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A B S T R A C T   

Unmanned surface vehicles (USVs) carry a wealth of possible applications, many of which are limited by the 
vehicle’s level of autonomy. The development of efficient and robust computer vision algorithms is a key factor 
in improving this, as they permit autonomous detection and thereby avoidance of obstacles. Recent de
velopments in convolutional neural networks (CNNs), and the collection of increasingly diverse datasets, present 
opportunities for improved computer vision algorithms requiring less data and computational power. One area of 
potential improvement is the utilisation of temporal context from USV camera feeds in the form of sequential 
video frames to consistently identify obstacles in diverse marine environments under challenging conditions. 
This paper documents the implementation of this through long short-term memory (LSTM) cells in existing CNN 
structures and the exploration of parameters affecting their efficacy. It is found that LSTM cells are promising for 
achieving improved performance; however, there are weaknesses associated with network training procedures 
and datasets. Several novel network architectures are presented and compared using a state-of-the-art bench
marking method. It is shown that LSTM cells allow for better model performance with fewer training iterations, 
but that this advantage diminishes with additional training.   

1. Introduction 

In recent years, heavy development in unmanned surface vehicles 
(USVs) has been motivated by both commercial and scientific ambitions. 
USVs are typically small-scale vessels (Fig. 1) developed for tasks which 
would otherwise be impractical, dangerous, or tedious for manned ve
hicles. Their applications range widely from hydrographic surveying 
and data collection to disaster management and mine-sweeping (Liu 
et al., 2016). 

Heightening the level of vehicle autonomy is key to unlocking new 
applications of USVs. One factor of this is the autonomous navigation 
and obstacle avoidance which can be challenging, especially in shoreline 
environments where other vessels, buoys, animals, and swimmers are 
commonly present. Identifying these from on-board sensors is an 
important task, but factors like waves, reflections, and diverse weather 
conditions hinder this for example by obscuring clear boundaries be
tween obstacles and surroundings. Furthermore, the addition heavy and 
expensive sensors eliminate the size, cost, and manoeuvrability benefits 

of USVs over manned vessels. Hence, solutions to obstacle detection 
using simple, on-board monocular cameras alone are sought. 

One approach to effective perception, or “computer vision”, using 
only monocular camera inputs, is to use convolutional neural networks 
(CNNs) for identification of obstacles in an image. These networks can 
be trained on a range of datasets to achieve impressive performance in a 
variety of tasks (Garcia-Garcia et al., 2017). In USV computer vision 
applications, CNNs have lately been heavily developed and used to 
break new ground, but limitations to their performance are not negli
gible. In particular, phenomena characteristic to marine environments 
often inhibit model effectiveness. For example, CNNs may misidentify 
object reflections as real obstacles (Bovcon and Kristan, 2022), thereby 
impeding any navigational software which would have to avoid said 
reflections as it would with obstacles. A solution to this could be the 
introduction of a temporal element in the neural network, with the 
rationale that reflections and other visual features in the water are 
warped by waves and ripples over time. Practically, this means allowing 
a CNN model to observe several video frames and training it to 
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distinguish water features such as reflections, boat wakes, and glitter 
from real obstacles via their variation in appearance over time. If suc
cessful, this would reduce the amount of water features incorrectly 
labelled as obstacles by the computer vision model, thereby increasing 
the overall reliability of the model. 

The objective of this paper is to explore and demonstrate the utility 
of implementing recurrent network elements in an established CNN 
model to allow it to draw information from the temporal attributes of 
video inputs. Specifically, long short-term memory (LSTM) cells are 
integrated into the ShorelineNet model (Yao et al., 2021) with the goal 
of reducing detection of time-varying water phenomena, like reflections 
and glitter, as real obstacles. Different model architectures and data 
manipulation approaches are trialled, and the results are compared to 
both the original model and other state-of-the-art methods. The project 
code is based on the work of Yao et al. (2021) and is publicly available.1 

All models are trained and evaluated on open-source datasets using 
recently developed benchmarks. It is shown how the novel imple
mentation of convolutional LSTM cells reduces the incorrect detection of 
time-varying water phenomena as obstacles, but also that the network 
architecture, dataset characteristics, and training time may result in 
overfitting to temporal context data. The experiments carried out in this 
study add to the tools available to researchers developing USV computer 
vision algorithms and show improvements over existing lightweight 
models. Convolutional LSTM has, to the author’s knowledge, not been 
used in this application before. 

The main contributions of this paper can be summarised as: (1) 
Convolutional LSTM has been innovatively integrated with the Shor
elineNet model to improve obstacle detection robustness by capturing 
sequential information, an approach which is aligned and motivated by 
the nature of maritime visual dataset (video frames are sequential and 
not independent and identically distributed); (2) the proposed methods 
can successfully reduce false positive obstacle detections which is one of 
the main issues associated with ShorelineNet, with the capacity to 
provide an accurate detection of obstacles that are difficult to identify 
due to environmental influences while remaining lightweight enough to 
run in real-time at high frame rates; (3) enriched experiments and cross- 
dataset validation have been undertaken to demonstrate the perfor
mances of the proposed methods and recommendations for practical 
application are provided. 

The rest of the paper is organised as follows: Section 2 provides a 
comprehensive literature review into USVs and their related CV 
research. Section 3 describes the main architecture of the proposed 
networks with Section 4 detailing the training and evaluation processes. 
Section 5 discusses the main results and provides enriched comparative 
studies against SOTA. Section 6 concludes the paper and points out 
future research directions. 

2. Literature review 

Reductions in fuel and crew costs are some amongst many motiva
tions behind recent developments in USV computer vision (CV) (Vagale 
et al., 2021). Due to size, cost, weight, and power constraints 
well-established methods from autonomous land vehicles are not 
directly transferable, and novel solutions specific to USVs are required. 
The below literature review serves as a theoretical introduction to the 
tools utilised in this paper, followed by a review of recent relevant de
velopments in the field. 

Fig. 1. Unmanned Surface Vehicle (USV) selection from Seafloor Systems, Inc. Image source: (Seafloor Systems).  

Fig. 2. Example of image captured on-board a USV. In this example both strong 
glare and obstacle reflections in the water make the scene challenging for 
computer interpretation Bovcon et al. (2022). 

1 https://github.com/KFH22/ShorelineNet 
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2.1. USV-specific challenges 

Cameras have become the sensor of choice for small-scale USVs, as 
these are generally cheap and lightweight, and have low power con
sumption when compared to alternatives like LIDAR. In addition, cam
eras generally allow better perception of small, close, or flat objects in 
the water, and have a large field of view (Kristan et al., 2016; Liu et al., 
2021). As such, the information produced by cameras is rich, but its 
usefulness is highly dependent on the algorithms interpreting their sig
nals. Images taken by these in marine environments are likely to include 
effects like reflections, haze, and glare (Fig. 2) which add to the chal
lenge. Therefore, traditional obstacle detection algorithms using back
ground subtraction, and machine learning (ML) models developed for 
autonomous cars, are often ineffective in marine environments (Prasad 
et al., 2019; Bovcon et al., 2022). To address this, CV models have been 
proposed which use CNNs that are trained on tailor-made maritime 
image datasets. These serve as an alternative to adding additional sen
sors like inertial measurement units (IMUs) or stereo cameras, which 
have otherwise shown promising performance (Huntsberger et al., 2011; 
Bovcon et al., 2018). 

2.2. Convolutional neural networks for semantic segmentation 

One method for interpreting camera data is to classify each image 
pixel such that the image is segmented into regions. This method, called 
semantic segmentation, is widely used in many computer vision appli
cations. Semantic segmentation is generally more computationally 
demanding than whole-image classification, but its possible applications 
range widely. Recent developments in deep learning (DL) have given 
rise to ground-breaking performance of semantic segmentation models 
(Minaee et al., 2022) often using CNNs. These, first proposed by 
Fukushima (1980), are a type of deep neural networks exceptionally 
potent at CV tasks. They work through stacks of neural network layers 
with at least one convolutional filter application. This filtering is 
commonly used in image processing, and allows the CNN to extract 
important features, such as edges, from the image (Prince, 2012). 
Another benefit of CNNs over conventional fully connected neural net
works, is a significant reduction in network parameters (weights and 
biases), as network weights are shared within layers (Minaee et al., 

2022). 
Several CNN structures for semantic segmentation have been pro

posed, many of which utilise an encoder-decoder shape. Here, an 
encoder consisting of convolutional layers is followed by a decoder of 
transposed convolutional (deconvolutional) layers. Well-known exam
ples of this structure are “SegNet” (Badrinarayanan et al., 2017) and 
“U-Net” (Ronneberger et al., 2015). Both models use their encoder to 
extract coarse image information while retaining finer details through 
different forms of “skip connections” (He et al., 2016) which connect 
corresponding encoder-decoder layers. Another commonly seen feature 
in encoder-decoder architectures is utilisation of encoders pretrained on 
large datasets, such as “ImageNet” (Deng et al., 2009), in models applied 
to different data. This may retain good performance while reducing 
training time and avoiding overfitting on small datasets. 

