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ABSTRACT. We show error estimates for a cut finite element approximation
of a second order elliptic problem with mixed boundary conditions. The error
estimates are of low regularity type where we consider the case when the exact
solution u € H*® with s € (1,3/2]. For Nitsche type methods this case requires
special handling of the terms involving the normal flux of the exact solution at
the the boundary. For Dirichlet boundary conditions the estimates are optimal,
whereas in the case of mixed Dirichlet-Neumann boundary conditions they are
suboptimal by a logarithmic factor.

1. INTRODUCTION

In this paper we will consider the finite element approximation of the Poisson
problem with mixed boundary conditions under minimal regularity assumptions.
Let Q be a domain in R? with smooth boundary 99, which is decomposed into
two subdomains 9Qp and 0Qx such that 0Q = 9Qp UIQN = INp U 0NN and
O0p NIy = 0. Consider the problem: find u :  — R such that

(1.1) —Au=f in Q
(1.2) U= gp on 0)p
(1.3) Vau = gn on 00y

where f: Q = R, gp : I'p = R and gy : 'y — R satisfy the following bound for
s>1,

(1.4) | £l zrs=2(0) + gDl ro-1/2(00,0) + 19N | H-3/2(00,) S 1

Here and below we used the notation a < b for a < Cb, with C' a positive constant.

For the approximation of the problem we apply a Cut Finite Element Method
(CutFEM). In CutFEM the boundary is allowed to cut through the computational
cells in an (almost) arbitrary way and stabilization terms are added in the vicinity
of the boundary to ensure that the method is coercive and that the resulting linear
system of equations is invertible.

In previous work on fictitious domain finite element methods see [2, 1], error
estimate were shown under the assumption that v € H*(Q) with s > 3/2. The
objective of the present work is to relax this regularity requirement. Indeed, we
show an a priori error estimate in the energy norm, requiring only that u € H*(Q),
where s > 1, and Au is in L?(Us,) on some arbitrarily thin neighborhood Uy, of the
Dirichlet boundary 0€Q2p. Since the test functions in the Nitsche formulation of the
Dirichlet condition are not zero on 0Qp, we will also have to choose the Neumann
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data gy in a slightly smaller space than H~/2(9Qy). We focus our attention on the
effects of rough data in CutFEM. We assume that the boundary 052 of the domain
Q is smooth and that we can evaluate integrals on the intersection of simplices
and the domain and its boundary, exactly. Estimation of the error resulting from
approximation of the domain can be handled using the techniques in [4].

The study of the convergence of nonconforming methods for the approximation
of solution with low regularity has received increasing interest since the seminal
paper by Gudi [9]. In that work optimal convergence for low regularity solutions
were obtained using ideas from a posteriori error analysis, where the error is upper
bounded by certain residuals of the discrete solution. These residuals are then
shown to lead to optimal upper bounds using the discrete local efficiency bounds.
A similar approach was used by Liithen et al. [10] for a generalised Nitsche’s method
on fitted meshes. This approach does however not seem to be suitable for the case
of cut finite element method since for cut elements the local efficiency bounds are
not robust with respect to the mesh boundary intersection. Instead, in the spirit
of [7], we use a version of duality pairing to handle the term involving the normal
flux of the interpolation error. This is made more delicate by the presence of mixed
boundary conditions. Indeed to include this case in the analysis we introduce a
regularized bilinear form and use the solution to the regularized problem as pivot
in the error estimate. The regularization gives rise to a logarithmic factor. Observe
that this is due to the mixed boundary conditions. For pure Dirichlet conditions or
pure Neumann conditions the analysis results in optimal error bounds for s > 1.

The paper is organized as follows: In Section 2 we introduce the functional
framework for the model problem and formulate the finite element method and in
Section 3 we derive the error estimates.

2. WEAK FORMULATION AND THE FINITE ELEMENT METHOD

Since we consider low regularity solutions of a problem with mixed boundary
condition we must be careful with the fractional Sobolev spaces for the traces of
the functions. In this section we first introduce the notations and definitions for
the functional analytical framework, leading to the weak formulation of (1.1)—(1.3).
Then we introduce the cut finite element method for the approximation of the weak
solutions.

2.1. Function Spaces. Let w C R™ be an open set and let H*(w) denote the usual
Sobolev spaces on w. Define
(2.1) HY2(09) = troq(H())

2.2 = inf
(22) Iollmsom =y dnf ol

where trag is the trace operator obtained by extending the restriction operator |ao
from C*°(Q) to H*(), see [8]. For ' C 99, I open in 01, define

(2.3) H'Y(T) = H'?(09)|r

(2.4) vl grrzery = weHl(igzl)f,w|p:v w1 (@)

and

(2.5) HY2(I') = {v € H'/?(89) : supp(v) c T}
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We note for each v € HY/2(T') we can define an extension v¢ € H'/2(9Q) such
that v¢ = 0 on 9Q\ T and v* = v on I'. Letting [HY/?(T")]* ¢ HY?(99) be the
space of such extended functions and observing that [H'/2(I')]¢ is precisely the
kernel of the restriction operator |5\ HY2(0Q) — HY?(0Q\T), we obtain
H'Y2(0Q\T) = HY2(9Q)/[HY*(T))°.

