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1. Introduction16

Uncovering the underlying mechanisms of spatial cognition involves a broad spectrum of research ranging17

from experimental studies with animals and humans to neurocomputational modelling. Spatial cognition in18

its broadest interpretation must solve various problems including object detection (Cavanagh, 2011), visual19

attention (Carrasco, 2011), eye- and body-movements (Land, 2009), as well as spatial memory and navigation20

(Burgess, 2008). This combination of tasks requires an intimate coupling between visual perception and21

cognition as outlined in the seminal work of Ballard et al. (1997), which suggests a variable binding of22

objects in the world to internal cognitive programs through deictic (”do-it-where-I’m-looking”) strategies.23

In visuospatial tasks, the issue of spatial reference frames also comes into play: While visual information is24

initially processed in a retinal reference frame, grasping often relies on body or limb centred reference frames25

(Pouget & Sejnowski, 1997), and navigation can even recruit world-centred (allocentric) reference frames26

(Avraamides & Kelly, 2008).27

We propose that integrating mechanistic models into larger scale cognitive system models is required to28

explain such high-level cognitive functions. An example of this in a related domain is the Spaun architecture29

(Eliasmith et al., 2012), which implements a large-scale spiking network to output physical movements of30

a virtual robotic arm in a versatile set of cognitive tasks like digit recognition, serial working memory, or31

mental arithmetic. In the context of spatial cognition, previous bio-inspired models mostly focus on spatial32

navigation (Becker & Burgess, 2000; Byrne et al., 2007) and a few modelling approaches also exist in the field33

of bio-inspired robots, although with varying biological plausibility (Antonelli et al., 2014; Moulin-Frier et al.,34

2018). As overt behavior is typically the result of a coordinated activation involving many parts of the brain,35

attempts are required to not only integrate models, but also to improve the understanding of function across36

brain parts, which is limited when neurocomputational models are only studied in isolation.37

A particular aspect we are interested in is the ability of humans to guide attention by long-term memory.38

Experimental studies have revealed that the hippocampus, via the parietal cortex, contributes to object39

detection (Summerfield et al., 2006; Salsano et al., 2021). However, most experimental studies and computa-40

tional models that study attention and vision typically direct attention based on visual cues, but not based41

on long-term memory. From a conceptual point of view, the necessity for such an interaction of vision and42

memory has previously been outlined by Epstein et al. (2017), who argued that an effective use of a cognitive43

map requires to anchor such a map to the world. To the best of our knowledge, this interplay of memory and44

vision in a spatial context is yet to be explored by neurocomputational models.45

In order to explore this interaction, we introduce the Spacecog model as a systems-level approach to46

spatial cognition and shed light on how multiple brain areas might interact with each other to display key47

elements of spatial memory and object detection. Built on the foundation of previous work done under48

the European research project ”Spatial Cognition” (Hamker, 2015), Spacecog builds upon three individual49

neurocomputational models: A model of attention including object recognition and object detection (Beuth,50
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2019), a model of perisaccadic space perception (Bergelt & Hamker, 2019), and a model of spatial memory51

and imagery (Bicanski & Burgess, 2018). Through this integration, we propose how parietal cortical areas52

could interface with visual and long-term memory areas to form a complex understanding of the surrounding53

environment. As visual information is initially encoded in a retinocentric reference frame the question arises54

how spatial memory, stored in a world-centered reference frame, can guide visual perception.55

The individual parts of the Spacecog model are anatomically constrained and, as shown by the original56

publications, replicate experimental findings of neural mechanisms responsible for vision, attention, eye57

movements, and memory recall. By combining them into a large-scale neurocomputational model of spatial58

cognition, we aim to bridge the gap between previously disparate lines of research and particularly explore59

the putative role of the parietal cortex interfacing vision and memory. Acting as a case study for an increased60

understanding of the integration of brain areas, we propose how the brain deals with complex tasks in our61

everyday environment. We test the model on a functional level in a real-world like virtual environment, in62

which a neuro-cognitive agent has the task to successfully locate, encode, recall and re-localise objects in a63

realistic scene.64

2. Methods65

The neurocomputational model has been used to perform visuospatial computations for a neuro-cognitive66

agent (Figure 1a) which operates in a virtual environment (Figure 1b). We next introduce the virtual67

environment and explain the model and its functions.68

2.1. Virtual Environment69

The Unity game engine3 was used to create the spatial environment (a child’s room) and a cognitive70

agent, which we will refer to as Felice. Felice is connected to the neural network through a custom network71

interface built with Google’s protocol buffers4. This extra step allows for the computational network to72

run on a separate Linux server, while Unity is running on a Windows computer, distributing the workload.73

Alternatively, it is possible to use virtualisation techniques (e.g. the Windows Subsystem for Linux, WSL2) to74

run the whole model on a single machine.75

Pictured in Figure 1b;c, the main feature of the environment is a large desk with several toys placed on76

top, which can be recognised, remembered, and recalled by Felice. During simulations, Felice is externally77

instructed to walk into the vicinity of a random target object, which is placed among others on her desk. She78

first localises and encodes this object into memory, and is then instructed to walk to a different location.79

