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Abstract: We study anti-self-dual Yang–Mills instantons on R
3 × S1, also known as

calorons, and their behaviour under collapse of the circle factor. In this limit, we make
explicit the decomposition of calorons in terms of constituent pieces which are essen-
tially charge 1 monopoles. We give a gluing construction of calorons in terms of the
constituents and use it to compute the dimension of the moduli space. The construction
works uniformly for structure group an arbitrary compact semi-simple Lie group.

1. Introduction

This paper is motivated by the study of the behaviour of 4-dimensional anti-self-dual
Yang-Mills instantons under codimension-1 collapse. We focus on intantons on the flat
model R

3 × S1 where the circle has radius ε → 0. In the literature these periodic
instantons are often referred to as calorons. We construct families of calorons that can
be qualitatively described as superpositions of building blocks localised around points in
the collapsed limit R

3, glued into a singular S1–invariant abelian background obtained
from a sum of Dirac monopoles. All the calorons we produce have “maximal symmetry
breaking” at infinity, i.e. the centraliser of the holonomy around circles {x} × S1 for
|x | � 1 is a maximal torus in the structure group G. The approximation in terms of
simpler building blocks is increasingly accurate as ε → 0 andwe expect our construction
captures some generic behaviour of instantons under codimension-1 collapse.

The building blocks in our construction are simple explicit “fundamental” calorons
obtained from the charge 1 SU (2) monopole on R

3 and suitable embeddings of SU (2)
into a higher rank compact semi-simple structure groupG. ForG = SU (2) there are two
different types of fundamental calorons: one is the charge 1 monopole lifted to R

3× S1

as a circle invariant instanton; the other type of fundamental caloron, that we call a
“rotated” monopole, is not circle invariant (in a way compatible with a fixed framing at
infinity) and arises from the non-trivial loop in the moduli space of charge 1 monopoles.
For higher rank G, the fundamental calorons are obtained by embedding the charge 1
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monopole along one of the simple coroots and the rotated monopole along the lowest
negative coroot.

We refer to Theorem 6.3 in the paper for a precise statement of our existence result.
As a consequence, we establish the existence of calorons with non-trivial holonomy for
arbitrary compact semisimple structure group.

Theorem. Fix a compact simply connected semi-simple Lie group G of rank rk with
Lie algebra g, a generic holonomy parameter ω ∈ g, an instanton number n0 ∈ Z and
a total magnetic charge γm =∑rk

μ=0 nμ α∨μ in the coroot lattice of G. If nμ ≥ 0 for all
μ = 0, . . . , rk, then the moduli space of calorons M(ω, γm, n0) with structure group
G is non-empty.

Our construction of calorons is reminiscent of the description of “widely separat-
ed” monopoles on R

3 [16,33]. The interpretation of calorons in terms of constituent
monopoles is not new, but a direct description in terms of the connection and for arbitrary
structure group has not appeared before in the literature. In the late 1990s, implementing
explicitly the Nahm Transform for calorons, Kraan–van Baal [21] and Lee–Lu [24] in-
dependently produced an explicit family of SU (2) calorons with non-trivial holonomy,
instanton number 1 and vanishing total magnetic charge. These calorons are qualitatively
interpreted as a superposition of a monopole and an anti-monopole. Conjectural decrip-
tions of calorons with higher rank structure group in terms of constituent monopoles
were then discussed in [20,22] for G = SU (n) and [23] for general G. This idea and
its relation with the collapsing behaviour of instantons does not appear to have been
explored further and the purpose of this paper is to provide a simple but rigorous gluing
construction implementing it.

More generally, besides early references such as [14] that constructs explicit calorons
with trivial holonomy, much of the work on calorons makes use of the Nahm Transform
for G = SU (n) calorons [3,32] rather than working with the connection A directly.
Some explicit solutions have been obtained using the Nahm Transform to construct
multicalorons in [2], and symmetric configurations in [7,13,19,35]. For an overview of
the literature on calorons, including examples with trivial holonomy see [7]. Given the
Nahm Transform only applies to classical structure groups, we use some of the tools
and ideas of our gluing construction to also answer some basic open questions about the
moduli space of calorons for arbitrary structure group. In particular, we calculate the
expected dimension of the moduli space in Theorem 7.11.

Theorem. In the notation of the previous theorem,

dimM(ω, γm, n0) = 4(n0 + · · · + nrk).

This uses the index theorem for Dirac operators on ALF manifolds [4,26,30] and
an excision argument based on our gluing construction. (The index theorem does not
immediately apply to the deformation theory of calorons because the adjoint action of the
holonomy at infinity is always trivial on the Cartan subalgebra.) This index computation
shows that the caloronswe construct depend on the right number of parameters (positions
and phases of the constituentmonopoles) and that the fundamental calorons are precisely
the ones that belong to a 4-dimensional moduli space. Given moduli spaces of calorons
are hyperkähler manifolds, this is the smallest non-trivial number of parameters gauge
equivalence classes of calorons can depend on.

Calorons are the simplest examples of instantons on ALF spaces, recently studied by
Cherkis–Larraín-Hubach–Stern [4,5]. We expect similar results to the ones described
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here to hold in this more general setting.Moreover, we hope that the behaviour described
here can be used to model codimension-4 curvature concentration of generalised instan-
tons on sequences of higher dimensional manifolds with special holonomy undergoing
codimension-1 collapse.

Our gluing construction could also be used to provide a description of an asymptotic
region of the moduli space of calorons and of its asymptotic hyperkähler geometry.
While the metric is in general incomplete due to instanton bubbling, moduli spaces
of calorons are expected to provide interesting examples of non-compact hyperkähler
spaces. For example, forG simply-laced these spaces also arise asmoduli spaces of vacua
in quantum field theory (more precisely, Coulomb branches of certain 3-dimensional
supersymmetric quiver gauge theories [1,25,27]).

Plan of the paper. In Sect. 2we fix the notations and conventions that we use and explain
the asymptotics and topological invariants of a caloron. Section 3 gives the definition
of fundamental calorons. We show how to construct approximate calorons by gluing
together Dirac monopoles and fundamental calorons in Sect. 4. Section 5 provides all of
the linear analysis results (in weighted Hölder spaces) that we need to study and deform
our approximate calorons to an exact solutions. The proof of the main existence theorem
is completed in Sect. 6 and the dimension formula is given in Sect. 7.

2. Boundary Conditions and Topological Invariants

In this brief preliminary section we fix the notation and conventions that will be used
throughout the paper.

The base manifold. Fix coordinates (x, t) on R
3 × R and identify R

3 × S1 with R
3 ×

R/2πZ. Fix ε > 0 and endow R
3 × S1 with the flat metric gε = gR3 + ε2dt2 and

volume form dvgε = ε dt ∧ dvR3 . A caloron is a connection A on a principal bundle
over R

3 × S1 with anti-self-dual curvature with respect to (gε, dvgε ). In this paper we
study calorons in the limit ε → 0.

The structure group. Let G be a compact semi-simple Lie group. Any principal G–
bundle P → R

3 × S1 is trivial and therefore without loss of generality we assume that
G is simply connected.

We now collect some of the Lie theoretic notions we will need. Denote by g the Lie
algebra of G and let 〈 · , · 〉g be the Killing form of g normalised so that long coroots
have norm

√
2 (with the convention that all coroots are long if g is simply laced).

Fix a maximal torus T in G with Lie algebra h, a Cartan subalgebra of g. Since G is
simply connected T = h/�, where � is the coroot lattice of g. We also fix a choice of
simple roots α1, . . . , αrk and corresponding coroots α∨1 , . . . , α∨rk. Here rk is the rank of
G. We introduce the lowest root α0 and the corresponding coroot α∨0 . We have

α∨0 = −
rk∑

μ=1
mμ α∨μ (2.1)

for integers m1, . . . ,mrk ∈ Z>0 (sometime referred to as the dual Coxeter labels of g).
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Fig. 1. The fundamental alcove A+ for SU (3)

Given these data, we let A+ denote the fundamental alcove, the simplex in h defined
by the inequalities

αμ(ξ) ≥ 0, μ = 1, . . . , rk α0(ξ) ≥ −1. (2.2)

The fundamental alcove is the fundamental domain for the action ofW �� on h, where
W is theWeyl group of g. Note that the coroots α∨0 , . . . , α∨rk are inward-pointing normals
to the facets of the boundary of A+, such as shown in Fig. 1 for the case of G = SU (3).

Finally, recall that the extended Cartan matrix C̃ is defined by C̃μν = αν(α
∨
μ),

ν, μ = 0, 1, . . . , rk. It satisfies C̃μμ = 2 and C̃μν ≤ 0 for μ �= ν.

Boundary conditions. In the following we will consider connections A on the trivial
principalG–bundle P = PG → R

3×S1 asymptotic to the S1–invariant abelian calorons
we now define.

The complement of a compact set inR
3×S1 retracts to S2×S1, so principalT –bundles

on such an exterior domain are in one-to-one correspondence with elements γm ∈ �,
i.e. any such bundle Hγm must be the pull-back from S2 of the T –bundle associated with
the Hopf circle bundle S3 → S2 and the group homomorphism exp γm : S1 → T . We
will refer to γm as the total magnetic charge.

The bundle Hγm carries a distinguished connection Aγm with curvature d Aγm =
1
2γm dvS2 . Given the additional choice of ω ∈ h we consider the S1–invariant instanton
on

(
R
3 \ {0})× S1

A∞(ω, γm) = Aγm + ε
(
ε−1ω + 
γm

)
dt, 
γm = − 1

2|x |γm. (2.3)

The fact that A∞(ω, γm) is an instanton on (R3 \ {0}) × S1 follows from the fact that
(Aγm ,
γm) satisfies the Bogomolny equation d Aγm = ∗R3d
γm on R

3 \ {0}.
Note that the parameter ω can be shifted by an arbitrary element ξ ∈ � by a gauge

transformation of the form (x, t) �→ exp(2π t ξ). Furthermore, if we regard A∞(ω, γm)

as a connection on theG–bundle Hγm×T G, the action of constant gauge transformations
in the normaliser N (T ) of T in G generate the action of the Weyl group W on the pair
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(ω, γm) ∈ h × h. Using these degrees of freedom, we can therefore always move ω to
lie in the fundamental alcove. In this paper we make the standing assumption that ω

lies in the interior Å+ of the fundamental alcove. In particular, the limiting holonomy of
A∞(ω, γm) on circles {x} × S1 for |x | → ∞ commutes only with elements in T ⊂ G,
i.e. we have maximal symmetry breaking at infinity. We will refer to ω as the holonomy
parameter.

Example 2.4. The reader might find it useful to keep in mind the explicit case where
G = SU (n). Then

ω = diag(iμ1, . . . , iμn), γm = diag(ik1, . . . , ikn),

with μi ∈ R and ki ∈ Z satisfying μ1 + · · · + μn = 0 = k1 + · · · + kn . The condition
ω ∈ Å+ is

μ1 > μ2 > · · · > μn > μ1 − 1.

In particular, for n = 2, i.e. G = SU (2), the holonomy parameter is a single number
μ1 = −μ2 ∈ (0, 1

2 ) and the total magnetic charge is a single integer k1 = −k2.

Instanton number. Fix ε > 0 and (ω, γm) ∈ Å+ × � and consider a pair (A, f )
consisting of a connection A on the trivial principal G–bundle P → R

3 × S1 and a
framing f that identifies P and Hγm ×T G on (R3 \ BR) × S1 for some R � 1 and
such that

f ∗A = A∞(ω, γm) + a, (2.5a)

where

|∇k
A∞a| = O(r−1−k+ν) (2.5b)

for some ν < 0 and all k ≥ 0.

