oy = ay = ag = 0, a5 = 1.0. Meanwhile, NBA is trained with the com-
posite loss function Eq. (5.4.2) where the weights are set as «; = 0.1,
as = 0.001, and a3 = 1.0. The training process, including various met-
rics versus epochs, is depicted in Fig. 5.11, and the final performance
is summarized in Table 5.5. All the reported performances are reported
by averaging 10 independent runs.

Our results indicate that although BUDDIP converges faster, NBA
outperforms BUDDIP in terms of final estimation quality. Specifically,
the RMSE of abundance estimation drops from 0.0323 to 0.0296, and
the SAD of endmember estimation decreases from 1.8611 to 1.7911.

Additionally, NBA has 7.89 x 10° learnable parameters, whereas BUD-

161 of 206



5.7. Experiment 5. Variations of BUDDIP

DIP has 4.6 x 10° learnable parameters. In conclusion, the proposed
unfolding structure achieves better performance with a similar number
of learnable parameters compared to the general Resnet-like struc-

ture.
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Figure 5.11: The impact of unfolding on blind unmixing performance.
The metrics are drawn with the corresponding log value. (a) Abun-
dance RMSE versus epoch. (b) Abundance AAD versus epoch. (c)
Endmember SAD versus epoch.

The Effect of MCU model

In this experiment, we evaluate the effectiveness of the proposed MCU
unmixing model by comparing NBA with LA-BUDDIP, where the former
is derived from the MCU model and the latter from the LMM model.
Our evaluation involves comparing the performance of blind linear un-
mixing between LA-BUDDIP and NBA, with both BU networks’ train-
ing guidance, represented by Eq, As, generated through SiVM+FCLS.
We set the hyper-parameters of NBA to their default values, while LA-
BUDDIP is constructed such that the number of learnable parameters
is at the same level as NBA. We also train both networks using the
ADAM optimiser to minimise the loss function Eq. (5.4.2). The results
are depicted in Fig. 5.12, and the final performance is summarised
in Table 5.5.

Our results indicate that NBA has better performance and faster
convergence than LA-BUDDIP. Specifically, the SAD of endmember
estimation for NBA is around 1.79, while that for LA-BUDDIP is 3.287.
The RMSE of abundance estimation for NBA and LA-BUDDIP is around
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0.0296 and 0.128, respectively. This improvement can be attributed to

the network architecture derived from the MCU unmixing model.

18 16
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LA-BUDDIP LA-BUDDIP s LA-BUDDIP
16
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(a) RMSE versus epoch  (b) AAD versus epoch (c) SAD versus epoch

Figure 5.12: Blind unmixing performance comparison between unfold-
ing MCU model based network (NBA) and unfolding LMM based net-
work (LA-BUDDIP). The metrics are drawn with the corresponding log
value. (a) Abundance RMSE versus epoch. (b) Abundance AAD ver-
sus epoch. (c) Endmember SAD versus epoch.

5.7.3 Effectiveness of Explicit Regularisations
Hyperparameter Tuning

In this experiment, we sought to investigate the impact of hyperparam-
eters a; and a, on the performance of NBA+RED, which determine the
relative importance of Lgp;p and Lap;p loss terms in the loss func-
tion Eq. (5.6.3). By default, we use ug = pu4 = 0.1,a4 = a5 = 0.01.
To this end, we kept a3 fixed at 1 and varied a; and «; in the range
of [0.1,0.01,0.001], while keeping all other settings at their default val-
ues. The results are summarised in Table 5.7. It indicates that as
oy increases, the network’s endmember estimation improves overall
in terms of SAD. Conversely, when «; is less than 0.1, an increase
in a leads to a gradual improvement in abundance estimation. How-
ever, when «; reaches 0.1, the opposite trend is observed. This may
be attributed to the fact that both disregarding and exaggerating guid-
ance can result in poor unmixing. The optimal unmixing performance
can be achieved by appropriately adjusting the loss weight, such as
with a; = 0.1 and ay, = 0.001. These findings also suggest that the

proposed method is sensitive to hyperparameters.
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Table 5.7: Hyperparameter tuning.

o ay | as | RMSE AAD SAD
0.001 | 0.001 | 1 | 0.2442 | 54.9031 | 21.1657
0.001 | 0.01 | 1 | 0.2387 | 53.3415 | 22.3389
0.001 | 0.1 1 0.23 | 50.4799 | 23.9072
0.01 | 0.001 | 1 | 0.2382 | 52.9666 | 22.7712
0.01 | 0.01 | 1 | 0.2285 | 50.1863 | 20.7052
0.01 0.1 1 | 0.2256 | 48.9509 | 22.4393

