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Abstract. We show error estimates for a cut finite element approximation

of a second order elliptic problem with mixed boundary conditions. The error

estimates are of low regularity type where we consider the case when the exact
solution u ∈ Hs with s ∈ (1, 3/2]. For Nitsche type methods this case requires

special handling of the terms involving the normal flux of the exact solution at

the the boundary. For Dirichlet boundary conditions the estimates are optimal,
whereas in the case of mixed Dirichlet-Neumann boundary conditions they are

suboptimal by a logarithmic factor.

1. Introduction

In this paper we will consider the finite element approximation of the Poisson
problem with mixed boundary conditions under minimal regularity assumptions.
Let Ω be a domain in Rd with smooth boundary ∂Ω, which is decomposed into
two subdomains ∂ΩD and ∂ΩN such that ∂Ω = ∂ΩD ∪ ∂ΩN = ∂ΩD ∪ ∂ΩN and
∂ΩD ∩ ∂ΩN = ∅. Consider the problem: find u : Ω → R such that

−∆u = f in Ω(1.1)

u = gD on ∂ΩD(1.2)

∇nu = gN on ∂ΩN(1.3)

where f : Ω → R, gD : ΓD → R and gN : ΓN → R satisfy the following bound for
s > 1,

(1.4) ∥f∥Hs−2(Ω) + ∥gD∥Hs−1/2(∂ΩD) + ∥gN∥Hs−3/2(∂ΩN ) ≲ 1

Here and below we used the notation a ≲ b for a ≤ Cb, with C a positive constant.
For the approximation of the problem we apply a Cut Finite Element Method

(CutFEM). In CutFEM the boundary is allowed to cut through the computational
cells in an (almost) arbitrary way and stabilization terms are added in the vicinity
of the boundary to ensure that the method is coercive and that the resulting linear
system of equations is invertible.

In previous work on fictitious domain finite element methods see [2, 1], error
estimate were shown under the assumption that u ∈ Hs(Ω) with s > 3/2. The
objective of the present work is to relax this regularity requirement. Indeed, we
show an a priori error estimate in the energy norm, requiring only that u ∈ Hs(Ω),
where s > 1, and ∆u is in L2(Uδ0) on some arbitrarily thin neighborhood Uδ0 of the
Dirichlet boundary ∂ΩD. Since the test functions in the Nitsche formulation of the
Dirichlet condition are not zero on ∂ΩD, we will also have to choose the Neumann
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data gN in a slightly smaller space thanH−1/2(∂ΩN ). We focus our attention on the
effects of rough data in CutFEM. We assume that the boundary ∂Ω of the domain
Ω is smooth and that we can evaluate integrals on the intersection of simplices
and the domain and its boundary, exactly. Estimation of the error resulting from
approximation of the domain can be handled using the techniques in [4].

The study of the convergence of nonconforming methods for the approximation
of solution with low regularity has received increasing interest since the seminal
paper by Gudi [9]. In that work optimal convergence for low regularity solutions
were obtained using ideas from a posteriori error analysis, where the error is upper
bounded by certain residuals of the discrete solution. These residuals are then
shown to lead to optimal upper bounds using the discrete local efficiency bounds.
A similar approach was used by Lüthen et al. [10] for a generalised Nitsche’s method
on fitted meshes. This approach does however not seem to be suitable for the case
of cut finite element method since for cut elements the local efficiency bounds are
not robust with respect to the mesh boundary intersection. Instead, in the spirit
of [7], we use a version of duality pairing to handle the term involving the normal
flux of the interpolation error. This is made more delicate by the presence of mixed
boundary conditions. Indeed to include this case in the analysis we introduce a
regularized bilinear form and use the solution to the regularized problem as pivot
in the error estimate. The regularization gives rise to a logarithmic factor. Observe
that this is due to the mixed boundary conditions. For pure Dirichlet conditions or
pure Neumann conditions the analysis results in optimal error bounds for s ≥ 1.

The paper is organized as follows: In Section 2 we introduce the functional
framework for the model problem and formulate the finite element method and in
Section 3 we derive the error estimates.

2. Weak Formulation and the Finite Element Method

Since we consider low regularity solutions of a problem with mixed boundary
condition we must be careful with the fractional Sobolev spaces for the traces of
the functions. In this section we first introduce the notations and definitions for
the functional analytical framework, leading to the weak formulation of (1.1)–(1.3).
Then we introduce the cut finite element method for the approximation of the weak
solutions.

2.1. Function Spaces. Let ω ⊂ Rn be an open set and let Hs(ω) denote the usual
Sobolev spaces on ω. Define

H1/2(∂Ω) = tr∂Ω(H
1(Ω))(2.1)

∥v∥H1/2(∂Ω) = inf
w∈H1(Ω),w|∂Ω=v

∥w∥H1(Ω)(2.2)

where tr∂Ω is the trace operator obtained by extending the restriction operator |∂Ω
from C∞(Ω) to H1(Ω), see [8]. For Γ ⊂ ∂Ω, Γ open in ∂Ω, define

H1/2(Γ) = H1/2(∂Ω)|Γ(2.3)

∥v∥H1/2(Γ) = inf
w∈H1(Ω),w|Γ=v

∥w∥H1(Ω)(2.4)

and

H̃1/2(Γ) = {v ∈ H1/2(∂Ω) : supp(v) ⊂ Γ}(2.5)
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We note for each v ∈ H̃1/2(Γ) we can define an extension ve ∈ H1/2(∂Ω) such
that ve = 0 on ∂Ω \ Γ and ve = v on Γ. Letting [H1/2(Γ)]e ⊂ H1/2(∂Ω) be the
space of such extended functions and observing that [H1/2(Γ)]e is precisely the
kernel of the restriction operator |∂Ω\Γ : H1/2(∂Ω) → H1/2(∂Ω \ Γ), we obtain

H1/2(∂Ω \ Γ) ∼= H1/2(∂Ω)/[H̃1/2(Γ)]e.
Next define the dual spaces

H−1/2(∂Ω) = [H1/2(∂Ω)]∗(2.6)

H−1/2(Γ) = [H̃1/2(Γ)]∗(2.7)

H̃−1/2(Γ) = [H1/2(Γ)]∗(2.8)

consisting of functionals g : X → R with duality pairing ⟨g, v⟩X∗×X = g(v) and
norm

(2.9) ∥g∥X∗ = sup
v∈X\{0}

g(v)

∥v∥X

with X ∈ {H1/2(∂Ω), H1/2(Γ), H̃1/2(Γ)}. For X ∈ {H1/2(Γ), H̃1/2(Γ)} we will use
the simplified notation (g, v)Γ = ⟨g, v⟩X∗×X = g(v) for the duality pairing with

g ∈ H̃−1/2(Γ) and v ∈ H1/2(Γ), and g ∈ H−1/2(Γ) and v ∈ H̃1/2(Γ), respectively.

Note that for each g ∈ H̃−1/2(Γ) we may define ge ∈ H−1/2(∂Ω) by ge(v) =
g(v|Γ) and thus H−1/2(Γ) ↪→ H−1/2(∂Ω).