Remark. By [4, Theorem B] the much weaker asymptotic conditions of finite Yang–
Mills energy and maximal symmetry breaking at infinity along a single ray in R

3 force
any caloron to satisfy the asymptotic conditions (2.5) with ν = −2.

To any such pair (A, f ) we associate a topological number n0 ∈ N0 in either of the
following equivalent ways, cf. [30, §2] and [29, Chapter 2]. Firstly, we can represent
(P, A) as a pair (P̃, Ã) onR

3×R invariant under the action ofZ generated by translations
on R and an an isomorphism P̃|{t=2π} → P̃|{t=0}, i.e. a smooth map h : R

3 → G. We
can choose this trivialisation in a compatible way with the framing f . Then h is the
identity outside a compact set and it extends to a map h : S3 = R

3 ∪ {∞} → G, whose
degree we denote by n0. Here by degree we mean the pull back of the generator of
H3(G;Z) in H3(S3;Z) � Z. Alternatively, composing f with a fixed trivialisation of
Hγm ×T G on (R3 \ BR)× S1 allows one to construct a new connection A

′ that is trivial
outside a compact set. Then the closed form 〈FA′ ∧ FA′ 〉g defines a compactly supported
cohomology class, which we identify with an integer n0 by integration. The integer n0
so defined will be called the instanton number of (A, f ).

We consider the setAε(ω, γm, n0) of pairs (A, f ) satisfying the boundary conditions
(2.5) and with instanton number n0. The space of framed connections is acted upon by
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the group G of gauge transformations that are asymptotic to the identity at infinity (with
suitable polynomial decay). The quotient

Mε(ω, γm, n0) = {(A, f ) ∈ Aε(ω, γm, n0) | ∗ FA = −FA}/G
is the moduli space of (framed) calorons.

Using (2.1), define integers n1, . . . , nrk by

γm =
rk∑

μ=0
nμ α∨μ = (n1 − n0 m1) α∨1 + · · · + (nrk − n0 mrk) α∨rk. (2.6)

The purpose of this paper is to interpret the integers (n0, n1, . . . , nrk) as the number of
“constituent monopoles” of a caloron in Mε .

Remark. The Yang–Mills energy of a caloron is given by (cf. [29, §2.1.7] forG a unitary
group)

YM(A) = 1
8π2 ‖FA‖2L2 = n0 (1 + α0 (ω)) +

rk∑

μ=1
1
2‖α∨μ‖2g nμ αμ (ω) . (2.7)

3. The Fundamental Calorons

In this section we introduce the simple model solutions that will be used as building
blocks in the construction of more complicated calorons. These “fundamental” calorons
are all obtained from the simplest non-abelian solution of the Bogomolny equation
on R

3, the charge 1 BPS (Bogomolny–Prasad–Sommerfield) SU (2) monopole. The
fundamental calorons correspond to BPSmonopoles embedded along the simple coroots
of the structure group G, and a “rotated” BPS monopole embedded along the lowest
negative root. Here a “rotated” BPSmonopole is a caloron obtained by acting on the BPS
monopole by a t–dependent large gauge transformationwhich generates the rotationmap
of [29, §2.2]. In other words, the “rotated” BPS monopole is the caloron corresponding
to a non-trivial loop in the moduli space of (framed) charge 1 monopoles.

3.1. Fundamental SU (2) calorons. The simplest case to consider is that of SU (2)
calorons, where there are just two types of fundamental calorons. As in Example 2.4,
SU (2) calorons are classified by their magnetic charge k and instanton number n0, as
well as the holonomy parameter ω ∈ (

0, 1
2

)
. The two fundamental calorons are the

(k, n0) = (1, 0) BPS monopole and the (k, n0) = (−1, 1) “rotated” BPS monopole.
We begin the section with these fundamental calorons and then describe how to obtain
fundamental calorons for higher rank Lie group via embeddings of su2 in g.

3.1.1. The charge 1 BPS monopole For SU (2) the charge 1 BPS monopole with mass
v > 0 is the explicit solution (ABPS,
BPS) of the Bogomolny equation FA = ∗R3dA


given by


BPS =
(

v coth (2vr)− 1

2r

)

x̂ · i �τ ABPS,i = −1

2

(

1− 2vr

sinh (2vr)

)

εi ja
x̂ j iτ a

r
,

(3.1)
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with r = |x | the radial distance from the origin in R
3, x̂ = r−1x and �τ the vector of

Pauli matrices.
If ω ∈ (0, 1

2 ) we set v = ε−1ω in (3.1) and obtain an S1–invariant caloron A
+
BPS on

R
3 × S1 by

A
+
BPS = ABPS + ε 
BPSdt. (3.2)

This connection is put in an asymptotically abelian gauge by the bundle map f +BPS :
H ×S1 SU (2) → P = S3/S1 × SU (2), where H is the Hopf circle bundle and
f +BPS[(p, g)] = ([p], pg) for p ∈ S3 and g ∈ SU (2). Following [16, §IV.7] andworking
in the local coordinates of the standard trivialisation of H over the north hemisphere,
f +BPS is given by

f +BPS = cos( 12θ) id− i sin( 12θ) �� · �τ with �� =
⎛

⎝
− sin φ

cosφ

0

⎞

⎠

An analogous formula holds in the standard trivialisation of H over the southern hemi-
sphere.

Remark. In terms of the associated vector bundles,

f +BPS : L ⊕ L−1→ E |R3\{0} =
(
R
3\{0}

)
× C

2 (3.3)

relates the BPS monopole on the trivial bundle
(
R
3\{0})× C

2 away from the origin to
the Dirac monopole on S2 (with a Dirac string going through the south pole in the local
trivialisation above). Here L = O(1) is the standard complex line bundle on S2 and L
and L−1 are the eigenbundles of the asymptotic Higgs field.

The role of f +BPS is made precise in the following proposition.

Proposition 3.4. Givenω ∈ (0, 1
2 ) there exists r∞(ε) ∝ ε such that outside of Br∞(ε)(0)×

S1 the pair (A+
BPS, f +BPS) satisfies

(
f +BPS

)∗
A
+
BPS = A∞(ω, 1) + a+BPS,

with rk |∇k
A∞a

+
BPS| ≤ Cε−1e−c ε−1r for all k ≥ 0 and ε–independent constants C, c > 0.

Proof. This is just the statement that a non-abelian monopole has the asymptotics of a
Dirac monopole. For example,

(
f +BPS

)−1

BPS f +BPS =

(

v − 1

2r
+ O

(
vr−4vr

))

iτ 3.

��
In other words, the gauge equivalence class of the pair (A+

BPS, f +BPS) lies in themoduli

spaceMSU (2)
ε (ω, 1, 0) of SU (2) calorons with holonomy parameterω, magnetic charge

1 and vanishing instanton number. Here the instanton number vanishes since A
+
BPS is

S1–invariant.

Remark. By pulling A
+
BPS back by a translation in R

3 and composing f +BPS with an
automorphism of (H, A∞), i.e. a constant phase, we obtain an exhaustive 4-parameter
family of inequivalent framed calorons in MSU (2)

ε (ω, 1, 0).
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3.1.2. The rotation map The other fundamental SU (2) caloron is the “rotated” BPS
monopole.

Fix ω ∈ (0, 1
2 ) and consider the BPS monopole (ABPS,
BPS) (3.1) with mass v =

ε−1
( 1
2 − ω

)
> 0. Let 
̂ : R

3→ su2 be a smooth map satisfying


̂(x) = 
BPS(x)

|
BPS(x)|
outside a compact set. Consider the t–dependent family gt (x) = g(x, t) of “large” gauge
transformations (i.e. gauge transformations on R

3 that do not converge to the identify at
infinity)

g(x, t) = exp
(
− 1

2 t 
̂(x)
)
: R3 × R→ SU (2). (3.5)

For a map q : R
3 → SU (2) let Pq be the principal SU (2)–bundle on R

3 × S1 defined
by Pq = (R3 × R × SU (2))/Z, where the action of Z is generated by (x, t, g) �→
(x, t + 2π, q(x)g). We then regard g in (3.5) as a bundle morphism g : Ph → P−1,
where h(x) := −g(x, 2π)−1. Since outside a compact set 
̂ takes value in the adjoint
orbit of iτ3, note that h(x) = 1 in a neighbourhood of infinity. As shown in [29, §2.2],
the extension of h as a map h : S3→ SU (2) has degree 1.

Now, since the adjoint action of −1 is trivial, we regard A
+
BPS = ABPS + ε 
BPS dt

as a connection on P−1 and then define a caloron A
−
BPS on Ph by

A
−
BPS = g∗A+

BPS. (3.6a)

We can also define a framing forA
−
BPS from the framing f +BPS forA

+
BPS. The only subtlety

is that we need to introduce the action of a constant gauge transformation such as iτ2,
that acts on the Cartan subalgebra of su2 as the non-trivial element of the Weyl group,
to ensure that the holonomy parameter lies in the fundamental alcove. More precisely,
let H−1 be the inverse of the Hopf line bundle H , and let H−1 denote the S1 bundle
defined analogously to P−1, i.e. it is the radial extension of the principal S1–bundle on
S2 × S1 defined by (S3 × R)/Z with Z–action generated by (p, t) �→ (−p, t + 2π).
Then introduce the bundle map

g∞ : : H−1 ×S1 SU (2)→ H−1 ×S1 SU (2), g∞ = exp
(− 1

2 i tτ3
)
iτ2.

On the exterior domain where 
̂ = |
BPS|−1
BPS we then define the framing

f −BPS : H−1 ×S1 SU (2)→ Ph, f −BPS = g−1 ◦ f +BPS ◦ g∞, (3.6b)

where we regard f +BPS as a bundle map f +BPS : H−1 ×S1 SU (2)→ P−1.
The following proposition follows immediately fromProposition 3.4 and summarises

the main properties of (A−BPS, f −BPS).

Proposition 3.7. Givenω ∈ (0, 1
2 ) there exists r∞(ε) ∝ ε such that outside of Br∞(ε)(0)×

S1 the pair (A−BPS, f −BPS) satisfies
(
f −BPS

)∗
A
−
BPS = A∞(ω,−1) + a−BPS,

with rk |∇k
A∞a

−
BPS| ≤ Cε−1e−c ε−1r for all k ≥ 0 and ε–independent constants C, c > 0.
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In other words, the gauge equivalence class of the pair (A−BPS, f −BPS) lies in themoduli

space MSU (2)
ε (ω,−1, 1) of SU (2) calorons with holonomy parameter ω, magnetic

charge −1 and instanton number 1 (since we already observed that the clutching map h
has degree 1).

Remark. Also in this case translations in R
3 and composition of the framing with an

automorphism of (H−1, A∞) yield an exhaustive 4-parameter family of calorons in
MSU (2)

ε (ω,−1, 1). Since A
−
BPS is not S

1–invariant, the circle action on R
3 × S1 lifts to

a circle action on MSU (2)
ε (ω,−1, 1) which corresponds to changing the framing.

Remark. Since it has negative magnetic charge, A−BPS is referred to as an anti-monopole
in [21,24]. We find that referring to it as a “rotated” monopole is less misleading.

3.2. Higher rank groups. For a simple Lie group of rank rk > 1 the fundamental
calorons given above generalise and we have a BPS monopole for every simple root and
a rotated BPS monopole for the lowest negative root. These fundamental calorons are
found by embedding the fundamental SU (2) calorons into G as T ′ × SU (2) calorons,
for T ′ a torus of rank rk − 1.

