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Abstract: We study anti-self-dual Yang—Mills instantons on R® x §', also known as
calorons, and their behaviour under collapse of the circle factor. In this limit, we make
explicit the decomposition of calorons in terms of constituent pieces which are essen-
tially charge 1 monopoles. We give a gluing construction of calorons in terms of the
constituents and use it to compute the dimension of the moduli space. The construction
works uniformly for structure group an arbitrary compact semi-simple Lie group.

1. Introduction

This paper is motivated by the study of the behaviour of 4-dimensional anti-self-dual
Yang-Mills instantons under codimension-1 collapse. We focus on intantons on the flat
model R? x S! where the circle has radius ¢ — 0. In the literature these periodic
instantons are often referred to as calorons. We construct families of calorons that can
be qualitatively described as superpositions of building blocks localised around points in
the collapsed limit R?, glued into a singular S'—invariant abelian background obtained
from a sum of Dirac monopoles. All the calorons we produce have “maximal symmetry
breaking” at infinity, i.e. the centraliser of the holonomy around circles {x} x S' for
|x] > 1 is a maximal torus in the structure group G. The approximation in terms of
simpler building blocks is increasingly accurate as € — 0 and we expect our construction
captures some generic behaviour of instantons under codimension-1 collapse.

The building blocks in our construction are simple explicit “fundamental” calorons
obtained from the charge 1 SU (2) monopole on R? and suitable embeddings of SU (2)
into a higher rank compact semi-simple structure group G. For G = SU (2) there are two
different types of fundamental calorons: one is the charge 1 monopole lifted to R3 x !
as a circle invariant instanton; the other type of fundamental caloron, that we call a
“rotated” monopole, is not circle invariant (in a way compatible with a fixed framing at
infinity) and arises from the non-trivial loop in the moduli space of charge 1 monopoles.
For higher rank G, the fundamental calorons are obtained by embedding the charge 1
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monopole along one of the simple coroots and the rotated monopole along the lowest
negative coroot.

We refer to Theorem 6.3 in the paper for a precise statement of our existence result.
As a consequence, we establish the existence of calorons with non-trivial holonomy for
arbitrary compact semisimple structure group.

Theorem. Fix a compact simply connected semi-simple Lie group G of rank rk with
Lie algebra g, a generic holonomy parameter @ € g, an instanton number ny € Z and
a total magnetic charge ym = Zf:o ny ) in the coroot lattice of G. If n,, > 0 for all
w =0,...,1k, then the moduli space of calorons M(w, Ym, no) with structure group
G is non-empty.

Our construction of calorons is reminiscent of the description of “widely separat-
ed” monopoles on R [16,33]. The interpretation of calorons in terms of constituent
monopoles is not new, but a direct description in terms of the connection and for arbitrary
structure group has not appeared before in the literature. In the late 1990s, implementing
explicitly the Nahm Transform for calorons, Kraan—van Baal [21] and Lee—Lu [24] in-
dependently produced an explicit family of SU (2) calorons with non-trivial holonomy,
instanton number 1 and vanishing total magnetic charge. These calorons are qualitatively
interpreted as a superposition of a monopole and an anti-monopole. Conjectural decrip-
tions of calorons with higher rank structure group in terms of constituent monopoles
were then discussed in [20,22] for G = SU(n) and [23] for general G. This idea and
its relation with the collapsing behaviour of instantons does not appear to have been
explored further and the purpose of this paper is to provide a simple but rigorous gluing
construction implementing it.

More generally, besides early references such as [14] that constructs explicit calorons
with trivial holonomy, much of the work on calorons makes use of the Nahm Transform
for G = SU(n) calorons [3,32] rather than working with the connection A directly.
Some explicit solutions have been obtained using the Nahm Transform to construct
multicalorons in [2], and symmetric configurations in [7,13,19,35]. For an overview of
the literature on calorons, including examples with trivial holonomy see [7]. Given the
Nahm Transform only applies to classical structure groups, we use some of the tools
and ideas of our gluing construction to also answer some basic open questions about the
moduli space of calorons for arbitrary structure group. In particular, we calculate the
expected dimension of the moduli space in Theorem 7.11.

Theorem. In the notation of the previous theorem,
dim M(w, Ym, no) = 4(ng + - - - + nx).

This uses the index theorem for Dirac operators on ALF manifolds [4,26,30] and
an excision argument based on our gluing construction. (The index theorem does not
immediately apply to the deformation theory of calorons because the adjoint action of the
holonomy at infinity is always trivial on the Cartan subalgebra.) This index computation
shows that the calorons we construct depend on the right number of parameters (positions
and phases of the constituent monopoles) and that the fundamental calorons are precisely
the ones that belong to a 4-dimensional moduli space. Given moduli spaces of calorons
are hyperkéhler manifolds, this is the smallest non-trivial number of parameters gauge
equivalence classes of calorons can depend on.

Calorons are the simplest examples of instantons on ALF spaces, recently studied by
Cherkis—Larrain-Hubach—Stern [4,5]. We expect similar results to the ones described
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here to hold in this more general setting. Moreover, we hope that the behaviour described
here can be used to model codimension-4 curvature concentration of generalised instan-
tons on sequences of higher dimensional manifolds with special holonomy undergoing
codimension-1 collapse.

Our gluing construction could also be used to provide a description of an asymptotic
region of the moduli space of calorons and of its asymptotic hyperkihler geometry.
While the metric is in general incomplete due to instanton bubbling, moduli spaces
of calorons are expected to provide interesting examples of non-compact hyperkéhler
spaces. For example, for G simply-laced these spaces also arise as moduli spaces of vacua
in quantum field theory (more precisely, Coulomb branches of certain 3-dimensional
supersymmetric quiver gauge theories [1,25,27]).

Plan of the paper. In Sect. 2 we fix the notations and conventions that we use and explain
the asymptotics and topological invariants of a caloron. Section 3 gives the definition
of fundamental calorons. We show how to construct approximate calorons by gluing
together Dirac monopoles and fundamental calorons in Sect. 4. Section 5 provides all of
the linear analysis results (in weighted Holder spaces) that we need to study and deform
our approximate calorons to an exact solutions. The proof of the main existence theorem
is completed in Sect. 6 and the dimension formula is given in Sect. 7.

2. Boundary Conditions and Topological Invariants

In this brief preliminary section we fix the notation and conventions that will be used
throughout the paper.

The base manifold. Fix coordinates (x, ) on R? x R and identify R3 x S! with R? x
R/277Z. Fix € > 0 and endow R3 x S! with the flat metric gc = ggs + €2dt? and
volume form dv,, = e€dt A dvgs. A caloron is a connection A on a principal bundle
over R3 x S! with anti-self-dual curvature with respect to (g, dv ¢.)- In this paper we
study calorons in the limit € — 0.

The structure group. Let G be a compact semi-simple Lie group. Any principal G—
bundle P — R> x S! is trivial and therefore without loss of generality we assume that
G is simply connected.

We now collect some of the Lie theoretic notions we will need. Denote by g the Lie
algebra of G and let (-, -)4 be the Killing form of g normalised so that long coroots
have norm /2 (with the convention that all coroots are long if g is simply laced).

Fix a maximal torus 7 in G with Lie algebra b, a Cartan subalgebra of g. Since G is
simply connected 7' = h/ A, where A is the coroot lattice of g. We also fix a choice of
simple roots &1, . . ., ok and corresponding coroots alv, el ar\f(. Here rk is the rank of
G. We introduce the lowest root o and the corresponding coroot «; . We have

rk
ay ==Y mya (2.1)
n=1

for integers my, ..., my € Z-o (sometime referred to as the dual Coxeter labels of g).
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{1 =0}

Fig. 1. The fundamental alcove A* for SU (3)

Given these data, we let A* denote the fundamental alcove, the simplex in b defined
by the inequalities

o (§) =0, pw=1,....tk  ao§)=-1 (22)
The fundamental alcove is the fundamental domain for the action of W x A on h, where
W is the Weyl group of g. Note that the coroots « , . . . , . are inward-pointing normals

to the facets of the boundary of A*, such as shown in Fig. 1 for the case of G = SU(3).
Finally, recall that the extended Cartan matrix C is defined by Cp, = av(a;{),

v, u=0,1,...,rk. It satisfies 5## :2and5,w <0 for u #v.

Boundary conditions. In the following we will consider connections A on the trivial
principal G-bundle P = Pg — R3 x S! asymptotic to the §'—invariant abelian calorons
we now define.

The complement of acompact setin R? x S retracts to $? x §!, so principal 7—bundles
on such an exterior domain are in one-to-one correspondence with elements y, € A,
i.e. any such bundle H"™ must be the pull-back from S? of the T—bundle associated with
the Hopf circle bundle S* — $2 and the group homomorphism exp ym: S' — T. We
will refer to y, as the fotal magnetic charge.

The bundle H"™ carries a distinguished connection A¥™ with curvature dA"m =
%ym dvg2. Given the additional choice of w € h we consider the S !_invariant instanton

on (R*\ {0}) x S!
Ao (@, ym) = AT + ¢ (e—lw + qﬂm) di, O = 5l 2.3)

The fact that As(w, ym) is an instanton on (R3 \ {0}) x S' follows from the fact that
(Arm  @Ym) satisfies the Bogomolny equation d A" = xp3d ¥ on R3\ {0}.

Note that the parameter @ can be shifted by an arbitrary element £ € A by a gauge
transformation of the form (x, t) — exp(27t £). Furthermore, if we regard A (@, Ym)
as a connection on the G-bundle H"™ x r G, the action of constant gauge transformations
in the normaliser N(T') of T in G generate the action of the Weyl group W on the pair
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(w, ym) € h x b. Using these degrees of freedom, we can therefore always move w to
lie in the fundamental alcove. In this paper we make the standing assumption that @
lies in the interior A* of the fundamental alcove. In particular, the limiting holonomy of
Aso(w, ym) on circles {x} x S! for |x| = co commutes only with elements in T C G,
i.e. we have maximal symmetry breaking at infinity. We will refer to w as the holonomy
parameter.