2.2. Weak Formulation. The problem (1.1)–(1.3) can be cast on weak form: find
u ∈ VgD such that

(2.10) a(u, v) = l(v) v ∈ V0

where

(2.11) a(v, w) = (∇v,∇w)Ω, l(v) = (f, v)Ω + (gN , v)∂ΩN

and, for each gD ∈ H1/2(∂ΩD),

(2.12) VgD = {v ∈ H1(Ω) : v|∂ΩD
= gD}

For f ∈ H−1(Ω), gD ∈ H1/2(∂ΩD), and gN ∈ H−1/2(∂ΩN ), there exists a unique
weak solution to (2.10) and the following elliptic regularity estimate holds, 1 ≤ s <
3/2,

(2.13) ∥u∥Hs(Ω) ≲ ∥f∥Hs−2(Ω) + ∥gD∥Hs−1/2(∂ΩD) + ∥gN∥Hs−3/2(∂ΩN )

see Savaré [11], Theorem 2, page 876.

2.3. The Normal Flux. The normal flux ∇nu = n · ∇u ∈ H−1/2(∂Ω), where n is
the exterior unit normal, plays an important role in what follows. For u ∈ H1(Ω),
with ∆u ∈ L2(Ω), it can be defined by the identity

(2.14) (∇nu, v)∂Ω = (∆u, v)Ω + (∇u,∇v)Ω ∀v ∈ H1(Ω)

Observe that in the finite element method we work with weakly enforced bound-
ary conditions and therefore we will not have test functions that vanish on ∂ΩD,
i.e. the test functions are not in V0, and herefore we will consider boundary data
such that

(2.15) gD ∈ H1/2(∂ΩD), gN ∈ H̃−1/2(∂ΩN )
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where the Neumann data gN is chosen in the smaller space H̃−1/2(∂ΩN ) ⊂ H−1/2(∂ΩN ),
compared to the strong formulation and corresponding weak form (2.10). We will
also assume that the source term f is square integrable over some (arbitrary thin)
neighbourhood of the boundary ∂Ω, see (3.38) below.

2.4. Finite Element Method. To define the cut finite element method let Ω0 be
a polygonal domain such that Ω ⊂ Ω0 and let {Th,0 : h ∈ (0, h0]} be a family of
quasiuniform meshes covering Ω0 with mesh parameter h := maxT∈Th,0

diam(T ).
For a subset ω ⊂ Ω0, define the submesh of elements intersecting ω, by Th(ω) :=
{T ∈ Th,0 : T ∩ ω ̸= ∅}, and let Th := Th(Ω) be the so called active mesh. Let Vh,0

be the conforming finite element space defined on Th,0 consisting of piecewise affine
functions and define Vh = Vh,0|Th

. Define the bilinear forms

Ah(v, w) := a(v, w)− (∇nv, w)∂ΩD
− (v,∇nw)∂ΩD

+ βh−1(v, w)∂ΩD
(2.16)

sh(v, w) := σh([∇nv], [∇nw])Fh(∂Ω)(2.17)

Lh(v) := (f, v)Ω + (gN , v)∂ΩN
− (gD,∇nv)∂ΩD

+ βh−1(gD, v)∂ΩD
(2.18)

with positive parameters β and σ, Fh(∂Ω) the set of interior faces in Th, that is faces
belonging to two different elements Th, associated with an element T ∈ Th(∂Ω) =
{T ∈ Th : T ∩ ∂Ω ̸= ∅} that intersects the boundary, and the jump in the normal
flux at face F shared by elements T1 and T2 is defined by

(2.19) [∇nv] = ∇n1
v1 +∇n2

v2 on F

where vi = v|Ti
and ni is the unit exterior normal.

Define the finite element method: find uh ∈ Vh such that

(2.20) Ah(uh, v) + sh(uh, v) = Lh(v) ∀v ∈ Vh

Remark 2.1. We have assumed quasiuniformity in order to simplify the nota-
tion but it is sufficent to assume that the elements are shape regular and that local
quasiuniformity holds, see Definition 2.2 in [5].

3. Error Analysis

In this section we will derive the error estimates, here as usual the consistency of
the method is of essence. However, for solutions with low regularity this is delicate
in the case of mixed boundary conditions. Indeed, in the low regularity case,
(2.14) is not sufficient to make sense of the term (∇nu,w)∂ΩD

for approximation
purposes, since the division on ∂ΩD and ∂ΩN necessarily results in a boundary
integral over one of the subdomains that has to be lifted in some other fashion.
This is problematic since the solution is not regular enough to allow for the usual
trace inequality arguments. To handle this difficulty we introduce a regularized
finite element formulation (for analysis purposes only), where a smooth weight
function χ is introduced and the problematic term is replaced by

(3.1) (∇nu,w)χ,∂Ω := (χ∇nu,w)∂Ω

The regularized method has a consistency error that can be controlled by sharpening
the cut off function χ.
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3.1. Outline. We shall prove low regularity energy norm error estimates using the
following approach:

• Similarly to [9] we estimate the error in a norm which does not involve the
L2 norm of the normal trace of the gradient.

• For the case of mixed boundary conditions, we introduce a regularized bi-
linear form and the corresponding (nonconsistent) finite element method.
The regularization takes the form of a weight function smoothing the tran-
sition from the Dirichlet to the Neumann boundary condition in the first
boundary integral of the form Ah, see equation (2.16). In the regularized
norm we can use a version of H−1/2 −H1/2 duality in an ϵ neighborhood
of ∂ΩD.

• The total error is estimated using a Strang type argument. The error is
divided into the approximation error, the discrete error between an inter-
polant and the finite element solution of the regularized formulation and
finally the regularization error between the regularized and standard finite
element solutions.

3.2. The Cut Off Function. Key to the regularized problem is the design of the
weight function, χ : Ω → R with support in a neighbourhood of ∂ΩD. This function
takes the value 1 on ∂ΩD and decays smoothly to zero in an ϵ neighbourhood of
∂ΩD∩∂ΩN and into the domain away from the boundary. This way it plays the role
of a cut off, that localizes the boundary integral to ∂ΩD, while the form remains
well defined for low regularity solutions. In order to define the cut off function we
introduce some notation.
Notation. For x ∈ Rd, ω ⊂ Rd, let ρω(x) ≥ 0 be the distance function ρω(x) =
dist(x, ω) and let pω : Rd → ω be the closest point mapping. In the case ω ≡ ∂Ω
we drop the subscript. For δ ∈ (0, δ0], define the δ-neighbourhood of ∂Ω,

(3.2) Uδ(∂Ω) = {x ∈ Ω : ρ(x) < δ}

Then there is δ0 > 0 such that the closest point mapping p : Uδ0(∂Ω) → ∂Ω maps
every x to precisely one point at ∂Ω. We also define δ-neighbourhood of ∂ΩD and
∂ΩN as follows

(3.3) Uδ(∂ΩD) = {x ∈ Uδ(∂Ω) : p(x) ∈ ∂ΩD}, Uδ(∂ΩN ) = Uδ \ Uδ(∂ΩD)

Let Σ = ∂(∂ΩD) = ∂(∂ΩN ) be the smooth interface separating ∂ΩD and ∂ΩN and
let ν be the unit conormal to Σ exterior to ∂ΩN and tangent to ∂Ω. See Figure 1.
For t ∈ [0, δ0] let

