
Aging Brain 4 (2023) 100088

Available online 22 July 2023
2589-9589/© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Brain-predicted age difference mediates the association between 
PROMIS sleep impairment, and self-reported pain measure in 
persons with knee pain 

Soamy Montesino-Goicolea a,b, Pedro Valdes-Hernandez a,b, 
Chavier Laffitte Nodarse a,b, Alisa J. Johnson a,b, James H. Cole c,d, Lisa H. Antoine e, 
Burel R. Goodin e, Roger B. Fillingim a,b,f, Yenisel Cruz-Almeida a,b,f,* 

a Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, United States 
b Department of Community Dentistry & Behavioral Science, College of Dentistry, University of Florida, Gainesville, FL, United States 
c Centre for Medical Image Computing, Department of Computer Science, University College London, UK 
d Dementia Research Centre, Institute of Neurology, University College London, UK 
e Department of Psychology, College of Arts and Sciences, University of Alabama at Birmingham, United States 
f Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States   

A R T I C L E  I N F O   

Keywords: 
Aging 
Sleep impairment 
Chronic pain 
Brain age 
DeepBrainNet 

A B S T R A C T   

Knee pain, the most common cause of musculoskeletal pain (MSK), constitutes a severe public 
health burden. Its neurobiological causes, however, remain poorly understood. Among many 
possible causes, it has been proposed that sleep problems could lead to an increase in chronic pain 
symptomatology, which may be driven by central nervous system changes. In fact, we previously 
found that brain cortical thickness mediated the relationship between sleep qualities and pain 
severity in older adults with MSK. We also demonstrated a significant difference in a machine- 
learning-derived brain-aging biomarker between participants with low-and high-impact knee 
pain. Considering this, we examined whether brain aging was associated with self-reported sleep 
and pain measures, and whether brain aging mediated the relationship between sleep problems 
and knee pain. Exploratory Spearman and Pearson partial correlations, controlling for age, sex, 
race and study site, showed a significant association of brain aging with sleep related impairment 
and self-reported pain measures. Moreover, mediation analysis showed that brain aging signifi-
cantly mediated the effect of sleep related impairment on clinical pain and physical symptoms. 
Our findings extend our prior work demonstrating advanced brain aging among individuals with 
chronic pain and the mediating role of brain-aging on the association between sleep and pain 
severity. Future longitudinal studies are needed to further understand whether the brain can be a 
therapeutic target to reverse the possible effect of sleep problems on chronic pain.   

Introduction 

Aging is a complex biological phenomenon with marked changes across multiple physiological systems (e.g., the immune system, 
musculoskeletal system, nervous system). Also, aging is associated with poor sleep quality and greater chronic pain prevalence 
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[5,24,41,53], with age-related changes in brain structure [8,28,30,29] and function as potential underlying mechanisms 
[18,27,33,37]. Given that sleep disorders, and chronic pain in older age are both related to brain alterations [38,43–44,55,62], the 
interplay between these variables is of considerable interest to researchers and clinicians. 

One brain aging biomarker that is increasingly gaining attention is brain predicted age difference, brain-PAD, which is calculated as 
the difference between brain-predicted age (a measure of the biological brain age predicted from structural, micro-structural, func-
tional, or their combinations based on a machine learning algorithm) and chronological age [15]. Brain aging biomarkers have been 
proposed as biomarkers of health, risk of mortality, frailty, disease, and cognitive decline [9,16,57]. Previous work has characterized 
brain aging, obtained from structural MRIs, in populations with chronic pain [19,18,36,58]. Overall, increasing evidence suggests that 
individuals with musculoskeletal pain (MSK), including knee osteoarthritis (OA), have “older” appearing brains compared to pain-free 
demographically matched controls [19,35]. However, findings from research addressing the relationship between chronic MSK pain 
and brain aging have been mixed. For example, one study reported no differences in brain-PAD between a heterogenous chronic pain 
cohort recruited from multiple pain clinics and pain free controls [58]. 