Let h′ denote the Lie algebra of T ′. Recall that every positive root α of g corresponds
to a Lie algebra embedding ρ : h′ ⊕ su2 → g with ρ(0, iτ3) = α∨ and ρ(h′ ⊕ {0}) =
ker α. By abuse of notation we identify ρ with the induced group homomorphism T ′ ×
SU (2)→ G.We letρ1, . . . , ρrk denote the homomorphisms corresponding to the simple
roots α1, . . . , αrk and let ρ0 be the one corresponding to the highest root −α0.

Now, fix ω ∈ Å+. For each μ = 0, 1, . . . , rk we decompose ω = ω′μ + 1
2αμ(ω) α∨μ in

the decomposition h = ker αμ ⊕ R α∨μ . Note that the assumption ω ∈ Å+ implies that

− 1
2α0(ω) and 1

2αμ(ω) for μ = 1, . . . , rk are real numbers lying in (0, 1
2 ).

For μ = 1, . . . , rk we now consider the SU (2) caloron A
+
BPS with holonomy param-

eter 1
2αμ(ω) and then set

Aμ(ω) = ρμ

(
A
+
BPS + ω′μ dt

)
. (3.8a)

Similarly, we set

A0(ω) = ρ0
(
A
−
BPS + ω′0 dt

)
(3.8b)

for A
−
BPS the SU (2) caloron with holonomy parameter− 1

2α0(ω). For each such caloron
we also have a framing fμ induced by f ±BPS.

Remark. For G = SU (n) there is a large gauge transformation which gives an isomor-
phism between the moduli spaces

MSU (n)
ε

(
ω̄, α∨1 , 0

)↔MSU (n)
ε

(
ω, α∨0 , 1

)
, (3.9)

where ω̄ ∈ Å+ is a holonomy parameter related to ω through the large gauge transfor-
mation. For G = SU (2)we saw above that ω̄ = 1

2 −ω. This large gauge transformation
is also called the rotation map in the literature, e.g. in [6,29]. At the level of the extended
Dynkin diagram this isomorphism is explicitly a rotation cycling the simple roots of the
extended Dynkin diagram. Under the above isomorphismA0 (ω) is the image ofA1 (ω̄).
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Fig. 2. Images of the Higgs fields ε
μ : R
3 \ {0} → h of the fundamental SU (3) calorons

Remark. In an abelian gauge on
(
R
3\{0})× S1 we can write

Aμ(ω) = Aμ + ε 
μdt = Aμ + ε
(
ε−1ω′μ + ϕ α∨μ

)
dt, (3.10)

whereϕ = |
BPS| for aBPSmonopole of the appropriatemass. Since εϕ(x)→ 1
2αμ (ω)

as |x | → ∞ and ϕ(0) = 0, the Higgs field gives a map into the Cartan subalgebra
ε
μ : R

3 \ {0} → h which parametrises a straight line from ω ∈ Å+ (for large x) to
the component of the boundary of the alcove A+ with normal α∨μ (in the limit x = 0),
cf. Fig. 2 for the case G = SU (3). Another way to say this is that as |x | → ∞ the
gauge group breaks to the maximal torus T , while near the origin there is a symmetry
enhancement to ρμ

(
SU (2)× T ′

)
.

Remark. The reason for these particular choices of (A±BPS, ρμ), i.e. why we do not take
different combinations and more general embeddings of h′ ⊕ su2 in g, is inspired by
[23]. It appears unmotivated at the moment, but we will see in Sect. 7 that these are
the only choices yielding 4-dimensional moduli spaces, hence justifying referring to the
Aμ’s as “fundamental” calorons.

The embedded BPS caloron (3.8) for a root α has the asymptotics of an abelian S1–
invariant caloron where the Higgs field is the one of a Dirac monopole along the coroot
α∨ with a singularity at the origin,


 = ε−1ω − 1

2r
α∨.

More formally, the following proposition is an immediate consequence of Proposition-
s 3.4 and 3.7.

Proposition 3.11. Givenω ∈ (0, 1
2 ) there exists r∞(ε) ∝ ε such that outside of Br∞(ε)(0)×

S1 the pair (Aμ(ω), fμ) of (3.8) satisfies
(
fμ
)∗

Aμ(ω) = A∞(ω, α∨μ) + aBPS,μ,

with rk |∇k
A∞aBPS,μ| ≤ Cε−1e−c ε−1r for all k ≥ 0 and ε–independent constants C, c >

0. Moreover, (Aμ(ω), fμ) has instanton number n0 = 1 if μ = 0 and n0 = 0 otherwise.
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In the rest of the paper we will refer to Aμ(ω) as the fundamental caloron of “type”
α∨μ with holonomy parameter ω.

Remark 3.12. The framing fμ with the properties of Proposition 3.11 is uniquely de-

fined up to an element of Aut(Hα∨μ , A∞) � T . Note however that framings related
by an element of the subgroup ρμ(T ′ × {1}) � Aut(PSU (2) ×ρμ G, Aμ(ω)) yield
gauge equivalent framed calorons. Hence fμ is uniquely defined up to an element

ψ ∈ ρμ({1} × U (1)) � Aut(Hα∨μ , A∞)/Aut(PSU (2) ×ρμ G, Aμ(ω)), where U (1) is
the maximal torus of SU (2).

Remark. For uniformity of notation, if G = SU (2)we set A1(ω) = A
+
BPS and A0(ω) =

A
−
BPS.

4. Approximate Solutions

The idea of our result is to build a caloron by gluing the fundamental solutions of the
previous section into a singular background configuration. In this sectionwe describe this
singular background and then use fundamental calorons to produce a smooth connection
that satisfies the self-duality equations only in an approximate sense. In the next two
sections we will then use analysis to deform this approximate solution into an actual
caloron.

4.1. The initial singular abelian solution. The singular background solution is an S1–
invariant abelian caloron obtained from a sum of Dirac monopoles on R

3.
Recall that given a point p ∈ R

3 and a charge γ ∈ � we have a Dirac monopole
(Aγ

p,

γ
p) on R

3 \ {p} with



γ
p = − 1

2|x−p|γ, d Aγ
p = ∗R3d


γ
p

We then obtain a caloron Aγ
p + ε 


γ
p dt on the bundle Hγ

p → (R3 \ {p}) × S1. Since
principal torus bundles form a group, given distinct points p, p′ ∈ R

3 and charges

γ, γ ′ ∈ � we can also “add” the two Dirac monopoles to obtain a caloron Aγ
p + Aγ ′

p′ +

ε
(



γ
p + 


γ ′
p′
)
dt on the bundle Hγ

p ×(R3\{p,p′})×S1 H
γ ′
p′ on (R3 \ {p, p′})× S1.

Now, fix ω ∈ Å+ and non-negative integers n0, n1, . . . , nrk ≥ 0. We then de-
fine a total magnetic charge γm as in (2.6). Consider n := ∑rk

μ=0 nμ distinct points

p10, . . . , p
n0
0 , . . . , p1rk, . . . , p

nrk
rk ∈ R

3.We fix dmin, dmax > 0 such that |piμ− p j
ν | > dmin

for each distinct pair of points and all the points are contained in Bdmax(0) ⊂ R
3. In the

rest of the paper all constants are allowed to depend on ω, dmin, dmax without further
notice and will be uniform in the positions of the n points provided the bounds given by
dmin and dmax remain satisfied.

We now define the S1–invariant abelian caloron

Asing = Asing + ε 
sing dt =
rk∑

μ=0

nμ∑

i=1
A

α∨μ
piμ

+ ε

⎛

⎝ε−1ω +
rk∑

μ=0

nμ∑

i=1



α∨μ
piμ

⎞

⎠ dt (4.1)

on a bundle Psing over
(
R
3\{p01, . . . , prnr }

)× S1 with structure group the maximal torus
T ofG. Of course, we can also regardAsing as a connection on theG–bundle Psing×T G.
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Example 4.2. WhenG = SU (2),Asing is simply the superposition of the flat connection
iω τ3, for ω ∈ (0, 1

2 ), with n1 Dirac monopoles of charge 1 and n0 Dirac monopoles of
charge −1.

Wewill now collect some of the properties ofAsing. First of all, consider the behaviour
of Asing at infinity. It follows immediately from (4.1) and the explicit formula for the
Dirac monopole that the holonomy parameter and total magnetic charge of Asing are
precisely ω and γm respectively. The next proposition describes instead the singular
behaviour of Asing near piμ. Set r

i
μ := |x − piμ|.

Proposition 4.3. There exists r0 > 0 and a bundle isomorphism f iμ : Hα∨i → Psing
over Br0(p

i
μ)× S1 such that

( f iμ)∗Asing = A∞(ωi
μ, α∨μ) + aiμ

with (r iμ)k |∇k
A∞a

i
μ| ≤ Criμ for all k ≥ 0 and ωi

μ = ω + O(ε).

Proof. Write

Asing = A
α∨μ
piμ

+
∑

(ν, j) �=(μ,i)

A
α∨ν
p j
ν

, 
sing = ε−1ω + 

α∨μ
piμ

+
∑

(ν, j) �=(μ,i)



α∨ν
p j
ν

.

A classical multipole expansion centred at a point away from the singularity allows one

to estimate the term
∑

(ν, j) �=(μ,i) 

α∨ν
p j
ν

. The holonomy parameter ωi
μ is defined using the

constant term in this expansion:

ε−1ωi
μ = ε−1ω −

∑

(ν, j) �=(μ,i)

1

2|p j
ν − piμ|

α∨ν .

Solving the Bogomolny equation in a radial gauge centred at piμ then defines the bundle

map f iμ and allows one to estimate
∑

(ν, j) �=(μ,i) A
α∨ν
p j
ν

in terms of the control of the Higgs

field. ��
A final simple but crucial observation is thatAsing is abelian in the following uniform

quantitative sense away from the singularities.

Lemma 4.4. There exists ε0, σ > 0 such that for ε ∈ (0, ε0) there exists r0(ε) ∝ ε such
that outside of

⋃
μ,i Br0(ε)(p

i
μ)× S1 we have

αμ(ε 
sing) ≥ σ > 0 for all μ = 1, . . . , rk, α0(ε 
sing) ≥ −1 + σ > −1.
In other words, away from the singularities ε 
sing takes values in a fixed compact

subset of Å+.

Proof. Observe that α(ε 
sing) is a harmonic function onR
3\{p10, . . . , pnrkrk } for any α ∈

h∗. Hence, by the maximum/minimum principle on the complement of
⋃

μ,i Br0(ε)(p
i
μ),

it suffices to check that the inequalities are satisfied as |x | → ∞ and on the interior
boundaries {r iμ = r(ε)}. Now, for large |x | we have

α(ε 
sing) ≈ α(ω),
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while Proposition 4.3 implies that near piμ we have

α(ε 
sing) ≈ α(ωi
μ)− ε

2r iμ
α(α∨μ).

Since ω ∈ Å+ we can choose σ so that the inequalities in the statement of the lemma
are satisfied near infinity. Since ωi

μ = ω + O(ε), for ε sufficiently small we can also
assume that the same inequalities are satisfied by ωi

μ instead of ω. Finally, in order to

take care of the singular term at piμ, fix c > 0 sufficiently large so that 1
2c |α(α∨μ)| ≤ 1

2σ

for α = αν for any ν = 0, . . . , rk. Then, up to decreasing ε, σ slightly if neecessary,
we can assume that the inequalities in the statement of the lemma are also satisfied for
r iμ = c ε =: r0(ε). ��

4.2. Desingularisation. As the caloron Asing is manifestly singular at the piμ, to find
an approximate non-singular caloron on all of R

3 × S1 we need to glue in non-abelian
calorons that match the singular behaviour of Asing asymptotically. These are the fun-
damental calorons of the previous section.

For R = R(ε) ∈ (0, dmin) to be fixed later, decompose R
3 × S1 as

R
3 × S1 = Using ∪

⊔

μ,i

U i
μ,

where

Using =
⎛

⎝R
3\

⊔

μ,i

B R
2
(piμ)

⎞

⎠× S1, Ui
μ = BR(piμ)× S1.