∂Ωt = {x ∈ Ω : ρ(x) = t}(3.4)

∂ΩN,t = {x ∈ ∂Ωt : p(x) ∈ ∂ΩN}(3.5)

Σt = {x ∈ ∂Ωt : p(x) ∈ Σ}(3.6)

Note that p : ∂Ωt → ∂Ω is a bijection for all t ∈ [0, δ0]. Let

(3.7) Ut,γ(Σt) = {x ∈ ∂ΩN,t : ρΣt
(x) < γ} ⊂ ∂ΩN,t

be the γ tubular neighborhood of Σt in ∂ΩN,t, and assume that γ ∈ (0, γ0] with γ0
small enough to guarantee that the closest point mappings pΣt

are well defined for
all t ∈ [0, δ0], and let

(3.8) Uγ(Σ) = U0,γ(Σ0) ⊂ ∂ΩN
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∂ΩD

∂ΩN
Σ

ΣUδ(∂ΩD)

Uδ(∂ΩN)

Σ

Σ

Uδ,ε

Uδ,ε

Figure 1. Left: the Dirichlet boundary ∂ΩD, the Neumann
boundary ∂ΩN , the interface Σ, and the tubular neighborhood
Uδ(∂Ω) = Uδ(∂ΩD) ∪ Uδ(∂ΩN ). Right: the set Uδ,ϵ ⊂ Uδ(∂ΩN ).

Define

(3.9) Uδ,ϵ = ∪t∈[0,δ]Ut,γ(t)(Σt)

with γ(t) = t+ ϵ for ϵ ∈ (0, ϵ0] and ϵ << δ, see Figure 2. Defining, for z ∈ Σ,

(3.10) Uδ,ϵ(z) = {x ∈ Uδ,ϵ : pΣ(x) = z}
where pΣ is the closest point mapping associated with Σ, we have Uδ,ϵ = ∪z∈ΣUδ,ϵ(z).

Note that Uδ,ϵ(z) = Uδ,ϵ∩p−1
Σ (z) ⊂ Uδ0(Σ)∩p−1

Σ (z), which is a subset of the 2 dimen-
sional normal space NΣ(z) to the d−2 dimensional tangent space TΣ(z) of Σ at z. In
the case d = 2, Σ consists of distinct points and in that case Uδ,ϵ ⊂ Uδ0(z) ⊂ p−1

Σ (z),
for δ0 small enough. Finally, let

(3.11) Uδ = Uδ(∂ΩD) ∪ Uδ,ϵ

The Cut Off Function. We will below take δ ∼ h and ϵ ∼ hα with α = d. Let
χ : Ω → [0, 1] be smooth such that

(3.12)


χ = 1 on ∂ΩD

χ = 0 on ∂ΩN \ Uϵ(Σ)

χ = 0 on Ω \ Uδ


∥∇χ∥L∞(Uδ\Uδ,ϵ) ≲ δ−1

∥∇nχ∥L∞(Uδ,ϵ) ≲ δ−1

∥∇Σχ∥L∞(Uδ,ϵ) ≲ 1

∥∇νχ∥L∞(Ut,γ(t)) ≲ (γ(t))−1 t ∈ [0, δ]
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Uδ(∂ΩD)

∂ΩD

Σ

Uε(Σ) ∂ΩN

Uδ,ε

∂ΩD

Σ

t

γ(t)

Σt

Ut,γ(t)(Σt)

ε

Figure 2. Left: Close up of the set Uδ,ϵ including Uϵ(Σ) ⊂ ∂ΩN .
Right: The set Σt and Ut,γ(t)(Σt).

Observe that in the definition above ∇Σ denotes the projection of the gradient
on the tangent plane of Σ. By the construction of χ, ∥∇Σχ∥L∞(Uδ,ϵ) is bounded
and depends only on ϵ, δ and the regularity of Σ.

Lemma 3.1. The cut off function χ satisfies the following estimate

(3.13) sup
z∈Σ

∥∇νχ∥2Uδ,ϵ(z)
≲ | ln(1 + δ/ϵ)|

and with

(3.14) δ ∼ h, ϵ ∼ hα

for 1 ≤ α ≲ 1 we obtain

(3.15) ∥∇νχ∥2Uδ,ϵ
≲ 1 + | ln(h)|

Proof. Using the bounds for ∇νχ we obtain

∥∇νχ∥2Uδ,ϵ(z)
=

∫
Uδ,ϵ(z)

|∇νχ|2 ≲
∫ δ

0

∫
Ut,t+ϵ(z)

(t+ ϵ)−2(3.16)

≲
∫ δ

0

(t+ ϵ)−1 = [ln(t+ ϵ)]δ0 = ln(1 + δ/ϵ)(3.17)

Estimate (3.15) follows directly from the definition of δ and ϵ. □
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3.3. The Regularized Problem. For ϵ ∈ (0, ϵ0] define the regularized form

Ah,ϵ(v, w) = (∇v,∇w)Ω − (∇nv, w)χ,∂Ω − (v,∇nw)∂ΩD
+ βh−1(v, w)∂ΩD

(3.18)

and define Ah,0 = Ah. We will show that the mapping [0, ϵ0] ∋ ϵ 7→ Ah,ϵ is
continuous for ϵ0 small enough, see Lemma 3.3 below for details.

For ϵ ∈ [0, ϵ0], define the regularized finite element method: find uh,ϵ ∈ Vh such
that

(3.19) Ah,ϵ(uh,ϵ, v) + sh(uh, v) = Lh(v) ∀v ∈ Vh

This method is not consistent, but we have the identity

Ah,ϵ(u− uh,ϵ, v) = Ah,ϵ(u, v)− Lh(v) + sh(uh, v)(3.20)

= sh(uh, v)− (gN , v)χ,∂ΩN
∀v ∈ Vh(3.21)

since using Green’s formula gives

Ah,ϵ(u, v) = (∇u,∇v)Ω − (∇nu, v)χ,∂Ω − (u,∇nv)∂ΩD
+ βh−1(u, v)∂ΩD

(3.22)

= −(∆u, v)Ω + (∇nu, v)∂Ω − (∇nu, v)χ,∂Ω(3.23)

− (u,∇nv)∂ΩD
+ βh−1(u, v)∂ΩD

(3.24)

= (f, v)Ω − (gD,∇nv)∂ΩD
+ βh−1(gD, v)∂ΩD

+ (gN , v)∂ΩN
− (gN , v)χ,∂ΩN

(3.25)

= Lh(v)− (gN , v)χ,∂ΩN
(3.26)

where we used the fact that χ = 1 on ∂ΩD to conclude that

(∇nu, v)∂Ω − (∇nu, v)χ,∂Ω = (∇nu, v)∂ΩN
− (∇nu, v)χ,∂ΩN

(3.27)

= (gN , v)∂ΩN
− (gN , v)χ,∂ΩN

(3.28)

3.4. Properties of the Bilinear Forms. We here summarize the basic results on
the bilinear forms and conclude with a proof of existence, uniqueness, and stability
of the finite element solutions.
Inverse and Trace Inequalities. Let us recall some inverse and trace inequalities.
Here P1(T ) denotes the set of polynomials of degree less than or equal to 1 on the
simplex T .