Next define the dual spaces

(2.6) H™Y2(0Q) = [HY?(00)]*

(2.7) H-Y2(1) = [H*(D))*

(238) AY2(r) = (Y2

consisting of functionals g : X — R with duality pairing (g,v)xxx = g(v) and
norm

(29) lallx- = sup 2

veX\{0} vl x

with X € {HY2(0Q), H/*(T'), H'/2(I")}. For X € {HY2(T'), H'/%(I')} we will use
the simplified notation (g,v)r = (g,v)x*xx = g(v) for the duality pairing with
g€ HY2(T) and v € HY/2(T'), and g € H~'/2(T") and v € H'/2(T"), respectively.

Note that for each g € H~1/2(I') we may define g¢ € H~1/2(0Q) by ¢°(v) =
g(v|r) and thus H=1/2(T") — H~1/2(00Q).

2.2. Weak Formulation. The problem (1.1)—(1.3) can be cast on weak form: find
u € Vy,, such that

(2.10) a(u,v) =1(v) veW

where

(2.11) a(v,w) = (Vov,Vw)g, I(v) = (f,v)a+ (gn,v)oay
and, for each gp € H'/2(0Qp),

(2.12) Vo = {v e HY(Q) :v|oa, = gp}

For f € HY(Q), gp € H'?(0Qp), and gy € H'/2(00), there exists a unique
weak solution to (2.10) and the following elliptic regularity estimate holds, 1 < s <
3/2,

(2.13) ”u”HS(Q) S Hf”HS*?(Q) + ||9D||Hs—1/2(aQD) + ||9N||Hs—3/2(aQN)

see Savaré [11], Theorem 2, page 876.

2.3. The Normal Flux. The normal flux V,,u = n-Vu € H-%/2(9Q), where n is
the exterior unit normal, plays an important role in what follows. For u € H'(),
with Au € L?(Q), it can be defined by the identity

(2.14) (Vou,v)aa = (Au,v)q + (Vu, Vo)q Yv € HY()

Observe that in the finite element method we work with weakly enforced bound-
ary conditions and therefore we will not have test functions that vanish on 09 p,
i.e. the test functions are not in Vj, and herefore we will consider boundary data
such that

(2.15) gp € HY2(00p), gy € H Y2(00y)
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where the Neumann data g is chosen in the smaller space H~/2(0Qy) € H=1/2(8Qy),
compared to the strong formulation and corresponding weak form (2.10). We will
also assume that the source term f is square integrable over some (arbitrary thin)
neighbourhood of the boundary 99, see (3.38) below.

2.4. Finite Element Method. To define the cut finite element method let €y be
a polygonal domain such that Q@ C Qg and let {7r0 : B € (0, ho]} be a family of
quasiuniform meshes covering Qg with mesh parameter h := maxre7, , diam(T).
For a subset w C €, define the submesh of elements intersecting w, by Tp(w) =
{T € Tho:TNw# 0}, and let Ty, := T,(Q2) be the so called active mesh. Let V}, o
be the conforming finite element space defined on 7}, ¢ consisting of piecewise affine
functions and define Vj, = V}, 0|7, . Define the bilinear forms

(2.16) Ap(v,w) = a(v,w) — (Vav,w)a0, — (v, Vaw)aa, + B v, w)s0,
(2.17) sn(v,w) := oh([Vpv], [Vaw]) £, 00)
(2.18) Ly (v) == (f,v)a + (gn,v)oay — (9, Vav)oa, + Bh™ (gD, v)aan

with positive parameters § and o, F5,(9) the set of interior faces in Ty, that is faces
belonging to two different elements 7y, associated with an element T' € 75, (92) =
{T € Tr, : TNOQ # (0} that intersects the boundary, and the jump in the normal
flux at face F' shared by elements 17 and 75 is defined by

(2.19) [Vov] = Vi, v1 + Vi, vo on F

where v; = v|7, and n; is the unit exterior normal.
Define the finite element method: find u; € V}, such that

(2.20) Ap(up,v) + sp(up,v) = Lp(v) Yo eV,

Remark 2.1. We have assumed quasiuniformity in order to simplify the nota-
tion but it is sufficent to assume that the elements are shape reqular and that local
quasiuniformity holds, see Definition 2.2 in [5].

3. ERROR ANALYSIS

In this section we will derive the error estimates, here as usual the consistency of
the method is of essence. However, for solutions with low regularity this is delicate
in the case of mixed boundary conditions. Indeed, in the low regularity case,
(2.14) is not sufficient to make sense of the term (V,u,w)gq, for approximation
purposes, since the division on 0Qp and 9y necessarily results in a boundary
integral over one of the subdomains that has to be lifted in some other fashion.
This is problematic since the solution is not regular enough to allow for the usual
trace inequality arguments. To handle this difficulty we introduce a regularized
finite element formulation (for analysis purposes only), where a smooth weight
function x is introduced and the problematic term is replaced by

(3.1) (Vou, w)y.00 = (XVau, w)an

The regularized method has a consistency error that can be controlled by sharpening
the cut off function Y.
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3.1. Outline. We shall prove low regularity energy norm error estimates using the
following approach:

e Similarly to [9] we estimate the error in a norm which does not involve the
L2 norm of the normal trace of the gradient.

e For the case of mixed boundary conditions, we introduce a regularized bi-
linear form and the corresponding (nonconsistent) finite element method.
The regularization takes the form of a weight function smoothing the tran-
sition from the Dirichlet to the Neumann boundary condition in the first
boundary integral of the form Ay, see equation (2.16). In the regularized
norm we can use a version of H~1/2 — H'/2 duality in an e neighborhood
of 8QD

e The total error is estimated using a Strang type argument. The error is
divided into the approximation error, the discrete error between an inter-
polant and the finite element solution of the regularized formulation and
finally the regularization error between the regularized and standard finite
element solutions.