Example 2.4. The reader might find it useful to keep in mind the explicit case where
G = SU(n). Then

w=diag(ip, ..., iUn), ym = diag(iky, ..., ik,),

with ; € R and k; € Z satisfying w1 +---+ u, = 0 = k; + - - - + k;,. The condition
we Atis

M1 > (> > Uy > g — L

In particular, for n = 2, i.e. G = SU(2), the holonomy parameter is a single number
n1 = —p2 € (0, %) and the total magnetic charge is a single integer k; = —k».

Instanton number. Fix € > 0 and (w, ym) € A* x A and consider a pair (A, f)
consisting of a connection A on the trivial principal G-bundle P — R? x S! and a
framing f that identifies P and H" x7 G on (R3\ Bg) x S' for some R > 1 and
such that

[HA = Ax(w, ym) +a, (2.5a)
where

Vi al =007 (2.5b)
for some v < 0 and all £k > 0.

Remark. By [4, Theorem B] the much weaker asymptotic conditions of finite Yang—
Mills energy and maximal symmetry breaking at infinity along a single ray in R? force
any caloron to satisfy the asymptotic conditions (2.5) with v = —2.

To any such pair (A, f) we associate a topological number ng € Ny in either of the
following equlvalent ways, cf [30, §2] and [29, Chapter 2]. Firstly, we can represent
(P, A)asapair (P, A)on R3x Rinvariantunder the action of Z generated by translations
on R and an an isomorphism P|{, —or) — P|{, —0), i.e. a smooth map h: R3 — G.We
can choose this trivialisation in a compatible way with the framing f. Then 4 is the
identity outside a compact set and it extends to amap 4: S° = R3 U {oo} — G, whose
degree we denote by ng. Here by degree we mean the pull back of the generator of
H 3(G; 7Z) in H 3(S3; 7Z) ~ 7. Alternatively, composing f with a fixed trivialisation of
H" x7 G on (R3\ Bg) x S! allows one to construct a new connection A’ that is trivial
outside a compact set. Then the closed form (Fa A F/) 4 defines a compactly supported
cohomology class, which we identify with an integer ng by integration. The integer ng
so defined will be called the instanton number of (A, f).

We consider the set A¢ (w, ym, no) of pairs (A, f) satisfying the boundary conditions
(2.5) and with instanton number n(. The space of framed connections is acted upon by
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the group G of gauge transformations that are asymptotic to the identity at infinity (with
suitable polynomial decay). The quotient

Me(@, ym,no) = {(A, f) € Ac(®, Ym, no) | * Fa = —Fa}/G

is the moduli space of (framed) calorons.
Using (2.1), define integers ny, ..., nx by

rk
Ym =Y nua) = —nom)ay +-- -+ (nx —nomu) o (2.6)
n=0
The purpose of this paper is to interpret the integers (ng, n, . .., nr) as the number of

“constituent monopoles” of a caloron in M.

Remark. The Yang—Mills energy of a caloron is given by (cf. [29, §2.1.7] for G a unitary
group)

rk
YMA) = gl Falljs =no (1 +ao @)+ Y 3l lgnua, @) . 27
n=1

3. The Fundamental Calorons

In this section we introduce the simple model solutions that will be used as building
blocks in the construction of more complicated calorons. These “fundamental” calorons
are all obtained from the simplest non-abelian solution of the Bogomolny equation
on R3, the charge 1 BPS (Bogomolny—Prasad—Sommerfield) SU (2) monopole. The
fundamental calorons correspond to BPS monopoles embedded along the simple coroots
of the structure group G, and a “rotated” BPS monopole embedded along the lowest
negative root. Here a “rotated”” BPS monopole is a caloron obtained by acting on the BPS
monopole by a r—dependent large gauge transformation which generates the rotation map
of [29, §2.2]. In other words, the “rotated” BPS monopole is the caloron corresponding
to a non-trivial loop in the moduli space of (framed) charge 1 monopoles.

3.1. Fundamental SU(2) calorons. The simplest case to consider is that of SU(2)
calorons, where there are just two types of fundamental calorons. As in Example 2.4,
SU (2) calorons are classified by their magnetic charge k and instanton number ng, as
well as the holonomy parameter w € (O, %) The two fundamental calorons are the
(k,ng) = (1,0) BPS monopole and the (k, ng) = (—1, 1) “rotated” BPS monopole.
We begin the section with these fundamental calorons and then describe how to obtain
fundamental calorons for higher rank Lie group via embeddings of su; in g.

3.1.1. The charge 1 BPS monopole For SU (2) the charge 1 BPS monopole with mass
v > 0 is the explicit solution (Apps, Ppps) of the Bogomolny equation Fq = *p3ds P
given by

o th (2vr) Iy. .- A 1 ] 2ur i
=(vco ) — — | X -iT =—_ 1= P ’
Bes Yot BPS =75 sinh 2or) ) 7T,
3.1)
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with r = |x| the radial distance from the origin in R?, £ = r~!x and T the vector of
Pauli matrices.

Ifwe (0, %) wesetv =€~
R3 x S! by

'» in (3.1) and obtain an S'—invariant caloron Afpg on

A_']—?:PS = Agps + € Dgpsdt. 3.2)

This connection is put in an asymptotically abelian gauge by the bundle map fgp:
H xg SU2) - P = $3/8' x SU(2), where H is the Hopf circle bundle and
fgps[(p, 21 = (p]l, pg)forp e s3 and g € SU(2). Following [16, §IV.7] and working
in the local coordinates of the standard trivialisation of H over the north hemisphere,

f@ps is given by

—sin¢
fips = cos(30)id —isin(36) @ -7 with = | cos¢
0

An analogous formula holds in the standard trivialisation of H over the southern hemi-
sphere.

Remark. In terms of the associated vector bundles,
fips : LOL™ — Elgsy o) = (R3\{0}) x C2 (3.3)

relates the BPS monopole on the trivial bundle (R3\{0}) x C? away from the origin to

the Dirac monopole on S? (with a Dirac string going through the south pole in the local
trivialisation above). Here L = (1) is the standard complex line bundle on S?and L
and L~ are the eigenbundles of the asymptotic Higgs field.

The role of fgpg is made precise in the following proposition.

Proposition 3.4. Givenw € (0, %) there exists roo (€) X € suchthat outside of B, (¢)(0) x
S the pair (Afipg. faps) satisfies

(fgps)*AEPs = Axo(w, 1) + agps,

. 1 —e-l .
with rk|V§ma§PS| < Celemce " forall k > 0 and e—independent constants C, ¢ > Q.

Proof. This is just the statement that a non-abelian monopole has the asymptotics of a
Dirac monopole. For example,

- 1
(/es) ' Dprs feps = (U —5 7t o <vr‘4”)> it3.
r
O

In other words, the gauge equivalence class of the pair (Afpg, fgps) lies in the moduli

space Mf v@ (w, 1, 0) of SU(2) calorons with holonomy parameter w, magnetic charge
1 and vanishing instanton number. Here the instanton number vanishes since Afpq is
S'_invariant.

Remark. By pulling Af,g back by a translation in R? and composing faps With an
automorphism of (H, Ay), i.e. a constant phase, we obtain an exhaustive 4-parameter
family of inequivalent framed calorons in Mf ve (w, 1, 0).
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3.1.2. The rotation map The other fundamental SU (2) caloron is the “rotated” BPS
monopole.
Fix w € (0, %) and consider the BPS monopole (Agps, ®pps) (3.1) with mass v =

! (% - a)) > 0.Let ®: R — suy be a smooth map satisfying

d(x) = _PBrs(x)
| Ppps (x)|

outside a compact set. Consider the r—dependent family g; (x) = g(x, t) of “large” gauge
transformations (i.e. gauge transformations on R? that do not converge to the identify at
infinity)

g(x,1) = exp (—%t ci:(x)) ‘R xR - SU(Q2). (3.5)

Foramap g: R? — SU(2) let P, be the principal SU (2)-bundle on R3 x S! defined
by P, = (R? x R x SU(2))/Z, where the action of Z is generated by (x,t, g) +—>
(x,t +2m,q(x)g). We then regard g in (3.5) as a bundle morphism g: P, — P_j,
where h(x) := —g(x, 27)~L. Since outside a compact set ® takes value in the adjoint
orbit of it3, note that 4(x) = 1 in a neighbourhood of infinity. As shown in [29, §2.2],
the extension of 4 as amap h: S3 — SU(2) has degree 1.

Now, since the adjoint action of —1 is trivial, we regard AEPS = Apps + € Ogps dt

as a connection on P_; and then define a caloron Agpg on Py, by
Agps = 8" Afps. (3.6a)

We can also define a framing for Agpg from the framing f3pg for Afpg. The only subtlety
is that we need to introduce the action of a constant gauge transformation such as i 1o,
that acts on the Cartan subalgebra of su; as the non-trivial element of the Weyl group,
to ensure that the holonomy parameter lies in the fundamental alcove. More precisely,
let H! be the inverse of the Hopf line bundle H, and let H_; denote the S ! bundle
defined analogously to P_1, i.e. it is the radial extension of the principal S'~bundle on
S% x S! defined by (S x R)/Z with Z-action generated by (p, 1) > (—p,t + 27).
Then introduce the bundle map

8oo: - H! xg1 SU2) — H_1 xq1 SU(2), 8o = €Xp (—%it1:3)it2.
On the exterior domain where ® = | Pgps |’1 ®pps we then define the framing

faps: H ' xg SUQR) = Py, faps =& ' 0 fips © goos (3.6b)

where we regard fjpg as abundle map fgpg: H-1 g1 SU((2) — P_j.
The following proposition follows immediately from Proposition 3.4 and summarises
the main properties of (Agpg, fEps)-

Proposition 3.7. Givenw € (0, %) there exists roo (€) o € such that outside of B, ¢y (0) x
S1 the pair (Agps. fpps) satisfies

(fps)” Agps = Aco(@, —1) + agps,

. _ T el .
with rk|VgooaBPS| < Celece " forall k > 0 and e—independent constants C, ¢ > 0.
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In other words, the gauge equivalence class of the pair (Agpg, fgps) lies in the moduli

space /\/lf ve (w, —1,1) of SU(2) calorons with holonomy parameter », magnetic
charge —1 and instanton number 1 (since we already observed that the clutching map &
has degree 1).