• Inverse inequalities (see [6, Section 1.4.3]),

(3.29) ∥∇v∥H1(T ) ≲ h−1
T ∥v∥L2(T ) ∀v ∈ P1(T )

and

(3.30) ∥v∥L∞(T ) ≲ h− d
2 ∥v∥L2(T ) ∀v ∈ P1(T )

• Trace inequalities (see [6, Section 1.4.3]),

(3.31) ∥v∥L2(∂T ) ≤ CT

(
h
−1/2
T ∥v∥L2(T ) + h

1/2
T ∥∇v∥T

)
∀v ∈ H1(T )

and

(3.32) ∥v∥L2(∂T ) ≤ Cth
−1/2
T ∥v∥L2(T ) ∀v ∈ P1(T )

• Inverse trace inequality on cut elements. For a simplex T such that T∩∂Ω ̸=
∅, there holds

(3.33) ∥v∥L2(T∩∂Ω) ≲ h
−1/2
T ∥v∥L2(T ) ∀v ∈ P1(T )
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Stabilization Estimates. For any two elements T1 and T2 in Th, sharing a face
F , we have the estimate

(3.34) ∥∇mv∥2T1
≲ ∥∇mv∥2T2

+ h3−2m∥[∇nv]∥2F m = 0, 1, v ∈ Vh

Repeated use of (3.34) leads to

(3.35) ∥∇v∥2Th
≲ ∥∇v∥2Ω + ∥v∥2sh v ∈ Vh

For sets ω0 ⊂ ω1 ⊂ Ω such that diam(ω1 \ω0) ≲ h, we may also derive the estimate

(3.36) ∥∇mv∥2Th(ω1)
≲ ∥∇mv∥2Th(ω0)

+ h3−2m∥[∇nv]∥2Fh(ω1)
m = 0, 1, v ∈ Vh

where Fh(ω1) denotes the interior faces of Th(ω1).
The Energy Norm. We equip the finite element space Vh with the energy norm

|||v|||2h = ∥∇v∥2Ω + ∥v∥2sh + h−1∥v∥2∂ΩD
(3.37)

where ∥v∥2sh := sh(v, v). In order to have the normal flux well defined on the
Dirichlet boundary we assume that

(3.38) v ∈ V = {v ∈ H1(Ω) : ∆v|Uδ0
∈ L2(Uδ0)}

where we recall, see (3.11), that supp(χ) ⊂ Uδ0 = Uδ0(∂ΩD)∪Uδ0,ϵ0 for all regular-
ization parameters ϵ ∈ [0, ϵ0]. The stabilization form sh is not defined on V , due to
the low regularity, and therefore we equip V with the weaker energy norm

(3.39) |||v|||2 = ∥∇v∥2Ω + h−1∥v∥2∂ΩD

Lemma 3.2. There is constant such that for all v ∈ V +Vh, w ∈ Vh, and ϵ ∈ [0, ϵ0],

(3.40) Ah,ϵ(v, w) ≲ |||v||| |||w|||h + |(∇nv, w)χ,∂Ω|

where we use the norm ||| · |||, which does not include the stabilization, on V + Vh.

Proof. To verify this estimate we start from the definition (3.18) of the regularized
form and using the Cauchy Schwarz inequality we get

Ah,ϵ(v, w) ≲ ∥∇v∥Ω∥∇w∥Ω + |(∇nv, w)χ,∂Ω|(3.41)

+ h−1/2∥v∥∂ΩD
h1/2∥∇nw∥∂ΩD

+ βh−1∥v∥∂ΩD
∥w∥∂ΩD

(3.42)

≲ |||v||| |||w|||h + |(∇nv, w)χ,∂Ω|(3.43)

We estimated h1/2∥∇nw∥∂ΩD
, with w ∈ Vh, using the inverse inequality

(3.44) h∥∇nw∥2∂ΩD
≲ ∥∇v∥2Th(∂ΩD) ≲ ∥∇w∥2Th

≲ ∥∇w∥2Ω + ∥w∥2sh ≲ |||w|||2h

where we first used the inverse trace inequality (3.33) and then the stabilization
estimate (3.35). □

We will now prove a bound on the error introduced by replacing Ah by its
regularized counterpart Ah,ϵ.

Lemma 3.3. There is a constant such that for all v, w ∈ Vh, and ϵ ∈ [0, ϵ0] with
ϵ0 ∼ h,

(3.45) |Ah,ϵ(v, w)−Ah(v, w)| ≲ ϵh1−d|||v|||h|||w|||h
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Proof. Using the definitions (2.16) and (3.18) of the forms Ah and Ah,ϵ we obtain

|Ah(v, w)−Ah,ϵ(v, w)| = |(∇nv, χw)∂ΩN
|(3.46)

≲ h1/2∥∇nv∥Uϵ(Σ)h
−1/2∥w∥Uϵ(Σ)(3.47)

≲ ϵh1−d|||v|||h|||w|||h(3.48)

where we used the fact that supp(χ) ∩ ∂ΩN ⊂ Uϵ(Σ), see (3.8). To estimate
h∥∇nv∥2Uϵ(Σ) we proceed in the same way as in (3.44), we first use an inverse

estimate and then the stablization (3.35),

h∥∇nv∥2Uϵ(Σ) ≲ h∥∇nv∥2Th(Uϵ(Σ))∩∂ΩN
≲ ∥∇v∥2Th(Uϵ(Σ)) ≲ ∥∇v∥2Th

≲ |||v|||21,h
(3.49)

Next to estimate h−1∥v∥2Uϵ(Σ) we pass over to the L∞ norm in order to extract an

ϵ factor and then we use suitable inverse bounds to pass to the energy norm.

h−1∥v∥2Uϵ(Σ) ≲ h−1ϵ∥v∥2L∞(Uϵ(Σ))(3.50)

≲ h−1ϵ∥v∥2L∞(Th(Uϵ(Σ)))(3.51)

≲ h−1ϵh−d∥v∥2Th(Uϵ(Σ))(3.52)

≲ h−1ϵh−d
(
h∥v∥2

∂ΩD∩T̃h(Uϵ(Σ))
+ h2∥∇v∥2T̃h(Uϵ(Σ))

)
(3.53)

≲ ϵh1−d
(
h−1∥v∥2∂ΩD

+ ∥∇v∥2Th

)
(3.54)

≲ ϵh1−d|||v|||2h(3.55)

Here T̃h(Uϵ(Σ)) is a slightly larger patch of elements such that the d−1 dimensional

measure of its intersection with the Dirichlet boundary satisfies |T̃h(Uϵ(Σ))∩∂ΩD| ∼
hd−1 ,which allows us to utilize the control available in |||v|||h at the Dirichlet
boundary and to employ a Poincaré inequality in (3.53), see the appendix in [3].
The patch Th(Uϵ(Σ)) does not in general satisfy Th(Uϵ(Σ)) ∩ ∂ΩD ∼ hd−1 and
therefore it is enlarged by adding a suitable number of face neighboring elements
in Th(∂ΩD). In the last step (3.55) we also used the stabilization (3.35). Note that
due to the assumption that ϵ ∈ [0, ϵ0] with ϵ0 ∼ h it follows from shape regularity

that there is a uniform bound on the number of elements in T̃h(Uϵ(Σ)). □

Lemma 3.3 is instrumental for the coercivity that we prove next.