0.1 | 0.001 | 1 |0.0236 | 4.1299 | 1.4854

0.1 0.01 | 1 | 0.0268 | 4.5942 | 1.7046

0.1 0.1 1 | 0.2075 | 43.7296 | 19.7209

BUDDIP/NBA with and without Explicit Regularisations

We aim to assess the effectiveness of explicit regularizers by compar-
ing the performance of BUDDIP with and without RED, as well as that
of NBA with and without RED, using the same synthetic data as pre-
sented in Sec. 5.7.2. The following hyperparameters were set: BUD-
DIP was trained with o = 0.1, = 0.01,a3 = 1.0 in loss Eq. (5.4.2)
and ADAM optimizer with a learning rate of 5¢ — 3; for BUDDIP with
RED, we used a; = 0.1, = 0.01, a3 = 1.0, ¢y = 0.56, 5 = 0.33, up =
0.318,u4 = 0.9 in objective Eq. (5.6.3) and ADAM optimizer with a
learning rate of 5e —3; for NBA, we used o = 0.1, s = 0.001, a3 = 1.0 in
objective Eq. (5.4.2) and ADAM optimizer with a learning rate of 1e — 3;
for NBA with RED, we used a1 = pup = pa = 0.1, = 0.001,04 =
as = 0.01, a3 = 1.0 in objective Eq. (5.6.3) and ADAM optimizer with a
learning rate of 1e — 3. All networks were trained with 12000 epochs.
We summarize the results in Table 5.6 and present the performance
metrics versus training epochs in log values in Fig. 5.13.

The results demonstrate that the addition of RED regularizers sig-
nificantly improves the performance of both BUDDIP and NBA net-

works. For instance, in the NBA, the AAD of abundance estimation

improves from 5.0919 to 4.6294, and the SAD of endmember estima-
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tion improves from 1.79 to 1.60. We attribute this improvement to the
explicit regularizers added to the networks. Similar performance im-
provements are also observed in BUDDIP+RED when compared with

BUDDIP.
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Figure 5.13: The impact of RED on blind unmixing performance. The
metrics are drawn with the corresponding log value. (a) BUDDIP:
Abundance RMSE versus epoch. (b) BUDDIP: Abundance AAD ver-
sus epoch. (c) BUDDIP: Endmember SAD versus epoch. (d) NBA:
Abundance RMSE versus epoch. (e) NBA: Abundance AAD versus
epoch. (f) NBA: Endmember SAD versus epoch.

5.8 Summary

This chapter presents several variations of BUDDIP to further enhance
the performance. Firstly, we propose a novel neural network archi-
tecture for hyperspectral unmixing problems. Unlike the general lin-
ear mixture model (LMM), we propose a MatrixConv Unmixing (MCU)
model and corresponding ADMM solvers. By employing the algorithm
unrolling technique for each solver, we construct unfolding-based deep
image prior networks for endmember estimation (UEDIP) and abun-
dance estimation (UADIP). These two networks are combined based

on LMM to create our final network for blind unmixing using ADMM un-
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folding, which we refer to as NBA. Additionally, we propose the explicit
inclusion of two regularizers for endmember and abundance estima-
tion using regularization by denoising (RED) techniques. Experimental
results have further showcased the efficacy of the proposed methods.
However, in contrast to vanilla BUDDIP, all of these variations necessi-

tate a greater number of training epochs.
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Chapter 6

Comparison of Methods on

Real Data

In this chapter, we aim to evaluate the effectiveness of our proposed
methods by comparing them against some of the current state-of-the-
art unmixing techniques using real hyperspectral imaging datasets. To
perform this comparison, we will utilize the performance metrics dis-
cussed in Sec. 3.5.1, which include RMSE and AAD for abundance

estimation, as well as SAD for endmember estimation.

6.1 Data

To evaluate the performance of various unmixing algorithms, We use

three commonly used real HSI datasets.

1. JASPER RIDGE. The first real dataset is the well-known Jasper
Ridge [107]. This dataset features 512 x 614 pixels with a range
of 224 spectral bands from 380 nm to 2500 nm, and a spec-
tral resolution of 9.46 nm. The four endmembers present in the
scene are Road, Soil, Water, and Tree. To reduce the computa-
tional burden and facilitate faster experimentation, we consider a
100 x 100 pixels sub-image of the original image. To account for

the effects of dense water vapor and atmosphere, we eliminate
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26 spectral bands, leaving only 198 out of the 224 for unmixing.
A representative image of the 80th spectral band is depicted in

Fig. 6.1a.