Despite the potential impact of sleep on the brain, only one study to date has characterized brain age predictions in participants 
with sleep disorders. They showed that individuals with sleeping brain activity characteristic of individuals with an older chrono-
logical age have a significantly reduced life expectancy compared to those with younger appearing brain activity pattern [47]. 
Interestingly, Paixao and colleagues [47] derived a different brain aging algorithm, the brain age index (BAI), that is a sleep EEG-based 
biomarker of the deviation of sleep microstructure from patterns typical of that chronological age. BAI measures the difference be-
tween an individual’s apparent “brain age”; estimated by comparing EEG features during sleep from an individual with age norms for 
their chronological age. 

Considering the known sleep-pain associations [1,3,11,21,33,37,43–44,48,49,60], it is important to evaluate how sleep quality and 
chronic pain are interrelated in the context of brain aging processes. Using a brain aging biomarker to detect brain alterations related to 
certain pathologies comes with several advantages. Unlike other local morphometric measurements (e.g., cortical thickness) that 
require multiple independent tests, it is a global measure with contributions from all tissues of the brain. Thus, the aim of the present 
study was to investigate whether brain aging mediated the relationship between sleep problems and knee pain. In addition, we 
employed a novel convolutional neural network, DeepBrainNet [6], to predict brain age from structural MRIs, which has shown to be 
sensitive to pathological conditions, including chronic musculoskeletal pain (Valdes-Hernandez et al., under review). Based on our 
previous findings that sleep and pain associations were mediated by brain measures, we hypothesized that brain-predicted aging 
would be associated with self-reported sleep as well as with self-reported pain, and that brain aging would mediate the association 
between sleep problems and knee pain. 

Methods 

Participants 

The sample for the current analysis included 206 individuals between 45 and 85 years of age who self-identified as non-Hispanic 
black (NHB) and non-Hispanic white (NHW), and 175 of them reported unilateral or bilateral knee pain, and screened positive for 
clinical knee OA [54]; the remaining 31 are pain-free controls. Participants were recruited as part of a multi-site observational study 
which included the University of Florida and University of Alabama at Birmingham. The parent study aims to identify the mechanisms 
underlying ethic/race differences in pain and functional limitations in persons with knee pain. Participants’ eligibility for study in-
clusion was determined through a telephone screening. A detailed description of the screening, inclusion, and exclusion criteria has 
been reported previously [13,17,20]. Individuals between a) ages of 45 and 85 who self-identify as non-Hispanic black (NHB) and non- 
Hispanic white (NHW), b) screening positive for unilateral or bilateral symptomatic osteoarthritis of the knee based on the 1986 
American College of Rheumatology (ACR) criteria 4, 5; and also c) qualifies for a magnetic resonance imaging (MRI) of both knees, 
were included in the study. Participants were excluded for the following conditions: 1) Cognitive impairment; 2) hospitalization within 
the preceding year for psychiatric illness; 3) history of cardiovascular disease including uncontrolled hypertension (BP > 150/95 mm 
Hg); 4) prosthetic knee replacement or other clinically significant surgery to the arthritic knee; 5) peripheral neuropathy; 6) systemic 
diseases including rheumatoid arthritis, systemic lupus erythematosus, gout, and fibromyalgia; 7) neurological diseases such as 
Parkinson’s, and multiple sclerosis; 8) daily opioid use; 9) pregnant or nursing; or 10) MRI contraindications. 