Lemma 3.4. For β large enough and σ > 0, the forms Ah,ϵ + sh, h ∈ (h, h0],
ϵ ∈ [0, chd] with c small enough, are coercive

(3.56) |||v|||2h ≲ Ah,ϵ(v, v) + sh(v, v) v ∈ Vh

Proof. First we note that Ah,0 is coercive using standard techniques together with
the inverse estimate (3.44). Next using the bound (3.45) of Lemma 3.3, we obtain

Ah,ϵ(v, v) = Ah,0(v, v) +Ah,ϵ(v, v)−Ah,0(v, v)

≥ C1|||v|||2h − |Ah,ϵ(v, v)−Ah,0(v, v)|

≥ (C1 − C2ϵh
1−d)|||v|||2h

≳ |||v|||2h
where in the last step we choose ϵ ≤ chd with h ∈ (0, h0] and c small enough. □
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Using Lax-Milgram we conclude that for each ϵ ∈ [0, chd], there is a unique
solution uh,ϵ ∈ Vh to the regularized problem (3.19) such that

(3.57) |||uh,ϵ|||h ≲ sup
v∈Vh\{0}

Lh(v) ≲ ∥f∥H−1(Ω)+ ∥gN∥H̃−1/2(∂ΩN )+h−1/2∥gD∥∂ΩD

3.5. Technical Lemmas. In this section we collect some technical results that will
be useful in the analysis. More precisely we start with four technical lemmas before
proving Lemma 3.8 which is used to estimate the problematic term (∇nv, w)χ,∂Ω
in the regularized problem.

Lemma 3.5. There is a constant such that for all v ∈ Vh,

(3.58)

∫
Σ

∥v∥2L∞(Uδ0,ϵ0
(z)) ≲ (1 + | ln(h)|) |||v|||2h

Proof. 1. Recall that for z ∈ Σ, Uδ,ϵ(z) = {x ∈ Uδ,ϵ : pΣ(x) = z}, see (3.10), and
we have Uδ,ϵ = ∪z∈ΣUδ,ϵ(z). There are δ0 ∼ ϵ0 ∼ 1 such that δ ∈ (0, δ0], ϵ ∈ (0, ϵ0]
and

(3.59) Uδ,ϵ(z) ⊂ Uδ0,ϵ0(z)

We shall first show that there is a constant such that for all z ∈ Σ,

(3.60) ∥v∥2L∞(Uδ0,ϵ0
(z)) ≲ (1 + | ln(h)|)∥v∥2H1(Uδ0,ϵ0

(z)) + h2∥∇v∥2L∞(Uδ0,ϵ0
(z))

To that end note that Uδ0,ϵ0 has the following cone property: for each x ∈ Uδ0,ϵ0(z)
there is a cone (or sector since Uδ0,ϵ0 is two dimensional) Λr0(x) ⊂ Uδ0,ϵ0(z), with
vertex x, radius r0 ∼ δ0 ∼ 1, and opening angle θ0 ∼ 1. For x ∈ Uδ0,ϵ0(z) and
r, θ ∈ Λr0(x) we have the identity

(3.61) v(x) = v(r, θ)−
∫ r

0

∂rv(s, θ)ds

and the estimate

(3.62) v2(x) ≲ v2(r, θ) +

(∫ r0

0

∂rv(s, θ)ds

)2

We estimate the integral on the right hand side as follows(∫ r0

0

∂rv(s, θ)ds

)2

≲

(∫ ηh

0

∂rv(s, θ)ds

)2

+

(∫ r0

ηh

∂rv(s, θ)ds

)2

(3.63)

≲ (ηh)2∥∇v∥2L∞(Ληh)
+ | ln(d/ηh)|

∫ r0

ηh

(∂rv(s, θ))
2sds(3.64)

where for the second term on the right hand side we used the estimate(∫ r0

ηh

∂rv(s, θ)ds

)2

≲
∫ r0

ηh

s−1ds

∫ r0

ηh

(∂rv(s, θ))
2sds(3.65)

≲ | ln(d/ηh)|
∫ r0

ηh

(∂rv(s, θ))
2sds(3.66)

Combining (3.62) and (3.64), we get

v2(x) ≲ v2(r, θ) + (ηh)2∥∇v∥2L∞(Ληh)
+ | ln(r0/ηh)|

∫ r0

ηh

(∂rv(s, θ))
2sds(3.67)
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and integrating over Λr0(x) gives

|Λr0 |v2(x) ≲
∫ r0

0

∫ θ0

0

v2(r, θ)rdθdr + |Λr0 | (ηh)2∥∇v∥2L∞(Ληh(x))

(3.68)

+ | ln(d/ηh)|
∫ r0

0

∫ θ0

0

(∫ r0

ηh

(∂rv(s, θ))
2sds

)
rdθdr(3.69)

≲ ∥v∥2Λr0 (x)
+ |Λr0 | (ηh)2∥∇v∥2L∞(Ληh(x))

+ d2| ln(d/ηh)| ∥∇v∥2Λr0 (x)
(3.70)

Here r0 ∼ 1, and |Λr0 | ∼ r20 ∼ 1 is independent of x, and thus we obtain

v2(x) ≲ ∥v∥2Λr0 (x)
+ | ln(d/ηh)|∥∇v∥2Λr0 (x)

+ (ηh)2∥∇v∥2L∞(Ληh(x))
(3.71)

which leads to

∥v∥2L∞(Uδ0,ϵ0
(z)) ≲ (1 + | ln(h)|)∥v∥2H1(Uδ0,ϵ0

(z)) + h2∥∇v∥2L∞(Uδ0,ϵ0
(z))(3.72)

and thus (3.60) holds.
2. d = 2. In the two dimensional case d = 2, the interface Σ consist of a set of
isolated points and we may cover the two dimensional set Uδ0,ϵ0(z) by a patch of
elements Th(Uδ0,ϵ0), and then apply the element wise inverse inequality (3.30),

∥v∥2L∞(Uδ0,ϵ0
(z)) ≲ (1 + | ln(h)|)∥v∥2H1(Uδ0,ϵ0

(z)) + h2∥∇v∥2L∞(Uδ0,ϵ0
(z))

(3.73)

≲ (1 + | ln(h)|)∥v∥2H1(Th(Uδ0,ϵ0
(z))) + h2∥∇v∥2L∞(Th(Uδ0,ϵ0

(z)))(3.74)

≲ (1 + | ln(h)|)∥v∥2H1(Th(Uδ0,ϵ0
(z))) + ∥∇v∥2Th(Uδ0,ϵ0

(z)))(3.75)

≲ (1 + | ln(h)|)|||v|||2h(3.76)

where we finally used the stabilization estimate (3.35). This completes the proof in
the case d = 2.
3. d ≥ 3. Here, the set Uδ0,ϵ0(z), for a given z ∈ Σ, is a subset of a two dimensional
plane, that cuts through the d dimensional elements in a general way, which requires
a more refined argument since an element wise trace inequality can not be applied
due to the presence of cut elements. We start by integrating (3.60) over Σ,

