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Abstract
Aims: To describe treatment pathways for key glucose-lowering therapies in in-
dividuals with chronic kidney disease (CKD) and type 2 diabetes (T2D) using 
retrospective data from DISCOVER CKD (NCT04034992).
Methods: Data were extracted from the UK Clinical Practice Research Datalink 
(CPRD) linked to Hospital Episode Statistics data (2008–2020) and the US inte-
grated Limited Claims and Electronic Health Records Database (LCED; 2012–
2019). Eligible individuals were aged ≥18 years with CKD, identified by two 
consecutive estimated glomerular filtration rate (eGFR) measures (15–<75 mL/
min/1.73 m2; 90–730 days apart; index date was the second measurement) and 
T2D. Chronological treatment pathways for glucose-lowering therapies pre-
scribed on or after CKD index to end of follow-up were computed. Median 
time and proportion of overall follow-up time on treatment were described for 
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1   |   INTRODUCTION

Type 2 diabetes (T2D) is a leading cause of chronic kidney 
disease (CKD) worldwide and a frequent co-morbidity in 
individuals with CKD of non-diabetic aetiologies.1,2 Indi-
viduals with CKD are at increased risk of adverse cardio-
vascular and renal outcomes, and mortality,3,4 and the risk 
of these outcomes is further increased in those individu-
als with CKD and T2D.4–6 The combination of CKD and 
T2D is also associated with reduced health-related quality 
of life and significant healthcare resource utilisation and 
costs.7,8

Optimal management of individuals with CKD and 
T2D is multifaceted, aiming to attain glycaemic control as 
well as reduce the risks of CKD progression and cardiovas-
cular disease/mortality.9 Renin–angiotensin–aldosterone 
system inhibitors are the mainstay of treatment to delay 
or prevent CKD progression10; however, more recent data 
from randomised trials and observational studies have 
suggested benefits of sodium–glucose co-transporter-2 in-
hibitors (SGLT2i) and finerenone (a non-steroidal miner-
alocorticoid receptor antagonist) in improving a range of 
kidney and cardiovascular outcomes in individuals with 
CKD.11,12 In addition, glucagon-like peptide-1 (GLP-1) re-
ceptor antagonists have been reported to improve kidney 
outcomes compared with placebo, mainly driven by a re-
duction in albuminuria.13,14

Current guideline recommendations for the treatment 
of individuals with CKD and T2D differ. The Kidney Dis-
ease: Improving Global Outcomes (KDIGO) group rec-
ommends metformin and SGLT2i as first-line therapy 

for all individuals with CKD and T2D who have an eGFR 
≥30 mL/min/1.73 m2.9 Additional agents, including GLP-1 
receptor agonists, are recommended as required to achieve 
glycaemic control, with consideration of individual fac-
tors and preference.9 The American Diabetes Association 
(ADA) also advocates for initial use of metformin in indi-
viduals with CKD and T2D, with the addition of SGLT2i 
recommended for those with eGFR ≥25 mL/min/1.73 m2 
or urinary albumin-to-creatinine ratio (UACR) ≥300 mg/g 
for cardiovascular risk reduction. In individuals who are 

each therapy by database and by eGFR and urinary albumin-to-creatinine ratio 
(UACR) categories.
Results: Of 36,951 and 4339 eligible individuals in the CPRD and LCED, respec-
tively, median baseline eGFR was 67.8 and 64.9 mL/min/1.73 m2; 64.2 and 63.9% 
received metformin prior to index; and median (interquartile range) time on met-
formin during follow-up was 917 (390–1671) and 454 (192–850) days (account-
ing for ~75% of follow-up time in both databases). The frequency of combination 
treatment increased over time. There were trends towards decreased metformin 
prescriptions with decreasing eGFR and increasing UACR within each eGFR 
category.
Conclusions: Individuals with CKD and T2D had many combinations of thera-
pies and substantial follow-up time on therapy. These results highlight opportu-
nities for improved CKD management.