3.2. The Cut Off Function. Key to the regularized problem is the design of the
weight function, x : 2 — R with support in a neighbourhood of 9. This function
takes the value 1 on 0Q2p and decays smoothly to zero in an € neighbourhood of
00pNON N and into the domain away from the boundary. This way it plays the role
of a cut off, that localizes the boundary integral to d2p, while the form remains
well defined for low regularity solutions. In order to define the cut off function we
introduce some notation.

Notation. For z € R% w C R? let p,(x) > 0 be the distance function p,(z) =
dist(z,w) and let p,, : R? — w be the closest point mapping. In the case w = 9Q
we drop the subscript. For ¢ € (0, dp], define the d-neighbourhood of 09,

(3.2) Us(09) = {z € Q: p(z) <}

Then there is dg > 0 such that the closest point mapping p : Us, (02) — 9 maps
every x to precisely one point at 0{). We also define §-neighbourhood of 02p and
00N as follows

(3.3) U(;(GQD) = {x S U5(aQ) :p(l‘) € 8QD}, U(;(GQN) = Us \ U5(8QD)

Let ¥ = 9(02p) = 9(00N) be the smooth interface separating 9Qp and 9Qy and
let v be the unit conormal to ¥ exterior to 02 and tangent to 0€2. See Figure 1.
For t € [0, do] let

(3.4) o ={zre:plx)=t}

(3.5) 0Ny = {x € 0Q; : p(x) € 00N}

(3.6) S ={x €0 :px) € &}

Note that p : 9Q; — 0N is a bijection for all ¢ € [0, §p]. Let
(3.7) Uiy (E0) ={x € 0y : px,(x) <7} COQUNy

be the 7 tubular neighborhood of ¥, in 0y, and assume that y € (0, 0] with o
small enough to guarantee that the closest point mappings ps;, are well defined for
all t € [0, o], and let

(3.8) Uy(E) = Upy(X0) C 0y
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FIGURE 1. Left: the Dirichlet boundary 0€2p, the Neumann
boundary 99y, the interface ¥, and the tubular neighborhood
Ug(aQ) = U5(8QD) U U5(E)QN). Right: the set Us,e C Ug(@QN).

Define

(3.9) Us,e = Utelo,61Ut () (2¢)

with v(t) =t + € for € € (0,¢0] and € << §, see Figure 2. Defining, for z € 3,
(3.10) Use(2) = {z € Use : px() = 2}

where py. is the closest point mapping associated with ¥, we have Us = U,exUs «(2).
Note that Us (2) = Us..Np5;' (2) C Us, (2)Nps;' (2), which is a subset of the 2 dimen-
sional normal space Nx(z) to the d—2 dimensional tangent space Tx(z) of ¥ at z. In
the case d = 2, . consists of distinct points and in that case Us . C U, (2) C p5'(2),
for 9y small enough. Finally, let

(3.11) Us = Us(09Qp) U Us,e

The Cut Off Function. We will below take § ~ h and € ~ h® with a = d. Let
X :  — [0, 1] be smooth such that

VXl o s\vs.) SO
IVaxlooe sy S 071

IVexllpe @) S 1

IVuxllzo @, L) S (v(#) ™ € [0,0]

x=1 ondQp
(3.12) ¢ x=0 ondQy \U(X)
x=0 onQ\Us
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FIGURE 2. Left: Close up of the set Us, including U.(X) C 0Qx.
Right: The set X; and Uy, (¢)(X).

Observe that in the definition above Vs denotes the projection of the gradient
on the tangent plane of ¥. By the construction of x, ||[Vsx|[L=(vs;.) is bounded
and depends only on €, § and the regularity of X..

Lemma 3.1. The cut off function x satisfies the following estimate

(3.13) sup Vx5, o) S [In(1+6/€)]
zZEX ’

and with

(3.14) 6~ h, €~ h®

for 1 < a <1 we obtain

(3.15) IVuxllg,, S 1+ [In(h)]
Proof. Using the bounds for V,x we obtain
s
61 Valbe=[ s [ [ o
Us,c(z) 0 Uy, t4e(2)
s
(3.17) 5/ (t+e)™r =[In(t + €)]5 = In(1 + 5 /¢)
0

Estimate (3.15) follows directly from the definition of ¢ and e. O
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3.3. The Regularized Problem. For € € (0, ¢g] define the regularized form
(3.18) Ap.(v,w) = (Vo,Vw)g — (Vav,w)y.00 — (v, Vaw)aa, + B (v, w)aq,

and define A, o = Aj,. We will show that the mapping [0,¢0] > € — Ape is
continuous for €y small enough, see Lemma 3.3 below for details.