Procedures 

At the clinical laboratory, participants provided informed consent and underwent a general health assessment (HAS) as well as a 
neuroimaging visit session no more than four weeks apart. During the HAS, participants completed sociodemographic, physical health, 
pain history and sleep questionnaires. A physical exam of the knees assessing current pain, bony enlargement, and crepitus was also 
conducted by a study rheumatologist. Weight and height measurements for body mass index (BMI) calculation were also obtained. The 
present study is an ancillary investigation that aimed to determine the relationship of brain aging, knee pain and sleep problems, thus, 
only measures relevant to the study hypotheses are included and presented below. 
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Clinical and sleep assessments 

• Graded Chronic Pain Scale (GCPS): GCPS is a widely validated and reliable tool for grading chronic pain impact [67]. The in-
structions were adapted to assess characteristic knee pain intensity and pain-related disability specifically. Participants were asked 
to rate on a 0 (“no pain”) to 10 (“pain as bad as could be”) numerical rating scale their current knee pain, average knee pain, and 
worst knee pain in the past six months. These ratings were averaged and multiplied by 10 to yield a 0–100 score, with higher scores 
indicating more severe pain intensity. Pain-related disability (i.e., how much pain has interfered with daily activities, recreational/ 
social/family activities, and ability to work) on average, over the past six months, was rated on a 0 (“no inference”) to 10 (“unable 
to carry out activities”) scale and multiplied by 10 to yield a 0–100 score, with higher scores indicating greater disability. Addi-
tionally, the GCPS asked respondents “How many days in the last six months have you been kept from your usual activities because 
of pain?” Disability points were calculated as the sum of the pain-related disability score (i.e., 0–29 = 0 points; 30–49 = 1 point; 
50–69 = 2 points; ≥70 = 3 points), and total number of disability days (i.e., 0–6 days = 0 points; 7–14 days = 1 point; 15–30 days =
2 points; 31 days or more = 3 points). Scores from the GCPS characteristic pain intensity scale and disability points were then used 
to categorize participants according to a pain grade: Grade 0 = no reported pain intensity; Grade 1 = low disability (i.e., less than3 
disability points) and low pain intensity (i.e., less than50); Grade 2 = low disability-high intensity pain (i.e., ≥50); Grade 3 = high 
disability-moderately limiting (i.e., 3–4 Disability Points), regardless of pain intensity; Grade 4 = high disability-severely limiting 
(i.e., 5–6 Disability Points), regardless of pain intensity. Pain Groups were defined based on pain grade as follows: No chronic pain 
(i.e., Grade 0), Low impact pain (i.e., Grades 1–2), High impact pain (i.e., Grade 3–4).  

• Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC): WOMAC assesses knee OA symptoms in the preceding 48 
h, including pain, stiffness, and physical function. Higher scores indicate a greater symptom burden [7].  

• Patient-Reported Outcomes Measurement Information System (PROMIS) Sleep short forms. The instruments use a 7-day recall period 
and a 5-point Likert scale. Raw scores were converted to an interval standardized T score. It consisted of 8 items which assessed self- 
reported perceptions of alertness, sleepiness, and tiredness during usual waking hours, and the perceived functional impairments 
during wakefulness associated with sleep problems and impaired alertness. Higher scores indicate greater sleep impairment. 
[51,52,70] 

Neuroimaging data 
Neuroimaging data were collected at two different sites: 1) the University of Florida’s McKnight Brain Institute on the Advanced 

Magnetic Resonance Imaging and Spectroscopy (AMRIS) facility’s Philips (Best, the Netherlands) 3-Tesla scanner using a 32-channel 
radio frequency coil and 2) the University of Alabama at Birmingham with 3-Tesla scanner using an 8-channel radio frequency coil. A 
high-resolution, T1-weighted (T1w), turbo field echo anatomical scan was collected using the following parameters: repetition time =
7.1 ms, echo time = 3.2 ms, 170 slices acquired in a sagittal orientation, flip angle = 8 deg., resolution = 1 mm isotropic. Head 
movement was minimized via cushions positioned inside the head coil and instructions to participants. 