2.2.1. Temporal context and LSTMs 
Current obstacle segmentation models for marine environments 

generally work on a single image, and very few deep learning archi
tectures (e.g. Žust and Kristan (2022b)) utilise the temporal information 
of a video-feed. However, the time-dependent nature of phenomena like 
reflections, as well as pitch/yaw/roll of the vehicle, could prove bene
ficial in correctly identifying objects and avoiding misidentification of 
water features as obstacles. 

In practice, a model architecture and data pipeline can be designed 
with an input of one video frame and N preceding frames (or “pre- 
frames”) containing additional information. Different approaches have 
been attempted to effectively utilise said information; Karpathy et al. 
(2014) set N+1 sequential video frames as the input in a classification 
problem using a conventional CNN and saw slight improvement over 
using single frames. Varghese et al. (2021) and Liu et al. (2020) trained 
models using custom loss-functions to penalise inconsistencies between 
frames in training, before applying this to single-frame inference thereby 
avoiding latency associated with multi-frame inference. A third option is 
using a recurrent neural network (RNN) with several input frames 
drawing on information from previous frames when analysing the cur
rent one. In particular “Long Short-Term Memory” (LSTM) networks 
(Hochreiter and Schmidhuber 1997) maintain a dynamic cell state as the 
network is applied to several input time steps sequentially. In practice, 
this gives the network “memory” of previous inputs while analysing 

Fig. 3. The basic structure of the original LSTM architecture Yu et al. (2019).  
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current data. Several LSTM structures have been proposed, but the 
original version is explained below with reference to Fig. 3. 

x(t): input to the module, in our case the information contained in an 
image. 

h(t): output of the LSTM cell containing the result of operations 
applied throughout the cell. 

c(t): cell state, which contains the information that persists between 
time steps, and can be thought of as the memory of the cell. 

In general, as information is passed through the LSTM module, its 
cell state is modified by letting inputs pass through “gates”. The weights 
and biases of these gates are trained along with the rest of the network to 
let relevant information pass through. This allows the LSTM cell to store 
information and us it in the inference of a later time step. 

Since their introduction, LSTM networks have been responsible for 
most RNN breakthroughs (Yu et al., 2019; Van Houdt et al., 2020). They 
have been used in diverse applications from financial market forecasting 
(Sezer et al., 2020) to “remaining useful life” assessment (Wu et al., 
2018), and they can be exceptionally powerful in text, speech and lan
guage modelling (e.g. (Sundermeyer et al., 2015; Liu and Guo 2019)). 
When applied to images and video, as is the case in computer vision, 
LSTM networks often benefit from being integrated in CNN architectures 
(Van Houdt et al., 2020) and have been effective in e.g. classification of 
video content (Ullah et al., 2018), road-lane detection (Zou et al., 2020), 
and skin disease identification (Srinivasu et al., 2021). In Table 1 an 
overview of several implementations of temporal context and LSTM is 
given with the purpose of elaborating on the benefit found in different 
image (or video) segmentation or classification applications. Ap
proaches with and without LSTM are given to illustrate the breadth 
possible solutions currently being studied. 

2.2.1.1. LSTM location. In image applications, a common approach is 
placing LSTM layers at different locations in a proven CNN structure 
often consisting of an encoder and decoder. Commonly, the LSTM layer 
(s) are positioned between the encoder and decoder to maintain con
sistency in the coarse image elements between frames (Pfeuffer et al., 
2019). Alternatively, the LSTM modules can be incorporated in the skip 
connections (Rochan, 2018) or added after the deconvolution (Xu et al., 
2019). Pfeuffer et al. (2019) experimented with the LSTM location using 
a SegNet (Badrinarayanan et al., 2017) model on the cityscapes dataset 
(Cordts et al., 2016), and found that a “ConvLSTM” layer positioned 
after the decoder performed slightly better than when located between 
the encoder and decoder. 

2.2.1.2. LSTM cell variations. Several variations to the original LSTM 
cell have been suggested. Gers et al. (1999) added a “forget gate” to rid 
the cell state of irrelevant information and later proposed “peephole 
connections” in the presence of long time lags (Gers et al., 2002). Chung 
et al. (2014) suggested a gated recurrent unit (GRU), which is more 
computationally efficient than an LSTM cell, and proved its performance 
to be similar to conventional LSTMs. Many other variants have been 
suggested, but the original LSTM is by far the most broadly used and has 
been implemented in many ML APIs and platforms. 

2.2.1.3. Convolutional LSTM layers. Conventional LSTM cells use mul
tiplications when applying weights to feature maps in the connections. 
However, for spatiotemporal data, such as image sequences, convolu
tional operations in the LSTM cell were found to be beneficial, as the 
dimensionality of images could be retained (Yu et al., 2019). This was 
first introduced as a “convolutional LSTM cell” (ConvLSTM) by Shi et al. 
(2015) and has since been implemented in various contexts. 

2.3. USV computer vision developments 

The development of CV models for maritime environments is a field 
of intense research, with USVs being applications of major interest. 
Established methods, e.g. using background subtraction, perform 
extremely poorly on challenging maritime image datasets (Prasad et al., 
2019). Contrarily, current CNN models indicate the possibility of 
impressive performance. This has prompted rapid exploration into 
methodologies, as well as collection of increasingly large and 
well-annotated datasets, as the existence of these is a pre-requisite for 
effective model training and testing. 

2.3.1. USV CV models 
Early models focused on detecting the horizon in an input image 

(Fefilatyev et al., 2006) – an approach used by e.g. Wang et al. (2011) to 
first detect the horizon before looking for obstacles below it. This 
method however, falls short in environments close to the shore, where 
land-masses may obscure the horizon. Kristan et al. (2016) improved 
upon this weakness by proposing a model based on an assumption of 
water, sky, and obstacle/fog/shore regions in vertically distinct areas of 
the input image. They then applied a Markov Random Field model to 
produce real-time semantic segmentation of input images. This model 
was further improved by using stereo image and IMU inputs (Bovcon 
et al., 2017, Bovcon et al., 2018). These efforts effectively created 
benchmarks for models only using monocular camera data to beat. To do 
this, Lee et al. (2018) demonstrated how well-established convolutional 
neural network (CNN) models could be trained on USV-captured data
sets to strongly improve their performance in the space. This philosophy 
has been expanded on with modifications to network architectures in 
addition to bespoke datasets. For example, a combination of ResNet (He 
et al., 2016) and DenseNet (Huang et al., 2017) by Liyong et al. (2020) 
and a modified ENet (Paszke et al., 2016) by Kim et al. (2019) both 
showed greatly improved results over the unmodified networks. 

The most recent contributions are even more impressive. Bovcon and 
Kristan (2022) proposed the WaSR (Water Segmentation and Refine
ment) model which was specifically designed for marine environments. 
It is currently the leading model in several benchmarks and has recently 
been expanded further by the utilisation of preceding video frames for 
temporal context (Žust and Kristan 2022b). Similarly, Liu et al. (2021) 
proposed the combination of a novel horizon-detection method and 
context from adjacent frames to substantially outperform, amongst 
others, the SSM model proposed by Kristan et al. (2016) using only a 
monocular camera input. Chen et al. (2021) proposed the WODIS model 
which improves on obstacle detection robustness, and performs partic
ularly well on the SMD dataset Prasad et al. 2016). Finally, Xue et al. 
(2021) proposed a novel model using a simple linear iterative clustering 
algorithm to improve accuracy of segmentation in the edge-regions 

Table 1 
Examples of benefit from temporal context and LSTM implementation in 
different applications.  

Method Improvement over baseline 

CNN access to a total of 10 sequential 
frames (Karpathy et al., 2014) 

Correct prediction of activity in 60.9% of 
videos in the Sports-1 M dataset against 
59.3% in baseline 

Unsupervised temporal consistency 
loss (Varghese et al., 2021) 

Substantial improvement in consistency 
between segmentations of sequential 
frames of the cityscapes dataset with a 
small loss in absolute accuracy. 