For € € [0, €o], define the regularized finite element method: find up . € V4 such
that

(3.19) Ap e(up,e,v) + sp(up,v) = Lp(v) Yo €V,

This method is not consistent, but we have the identity

(3.20) Ape(u—up,e,v) = Ap (u,v) — Lp(v) + sp(up,v)

(3.21) = sp(un,v) — (9N, V)x,00N Yv €V

since using Green’s formula gives

(3.22) Ap.c(u,v) = (Vu, Vo)g — (Vau, v)y.00 — (4, Vav)aap + Bh (u,v)aa,
(3. = —(Au,v)o + (Vau,v)aa — (Vau, v)y,00

(3.24 — (u, Vav)aa, + Bh™Hu,v)a0,
(
(

~ — O —

3.25) = (f,v)a = (9p, Vav)aa, + Bh~ (gD, v)oa, + (9N, v)oay — (9N, V)x.00x
3.26) = Lin(v) — (gn,v)x.00x

where we used the fact that y = 1 on 9€Qp to conclude that

(3.27) (Vnu7’l))ag - (an,U)X,é)Q = (VnU,U)BQN - (Vﬂuav)XﬁQN
(3.28) = (9n5,v)aay — (9N, V)y,00x

3.4. Properties of the Bilinear Forms. We here summarize the basic results on
the bilinear forms and conclude with a proof of existence, uniqueness, and stability
of the finite element solutions.

Inverse and Trace Inequalities. Let us recall some inverse and trace inequalities.
Here P1(T') denotes the set of polynomials of degree less than or equal to 1 on the
simplex T'.

e Inverse inequalities (see [6, Section 1.4.3]),

(3.29) ”VU”Hl(T) ,S h;ln’UHL’z(T) Yo € Pl(T)
and
(3.30) ol Loy S A2 llr2er) Vo € Po(T)
e Trace inequalities (see [6, Section 1.4.3]),
(3.31) lellzzory < Cr (hp2llzeery + hi?IVellr) - vo € HY(T)
and
(3.32) o]l 2oy < Cihg'?[ollrary Vv € Py(T)

e Inverse trace inequality on cut elements. For a simplex T such that TNoSY #
(), there holds

(3.33) ol z2(rrony S bp P lollL2ay Vo € Py(T)
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Stabilization Estimates. For any two elements T} and 75 in 7}, sharing a face
F', we have the estimate

(3.34) V™ol SIV™olg, + P2 [VadllE m=0,1, veV,
Repeated use of (3.34) leads to
(3.35) IVolZ, S IVollg + ]z, veVa

For sets wg C wy C Q such that diam(w; \ wo) < h, we may also derive the estimate
(3.36) [IV™0l17 wr) S IV 0l o) + R 2" [Vat] |5 ) m=0,1, veEV),

where F,(w1) denotes the interior faces of Ty, (w1).
The Energy Norm. We equip the finite element space V}, with the energy norm

(3.37) ol = IVolig + lol5, + A7 Ivl3a,

where ||[v]|2, := sp(v,v). In order to have the normal flux well defined on the
Dirichlet boundary we assume that

(3.38) veV ={veH(Q): Avly,, € L*(Us,)}

where we recall, see (3.11), that supp(x) C Us, = Us, (99Qp) UUs, ¢, for all regular-
ization parameters € € [0, €g]. The stabilization form s;, is not defined on V', due to
the low regularity, and therefore we equip V' with the weaker energy norm

(3.39) ol = 1Voll& + 2~ lvl3a,,

Lemma 3.2. There is constant such that for allv € V+V;,, w € V},, and € € [0, €],

(3.40) [ Anelo,0) STl el + [(Tav, w)o0l |

where we use the norm ||| - |||, which does not include the stabilization, on V + Vj,.

Proof. To verify this estimate we start from the definition (3.18) of the regularized
form and using the Cauchy Schwarz inequality we get

(341)  Apc(v,w) S VollalVulla + [(Vav, w)y a0l

(3.42) + W20l a0, 2| Vawlloap + B vlloas lwlloan
(3.43) SvllHlwllln + 1(Vav, w)y o0l

We estimated h'/?||V,wl||sq,,, with w € V},, using the inverse inequality

(344)  hIVawlda, SIVUlIF 00, S IVolF, S IVelE + lwl?, < vl

Sp ~

where we first used the inverse trace inequality (3.33) and then the stabilization
estimate (3.35). O

We will now prove a bound on the error introduced by replacing Aj by its
regularized counterpart Ay ..

Lemma 3.3. There is a constant such that for all v,w € V}, and € € [0, €] with
(S ad h,

(3.45) [ Ane(v,w) = Ap(v,w)] S e |[oll[alllw]lln
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Proof. Using the definitions (2.16) and (3.18) of the forms Aj and Aj . we obtain
(3.46) |[Ap(v,w) — Ap.e(v,w)| = [(Vav, xW)aay|

(3.47) S 2V nvlly, )b 2 ]
(3.48) < eh = vlllalllw][|n

where we used the fact that supp(x) N 90y C U(X), see (3.8). To estimate
h||anH?]€(E) we proceed in the same way as in (3.44), we first use an inverse

estimate and then the stablization (3.35),

(3.49)
IV aollE sy S BIVav]

Ue(2)

7 SNl

Next to estimate h_1||v|\%,5(2) we pass over to the L™ norm in order to extract an
€ factor and then we use suitable inverse bounds to pass to the energy norm.

nw.nnoay S IVUlT w. ) S 1V

(3.50) = lI7, sy S 27 tellvllioo ()

(3.51) S h7 vl i (7w )

(3.52) S Bl oll3 0w

(35%) S (W, 7 0. IV 0 )
(8.54) S ent =1 (M oll3a,, + I90l3;)

(3.55) < eh' Y lll?