DeepBrainNet for brain age prediction 

DeepBrainNet is a convolutional neural network (a type of machine learning neural network suitable for predictions based on 
images) that was recently developed by Bashyam et al. [6] to predict brain age [6]. It is built based on the inception-resnet-v2 framework 
[59] and uses a 2D convolutional architecture, which allows for the use of ImageNet for initialization—ImageNet is a natural scene 
database with 14 + million hand annotated images. DeepBrainNet was trained using T1w MRI images from 11,729 individuals (ages 
3–95 years) from a diverse range of geographic locations, scanners, acquisition protocols, and studies, and tested in an independent 
sample of 2,739 individuals. Features for the DeepBrainNet are calculated as follows. First, the T1w needs to be skull-stripped. Second, 
the skull-stripped image has to be spatially normalized to the 1-mm isotropic voxel FSL skull-stripped T1w template using a 12-param-
eter linear affine transformation. For training, each of the skull-stripped MRI images was divided into 80 2D slices (centered on the z =
0 plane in MNI coordinates) and considered as an independent sample, resulting in a training set of 1 million images. To obtain a final 
age prediction for a test sample, each of 80 slices of the test scan is input to the trained model independently and the median prediction 
is calculated as the subject’s predicted brain age. To obtain skull-stripped images in our sample, we used NiPype’s smriprep,1 the 
portion that process the anatomical T1w images in fmriprep [25] as well as visual quality control by one of the co-authors (CLN). The 
T1w images were corrected for intensity non-uniformity using N4BiasFieldCorrection [65] distributed with ANTs 2.2.0 (Avants et al. 
2008, RRID:SCR_004757), and skull-stripped with a Nipype implementation of the antsBrainExtraction.sh workflow from ANTs [4], 
using OASIS30ANTs as target template. Brain-PAD, was calculated as the difference between brain-predicted age and chronological age 
[15]. 

Dealing with bias in the brain age estimations 

In regression problems, e.g., brain age predictions, the so-called “regression dilution” bias is very common and has been described 
and tackled extensively in the brain age prediction literature. The regression dilution bias appears when the features used to predict 

1 https://www.nipreps.org/smriprep/usage.html. 
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(the preprocessed MRIs) contain errors. The bias always consists of an overestimation of younger brain ages and an underestimation of 
older brain ages, yielding a negative slope in the brain-PAD versus age relationship. A well accepted method to deal with this bias is 
regressing chronological age from the brain age or brain-PAD estimations [22,50]. In second-level analyses using brain-PAD as the 
dependent variable, this is equivalent to add chronological age as a covariate. 

Statistical methods 

We used one-way analysis of variance (ANOVA) for continuous variables, and Chi-square test for categorical variables to compare 
the clinical and demographic characteristics between subjects with and without pain. Spearman and Pearson partial correlations, 
controlling by chronological age, sex, race, and study site were used to determine associations of brain-PAD with clinical pain and sleep 
measures. Note that chronological age must be a covariate of brain-PAD so the above-described regression dilution bias can be 
accounted for. 

A mediation analysis was conducted to test the total indirect effect of sleep on pain through brain-PAD measures. We also controlled 
for age, sex, race and study site. We used bootstrapping procedures (n = 5,000) to obtain estimates and confidence intervals around the 
indirect effects to overcome potential problems caused by unmet assumptions in mediation analysis. We used the Hayes PROCESS 
macro model 4 that provides modern methods for inference about indirect effects including bootstrapped confidence intervals. Data 
analyses were performed using IBM SPSS 28 software. 

Results 

Clinical and demographic characteristics 

Table 1 presents the demographic and clinical characteristics of the sample, categorized into three groups: those with no pain (31 
participants), those with low-impact pain (110 participants), and those with high-impact pain (60 participants). The mean Brain-PAD 
scores of the participants in each group are listed, with the lowest mean score in the no pain group (-1.78 ± 7.06), and the highest in 
the high-impact pain group (0.95 ± 6.09). There were significant differences in the ethnicity/race between participants with low- 
impact and high-impact pain when compared to participants without pain, (p = 0.029). 