2. URBAN. The Urban dataset [16, 108] is a widely used hyper-
spectral dataset in studies of hyperspectral unmixing. The image
comprises 307 x 307 pixels, with each pixel representing an area
of 2x2 square meters. The dataset includes 210 wavelengths,
spanning from 400 nm to 2500 nm, resulting in a spectral reso-
lution of 10 nm. However, due to the presence of dense water
vapor and atmospheric effects, several channels (1-4, 76, 87,
101-111, 136-153, and 198-210) were removed, resulting in a
total of 162 channels. This is a standard preprocessing step for
hyperspectral unmixing analyses. The ground truth for the Urban
dataset is available in three different versions, each with a differ-
ent number of endmembers. For our study, we used the version
with six endmembers, which were identified as Asphalt, Grass,
Tree, Roof, Metal, and Dirt, respectively. The Urban HSI image
associated with the 80th channel is depicted in Fig. 6.1b.

3. SAMSON. The Samson dataset is another real dataset that we
utilized in this study. This dataset comprises of an image with a
resolution of 952x 952 pixels, each pixel captured at 156 different
channels covering a range of wavelengths from 401 nm to 889
nm. The spectral resolution is high, with a value of 3.13 nm.
Since the original image is quite large, computations would have
been expensive. Therefore, a region of 95x95 pixels has been
selected, starting at the (252,332) pixel of the original image. The
image consists of three distinct endmembers, namely Soil, Tree,
and Water. Fig. 6.1c demonstrates the Samson dataset at the

80th channel.
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(a) Jasper Ridge (b) Urban (c) Samson

Figure 6.1: HSI image at 80th channel. (a) Jasper Ridge. (b) Urban.
(c) Samson.

6.2 Evaluation on real data

We now evaluate the unmixing performance of various methods on var-
ious real datasets. The unmixing methods used in this comparison in-
clude the traditional unmixing methods SiVM [1]+FCLS [2], rNMF [13],
HyperCSI [96], HiSun [62], EDAA [52] and learning based unmixing
networks MNN-BU-2 [18], EGU-Net-ss [4], UnDIP [36], CNNAEU [100],
MiSiCNet [101] and the proposed UBUNet-Il, L-BUDDIP, NL-BUDDIP
and NBARED. In this study, we utilized SiVM+FCLS as the default gen-
erator for techniques like MNN-BU-2, EGU-Net-ss, UnDIP, and MiSiC-
Net, which require initialization or guidance. To demonstrate the effec-
tiveness of our proposed methods, we initially trained L-BUDDIP with
loss function Eq. (4.3.8) and NBARED with Algorithm 2, using guid-
ance generated from SiVM+FCLS. Following this, we further trained
both L-BUDDIP and NL-BUDDIP to minimize the loss function Eq.
(4.3.8) by utilizing guidance from EDAA, resulting in state-of-the-art
performance. It's important to note that the MM module utilized in the

NL-BUDDIP was employed as the FM model.

JasperRidge

We first evaluate the performance on Jasper Ridge. Experiment set-
tings are summarised in Table 6.1. The qualitative results of estimated
endmembers and abundances are shown in Fig. 6.2 and Fig. 6.3, re-

spectively. The corresponding quantitative results are shown in Ta-
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ble 6.4. Fig. 6.2 presents the results of various unmixing methods on
the Jasper Ridge dataset using guidances/initialization generated from
SiVM+FCLS. Methods such as SiVM+FCLS, CNNAEU, UnDIP, EGU-
Net, MNN-BU, and UBUNet failed to accurately estimate the signa-
tures of the road. Additionally, HyperCSI and HiSun were unsuccess-
ful in unmixing the signature of Water, while MiSiCNet did not yield
meaningful unmixing results in this dataset.

In contrast, Table 6.4 shows that the proposed UBU-Net, L-BUDDIP,
and NBARED methods surpassed the guidance SiVM+FCLS in terms
of abundance AAD and endmember SAD. Notably, L-BUDDIP achieved
an abundance AAD of 16.24 and an endmember SAD of 8.15, while
UBUNet-Il achieved an abundance AAD of 17.60 and an endmem-
ber SAD of 8.0. Similarly, NBARED produced an abundance AAD of
14.4 and an endmember SAD of 5.36. Conversely, SiVM+FCLS pro-
duced an abundance AAD of 20.72 and an endmember SAD of 11.35,
demonstrating the effectiveness of the proposed methods.