Remark. Also in this case translations in R3 and composition of the framing with an
automorphism of (H™!, Ay) yield an exhaustive 4-parameter family of calorons in
Mf ve (w, —1, 1). Since AEPS is not S'—invariant, the circle action on R3 x S! lifts to

UQ) (

a circle action on Mf —1, 1) which corresponds to changing the framing.

Remark. Since it has negative magnetic charge, Agpg is referred to as an anti-monopole
in [21,24]. We find that referring to it as a “rotated” monopole is less misleading.

3.2. Higher rank groups. For a simple Lie group of rank rk > 1 the fundamental
calorons given above generalise and we have a BPS monopole for every simple root and
a rotated BPS monopole for the lowest negative root. These fundamental calorons are
found by embedding the fundamental SU(2) calorons into G as T’ x SU(2) calorons,
for T’ a torus of rank rk — 1.

Let b’ denote the Lie algebra of 7'. Recall that every positive root a of g corresponds
to a Lie algebra embedding p: b’ @ su; — g with p(0,i73) = «” and p(§’ @ {0}) =
ker . By abuse of notation we identify p with the induced group homomorphism 7’ x
SU(2) - G.Weletpy, ..., pik denote the homomorphisms corresponding to the simple
roots «p, . . ., ek and let pg be the one corresponding to the highest root —a.

Now, fix w € A*. For each uw=0,1,...,rk we decompose w = w;L + %aﬂ(a)) ot;{ in
the decomposition f = kera;, @ R al. Note that the assumption @ € A* implies that

—%ao(a}) and %O‘u (w) for w =1, ..., rk are real numbers lying in (0, %).
For u =1, ..., rk we now consider the SU (2) caloron Af;pq with holonomy param-
eter %aﬂ (w) and then set

A (@) = pu (Agps + @), dt) . (3.82)
Similarly, we set
Ag(®) = po (Agpg + wq di) (3.8b)
for Agpg the SU(2) caloron with holonomy parameter — %oco (w). For each such caloron
we also have a framing f,, induced by flﬁns-

Remark. For G = SU (n) there is a large gauge transformation which gives an isomor-
phism between the moduli spaces

MIUM (@, @y, 0) < MEVD (w, a4, 1), 3.9)

where @ € A* is a holonomy parameter related to @ through the large gauge transfor-
mation. For G = SU(2) we saw above that ® = % — . This large gauge transformation
is also called the rotation map in the literature, e.g. in [6,29]. At the level of the extended
Dynkin diagram this isomorphism is explicitly a rotation cycling the simple roots of the
extended Dynkin diagram. Under the above isomorphism A (w) is the image of A (@).
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Fig. 2. Images of the Higgs fields e®, : R3 \ {0} — b of the fundamental SU (3) calorons

Remark. In an abelian gauge on (R3\{O}) x S! we can write
Ap(@) = Ay +e®pdt = Au+e<e*1w;+<pa;) dt, (3.10)

where ¢ = |®pps| for a BPS monopole of the appropriate mass. Since ep(x) — %“u (w)
as |x|] — oo and ¢(0) = 0, the Higgs field gives a map into the Cartan subalgebra
€d, : R\ {0} — b which parametrises a straight line from w € A* (for large x) to
the component of the boundary of the alcove A* with normal al (in the limit x = 0),
cf- Fig. 2 for the case G = SU(3). Another way to say this is that as |x| — oo the
gauge group breaks to the maximal torus 7', while near the origin there is a symmetry

enhancement to p,, (SU(2) x T').

Remark. The reason for these particular choices of (Afgps, Pu), i.e. why we do not take
different combinations and more general embeddings of " @ su; in g, is inspired by
[23]. It appears unmotivated at the moment, but we will see in Sect. 7 that these are
the only choices yielding 4-dimensional moduli spaces, hence justifying referring to the
A,;’s as “fundamental” calorons.

The embedded BPS caloron (3.8) for a root o has the asymptotics of an abelian S'—
invariant caloron where the Higgs field is the one of a Dirac monopole along the coroot
a" with a singularity at the origin,

1
d=¢'lo— —a".
2r
More formally, the following proposition is an immediate consequence of Proposition-
s 3.4 and 3.7.
Proposition 3.11. Givenw € (0, %) there exists roo(€) o € suchthat outside of B, ) (0) X

S! the pair (A, (@), fu) of (3.8) satisfies
(fu)" Au(@) = Aso(@. o)) + apps .

. 1 —ee] .
with rk|V§maBp5’M| < Celece " for all k > 0 and e—independent constants C, ¢ >
0. Moreover, (A, (), fu) has instanton number ng = 1 if @ = 0 and no = 0 otherwise.
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In the rest of the paper we will refer to A, (w) as the fundamental caloron of “type”

(xx with holonomy parameter w.

Remark 3.12. The framing f,, with the properties of Proposition 3.11 is uniquely de-
fined up to an element of Aut(H % ,As) >~ T. Note however that framings related
by an element of the subgroup p, (T’ x {1}) =~ Aut(Psy ) Xp, G, Ay(w)) yield
gauge equivalent framed calorons. Hence f;, is uniquely defined up to an element
¥ € pu((1) x U(1)) = Aut(H*, Ass)/Aut(Psy() Xp, G, Au()), where U(1) is
the maximal torus of SU (2).

Remark. For uniformity of notation, if G = SU (2) we set A|(w) = Afpg and Ag(w) =

ABPS .

4. Approximate Solutions

The idea of our result is to build a caloron by gluing the fundamental solutions of the
previous section into a singular background configuration. In this section we describe this
singular background and then use fundamental calorons to produce a smooth connection
that satisfies the self-duality equations only in an approximate sense. In the next two
sections we will then use analysis to deform this approximate solution into an actual
caloron.

4.1. The initial singular abelian solution. The singular background solution is an S'—
invariant abelian caloron obtained from a sum of Dirac monopoles on R?.

Recall that given a point p € R3 and a charge y € A we have a Dirac monopole
(A}, 1) on R \ {p} with

Y 1 Y Y
) =—yloy,  dA} = xpad )

We then obtain a caloron A? + € ®) dt on the bundle H) — (R*\ {p}) x S'. Since
principal torus bundles form a group, given distinct points p, p’ € R? and charges

v,y € A we can also “add” the two Dirac monopoles to obtain a caloron A}’, + A;, +
€ ((b}’, + <I>’1’7,) dt on the bundle H) X @3\ (). p/})xs! H[};, on (R3\ {p, p'}) x S\.

Now, fix w € A* and non-negative integers ng, 11, ..., nx > 0. We then de-
fine a total magnetic charge yn, as in (2.6). Consider n := 22(:0 ny distinpt points
Phre s PO s s Phir - o P € R We fiX dinin, dmax > O such that | p!, — p}| > dmin
for each distinct pair of points and all the points are contained in By, (0) C R>. In the
rest of the paper all constants are allowed to depend on w, dmin, dmax Without further
notice and will be uniform in the positions of the n points provided the bounds given by

dmin and dmax remain satisfied.
We now define the S!'—invariant abelian caloron

rk v rk " v
oy 1 o
Asing = Asing + € Dsingdt = ) D Al +e| oty Y @ |di (@41)
n=0i=1 * n=0i=1 "
on a bundle Pgiyg over (R3\{ p(l), ooy Py, }) x §! with structure group the maximal torus

T of G. Of course, we can also regard Agjng as a connection on the G-bundle Pgjng X7 G.
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Example 4.2. When G = SU (2), Aging is simply the superposition of the flat connection
iw 13, forw € (0, %), with n; Dirac monopoles of charge 1 and n¢ Dirac monopoles of
charge —1.

We will now collect some of the properties of Agjng. First of all, consider the behaviour
of Agine at infinity. It follows immediately from (4.1) and the explicit formula for the
Dirac monopole that the holonomy parameter and total magnetic charge of Agng are
precisely w and yp, respectively. The next proposition describes instead the singular
behaviour of Aging near pi,. Set rl, := |x — p! |.

Proposition 4.3. There exists ro > 0 and a bundle isomorphism f;i: HY — Psing
over By, (pit) x St such that

(f,i)*Asing = Aoo(wi“ a;) + a;
with (rL)k|ngaL| < CrLfor all k > 0 and a)jt =w+ 0(€).

Proof. Write

aY v

A% o) - o o
Aing= A+ ) AN Pamg=eTlord s > e
W, )#,i) W, )F#w,i)
A classical multipole expansion centred at a point away from the singularity allows one
. Olvv i .
to estimate the term Z(U’ i) <I>p i The holonomy parameter w), is defined using the
constant term in this expansion:
-1 1 1 aV.

€ a)MIE w —

j .
w2 2Py = Pul
Solving the Bogomolny equation in a radial gauge centred at pL then defines the bundle
i Vv
map f,i and allows one to estimate Z(U i) Aa”,. in terms of the control of the Higgs
' oy
field. O

A final simple but crucial observation is that Ay, is abelian in the following uniform
quantitative sense away from the singularities.

Lemma 4.4. There exists €y, 0 > 0 such that for € € (0, €) there exists ro(€) o € such
that outside of Uu,i Brye)(p,) % S! we have

ay (€ Pging) >0 >0 forallp=1,... 1k, ap(€ Psing) > —1+0 > —1.

In other words, away from the singularities € ®y;jyg takes values in a fixed compact
subset of A*.