Brain age predictions 

Fig. 1 shows the brain age predictions and the corresponding brain-PAD for our sample. Note that if we extrapolate the predictions 
to chronological ages younger than those in the sample, brain age estimations would be overestimated. This linear deviation is sig-
nificant (slope p-value ~ 1e-5). However, it is rectified when adding chronological age as a covariate in the subsequent analyses. 

Brain-PAD is associated with self-reported clinical pain and self-reported sleep measures 

In the prediction of brain age, the DeepBrainNet model yielded a mean absolute average (MAE; in years) of 4.98 with 95 %CI [4.43, 
5.61] (using 10,000 bootstraps). Also, the correlation between the chronological and predicted brain age was 0.71 and very significant 
(i.e., with a very small p-value). 

Partial correlations among measures of sleep, pain, and Brain-PAD are presented in Table 2. There is a positive correlation between 
Brain-PAD and each of the four variables. However, the strength of the correlation varies for each variable, with WOMAC Total Score 

Table 1 
Demographic and clinical characteristics of the sample (n = 206) for participants with no pain, low-impact pain, and high-impact pain.   

No Pain 
(n = 31) 

Low- Impact pain (n = 110) High- Impact pain (n = 60) P-value 

Chronological Age, (Mean ± SD) 60.13 ± 9.89 58.74 ± 8.09 56.30 ± 7.24 0.073 (ANOVA) 
Brain-PAD, 

(Mean ± SD) 
− 1.78 ± 7.06 − 1.13 ± 6.47 0.95 ± 6.09 0.082 (ANOVA) 

Ethnicity/Race, n(%)    0.029(χ2)  
• Non-Hispanic Black 13(41.94%)  43(39.09%) 36(60%)   

• Non-Hispanic White 18(58.06%) 67(60.90%) 24(40%)  
Gender, n(%)     
Male 9(29.39%) 37 (33.64%) 23 (38.33%)  
Female 22(70.97%) 73 (66.36%) 37 (61.67%) 0.658 (χ2) 
BMI, 

(Mean ± SD) 
1.58 ± 0.99 1.56 ± 1.24 1.95 ± 1.17 0.122 (ANOVA) 

Site, n(%)     
UF 21(67.74%) 67 (60.90%) 36 (60%)  
UAB 10(32.26%) 43 (39.09%) 24 (40%) 0.748 (χ2) 

Note: Bold values represent probability less than 0.05. There are 5 missing values. n represents sample size. SD represents standard deviation. 
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having the strongest correlation (r = 0.265), and PROMIS Sleep T-Score having the weakest correlation (r = 0.151). The uncorrected p- 
values, as well as the FDR and Bonferroni corrected across the four measures are also provided. To visualize the relationship between 
the sleep and pain variables with Brain-PAD, we did a scatter plot. In Fig. 2 the x-axis represents each of the four variables (PROMIS 
Sleep T-Score, GCPS Intensity, GCPS Interference, and WOMAC Total Score), and the y-axis represents Brain-PAD. Moreover, to 
provide an additional quantitative characterization of the relationship between brain-PAD and pain and sleep, we also provide the 
average of the brain-PAD for the participants with extreme values of the measures (i.e., below the 5 percentile and above the 95 
percentile). These values are shown in Table 3. 

Fig. 1. A) Predicted brain age in our sample. The dashed line represents the y = x line, and the solid line represents the linear fit brain age ~ age. B) 
A) Predicted brain-PAD. The dashed line represents the y = 0 line, and the solid line represents the linear fit brain-PAD ~ age. The solid line 
evidences a linear bias due to lack of a wide distribution of chronological age and/or the well-known “regression dilution” in regression problems. 

Table 2 
Association between Brain-PAD with clinical and sleep measures.  