Up to the S1–factor, these open sets intersect in a disjoint union of annuli centred at the
piμ’s.

By restriction, we think of (Psing ×T G, Asing) as a bundle with connection on
Using. Similarly, for each μ = 0, . . . , rk and i = 1, . . . , nμ we identify BR(piμ) with
BR(0) ⊂ R

3 and endowUi
μ with the pair (PSU (2)×ρμ G, Aμ(ωi

μ))where Aμ(ωi
μ) is the

fundamental caloron of type α∨μ and holonomy parameter ωi
μ defined in Proposition 4.3.

By Propositions 3.11 and 4.3 on the overlapUsing∩Ui
μ there are isomorphisms f iμ, fμ

of Psing ×T G and PSU (2) ×ρμ G with Hα∨i ×T G such that

( f iμ)∗Asing = A∞(ωi
μ, α∨μ) + aiμ, f ∗μAμ(ωi

μ) = A∞(ωi
μ, α∨μ) + aBPS,μ.

We have the additional freedom to choose a gluing parameter ψ i
μ ∈ ρμ({1} × U (1)).

This gluing parameter is there to line up the framings of the Asing and Aμ. It is U (1)
valued rather than T valued due to Remark 3.12. We can then define a smooth G–bundle
P onR

3×S1 identifying Psing×T G → Using and PSU (2)×ρμ G → Ui
μ over the overlap

Using ∩Ui
μ via

fμ ◦ ψ i
μ ◦ ( f iμ)−1 : Psing ×T G → PSU (2) ×ρμ G. (4.5a)
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On P we define a connection A
′
ε = A

′
ε(ω, {(piμ,ψ i

μ)}μ,i ) as follows. Fix a smooth

bump function χ to interpolate between χ(r) = 1 for r ∈ [0, R
2 ) and and χ(r) = 0 for

r ≥ R and set χ i
μ(x, t) = χ(r iμ). We set

A
′
ε =

⎧
⎪⎨

⎪⎩

Aμ(ωi
μ) if r iμ ≤ 1

2 R,

A∞(ωi
μ, α∨μ) + χ i

μ (ψ i
μ)∗aBPS,μ +

(
1− χ i

μ

)
aiμ if 1

2 R ≤ r iμ ≤ R,

Asing otherwise.

(4.5b)

4.2.1. Estimates of the error The connection A
′
ε is an approximate caloron rather than

a true caloron since it does not satisfy F+
A′ε
= 0 on the overlaps Using ∩Ui

μ.

Recall from Propositions 3.11 and 4.3 that aiμ = O
(
rμ
i

)
and (ψ i

μ)∗aBPS,μ =
O

(
ε−1e−c ε−1r iμ

)
. We define R(ε) implicitly by

R(ε) = ε−1e−c ε−1R(ε)

so that these two contributions to the error have comparable size. Note that

R(ε) ≈ ε | ln ε|. (4.6)

In particular, as ε → 0 we have R(ε)→ 0 and ε−1R(ε)→∞. Thus as ε → 0 the sets
U ε
sing form an exhaustion of

(
R
3\{p01, . . . , prnr }

)× S1. On the other hand, if we rescale

Ui
μ by ε−1 we obtain an exhaustion of R

3 × S1.

Lemma 4.7. Let A′ε be the approximate caloron defined in (4.5). Then the self-dual part
of the curvature satisfies

|F+
A′ε | ≤

1

r iμ
max

(
|aBPS,μ|, |aiμ|

)
+ max

(
|aBPS,μ|2, |aiμ|2

)
= O(1) on Using ∩Ui

μ.

Proof. This follows from a direct computation. We have

A
′
ε = A∞(ωi

μ, α∨μ) + a, a = χ
μ
i (ψ i

μ)∗aBPS +
(
1− χ

μ
i

)
aiμ,sing

with A∞(ωi
μ, α∨μ) a caloron. Hence F+

A′ε
= d+

A∞a +
1
2 [a, a]+. In order to estimate d+

A∞a
we use the fact that

d+
A∞ ã = − 1

2 [̃a, ã]+

for ã = aBPS,μ and ã = aiμ (since A∞ + ã is a caloron in either case), together with the
fact that |∇χ i

μ| = O
(
(r iμ)−1

)
. ��

Thus the error F+
A′ε

is uniformly bounded in ε, but it is also supported on a region
of increasingly small size in the same limit and in this sense we can say that the error
is increasingly small as ε → 0. For example, ‖F+

A′ε
‖2
L2 ≤ Cε R(ε)3 = O(ε4| ln ε|3).

On the other hand, as ε → 0 the metric gε and connection A
′
ε degenerate, so it is not

immediately clear that A
′
ε can be deformed to a genuine caloron for small ε > 0. In the

next section, we will introduce weighted Hölder spaces which are better suited to do
the analysis in this degenerate limit and then use a quantitative version of the Implicit
Function Theorem to deform A

′
ε to a nearby caloron Aε .
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5. Linear Analysis

In this section we collect some fundamental results about mapping properties of the
linear operators appearing in the deformation theory of calorons and in particular study
dependence of constants on ε whenwe couple these operators to the approximate caloron
A
′
ε of the previous section. In order to obtain uniform estimates, all the analyis is carried

out in appropriate weighted Hölder spaces.

The operators. The deformation complex of an instanton A on a G–bundle P → M4

is

0→ �0(M; ad P)
dA−→ �1(M; ad P)

d+
A−→ �+(M; ad P)→ 0. (5.1a)

In our set-up M is (the complement of finitely many curves {p}× S1 in) R
3× S1. From

(5.1a) we deduce that the first-order operator governing the deformation theory of an
instanton is

DA = d+
A
⊕ d∗

A
: �1(M; ad P)→ �+(M; ad P)⊕�0(M; ad P). (5.1b)

Wewill study itsmapping properties via the second-order operator DAD∗A. TheWeitzen-
böck formula (see e.g. [12]) reads

DAD
∗
A
= ∇∗

A
∇A + F+

A
, (5.2)

where the action of F+
A
is a zeroth-order operator obtained from the Lie bracket in g and,

via identifications �0 ⊕�+ � H and �+ � ImH, quaternionic multiplication. If M is
hyperkähler (as in our set up) then the bundle �+T ∗M is trivialised by parallel section
and for an instanton F+

A
= 0. Therefore we will start the section with a discussion of the

operator ∇∗
A
∇A acting on sections of the adjoint bundle.

5.1. Fredholm theory. In this subsection we establish results about the Bochner Lapla-
cian ∇∗

A
∇A in the simplest situation where A is a fixed smooth connection on R

3 × S1

and the metric gε on R
3× S1 is assumed fixed. In the second part of this section we will

adapt these results to A = A
′
ε and discuss dependence of constants on ε.

Assume therefore that A is a connection on a (trivial) G–bundle P over R
3 × S1

satisfying the boundary conditions (2.5) for some (ω, γm) ∈ Å+ ×�.

5.1.1. Weighted Hölder spaces By abuse of notation, let r denote a smooth S1–invariant
function onR

3×S1 with r ≥ 1 and r ≈ |x | on (R3\Bd)×S1 for some d > 1. (Whenwe
apply the results of this section toA

′
ε wewill require d ≥ dmax so that all the singularities

of Asing are contained in Bd × S1.) For example, we can take r = √
1 + |x |2.

Definition 5.3. Given k ∈ Z≥0, α ∈ (0, 1) and ν ∈ R, we define the Ck,α
ν –norm of a

section u of the (trivial) adjoint bundle ad P on R
3 × S1 by

k∑

j=0
‖r−ν+ j∇ j

A
u‖L∞ + sup

dist(p,p′)≤r(p,p′)
r(p, p′)−ν+k |∇k

A
u(p)−∇k

A
u(p′)|

dist(p, p′)α
,
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where norms are defined using the metric gε , r(p, p′) = min{r(p), r(p′)} and the
difference of ad P–valued tensors ∇k

A
u(p) − ∇k

A
u(p′) is computed using the parallel

transport of the connection induced byA and the Levi–Civita connection of gε . The same
definition with the last term dropped defines theCk

ν–norm of u. The Banach spacesCk,α
ν

and Ck
ν are defined as the closure of C∞c with respect to the corresponding norm.

Immediate consequences of the definition and the fact that R3× S1 has cubic volume
growth are the continuous embedding

C0,α
ν ⊂ L2 ⇐⇒ ν < − 3

2 (5.4)

and the integration-by-parts formula

〈∇∗
A
∇Au, v〉L2 = 〈∇Au,∇Av〉L2 ∀u ∈ C2,α

ν1+1
, v ∈ C1,α

ν2+1
with ν1 + ν2 < −3.

(5.5)

Later in the paper, in order to control non-linearities in the equations we will also make
use of the fact that any bounded pointwise bilinear form defines a continuous map

C0,α
δ1
× C0,α

δ2
−→ C0,α

δ1+δ2
. (5.6)

Combined with the compactness of the embedding C1,α(�) ⊂ C0,α(�) for a bounded
domain �, one can further deduce that multiplication by an element u1 ∈ C0,α

δ1
defines

a compact operator

u1 × · : C1,α
δ2
−→ C0,α

δ1+δ2
. (5.7)

We want to study the mapping properties of the bounded operator ∇∗
A
∇A : C2,α

ν+1 →
C0,α

ν−1. We begin with the following weighted Schauder estimates.

Proposition 5.8. Given δ ∈ R, there exists a constant C such that

‖u‖C2,α
δ
≤ C

(
‖∇∗

A
∇Au‖C0,α

δ−2
+ ‖u‖C0

δ

)

for all u ∈ C2,α
δ .

Proof. It is enough to show that every point p has neighbourhoods Up ⊂ U ′p such that

‖u‖C2,α
δ (Up)

≤ C
(
‖∇∗

A
∇Au‖C0,α

δ−2(U ′p)
+ ‖u‖C0

δ (U ′p)

)

for a p–independent constant C . If p lies in a compact subset of R
3 × S1 then the local

estimate is simply the local Schauder estimate for the elliptic operator ∇∗
A
∇A. We can

therefore assume that p = (x, t) satisfies |x | � 1.
The weighted norms we have defined are well-behaved under scaling and therefore

we will obtain the local estimate by rescaling to a fixed situation. There are however
two slight complications to take into account: R

3 × S1 is not scale invariant because
of the compact factor and similarly, because of the non-vanishing constant term in the
expansion of 
γm ,v at infinity, the connection A is also not “scale-invariant” (i.e. it is
not 0-homogeneous in the sense of [11, Appendix B]). Both of these issues are resolved
by passing to the universal cover R

3 × R of R
3 × S1, as we now explain.
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For 4R = |x |, set B = BR(0) ⊂ R
3 and for any η ∈ (0,∞) define ηB = BηR(0).We

then consider domainsUp =
(
2B \ 1

2 B
)×[−R, R] andU ′p =

(
3B \ 1

3 B
)×[−2R, 2R]

in the universal cover R
3 ×R of R

3 × S1. If R is sufficiently large, we can also assume
that 
 = ∂t�A satisfies |
| ≥ c > 0 outside of 1

3 B × S1. Working on the universal

cover, we act on A by the gauge transformation exp
(
ω 

|
| t

)
to obtain a new connection

A
′. Taking into account that ∇Aγm


γm ,v = O(r−2) and |t |/r is uniformly bounded on
any set where |t | � |x |, we deduce that A