∫
Σ

∥v∥2L∞(Uδ0,ϵ0
(z)) ≲ (1 + | ln(h)|)

∫
Σ

∥v∥2H1(Uδ0,ϵ0
(z)) + h2

∫
Σ

∥∇v∥2L∞(Uδ0,ϵ0
(z))

(3.77)

≲ (1 + | ln(h)|)∥v∥2H1(Th(Uδ0,ϵ0
)) + ∥∇v∥2Th(Uδ0,ϵ0

)(3.78)

≲ (1 + | ln(h)|)∥v∥2H1(Th(Uδ0,ϵ0
))(3.79)

≲ (1 + | ln(h)|)|||v|||2h(3.80)

Here we used the inverse estimate

h2

∫
Σ

∥∇v∥2L∞(Uδ0,ϵ0
(z)) ≲ ∥∇v∥2Th(Uδ0,ϵ0

)(3.81)
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To verify (3.81) we first note that, with w = ∇v, we have for each z ∈ Σ,

∥w∥2L∞(Uδ0,ϵ0
(z)) = max

T∈Th(Uδ0,ϵ0
(z))

∥w∥2L∞(Uδ0,ϵ0
(z)∩T )(3.82)

≲
∑

T∈Th(Uδ0,ϵ0
(z))

∥w∥2L∞(Uδ0,ϵ0
(z)∩T )(3.83)

≲
∑

T∈Th(Uδ0,ϵ0
)

∥w∥2L∞(T )1T (z)(3.84)

≲
∑

T∈Th(Uδ0,ϵ0
)

h−d∥w∥2T 1T (z)(3.85)

where 1T (z) = 1 if Uδ0,ϵ0(z) ∩ T ̸= ∅ and 0 otherwise, and we employed an inverse
inequality in the last step. We next note that 1T : Σ → {0, 1} is the characteristic
function of the closest point projection pΣ(T ) of T on Σ, and therefore

(3.86)

∫
Σ

1T ≲ hd−2

Integrating, (3.85) over Σ we get∫
Σ

∥w∥2L∞(Uδ0,ϵ0
(z)) ≲

∫
Σ

∑
T∈Th(Uδ0,ϵ0

)

h−d∥w∥2T 1T (z)(3.87)

≲
∑

T∈Th(Uδ0,ϵ0
)

h−d∥w∥2T
∫
Σ

1T (z)(3.88)

= h−2∥w∥2Th(Uδ0,ϵ0
)(3.89)

where we used (3.86). This completes the verification of (3.81).
□

Lemma 3.6. Let χ be defined by (3.12), then there is a constant such that for all
v ∈ Vh,

(3.90) ∥(∇χ)v∥Uδ,ϵ
≲ (1 + | ln(h)|)|||v|||h

Proof. Splitting ∥(∇χ)v∥2Uδ,ϵ
into three contributions corresponding to the direc-

tions of the derivative relative to the interface Σ we obtain

∥(∇χ)v∥2Uδ,ϵ
≲ ∥(∇Σχ)v∥2Uδ,ϵ

+ ∥(∇nχ)v∥2Uδ,ϵ
+ ∥(∇νχ)v∥2Uδ,ϵ

(3.91)

≲ ∥v∥2Uδ,ϵ
+ δ−2∥v∥2Uδ,ϵ

+ ∥(∇νχ)v∥2Uδ,ϵ
(3.92)

≲ ∥v∥2Uδ,ϵ
+

∫
Σ

∥v∥2L∞(Uδ,ϵ(z))
+ (1 + | ln(h)|)2|||v|||2h(3.93)

≲ (1 + | ln(h)|2) |||v|||2h(3.94)

where we for the second term (3.92) used the facts |Uδ,ϵ(z))| ≲ δ2 ≲ h2, ∥v∥L∞(Uδ,ϵ(z)) ≤
∥v∥L∞(Uδ0,ϵ0

(z)) followed by (3.58), and for the third term we used the estimate

(3.95) ∥(∇νχ)v∥Uδ,ϵ
≲ (1 + | ln(h)|)|||v|||h

which we verify next. This argument completes the proof of (3.90).
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To verify (3.95) we use Hölder’s inequality twice, first on Uδ,ϵ(z) and then on Σ,
employ (3.15), and finally (3.58),

∥(∇νχ)v∥2Uδ,ϵ
=

∫
Σ

∥(∇νχ)v∥2Uδ,ϵ(z)
(3.96)

≲
∫
Σ

∥∇νχ∥2Uδ,ϵ(z)
∥v∥2L∞(Uδ,ϵ(z))

(3.97)

≲
(
sup
z∈Σ

∥∇νχ∥2Uδ,ϵ(z)

)∫
Σ

∥v∥2L∞(Uδ,ϵ(z))
(3.98)

≲ (1 + | ln(h)|)
∫
Σ

∥v∥2L∞(Uδ,ϵ(z))
(3.99)

≲ (1 + | ln(h)|)
∫
Σ

∥v∥2L∞(Uδ0,ϵ0
(z))(3.100)

≲ (1 + | ln(h)|)2|||v|||2h(3.101)

Thus (3.95) holds. □

Lemma 3.7. There is a constant such that for all w ∈ Vh,

(3.102) h−2∥w∥2Th(Uδ)
+ ∥∇w∥2Th(Uδ)

≲ |||w|||2h
which holds for δ = ηh with η a sufficiently small constant.

Proof. First observe that by construction no point in Uδ is further than O(δ) from
∂ΩD. Using estimate (3.36) followed by the Poincaré inequality

∥w∥2Th(Uδ(∂ΩD)) ≲ δ∥w∥∂ΩD
+ δ2∥∇w∥Th(Uδ(∂ΩD))(3.103)

see appendix [3], we obtain

∥w∥2Th(Uδ)
≲ ∥w∥2Th(Uδ(∂ΩD)) + ∥w∥2Th(Uδ,ϵ)

(3.104)

≲ ∥w∥2Th(Uδ(∂ΩD)) + h3∥[∇nw]∥2Fh(∂Ω∩Uδ)
(3.105)

≲ δ∥w∥∂ΩD
+ δ2∥∇w∥Th(Uδ(∂ΩD)) + h2∥∇w∥2Th(∂Ω∩Uδ)

(3.106)

where we used the estimate

(3.107) h∥[∇nw]∥2Fh(∂Ω∩Uδ)
≲ ∥∇v∥2Th

Applying now (3.35) and using δ ∼ h we conclude that

(3.108) h−2∥w∥2Th(Uδ)
+ ∥∇w∥2Th(Uδ)

≲ h−1∥w∥2∂ΩD
+ ∥∇w∥2Ω + ∥w∥2sh ≲ |||w|||2h

□

Lemma 3.8. There is a constant such that for all v ∈ V, vh ∈ Vh, and w ∈ Vh,

(3.109)

(∇n(v − vh), w)χ,∂Ω ≲
(
(1 + | ln(h)|)∥∇(v − vh)∥Uδ

+ h∥∆v∥Uδ
+ h1/2∥[∇nvh]∥Fh∩Uδ

)
|||w|||h

Proof. For v ∈ V , see (3.38), we have ∆v ∈ L2(supp(χ)) ⊂ L2(Uδ0) and using
Green’s formula