PROMIS Sleep T-Score r = 0.151 p ¼ 0.036* p’= 0.036 p’’=0.144 
GCPS Intensity r = 0.196 p = 0.006* p’=0.008 p’’=0.024 
GCPS Interference r = 0.213 p ¼ 0.003* p’=0.006 p’’=0.012 
WOMAC Total Score r = 0.265 p ¼ 0.001* p’=0.004 p’’=0.004 

Notes: * Correlation is significant at the 0.05 level (two-tailed); p’= False Discovery Rate 
(FDR) corrected; p’’= Bonferroni corrected. Bold values represent probability less than 
0.05. 

Fig. 2. A) Scatter plots of the brain-PAD versus the pain and sleep measures. B) To illustrate the strength of the partial correlations, the plots are the 
same as in A) but with the effects of the covariates (i.e., age, sex, race, and site) removed. The line is a linear fit between the corrected variables to 
represent the sign of the relationship. 
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Mediation analysis 

The indirect coefficient (a × b) of PROMIS Sleep T-Score and WOMAC Total Score, was significant (see Fig. 3), while controlling for 
chronological age, sex, race, and study site. The total effect (c) and the direct effect (c’) were also significant but were not of interest in 
the present study. 

Discussion 

The present study sought to elucidate the associations of sleep quality, self-reported pain and brain aging, and further explore the 
potential mediating role of brain aging in the association between sleep quality and self-reported pain. To our knowledge, this is the 
first study examining this mediational association. Brain aging was significantly associated with self-reported pain, and self-reported 
sleep measures. In addition, brain aging mediated the association between sleep impairment severity and pain severity. 

As hypothesized, chronic knee pain and sleep problems were associated with an “older” brain relative to an individual’s chro-
nological age. The older than normal brain, the higher the intensity of pain as well as the higher the severity of sleep impairment. This 
result is in part consistent with our previous finding in which greater average worst pain intensity was associated with an “older” brain 
in an older population [19]. Furthermore, our results are in line with the work of Hung et al. [35], where accelerated brain aging is 
associated with pain characteristics that differ between discrete disorders, for example osteoarthritis [35]. 

Our second hypothesis was also supported by our results since brain aging mediated the association between sleep impairments and 
the self-reported pain measures. In general, limited research has investigated brain aging as a mediator in the relation between sleep 
and pain, however, during the past 10 years, some studies have applied formal tests of mediation to investigate variables on the path 
between sleep and pain intensity and vice versa [68]. For example, Bonvanie et al [10] used 3 different mediators: 1) symptoms of 
anxiety and depression, 2) fatigue, and 3) physical inactivity, finding that the sleep problem only had an indirect effect on muscu-
loskeletal pain severity through symptoms of fatigue, and on abdominal pain severity through anxiety and depression. Hamilton et. al. 
(2012) found that pain helplessness partially mediated the relationship between sleep and pain. In addition, Evans et. al. (2017) 
reported that positive affect was not identified as a statistically significant mediator while negative affect was a statistically significant 
partial mediator of the sleep-pain relationship. Goodin et al. (2012) showed that cortisol reactivity totally mediated the relationship 
between sleep quality (measured by PSQI) and pain (measured by McGill pain questionnaire). O’Brien et al[46] found that negative 
mood almost fully mediated the relationship between sleep and pain. Interestingly, Valrie et al [66] in a pediatric population found 
that mood was a statistically significant partial mediator of the influence of pain intensity on sleep and vice versa. Lastly, Nicassio et al 
[45] reported that depressive symptoms mediated 38% of the total effect of pain on sleep. While not directly related to our results, the 
mediators identified in these studies (e.g., depression and/or anxiety, attention to pain, pain helplessness, activation of the stress 
system, fatigue, and physical activity) have all been related to structural changes in the brain [31], with sleep problems 
[14,26,32,39,40,64], and chronic pain [2,12,34,42,56,61,63,71]. For example, patients with major depressive disorder have a 
reduction in gray matter in the left anterior cingulate cortex, as well as in the orbital, ventrolateral prefrontal and hippocampal 
cortices. Moreover, the hypothalamic-pituitary-adrenocortical axis appears overactive with hypersecretion of cortisol [23]. On the 
other hand, those with mood disorder exhibited volume alterations in structures regulating emotional and cognitive functioning like 
fronto-limbic cortex, hippocampus and amygdala [69]. In addition, depression and anxiety are associated with increased perception of 
pain severity, whereas prolonged duration of acute pain leads to increased mood dysregulation [34,42]. Brain-predicted age bio-
markers may capture a more robust picture of the biological consequences of simultaneous pain and sleep disturbances in persons with 
chronic knee pain. 