Furthermore, when using guidance generated from EDAA, the pro-
posed L-BUDDIP and NL-BUDDIP produced the most visually appeal-
ing unmixing results. The quantitative results in Table 6.4 also show
that the proposed L-BUDDIP with guidance from EDAA had the best
SAD for the road endmember and the overall average SAD among
all endmembers. With the improved endmember estimation, the pro-
posed L-BUDDIP achieved state-of-the-art abundance estimation in
terms of RMSE and AAD. The proposed NL-BUDDIP also performed
slightly better than L-BUDDIP in terms of abundance estimation.

While EDAA delivered very good unmixing results with an AAD of
7.66, the proposed BUDDIP method further improved the AAD to 5.20.
The qualitative results illustrated in Fig. 6.3 indicate that the proposed
BUDDIP with guidance from EDAA generated the best abundance es-

timation compared to the competitors.
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Urban

We then evaluate the performance using the Urban dataset with 6 end-
members. The hyperparameters for various methods are summarised
in Table 6.5. The qualitative results of estimated endmembers and
abundances are shown in Fig. 6.6 and Fig. 6.7, respectively. The cor-
responding quantitative results are summarised in Table 6.8. The re-
sults of EGU-Net-ss algorithm are not reported as it is not compatible
with this dataset. The quantitative results indicate that the EDAA al-
gorithm outperforms the competing methods, with an abundance AAD
of 21.44 and an endmember SAD of 7.914. In contrast, HyperCSI
and HiSun achieve higher AADs of 60.48 and 34.779, respectively,
with HiSun achieving a similar endmember SAD of 8.01 to EDAA. The
guidance generator SiVM+FCLS produces an abundance AAD of 52
and endmember SAD of 39, while UBUNet-II performs even worse with
an abundance AAD of 65.7 and endmember SAD of 39.65 due to the
lack of training guidance, which can lead to physically meaningless un-
mixing results. However, the proposed L-BUDDIP and NBARED meth-
ods outperform SiVM+FCLS, with improved abundance AADs of 40.96
and 47.67, respectively, and improved endmember SADs of 14.48 and
27.95, respectively.

Furthermore, when using guidance generated from EDAA, the pro-
posed NL-BUDDIP and L-BUDDIP methods achieve the best and second-
best abundance AADs of 17.89 and 17.905, respectively. They also
produce the second-best and best average endmember SADs of 7.549
and 6.993, respectively. The qualitative results in Fig. 6.6 and Fig. 6.7
demonstrate that the proposed BUDDIP method with guidance from

EDAA delivers state-of-the-art unmixing results.
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Samson

We then evaluate the performance using the Samson dataset. The
hyperparameters of various methods are summarised in Table 6.9.
The qualitative results of estimated endmembers and abundances are
shown in Fig. 6.10 and Fig. 6.11, respectively. The corresponding
quantitative results are reported in Table 6.12. The results of EGU-Net-
ss algorithm are not reported as it is not compatible with this dataset.
It is clear that the EDAA algorithm can readily generate the best unmix
among the competitors, with an abundance RMSE of 0.0232, AAD
of 2.6365 and endmember SAD of 1.5091. In comparison, Hyper-
CSI, HiSun, MiSiCNet and CNNAEU show an abundance AAD over
15 and endmember SAD over 8.9. However, when the unmixing re-
sults of EDAA are used as guidance for the proposed methods, the
proposed L-BUDDIP can deliver further improved abundance RMSE
and AAD, which are 0.0145 and 1.4957, respectively. Similarly, the
proposed NL-BUDDIP produces the best endmember SAD of 1.4287.
On the other hand, when using guidance from SiVM+FCLS, the pro-
posed L-BUDDIP and NBARED can also produce improved perfor-
mance. Specifically, L-BUDDIP achieves an abundance AAD of 13.68
and endmember SAD of 2.45 and NBARED achieves an abundance
AAD of 26.30 and endmember SAD of 2.87. In comparison, the guid-
ance SiVM+FCLS achieves an abundance AAD of 34.67 and an end-
member SAD of 3.47. The qualitative results shown in Fig. 6.10 and
Fig. 6.11 also illustrate the proposed methods with guidance from EDAA

achieve the most visually appealing results.