(∆v, χw)Ω = (∇nv, χw)∂Ω − (∇v, (∇χ)w)Ω − (∇v, χ∇w)Ω(3.110)
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For vh ∈ Vh we use Green’s formula element wise

(∇vh, χ∇w)Ω = (∇nvh, χw)∂Ω + ([∇nvh], χw)Fh∩Ω(3.111)

− (∆vh, χw)Th∩Ω − (∇vh, (∇χ)w)Ω(3.112)

Combining the formulas and rearranging the terms we obtain

(∇n(v − vh), w)χ,∂Ω = (∇(v − vh), χ∇w)Ω + (∇(v − vh), (∇χ)w)Ω(3.113)

+ (∆v, χw)Ω + ([∇nvh], χw)Fh∩Ω(3.114)

To estimate the right hand side we may directly estimate the first two terms using
the Cauchy Schwarz inequality and (3.102),

(∇(v − vh), χ∇w)Ω ≲ ∥∇(v − vh)∥Uδ
∥∇w∥Uδ

≲ ∥∇(v − vh)∥Uδ
|||w|||h(3.115)

(∆v, χw)Ω ≲ h∥∆v∥Uδ
h−1∥w∥Uδ

≲ h∥∆v∥Uδ
|||w|||h(3.116)

Next using the Cauchy Schwarz inequality, the element wise trace inequality (3.31),

([∇nvh], χw)Fh∩Ω ≲ h1/2∥[∇nvh]∥Fh∩Uδ
h−1/2(h−1∥w∥2Th(Uδ)

+ h∥∇w∥2Th(Uδ)
)1/2

(3.117)

≲ h1/2∥[∇nvh]∥Fh∩Uδ
(h−2∥w∥2Th(Uδ)

+ ∥∇w∥2Th(Uδ)
)1/2(3.118)

≲ h1/2∥[∇nvh]∥Fh∩Uδ
|||w|||h(3.119)

where for the last inequality we employed (3.102). For the remaining term we use
the Cauchy Schwarz inequality, followed by (3.102) and (3.90),

(∇(v − vh), (∇χ)w)Ω ≲ ∥∇(v − vh)∥Uδ

(
∥(∇χ)w∥Uδ(∂ΩD) + ∥(∇χ)w∥Uδ,ϵ

)(3.120)

≲ ∥∇(v − vh)∥Uδ

(
δ−1∥w∥Uδ(∂ΩD) + ∥(∇χ)w∥Uδ,ϵ

)
(3.121)

≲ (1 + | ln(h)|)∥∇(v − vh)∥Uδ
|||w|||h(3.122)

Collecting the bounds we arrive at

(∇n(v − vh), w)∂Ω ≲
(
(1 + | ln(h)|)∥∇(v − vh)∥Uδ

(3.123)

+ h∥∆v∥Uδ
+ h1/2∥[∇nvh]∥Fh∩Uδ

)
|||w|||h(3.124)

which completes the proof of (3.109).
□

3.6. Interpolation. Let E : Hs(Ω) → Hs(Rd) be a continuous extension operator.
Define the interpolant πh : H1(Ω) → Vh by πh = πh,Cl ◦E where πh,Cl : L

2(Ωh) →
Vh is the Clement interpolant and Ωh = ∪T∈Th

T . Using the interpolation results
for the Clement interpolation operator and the stability of the extension operator
we conclude that

(3.125) ∥v − πhv∥Hm(Ω) ≲ hs−m∥v∥Hs(Ω) 0 ≤ m ≤ s ≤ 2

For the energy norm (3.39) it holds

(3.126) |||v − πhv|||+ ∥πhv∥sh ≲ hs−1∥v∥Hs(Ω)



16 ERIK BURMAN PETER HANSBO MATS G. LARSON

Proof. With ρ = v − πhv we have

(3.127) |||ρ|||20,h ≲ ∥∇ρ∥2Ω + h−1∥ρ∥2∂ΩD

Using (3.125) we directly have

(3.128) ∥∇ρ∥2Ω ≲ h2(s−1)∥u∥2Hs(Ω)

and using the trace inequality

(3.129) ∥v∥2∂ΩD
≲ δ−1∥v∥2Uδ(∂ΩD) + δ∥∇v∥2Uδ(∂ΩD)

with δ ∼ h we obtain

h−1∥ρ∥2∂ΩD
≲ h−1(δ−1∥ρ∥2Uδ(∂ΩD) + δ∥∇ρ∥2Uδ(∂ΩD))(3.130)

≲ h−2∥ρ∥2Uδ(∂ΩD) + ∥∇ρ∥2Uδ(∂ΩD)(3.131)

≲ h2(s−1)∥v∥2Hs(Ω)(3.132)

Finally, we have with πh,Cl∇Ev ∈ V d
h ,

∥πhv∥2sh ≲ h∥[∇πhv − πh,Cl∇Ev]∥2Fh
(3.133)

≲ ∥∇πhv − πh,Cl∇Ev∥2Th
(3.134)

≲ ∥∇n(πhv − v)∥2Th
+ ∥πh,Cl∇Ev −∇Ev∥2Th

≲ h2(s−1)∥v∥2Hs(Ω)(3.135)

In the first inequality the inverse inequality

(3.136) h∥[∇w]∥2F ≲ ∥∇w∥2T1
+ ∥∇w∥2T2

, w ∈ Vh|T1∪T2

where T1 and T2 are the two elements that share face F . □

3.7. Error Estimates.

Theorem 3.9. Let u ∈ Hs(Ω), s ∈ [1, 3/2], be the solution to (1.1)-(1.2) and uh

the finite element approximation defined by (2.20), then

|||u− uh|||+ ∥uh∥sh ≲ hs−1
(
(1 + | ln(h)|)∥u∥Hs(Ω) + ∥gN∥H̃s−3/2(∂ΩN )

)
+ h
(
∥f∥Uδ

+ ∥f∥H−1(Ω) + ∥gN∥H̃−1/2(∂ΩN ) + ∥gD∥H1/2(∂ΩD)

)
The logarithmic factor is present only for the case of mixed Dirichlet-Neumann
boundary conditions.