′ is uniformly bounded in C∞−1 on U ′p.
We can now rescale by R: up to a factor of R−δ , all norms coincide with norms on

the fixed subset B3 \ B 1
3
× [−2, 2] ⊂ R

3×R defined using the standard flat metric and

a rescaled connection which is uniformly bounded in C∞. The local estimates around
p now follow from standard Schauder estimates for this rescaled problem. ��
5.1.2. Mapping properties Since the model connectionA∞ has reduced structure group
T ⊂ G and the kernel of [ω, · ] reduces to the Cartan subalgebra h because of our
assumption ω ∈ Å+, for r � 1 we can decompose any section u of ad P into its
“diagonal” and “off-diagonal” components: u = u0+u⊥, where u0 has value in the trivial
bundle with fibre h and u⊥ has values in the sum of line bundles

⊕
α∈R+ Hγm ×α C. By

Fourier decomposition in the circle variable, we can further decompose u0 = u00 + u′0
into S1–invariant and oscillatory parts and therefore write u = u00 + u′0 + u⊥. Since
A∞ is reducible and S1–invariant, the operator ∇∗

A
∇A preserves asymptotically this

decomposition.
Now, the crucial observations is that for all x ∈ R

3 with r sufficiently large we have
pointwise “Poincaré-type” estimates on S1x := {x} × S1 of the form

σ‖u‖C0(S1x )
≤ ‖∇A

∂t
u‖C0(S1x )

(5.9)

for all u = u′0 + u⊥ and a uniform constant σ > 0. The existence of such a constant can
be easily deduced by a contradiction argument using the fact that there are no A–parallel
sections on S1x other than constant “diagonal” sections. We give a more constructive
argument to show the dependence of σ . Consider first the case u = u′0. Since u has
mean value zero on S1x , it must vanish at some point in this circle. Assuming this point
is t = 0 by a rotation, the fundamental theorem of calculus implies

|u(x, t)| ≤
∫ 2π

0
|∂t u(x, t)| dt ≤ 2π‖∂t u‖C0(S1x )

= 2π‖∇A∞
∂t

u‖C0(S1x )
.

The argument for u⊥ is similar. We have an orthogonal decomposition u⊥ = ∑
α u

α⊥.
The connection A∞ preserves this decomposition. Moreover, restricted to the α–factor
it defines a flat connection on the trivial complex line bundle on S1x with holonomy
parameter ωα

x = α(ω)− 1
2r α(γm). For r > R(ω, γm) we see that ωα

x is never an integer.
Hence, using parallel transport for the connection A∞ restricted to S1x , e

iωα
x t uα⊥(x, · )

has vanishing mean value on [0, 2π ] and we can apply the same argument as in the
case of u′0. We conclude that (5.9) holds for A∞. Since A is asymptotic to A∞, up to
increasing R and changing constants slightly, the same estimates hold for A.

Proposition 5.10. Given δ ∈ R \ Z, there exists a constant C and a compact set K ⊂
R
3 × S1 such that

‖u‖C2,α
δ
≤ C

(
‖∇∗

A
∇Au‖C0,α

δ−2
+ ‖u‖C0(K )

)
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for all u ∈ C2,α
δ . In particular, ∇∗

A
∇A : C2,α

δ → C0,α
δ−2 is Fredholm for every δ ∈ R \ Z.

Proof. The fact that the estimate implies the Fredholm property is standard so we only
provide a proof for the estimate. For any R > 0 sufficiently large, denote by �R the
exterior domain �R = {r > R} ⊂ R

3 × S1. We will prove the estimate with K = �c
R

for R sufficiently large. On such an exterior domain we can work in the decomposition
u = u00 +u

′
0 +u⊥. Since∇∗A∇A preserves this decomposition up to terms with arbitrarily

small operator norm, it suffices to prove the estimate separately for u′0 + u⊥ and u00.
Now, an immediate consequence of (5.9) is that

‖u‖C0
δ (�R) ≤ CR−1‖∇Au‖C0

δ−1(�R) (5.11)

whenever u00 ≡ 0. Then taking R even larger if necessary we can deduce the estimate
of Proposition 5.10 directly from Proposition 5.8. Note we do not need to assume δ /∈ Z

for this.
On the other hand, the action of∇∗

A
∇A on the S1–invariant diagonal component u00 is

asymptotic to theLaplacian ofR3. Standard theory of elliptic operators on asymptotically
conical manifolds (see for example the summary in [11, Appendix B]) implies that the
estimate of Proposition 5.10 holds provided δ is not one of the indicial roots of the
Laplacian on R

3, which are known to be all the integers [9]. ��

Proposition 5.12. If δ ∈ (−1, 0) then ∇∗
A
∇A : C2,α

δ → C0,α
δ−2 is an isomorphism.

Proof. If δ < − 1
2 then the integration by parts formula (5.5) shows that any element in

the kernel of∇∗
A
∇A is parallel and hence vanishes since it decays. Thus∇∗A∇A : C2,α

δ →
C0,α

δ−2 is injective for δ < − 1
2 .

In order to conclude the proof, we need to use two facts that are part of the standard
Fredholm package in weighted spaces (see for example [11, Appendix B]):

(i) the cokernel of∇∗
A
∇A : C2,α

δ → C0,α
δ−2 is isomorphic to the kernel of∇∗

A
∇A inC∞−1−δ;

(ii) the kernel and cokernel of ∇∗
A
∇A : C2,α

δ → C0,α
δ−2 are locally constant in δ ∈ R \ Z.

The first statement uses the integration by parts formula and theweighted elliptic regular-
ity of Proposition 5.8. The second statement uses the asymptotic behaviour of elements
in the kernel of the model operator ∇∗

A∞∇A∞ implicit in the proof of Proposition 5.10.

Claim (i) and the injectivity result at the beginningof theproof imply that∇∗
A
∇A : C2,α

δ

→ C0,α
δ−2 is surjective for δ > − 1

2 . Then claim (ii) concludes the proof. ��
Arguments analogous to the ones appearing in the proof of Propositions 5.8 and 5.10

yield corresponding results for the first order operator DA of (5.1b).

Proposition 5.13. DA : C1,α
δ−1 → C0,α

δ−2 is a Fredholm operator for all δ ∈ R \ Z, it is
surjective for δ > −1 and for δ ∈ (−1, 0) its kernel coincides with its L2–kernel.

The last statement is an immediate application of Proposition 5.12, weighted elliptic
regularity and the fact that the indicial roots are the integers.
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5.2. Uniform estimates. We now extend the previous analysis to the situation where the
metric gε degenerates as ε → 0. For ω ∈ Å+ and any ε > 0 sufficiently small, consider
the approximate caloron A

′
ε constructed in (4.5). From Proposition 5.12 we know that

∇∗
A′ε
∇A′ε : C2,α

δ → C0,α
δ−2 is an isomorphism for all δ ∈ (−1, 0) and now we want to

establish uniform estimates for its inverse as ε → 0. In order to achieve this, we need to
define a family of ε–dependent norms on Ck,α

ν , equivalent to the norm of Definition 5.3
for fixed ε > 0 but that take into account the fact that the ambient geometry and the
connection A

′
ε degenerate as ε → 0. Recall the constant dmin, dmax giving bounds on

the minimum and maximum distance between the singularities piμ of Asing.

Definition 5.14. Define a weight function rε interpolating smoothly between

rε =

⎧
⎪⎨

⎪⎩

√
ε2 + (r iμ)2 if r iμ ≤ 1

2dmin for some μ, i,

1 if r iμ ≥ dmin for all μ, i and r ≤ dmax,

r if r ≥ 2dmax.

Definition 5.15. Given k ∈ Z≥0, α ∈ (0, 1) and δ ∈ R, we define the Ck,α
δ –norm of a

section u of the adjoint bundle ad P on R
3 × S1 by

k∑

j=0
‖r−δ+ j

ε ∇ j
A′ε
u‖L∞ + sup

distε (p,p′)≤rε (p,p′)
rε(p, p

′)−δ+k
|∇k

A′ε
u(p)− ∇k

A′ε
u(p′)|

distε(p, p′)α
,

where norms are defined using the metric gε , rε(p, p′) = min{rε(p), rε(p′)} and the
difference of tensors ∇k

A′ε
u(p) − ∇k

A′ε
u(p′) is computed using the parallel transport of

the connection induced byA
′
ε and the Levi–Civita connection of gε . The same definition

with the last term dropped defines the Ck
δ –norm of u. The Banach spaces Ck,α

δ and Ck
δ

are defined as the closure of C∞0 with respect to the corresponding norm.

Proposition 5.16. Given δ ∈ R, there exists a constant C independent of ε such that

‖u‖C2,α
δ
≤ C

(
‖∇∗A′ε∇A′εu‖C0,α

δ−2
+ ‖u‖C0

δ

)

for all u ∈ Ck+2,α
δ .

Proof. The proof is completely analogous to the proof of Proposition 5.8. The indepen-
dence of the constantC from ε follows from the invariance of the normsofDefinition 5.15
under rescalings and passing to covers. We deduce local weighted Schauder estimates
near the gluing regions by observing that on regions BR(piμ)× S1 the triple (gε, A

′
ε, rε)

is equivalent after rescaling to an essentially fixed triple (g1, A, r1) on Bε−1R(0)× S1,
where A is a small deformation of the fundamental caloron Aμ(ωi

μ) of (3.8). Away from
the gluing regions, we obtain uniform local weighted Schauder estimate by working on
the ε−1–cover R

3 × R/2πε−1Z of R
3 × S1. ��

Remark 5.17. The same proof yields uniform weighted Schauder estimates

‖u‖Ck+2,α
δ
≤ C

(
‖∇∗A′ε∇A′εu‖Ck,α

δ−2
+ ‖u‖C0

δ

)

for all k ≥ 0.
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Proposition 5.18. The operator ∇∗
A′ε
∇A′ε : C2,α

δ → C0,α
δ−2 is an isomorphism for all

δ ∈ (−1, 0) and there exist ε0,C > 0 such that

‖u‖C2,α
δ
≤ C‖∇∗

A′ε∇A′εu‖C0,α
δ−2

for all u ∈ C2,α
δ and all ε ∈ (0, ε0).

Proof. The fact that the operator is an isomorphism is Proposition 5.12, so the main task
is to establish the estimate.

We argue by contradiction. Using Proposition 5.16 we therefore assume that there
exists sequences εk → 0 and {uk} such that ‖uk‖C0

δ
= 1 while ‖∇∗

A′εk
∇A′εk uk‖C0,α

δ−2
→ 0.

The connection A
′
ε of (4.5) is obtained by gluing Asing and the connection Aμ(ωi

μ)

in an annulus of radius r ij ∼ R(ε) with ε−1R(ε) → ∞ as ε → 0. From Lemma 4.4

we also know that ∂t�A
′
ε lies in a compact subset of Å+ on regions where r iμ ≥ ετ for

all μ, i for any τ ∈ (0, 1). We then have an analogue of (5.9): for sections supported in
this region we have a decomposition u = u00 + u′0 + u⊥ and

‖u′0 + u⊥‖C0
δ
≤ Cε1−τ‖∇A′εu‖C0,α

δ−1
. (5.19)

We therefore conclude that on regions where r iμ ≥ ετ for all μ and i , uk converges to an
S1–invariant “diagonal” section (i.e. an h–valued function) u∞ onR

3\⋃μ,i {piμ}, which
must be harmonic and satisfies |u∞| ≤ C(r iμ)δ near piμ and |u∞| ≤ Cr δ as r → ∞.
Since δ > −1, u∞ in fact extends to a harmonic function on the whole of R

3 and since
δ < 0 it must decay at infinity: it then vanishes by the maximum principle.