K E Y W O R D S

database, diabetes mellitus, type 2, electronic health records, glomerular filtration rate, 
metformin, renal insufficiency, chronic, retrospective studies

What's new?

•	 Treatment of chronic kidney disease (CKD) and 
type 2 diabetes (T2D) aims to achieve glycaemic 
control and reduce the risks of CKD progres-
sion and cardiovascular disease/mortality.

•	 This analysis assessed recent trends in treat-
ment of CKD and T2D using real-world UK and 
US data.

•	 Individuals with CKD and T2D had a high 
therapy burden, including use of combination 
therapies and substantial follow-up time on 
therapy.

•	 These findings highlight opportunities for im-
proved management of this high-risk popula-
tion; future studies are warranted to assess the 
impact of new therapies and updated clinical 
practice guidelines on treatment patterns.
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at increased risk of cardiovascular events or CKD progres-
sion, or who are unable to use an SGLT2i, a non-steroidal 
mineralocorticoid receptor antagonist (finerenone) is 
recommended; GLP-1 receptor antagonists may also be 
considered for cardiovascular and potentially CKD risk 
reduction.15

Assessments of real-world treatment patterns in in-
dividuals with CKD and T2D are important to inform 
knowledge of disease burden and to ascertain whether 
optimal disease management strategies are being imple-
mented in clinical practice. DISCOVER CKD (clini​caltr​
ials.gov identifier: NCT04034992) is a hybrid, multina-
tional, observational cohort study of individuals with 
CKD.16 The study aims to provide contemporary real-
world insights to inform clinical practice and improve 
understanding of the epidemiology, and clinical and 
economic burden of CKD.16–18 The aim of this analysis 
was to describe the treatment pathways for key glucose-
lowering therapies in individuals with CKD and T2D, 
using data from two databases within the DISCOVER 
CKD retrospective cohort.

2   |   METHODS

2.1  |  Study population

This analysis used a subset of data from the DISCOVER 
CKD retrospective cohort.16 Data were extracted from 
the UK Clinical Practice Research Datalink (CPRD; [In-
formation Sharing and Analysis Centre protocol number: 
19_226A4] primary care data)19 linked to Hospital Epi-
sode Statistics data between 2008 and 2020, and the US 
integrated Limited Claims and Electronic Health Records 
Database (LCED; primary and secondary care data) be-
tween 2012 and 2019.

Adults (aged ≥18 years) with non–dialysis-dependent 
CKD, identified by two consecutive eGFR measures of 15–
<75 mL/min/1.73 m2 recorded ≥90 days apart (maximum 
730 days) on or after January 2008 (UK) or January 2012 
(US), were eligible for inclusion. Eligible individuals were 
required to have ≥1 UACR measurement within 1 year be-
fore or any time up to 5 years after the index date (date 
of second eGFR measurement) and were categorised by 
the UACR measure closest to index. Individuals were also 
required to have T2D at index, identified by either a diag-
nostic code and/or a prescription for a glucose-lowering 
therapy (including, but not limited to, SGLT2i, dipeptidyl 
peptidase 4 inhibitors [DPP4i], insulin and metformin). 
Exclusion criteria included death within 30 days of index 
(where available in the data source), history of type 1 di-
abetes, or a history of kidney transplant or renal replace-
ment therapy at index.

The analysis protocol followed the principles of the 
Declaration of Helsinki. Data were collected in compli-
ance with the Health Insurance Portability and Account-
ability Act, the Data Protection Act, independent review 
board and ethics committees and participating data custo-
dian's policies as appropriate. No individual's identifiable 
information was shared outside of the protective firewalls 
of participating data custodians without prior informed 
consent; within the firewalls, only approved persons had 
access to anonymised individual-level data.

2.2  |  Analysis variables, 
outcomes and analysis

The observation period for this analysis spanned the indi-
viduals' full registration period until the first occurrence 
of either death, loss to follow-up, database end or end of 
data collection. Baseline characteristics assessed included 
demographics and laboratory parameters determined 
using the most recent measurement within 12 months 
before index. Co-morbidities, determined any time before 
index, were also assessed.