Here T, (U.()) is a slightly larger patch of elements such that the d— 1 dimensional
measure of its intersection with the Dirichlet boundary satisfies | T, (U.(X))N0Qp | ~
h4=1 which allows us to utilize the control available in |||v]||, at the Dirichlet
boundary and to employ a Poincaré inequality in (3.53), see the appendix in [3].
The patch 7, (U(X)) does not in general satisfy T5,(Uc(X)) N dQp ~ h?~1 and
therefore it is enlarged by adding a suitable number of face neighboring elements
in 7,(092p). In the last step (3.55) we also used the stabilization (3.35). Note that
due to the assumption that € € [0, ¢g] with €y ~ h it follows from shape regularity
that there is a uniform bound on the number of elements in 7, (U.(%)). O

Lemma 3.3 is instrumental for the coercivity that we prove next.

Lemma 3.4. For (3 large enough and o > 0, the forms Ay + sp, h € (h, ho),
€ € [0, ch?] with ¢ small enough, are coercive

(3.56) |Hv|||,2L S Ape(v,v) + sp(v,v) veV,

Proof. First we note that Ay, ¢ is coercive using standard techniques together with
the inverse estimate (3.44). Next using the bound (3.45) of Lemma 3.3, we obtain

Ape(v,v) = Apo(v,v) + Ape(v,v) — Apo(v,v)
> Cll[vllli; = 1An.e(v,v) = Ano(v,v)]
> (C1 = Caeh =)0l
Z Ml

where in the last step we choose € < ch? with h € (0, ho] and ¢ small enough. [
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Using Lax-Milgram we conclude that for each € € [0,ch?], there is a unique
solution uyp . € V3, to the regularized problem (3.19) such that

357) llunellln S sup  Lu(0) Sl +l9n 51200y, 12 l9pll005
veVp\{0}

3.5. Technical Lemmas. In this section we collect some technical results that will
be useful in the analysis. More precisely we start with four technical lemmas before
proving Lemma 3.8 which is used to estimate the problematic term (V,v, w), a0
in the regularized problem.

Lemma 3.5. There is a constant such that for all v € V},,

(3.58) o101 e S €0 G0 el

Proof. 1. Recall that for z € ¥, Us (2) = {z € Us, : ps(x) = 2}, see (3.10), and
we have Us . = U,exUs (2). There are dp ~ €y ~ 1 such that § € (0,do], € € (0, €]
and

(359) U&e(z) C U(So,ﬁo (Z)
We shall first show that there is a constant such that for all z € 3,
(3:60)  [olew, . oy S A+ ImED @, - o+ B2V o

To that end note that Uy, ¢, has the following cone property: for each x € Us, ,(2)
there is a cone (or sector since Us, ¢, is two dimensional) A, (x) C Us, ¢, (2), with
vertex x, radius 19 ~ Jp ~ 1, and opening angle 6y ~ 1. For z € Us, () and
r,0 € A, (z) we have the identity

(3.61) v(z) =v(r,0) — /OT 0rv(s,0)ds

and the estimate

(3.62) v?(x) SvP(r,0) + (/0’”0 &U(s,e)ds)Q

We estimate the integral on the right hand side as follows

(3.63) < /0 " 8Tv(s,t9)ds>2 < < Onh &m(s,@)ds)z + < /77 h 3rv(s,0)ds>2

To
(3.64) < h)?(IVullZea,,) + [In(d/nh)| . (Orv(s,0))%sds
n

where for the second term on the right hand side we used the estimate

To 2 70 70

(3.65) ( 8Tv(s,9)ds> 5/ s_lds/ (0rv(s,0))*sds
nh nh nh
To

(3.66) < |1n(d/nh)| . (0rv(s,0))*sds

Combining (3.62) and (3.64), we get

To

(367)  0P(x) S 20,0 + )2V elZea,,, + | Do) / (@rols.0)sds
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and integrating over A, (x) gives

(3.68)
0o
Anle?@) 5 [ [ 0t || IV,
0(] To
(3.69) + | In(d/nh)| / / ( / (8,«11(3,9))25d5> rdodr
0 0 nh
(3.70) SolR,, @) + [Arel )2Vl 200 a0y + @[ I(d/n)| IVl (o)

Here ro ~ 1, and |A,,| ~ 73 ~ 1 is independent of x, and thus we obtain
(3.71) v (@) S IR, @) + [n(d/nm)[IV0l13 | @) + 0PIV olL (4, )
which leads to

(3.72) ol sy o) S A+ IEIDI0IF Wy, . o) + RNV g, g 20)

and thus (3.60) holds.

2. d = 2. In the two dimensional case d = 2, the interface ¥ consist of a set of
isolated points and we may cover the two dimensional set Us, ,(2) by a patch of
elements 75, (Us, ¢, ), and then apply the element wise inverse inequality (3.30),

(3.73)

012 (05 oo () S L+ POl 0, o 2y + PEINVOI R 0, o (2)
(3.74) S 1+ \hl(h)|)||U|@11(T,1(U50,50(z))) + h2||VU||2Loo(Th(UJO,EO(z)))
(3.75) S+ ‘ln(h)|)||UH12L11(T;1(U50160(z))) + HVUH%(U%,SO(Z)))
(3.76) S (L4 ()]l

where we finally used the stabilization estimate (3.35). This completes the proof in
the case d = 2.

