
Scaling of the Nonlinear Coupling Coefficient in Multimode Fibers

Paolo Carniello(1), Filipe M. Ferreira(2), Norbert Hanik(1)

(1) Institute for Communications Engineering, Technische Universität München, paolo.carniello@tum.de
(2) Optical Networks, Dept. Electronic and Electrical Eng., University College London

Abstract We derive approximate closed-form expressions and scaling rules for the fiber nonlinear coeffi-
cient γκ with the number of modes in strongly-coupled multimode fibers for space-division multiplexing.

Introduction

In the field of space-division multiplexing (SDM)
the most common fiber structures are multi-
core fibers (MCFs) and multimode fibers (MMFs).
MCFs are considered to be the preferred medium
for long-haul communications given their potential
for smaller multiple-input multiple-output (MIMO)
signal processing complexity, when compared to
MMFs[1]–[3]. This is, in MCFs, the level of lin-
ear coupling can be directly controlled through,
e.g., the separation of the cores[1],[3], to achieve
weak coupling and avoid higher-order MIMO al-
together, or to achieve strong coupling reducing
the fiber delay spread[4] and so the MIMO receiver
complexity[3]. However, MMFs allow for a higher
spatial-spectral efficiency than that of MCFs[2],
given their potential to support a larger number
of spatial paths, even above 1000, in the same
cross-sectional area of a single mode fiber (SMF).
A strong motivation to the study of MMFs for long
distances and, thus, bringing into play the Kerr
nonlinear response of silica fibers.

In strongly-coupled SDM systems, Kerr nonlin-
earity is taken into account through the following
Manakov equation[5],[6]:
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where A = [A1, . . . , AM ]T is the vector of modal
amplitudes, and L [A] is the linear operator ac-
counting for mode coupling and dispersion. The
last term of (1) accounts for Kerr effect, which
depends on two coefficients γ = ω0n2
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, where M is the
total number of modes (including polarizations),
ω0 is the central frequency, n2 is the nonlinear
refractive index, c is the light-speed in vacuum,
Aab =
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is the intermodal ef-

fective area between spatial modes Fa and Fb
[6].

For multimode SDM systems, the term γκ in
(1) is sometimes assumed scaling as 1/M , in
which case, under certain scenarios, spectral effi-
ciency per mode would increase with M [6]. How-

ever, as we show in the following, the assumption
γκ ∝ 1/M is valid only for a particular fiber design
strategy, that is by increasing only the core radius.

Scaling of the Nonlinear Coefficient with Index
Difference and Core Radius
Designing a MMF essentially consists in select-
ing the refractive index profile shape n(r) (r is
the radial coordinate), refractive index difference
∆ = (n2(0)− n2(R))/(2n2(0)) (or numerical aper-
ture NA =

√
n2(0)− n2(R)), and core radius R,

that allow for a given number of modes. We limit
ourselves to the trenchless parabolic graded-index
(GI) and step-index (SI) profiles[7]. To increase the
number of modes (M ≳ 200), besides increasing
R, one can increase ∆ since it is a free parame-
ter. In any case, a larger M comes with enhanced
detrimental effects, such as modal delays, mode-
dependent losses, and bend losses, for which
tuning ∆ can be helpful[2],[8]. Hence, we study
the scaling of γκ in the general scenario where
both R and ∆ are varied, starting with the case in
which only one of the two changes, keeping the
other fixed. We choose ∆ ranging from ∆min,GI

or ∆GISMF, for a graded-index single mode fiber
(GISMF), to ∆max; R from RGISMF to Rmax. A
detailed explanation of the choice of these pa-
rameters is given later. We set λ0 = 1550 nm,
k0 = (2π)/λ0, n2 = 2.6 · 10−20 m2W−1, and as-
sume weak-guidance.

Considering a set of graded-index multimode
fibers (GIMMFs) for which R increases while ∆ is
held fixed, we derived an approximation for γκ:

γκ ≈ ω0n2

c
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4

(NAk0)
2

4πM
. (2)

Fig.1 shows γκ as a function of M for analyti-
cal results (dashed lines) and for numerical re-
sults (markers) exploiting mode solver solutions[9]

– M is varied by ∆ and/or R . The accuracy of
(2) (for M > 2) is self-evident from the match-
ing between analytical and numerical results for
the cases ∆ = ∆max, and ∆ = ∆GISMF. Eq.(2)
was derived by independently approximating γ
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R = RGISMF, ∆ ∈ [∆GISMF,∆max]
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R ∈ [RGISMF, Rmax], ∆ = ∆GISMF
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Fig. 1: Scaling of γκ with M for different GIMMF designs. The dashed lines are the proposed formulas: cyan is (3)
with R = RGISMF; magenta is (2) with ∆ = ∆max; green is (2) with ∆ = ∆GISMF; violet is (3) with R = Rmax.
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Fig. 2: Scaling of A11 with M for different GIMMF de-
signs. The dashed lines are the proposed formulas.
Same labels for lines and markers as in Fig.1.
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Fig. 3: Scaling of κ with M for different GIMMF designs.
The yellow dashed line is the proposed fitted formula
7/(4

√
M). Same marker labels as in Fig.1.

and κ. For γ, we exploited a Gaussian approx-
imation for the fundamental mode[10],[11] to obtain
A11 ≈ π 1

(NAk0)2
4
√
M , whose accuracy is visible

in Fig.2. The intuition is that A11, which is a mea-
sure of how much a mode spreads over a fiber
cross-section, increases with R. For κ, we fitted
κ ≈ 7

4
√
M

from numerical simulations, see Fig.3.
The intuition is that the inclusion of a larger num-
ber of modes with greater effective areas Akk into
the averaging procedure to compute κ, lowers κ.