Sankey plots were used to visualise chronological 
treatment pathways for key glucose-lowering therapies 
(SGLT2i, DPP4i, insulin, metformin, and other glucose-
lowering therapies [including sulfonylureas, thiazolidine-
diones, alpha-glucosidase inhibitors and GLP-1 receptor 
agonists]) prescribed on or after CKD index to end of 
follow-up in the UK CPRD and US LCED. Treatments 
that were initiated prior to CKD but that overlapped with 
the CKD index date were also included. Treatments with 
a duration of ≤6 days were excluded from analyses, and 
days from partially overlapping treatment durations were 
brought forward and added to the subsequent prescrip-
tion. Median time and proportion of overall follow-up 
time on treatment were described for each key glucose-
lowering therapy by database and per KDIGO category 
(according to eGFR and UACR) and included any time 
receiving treatment (even if not continuous). This was a 
descriptive analysis and no hypotheses were tested. Cat-
egorical data are presented as numbers and percentages; 
mean (standard deviation) values and median (interquar-
tile range [IQR]) values are reported, as appropriate.

3   |   RESULTS

3.1  |  Attrition

Among all eligible individuals, 347,216 of 425,246 (81.7%) 
in the CPRD and 181,604 of 224,100 (81.0%) in the LCED 
had two measurements of eGFR 15–<75 mL/min/1.73 m2 
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(Figure 1). Among those individuals with two eGFR meas-
urements, 102,133 of 347,216 (29.4%) and 9041 of 181,604 
(4.5%) individuals in the CPRD and LCED, respectively, 
met the UACR inclusion criteria. After applying addi-
tional inclusion criteria, including the presence of T2D 
at index, 36,951 and 4339 individuals in the CPRD and 
LCED, respectively were included in the present analysis. 
An overview of excluded individuals without T2D at index 
is given in Supplementary Table 1.

3.2  |  Baseline characteristics

Overall, 43.0% and 49.5% of individuals in the CPRD and 
LCED, respectively, were female, with median (IQR) 
ages of 68 (62–75) and 64 (59–73) years in the CPRD and 
LCED, respectively (Table  1). Median (IQR) body mass 
index was 30.4 (27.0–34.6) and 32.0 (28.3–37.4) kg/m2 
in the CPRD and LCED, respectively. Individuals in the 
CPRD had a notably lower prevalence of hypertension 
(63.9% vs. 89.7%), heart failure (5.9% vs. 9.7%) and stroke 
(5.6% vs. 16.8%) compared with individuals in the LCED. 
Retinopathy was more frequent in individuals in the CPRD 
compared with the LCED (25.1% vs. 11.4%). Individuals in 

the CPRD and LCED had similar median baseline eGFR 
(67.8 and 64.9 mL/min/1.73 m2, respectively), UACR (10.6 
and 9.0 mg/g, respectively) and glycated haemoglobin 
(52 mmol/mol [6.9%] and 50 mmol/mol [6.7%], respec-
tively). Metformin was prescribed to 64.2% and 63.9% of in-
dividuals in the CPRD and LCED, respectively, at baseline. 
Insulin, DDP4i and GLP-1 agonists were prescribed more 
frequently in the LCED (20.7%, 15.4%, 7.1%, respectively) 
than in the CPRD (12.0%, 8.7%, 3.4%, respectively), at base-
line. Median (IQR) follow-up times were 1483 (734–2400) 
days in the CPRD and 1184 (692–1672) days in the LCED.

3.3  |  T2D treatment pathways

In both the CPRD and LCED, metformin (either as a 
monotherapy or in combination with other glucose-
lowering therapies) was the most frequently prescribed 
T2D treatment both prior to and after CKD index  
(Figure 2). In both databases, the proportion of individ-
uals prescribed combination therapy regimens, as well 
as the number of different regimens, increased with pro-
gression from first-line therapy to subsequent therapies 
following CKD index.