Temporal loss and temporal 
consistency knowledge distillation in 
training (Liu et al., 2020) 

Substantial improvements in both 
temporal consistency and absolute 
accuracy of several models in semantic 
segmentation of different datasets 

Deep bidirectional LSTM (Ullah et al., 
2018) 

Significant improvement in action 
recognition against other state-of-the-art 
methods when tested on several datasets 

Encoder-decoder ConvLSTM network 
for sequential frames (Zou et al., 
2020) 

Substantial improvement in road lane 
detection accuracy over single frame 
methods when tested on two extensive 
datasets 

Mobilenet V2 and LSTM for skin 
disease classification (Srinivasu 
et al., 2021) 

While remaining computationally 
efficient, a clear benefit of adding LSTM to 
the Mobilenet V2 architecture was found  
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between obstacles and water. 
The “ShorelineNet” model proposed by Yao et al. (2021) holds 

particular interest to this work. It accomplishes good segmentation 
performance but suffers from false positive detections of obstacles 
caused primarily by glare and reflections. When compared to e.g. the 
WaSR model, acceptable F1-score is achieved with a model containing 
~5% the number of trainable parameters of WaSR. This simplicity is the 
main focus of the model, hence it is built on the particularly lightweight 
MobileNetV2 encoder (Sandler et al., 2018). Fig. 4 shows the structure 
of ShorelineNet. It consists of an encoder-decoder CNN with skip con
nections, and is trained using a focal cross-entropy loss function which 
was shown to somewhat reduce false positive detections. The Mobile
NetV2 encoder is pretrained on the ImageNet dataset (Deng et al., 2009). 

Two areas of current research which need addressing can be sum
marised. Firstly, many CV models struggle to avoid false positive 
obstacle detections due to environmental influences like reflections. 
Recent advances have addressed this issue, but they typically rely on 
larger and more computationally intensive models to improve perfor
mance. Secondly, the sequential nature of USV on-board video data and 
temporal character of many environmental influences is largely unused 
in the reduction of false positive detections. To the authors’ knowledge, 
only Žust and Kristan (2022b) has used the temporal context from video 
data to improve this aspect. LSTM is an obvious approach to this and has, 

in other areas, been used successfully to exploit sequential data, but this 
has yet to be implemented in USV CV. 

2.3.2. Datasets 
Several marine environment training and evaluation datasets have 

been proposed. The development of effective models heavily depends on 
the quality of annotated image/video data available, but collecting these 
datasets in varying locations, seasons, and weather conditions is 
resource intensive. Training datasets for semantic segmentation models 
are especially tedious to create, as they require pixel-wise labelling of 
image regions. Hence, many datasets are annotated only with obstacle 
bounding boxes and water-sky/land boundaries (water-edges) instead. 
Approaches to training segmentation models on datasets annotated in 
this way have been proposed (Žust and Kristan 2022a), but are not being 
considered in this report. 

For training, the MaSTr1325 dataset (Bovcon et al., 2019) contains 
1325 images and pixel-wise annotations captured on a USV in coastal 
waters in Slovenia. It was expanded upon by the MaSTr1478 dataset 
(Žust and Kristan 2022b) which adds 153 new images with particularly 
challenging reflection conditions. However, these are not always 
captured from a camera comparable in specifications and location to 
those on USVs. In addition, the MaSTr1478 set contains 5 un-annotated 
preceding frames for each annotated one for the purpose of providing 

Fig. 4. The ShorelineNet model architecture. A pretrained encoder (blue) from MobileNetV2 is used with a custom decoder (orange) and skip connections between 
the two to form a structure similar to the U-Net. Figure source: Yao et al. (2021). 

Fig. 5. Examples of image sequences from the MaSTr1478 dataset. (a) through (c) are examples of images from the MaSTr1325 dataset captured on a USV in varying 
conditions. (d) is an example of the 153 additional images in MaSTr1478 with challenging reflections. It is captured at a significantly different height to the other 
images. Images from Bovcon et al. (2019), Žust and Kristan (2022b). 
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temporal context to CV models. Examples of images are given in Fig. 5. 
For evaluation, the MODS dataset (Bovcon et al., 2022) is currently 

the most comprehensive and challenging dataset. It is a set of ~81k 
stereo images with ~60k annotated objects. It was captured on a USV 
travelling at a maximum of 2.5 m/s in various locations, conditions, and 
seasons. The images are recorded at 10 frames per second (fps), and 
every 10th frame is annotated with bounding boxes and water-edges. 
This results in ~8k annotated images at 1 fps, which are used in a 
standardised evaluation procedure. Examples of images are given in 
Fig. 6. 

2.3.3. Model evaluation measures 
Currently, the MODS benchmark (Bovcon et al., 2022) is the most 

comprehensive performance benchmark for USV CV models. It consists 
of a statistical evaluation of the given model’s performance on semantic 
segmentation of the MODS dataset images. Performance is measured in 
water-edge location accuracy and ability to detect obstacles protruding 
from the water surface. In addition to collecting the dataset and devel
oping the benchmark procedure, Bovcon et al. (2022) documented the 
benchmark performance of various CV models. Selected results of this 
are shown in Table 2. 

In summary of the literature review, monocular cameras have su
perior features as sensors for USV perception, but challenges charac
teristic to marine environments inhibit the effectiveness of conventional 
CV algorithms. Advancements in deep learning and CNNs have proved 
useful, and several effective CV models have been developed. One 
challenge limiting model effectiveness is the presence of reflections, 
glare, and other marine phenomena, but temporal context from 

preceding camera frames may improve on this weakness e.g., using 
LSTM cells. An increase in dataset availability could allow developments 
of lightweight models exploiting such techniques to achieve excellent 
detection accuracy with little computational cost. 

3. Proposed model architecture and data augmentation 

A CV model is proposed to utilise the temporal context from a USV 
camera feed to sequence images into regions of water, sky and obstacle. 
The model is based on the “ShorelineNet” (Yao et al., 2021), and retains 
its overall purpose and structure. The objective of reaching segmenta
tion performance comparable to state-of-the-art models with reduced 
computational load is retained. An approach of using recurrent LSTM 
components is used, which has, to the author’s knowledge, not been 
applied in marine CV problems before. The main objective of this model 
is to explore the utility of implementing recurrent components, specif
ically convLSTM cells, in established CNN models. Different parameters 
and network architectures will be trialled. Naturally, an improved 
model performance is sought, but results will be documented for all 
models as the work is exploratory in nature. The original ShorelineNet 
model will be used as a baseline for performance, and references will be 
made to other models for context. 

3.1. Neural network 

The proposed model (Fig. 7) is named “ShorelineNet-ConvLSTM”. It 
is created by introducing a convLSTM block between the ShorelineNet 
encoder and decoder. The encoder remains the pretrained MobileNetV2 
network, and the decoder consists of 4 blocks with each a deconvolution, 
batch normalisation, dropout, and activation layer as shown in Fig. 7 
(b). Skip connections are established between the encoder and decoder 
by concatenating selected encoder and decoder block outputs. After the 
final decoder block, a transposed convolutional layer re-establishes the 
original image dimensionality for segmentation. Positioning the LSTM 
layer after the encoder is common practice and is motivated by the 
encoder first extracting the high-level features before passing them onto 
the ConvLSTM layer in sequence. Hence, the ConvLSTM layer should be 
able to infer the complex nature of reflections and environmental effects. 

The convLSTM block consists of a single convLSTM layer and a batch 
normalisation layer for more robust training (Ioffe and Szegedy 2015). 
The convLSTM layer effectively consists of N+1 sequential convLSTM 
cells where N+1 is the length of each image sequence (Fig. 8 (a)). Each 
convLSTM cell (Fig. 8 (b)) is a standard LSTM cell with forget gate (Gers 
et al., 1999) with convolutional operations instead of multiplications of 
weights to feature maps (Shi et al., 2015). 

Equations (1) through (6) mathematically describe the operations 
done on feature maps with reference to Fig. 8 (b). Convolution opera
tions are denoted with *. Weights and biases are denoted with W and b 
respectively, and sigmoid and hyperbolic tan activation functions are 
shown with σ and “tanh” respectively. 

fn = σ
(
Wfh ∗ hn− 1 +Wfx ∗ xn + bf

)
(1)  

in = σ(Wih ∗ hn− 1 +Wix ∗ xn + bi) (2) 

Fig. 6. Examples of evaluation images from the MODS dataset with fog (a), glare (b), close-by obstacles (c), and reflections (d). Images from Bovcon et al. (2022).  