3. d > 3. Here, the set Us, , (%), for a given z € ¥, is a subset of a two dimensional
plane, that cuts through the d dimensional elements in a general way, which requires
a more refined argument since an element wise trace inequality can not be applied
due to the presence of cut elements. We start by integrating (3.60) over 3,

(3.77)
N0 o S D W0l + 1 [ 17000
(3.78) < W+ DI 0y o + 190
(3.79) S 1+ |ln(h)D||UH§{1(77L(U50,50))
(3.80) < (L4 @Dl

Here we used the inverse estimate

(3:81) Gl N\ R | e
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To verify (3.81) we first note that, with w = Vv, we have for each z € X,

2 _ 2
(3.82) Hw”Loo(UéO,EO(Z)) B Ten?l}i)xso(z)) Hw”Loo(U(;O,EO(z)nT)
(3.83) S Z HwH%oo(Ud-O,EO(Z)mT)

TETh(Usg,eq(2))

Yo lwlienlr()

TeTh(Usy,cq)

(3.85) SR S ] [ S P E)
TeTh(Usy,eq)

(3.84)

A

where 17(2) = 1 if Us, ¢, (2) N T # 0 and 0 otherwise, and we employed an inverse
inequality in the last step. We next note that 17 : ¥ — {0, 1} is the characteristic
function of the closest point projection ps(T) of T on X, and therefore

(3.86) / 1p < hi2
2

Integrating, (3.85) over ¥ we get

2 —d 2
(3.87) [l e S [ 2 K uliine)

TeTrh(Usy,eq)

(3.88) D S Ty U

TE€Th(Usg,eq)

(3.89) = h7?||wl QMU(;O,EO)
where we used (3.86). This completes the verification of (3.81).

O
Lemma 3.6. Let x be defined by (3.12), then there is a constant such that for all
v E Vy,
(3.90) 1(Vx)vllos. S (14 [In(h)l|v]ln

Proof. Splitting [(Vx)v||7, . into three contributions corresponding to the direc-
tions of the derivative relative to the interface > we obtain

(3.91) I(V0lE,, < 1(V=x0)vliE,, + 1Vl + 1(Vex)vllz,,
(3.92) < ollgs, + 62 lliE,, + 1(Vux)vllE,.,

(3.93) < Illz,. +/Z||v||2Loo<U5,f<z))+(1+\ln(h)|)2||\v\lli
(3.94) < (L [n(R)P) [l

where we for the second term (3.92) used the facts |Us (2))| S 6% S h2, [[v]| Lo (v, (2)) <
V]l Lo (s, ., (z)) followed by (3.58), and for the third term we used the estimate

(3.95) I(Vux)ollus.. < (14 [n(R)])[vfl|n

which we verify next. This argument completes the proof of (3.90).
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To verify (3.95) we use Holder’s inequality twice, first on Us ((2) and then on X,
employ (3.15), and finally (3.58),

(3.96) V300l = [ 100l e

(3.97) < / R

(3.99 < (s 1900 ) [ Il econcon

(3.99) < (1 +|In(h /HUHLOO (Us,e(2))

(3.100) < (14 |In(h /HUHLN S

(3.101) < (14 ()2l

Thus (3.95) holds. O

Lemma 3.7. There is a constant such that for all w € Vy,
(3.102) W2l ws) + 1VlF, @ < el
which holds for § = nh with n a sufficiently small constant.

Proof. First observe that by construction no point in Uy is further than O(d) from
00 p. Using estimate (3.36) followed by the Poincaré inequality

(3.103) lwl|Z;, w5 000y < dllwlloas + 0% Vwll7 w, 690)

see appendix [3], we obtain

(3.104) [|w] %’;L(U(;) S lwl %L(Us(aQD)) + [Jw] %L(Us,ﬁ)

(3.105) S wllZ;, ws 000y + P NIVawlll%, panus)

(3.106) < Sllwllan, + 0% Vwllz, wsoan) + 2 IVwlZ, panus)
where we used the estimate

(3.107) hH[Vnw]ngh(amU,g) S ||Vv||27h

Applying now (3.35) and using 6 ~ h we conclude that
(3.108) A [[wlT, wy) + IV0IT, sy S P HwlBa, + VWl +llwl?, < llwlli
O

Lemma 3.8. There is a constant such that for all v € V, vy, € V},, and w € Vp,

(Vi (v —on),w)y00 S ((1 + [ In(R) DIV (v = vn)l|vs

(3.109) + hl|Avlo, + hl/QH[VnUh]”}‘;mUs) !l

Proof. For v € V, see (3.38), we have Av € L?(supp(x)) C L?(Us,) and using
Green’s formula

(3.110) (Av, xw)a = (Vav, xw)aa — (Vu, (Vx)w)a — (Vv, xVw)q
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For vy, € V;, we use Green’s formula element wise

(3.111) (Von, xVw)a = (Vavn, xw)aa + ([Vavr], xw) 7,00

(3.112) — (Avp, xw) 7,00 — (Von, (V)w)e
Combining the formulas and rearranging the terms we obtain

(3.113) (Vo(v—wn),w)y.00 = (V(v—up), xVw)a + (V(v — ), (VX)w)a
(3.114) + (Av, xw)o + ([Vavn], xw) 7,ne

To estimate the right hand side we may directly estimate the first two terms using
the Cauchy Schwarz inequality and (3.102),

(3.115)  (V(v —wa), xVw)a S IV (v = vn)llus[[Vwllus S 1V (0 = on)llusllwlla

(3.116) (Av, xw)e S hllAv|lush™Hlwllu, S hllAv]|ug][w]l]
Next using the Cauchy Schwarz inequality, the element wise trace inequality (3.31),
(3.117)

([Vnon], xw) im0 S W2V aon] | manvsh ™2 (0wl w0y + DIVl 0,0
(3.118) S B2V nonlllznus (B2 w3 o) + V017 0,
(3.119) S 2V won] | Fuws lwllln

where for the last inequality we employed (3.102). For the remaining term we use
the Cauchy Schwarz inequality, followed by (3.102) and (3.90),