F I G U R E  1   Attrition. CPRD, Clinical 
Practice Research Datalink; eGFR, 
estimated glomerular filtration rate; 
LCED, Limited Claims and Electronic 
Health Records Database; RRT, renal 
replacement therapy; UACR, urinary 
albumin-to-creatinine ratio.
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3.4  |  Time on treatment for key 
glucose-lowering therapies

Time on treatment varied substantially between the differ-
ent therapies assessed (Table  2; Supplementary Table  2). 

In both the CPRD and LCED, individuals spent the longest 
time on metformin compared with other therapies. In the 
CPRD, the median (IQR) time on metformin during follow-
up (for prescriptions dispensed before and after CKD index) 
was 917 (390–1671) days, accounting for a median of 75% of 
total follow-up time. In the LCED, the median (IQR) time 
on metformin was 456 (193–850) days, accounting for a me-
dian of 76% of total follow-up time. The least time was spent 
on SGLT2i (CPRD: 361 [125–732] days, 26% of follow-up 
time; LCED: 292 [141–541] days, 42% of follow-up time).

3.5  |  Time on treatment for key 
glucose-lowering therapies according to 
eGFR and UACR levels

Time on therapy and percentage of follow-up time on 
therapy stratified by baseline KDIGO category are 
shown in Figures 3 and 4, Supplementary Figures 1 and 
2, and Supplementary Tables  3 and 4. Numbers of in-
dividuals by KDIGO category and database are shown 
in Supplementary Table  5. There was a trend towards 
decreased median time on metformin with decreasing 
eGFR and increasing UACR within each eGFR cate-
gory; in the CPRD, median time on therapy decreased 
from 964.0 days in individuals with eGFR 60–<75 mL/
min/1.73 m2 and UACR 0–<30 mg/g to 80.5 days in 
those with eGFR 15–<30 mL/min/1.73 m2 and UACR 
≥300 mg/g. In the LCED, the corresponding decrease 
was from 496.0 to 23.0 days (Figure 3). The proportion 
of follow-up time accounted for by metformin pre-
scriptions also declined as eGFR decreased and UACR 
increased (CPRD: from 76% in individuals with eGFR 
60–<75 mL/min/1.73 m2 and UACR 0–<30 mg/g to 14% 
in those with eGFR 15–<30 mL/min/1.73 m2 and UACR 
≥300 mg/g; LCED: from 79% in individuals with eGFR 
60–<75 mL/min/1.73 m2 and UACR 0–<30 mg/g to 2% 
in those with eGFR 15–<30 mL/min/1.73 m2 and UACR 
≥300 mg/g) (Figure 4). No notable trends were seen with 
other glucose-lowering therapies, including SGLT2i; 
however, there was a slight trend towards lower median 
time on other glucose-lowering therapies with increas-
ing UACR in the CPRD (Supplementary Figure 1).

Numbers of individuals decreased as eGFR increased 
regardless of therapy, database or UACR category (Supple-
mentary Table  5). SGLT2i use was especially low among 
those with eGFR 15–<30 or 30–<45 mL/min/1.73 m2.

4   |   DISCUSSION

This analysis assessed treatment pathways for common 
glucose-lowering therapies using real-world data from 

T A B L E  1   Baseline characteristics.

UK CPRD US LCED

N = 36,951 N = 4339

Demographic
Age (years), median (IQR) 68 (62–75) 64 (59–73)
Female (%) 43.0 49.5
BMI (kg/m2), median 

(IQR)a
30.4 (27.0–34.6) 32.0 (28.3–37.4)

eGFR (ml/min/1.73 m2), 
median (IQR)

67.8 (60.9–71.8) 64.9 (56.2–70.5)

eGFR category, n (%)
15–<30 319 (0.9) 75 (1.7)
30–<45 1479 (4.0) 328 (7.6)
45–<60 6664 (18.0) 1092 (25.2)
60–<75 28,489 (77.1) 2844 (65.5)

UACR (mg/g), median 
(IQR)a

10.6 (5.1–28.3) 9.0 (4.0–25.1)