Limitations 

Our study has some limitations. The first is a general limitation of any brain age prediction method that is the regression dilution 
bias (see Fig. 1). That is why we included chronological age as a covariate [22,50]. Better preprocessing pipelines and quality control 
might help improve this problem, but only with generalizable models of the bias we will be able to correct it in individual predictions. 
Our group is currently working on such models. On top of this, the slope of the linear fit in Fig. 1 could also be affected by the limited 
range in the chronological age of our sample (44–80 years) since this introduces instability in the estimators of the coefficients of the 
linear fit (i.e., slop and intercept). Adding participants from much younger chronological ages could lead to less steep slopes of the 
linear fit. However, the inclusion criteria of this study targeted middle-aged adults or older, for whom knee OA pain is typically 

Table 3 
Average Brain-PAD (in years) for participants with pain and sleep measures below the 5 percentile and 
above the 95 percentiles of their distributions.  

Measure Brain-PAD 

Percentiles 5 95 

WOMAC Total Score − 2.21 (n = 43) 3.27 (n = 10) 
GCPS_Intensity − 1.78 (n = 31) 0.38 (n = 10) 
GCPD Interference − 1.68 (n = 56) 3.24 (n = 12) 
PROMIS_Sleep_T-score − 2.13 (n = 12) 3.08 (n = 10)  
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prevalent. 
Second, the study was cross-sectional, and causality cannot be determined. Future longitudinal studies are needed to understand 

the clinical significance of predicted brain aging differences, and its ability to predict treatment outcomes in patients with chronic pain 
and sleep problems. Third, our study focused on people with knee pain, thus generalizability to other types of chronic pain is limited. 
Future studies, including participants with other specific chronic pain conditions are needed to further elucidate these associations and 
assist in the development of a brain biomarker specific to each type of chronic pain. Fourth, we observed significant differences in 
ethnicity/race between the three groups of participants, which is consistent with the existing literature. However, our study was not 
powered to examine contributions of ethnicity/race to the pain and sleep interactions. Further research is needed to determine 
whether this relationship differs by ethnicity/race. Finally, evaluation of sleep in this study was based on self-report, and this may 
differ from findings using objective sleep measures, such as polysomnography or actigraphy, which would provide a more sensitive 
exploration of the reciprocal relationship between pain and sleep. 

It is important to note that DeepBrainNet is a brain age prediction method different from those based on Gaussian Process 
Regression (GPR) used by our group to find differences in chronic pain groups in previous studies. We also performed our analyses 
using the GPR-based method but found no significant results. Although the reason for these differences in significance across methods 
is beyond the scope of the present study, and should be immediately addressed in a future paper, we believe that this could owe to the 
fact DeepBrainNet was trained on a more diverse and heterogeneous sample, possibly making it more sensitive to seemingly accel-
erated brain age due to morphometric alterations related to pathologies. 

Conclusion 

To our knowledge, this is the first investigation implicating brain aging as a mediator of the association between sleep quality and 
chronic pain in a sample with knee pain. Further mechanistic understanding of the complex, bidirectional relationship between sleep 
and pain may provide alternative therapeutic targets for treating sleep dysfunction and/or chronic pain conditions. Our findings also 
suggest that brain predicted age could be a valuable marker of brain aging and a predictor of the risk of mortality in those with chronic 
pain and sleep disorder. 
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