(3.120)

(V=) (T )W) S IV (0 = o)llo; (|(T0wlvs000) + 10w,
(3.121) S 190 = wn)llos (67 wlluyoan) + 1(Tx)wllus., )
(3.122) < (1+ [ m(B) )9 (0 = o) o el

Collecting the bounds we arrive at
(3.123) (Vn(v —vn), w)oa S ((1 + [In(R)N[V (0 = vn)llus
(3.124) + hl|Avu; + h1/2||[anh]||;mU5> iiin

which completes the proof of (3.109).
U

3.6. Interpolation. Let E : H*(Q)) — H*(R?) be a continuous extension operator.
Define the interpolant mj, : H'(Q) — V}, by 7, = mp,00 0 E where 7, cp : L2(Qp,) —
V}, is the Clement interpolant and €, = Urer, T. Using the interpolation results
for the Clement interpolation operator and the stability of the extension operator
we conclude that

(3125) ||’U - 7Th’U||Hm(Q) < hsimH’UHHs(Q) 0<m<s<?2

For the energy norm (3.39) it holds

(3.126) lv = 7ol + I7nvlls, S B~ olle @)
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Proof. With p = v — v we have

(3.127) ell.n S IVollE + R lol3a,

Using (3.125) we directly have

(3.128) IVolg < P2 Dlulle o

and using the trace inequality

(3.129) 30, <07 10llE00,) + OIVUIE, 005
with § ~ h we obtain

(3.130) hlpll3e, S B O olE, 000 + 0V, 00n)
(3.131) S B2l 00 + IVRIE, (00b)
(3.132) Sl [

Finally, we have with m, c;VEv € Vhd,
(3.133) |[lmyol3, < All[Vmnw — mn i VEY|1%,

(3.134) S IVrRo = Tl VED||5,

(3.135) S IVa(mne = )5, + mnaiVEv — VEv|%, S B2 Do g
In the first inequality the inverse inequality

(3.136) W[VwllF SIIVwlZ, + IVellz,,  w € Vilnun

where T7 and T5 are the two elements that share face F'. O

3.7. Error Estimates.

Theorem 3.9. Let u € H*(Q2), s € [1,3/2], be the solution to (1.1)-(1.2) and up,
the finite element approzimation defined by (2.20), then

e = wnlll + lanllsy S 25~ ((1+ () D a0 + Dol re-sr2on) )

+ B (Ifllus + 17 -1 + I9n | 7-1/2 o) + 90112000,

The logarithmic factor is present only for the case of mixed Dirichlet-Neumann
boundary conditions.

Proof. We split the error as follows

e = wnlll + lunlls, < lllw=mnullln + llmnw = wallln + unl

Sh

S 1w = mnullln + [llmne — unellln + [[lun,c = unllln + [lualls,
——

She=bjull gs o) I IT 117

where wuy, . is the solution to the regularized problem (3.19) and we used the inter-
polation error estimate (3.126) to estimate the first term on the right hand side.
Term I. The following estimate holds

(3.137) [lm—un el < Q10 (ful - @)+l 7572 02y ) 21 Fllr
To verify the estimate let pp, = mpu — up, .. Using coercivity (3.56) we obtain

onlllz < Ane(pn, pn) + sn(pn, pn)
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and then employing the definition (3.19) of up . we obtain

(3.138)
Ap (TRt — Upe, pr) + SK(TRU — Un e, ph)

(3.139)

= Ap,e(mnu, pr) — Lu(pn) + sn(mnu, pn)
(3.140)

= Ap,e(mnu —u, pn) + An,e(u, pr) — Ln(pn) + sn(mnu, pn)
(3.141)

S (lmnw = alll + [lmaulls,) lllpwllln + [(Va(mau — w), pr)y,00l
(3.142)

+ [Ane(u, pn) — Li(pn)]

(3.143)

S B Ml s @lllonllln + (U + ()Rl s ) + B o) lonllln
(3.144)

+ (L (W) DI lgnll o-sr2 (00, llonlln

where we used the continuity (3.40) in (3.141), and in (3.143) we used the inter-
polation error estimate (3.126) to estimate the first term and then the following
estimates

(3:145) |(Va(mau = u), pn)x.oal S ((1+ DR full o) + Al o ) llenlln
(3.146)  [Ape(u, pr) = L(pn)| S (L + [In(R) DA lgn | o572 a0 o0 lln
(3.145). Using (3.109) followed by the interpolation estimate (3.126),

(3.147) |(Va(mhu —w), p)y.00l

(3.148) S (4 m@N IV - m)lly,
(3.149) + | Auluy + B2 (Vamaullz,00s) ) lioalln
(3.150) < (@ 1n@)DR = ull ) + kil los) ) lioalll

where we used the fact Au = —f. (3.146). Starting from the identity (3.21) we

get
(3.151) | An,e(u, pn) — Lu(pn)| = (9, xPn)oay |
(3.152) S Nanll go-srzoan)lIXPrll /25 (0005

To estimate ||xpnlgs/2-2(a0,) We use a trace inequality on Us, (92n)),

(3.153) IXPnll 325 00y) S [IXPRIE2=2 (Us, (9028 ))

In order to estimate the right hand side using the available bounds we employ the
interpolation between norms estimate