Table 2 
MODS benchmark results of selected segmentation models Bovcon et al. (2022). 
Each model is evaluated on water-edge detection root mean squared error 
(RMSE), true positives per 100 images (TPr), false positives per 100 images 
(FPr), and F1-score.  

Model Trainable 
parameters 

RMSE 
(pixels) 

TPr FPr F1 

ISSM (Bovcon et al., 
2018) 

- 181 55.3 44.6 67.1% 

ENet (Paszke et al., 
2016) 

0.4M 78 62.6 42.0 73.8% 

PSPNet (Zhao et al., 
2016) 

56.0M 21 59.4 26.2 78.9% 

MobileUNet (Howard 
et al., 2017) 

8.9M 35 54.8 14.5 81.6% 

SegNet ( 
Badrinarayanan 
et al., 2017) 

35.0M 23 57.7 15.0 83.8% 

DeepLab3+ (Chen 
et al., 2018) 

48.0M 21 60.2 15.1 85.9% 

BiSeNet (Yu et al., 2018) 47.5M 17 58.4 6.1 90.3% 
RefineNet (Lin et al., 

2017) 
85.7M 18 60.4 7.4 91.0% 

DeepLab panoptic ( 
Cheng et al., 2020) 

46.7M 17 59.9 6.6 91.2% 

WaSR (Bovcon and 
Kristan 2022) 

84.6M 21 56.8 2.6 91.4%  
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c′
n = tanh(Wc′h ∗ hn− 1 +Wc′x ∗ xn + bc′) (3)  

cn = fncn− 1 + inc′
n (4)  

on = σ(Woh ∗ hn− 1 +Wox ∗ xn + bo) (5)  

hn = ontanh(cn) (6) 

In the encoder only the current frame feature map persists, not the 
data from preceding frames. The complete, “unrolled” recurrent 

network is therefore as shown in Fig. 9. 
With reference to Figs. 8 and 9, the ConvLSTM block works by 

compiling feature maps from each pre-frame and the current frame 
produced by the encoder into a single output which is passed to the 
decoder. In Fig. 9, the “unrolled” RNN structure illustrates the connec
tions between layers. Here it can be seen that the pre-frames are only 
used for temporal information in the ConvLSTM block by allowing it to 
establish a cell state relating to the feature maps inferred. The current 
frame however, also has its feature maps passed through skip connec
tions to the decoder around the ConvLSTM block in order to retain 

Fig. 7. (a): ShorelineNet-ConvLSTM architecture. Feature map dimensions are given at connections with N being the number of preceding frames used giving an 
image sequence length of N+1. (b): Decoder block containing a transposed convolutional (deconvolution) layer, batch normalisation layer, dropout layer, and 
activation layer using the rectified linear unit (relu) activation function. 
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Fig. 8. (a): Complete convLSTM block containing the convLSTM layer and a batch normalisation layer (b): The internal structure of a convLSTM cell. The single cell 
is repeated N+1 times for the convLSTM layer where N+1 is the length of the input image sequence. c is the cell state, h is the output, x is the input, n is the 
frame timestep. 

Fig. 9. “Unrolled” network structure of ShorelineNet-ConvLSTM. The green ConvLSTM block is equal to that of Fig. 8 (a) and is the element which extracts temporal 
information from the frame sequence. 

K.F. Hansen et al.                                                                                                                                                                                                                               



Applied Ocean Research 139 (2023) 103709

9

spatial information from different levels of the deep network without 
them being influenced by the ConvLSTM block. This is done as the 
current frame remains the most important source of information, and 
spatial analysis of this should not be impeded by all feature maps being 
impacted by the ConvLSTM block. 

Exhaustive model layer details are available in the open-source code2 

used, but the main details which are common between all proposed 

Fig. 10. (a): ShorelineNet-ConvLSTMSKIP architecture using convLSTM blocks in all encoder-decoder connections. (b): ShorelineNet-ConvLSTMEND architecture 
using a single convLSTM block at the end of the network as suggested by Pfeuffer et al. (2019). 

2 https://github.com/KFH22/ShorelineNet 
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model architectures are outlined below. The Keras “TimeDistributed” 
layer3 is used as a wrapper to pass several frames through the encoder 
such that feature maps from pre-frames are available to the ConvLSTM 
blocks. The ConvLSTM layers only output feature maps from the last 
image of the sequence. The encoder, which is a pretrained MobilenetV2 
(Sandler et al., 2018) without its fully connected top layer, has outputs 
defined for skip connections and the deepest layer. The skip connection 
outputs are taken from the layers “block_1_expand_relu”, “block_3_
expand_relu”, “block_6_expand_relu”, and “block_13_expand_-relu”. The 
deepest layer of the encoder is extracted from the mobilenet at 
’block_16_project’. 

3.1.1. Alternative model architectures 
Additional model architectures are trialled to explore the potential 

for further improvement. Firstly, convLSTM blocks can be incorporated 
in skip connections as tried by e.g. Rochan (2018). This method dras
tically increases the network size due to the additional LSTM layers. It 
allows the model to use temporal context at several levels of the CNN, 
but also forces all feature maps through ConvLSTM blocks, potentially 
inhibiting spatial inference in the process. Secondly, a convLSTM block 
can be positioned as the last component of the network as suggested by 
Pfeuffer et al. (2019). These two networks are shown in Fig. 10 (a) and 
(b) respectively and are named ShorelineNet-ConvLSTMSKIP and Shor
elineNet-ConvLSTMEND. In addition, the convLSTM block at the end of 
the network can be added to the default ShorelineNet-ConvLSTM and 
ShorelineNet-ConvLSTMSKIP to form unique networks named Shor
elineNet-ConvLSTMDEF+END and ShorelineNet-ConvLSTMSKIP+END 
respectively, where subscript “DEF” refers to the default model 
architecture. 

3.2. Datasets 

The ShorelineNet model uses the MaSTr1325 dataset (Bovcon et al., 
2019) for training and its performance is evaluated on the MODD2 
dataset (Bovcon et al., 2018). Both have since been superseded by the 
MaSTr1478 (Žust and Kristan 2022b) and MODS (Bovcon et al., 2022) 
datasets respectively. The suggested models will be trained on pre
dominantly the MaSTr147 dataset and evaluated solely on the MODS 
set. 

3.2.1. Data pipeline 
Training, cross-validation, and evaluation data is pre-processed to 

provide a suitable format for the models in question. The following 
terminology will be used: 

Training dataset: 90% of either the MaStr1325 or MaSTr1478 
image dataset with ground truth annotations and preceding frames 
where necessary. 

Validation dataset: Remaining 10% of the training dataset. This 
will be used during model training for cross validation on unseen data to 
avoid overfitting. 

Pre-frames: Set of preceding frames to each annotated frame in the 
training/validation dataset. These are either taken from the MaSTr1478 
set or created artificially using pitch/yaw/roll transforms. 

Mask: Ground-truth annotation of water, sky, obstacle, and un
known regions in an image. 

Evaluation dataset: The MODS dataset used for evaluation of model 
performance on completely unseen image sequences. 

3.2.2. Training and cross validation data 
The MaSTr datasets are available online.4 Augmentations are applied 

to images and pre-frames as suggested by Bovcon et al. (2019) to reduce 
overfitting risk and increase the transferability to unknown data. Fig. 11 

shows the pipeline for training images and pre-frames. 
Fig. 12 expands on the specific augmentations applied to the training 

images. Each augmentation is independently applied to 20% of the input 
images (50% for the flip augmentation), but augmentations to corre
sponding pre-frames and masks are consistent. The masks are only 
augmented geometrically (flipping, rotation, offset and crop). 

After augmentations the training images have their pixel-values 
normalised to values between 0 and 1 and are batched for training. 
The validation data pipeline is equal to the training data one without 
any image augmentations. 

3.2.3. Evaluation data 
The MODS evaluation dataset is available online5 as 94 sequences of 

IMU-synchronised stereo videos formatted as individual images. The 
ShorelineNet-ConvLSTM models take input sequences of N+1 length of 
sequential images and predicts the segmentation masque on the final 
image in the sequence. Hence, input images are stacked such that each 
image has N preceding frames with it (Fig. 13). For images where N pre- 
frames are not available (i.e. the first N frames of any image sequence) 
copies of the input image are used as substitution. 