Proof. Observe that a (€ ®gjpg) is a harmonic function on R3\{ p(l), R pfﬁk} forany o €

.h*. Hence, by the maximum/minimu.rr.l principle on the complement of |_J w,i Bro © ( P;;)’
it suffices to check that the inequalities are satisfied as |x| — oo and on the interior
boundaries {rL = r(€)}. Now, for large |x| we have

a (€ Dging) ~ a(w),
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while Proposition 4.3 implies that near pfl we have

~ i € \%
ale cbsing) ~ a(a)ﬂ) - Z_ia(au)'
T

Since w € A* we can choose o so that the inequalities in the statement of the lemma

are satisfied near infinity. Since wL = w + O(¢), for € sufficiently small we can also
assume that the same inequalities are satisfied by a)L instead of w. Finally, in order to

take care of the singular term at pL, fix ¢ > 0 sufficiently large so that % |oz(ozlf)| < %O’
fora = a, forany v = O, ..., rk. Then, up to decreasing €, o slightly if neecessary,
we can assume that the inequalities in the statement of the lemma are also satisfied for

i _ _.
r,=ce=: ro(e). O

4.2. Desingularisation. As the caloron Agjn, is manifestly singular at the pfu to find

an approximate non-singular caloron on all of R* x S! we need to glue in non-abelian
calorons that match the singular behaviour of Ay, asymptotically. These are the fun-
damental calorons of the previous section.

For R = R(€) € (0, dmin) to be fixed later, decompose R x S! as

R® x ' = Uging U|_|U}..
Wi

where

Using = R3\L|Bg<PL> xS\ UL =Br(pi) xS
i
Up to the S!—factor, these open sets intersect in a disjoint union of annuli centred at the
py’s.

By restriction, we think of (Pgng X7 G, Asing) as a bundle with connection on
Using. Similarly, foreach u = 0,...,rkand i = 1,...,n, we identify Bg (pft) with
Bg(0) C R? and endow U, with the pair (Psy 2) X, G, Ay (},)) where A, (@) is the
fundamental caloron of type alf and holonomy parameter a)L defined in Proposition 4.3.

By Propositions 3.11 and 4.3 on the overlap Uging U L there are isomorphisms £/ , fu

of Psing X7 G and Psy2) xp, G with HY x 1 G such that
(f,i)*Asing =Ax (w;p 0‘,\1) + a,i,p f:Au (U)L) = Aoo(a);p a;j) + aBps, ;i

We have the additional freedom to choose a gluing parameter W,i € pu({1} x U(1)).
This gluing parameter is there to line up the framings of the Agjne and A,. It is U (1)
valued rather than 7" valued due to Remark 3.12. We can then define a smooth G—bundle
P onR? x S' identifying Psing X7 G — Using and Psy () X, G — U,i over the overlap

Using N U;il. via

fuo 1/fL o (flfb)f1 : Psing X7 G — Psy(2) Xy G. (4.5a)
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On P we define a connection A, = Al (w, {(pw w ') 1u,i) as follows. Fix a smooth
bump function x to interpolate between x (r) = 1 for r € [0, 5) and and x (r) = O for
r = Randset x/,(x,1) = x(r},). We set

e s
AL = {Ax(@, a)) + X}, (W) agps u + (1 — ;) aj, if 3R <r}, <R,
Aging otherwise.

(4.5b)

4.2.1. Estimates of the error The connection A/ is an approximate caloron rather than
a true caloron since it does not satisfy F +, = 0 on the overlaps Usjpg N U

Recall from Propositions 3.11 and 4 3 that aj, = O (r") and (¥;)*apps, =
o ( —lee ) We define R(¢) implicitly by

-1
R(E) :e—le—L‘G R(G)
so that these two contributions to the error have comparable size. Note that
R(e) ~ €| lne|. (4.6)

In particular, as ¢ — 0 we have R(¢) — 0 and ¢~ R(¢) = o00. Thus as € — 0 the sets

U:mg form an exhaustion of (R*\{p}, ..., p}, }) x S'. On the other hand, if we rescale

U ;’L by € ! we obtain an exhaustion of R? x S!.

Lemma 4.7. Let A, be the approximate caloron defined in (4.5). Then the self-dual part
of the curvature satisfies

1 . . .
+ 2 2
|FA;| = o max (|aBPS,u|’ |a;L|) + max <|aBPS,M| ) |a;| ) =0() onUsngN UL~
w

Proof. This follows from a direct computation. We have
AL =A@, ) +a, a=x/'"(\W,) asps + (1 = x/') @}, ing

with Ago (@', ) a caloron. Hence Ff, =d* a+ i[a, a]*. In order to estimate d¥ a
n> € A 2 A
we use the fact that

~ 1~ ~
dy a=—jla,al’

ford = apps,,, and a = a (since Ao +d is a caloron in either case), together with the

fact that [V x/,| = O ((r}, ) . o

Thus the error Fg/ is uniformly bounded in €, but it is also supported on a region

of increasingly small size in the same limit and in this sense we can say that the error
is increasingly small as ¢ — 0. For example, || F;, IIL < CeR(e)® = O(*| Ine)?).

On the other hand, as ¢ — 0 the metric g and connection A degenerate, so it is not
immediately clear that A can be deformed to a genuine caloron for small € > 0. In the
next section, we will introduce weighted Holder spaces which are better suited to do
the analysis in this degenerate limit and then use a quantitative version of the Implicit
Function Theorem to deform A to a nearby caloron A..
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5. Linear Analysis

In this section we collect some fundamental results about mapping properties of the
linear operators appearing in the deformation theory of calorons and in particular study
dependence of constants on € when we couple these operators to the approximate caloron
A’é of the previous section. In order to obtain uniform estimates, all the analyis is carried
out in appropriate weighted Holder spaces.

The operators. The deformation complex of an instanton A on a G-bundle P — M*
is

0/nyg. da 1,0, i e
0 — QO(M:;ad P) 4 Q'(M: ad P) = Q*(M; ad P) — 0. (5.1a)

In our set-up M is (the complement of finitely many curves {p} x ! in) R? x S!. From
(5.1a) we deduce that the first-order operator governing the deformation theory of an
instanton is

Dpy=df ®d}: Q' (M;ad P) > Q*(M;ad P) ® Q°(M;ad P).  (5.1b)

We will study its mapping properties via the second-order operator Dy D7 . The Weitzen-
bock formula (see e.g. [12]) reads

DADX = VZVA + F&, 5.2)

where the action of F is a zeroth-order operator obtained from the Lie bracket in g and,
via identifications A @ A* ~ H and A* ~ Im H, quaternionic multiplication. If M is
hyperkihler (as in our set up) then the bundle A*T*M is trivialised by parallel section
and for an instanton F; = 0. Therefore we will start the section with a discussion of the
operator V Vj acting on sections of the adjoint bundle.

5.1. Fredholm theory. In this subsection we establish results about the Bochner Lapla-
cian V} V in the simplest situation where A is a fixed smooth connection on R? x S!
and the metric g. on R? x §! is assumed fixed. In the second part of this section we will
adapt these results to A = A and discuss dependence of constants on e.

Assume therefore that A is a connection on a (trivial) G-bundle P over R? x §!
satisfying the boundary conditions (2.5) for some (w, ym) € At x A.

5.1.1. Weighted Hilder spaces By abuse of notation, let 7 denote a smooth §'—invariant
function on R3 x §' withr > 1 andr = |x| on (R3\ By) x §! forsomed > 1.(When we
apply the results of this section to A we will require d > dmax so that all the singularities

of Agjng are contained in By x S'.) For example, we can take r = /1 + |x|2.

Definition 5.3. Given k € Z>o, @ € (0,1) and v € R, we define the ij""—norm of a
section u of the (trivial) adjoint bundle ad P on R x S! by

k k k
Z = | oo + sup r(p, p)~"** |Viu(p) — Viu(p)]
=0 b dist(p, p)<r(p,p") dist(p, p")*
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where norms are defined using the metric ge, r(p, p’) = min{r(p), r(p’)} and the
difference of ad P—valued tensors Vﬁu( p) — Vgu( p') is computed using the parallel
transport of the connection induced by A and the Levi—Civita connection of g.. The same
definition with the last term dropped defines the CX—norm of u. The Banach spaces CX-*
and C¥ are defined as the closure of C2° with respect to the corresponding norm.

Immediate consequences of the definition and the fact that R? x S! has cubic volume
growth are the continuous embedding

Cl*CcL?e=v<-3 (5.4)

and the integration-by-parts formula

(ViVau,v)2 = (Vau, Vav)e  Vu € c

1, .
n+ VEC with vi + vy < —3.

(5.5)

Later in the paper, in order to control non-linearities in the equations we will also make
use of the fact that any bounded pointwise bilinear form defines a continuous map
0,a 0,a 0,a
Cs,” x Cg," —> Cylys, - (5.6)
Combined with the compactness of the embedding C1*(Q) ¢ C 0.@(€2) for a bounded
domain €2, one can further deduce that multiplication by an element u; € C?l’“ defines
a compact operator
. 1, 0,
upx -: Cg° — C (5.7)

82 S1+62°

We want to study the mapping properties of the bounded operator ViV : C gfi —
C Bftl. We begin with the following weighted Schauder estimates.

Proposition 5.8. Given § € R, there exists a constant C such that
gz = € (IV; Vaull o +lullcs )

2,
forallu € Cj ’.

Proof. Tt is enough to show that every point p has neighbourhoods U, C U;, such that

“ <C(V*V o )
”ullcg Uy = “ A Au||cg72(up) ”u”Cl?(Up)

for a p—independent constant C. If p lies in a compact subset of R x S! then the local
estimate is simply the local Schauder estimate for the elliptic operator Vi V. We can
therefore assume that p = (x, t) satisfies |x| > 1.