We therefore conclude that there exists points xk → {piμ} × S1 for some μ, i such
that r−δ

εk
|uk(xk)| ≥ c > 0 for some c. We now rescale around piμ by εk so that we reduce

to work on (R3 × S1, g1) with a sequence of connections A
′′
k converging in C∞−1−ν ,

ν > 0, to the fundamental caloron Aμ(ω) and a sequence uk uniformly bounded in C2,α
δ

with |uk(xk)| ≥ c
(
1 + |πR3(xk)|2

) δ
2 and ∇∗

A
′′
k
∇A′′k uk → 0 in C0,α

δ−2. Here by abuse of

notation we denote by the same symbols the sections uk and the points xk before and
after rescaling.

By the Arzelà–Ascoli Theorem, after passing to a subsequence, uk converges to an
element u∞ in the kernel of the Bochner Laplacian of Aμ(ω) in C0

δ , which must vanish
by Proposition 5.12. It follows that the points xk must satisfy |πR3(xk)| =: Rk → ∞.
In order to get a contradiction, we now blow down (R3 × S1, g1, A

′′
k , uk) by R−1k . Now

note that, away from a compact set of R
3 × S1, ∂t�A

′′
k lies in a compact subset of Å+.

Thus after rescaling we have a decomposition u = u00 + u′0 + u⊥ and an estimate (5.9)

‖u′0 + u⊥‖C0
δ
≤ CR−(1−τ)

k ‖∇A′′k u‖C0,α
δ−1

.

outside any ball of radius R−τ
k , τ ∈ (0, 1), centred at the origin. We deduce that after

rescaling uk converges to an h–valued harmonic function u∞ on R
3 \ {0} satisfying

|u∞| ≤ Cr δ and |u∞(x∞)| ≥ c > 0 at some point x∞ ∈ S2 ⊂ R
3. Since δ ∈ (−1, 0),

the growth condition forces u∞ to be a decaying harmonic function on R
3. It must

therefore vanish, contradicting the existence of x∞. ��
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In the last section of the paper we will need an additional estimate for the first order
operator D = DA′ε = d∗

A′ε
⊕d+

A′ε
: C1,α

δ−1→ C0,α
δ−2 with δ ∈ (−1, 0). By Proposition 5.13

D is Fredholm and surjective. Moreover, Proposition 5.18 implies that D has a right
inverse G with uniformly bounded norm independently of ε > 0. Indeed, in the next
section we will show that DD∗ is an arbitrarily small perturbation of∇∗A′ε∇A′ε as ε → 0,

so that Proposition 5.18 allows one to defineG = D∗(DD∗)−1 with the claimed uniform
estimate. The additional estimate we will need establishes the concentration of elements
in the kernel of D near the gluing regions in a uniform quantitative sense as ε → 0.

Proposition 5.20. Fix δ ∈ (−1, 0), α ∈ (0, 1), a closed subset � of (R3 \ {piμ}) × S1

and η > 0. Then there exists ε0 such that for every ε ∈ (0, ε0) and ξ ∈ C1,α
δ−1 with

Dξ = 0, we have

‖ξ‖C0,α
δ−1(�)

≤ η‖ξ‖C1,α
δ−1

.

Proof. Assume by contradiction that there exists η0 > 0, a sequence εk → 0 and
elements ξk in the kernel of Dk = DA′εk

such that

‖ξk‖C1,α
δ−1
= 1, ‖ξk‖C0,α

δ−1(�)
≥ η0.

For k sufficiently large, we can assume that � is contained in the region where
r iμ ≥ ετ

k for all μ, i and some τ ∈ (0, 1). In particular, A
′
εk

is abelian over �. Using
the trivialisation of T ∗(R3 × S1) by orthonormal parallel 1-forms, we can decompose
the 1-form ξk as ξk = (ξk)

0
0 + (ξk)

′
0 + (ξk)⊥ and we have the strong estimate (5.19) that

implies

‖(ξk)′0 + (ξk)⊥‖C0,α
δ−1(�)

≤ Cε1−τ
k , ‖(ξk)00‖C0,α

δ−1(�)
≥ 1

2η0.

Writing ξk = ak + εk ψk dt , we conclude that, after passing to a subsequence (ak, ψk)

converges to a non-trivial S1–invariant “diagonal” (i.e. h–valued) pair (a∞, ψ∞) of a
1-form a∞ and function ψ∞ on R

3 \⋃μ,i {piμ}, which satisfies the first order system

∗da∞ − dψ∞ = 0 = d∗a∞
and the growth conditions |(a∞, ψ∞)| ≤ C(r iμ)δ−1 near piμ and |(a∞, ψ∞)| ≤ Cr δ−1 as
r →∞. In particular, the coefficients of a∞ in a parallel trivialisation of T ∗R3 and ψ∞
are decaying harmonic functions with controlled blow-up rate at each of the punctures.
Since δ− 1 > −2, the only singularity allowed at each puncture is the Green’s function
singularity. It follows that there exist constants (aiμ,ψ i

μ) ∈ R
3 × R such that

a∞ = dx ·
∑

μ,i

aiμ
|x−piμ| , ψ∞ =

∑

μ,i

ψ i
μ

|x−piμ| .

However, it is easy to see that these are not solutions of the first order system satisfied by
(a∞, ψ∞) unless (aiμ,ψ i

μ) = 0 for all μ, i , therefore reaching a contradiction. Indeed,
one calculates that the first order system is equivalent to

∑

μ,i

ψ i
μx−aiμ×x
|x−piμ|3 = 0 = x ·

∑

μ,i

aiμ
|x−piμ| ,

where · and × denote the dot and cross products in R
3. ��
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Finally, we also note that we have an analogue of Proposition 5.16

Proposition 5.21. Given δ ∈ R, there exists a constant C independent of ε such that

‖ξ‖C1,α
δ−1
≤ C

(
‖DA′ε ξ‖C0,α

δ−2
+ ‖ξ‖C0

δ−1

)

for all ξ ∈ C1,α
δ−1.

6. Existence

Armed with the results of the last section we now return to the approximate caloron A
′
ε

of (4.5). We want to prove the existence of a “small” 1–form a with values in the adjoint
bundle such that A

′
ε + a is a caloron. In order to take into account the invariance of the

anti-self-duality equations under gauge tranformations, we will look for a of the form
a = d∗

A′ε
u for a self-dual 2-form u with values in the adjoint bundle. We will prove the

existence of u using the following quantitative version of the Implicit Function Theorem.

Lemma 6.1. Let 
 : E → F be the smooth function between Banach spaces and write

(x) = 
(0) + L(x) + N (x), where L is linear and N contains the non-linearities.
Assume that there exists constants C1,C2,C3 such that

(i) L is invertible with ‖L−1‖ ≤ C1;
(ii) ‖N (x)− N (y)‖F ≤ C2‖x + y‖E‖x − y‖E for all x, y ∈ BC3(0) ⊂ E;

(iii) ‖
(0)‖F < min

{
C3
2C1

, 1
4C2

1C2

}

.

Then there exist a unique x ∈ E with ‖x‖E ≤ 2C1‖
(0)‖F such that 
(x) = 0.

In our situation, we fix δ ∈ (−1, 0), α ∈ (0, 1) and we set

E := C2,α
δ �+(R3 × S1; ad P), F := C0,α

δ−2�
+(R3 × S1; ad P).

For u ∈ E we let 
(u) denote the self-dual part of the curvature of A
′
ε + d∗

A′ε
u, so that

the decomposition 
(u) = 
(0) + L(u) + N (u) reads


(u) = F+
A′ε + d+

A′εd
∗
A′εu + 1

2 [d∗A′εu, d∗
A′εu]

+.

We need to check that the hypotheses of Lemma 6.1 are satisfied.

The linear term. As u is a self-dual 2-form with values in the adjoint bundle we can
write u = u1 ω1 + u2 ω2 + u3 ω3 for the hyperkähler triple (ω1, ω2, ω3) inducing gε

and sections u1, u2, u3 of ad P . Since the hyperkähler triple is parallel, theWeitzenböck
identity (5.2) yields

dA′εd
∗
A′εu =

3∑

a=1

(
∇∗
A′ε∇A′εua

)
ωa + F+

A′ε · u. (6.2)

In order to reduce part (i) of Lemma 6.1 with an ε–independent constant C1 from
Proposition 5.18 we only need to check that the last term can be regarded as a small
perturbation. For this, observe that

‖F+
A′ε · u‖C0,α

δ−2
≤ C‖F+

A′ε‖C0,α
−2
‖u‖C0,α

δ

for a uniform constant C and ‖F+
A′ε
‖C0,α
−2
= O(ε2| ln ε|2) by Lemma 4.7.
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The non-linear term. It is clear that the non-linear term 1
2 [d∗A′εu, d∗

A′ε
u]+ is controlled by

the norm of the multiplication map

C1,α
δ−1 × C1,α

δ−1→ C0,α
δ−2,

which in turn is easily seen to be controlled by ‖r δ
ε ‖L∞ , cf. (5.6). Since δ < 0 and

rε ≥ ε by Definition 5.14 we conclude that part (ii) of Lemma 6.1 holds with a constant
C2 = O(εδ).

The error. By Lemma 4.7 we have ‖F+
A′ε
‖C0,α

δ−2
≤ C(ε| ln ε|)2−δ , so that

C2‖F+
A′ε‖C0,α

δ−2
∝ εδ‖F+

A′ε‖C0,α
δ−2
= O(ε2| ln ε|2−δ)

can be made arbitrarily small as ε → 0.

The existence theorem. An application of Lemma 6.1 now allows us to deform the
approximate caloron A

′
ε of (4.5) to an exact self-dual connection.

Theorem 6.3. Fix a semisimple structure group G, holonomy parameter ω ∈ Å+, in-
stanton number n0 and total magnetic charge γm = ∑rk

μ=0 nμ α∨μ . If nμ ≥ 0 for all
μ = 0, . . . , rk, then the moduli space of calorons Mε(ω, γm, n0) is non-empty.

Moreprecisely, for any choice of n0+· · ·+nrk distinct points p10, . . . , pn00 , . . . , p1rk, . . . ,
pnrkrk inR

3 and phasesψ1
0 , . . . , ψ

nrk
rk ∈ U(1) there exists ε0 > 0 (uniform in the minimum

distance dmin between the distinct points) such that for all ε ∈ (0, ε0) there is a caloron
Aε inMε(ω, γm, n0) with the following behaviour as ε → 0:

(i) Aε smoothly converges to the flat abelian connection d +ω⊗ dt on compact subsets
of

(
R
3\{p10, . . . , pnrkrk }

)× S1;
(ii) after rescaling by ε−1 near a point piμ, Aε smoothly converges to the fundamental

caloron Aμ (ω) on compact subsets of R
3 × S1.

Proof. The discussion so far implies that the family of approximate calorons A
′
ε con-

structed in (4.5) can be deformed to an exact solution Aε = A
′
ε + d∗

A′ε
uε for all ε

sufficiently small. Indeed, Lemma 6.1 guarantees the existence of uε ∈ C2,α
δ with

‖uε‖C2,α
δ
= O((ε| ln ε|)2−δ) for all ε sufficiently small.

The limiting properties (i) and (ii) are satisfied by A
′
ε by direct inspection. Moreover,

since R(ε)→ 0, given any compact set K of
(
R
3\{p10, . . . , pnrkrk }

)× S1 we can assume
that A′ε is self-dual on K for all small enough ε. The uniform weighted elliptic estimates
of Remark 5.17 applied to uε |K then yield (i) for Aε as well. Part (ii) is obtained in a
similar way using the fact that ε−1R(ε)→∞.

Finally, non-emptyness of the moduli space for all ε > 0 follows by scaling. ��
Remark. While Aε tends to the vacuum connection away from {piμ}μ,i as ε → 0, the
curvature FAε

diverges at those points. This is because Aε approximates the singular
connection Asing in the limit ε → 0.