In summary, a novel network named ShorelineNet-ConvLSTM is 
proposed to take advantage of sequential input frames from a monocular 
USV camera. The model adds a single convLSTM block at the deepest 
layer of the encoder-decoder network and takes an input of N preceding 
frames along with the current timestep frame. Alternative network ar
chitectures are also proposed. The training and evaluation datasets used 
are the MaSTr1478 and MODS dataset with augmentation applied to the 
training data as suggested by Bovcon et al. (2019). Cross validation data 
for measuring training accuracy is an unseen 10% of the training dataset 
with no augmentations applied. 

4. Model training and evaluation 

The outlined model architectures trained before evaluating them 

Fig. 11. The data pipeline for training data.  

3 https://keras.io/api/layers/recurrent_layers/time_distributed/  
4 https://github.com/lojzezust/WaSR-T 5 https://vision.fe.uni-lj.si/public/mods/ 
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using the MODS benchmark (Bovcon et al., 2022). Below, the training 
and evaluation procedure is outlined. 

4.1. Model training 

The models were trained on the MaSTr1478 dataset unless other is 
specified. This is chosen over the MaSTr1325 dataset as the MaSTr1478 
contains several scenes with strong reflections (see Fig. 5). In theory, 
training on more images containing strong reflections should improve 
model performance in these conditions. Models are generally trained for 
200 epochs on data batched into sizes of 64 images/sequences. The raw 
pixel-wise accuracy on the validation data is taken as the performance 
criterion, and the best performing model weights after completed 
training are used for evaluation. 

The ShorelineNet model proposed by Yao et al. (2021) is treated as 
the reference model. The network used is the best performing iteration 
originally proposed by the authors. The ShorelineNet model is trained 
manually for 200 epochs to allow like-for like comparison to proposed 
convLSTM models. However, the best performing model proposed by 
Yao et al. (2021) was trained for substantially longer (600 epochs). 
Training for this length is not feasible for all suggested models, and only 
the main proposed ShorelineNet-ConvLSTM model will be trained for 
this length for comparison. 

The suggested ShorelineNet-ConvLSTM models are trained on the 
MaSTr1478 dataset as outlined with additional experiments carried out 
to explore the influence of alternative training settings. These are:  

(1) Training dataset: The model can be trained on either the 
MaSTr1325 or extended MaSTr1478 dataset.  

(2) Number of preceding frames: Number of pre-frames N used to 
provide the model with an image sequence of length N+1.  

(3) Pre-frame source: The preceding frames can either be taken 
from the MaSTr1478 dataset or artificially constructed using 3D 
rotation transformations to simulate roll, pitch, and yaw. This 
method could be used when applying LSTM models to datasets 
without available pre-frames.  

(4) Training sequence frame rate: To closer mimic the low frame 
rate of the evaluation dataset (1fps), training is attempted using 
only the first pre-frame resulting in an effective training dataset 
framerate of 2 fps.  

(5) Training time: The main ShorelineNet-ConvLSTM model is 
trained for 600 epochs as mentioned for comparison to the best 
result achieved by Yao et al. (2021). 

Exhaustive parameter settings can be found in the code6 but some 
general details are given below. The encoder has its weights frozen 
during training. Both the deconvolutional layers in the decoder and the 
ConvLSTM layers have dropout of the model weights to avoid overfitting 
with 10% to 50% of the units dropped depending on the layer in ques
tion. The ConvLSTM layers have a kernel size of 3 × 3 (which represent 

Fig. 12. Augmentations applied to the training dataset. The first row shows the individual augmentations, and the second row shows the cumulative result of 
augmentations applied sequentially. 

Fig. 13. Evaluation image sequence stacking. Input sequences for the model are generated by taking N preceding frames of the sequence and adding them as pre- 
frames to the image to be segmented. This process is repeated for every frame in the dataset. In the above example N=2. 

6 https://github.com/KFH22/ShorelineNet 
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the convolutional window size) and utilise a hyperbolic tan activation 
function. The complete models are built with a focal cross-entropy loss 
function (as documented by Yao et al. (2021)) which only calculates the 
loss in the labelled areas of the ground truth annotations. The optimiser 
used is a root mean squared propagation with an exponentially decaying 
learning rate. The initial learning rate is 0.01 and the final rate is 0.0064. 
During training, the model efficacy is evaluated by its raw accuracy on 
the validation dataset, and the best model weights are saved continu
ously. Model tuning was largely based on the work completed by Yao 
et al. (2021), as one of the goals of this paper is to investigate LSTM 
efficacy in existing, proven models. However, the decaying learning rate 
was added as the model quickly reaches an accuracy close to its final 
value (see Fig. 14). The dropout rate of each ConvLSTM layer is set to the 
same value as deconvolution layer in the decoder block which the 
ConvLSTM block in question is connected to. 

Generally, all work is be done through Google Colab,7 wherein a 
Jupyter8 notebook file is executed on Google’s cloud services. All code is 
written in Python using Tensorflow9 and other modules. All training and 
inference are done using Google Colab Pro+ on a NVIDIA A100 tensor 
core GPU, with a NVIDIA V100 tensor core GPU used as an alternative 
when there were no A100s available. 

Fig. 14 shows an example of ShorelineNet-ConvLSTM learning 
curves. These are representative of the alternative model architectures 
as well, and illustrate how training data augmentation decreases 
training accuracy. No overfitting is apparent. 

Fig. 15 shows examples of segmented images from the validation 
dataset using the ShorelineNet-ConvLSTM model. These illustrate how 
the additional images of the MaSTr1478 dataset are challenging to 
accurately segment. 

4.2. Model evaluation 

All models are evaluated using the MODS benchmark procedure on 
the MODS dataset suggested by Bovcon et al. (2022). The evaluation is 
practically achieved using open-source code from the authors’ GitHub 
page.10 During evaluation, quantitative measures of water-edge detec
tion accuracy and obstacle detection performance are extracted. In 
addition to these, figures for qualitative comparison between models are 
produced from the segmentation masque outputs of each model. 

4.2.1. Quantitative performance measures 
The accuracy of the water-edge detection is evaluated as the root 

mean squared error (RMSE) in the vertical direction between the ground 
truth (GT) water edge and the nearest water edge in the segmentation 
masque (Eq. (7), where y is the water edge location). 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
k
∑k

i=1

(
yi − yi, GT

)

√
√
√
√ (7) 

The obstacle detection performance is quantified by the model’s 
ability to correctly label pixels within GT obstacle bounding boxes and 
to avoid mislabelling pixels outside bounding boxes. True positive (TP) 
detections are obstacles where enough pixels within the bounding box 
are correctly labelled. If not enough pixels are identified, the obstacle is 
counted as a false negative (FN). Regions misidentified as obstacle are 
counted as false positives (FP). Detection accuracy can be expressed 
concisely by its precision (Pr), recall (Re), and F1-measure Eqs. (8)– 
((10)). 

Pr =
TP

TP + FP
(8)  

Re =
TP

TP + FN
(9)  

F1 =
2⋅Pr ⋅Re
Pr + Re

(10) 

A region of 15 m radius around the USV is defined as the “danger 
zone” where correctly identifying obstacles is particularly important. 
Measures within this zone are given as additional information. 

In summary, all suggested models were trained under equal condi
tions for comparison of performance. The training was stopped after 200 
epochs due to time limitations, but one iteration of the final proposed 
model was trained for 600 epochs for comparison to the best weights 
reached by Yao et al. (2021). All model performances were evaluated 
using the MODS benchmark (Bovcon et al., 2022) wherein water-edge 
and obstacle detection accuracy is extracted. 

5. Results and discussion 

Evaluation results are outlined and discussed below. The primary 
measure of model performance is F1-score both globally and in the 
“danger zone”. Additionally, the number of trainable parameters and 
inference times are documented. Generally, numbers in brackets are 
measures within the danger zone. For qualitative comparisons, modified 

Fig. 14. Learning curves for ShorlineNet-ConvLSTM model. (a): Per-pixel accuracy on augmented training dataset and cross-validation dataset. (b): Custom focal loss 
on augmented training and cross-validation datasets. 

7 https://colab.research.google.com/  
8 https://jupyter.org/  
9 https://www.tensorflow.org/  

10 https://github.com/bborja/mods_evaluation 
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code from Bovcon et al. (2022)11 was used to generate figures. Unless 
otherwise specified 1 pre-frame is used (N=1), and training is done on 
the MaSTr1478 dataset. 