The weighted norms we have defined are well-behaved under scaling and therefore
we will obtain the local estimate by rescaling to a fixed situation. There are however
two slight complications to take into account: R3 x S! is not scale invariant because
of the compact factor and similarly, because of the non-vanishing constant term in the
expansion of ®,, , at infinity, the connection A is also not “scale-invariant” (i.e. it is
not 0-homogeneous in the sense of [11, Appendix B]). Both of these issues are resolved
by passing to the universal cover R? x R of R? x S, as we now explain.
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For4R = |x|,set B = Bg(0) C R3 and forany n € (0, 0o) define nB = B;r(0). We
then consider domains U, = (2B \ B) x [-R, Rland U, = (3B \ §B) x[-2R. 2R]
in the universal cover R? x R of R? x S!. If R is sufficiently large, we can also assume
that ® = 9,_A satisfies |®| > ¢ > 0 outside of %B x S'. Working on the universal
cover, we act on A by the gauge transformation exp (a)%t) to obtain a new connection
A'. Taking into account that V4, ®,, , = O(r—2) and |t|/r is uniformly bounded on
any set where |7| < |x|, we deduce that A’ is uniformly bounded in C* on U ;,.

We can now rescale by R: up to a factor of R~ all norms coincide with norms on
the fixed subset B3 \ B 1 x [=2,2] € R3 x R defined using the standard flat metric and

a rescaled connection which is uniformly bounded in C°°. The local estimates around
p now follow from standard Schauder estimates for this rescaled problem. 0O

5.1.2. Mapping properties Since the model connection A, has reduced structure group
T C G and the kernel of [w, -] reduces to the Cartan subalgebra h because of our
assumption o € A*, for r > 1 we can decompose any section u of ad P into its
“diagonal” and “off-diagonal”” components: u = ug+u ] , where ug has value in the trivial
bundle with fibre h and u | has values in the sum of line bundles P, . g+ H"" X C. By

Fourier decomposition in the circle variable, we can further decompose g = u8 +u,

into S'—invariant and oscillatory parts and therefore write u = u8 + ug + uy . Since
Aqo is reducible and S'—invariant, the operator Vi Va preserves asymptotically this
decomposition.

Now, the crucial observations is that for all x € R* with r sufficiently large we have

pointwise “Poincaré-type” estimates on S! := {x} x S ! of the form
A
ollullcocsty = I1Vyullcogsty (5.9)

forall u = 146 +u | and a uniform constant o > 0. The existence of such a constant can
be easily deduced by a contradiction argument using the fact that there are no A—parallel
sections on S! other than constant “diagonal” sections. We give a more constructive
argument to show the dependence of o. Consider first the case u = u. Since u has
mean value zero on S }, it must vanish at some point in this circle. Assuming this point
is t = 0 by a rotation, the fundamental theorem of calculus implies

2w
Aco
|u(.x, t)l < / |8[l/l(x, t)| dt < 27'[”8[14”6‘0(5\1’) = 27.[”V3, M”CO(S/%).
0 E

The argument for u is similar. We have an orthogonal decomposition u; = )", u9.
The connection A, preserves this decomposition. Moreover, restricted to the a—factor
it defines a flat connection on the trivial complex line bundle on S; with holonomy
parameter w§ = o (w) — z—lrot(ym). Forr > R(w, ym) we see that ¢ is never an integer.

Hence, using parallel transport for the connection A, restricted to S )%, e “tuf (x, -)
has vanishing mean value on [0, 2] and we can apply the same argument as in the
case of u;,. We conclude that (5.9) holds for A. Since A is asymptotic to A, up to
increasing R and changing constants slightly, the same estimates hold for A.

N
la)xf

Proposition 5.10. Given § € R\ Z, there exists a constant C and a compact set K C
R x S such that

lull 2o = € (IVEVaul o, + lullco))
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forallu e Caz’a. In particular, ViV : Cg’a — Cgf‘z is Fredholm for every § € R\ Z.

Proof. The fact that the estimate implies the Fredholm property is standard so we only
provide a proof for the estimate. For any R > 0 sufficiently large, denote by Qg the
exterior domain Qg = {r > R} c R3 x S!. We will prove the estimate with K = Q¢
for R sufficiently large. On such an exterior domain we can work in the decomposition
u= u8 +u(+u . Since V§ V, preserves this decomposition up to terms with arbitrarily
small operator norm, it suffices to prove the estimate separately for u;, + u and u8.

Now, an immediate consequence of (5.9) is that
lull oy < CR™MIVaulco oy (5.11)

whenever u8 = 0. Then taking R even larger if necessary we can deduce the estimate
of Proposition 5.10 directly from Proposition 5.8. Note we do not need to assume § ¢ Z
for this.

On the other hand, the action of V; V on the § !_invariant diagonal component u8 is

asymptotic to the Laplacian of R3. Standard theory of elliptic operators on asymptotically
conical manifolds (see for example the summary in [11, Appendix B]) implies that the
estimate of Proposition 5.10 holds provided § is not one of the indicial roots of the
Laplacian on R3, which are known to be all the integers [9]. O

Proposition 5.12. If § € (—1,0) then V}Vy : Caz‘a — Cgf‘z is an isomorphism.

Proof. 1f 6 < —% then the integration by parts formula (5.5) shows that any element in
the kernel of V; V4 is parallel and hence vanishes since it decays. Thus V} V : C?’“ —
1

00 « =« .
Cs 7, is injective for § < —5.

In order to conclude the proof, we need to use two facts that are part of the standard
Fredholm package in weighted spaces (see for example [11, Appendix B]):

(i) the cokernel of VKVA : Cg’“ — C?’_az is isomorphic to the kernel of V;& VainC%_g;
(ii) the kernel and cokernel of V} Vj : C‘?‘“ — Cg’_“z are locally constantin § € R \ Z.
The first statement uses the integration by parts formula and the weighted elliptic regular-

ity of Proposition 5.8. The second statement uses the asymptotic behaviour of elements
in the kernel of the model operator ngoo V., implicit in the proof of Proposition 5.10.

Claim (i) and the injectivity result at the beginning of the proof imply that V V4 : C§’“
— C?’f‘z is surjective for § > —%. Then claim (ii) concludes the proof. O

Arguments analogous to the ones appearing in the proof of Propositions 5.8 and 5.10
yield corresponding results for the first order operator Dy of (5.1b).

Proposition 5.13. Dy : C slf‘l — Cg’_“z is a Fredholm operator for all § € R\ Z, it is
surjective for 8 > —1 and for § € (—1, 0) its kernel coincides with its L*~kernel.

The last statement is an immediate application of Proposition 5.12, weighted elliptic
regularity and the fact that the indicial roots are the integers.
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5.2. Uniform estimates. We now extend the previous analysis to the situation where the
metric g. degenerates as € — 0. For w € A* and any € > 0 sufficiently small, consider
the approximate caloron A constructed in (4.5). From Proposition 5.12 we know that
Vj&,e Var: Cg’a — Cgf‘z is an isomorphism for all § € (—1,0) and now we want to
establish uniform estimates for its inverse as € — 0. In order to achieve this, we need to
define a family of e—dependent norms on C 5 "%, equivalent to the norm of Definition 5.3
for fixed € > O but that take into account the fact that the ambient geometry and the
connection A/ degenerate as € — 0. Recall the constant dmin, dmax giving bounds on
the minimum and maximum distance between the singularities pL of Aging.

Definition 5.14. Define a weight function 7, interpolating smoothly between

[e2+(ri)? if rb < %dmin for some u, i,

Fe =191 ier > dmin for all w, i and r < dpax,
r if r > 2dmax.

Definition 5.15. Given k € Z>p, @ € (0,1) and § € R, we define the C(];’“—norm of a
section u of the adjoint bundle ad P on R? x S! by

’

k |VE, u(p) =V, u(p)|
—5+j 7/ - : Ay

D TV ull s + sup re(p, pH = . —

—rd ‘ diste (p, p)<re(p.p') diste (p. p')

where norms are defined using the metric g¢, r<(p, p’) = min{r.(p), rc(p’)} and the
difference of tensors Vg, u(p) — Vg, u(p’) is computed using the parallel transport of

the connection induced by A/ and the Levi-Civita connection of g. The same definition
with the last term dropped defines the C§—norm of u. The Banach spaces Cé""‘ and C§
are defined as the closure of C§° with respect to the corresponding norm.

Proposition 5.16. Given § € R, there exists a constant C independent of € such that
lullgze = € (I3, Vaull o, + lullcy)

k+2,
forallu € Cj ’.

Proof. The proof is completely analogous to the proof of Proposition 5.8. The indepen-
dence of the constant C from € follows from the invariance of the norms of Definition 5.15
under rescalings and passing to covers. We deduce local weighted Schauder estimates
near the gluing regions by observing that on regions By ( pL) x S! the triple (g, AL re)
is equivalent after rescaling to an essentially fixed triple (g1, A, 1) on B._1z(0) x S!,
where A is a small deformation of the fundamental caloron A, (a)L) of (3.8). Away from
the gluing regions, we obtain uniform local weighted Schauder estimate by working on
the e '—cover R? x R/2me 1Z of R? x S1. O

Remark 5.17. The same proof yields uniform weighted Schauder estimates
+,a<C<V*,V/ o + )
lullgeze < € (IV5, Vaglcre + llullco

forall k > 0.
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Proposition 5.18. The operator Vi,V : C(?’D‘ — Cgf‘z is an isomorphism for all

6 € (—1,0) and there exist g, C > 0 such that

*
||u||C§a = C||VA2 VA’EMHC;sz

forallu e Csz’a and all € € (0, €).

Proof. The fact that the operator is an isomorphism is Proposition 5.12, so the main task
is to establish the estimate.

We argue by contradiction. Using Proposition 5.16 we therefore assume that there
exists sequences €, — 0 and {uy} such that ||“k||cg = 1 while ||V*ék VAék uk||cg,a2 — 0.