Remark. The phases ψ i
μ in the statement of the Theorem are the gluing parameters of

Remark 3.12 which line up the framing of Asing and Aμ on Using ∩Ui
μ.
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Remark. Anatural expectation is thatMε(ω, γm, n0) is non-empty if and only if nμ ≥ 0
for all μ = 0, . . . , rk and reduces to a single point (a flat connection) if n0 = · · · =
nrk = 0. This is known for G = SU (n) or when the instanton number is n0 = 0, in
which case calorons reduce to monopoles on R

3 by Proposition 7.2 below. There are
three ideas for how one might prove the statement for general G and n0.

(i) In the case ofG = SU (n), the inequalities nμ ≥ 0 are proved by considering the
index for a family of twisted Dirac operators. More precisely, given an SU (n)

caloron A, consider the family of unitary connections As = A + is idn on the
rank-n complex vector bundle E associated with the standard representation of
SU (n). The Dirac operator DAs on E is Fredholm and surjective for generic
s, cf. Proposition 5.13. Hence index(DAs ) ≥ 0 for any such s. These indices
are related to the constituent monopole numbers nμ and varying s shows that
nμ ≥ 0 for all μ = 0, . . . , rk. The idea is to do the same for a general compact
semi-simple group G by embedding it in SU (N ) via a representation ρ : G →
SU (N ). Such a representation is described in terms of its weights: given H ∈ h
we have

ρ (exp (H)) = diag
{
eiw(H)|w ∈ V̂

}
,

where V̂ is the set of weights of ρ. Any G caloron then induces an SU (N )

caloron Aρ and as before a family of generically surjective Fredholm Dirac
operators DAρ,s . Computing their indices—an example of how to do this in
detail using [4, Theorem D] is given below in the proof of Proposition 7.7—
yields

ind
(
DAρ,s

) =
∑

w∈V̂
'w(ω)(w (γm) + n0 indD (ρ) +

∑

w|sw<s

w (γm) ≥ 0,

where 'w(ω)( is the largest integer smaller or equal than w(ω), {w(ω)} =
w(ω) − 'w(ω)( and sw = 1 − {w(ω)} ∈ (0, 1]. Moreover, indD (ρ) is the
Dynkin index of ρ, cf. the proof of Proposition 7.7. Although we were unable to
work out the combinatorics, it seems likely that by varying the representation
ρ and s we would recover nμ ≥ 0 for all μ. For example, when ρ = Ad is the
adjoint representation we have

ind
(
DAAd,s

) = 2
rk∑

μ=0
nμ +

∑

α∈R+

(
δs+α − δs−α

)
α (γm) ≥ 0,

with s+α = 1− α(ω), s−α = α(ω) for all positive roots α and

δs±α =
{
1 s > s±α ,

0 s < s±α .

Now, if ω is such that α0(ω) > − 1
2 we can find generic s such that 1− α(ω) >

s > α(ω) for all α ∈ R+. Using
∑

α∈R+ α(γm) = 2
∑rk

μ=1 nμ − n0 mμ and
mμ ≥ 0 we deduce that n0 ≥ 0 in this particular case.
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(ii) When n0 = 0 and A is a monopole the integers n1, . . . , nrk have an interpreta-
tions in terms of based rational maps from P

1 into the flag manifold G/T as the
(necessarily non-negative) degrees of the pull-backs of the ample line bundles
on the flag manifold associated with the fundamental weights of G [17,18]. An
extension of this argument to calorons requires one to work with rational maps
into infinite dimensional flag varieties associated with loop groups [28].

(iii) Finally, we propose a more analytic approach that uses the formula (2.7) for the
Yang–Mills energy of a caloron and the persistence of solutions as we vary the
holonomy parameter ω ∈ Å+. A natural expectation is that for fixed γm ∈ �

and n0 the set

{ω ∈ Å+ |Mε (ω, γm, n0) �= ∅}
is either empty or thewhole of Å+.Openness of this set in Å+ is easily established
using the analytic results of Sect. 5, but closedness appears more challenging
because of non-compactness phenomena such as instanton bubbling. If the claim
were true, then one could assume by contradiction that there exists μ such that
nμ < 0, say n0 < 0. Then one could take ω ∈ Å+ sufficiently close to 0 to
deduce from (2.7) that for a putative caloron A in Mε (ω, γm, n0) we would
have YM(A) ≈ n0 < 0 and therefore reach a contradiction.

7. Index Computations

Fix ε > 0, holonomy parameter ω ∈ Å+, magnetic charge γm ∈ � and instanton num-
ber n0 ∈ Z and consider the corresponding moduli space Mε(ω, γm, n0) of (framed)
calorons. The analytic results of Sect. 5, in particular Propositions 5.12 and 5.13, imply in
a standard way that, fixing α ∈ (0, 1) and δ ∈ (−1, 0),Mε(ω, γm, n0) is a smooth (pos-
sibly empty) manifold with smooth structure induced by the Banach manifold structure
on the space of connections of class C1,α

δ−1 with fixed asymptotic model A∞(ω, γm), act-

ed upon by the group of gauge transformations of class C2,α
δ . Moreover, the equivalence

of the C1,α
δ−1 and L2 kernels of the deformation operator DA implies thatMε(ω, γm, n0)

carries a natural Riemannian metric arising from the L2–inner product of infinitesimal
deformations. Thismetric is hyperkähler by virtue of an infinite dimensional hyperkähler
quotient (and is in general incomplete because of instanton bubbling).

In this section we calculate the dimension ofMε(ω, γm, n0), thus implying that the
family of solutions produced by Theorem 6.3 depends on a full dimensional family of
parameters.

Remark. In the following we will primarily consider the deformation operator D as the
(surjective) Fredholm operator D : C1,α

δ−1 → C0,α
δ−2 with δ ∈ (−1, 0). However, in the

proof of Proposition 7.7 we will apply an L2–index formula that is justified in view of
Proposition 5.13, and in the proof of Theorem 7.11 we will use the ε–dependent norms
of Definition 5.15, which are equivalent to the Ck,α

ν –norms for any fix ε > 0.

7.1. Moduli space of fundamental calorons. In this section we show that the fundamen-
tal calorons of (3.8) are indeed “fundamental”, i.e. they move in a 4-dimensional moduli
space. Since moduli spaces of calorons are hyperkähler this is the lowest possible di-
mension of a non-trivial moduli space. In a physics context, this observation was made
in [23]. Here me make this more precise from a mathematical perspective.
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Theorem 7.1. The dimension of the moduli space of the fundamental calorons are

dimMε

(
ω, α∨0 , 1

) = 4, dimMε

(
ω, α∨μ, 0

) = 4, μ = 1, . . . rk.

The proof of the theorem takes the rest of this subsection. A fundamental G–caloron
Aμ(ω) is reducible since it has structure group T ′ × SU (2) ⊂ G. The deformation
theory therefore splits into two independent contributions: deformations of Aμ(ω) as a
T ′ × SU (2)–caloron and deformations arising from the complement pμ in the splitting
g = (ρμ)∗(h′ ⊕ su2)⊕ pμ. We will show that deformations of Aμ(ω) as a G–caloron in
fact arise fromdeformations of the charge 1BPSmonopole, i.e. there are no deformations
of Aμ(ω) arising from pμ and there are no unexpected deformation of the fundamental
SU (2) calorons A

±
BPS.

7.1.1. Deformations as a T ′ × SU (2)–caloron We first consider the deformations of
Aμ(ω) as a T ′ × SU (2)–caloron. In other words, we want to consider moduli spaces of

abelian calorons and the two moduli spaces MSU (2)
ε (ω, 1, 0) and MSU (2)

ε (ω,−1, 1).
An abelian caloron A is uniquely determined up to gauge by its curvature dA, which

must be a closed anti-self-dual 2-form, and therefore also coclosed.Moreover, the bound-
ary conditions (2.5) imply that dA is L2–integrable. L2 Hodge theory on ALF spaces
[15, Corollary 1 and §7.1.2] yields immediately (since the compactification of R

3 × S1

relevant to the work of Hausel–Hunsicker–Mazzeo is S4) that any abelian caloron is flat
and therefore uniquely determined by the holonomy parameter.

The moduli spaces MSU (2)
ε (ω̄, 1, 0) and MSU (2)

ε (ω,−1, 1) are identified via the
“large” gauge transformation (3.5), i.e. via the “rotation map” of [29, §2.2]. The follow-
ing result, whose proof is inspired by [34, §3], implies that any caloronwith vanishing in-
stanton number is gauge equivalent to a monopole. As a consequence,MSU (2)

ε (ω, 1, 0),
MSU (2)

ε (ω,−1, 1) �MSU (2)
ε (ω̄, 1, 0) are both diffeomorphic to R

3 × S1, the moduli
space of charge 1 monopoles.

Proposition 7.2. Let A be a framed caloron with instanton number n0 = 0. Then there
exists a gauge transformation compatible with the framing such that u∗A is the pull-back
of a monopole.

Proof. Represent A by a connection A = At + ε 
t ⊗ dt on a bundle Ph = (R3 ×R×
G)/Z for some map h : R

3 → G with deg h = 0. We can easily reduce to the case
h = id, cf. [29, Lemma 2.20], so we assume without loss of generality that (At ,
t ) is a
1-parameter family of pairs of a connection and Higgs field on R

3 which is periodic in
t with period 2π and satisfies ∂t At = ∗R3FAt − dAt
t .

Firstly, by Proposition 5.12 applied to t–independent sections, for each t we can find
a gauge transformation ut : R

3 → G which decays to the identity at infinity such that
the curve (A′t ,
′t ) = u∗t (At ,
t ) satisfies d∗A′t (∂t A

′
t )−[
′t , ∂t
′t ] = 0, i.e. for each t the

infinitesimal variation ∂t (A′t ,
′t ) satisfies a natural gauge fixing condition with respect
to (A′t ,
′t ). Note that (A′t ,
′t ) is not necessarily periodic anymore. However, (A′t ,
′t )
are all asymptotic to a fixed periodic asymptotic model which satisfies the Bogomolny
equation. In particular,

A′t − A′0 = O(r−1−δ), ∂t (A
′
t ,


′
t ) = O(r−1−δ) (7.3)

for some δ > 0 and the boundary terms

lim
r→∞

∫

∂Br
〈
′t ∧ FAt 〉 = lim

r→∞

∫

∂Br
〈
′t ∧ ∗R3dAt


′
t 〉 (7.4)



Calorons and Constituent Monopoles

are well defined. Finally, we still have

∂t A
′
t = ∗R3FA′t − dA′t


′
t . (7.5)

We will now show that ∗R3FA′t − dA′t

′
t = 0. Noting that

∫

R3
|FAt |2 + |dA′t
′t |2 =

∫

R3
| ∗R3 FA′t − dA′t


′
t |2 + 2 lim

r→∞

∫

∂Br
〈
′t ∧ FAt 〉,

and taking in to account (7.4), our claim will follow from showing separately that
∫

R3
|FAt |2 = lim

r→∞

∫

∂Br
〈
′t ∧ FAt 〉,

∫

R3
|dA′t
′t |2 = lim

r→∞

∫

∂Br
〈
′t ∧ ∗R3dAt


′
t 〉.
(7.6)

In order to show the first equality we argue as in [34, §3] using the variation for the
Chern–Simons functional of A′t = A′0 + (A′t − A′0). Here recall that the Chern–Simons
functional CSA0 (A0 + a) is defined as

CSA0 (A0 + a) = −
∫

R3

〈

dA0a ∧ a +
2

3
a ∧ a ∧ a + 2a ∧ FA0

〉

.