6.3 Summary

In this chapter, we evaluated the performance of our proposed inter-

pretable unmixing networks UBUNet, as well as the general unmix-
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ing framework BUDDIP and NBARED, by conducting experiments on
three real datasets. We compared the results with several state-of-
the-art unmixing methods, including MNN-AE, MNN-BU, UnDIP, EGU-
Net, SiVM+FCLS, rNMF, HyperCSlI, HiSun, EDAA, MiSiCNet and CN-
NAEU. Our findings demonstrate the effectiveness of the proposed

methods in comparison to existing unmixing techniques.
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Chapter 7

Conclusion and Future

Directions

7.1 Conclusion

Despite the significant advancements in learning-based unmixing tech-
niques, most of these methods are dependent on an auto-encoder
structure where the encoder uses a black-box deep neural network ar-
chitecture, lacking a systematic approach for designing unmixing net-
work structures. Another drawback of current methods is that, without
proper guidance, deep learning-based techniques cannot ensure gen-
erating physically meaningful unmixing results. Although there is a
growing number of unmixing networks that are trained with guidance,
their unmixing performance is often restricted by the quality of the guid-
ance. Additionally, the reliance on the auto-encoder structure in most
learning algorithms restricts their ability to generalize from linear to
nonlinear unmixing problems.

Inspired by algorithm unfolding techniques, we introduce a new HSI
unmixing algorithm that combines both model- and learning-based ap-
proaches. The algorithm is based on the unrolling of the Alternating Di-
rection Method of Multipliers (ADMM) solver in a linear mixture model

represented by a constrained sparse regression problem. We intro-
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duce two neural network structures: a supervised network for abun-
dance estimation and an unsupervised network for blind unmixing.
Our extensive experiments reveal that the proposed methods achieve
faster convergence and superior performance even with a limited train-
ing dataset size, surpassing other unmixing methods such as MNN-
AE&BU, UnDIP, and EGU-Net.

In response to the limitations of guidance, we present a general
unsupervised framework, motivated by Deep Image Prior techniques,
for both linear and nonlinear blind unmixing models. Our framework
includes three modules: an Endmember Estimation module using DIP
(EDIP), an Abundance Estimation module using DIP (ADIP), and a
Mixing module (MM). The EDIP and ADIP modules generate endmem-
bers and abundances respectively, while the MM, built based on the
postulated unmixing model, produces a reconstruction of the HSI ob-
servations. To produce meaningful unmixing results, we propose a
composite loss function that is applicable to both linear and nonlinear
unmixing models. An adaptive loss weight strategy is also proposed to
enhance unmixing results in nonlinear mixing scenarios. Experiments
on both synthetic and real datasets demonstrate the superiority of the
proposed methods over current state-of-the-art unmixing algorithms.

Finally, we introduce a novel blind unmixing network, called NBA,
which combines the concepts of unfolding techniques and deep image
priors techniques. Our proposed method utilizes a novel MatrixConv
Unmixing (MCU) Model, which is solved using ADMM iterative solvers.
We then unfold these solvers to construct the network structure for
EDIP and ADIP. To enhance performance, we further apply a denois-
ing regularizer (RED) to the endmember and abundance estimations.
Experimental results on both synthetic and real datasets demonstrate

the effectiveness of our proposed method.
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7.2 Future Directions

There are several promising directions for future research on learning-

based hyperspectral image (HSI) unmixing techniques.

7.2.1 Incorporate Advanced Generative Models

Given DIP techniques as a generative model, one possible direction
is incorporating advanced generative models, such as variational au-
toencoder (VAE) [109], Generative Adversarial Networks (GAN) [110],
diffusion model [111], and Transformers [112], which have shown im-
pressive performance in corresponding generative tasks. Although
there are some preliminary works [113—116] that explore this area,

it remains a hot research topic.

7.2.2 Combine with other HSI techniques

In addition, there have been efforts to solve other HSI tasks such as
HSI classification problems by utilizing spectral unmixing as a data
augmentation technique [117]. Despite significant progress in HSI
classification with recent advancements in neural networks, overfitting
due to complex model structures and small training sets remains a ma-
jor issue. To address this, reducing the complexity of neural networks
can prevent overfitting but it may also limit their ability to capture ab-
stract features. In [117], they propose an abundance-based multi-HSI
classification method [117]. Conversely, it is worth exploring whether
the performance of HSI unmixing can be further enhanced by utilizing

other HSI techniques, such as HSI classification.

7.2.3 Other Applications

HSI techniques can also be combined with other imaging modalities

such as fluorescence microscopy in other applications. For exam-
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ple, in mineral exploration, HSI unmixing can identify mineral signa-
tures and determine the type and abundance of minerals in a geo-
logical area [118]. In disease detection, HSI unmixing can identify
cancerous tissue, monitor disease progression, and develop new di-
agnostic tools [119]. HSI unmixing can also be used in environmental
monitoring [6] to monitor water quality, detect oil spills, and track the
spread of pollutants. In agriculture [120], HSI unmixing can monitor
crop health, estimate crop yields, identify invasive species, and moni-
tor forest health and biomass. In art investigation, HSI unmixing [121]
can identify the materials and techniques used in art objects, monitor

their condition, and guide conservation efforts.
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