The connection A, of '(4.5) is obtained by gluing Agjne and the connection A, (wL)
in an annulus of radius r; ~ R(€) with e 'R(¢) — 00 as € — 0. From Lemma 4.4

we also know that 9, 1A lies in a compact subset of A* on regions where r/i > €* for
all , i for any © € (0, 1). We then have an analogue of (5.9): for sections supported in
this region we have a decomposition u = u8 +uy+u and

1—
lug +uillco < Ce ™" IVagull coe. (5.19)

We therefore conclude that on regions where rL > €7 for all u and i, uy converges to an

S'—invariant “diagonal” section (i.e. an h—valued function) us, on R3\ U wil 1’54}’ which
must be harmonic and satisfies |uog| < C(r,’;)‘S near p!, and [us| < Cr’ as r — oo.
Since § > —1, uyo in fact extends to a harmonic function on the whole of R3 and since
§ < 0 it must decay at infinity: it then vanishes by the maximum principle.

We therefore conclude that there exists points x;z — { pL} x S1 for some p, i such

that r;k‘g lur(xx)| = ¢ > 0 for some c. We now rescale around pL by € so that we reduce
to work on (R? x §', g1) with a sequence of connections A} converging in C*_ ,

v > 0, to the fundamental caloron A, (@) and a sequence u; uniformly bounded in C52‘°‘
8
with [ug ()| = ¢ (1 +|mgs (x)|?)? and V5,
k
notation we denote by the same symbols the sections u; and the points x; before and
after rescaling.
By the Arzela—Ascoli Theorem, after passing to a subsequence, u; converges to an
element u, in the kernel of the Bochner Laplacian of A, (w) in Cg, which must vanish
by Proposition 5.12. It follows that the points x; must satisfy |3 (xx)| =: Ry — o0.

In order to get a contradiction, we now blow down (R x S', g1, A}, uy) by R,:l. Now

Vayug — 0in Cgfz. Here by abuse of

note that, away from a compact set of R? x S, 9; JA] lies in a compact subset of A

Thus after rescaling we have a decomposition u = u8 + u6 + 1 and an estimate (5.9)

/ —(1—-1)
Iy +urlicy < CRS1Vaqul oo

outside any ball of radius Rk_f, Tt € (0, 1), centred at the origin. We deduce that after
rescaling u; converges to an h—valued harmonic function us, on R \ {0} satisfying
lUoo| < Cr® and |use(xs0)| > ¢ > 0 at some point xo, € $2 c R3. Since § € (—1,0),
the growth condition forces un, to be a decaying harmonic function on R3. It must
therefore vanish, contradicting the existence of xoo. 0O
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In the last section of the paper we will need an additional estimate for the first order
operator D = Dy, = df, ®dJ, : Cg’_al — Cgf‘z with § € (—1, 0). By Proposition 5.13
D is Fredholm and surjéctive.eMoreover, Proposition 5.18 implies that D has a right
inverse G with uniformly bounded norm independently of € > 0. Indeed, in the next
section we will show that D D* is an arbitrarily small perturbation of V*; Va, ase — 0,

so that Proposition 5.18 allows one to define G = D*(D D*)~! with the claimed uniform
estimate. The additional estimate we will need establishes the concentration of elements
in the kernel of D near the gluing regions in a uniform quantitative sense as € — 0.

Proposition 5.20. Fix § € (—1,0), « € (0, 1), a closed subset  of (R3\ { p;}) x S!

and n > 0. Then there exists €y such that for every € € (0, ¢€p) and & € Ca | with
D& = 0, we have

o < SO .
160 o o) < Mgl re

Proof. Assume by contradiction that there exists no > 0, a sequence ¢, — 0 and
elements & in the kernel of Dy = D AL such that

I8kl cre =1 I8kl coe ) = M0-

For k sufficiently large, we can assume that 2 is contained in the region where

rL > e,f for all u, 7 and some t € (0, 1). In particular, A/Gk is abelian over 2. Using

the trivialisation of 7*(R? x S!) by orthonormal parallel 1-forms, we can decompose
the 1-form & as & = (Sk)g + (Ek)6 + (&)1 and we have the strong estimate (5.19) that
implies

10 + €Ll coe ) = C& ™" G0 g = T0.

Writing & = ay + €, Yi dt, we conclude that, after passing to a subsequence (ax, V)
converges to a non-trivial S !_invariant “diagonal” (i.e. h—valued) pair (doo, Yoo) Of a
1-form aso and function Yo, on R3 \ U i 1Py}, which satisfies the first order system

*daso — dPoo = 0 = d*ax

and the growth conditions | (dxo, ¥eo)| < C (r )‘8 1

near pL and |(doo, Voo)| < Cré—las
r — oo. In particular, the coefficients of as, in a parallel trivialisation of T*R3 and Yoo
are decaying harmonic functions with controlled blow-up rate at each of the punctures.
Since § — 1 > —2, the only singularity allowed at each puncture is the Green’s function

singularity. It follows that there exist constants (a v, € R? x R such that
ai I/fl
doo = dx - —E = .
o Z [x—pi,| Yoo Z [x—pi,|
i i

However, it is easy to see that these are not solutions of the first order system satisfied by
(aso, Yoo) unless (a;L, 1//11) = 0 for all u, i, therefore reaching a contradiction. Indeed,
one calculates that the first order system is equivalent to

gbxaxx -0 Z
=0=x-
\xpP \xp\’

where - and x denote the dot and cross products in R?. O
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Finally, we also note that we have an analogue of Proposition 5.16

Proposition 5.21. Given § € R, there exists a constant C independent of € such that
N3 < C( D / N + )
1§l = C (IDaE N o +NENcy

forall& € CJ%.

6. Existence

Armed with the results of the last section we now return to the approximate caloron A
of (4.5). We want to prove the existence of a “small” 1-form a with values in the adjoint
bundle such that A/ + a is a caloron. In order to take into account the invariance of the
anti-self-duality equations under gauge tranformations, we will look for a of the form
a = dj, u for a self-dual 2-form u with values in the adjoint bundle. We will prove the

existence of u using the following quantitative version of the Implicit Function Theorem.

Lemma 6.1. Let ®: E — F be the smooth function between Banach spaces and write
d(x) = ®(0) + L(x) + N(x), where L is linear and N contains the non-linearities.
Assume that there exists constants C, Ca, C3 such that

(i) L is invertible with ||L~'|| < Cy;
() INx) = NWIF < Callx +yllellx — yllg forallx, y € Be;(0) C E;

(iii) | @ 0)[|F < min{z%, 4C1+CZ :
Then there exist a unique x € E with ||x||g < 2C1||P(0)|| F such that ®(x) = 0.
In our situation, we fix § € (—1, 0), @ € (0, 1) and we set
E:=Cy*Q*(R® x S;ad P),  F:=Cy%Q*(R® x S';ad P).
For u € E we let ®(u) denote the self-dual part of the curvature of A, + d& u, so that
the decomposition @ (u) = ®(0) + L(u) + N (u) reads
D) = Ff, +df, di,u+ 5lds, u, df,ul”.

We need to check that the hypotheses of Lemma 6.1 are satisfied.

The linear term. As u is a self-dual 2-form with values in the adjoint bundle we can
write © = uj w1 + u» wy + u3 ws for the hyperkéhler triple (w1, w2, w3) inducing g,
and sections u1, uz, u3 of ad P. Since the hyperkéhler triple is parallel, the Weitzenbock
identity (5.2) yields

3
dudfu=Y" (v;gé Vi, ua) wa+ Ff, - u. (6.2)
a=1

In order to reduce part (i) of Lemma 6.1 with an e—independent constant C; from
Proposition 5.18 we only need to check that the last term can be regarded as a small
perturbation. For this, observe that

+ +
IFa, - ullcoe = CllFy, Nl cosllull o

for a uniform constant C and || F§, | c0e = O(€?|1In€|?) by Lemma 4.7.
€ -2
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The non-linear term. 1t is clear that the non-linear term %[d A u, dy, ul" is controlled by
€ €
the norm of the multiplication map

l,a 1, 0,
Coli x Gy =~ G5,

which in turn is easily seen to be controlled by ||réS oo, cf: (5.6). Since 6 < 0 and
re > € by Definition 5.14 we conclude that part (ii) of Lemma 6.1 holds with a constant
Cy = 0(€Y).

The error. By Lemma 4.7 we have ||Fg, o0« < C(€lln €)279%, so that
e Ls2

CallFf, 00 € ||FA/ 0a = O 2 lne>?)

o o

can be made arbitrarily small as € — 0.

The existence theorem. An application of Lemma 6.1 now allows us to deform the
approximate caloron A/ of (4.5) to an exact self-dual connection.

Theorem 6.3. Fix a semisimple structure group G, holonomy parameter w e At in
stanton number ng and total magnetic charge ym = Z: oNu M If n, > 0 for all
u=0,...,1k then the moduli space of calorons M (®, ym, no) is non-empty.

More precisely, for any choice of ng+- - -+ny distinct points p(l), e pg", e prlk, e
pfk“‘ inR? and phases I//é, ceey I//rnkrk € U(1) there exists €y > O (uniform in the minimum
distance dmin between the distinct points) such that for all € € (0, €g) there is a caloron
A¢ in Me(w, ym, no) with the following behaviour as € — 0:

(i) A¢ smoothly converges to the flat abelian connection d + w ® dt on compact subsets
of (R3\{p, ... pi*}) x 8L

(i) after rescaling by €' near a point piL, A¢ smoothly converges to the fundamental
caloron A, (w) on compact subsets of R3 x sL.

Proof. The discussion so far implies that the family of approximate calorons A/ con-
structed in (4.5) can be deformed to an exact solution A, = A, + d;g,ue for all €

sufficiently small. Indeed, Lemma 6.1 guarantees the existence of u. € Cg’“ with
luell 20 = O((e] Ine|)2~?) forall e sufficiently small.
)

The limiting properties (i) and (ii) are satisfied by A by direct inspection. Moreover,
since R(e) — 0, given any compact set K of (R3\{pé, co P rk}) x S! we can assume
that A, is self-dual on K for all small enough €. The uniform weighted elliptic estimates
of Remark 5.17 applied to u.|x then yield (i) for A, as well. Part (ii) is obtained in a
similar way using the fact that e "' R(€) — oo.