For a set of GIMMFs with increasing ∆ and fixed
R, we derived:

γκ ≈ ω0n2

c

7

4

1

πR2
(3)

which indicates that γκ stays constant when ∆

is varied. Fig.1 shows analytical and simulation
results for R = Rmax and R = RGISMF, confirming
the validity of (3). Eq.(3) was derived by firstly
exploiting again the Gaussian approximation to
obtain A11 ≈ πR2

√
M

. The intuition is that an increase
of ∆ tends to confine the modal profiles, hence
A11 reduces. Secondly, the same fitted relation
κ ≈ 7

4
√
M

as above was used. Both (2) and (3)
are valid also when R and ∆ are varied together.
However, in such case the scaling of γκ with M is
hidden behind NA and R, respectively.

For step-index multimode fibers (SIMMFs), it
can be shown that the same trends hold, i.e.,
γκ ∝ 1/M when ∆ is fixed, and γκ ≈ const when
R is fixed, although with less accuracy than for
GIMMFs, see Fig.5.

Bounds on the Nonlinear Coefficient
The ultimate throughput limit depends on the over-
all impact of the Kerr nonlinearity. Towards the
assessment of the potential throughput of SDM
systems against a bundle of SMFs[1],[3], in the fol-
lowing we analyze the range of achievable val-
ues for γκ in MMFs. Starting from a baseline
GISMF, the upper bound is obtained by increasing
∆ from ∆GISMF until ∆max, and then increasing
R from RGISMF until Rmax. Finally, we study two
lower bounds. One is found by increasing R from
RGISMF until Rmax, and then increasing ∆ from
∆GISMF until ∆max. A more conservative lower
bound, which accounts also for large mode area
fibers, is found by assuming a reference fiber with
R = Rmax and ∆ = ∆min,GI, in which case ∆ is in-
creased up to ∆max. We chose RGISMF = 6.6µm
and ∆GISMF = 0.41%, so that A11 ≈ 86µm2,
similar to a SSMF[12]. We set ∆max = 5%,
Rmax = 50µm, and ∆min,GI = 0.0073%. Extreme
∆ values are considered for maximum general-
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[2]: ∆ = 0.5%, R ∈ [10:5:50] µm
[2]: ∆ = 1%, R ∈ [15:5:50] µm
[2]: ∆ = 1.5%, R ∈ [20:5:50] µm
[2]: ∆ = 2%, R ∈ [20:5:50] µm
[2]: ∆ = 2.5%, R ∈ [20:5:50] µm
[2]: ∆ = 3%, R ∈ [20:5:50] µm
[2]: ∆ = 3.5%, R ∈ [20:5:50] µm
[2]: ∆ = 4%, R ∈ [25:5:50] µm
[2]: ∆ = 4.5%, R ∈ [25:5:50] µm
[2]: ∆ = 5%, R ∈ {31.25, [35:5:50]} µm

Fig. 4: Scaling of γκ with M for optimized fibers as in Ref.[2] (in colors). In black the same lines as Fig.1.

Tab. 1: Parameters for relevant GIMMFs in Fig.1

M ∆(%) R (µm) A11 (µm2) κ γκ (1/W/km)

2 0.41 6.6 86 8/9 1.1
2 0.0073 50 4066 8/9 0.023
42 5.0 6.6 21 0.26 1.3
182 0.41 50 574 0.13 0.024
2562 5.0 50 161 0.037 0.024

ization. A higher ∆max would tend to break the
weak-guidance approximation, and would not be
practical since modal delays and mode-dependent
losses would be too high[2]. The value of Rmax

was bound by fixing a 125µm diameter cladding
as for SMFs, for device backward compatibility[13],
and mechanical reliability[2],[3],[13]. The bounds and
the set of achievable values for γκ are visible in
Fig.1. Table 1 summarizes parameters for relevant
fibers in Fig.1.

The same procedure can be repeated for
SIMMFs. As initial point it has been chosen a
fiber with RSISMF = 4.1µm and ∆SISMF = 0.32%,
to mimic a SSMF with A11 = 85µm[12]. The
other relevant parameters are Rmax = 50 µm,
∆min,SI = 0.0034%, and ∆max = 5%. The resulting
bounds are visible in Fig.5.

The area of achievable values γκ in Fig.1 indi-
cates that the scaling of γκ with M is not simply
1/M , but depends on the strategy to increase M

– subject to the consideration of the linear effects
(e.g., modal dispersion)[2],[8]. The γκ ∝ 1/M scal-
ing can only be guaranteed for M ≲ 200. Finally,
a design strategy with poor γκ roll-off (with M ), as
for fixed R, may lead to enhanced nonlinearities.
Comparison with Optimized Fibers
In Fig.4 the γκ values for the GIMMFs designed
as in Ref.[2] for low delay spread have been plotted
against the results of the previous sections. The
consistency between both sets of results supports
the validity of our investigation. In particular, the
optimized fibers lie within the foreseen boundaries,
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Fig. 5: Scaling of γκ with M for different SIMMF designs.
The dashed lines are the discussed trends.

and the approximate trends for γκ (∝ 1/M with R,
and const with ∆), are verified again. Similar con-
siderations hold for κ and A11. Finally, an analytic
reasoning based on the Gaussian approximation
indicates that for realistic slightly non-parabolic
GIs, γκ deviates by at most 10% from the parabolic
case.

Fiber data for this paper have been made freely
available[14].

Conclusions
We studied the scaling of the nonlinear coefficient
γκ with the number of modes in a MMF operating
in the strongly coupled regime. Closed-form ex-
pressions for the scaling of γκ were proposed and
validated against numerical results. These expres-
sions can be used in throughput estimation models
for SDM, e.g., GN-like models[15]. Thus, contribut-
ing towards the assessment of the feasibility of
future long-haul SDM communication systems.
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