5.1. Performance of different network architectures 

Table 3 shows the MODS benchmark scores for ShorelineNet and the 
5 convLSTM models proposed. All 5 convLSTM models outperform the 
baseline to different degrees, the best performing being ShorelineNet- 
ConvLSTMSKIPþEND. However, the most substantial reduction in false 
positive detections is obtained when using a single convLSTM block at 
the deepest level of the network (ShorelineNet-ConvLSTM). This comes 
at a cost to TP and FN detections though. Naturally, any decrease in TP 

detections results in an equivalent rise in FN detections as the two al
ways sum to the total number of obstacles annotated in the MODS set. 

Table 4 shows the obstacle detection performance in the danger 
zone. Here, the otherwise best performing model (ShorelineNet-Con
vLSTMSKIPþEND) has a substantial increase in FP detections. All other 
convLSTM models outperform the baseline in F1-score, the best model 
being ShorelineNet-ConvLSTMSKIP due to its low FP rate. 

The results from Tables 3 and 4 can be interpreted by TP, FP, and FN 
detections to give detailed insight into the effect of the LSTM layers. 
Firstly, the baseline outperforms all suggested architectures but Shor
elineNet-ConvLSTMSKIPþEND both globally and within the danger zone 
when it comes to TP and FN detections. On the contrary, all suggested 
models surpass the effectiveness of the baseline model in global FP 
detection rate, with the ShorelineNet-ConvLSTMSKIPþEND being the 
worst of the ConvLSTM models. The ShorelineNet-ConvLSTMSKIPþEND 
model actually has more FP detections within the danger zone than the 

Fig. 15. Examples of segmentation using ShorelineNet-ConvLSTM (a): before training of the model (b): image from MaSTr1325 dataset after training with high 
segmentation accuracy. (c): image from extended MaSTr1478 dataset after training illustrating worse performance in challenging environment. 

Table 3 
Network architecture performance comparison.  

Model TP FP FN F1 

ShorelineNet baseline 45,766 19,342 6722 77.8% 
ShorelineNet-ConvLSTM 40,880 8590 11,608 80.2% 
ShorelineNet-ConvLSTMSKIP 44,203 13,856 8285 80.0% 
ShorelineNet-ConvLSTMEND 43,292 14,443 9196 78.6% 
ShorelineNet-ConvLSTMDEF+END 41,228 10,759 11,260 78.9% 
ShorelineNet-ConvLSTMSKIP+END 46,688 15,439 5800 81.5%  

Table 4 
Network architecture performance comparison in danger zone.  

Model TP FP FN F1 

ShorelineNet baseline 2900 4126 338 56.5% 
ShorelineNet-ConvLSTM 2774 2789 464 63% 
ShorelineNet-ConvLSTMSKIP 2813 1490 425 74.6% 
ShorelineNet-ConvLSTMEND 2825 3571 413 58.6% 
ShorelineNet-ConvLSTMDEF+END 2764 2186 474 67.5% 
ShorelineNet-ConvLSTMSKIP+END 3005 4547 233 55.7%  

11 Available here: https://github.com/bborja/mods_evaluation 
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baseline model. Together, these observations indicate that the addition 
of LSTM layers generally makes the models predict less total obstacle 
instances. This behaviour is shown in Fig. 16, where the TP and FP 
detection rate of the suggested models, relative to that of the baseline 
model, are compared. Here, it is seen this the reduction in FP detections 
is larger than the reduction in TP detections for ConvLSTM models, 
demonstrating how the reduction in obstacle predictions in ConvLSTM 
models predominantly happens in places where an FP detection 
happened and less in areas of actual obstacles. 

As mentioned, an outlier is ShorelineNet-ConvLSTMSKIPþEND which 
has better TP detection rate than the baseline model and the lowest 
reduction in FP detections of all the ConvLSTM models. In addition, this 
model architecture has more FP detections than the baseline in the 
danger zone. As ShorelineNet-ConvLSTMSKIPþEND has the most 
ConvLSTM layers (see Fig. 10) it is likely that this behaviour is due to the 
network relying a lot on the temporal dimension and its “memory” 
compared to the spatial observations made frame by frame. This effect is 
echoed in later investigations (see Section 5.2) and demonstrates the 
importance of allowing models to take temporal information from 
earlier frames into account without it taking precedence over the spatial 
information in the current frame. 

Table 5 shows the RMSE of the water edge detection (in pixels) of the 
6 models. The baseline model is again outperformed by all convLSTM 
models, and the best water-edge detection accuracy is reached by 
ShorelineNet-ConvLSTMSKIP. Although the water-edge detection accu
racy is important for shoreline detection, the primary performance 
measure remains the obstacle detection accuracy as this, and FP detec
tion rate in particular, is the main area of interest for the application of 
LSTM in this context. 

When comparing model performance, sheer network size is generally 
a benefit, but it comes at a cost to computational load. Table 6 shows the 
number of trainable parameters and GPU inference time in the 6 models. 

To quantify model performance relative to number of trainable pa
rameters, the ratio of increase in F1-score and network size relative to 

ShorelineNet is found (Eq. (11)). 

F1 to network size =
F1 − F1baseline(

Parameters
Parametersbaseline

) (11) 

Fig. 17 shows this measure indicating that ShorelineNet-ConvLSTM 
achieves the best increase in global F1-score for the increase in num
ber of parameters. In the danger zone, the ShorelineNet-Con
vLSTMDEF+END model is most efficient relative to the network size, but 
globally the F1-score of this model is low relative to ShorelineNet- 
ConvLSTM. 

The results shown in Tables 3 and 4 indicate that ShorelineNet- 
ConvLSTMSKIP is the best overall model as F1-score in the danger zone is 
prioritised higher than the global score due to the importance of obstacle 
detection in the vicinity where a collision may be imminent. However, 
this model has significantly more parameters and longer inference time 
than ShorelineNet-ConvLSTM. Therefore, ShorelineNet-ConvLSTM, 
with only one convSLTM at the deepest layer, is generally preferred, 
as its performance relative to network size is the best of the suggested 
architectures. Furthermore, it also shows a good reduction of false 
positive detections relative to the baseline (demonstrated qualitatively 
in Fig. 18) and when compared to the alternative architectures 
(demonstrated qualitatively in Fig. 19). 

The investigations into different ConvLSTM model architectures 
have demonstrated that the addition of ConvLSTM layers generally re
duces the FP detections made by the model, but also reduces the total 
obstacle detection rate in with a negative impact on TP and FN de
tections. However, the improvements in FP detection are enough to 
improve the overall performance for all ConvLSTM models as reflected 
in the F1-score. For a balanced performance at a small increase in 
network size, ShorelineNet-ConvLSTM is preferred and will be used in 
the remaining investigations of this paper, but other models may be 
preferred under certain circumstances. For instance, if the USV is not 

Fig. 16. TP and FP detections relative to baseline ShorelineNet. All ConvLSTM models apart from ShorelineNet-ConvLSTMSKIP+END show a reduction in both FP and 
TP detections. The decrease in FP detections is consistently larger than the decrease in TP detections. ShorelineNet-ConvLSTMSKIP+END has both an increase in TP 
detections and a decrease in FP detections, but the latter is the smallest decrease of all the proposed architectures. 

Table 5 
Water-edge detection accuracy comparison for different model 
architectures.  

qModel RMSE (pixels) 

ShorelineNet baseline 38 
ShorelineNet-ConvLSTM 37 
ShorelineNet-ConvLSTMSKIP 26 
ShorelineNet-ConvLSTMEND 32 
ShorelineNet-ConvLSTMDEF+END 32 
ShorelineNet-ConvLSTMSKIP+END 28  

Table 6 
Comparison of networks in terms of trainable parameters, inference time, and 
inference frames per second (FPS). This test was carried out on a NVIDIA V100 
Tensor Core GPU.  

Model Trainable parameters Inference time FPS 

ShorelineNet baseline 4.66M 32.5 ms 30.8 
ShorelineNet-ConvLSTM 12.03M 38.4 ms 26.0 
ShorelineNet-ConvLSTMSKIP 40.74M 46.5 ms 21.5 
ShorelineNet-ConvLSTMEND 4.66M 37.1 ms 27.0 
ShorelineNet-ConvLSTMDEF+END 12.04M 40.1 ms 24.3 
ShorelineNet- 

ConvLSTMSKIP+END 

40.74M 48.0 ms 20.8  
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Fig. 17. Comparison of additional F1-score of models per multiple of the baseline model’s parameters.  