Finally, non-emptyness of the moduli space for all € > 0 follows by scaling. O

Remark. While A, tends to the vacuum connection away from { pL} wi as € — 0, the
curvature F_ diverges at those points. This is because A, approximates the singular
connection Agipg in the limit € — 0.

Remark. The phases wl’; in the statement of the Theorem are the gluing parameters of
Remark 3.12 which line up the framing of Asmg and A, on Uging N Uli.
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Remark. A natural expectation is that M (w, ym, no) is non-empty if and only ifn,, > 0
for all u = 0, ..., rk and reduces to a single point (a flat connection) if ng = --- =
ng = 0. This is known for G = SU (n) or when the instanton number is ng = 0, in
which case calorons reduce to monopoles on R3 by Proposition 7.2 below. There are
three ideas for how one might prove the statement for general G and ny.

(i) Inthecaseof G = SU (n), the inequalities n,, > 0 are proved by considering the
index for a family of twisted Dirac operators. More precisely, given an SU (n)
caloron A, consider the family of unitary connections Ay = A + isid, on the
rank-n complex vector bundle E associated with the standard representation of
SU (n). The Dirac operator Da_ on E is Fredholm and surjective for generic
s, cf. Proposition 5.13. Hence index(Dy,) > O for any such s. These indices
are related to the constituent monopole numbers 7, and varying s shows that
ny, > O0forall w =0, ...,1k. The idea is to do the same for a general compact
semi-simple group G by embedding it in SU () via a representation p : G —
SU(N). Such a representation is described in terms of its weights: given H €
we have

o (exp (H)) = diag {eiw(H)|w € ‘7} ,

where V is the set of weights of p. Any G caloron then induces an SU (N)
caloron A, and as before a family of generically surjective Fredholm Dirac
operators DA ,.s- Computing their indices—an example of how to do this in
detail using [4, Theorem D] is given below in the proof of Proposition 7.7—
yields

ind (Dy,,) = Y lw(@)]w (ym) +noindp (p) + Y w (ym) =0,

weV WSy <s§

where |w(w)] is the largest integer smaller or equal than w(w), {w(w)} =
w(w) — |w(w)]| and s, = 1 — {w(w)} € (0, 1]. Moreover, indp (p) is the
Dynkin index of p, cf. the proof of Proposition 7.7. Although we were unable to
work out the combinatorics, it seems likely that by varying the representation
o and s we would recover n;, > 0 for all . For example, when p = Ad is the
adjoint representation we have

rk

ind (DAAd,S) =2 Z”M + Z <5s(’; - 5S;> o (Ym) = 0,

n=0 aeR*

with s} = 1 — a(w), s; = a(w) for all positive roots « and

Now, if w is such that ag(w) > _E we can find generic s such that 1 — o (w) >

s > a(w) forall @ € R*. Using ), g+ a(Ym) = 222;1 ny, —nomy and
m, > 0 we deduce that ny > 0 in this particular case.
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(ii) When ng = 0 and A is a monopole the integers ny, ..., ny have an interpreta-
tions in terms of based rational maps from P! into the flag manifold G /T as the
(necessarily non-negative) degrees of the pull-backs of the ample line bundles
on the flag manifold associated with the fundamental weights of G [17,18]. An
extension of this argument to calorons requires one to work with rational maps
into infinite dimensional flag varieties associated with loop groups [28].

(iii) Finally, we propose a more analytic approach that uses the formula (2.7) for the
Yang—-Mills energy of a caloron and the persistence of solutions as we vary the
holonomy parameter w € A*. A natural expectation is that for fixed y, € A
and ng the set

{w e AT | Mc (@, ym, no) # %)

is either empty or the whole of A*. Openness of this setin A* is easily established
using the analytic results of Sect. 5, but closedness appears more challenging
because of non-compactness phenomena such as instanton bubbling. If the claim
were true, then one could assume by contradiction that there exists p such that
ny, < 0,say ng < 0. Then one could take w € A* sufficiently close to 0 to
deduce from (2.7) that for a putative caloron A in M, (@, y, ng) we would
have Y M (A) = ny < 0 and therefore reach a contradiction.

7. Index Computations

Fix € > 0, holonomy parameter @ € AT, magnetic charge yy, € A and instanton num-
ber ng € Z and consider the corresponding moduli space M (w, ym, no) of (framed)
calorons. The analytic results of Sect. 5, in particular Propositions 5.12 and 5.13, imply in
a standard way that, fixing« € (0, 1) and § € (—1, 0), M (w, ym, ng) is a smooth (pos-
sibly empty) manifold with smooth structure induced by the Banach manifold structure
on the space of connections of class C ;’_"‘1 with fixed asymptotic model Ao (w, ym), act-

ed upon by the group of gauge transformations of class Cg‘a. Moreover, the equivalence
of the C ;70‘1 and L? kernels of the deformation operator Dy implies that M (w, ym, no)

carries a natural Riemannian metric arising from the L?—inner product of infinitesimal
deformations. This metric is hyperkéhler by virtue of an infinite dimensional hyperkihler
quotient (and is in general incomplete because of instanton bubbling).

In this section we calculate the dimension of M (w, ym, ng), thus implying that the
family of solutions produced by Theorem 6.3 depends on a full dimensional family of
parameters.

Remark. In the following we will primarily consider the deformation operator D as the
(surjective) Fredholm operator D: C ;f‘l — Cgf‘z with § € (—1,0). However, in the
proof of Proposition 7.7 we will apply an L?—index formula that is justified in view of
Proposition 5.13, and in the proof of Theorem 7.11 we will use the e—dependent norms
of Definition 5.15, which are equivalent to the C]’j “—norms for any fix € > 0.

7.1. Moduli space of fundamental calorons. In this section we show that the fundamen-
tal calorons of (3.8) are indeed “fundamental”, i.e. they move in a 4-dimensional moduli
space. Since moduli spaces of calorons are hyperkéhler this is the lowest possible di-
mension of a non-trivial moduli space. In a physics context, this observation was made
in [23]. Here me make this more precise from a mathematical perspective.
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Theorem 7.1. The dimension of the moduli space of the fundamental calorons are
dim M, (w, oy, 1) =4, dim./\/lg(a),ozl,O)=4, w=1,...rk

The proof of the theorem takes the rest of this subsection. A fundamental G—caloron
A, (w) is reducible since it has structure group 7’ x SU(2) C G. The deformation
theory therefore splits into two independent contributions: deformations of A () as a
T’ x SU(2)—caloron and deformations arising from the complement p,, in the splitting
g = (p)«(t ®suz) ®p,. We will show that deformations of A, (w) as a G—caloron in
fact arise from deformations of the charge 1 BPS monopole, i.e. there are no deformations
of A, (w) arising from p,, and there are no unexpected deformation of the fundamental
SU (2) calorons Aﬁps.

7.1.1. Deformations as a T' x SU (2)—caloron We first consider the deformations of
Ay, (w)asa T’ x SU(2)—caloron. In other words, we want to consider moduli spaces of

abelian calorons and the two moduli spaces M;g ve (w, 1,0) and Mf ve (w, —1,1).

An abelian caloron A is uniquely determined up to gauge by its curvature d A, which
must be a closed anti-self-dual 2-form, and therefore also coclosed. Moreover, the bound-
ary conditions (2.5) imply that dA is L?—integrable. L> Hodge theory on ALF spaces
[15, Corollary 1 and §7.1.2] yields immediately (since the compactification of R® x S!
relevant to the work of Hausel-Hunsicker—-Mazzeo is S*) that any abelian caloron is flat
and therefore uniquely determined by the holonomy parameter.

The moduli spaces ./\/les v (@, 1,0) and ./\/lf ve (w, —1, 1) are identified via the
“large” gauge transformation (3.5), i.e. via the “rotation map” of [29, §2.2]. The follow-
ing result, whose proof is inspired by [34, §3], implies that any caloron with vanishing in-

stanton number is gauge equivalent to a monopole. As a consequence, ./\/lf ve (w, 1,0),
MGSU(Z) (w,—1,1) ~ MEU(z) (w, 1, 0) are both diffeomorphic to R3 x S!, the moduli
space of charge 1 monopoles.

Proposition 7.2. Let A be a framed caloron with instanton number ny = Q. Then there
exists a gauge transformation compatible with the framing such that u™ A is the pull-back
of a monopole.

Proof. Represent A by a connection A = A; + € ®; ® dr on a bundle P, = (R3 x R x
G)/Z for some map h: R3 — G with degh = 0. We can easily reduce to the case
h =1d, ¢f. [29, Lemma 2.20], so we assume without loss of generality that (A;, ®;) isa
1-parameter family of pairs of a connection and Higgs field on R? which is periodic in
t with period 2 and satisfies 9; A; = xp3 Fa, — da, P;.