UACR category, n (%)
<30 27,601 (74.7) 3251 (74.9)
30–<300 7728 (20.9) 836 (19.3)
≥300 1622 (4.4) 252 (5.8)

Co-morbidities (%)
Hypertension 63.9 89.7
Heart failure 5.9 9.7
Myocardial infarction 8.6 6.5
Stroke 5.6 16.8
Retinopathy 25.1 11.4

Laboratory parameters, median (IQR)
HbA1c (mmol/mol)a 52 (45–62) 50 (44–59)
HbA1c (%)a 6.9 (6.3–7.8) 6.7 (6.2–7.5)

Medications (%)
Metformin 64.2 63.9
Insulin 12.0 20.7
DPP4i 8.7 15.4
GLP-1 agonist 3.4 7.1

Median (IQR) follow-up 
time, days

1483 (734–2400) 1184 (692–1672)

Abbreviations: BMI, body mass index; CPRD, Clinical Practice Research 
Datalink; DPP4i, dipeptidyl peptidase 4 inhibitor; eGFR, estimated 
glomerular filtration rate; GLP-1, glucagon-like peptide-1; HbA1c, glycated 
haemoglobin; IQR, interquartile range; LCED, Limited Claims and Electronic 
Health Records Database; UACR, urinary albumin-to-creatinine ratio.
aProportion of missing data (%) for BMI, UACR, and HbA1c was 14.6, 30.0, 
and 4.0, respectively, in the UK CPRD, and 45.4, 34.5, and 23.1, respectively, 
in the US LCED.
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individuals with CKD and T2D between 2008 and 2020 
in the UK and between 2012 and 2019 in the US. Most 
individuals were receiving glucose-lowering therapy prior 
to CKD index, reflecting the significant proportion of in-
dividuals with T2D who subsequently develop CKD.20 

Baseline levels of glycated haemoglobin in both databases 
were within range of the target level for adults with dia-
betes.9 This may be a result of non-diabetic aetiologies of 
CKD, rigorous treatments (reflecting the wide use of com-
bination regimens) or other unknown factors.

F I G U R E  2   Treatment pathways for glucose-lowering therapies in (a) CPRD and (b) LCED. (a) Includes any treatment pathway with 
>1000 individuals, or > 50 individuals if the treatment pathway contains GLP-1RA or SGLT2i, in the CPRD. (b) Includes any treatment 
pathway with >100 individuals, or >30 individuals if the treatment pathway contains GLP-1RA or SGLT2i, in the LCED. Other anti-
hyperglycaemics include sulfonylureas, thiazolidinediones, alpha-glucosidase inhibitors, and GLP-1RA. CPRD, Clinical Practice Research 
Datalink; DPP4i, dipeptidyl peptidase 4 inhibitor; GLP-1RA, glucagon-like peptide-1 receptor agonist; LCED, Limited Claims and Electronic 
Health Records Database; SGLT2i, sodium–glucose co-transporter-2 inhibitor.
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Consistent with international treatment guideline 
recommendations (both current and at the time of data 
collection),9,15,21,22 the most frequently prescribed therapy 
in the UK CPRD and US LCED (both prior to and after 
CKD index) was metformin, either as a monotherapy or 
in combination with other glucose-lowering therapies. 
The median time on metformin during follow-up, which 
included any time receiving treatment (even if not con-
tinuous), was twice as long for individuals in the CPRD 
than those in the LCED. This may be partially attributed to 
the longer follow-up of individuals in the CPRD (median 
time 1483 days) versus those in the LCED (median time 
1184 days). Following the first therapy after CKD index, 
there was significant diversity in the choice of second 
therapies. This may reflect the variety of available treat-
ment options and the need for treatment intensification as 
T2D progresses.9,21–23

Overall, individuals in the analytic cohort had a high 
therapy burden, reflected by the wide use of combination 
therapy regimens by many individuals and substantial 
follow-up time on therapy. This finding demonstrates the 
complexities associated with managing individuals with 
CKD and T2D, including the need to consider eGFR level 
and the potential for hypoglycaemia or other side effects.2,9 
Optimising treatment regimens, including the timely use 
of glucose-lowering therapies that confer cardiorenal pro-
tection independent of glycaemic control, may improve 
outcomes in these individuals and minimise medication 
burden.