Fig. 18. Qualitative comparison of ShorelineNet and ShorelineNet-ConvLSTM. Yellow rectangles indicate FP detections - areas where the model detects an obstacle 
although there is none. The top row of images shows performance on an image with a strong reflection (marked in the red ellipse). It can be seen that the ConvLSTM 
model has significantly less FP detections in this area. The bottom row shows a comparison of performance in an image with an unclear horizon (red ellipse). Here, 
the ConvLSTM model better disregards the hazy horizon line as a non-obstacle as seen from reduced FP detections. 

Fig. 19. Qualitative comparison of proposed model architectures. Each row shows a comparison of alternative ConvLSTM model architectures’ performance on a 
given frame. A region of interest (red ellipse) is given in each row, and it can be seen that the default ConvLSTM model architecture generally has the least FP 
detections (yellow rectangles) when compared to alternative architectures. 
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limited by hardware, for example by having a powerful GPU installed, 
the larger network ShorelineNet-ConvLSTMSKIP is preferred as its 
obstacle detection in the danger zone is significantly more robust than 
all other tested models at only a small cost to global F1-score. In general, 
adding a ConvLSTM block at the end of the network as suggested by 
Pfeuffer et al. (2019) showed the smallest benefit and is not preferred. 
Only when combined with ConvLSTM blocks in the skip connections a 
significant improvement was found, but the increase in FP detections 
compared to ShorelineNet-ConvLSTMSKIP is too large to warrant the 
change, as especially the danger zone performance is inhibited by this. 

5.2. Effect of number of preceding frames 

Table 7 shows results of using different numbers of pre-frames for 
temporal context. Using more frames improves the model in terms of 
water edge, TP, and FN detections, but results in more FPs. This is 
especially clear when N=5, wherein the number of FP detections 
severely inhibits overall performance. This large number of FP de
tections is likely also the cause of a worse RMSE score due to FP de
tections in the water-edge region. 

As shown, the number of FP detections rises substantially with the 
number of pre-frames used. This may be a result of the low frame rate of 
videos in the evaluation dataset (1 fps) (Bovcon et al., 2022) since 

obstacle locations may retained unintendedly in the cell state. Fig. 20 
illustrates this issue, where the difference between obstacle location in 
sequential frames is substantial. 

Fig. 21 shows qualitative comparisons of using 1 and 5 pre-frames. A 
large number of FP detections are present when N=5, likely from 
retention of obstacle locations in the cell state. 

In conclusion, the best obstacle detection performance was in this 
case reached by only using one pre-frame (N=1), as the model could 
here account for the temporal information without losing the frame-by- 
frame spatial capability. When the number of pre-frames is increased, 
and especially at the highest number (N=5), the FP detections rise along 
with the TP detections resulting in behaviour similar to that exhibited by 
ShorelineNet-ConvLSTMSKIPþEND in Section 5.1. This result suggests 
that, in both cases, the temporal information is valued too highly 
resulting in model “sluggishness”, as it retains pre-frame information in 
its predictions instead of reacting strongly to data contained in the 
current frame. It should be noted that when using higher frame rate 
videos, it might be beneficial to increase the number of pre-frames above 
1. 

5.3. Effect of artificially created pre-frames 

Table 8 shows the results of using an artificially made pre-frame 
created by applying 3D rotations to the current frame. The perfor
mance deficit in FP detections is too large to warrant further 
investigation. 

Experimentation with artificially created pre-frames is motivated by 
the logistical challenges of dataset acquisition and annotation. For 

Table 7 
Performance comparison of ShorelineNet-ConvLSTM model using different 
number of pre-frames, N.  

N RMSE 
(pixels) 

TP FP FN F1 

1 37 40,880 
(2774) 

8590 (2789) 11,608 
(464) 

80.2% 
(56.5%) 

2 33 42,794 
(2821) 

12,628 
(4105) 

9694 (417) 79.3% 
(55.5%) 

3 32 43,209 
(2865) 

13,682 
(3536) 

9279 (373) 79.0% 
(59.4%) 

4 28 43,312 
(2827) 

12,834 
(2428) 

9176 (411) 79.7% 
(66.6%) 

5 37 46,582 
(2962) 

24,260 
(9688) 

5906 (276) 75.5% 
(37.3%)  

Fig. 20. The difference between subsequent annotated frames in the MODS evaluation dataset.  

Fig. 21. A substantial increase in FP detections (yellow boxes) decrease both the F1-score and water-edge detection RMSE of the 5-preframe experiment.  

Table 8 
ShorelineNet-ConvLSTM results using pre-frames from the MaSTr1325 dataset, 
and artificially made pre-frames rotated up to 2 ◦ about each axis.  

Preframe 
source 

RMSE 
(pixels) 

TP FP FN F1 

MaSTr1478 37 40,880 
(2774) 

8590 
(2789) 

11,608 
(464) 

80.2% 
(56.5%) 

Artificial 34 42,726 
(2859) 

14,653 
(4305) 

9762 
(379) 

77.8% 
(55.0%)  
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instance, the MaSTr1325 dataset (Bovcon et al., 2019) took 24 months 
to gather to ensure variability in seasons, locations, time of day, and 
conditions. However, it is still gathered on a single USV in a limited area 
in the Slovenian gulf of Koper. In addition, per-pixel annotation is 
currently a requirement for effective training of semantic segmentation 
models substantial time is required for annotation by human annotators, 
approximately 20 minutes per image in the case of MaSTr1325. 
Together, they limit the important work of acquiring and annotating 
new datasets, hence additional studies into semi-supervised training or 
artificially created pre-frames should be done. 

5.4. Effect of lower frame rate of training dataset 

Table 9 shows the results of training on an image sequence recorded 
at 10 fps and 2 fps. A substantial increase in performance is seen, 
highlighting the sensitivity of convLSTM models to having similar frame 
rates in training and application. 

Fig. 22 shows a qualitative comparison of using a lower frame rate 
training dataset. Especially small, far-away obstacles are better identi
fied when training on a low frame rate set, indicating that this model 
does not rely on the convLSTM cell “remembering” the location of 
obstacles. 

5.5. Training dataset effect on results 

Tables 10 and 11 show the effect of training on different datasets. 
The baseline model performs best when trained on the MaSTr1325 

dataset and fails to translate the 153 additional images of the 
MaSTr1478 set into better performance. For the ShorelineNet- 
ConvLSTM model the opposite case is clear, as training on the 
MaSTr1478 set brings a substantial reduction in FP detections, albeit 
with a cost to FN and TP detections. 

Qualitatively, the additional images in the MaSTr1478 dataset are 
substantially different to the original 1325 images, and the number of FP 
detections by the convLSTM model trained on MaSTr1325 could 
therefore indicate that some degree of overfitting is being prevented by 
the variation of the extra images. However, the additional 153 images 
also differ substantially from the evaluation images in the MODS dataset 
which may explain why ShorelineNet performs better when trained on 
only the MaSTr1325 set. This result underlines the need for larger 
datasets with substantial variation in the environment, and with the 
presence of more reflections, as these are evidently needed for robust FP 
avoidance in LSTM networks. 

Table 9 
ShorelineNet-ConvLSTM results with a single pre-frame. The frame rate of the 
training sequence is lowered by taking the first of the 5 available pre-frames 
instead of the last one.  

Training 
sequence fps 

RMSE 
(pixels) 

TP FP FN F1 

10 37 40,880 
(2774) 

8590 
(2789) 

11,608 
(464) 

80.2% 
(56.5%) 

2 24 44,527 
(2993) 

9984 
(4583) 

7961 
(245) 

83.2% 
(55.4%)  

Fig. 22. Qualitative comparison of evaluation of models using 10 fps and 2 fps training sequences. The zoomed-in regions show many FN detections (red squares) for 
the high frame rate model. 

Table 10 
ShorelineNet performance using different training datasets.  

Training 
dataset 

RMSE 
(pixels) 

TP FP FN F1 

MaSTr1478 38 45,766 
(2900) 

19,342 
(4126) 

6722 
(338) 

77.8% 
(56.5%) 

MaSTr1325 33 44,693 
(2874) 

16,709 
(3641) 

7795 
(364) 

78.5% 
(58.9%)  

Table 11 
ShorelineNet-ConvLSTM performance using different training datasets.  