Firstly, by Proposition 5.12 applied to 7—independent sections, for each ¢ we can find
a gauge transformation u; : R3 — G which decays to the identity at infinity such that
the curve (A;, ®}) = u; (A;, ;) satisfies d*;(atA;) —[®}, 8;P;] =0, i.e. for each 7 the

infinitesimal variation 9, (A}, ®}) satisfies a natural gauge fixing condition with respect
to (A}, ®,). Note that (A}, /) is not necessarily periodic anymore. However, (A}, ®})
are all asymptotic to a fixed periodic asymptotic model which satisfies the Bogomolny
equation. In particular,

A —Ay=00"",  8(A, @) =00 ") (7.3)

for some § > 0 and the boundary terms

lim (®) A Fy,) = lim (@) A sgada, D)) (7.4)

r—>oo Jap r—>oo Jop
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are well defined. Finally, we still have
We will now show that sg3 Fyr — d ®; = 0. Noting that
/ |Fa,I* +1dy @) > = / | #gs Far — dy @) +2 lim (®) A Fa,),
R3 R3 r= JaB,

and taking in to account (7.4), our claim will follow from showing separately that

L’;'FAJZZ lim <®;/\FAI>, /l.@ |dA;CI>;|2= lim <¢;/\*R3dA[CD;).

r—o Jap r—o Jap

(7.6)

In order to show the first equality we argue as in [34, §3] using the variation for the
Chern—Simons functional of A; = A{ + (A; — A()). Here recall that the Chern—Simons
functional CS4, (Ag + a) is defined as

2
CSag(Ap+a) = —/ <dA0a/\a+§a/\a/\a+2a /\FA0>.
R3
Then using the gauge invariance of the Chern—Simons functional and the periodicity of
A; we have (see e.g. (36) in [34])
0 = CSy4y(A2z) — CSx,(Ag) = CSA(,(A/zn) - CSA(/) (Ap)

2
:/ (—2/ (9 A) A Fy)+ lim (A, — Ap) Aa,A;)).
0 R3

r—00 Jap,

The boundary term vanishes by (7.3), so the expression for 9; A} in (7.5) and another
integration by parts yield

0=f (8;A;/\FA/)=/ |Fa,|? — lim (®) A Fa,).
R3 ! R3

r—o0 9B,
In order to show the second equality in (7.6), observe that
dydy @) = —d}) (*R3 Fy —dy c1>;) = —d}, (0 A)) = @], 8,9]]

by (7.5) and our gauge-fixing condition. Hence d’, d Al @/ is pointwise orthogonal to &/
and an integration by parts yields

0= (d}dy @), )12 = fR} \d g, @} — lim (@) A skpady, D).

—00 Jap,

We conclude that (7.6) holds and therefore A; = A{ for all # and (Aj,, ®;) satisfies
the Bogomolny equation. Differentiating the latter and using (7.3) we conclude that 3, ®;
is a decaying parallel section and therefore ®; = @, for all ¢ also. Thus (A, ®;) =
(ut_l)*(A’ , @) and since (A;, ®;) and (A{, ®)) are both periodic and the stabiliser of
(A, @) in the group of gauge transformations that decay to the identity is trivial, we
deduce that u; is also periodic. O
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7.1.2. Deformations as a G—caloron We must now show that there are no additional
deformations of A, (@) as a G—caloron. Recall that we defined p,, via the orthogonal
splitting g = (p,)«(h’ @ suz) @ p,,. Note that p, is an orthogonal representation of
T’ x SU(2) so that we have an associated vector bundle E,, — R3 x S! with fibre
p, and a connection A on E, induced by A, (w). Since the deformation operator Dy
is surjective by Proposition 5.13, the fact that there are no deformations of A, () as a
G—caloron that do not arise from deformations of A, (w) as a T’ x SU (2)—caloron is
equivalent to the following proposition.

Proposition 7.7. The index of Dy acting on E,—valued I-forms vanishes.

Proof. First of all note that on any spin 4-manifold M we have T*M  C = S* ® S,
where S¥ is the positive/negative spinor bundle. Moreover, if M is hyperkihler then
S* is trivial, so that, denoting by EE the complex vector bundle associated with the

T’ x SU (2)-representation p, ® C,

index(Dy; E,) = index(Dy; Ef) = index(D}; S* ® Ef;) = 2index(D}; E),
where index(D, ; E) denotes the index of the twisted Dirac operator D, : S~ ® E —
S*®E.

In order to calculate index(D, ; ES) we use the index theorem of [4, Theorem D]
(note that [4] has the opposite orientation conventions of ours). Here we regard A, (w)

as a unitary connection A on EE. The index formula of [4, Theorem D] involves the
second Chern number 87+2 [ Trace (Fp A Fa) and a boundary term depending on the

rk EE eigenvalues of the asymptotic holonomy of A and the rk EE integers determining
the magnetic charge of A.
Now, an explicit calculation as in [29, §2.1.7] shows that

1 ) | /
_W/Trace (FAEPS A FAEps) =2w, —877/Trace (FAEPS A FAEps> —1-2w

if the SU (2) holonomy parameter is ' € (0, %). We deduce that

1
- / Trace (Fa A Fp) = indp (5u(2), p;‘j) (no + . (@) (7.82)

with ng = 1 for © = 0 and ng9 = 0 otherwise. Here indp (5u(2), pg) is the Dynkin index

of the Lie algebra morphism su(2) — u(dimg¢ p(C), i.e. the ratio between the pull-back
of the Killing form of u(dimc pC) and the Killing form of su;. With our conventions,
the Killing form of u(n) is given up to a sign by the trace of the product of two matrices,
so that the positive coroot of suy has norm V2 and indp (su(2), pﬁ) is half the trace of

the endomorphism [oelf, [oelj, 1] of pE. We calculate
indp (su2),55) =1 Y w@)?= Y ale)’—4
aFEtay, aeR* (7.8b)
Yindp (g, Ad) [ler) |1} — 4.

Here indp (g, Ad) is the Dynkin index of the Lie algebra homomorphism g — u(g®)

given by the adjoint representation. It can be shown [31, Example 1.2] that

indp (9. Ad) =2 (1 — p(ey)) . (7.9)
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where p = % Y wcr+ @ denotes the half-sum of positive roots.
In order to calculate the boundary term in the index theorem of [4, Theorem D],
observe that p, ® C = @a#iaﬂ gq in terms of the decomposition of g ® C into root

spaces. The asymptotic form of A preserves this decomposition and the holonomy and
magnetic charge of the line bundle arising from g, for o # %/, are, respectively, a ()
and a(alf). Since a(w) € (0, 1) the asymptotic holonomy is non-trivial and therefore
the application of [4, Theorem D] is justified. Taking kK = O in the latter formula (since
R3 x §' = TNp) and taking into account the different convention of magnetic charge,
we calculate that the boundary term in the index formula of [4, Theorem D] is

2 Y (Fra@)e@) =2} (3 -a@)a@) - dsignay (-l @))
a#layl a€eR* (7.10)

=2 (p(e,) — signey,) — (indp (g. Ad) [l [ — 4) oy ().

Here |a,| = (signoy,) o, and we used

2 Z a(w) a(ay) = indp (g. Ad) (0, &) ) g = 3indp (g, Ad) [l [} i ().

aeR*

Putting together (7.8) and (7.10) we obtain that
index (DAgp, EE) - (%indg (8. A) [l |12 — 4) no+2 (p(a)) — signay,).

If w # 0thenay > 0,n9 = 0and p(e;) = 1. If p = 0, then g < 0, np = 1,
lloty ||é = 2 (since « is a long coroot) and the vanishing of the index follows from
(7.9). 0O

The proof of Theorem 7.1 is now complete.

7.2. Excision. We will now use an excision argument inspired by the proof of the exci-
sion principle in [8, §7.1] (¢f. also [10, §8]) to prove the main result of this section.

Theorem 7.11. For w € A* and ym = 22(:0 nyay € Awithn, > 0 forall ix we have

dimMg (w, Ym, n()) = 4(n0 +ny+--- +nrk).

Proof. For a caloron A whose gauge equivalence class lies in M, (w, Y, no) the de-
formation operator Dy is surjective by Proposition 5.13 and therefore the theorem is
equivalent to showing the index formula

index Dy = 4(ng + 1y + - - - + nyg). (7.12)

First of all, note that by the compactness of the multiplication map in (5.7) the index
remains unchanged if we replace A with the approximate caloron A, constructed in
(4.5). In fact, we consider a slight variation of the construction in (4.5) and assume
that A is S!'—invariant and abelian outside of U i B ( pL) x S! and coincides with the

model A, (a)L, al) on the “annulus” (32 (pL) \ Be (pL)) x S'. Similarly, we let AL be
a connection on R3 x §! with similar properties as A but constructed from the single

point p!, instead of the collection {p/ },..;. Then A coincides with A in By(p},) x S'.
The idea is to show that the index of Dy coincides with the index of the disjoint union of
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the D Al ’s and then use Theorem 7.1 to conclude that the latter index equal the right-hand
side of (7.12).
Now, Dy and D i are all surjective with rightinverses G = D} (Da Df&)’l and simi-

larly defined GL with uniformly bounded norms independently of € by Proposition 5.18.
Hence showing that

index Dy = Z index D Al
)
amounts to showing that the finite dimensional kernels of the operators on the two sides

of the equation have the same dimension. In order to show this we will construct maps
between the kernels of D and |_| wi D A, and show they are injective when € is small

enough. Rescaling back to a fix € then implies the result for any € > 0.
Fix cut-off functions y,,, B, with

i _J1 onBi(pl) xS,

yi = . i _]0  onBi(pl) xS,
S 0 outsideBz(p;L)xSl,

P = 1 outside Bz(pr) x ST,

and the additional constraint that ﬂL = 1 on the support of d yli.
Now, suppose that £ is an element in the kernel of Dy . We define an element SL in
the kernel of DAL by &, =vy,§ — G;LDAL (7,,6)- Indeed, note that

1D, (V) o = lldy,, ® Ellcoa S IBEll e < 00 (7.13)

since Dy = D i, On the support of yli and on the support of d V,i the weight function

rli = O(l) and ,BI"L = 1. Here a < b means a < Cb for a constant C > 0 independent
of a, b and €. _
We claim that the map & +— {&/ },,.; is injective for € sufficiently small. Suppose not,

so that there exists £ € ker D4 such that y;;g = G;DL(ylif;' ) for all u, i. Proposition-

$5.20 and 5.21 imply that for € small enough we have

1€l S D 1YiEllcoe (7.14)
Wi

Then, using Propositions 5.18 and 5.20 and (7.13) we obtain
17,8l o < 1Vl cra = 1G, D)l cla S I1B,Elcoa < nIEl e

Summing over u, i and using (7.14) implies that for 1, and therefore ¢, small enough
we must in fact have & = 0.

Hence we have shown thatdim ker Dy < ) i dimker D Al The opposite inequality
is shown in analogous way by constructing an injective map from &P i ker D A, to
ker Dy. 0O
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