When individuals were stratified by eGFR and UACR 
levels according to the KDIGO 2012 classification, there 
were trends towards decreased metformin prescription 
with declining eGFR, as seen previously,24 but no obvious 
changes in prescription of other therapies, such as insu-
lin. These findings are in accordance with clinical guide-
lines that recommend against metformin prescription 
when eGFR declines to <30 mL/min/1.73 m2, owing to 
concerns of increased risk of complications such as lactic 

acidosis.9,15 By contrast, there are no restrictions on insu-
lin use in individuals with renal impairment—doses can 
be uptitrated to achieve glycaemic goals20,25—and some 
individuals in the analytic cohort may have had late-stage 
T2D and required insulin due to beta-cell failure. How-
ever, it is important to note the disadvantages associated 
with insulin use in individuals with impaired renal func-
tion, including increased risk of hypoglycaemia, which 
is associated with morbidity and mortality.26 Insulin use 
is also associated with significant burden in terms of ad-
ministration, side effects and cost, and does not confer the 
documented benefits seen across various cardiovascular 
and kidney outcomes with some oral medications, such as 
SGLT2i, finerenone and GLP-1 receptor antagonists.15,27–30

Data from recent clinical studies have suggested po-
tential benefits of SGLT2i on kidney outcomes in in-
dividuals with CKD,11,12 and current ADA guidelines 
recommend the use of SGLT2i in those with eGFR 
≥25 mL/min/1.73 m2 or UACR ≥300 mg/g.15 Our data did 
not reveal any notable trends in SGLT2i prescriptions 
according to UACR level, but this may reflect the infre-
quent prescription of SGLT2i in the analysis period and 
the timeframe of our dataset, most of which was prior 
to the completion of clinical trials evaluating SGLT2i in 
CKD and the recommendation for these agents as part 
of first-line therapy regimens in individuals with CKD 
and T2D.15 Our findings, therefore, serve as a baseline 
from which the uptake of new therapies with demon-
strated renoprotective and cardioprotective effects can 
be assessed in the next few years. Similarly, although re-
cent KDIGO guidelines recommend the preferential use 
of GLP-1 receptor antagonists as additional drug ther-
apy following first-line therapy, this was not evident in 
our findings. Notably, use of GLP-1 receptor antagonists 
was low and could not be assessed as a separate drug 
category; this is again likely attributable to the analysis 
period, where many individuals had initiated treatment 
prior to publication of the guidelines.

T A B L E  2   Median time on therapy for key glucose-lowering therapies.

Metformin Insulin SGLT2i

Database CPRD LCED CPRD LCED CPRD LCED

Therapy prior to CKD index

N 18,273 1926 3328 445 601 108

Therapy at any time during follow-up

N 27,494 2727 7242 881 3395 345

Median (IQR) time on 
therapy (days)

917 (390–1671) 456 (193–850) 738 (278–1463) 394 (158–830) 361 (125–732) 292 (141–541)

Median (IQR) % 
follow-up time, days

75 (47–94) 76 (44–93) 63 (27–91) 59 (30–85) 26 (9–59) 42 (16–77)

Abbreviations: CKD, chronic kidney disease; CPRD, Clinical Practice Research Datalink; IQR, interquartile range; LCED, Limited Claims and Electronic 
Health Records Database; SGLT2i, sodium–glucose co-transporter-2 inhibitor.
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8 of 12  |      POLLOCK et al.