Training 
dataset 

RMSE 
(pixels) 

TP FP FN F1 

MaSTr1478 37 40,880 
(2774) 

8590 
(2789) 

11,608 
(464) 

80.2% 
(56.5%) 

MaSTr1325 38 46,890 
(3025) 

24,399 
(12,180) 

5598 
(213) 

75.8% 
(32.8%)  
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5.6. Effect of longer training 

The best performing ShorelineNet model was trained by Yao et al. 
(2021) for longer to see if better accuracy could be reached. Specifically, 
it was trained 600 epochs with a lower learning rate – an approach 
which has been reproduced with ShorelineNet-ConvLSTM. The results in 
Table 12 show that the baseline ShorelineNet model performs better 
overall and in FP rate. 

Training the ShorelineNet-ConvLSTM model for 600 epochs results 
in better TP and FN results but a degraded FP performance (Fig. 23). This 
may result from the convLSTM model attributing too much value to 

obstacle locations in the cell state, and effectively overfitting to this with 
more training. This effect could be similar to that seen in the frame rate 
experiment. This result cements the importance of training set similarity 
to the wanted application data when it comes to frame rate. 

5.7. Comparison to state-of-the-art 

A main contribution of Bovcon et al. (2022) is the benchmarking of 
existing models using their suggested procedure. Below, Table 13 shows 
selected models compared to ones suggested in this report for context to 
state-of-the-art methods. TP and FP numbers are given in rates per 100 
images (TPr and FPr). 

When compared to state-of-the-art, the ShorelineNet (including 
convLSTM) models are relatively lightweight and reach average infer
ence accuracy. All proposed models achieve inference rates over 26 fps 
on the given hardware, whereas Bovcon et al. (2022) reached inference 
rates of 15.6 fps for WaSR, 8.3 fps for DeepLab panoptic, 26.0 fps for 
RefineNet, and 56.5 fps for BiSeNet using hardware of similar theoret
ical performance. In addition to inference rate, short training time is 
desired for developmental efficiency. Training the models in this project 
for 600 epochs took several hours on very powerful hardware, and the 

Table 12 
Results using models training for 600 epochs with lower learning rate. Numbers 
in parentheses are values within the “danger zone”.  

Model RMSE 
(pixels) 

TP FP FN F1 

ShorelineNet 
Baseline 

30 44,255 
(3019) 

5570 
(2350) 

8233 
(219) 

86.5% 
(70.2%) 

ShorelineNet- 
ConvLSTM 

24 45,680 
(3037) 

10,825 
(3885) 

6808 
(201) 

83.8% 
(59.8%)  

Fig. 23. Effect on true positive, false positive, and false negative detections of length of training. (a): Global obstacle detection performance. (b): Danger zone 
obstacle detection performance. 
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implementation of convLSTM cells clearly allowed much better results 
after shorter training periods. 

6. Conclusions 

This paper is an investigation into the use of LSTM cells in CNNs to 
improve CV model performance in marine environments. A network 
structure, ShorelineNet-ConvLSTM, is proposed using convolutional 
LSTM cells to perform semantic segmentation of marine environment 
images into regions of sky, water, and obstacles. The network utilises 
temporal context in the form of sequential video frames, a resource 
which has rarely been utilised in USV CV. This network was shown to 
improve performance over a baseline model, in particular by reducing 
false positive detections of environmental features like reflections. 

Auxiliary experiments 

In addition to the proposed network, 4 additional CNN structures 
were trialled with varying success. In general, adding convolutional 
LSTM elements in encoder-decoder skip connections leads to improved 
segmentation accuracy, but at a disproportional increase to network 
parameters. Furthermore, experiments with different training datasets, 
number of preceding frames, etc. were done. In general, these showed 
that convLSTM cells are beneficial when using a single preceding 
context frame recorded at a frame rate as close as possible to that of the 
evaluation dataset. 

Limitations 

The proposed network showed improved performance when training 
time was limited, but this improvement is diminished when training 
time is increased substantially. When increasing training iterations from 
200 to 600 epochs on the dataset, the suggested model has an increase in 
F1-score from 80.2% to 83.8% against the baseline model’s increase 
from 77.8% to 86.5%. The primary inhibitor of ShorelineNet-ConvLSTM 
when trained for 600 epochs is that it overfits to the temporal context 

frames thereby experiencing an increase in FP detections. Using the 
training dataset in this paper, the optimal training time for FP reduction 
using ShorelineNet-ConvLSTM likely lies between 200 and 600 epochs, 
but with a lower fps training dataset it is possible that this could be 
increased to improve performance while avoiding overfitting. Similarly, 
providing more context frames or having too high frame rate of the 
training dataset leads to the convLSTM cell state storing obstacle loca
tion data, which inhibits the model when this changes a lot between 
frames. This is also likely to be one of the causes of diminishing model 
efficiency with additional training, as the network overfits to rates of 
change in obstacle location. 

Future work 

Areas of suggested further research are outlined below. Firstly, the 
frame rate dependency of convLSTM networks should be further 
investigated by training and evaluating on image sequences recorded at 
the same frame rate and USV velocity. This could be done by using un- 
annotated images from the MODS dataset12 for evaluation sequence pre- 
frames. Secondly, to increase variety and extent of the training dataset, 
experiments training on frames only annotated with obstacle bounding 
boxes and water-edges should be attempted, as in the work of Žust and 
Kristan (2022a). This could potentially improve LSTM network flexi
bility as this trend was seen between training on the MaSTr1325 and 
MaSTr1478 datasets. 

When it comes to network architectures several approaches are 
suggested for further experiments. Firstly, adding convLSTM blocks in 
other well-performing encoder-decoder networks could expand on the 
experiences made in this project. Secondly, using other LSTM cell 
structures such as those with peephole connections (Gers et al., 2002) or 
GRU cells (Chung et al., 2014) could lead to improved results. Thirdly, 
using LSTM cells on stereo-images instead of time-sequence frames 
could be an alternative application, in a similar way to the application of 
LSTM networks in the medical field, e.g. no MRI “slices” (Xu et al., 
2019). Finally, using LSTM cells in network architectures specifically 
designed for these is likely to result in improved performance. For 
instance, “branching” models, which capture spatial and temporal in
formation in separate branches before combining these have been 
applied in prediction of future video frames (Fan et al., 2019). Similar 
structures could present an even better application for LSTM cells in 
marine environment CV applications. 
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Table 13 
Comparison of performance on the MODS benchmark to selected models. 
Underlined rows are models evaluated as part of this report, the rest were done 
by Bovcon et al. (2022).  

Model Trainable 
parameters 

RMSE 
(pixels) 

TPr FPr F1 

ISSM (Bovcon et al., 
2018) 

- 181 55.3 44.6 67.1% 

ENet (Paszke et al., 2016) 0.4M 78 62.6 42.0 73.8% 
ShorelineNet 200 epochs 

training (Yao et al., 
2021) 

4.66M 37 56.6 23.9 77.8% 

PSPNet (Zhao et al., 
2016) 

56.0M 21 59.4 26.2 78.9% 

ShorelineNet-ConvLSTM 12.03M 37 50.6 10.6 80.2% 
MobileUNet (Howard 

et al., 2017) 
8.9M 35 54.8 14.5 81.6% 

ShorelineNet-ConvLSTM 
2 fps training set 

12.03M 24 55.1 12.4 83.2% 

SegNet (Badrinarayanan 
et al., 2017) 

35.0M 23 57.7 15.0 83.8% 

DeepLab3+ (Chen et al., 
2018) 

48.0M 21 60.2 15.1 85.9% 

ShorelineNet 600 epochs 
training (Yao et al., 
2021) 

4.66M 30 54.8 6.9 86.5% 

BiSeNet (Yu et al., 2018) 47.5M 17 58.4 6.1 90.3% 
RefineNet (Lin et al., 

2017) 
85.7M 18 60.4 7.4 91.0% 

DeepLab panoptic ( 
Cheng et al., 2020) 

46.7M 17 59.9 6.6 91.2% 

WaSR (Bovcon and 
Kristan 2022) 

84.6M 21 56.8 2.6 91.4%  

12 Un-annotated MODS frames are available here: https://vision.fe.uni-lj. 
si/public/ 
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Bovcon, B., Muhovič, J., Perš, J., Kristan, M., 2019. The MaSTr1325 dataset for training 
deep USV obstacle detection models. In: Proceedings of the IEEE/RSJ International 
Conference on Intelligent Robots and Systems (IROS). Macau, China. https://doi. 
org/10.1109/IROS40897.2019.8967909, 3-8 Nov. 2019.  
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