(3.154) 1oll ey S M0l 5zes oy 19l re2

for t € [0,1] and v = (1 — ¢)s1 + tsg. In our case vy =2 — s € [1/2,1] and we take
s1 = 0 and sy = 1, which gives ¢t = 2—s. Observing that supp(x)NUs, (0Qn) C Us,.
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we get

(3155)  lxonllm—ews.y S Ixonlliotu, IxenlBie,

s—1 2-s
(3.156) < (@ m@Dllenlln) (4 m@Dlienlln)
(3.157) < (L () DAl onllln
Here we used the following two estimates. First
(3.158) lpnl,, = /Z lonllZ, . 2
(3.159) S LhQ“ph||%“(U5,e(2))
(3.160) S /Z W[l pnl| 2o sy oo ()
(3.161) S R+ [(h)DllpnlllE .
where we at last used (3.58). Second
(3.162) Ixpnllarws. < lxenllus,. + 1VX)pnllus. + IXVonllus.
(3.163) S (4 [I(R)Dlllonllln

where we used (3.90) and (3.102). This completes the bound for Term I.
Term II. For € ~ h* with a = d, we shall prove the estimate

(3.164) Meane = wnll € B(1F =200 + o 7oy + 9n o0 )

We start once again with coercivity, this time of A, + sp, using the notation (; =
Uup,e — up, We have

(3.165) ¢l < An(Chs Cn) + s1(Cns Cn)
Then using the definition of the method and estimate (3.45) we obtain
(3.166)

N¢hlllz S Anune — un, Cn) + sn(tn,e — un, )

(3.167) = An(un,e,Cn) + sn(un,e,Cn) — Ln(Cn)

(3.168) = Ap(un,e,Cn) — An,e(tn,e, Cn)

(3.169) < eh ™ Ul|un.clllnllICnllln

(3.170) < ha+1_d(\|f||H—1(Q) +llgnllg-1/2005) + h_1/2HgD”H1/2(BQD)) l{[sx11F3
(3.171) < h(”f”H*l(Q) 9Nl =172 000y + H9D||H1/2(aQD)>H|Ch|||h

for o = d, where we used the stability estimate (3.57).

Term III. We finally have the following estimate for the stabilization term
(3.172) [[un| sn T llmnu —un |
(3.173) = llISullln + lllenllln + llrnwlls,
where the first two terms are estimated in (3.164) and (3.137) and the third by the
interpolation estimate (3.126).

Conclusion. The theorem now follows by collecting the bounds for the terms I,
II, and II1. O

sn < ||Uh - uh,s| sp T ||7Thu| Sh
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Remark 3.1. Observe that the logarithmic factor can be traced to Lemma 3.5,
Lemma 3.6 and (3.146) all of which are invoked only for the case of mized boundary
conditions

Acknowledgements. This research was supported in part by the Swedish Re-
search Council Grants Nos. 2017-03911, 2018-05262, 2021-04925, and the Swedish
Research Programme Essence. EB was supported in part by the EPSRC grant
EP/P01576X/1.

Authors’ addresses:

Erik Burman, Mathematics, University College London, UK
e.burman@ucl.ac.uk

Peter Hansbo, Mechanical Engineering, Jonkoping University, Sweden
peter.hansbo@ju.se

Mats G. Larson, Mathematics and Mathematical Statistics, Umea University, Sweden
mats.larson@umu.se

REFERENCES

[1] E. Burman, S. Claus, P. Hansbo, M. G. Larson, and A. Massing. CutFEM: discretizing
geometry and partial differential equations. Internat. J. Numer. Methods Engrg., 104(7):472—
501, 2015.

[2] E. Burman and P. Hansbo. Fictitious domain finite element methods using cut elements: II.
A stabilized Nitsche method. Appl. Numer. Math., 62(4):328-341, 2012.

[3] E. Burman, P. Hansbo, and M. G. Larson. A cut finite element method with boundary value
correction. Math. Comp., 87(310):633-657, 2018.

[4] E. Burman, P. Hansbo, M. G. Larson, and S. Zahedi. Cut finite element methods for coupled
bulk-surface problems. Numer. Math., 133(2):203-231, 2016.

[5] W. Dahmen, B. Faermann, I. G. Graham, W. Hackbusch, and S. A. Sauter. Inverse inequal-
ities on non-quasi-uniform meshes and application to the mortar element method. Math.
Comp., 73(247):1107-1138, 2004.

[6] D. A. Di Pietro and A. Ern. Mathematical aspects of discontinuous Galerkin methods, vol-
ume 69 of Mathématiques & Applications (Berlin) [Mathematics € Applications]. Springer,
Heidelberg, 2012.

[7] A. Ern and J.-L. Guermond. Analysis of the edge finite element approximation of the Maxwell
equations with low regularity solutions. Comput. Math. Appl., 75(3):918-932, 2018.

[8] L. C. Evans. Partial differential equations, volume 19 of Graduate Studies in Mathematics.
American Mathematical Society, Providence, RI, second edition, 2010.

[9] T. Gudi. A new error analysis for discontinuous finite element methods for linear elliptic
problems. Math. Comp., 79(272):2169-2189, 2010.

[10] N. Luthen, M. Juntunen, and R. Stenberg. An improved a priori error analysis
of nitsche’s method for robin boundary conditions. Numerische Mathematik, 2017.
https://doi.org/10.1007/s00211-017-0927-1.

[11] G. Savaré. Regularity and perturbation results for mixed second order elliptic problems.
Comm. Partial Differential Equations, 22(5-6):869-899, 1997.