Proof. We split the error as follows

|||u− uh|||+ ∥uh∥sh ≲ |||u− πhu|||h + |||πhu− uh|||h + ∥uh∥sh
≲ |||u− πhu|||h︸ ︷︷ ︸

≲hs−1∥u∥Hs(Ω)

+ |||πhu− uh,ϵ|||h︸ ︷︷ ︸
I

+ |||uh,ϵ − uh|||h︸ ︷︷ ︸
II

+ ∥uh∥sh︸ ︷︷ ︸
III

where uh,ϵ is the solution to the regularized problem (3.19) and we used the inter-
polation error estimate (3.126) to estimate the first term on the right hand side.
Term I. The following estimate holds

(3.137) |||πhu−uh,ϵ|||h ≲ (1+| ln(h)|)hs−1
(
∥u∥Hs(Ω)+∥gN∥H̃s−3/2(∂ΩN )

)
+h∥f∥Uδ

To verify the estimate let ρh = πhu− uh,ϵ. Using coercivity (3.56) we obtain

|||ρh|||2h ≲ Ah,ϵ(ρh, ρh) + sh(ρh, ρh)
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and then employing the definition (3.19) of uh,ϵ we obtain

Ah,ϵ(πhu− uh,ϵ, ρh) + sh(πhu− uh,ϵ, ρh)

(3.138)

= Ah,ϵ(πhu, ρh)− Lh(ρh) + sh(πhu, ρh)

(3.139)

= Ah,ϵ(πhu− u, ρh) +Ah,ϵ(u, ρh)− Lh(ρh) + sh(πhu, ρh)

(3.140)

≲ (|||πhu− u|||+ ∥πhu∥sh)|||ρh|||h + |(∇n(πhu− u), ρh)χ,∂Ω|
(3.141)

+ |Ah,ϵ(u, ρh)− Lh(ρh)|
(3.142)

≲ hs−1∥u∥Hs(Ω)|||ρh|||h + (1 + | ln(h)|)hs−1∥u∥Hs(Ω) + h∥f∥Uδ
)|||ρh|||h

(3.143)

+ (1 + | ln(h)|)|hs−1∥gN∥H̃s−3/2(∂ΩN )|||ρh|||h
(3.144)

where we used the continuity (3.40) in (3.141), and in (3.143) we used the inter-
polation error estimate (3.126) to estimate the first term and then the following
estimates

|(∇n(πhu− u), ρh)χ,∂Ω| ≲
(
(1 + | ln(h)|)hs−1∥u∥Hs(Ω) + h∥f∥Uδ

)
|||ρh|||h(3.145)

|Ah,ϵ(u, ρh)− Lh(ρh)| ≲ (1 + | ln(h)|)hs−1∥gN∥H̃s−3/2(∂ΩN )|||ρh|||h(3.146)

(3.145). Using (3.109) followed by the interpolation estimate (3.126),

|(∇n(πhu− u), ρh)χ,∂Ω|(3.147)

≲
(
(1 + | ln(h)|)∥∇(u− πhu)∥Uδ

(3.148)

+ h∥∆u∥Uδ
+ h1/2∥[∇nπhu]∥Fh∩Uδ

)
)
|||ρh|||h(3.149)

≲
(
(1 + | ln(h)|)hs−1∥u∥Hs(Ω) + h∥f∥Uδ

)
)
|||ρh|||h(3.150)

where we used the fact ∆u = −f . (3.146). Starting from the identity (3.21) we
get

|Ah,ϵ(u, ρh)− Lh(ρh)| = |(gN , χρh)∂ΩN
|(3.151)

≲ ∥gN∥H̃s−3/2(∂ΩN )∥χρh∥H3/2−s(∂ΩN )(3.152)

To estimate ∥χρh∥H3/2−s(∂ΩN ) we use a trace inequality on Uδ0(∂ΩN )),

∥χρh∥H3/2−s(∂ΩN ) ≲ ∥χρh∥H2−s(Uδ0
(∂ΩN ))(3.153)

In order to estimate the right hand side using the available bounds we employ the
interpolation between norms estimate

(3.154) ∥v∥Hγ(ω) ≲ ∥v∥1−t
Hs1 (ω)∥v∥

t
Hs2 (ω)

for t ∈ [0, 1] and γ = (1 − t)s1 + ts2. In our case γ = 2 − s ∈ [1/2, 1] and we take
s1 = 0 and s2 = 1, which gives t = 2−s. Observing that supp(χ)∩Uδ0(∂ΩN ) ⊂ Uδ,ϵ



18 ERIK BURMAN PETER HANSBO MATS G. LARSON

we get

∥χρh∥H2−s(Uδ,ϵ) ≲ ∥χρh∥s−1
H0(Uδ,ϵ)

∥χρh∥2−s
H1(Uδ,ϵ)

(3.155)

≲
(
(1 + | ln(h)|)h|||ρh|||h

)s−1(
(1 + | ln(h)|)|||ρh|||h

)2−s

(3.156)

≲ (1 + | ln(h)|)hs−1|||ρh|||h(3.157)

Here we used the following two estimates. First

∥ρh∥2Uδ,ϵ
=

∫
Σ

∥ρh∥2Uδ,ϵ(z)
(3.158)

≲
∫
Σ

h2∥ρh∥2L∞(Uδ,ϵ(z))
(3.159)

≲
∫
Σ

h2∥ρh∥2L∞(Uδ0,ϵ0
(z))(3.160)

≲ h2(1 + | ln(h)|)|||ρh|||21,h(3.161)

where we at last used (3.58). Second

∥χρh∥H1(Uδ,ϵ) ≲ ∥χρh∥Uδ,ϵ
+ ∥(∇χ)ρh∥Uδ,ϵ

+ ∥χ∇ρh∥Uδ,ϵ
(3.162)

≲ (1 + | ln(h)|)|||ρh|||h(3.163)

where we used (3.90) and (3.102). This completes the bound for Term I.
Term II. For ϵ ∼ hα with α = d, we shall prove the estimate

(3.164) |||uh,ϵ − uh|||h ≲ h
(
∥f∥H−1(Ω) + ∥gN∥H̃(∂ΩN ) + ∥gD∥∂ΩD

)
We start once again with coercivity, this time of Ah + sh, using the notation ζh =
uh,ϵ − uh we have

|||ζh|||2h ≲ Ah(ζh, ζh) + sh(ζh, ζh)(3.165)

Then using the definition of the method and estimate (3.45) we obtain

|||ζh|||2h ≲ Ah(uh,ϵ − uh, ζh) + sh(uh,ϵ − uh, ζh)

(3.166)

= Ah(uh,ϵ, ζh) + sh(uh,ϵ, ζh)− Lh(ζh)(3.167)

= Ah(uh,ϵ, ζh)−Ah,ϵ(uh,ϵ, ζh)(3.168)

≲ ϵh1−d|||uh,ϵ|||h|||ζh|||h(3.169)

≲ hα+1−d
(
∥f∥H−1(Ω) + ∥gN∥H̃−1/2(∂ΩN ) + h−1/2∥gD∥H1/2(∂ΩD)

)
|||ζh|||h(3.170)

≲ h
(
∥f∥H−1(Ω) + ∥gN∥H̃−1/2(∂ΩN ) + ∥gD∥H1/2(∂ΩD)

)
|||ζh|||h(3.171)

for α = d, where we used the stability estimate (3.57).
Term III. We finally have the following estimate for the stabilization term

∥uh∥sh ≤ ∥uh − uh,ϵ∥sh + ∥πhu− uh,ϵ∥sh + ∥πhu∥sh(3.172)

= |||ζh|||h + |||ρh|||h + ∥πhu∥sh(3.173)

where the first two terms are estimated in (3.164) and (3.137) and the third by the
interpolation estimate (3.126).
Conclusion. The theorem now follows by collecting the bounds for the terms I,
II, and III. □
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Remark 3.1. Observe that the logarithmic factor can be traced to Lemma 3.5,
Lemma 3.6 and (3.146) all of which are invoked only for the case of mixed boundary
conditions
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