Then using the gauge invariance of the Chern–Simons functional and the periodicity of
At we have (see e.g. (36) in [34])

0 = CSA0(A2π )− CSA0(A0) = CSA′0(A
′
2π )− CSA′0(A

′
0)

=
∫ 2π

0

(

−2
∫

R3
〈∂t A′t ∧ FA′t 〉 + lim

r→∞

∫

∂Br
〈(A′t − A′0

) ∧ ∂t A
′
t 〉
)

.

The boundary term vanishes by (7.3), so the expression for ∂t A′t in (7.5) and another
integration by parts yield

0 =
∫

R3
〈∂t A′t ∧ FA′t 〉 =

∫

R3
|FAt |2 − lim

r→∞

∫

∂Br
〈
′t ∧ FAt 〉.

In order to show the second equality in (7.6), observe that

d∗A′t dA′t

′
t = −d∗A′t

(
∗R3FA′t − dA′t


′
t

)
= −d∗A′t (∂t A

′
t ) = [
′t , ∂t
′t ]

by (7.5) and our gauge-fixing condition. Hence d∗A′t dA′t

′
t is pointwise orthogonal to 
′t

and an integration by parts yields

0 = 〈d∗A′t dA′t

′
t ,


′
t 〉L2 =

∫

R3
|dA′t
′t |2 − lim

r→∞

∫

∂Br
〈
′t ∧ ∗R3dAt


′
t 〉.

We conclude that (7.6) holds and therefore A′t ≡ A′0 for all t and (A′0,
′t ) satisfies
the Bogomolny equation. Differentiating the latter and using (7.3) we conclude that ∂t
′t
is a decaying parallel section and therefore 
′t ≡ 
′0 for all t also. Thus (At ,
t ) =
(u−1t )∗(A′0,
′0) and since (At ,
t ) and (A′0,
′0) are both periodic and the stabiliser of
(A′0,
′0) in the group of gauge transformations that decay to the identity is trivial, we
deduce that ut is also periodic. ��
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7.1.2. Deformations as a G–caloron We must now show that there are no additional
deformations of Aμ(ω) as a G–caloron. Recall that we defined pμ via the orthogonal
splitting g = (ρμ)∗(h′ ⊕ su2) ⊕ pμ. Note that pμ is an orthogonal representation of
T ′ × SU (2) so that we have an associated vector bundle Eμ → R

3 × S1 with fibre
pμ and a connection A on Eμ induced by Aμ(ω). Since the deformation operator DA

is surjective by Proposition 5.13, the fact that there are no deformations of Aμ(ω) as a
G–caloron that do not arise from deformations of Aμ(ω) as a T ′ × SU (2)–caloron is
equivalent to the following proposition.

Proposition 7.7. The index of DA acting on Eμ–valued 1-forms vanishes.

Proof. First of all note that on any spin 4-manifold M we have T ∗M ⊗ C = S+ ⊗ S−,
where S± is the positive/negative spinor bundle. Moreover, if M is hyperkähler then
S+ is trivial, so that, denoting by EC

μ the complex vector bundle associated with the
T ′ × SU (2)–representation pμ ⊗ C,

index(DA; Eμ) = index(DA; EC

μ) = index(D−
A
; S+ ⊗ EC

μ) = 2 index(D−
A
; EC

μ),

where index(D−
A
; E) denotes the index of the twisted Dirac operator D−

A
: S− ⊗ E →

S+ ⊗ E .
In order to calculate index(D−

A
; EC

μ) we use the index theorem of [4, Theorem D]
(note that [4] has the opposite orientation conventions of ours). Here we regard Aμ(ω)

as a unitary connection A on EC
μ . The index formula of [4, Theorem D] involves the

second Chern number 1
8π2

∫
Trace (FA ∧ FA) and a boundary term depending on the

rk EC
μ eigenvalues of the asymptotic holonomy of A and the rk EC

μ integers determining
the magnetic charge of A.

Now, an explicit calculation as in [29, §2.1.7] shows that

− 1

8π2

∫

Trace
(
FA+

BPS
∧ FA+

BPS

)
= 2ω′, − 1

8π2

∫

Trace
(
F
A
−
BPS
∧ F

A
−
BPS

)
= 1− 2ω′

if the SU (2) holonomy parameter is ω′ ∈ (0, 1
2 ). We deduce that

− 1

8π2

∫

Trace (FA ∧ FA) = indD
(
su(2), pCμ

) (
n0 + αμ (ω)

)
(7.8a)

with n0 = 1 forμ = 0 and n0 = 0 otherwise. Here indD
(
su(2), pCμ

)
is the Dynkin index

of the Lie algebra morphism su(2)→ u(dimC pC), i.e. the ratio between the pull-back
of the Killing form of u(dimC pC) and the Killing form of su2. With our conventions,
the Killing form of u(n) is given up to a sign by the trace of the product of two matrices,
so that the positive coroot of su2 has norm

√
2 and indD

(
su(2), pCμ

)
is half the trace of

the endomorphism [α∨μ, [α∨μ, · ]] of pCμ . We calculate

indD
(
su(2), pCμ

)
= 1

2

∑

α �=±αμ

α(α∨μ)2 =
∑

α∈R+

α(α∨μ)2 − 4

= 1
2 indD (g,Ad) ‖α∨μ‖2g − 4.

(7.8b)

Here indD (g,Ad) is the Dynkin index of the Lie algebra homomorphism g → u(gC)

given by the adjoint representation. It can be shown [31, Example 1.2] that

indD (g,Ad) = 2
(
1− ρ(α∨0 )

)
, (7.9)
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where ρ = 1
2

∑
α∈R+ α denotes the half-sum of positive roots.

In order to calculate the boundary term in the index theorem of [4, Theorem D],
observe that pμ ⊗ C = ⊕

α �=±αμ
gα in terms of the decomposition of g ⊗ C into root

spaces. The asymptotic form of A preserves this decomposition and the holonomy and
magnetic charge of the line bundle arising from gα for α �= ±αμ are, respectively, α(ω)

and α(α∨μ). Since α(ω) ∈ (0, 1) the asymptotic holonomy is non-trivial and therefore
the application of [4, Theorem D] is justified. Taking k = 0 in the latter formula (since
R
3 × S1 = TN0) and taking into account the different convention of magnetic charge,

we calculate that the boundary term in the index formula of [4, Theorem D] is

2
∑

α �=|αμ|

( 1
2 − α (ω)

)
α(α∨μ) = 2

∑

α∈R+

( 1
2 − α (ω)

)
α(α∨μ)− 4 signαμ

( 1
2 − |αμ(ω)|)

= 2
(
ρ(α∨μ)− signαμ

)− ( 1
2 indD (g,Ad) ‖α∨μ‖2g − 4

)
αμ(ω).

(7.10)

Here |αμ| = (signαμ) αμ and we used

2
∑

α∈R+

α(ω) α(α∨μ) = indD (g,Ad) 〈ω, α∨μ〉g = 1
2 indD (g,Ad) ‖α∨μ‖2g αμ(ω).

Putting together (7.8) and (7.10) we obtain that

index
(
D−
Aρ

, EC

μ

)
=

(
1
2 indD (g,Ad) ‖α∨μ‖2g − 4

)
n0 + 2

(
ρ(α∨μ)− signαμ

)
.

If μ �= 0 then αμ > 0, n0 = 0 and ρ(α∨μ) = 1. If μ = 0, then α0 < 0, n0 = 1,
‖α∨0 ‖2g = 2 (since α∨0 is a long coroot) and the vanishing of the index follows from
(7.9). ��

The proof of Theorem 7.1 is now complete.

7.2. Excision. We will now use an excision argument inspired by the proof of the exci-
sion principle in [8, §7.1] (cf. also [10, §8]) to prove the main result of this section.

Theorem 7.11. For ω ∈ Å+ and γm =∑rk
μ=0 nμα∨μ ∈ � with nμ ≥ 0 for allμ we have

dimMε (ω, γm, n0) = 4(n0 + n1 + · · · + nrk).

Proof. For a caloron A whose gauge equivalence class lies in Mε (ω, γm, n0) the de-
formation operator DA is surjective by Proposition 5.13 and therefore the theorem is
equivalent to showing the index formula

index DA = 4(n0 + n1 + · · · + nrk). (7.12)

First of all, note that by the compactness of the multiplication map in (5.7) the index
remains unchanged if we replace A with the approximate caloron A

′
ε constructed in

(4.5). In fact, we consider a slight variation of the construction in (4.5) and assume
that A is S1–invariant and abelian outside of

⋃
μ,i Bε(piμ)× S1 and coincides with the

model A∞(ωi
μ, α∨μ) on the “annulus”

(
B2(piμ) \ Bε(piμ)

)× S1. Similarly, we let A
i
μ be

a connection on R
3 × S1 with similar properties as A but constructed from the single

point piμ instead of the collection {piμ}μ,i . Then A coincides with A
i
μ in B2(piμ)× S1.

The idea is to show that the index of DA coincides with the index of the disjoint union of
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the DAi
μ
’s and then use Theorem 7.1 to conclude that the latter index equal the right-hand

side of (7.12).
Now, DA and DAi

μ
are all surjective with right inversesG = D∗

A
(DAD∗A)−1 and simi-

larly definedGi
μ with uniformly bounded norms independently of ε by Proposition 5.18.

Hence showing that

index DA =
∑

μ,i

index DAi
μ

amounts to showing that the finite dimensional kernels of the operators on the two sides
of the equation have the same dimension. In order to show this we will construct maps
between the kernels of DA and

⊔
μ,i DAi

μ
and show they are injective when ε is small

enough. Rescaling back to a fix ε then implies the result for any ε > 0.
Fix cut-off functions γ i

μ, β i
μ with

γ i
μ ≡

{
1 on B1(piμ)× S1,
0 outside B2(piμ)× S1,

β i
μ ≡

{
0 on B1(piμ)× S1,
1 outside B2(piμ)× S1,

and the additional constraint that β i
μ ≡ 1 on the support of dγ i

μ.
Now, suppose that ξ is an element in the kernel of DA. We define an element ξ iμ in

the kernel of DAi
μ
by ξ iμ = γ i

μξ − Gi
μDAi

μ
(γ i

μξ). Indeed, note that

‖Di
μ(γ i

μξ)‖C0,α
δ−2
= ‖dγ i

μ ⊗ ξ‖C0,α
δ−2

� ‖β i
μξ‖C0,α

δ−1
<∞ (7.13)

since DA = DAi
μ
on the support of γ i

μ and on the support of dγ i
μ the weight function

r iμ = O(1) and β i
μ ≡ 1. Here a � b means a ≤ Cb for a constant C > 0 independent

of a, b and ε.
We claim that the map ξ �→ {ξ iμ}μ,i is injective for ε sufficiently small. Suppose not,

so that there exists ξ ∈ ker DA such that γ i
μξ = Gi

μD
i
μ(γ i

μξ) for all μ, i . Proposition-
s 5.20 and 5.21 imply that for ε small enough we have

‖ξ‖C1,α
δ−1

�
∑

μ,i

‖γ i
μξ‖C0,α

δ−1
(7.14)

Then, using Propositions 5.18 and 5.20 and (7.13) we obtain

‖γ i
μξ‖C0,α

δ−1
≤ ‖γ i

μξ‖C1,α
δ−1
= ‖Gi

μD
i
μ(γ i

μξ)‖C1,α
δ−1

� ‖β i
μξ‖C0,α

δ−1
≤ η‖ξ‖C1,α

δ−1
.

Summing over μ, i and using (7.14) implies that for η, and therefore ε, small enough
we must in fact have ξ = 0.

Hencewe have shown that dim ker DA ≤∑
μ,i dim ker DAi

μ
. The opposite inequality

is shown in analogous way by constructing an injective map from
⊕

μ,i ker DAi
μ
to

ker DA. ��
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