To the best of our knowledge, this is the first longitudi-
nal analysis assessing treatment pathways in individuals 
with CKD and T2D. Additional strengths of the present 
analysis include the large cohort size, inclusion of data 
from both the UK and US, and the longitudinal assess-
ment of treatment pathways. Limitations include those 

inherent to retrospective data, including the potential for 
coding errors in the source databases as the data were not 
collected for research purposes. Additionally, prescrip-
tions were not fully captured and there was no way of ver-
ifying whether individuals were taking their prescribed 
medications. There was potential for underestimation of 

F I G U R E  3   Median time on key glucose-lowering therapies, according to KDIGO category. aData not available in this group for the 
UACR 30–<300 (CPRD) and ≥300 (LCED) mg/g categories. CPRD, Clinical Practice Research Datalink; eGFR, estimated glomerular 
filtration rate; IQR, interquartile range; KDIGO, Kidney Disease: Improving Global Outcomes; LCED, Limited Claims and Electronic Health 
Records Database; SGLT2i, sodium–glucose co-transporter-2 inhibitor; UACR, urinary albumin-to-creatinine ratio.
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metformin prescription in cases where individuals were 
taking fixed-dose drug combinations (e.g. dapagliflozin 
and metformin), and time-on-treatment analyses assessed 
single therapies only, whereas individuals might have been 
receiving combination therapies. Additionally, it is likely 

that the duration of treatment and proportion of individu-
als on metformin were significantly underestimated in the 
LCED. Owing to its low cost and lack of reimbursement 
incentive, many individuals obtain metformin without 
health insurance coverage in the US, meaning that not all 

F I G U R E  4   Percentage of follow-up time on therapy by KDIGO category. Data are median percentage (IQR). Percentages were 
calculated by dividing the total treated time on therapy in follow-up by the total follow-up time. aData not available in this group for the 
UACR 30–<300 (CPRD) and ≥300 (LCED) mg/g categories. CPRD, Clinical Practice Research Datalink; eGFR, estimated glomerular 
filtration rate; IQR, interquartile range; KDIGO, Kidney Disease: Improving Global Outcomes; LCED, Limited Claims and Electronic Health 
Records Database; SGLT2i, sodium–glucose co-transporter-2 inhibitor; UACR, urinary albumin-to-creatinine ratio.
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prescriptions will have been documented. Moreover, low 
prescription numbers for some therapies, including GLP-1 
receptor agonists, meant that these therapies could not be 
analysed separately.

A considerable proportion of the initial study pop-
ulation did not have an available UACR measurement 
recorded. Use of this as a selection criterion therefore 
restricted the size of the final study population and may 
have biased selection of individuals towards those with 
severe CKD who are likely to receive more frequent mon-
itoring than lower-risk individuals. To mitigate against 
the extensive exclusion of individuals without UACR 
measurements at baseline, we included those with ≥1 
UACR measurement within 1 year before or any time up 
to 5 years after the index date; however, this may have led 
to immortal time bias in our results.

Notably, not all individuals had a diagnostic code for 
CKD; therefore, eGFR measures were used to infer the 
presence of CKD. Similarly, prescription data were some-
times used to infer the presence of T2D. In addition, doses 
and dose changes of glucose-lowering therapies were not 
assessed as part of the analysis and the reasons for therapy 
changes were unknown. The CPRD comprises primary 
care data only, while the US LCED comprises data from 
both primary and secondary care settings. Baseline char-
acteristics and treatment needs are therefore likely to vary 
between the two databases, precluding any direct compar-
isons in this descriptive analysis, although future investi-
gations into the variations that exist between the datasets 
might be of interest. Finally, the findings of this analysis 
of data from the UK and US are not necessarily generalis-
able to other countries.

5   |   CONCLUSIONS

In this analysis of contemporary real-world data from the 
UK and US, individuals with CKD and T2D had a high 
therapy burden, including the use of combination ther-
apy regimens and substantial follow-up time on therapy. 
There were trends towards decreased metformin prescrip-
tions with decreasing eGFR and with increasing UACR. 
These findings highlight opportunities for improved man-
agement of this high-risk population with future studies 
warranted to assess the impact of new therapies and up-
dated clinical practice guidelines on treatment patterns in 
this setting.
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