Once arrived, Felice will use object identity to recall information about the object location from memory.80

This subsequently allows Felice to walk back to the original position and to visually re-localise the object.81

3https://unity.com/
4https://developers.google.com/protocol-buffers
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By default, objects in the virtual environment are subject to a perspectival projection, which results from82

a 3D world being projected onto a 2D camera plane. This projection, however, results in artefacts of distorted83

proportions of objects, especially in the corners of an image. While the model can tolerate small deformations84

and still performs well in such cases, we mitigate any potential issues by introducing a spherical projection85

shader to more closely mimic human vision and to ensure position-invariant object proportions in the visual86

field (Figure 1c).87

The visual, perceptual input from the virtual environment (as 408x308p colour images) is processed by88

the computational model, which returns commands for specific motor actions like positional changes (rotation89

and translation) or eye movements. Therefore, Felice can perceive objects from different angles and distances,90

as well as under different lighting. This creates a challenging, real-world-like environment for her to act in.91

Figure 1: The virtual environment. a) The virtual environment provides sensory information which is sent to the model. The

neural network then evaluates these data to form an internal, dynamic representation of the environment and outputs motor

commands to be performed by the agent. b) The child’s room of the cognitive agent called Felice. She is able to navigate and

shift gaze as well as locate, remember, and recall multiple objects in this environment. c) Example of a visual image from the

viewpoint of the agent. For simplicity, we do not model different resolutions of an object with respect to retinal eccentricity and

also only use monocular vision (single eye camera).
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2.2. Neurocomputational Model92
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Figure 2: The Spacecog neurocomputational model. Different parts of the model strongly interact with each other based on

anatomical constraints and functional purposes. The red and yellow parts of the model cover object detection and saccade

planning, respectively. PFC provides a feature-based top-down bias to V4/IT neurons and information about object identity to

PRo neurons, which are part of spatial long-term memory in MTL (blue). Attention emerges by the inherent reentrant dynamics

in this system but is biased by the different top-down directed signals. Information from the saccade plan (CD) is sent to LIP

(green) through XFEF, where it is transformed into a head-centred reference frame with an eye position (EP) signal from the VR.

Object location information is also transformed from an eye-centred to a head-centred reference frame in LIP and stored in a

parietal priority map (Xh). This information is further passed to PW, where it is transformed into a world-centred reference

frame via RSC (green) using head-direction. Object position, object identity, spatial boundaries, and the position of the agent in

the room (place field activity) are encoded into memory in MTL. During memory recall, world-centred information from MTL

is fed back to PWo via RSC and further into Xh, from where it acts as a spatial attention signal in V4/IT via LIP and FEF.

If neural activity in the FEF movement (FEFm) cells exceeds a threshold, a saccade is triggered to the location indicated by

the FEFm cells. The shift of the eyes is externally determined by saccade generator affecting the input image that visually

samples the world. On the top-left, a lateral view on the brain areas is given. Not depicted is PW, which is postulated to be

located in the precuneus. Brain image from Smith Breault (2020). Abbreviations: V1 - primary visual cortex, V4 - fourth

visual cortex, IT - intraparietal cortex, PFC - prefrontal cortex, FEF - frontal eye fields (with visual, visuomovement, movement

cell characteristics), LIP - lateral intraparietal cortex, EP - eye position, CD - corollary discharge, Xh - parietal priority map,

PW - parietal window (objects, boundaries), HD - head direction cells, RSC - retrosplenial cortex, TR - transformation circuit

(objects, boundaries), MTL - medial temporal lobe, BVC - boundary vector cells, OVC - object vector cells, PR - perirhinal

neurons (objects, boundaries), PC - place cells. Solid arrows denote fully connected neural populations, while dotted arrows show

connections which require additional (external) cues.
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Spatial cognition is a large field of research. We here specifically aim to address the interplay of visuospatial93

and memory components. This requires an integration of object memory with visual perception including94

eye-centred visual processes, world-centred information of objects and space in long-term memory, as well as95

visual attention and object detection. For this, three individual models are integrated to form a large-scale96

neurocomputational model (Figure 2). These biologically rooted models were previously described in detail97

and have been extensively validated and compared with human and macaque experimental data. Even though98

some of these data are from different species, the model can be considered being a generic model of processes99

that are likely similar among different species.100

Our integrated model can operate in two directions corresponding to processes of encoding and mental101

imagery: 1) In encoding processes, an object is searched by the agent via means of feature-based attention102

which alters the response profile of object cells in area V4/IT of the visual cortex. At the same time, this103

V4/IT information drives the frontal eye fields (FEF) for saccade target selection. Spatial information about104

this object is transformed from an eye-centred reference frame into a head-centred reference frame via the105

lateral intraparietal cortex (LIP) and, after being combined with environmental information in the parietal106

window (PW), transformed into a world-centred reference frame via the retrosplenial transformation circuit107

(RSC/TR). For long-term memory storage, this combined information of objects and space is encoded in an108

attractor network in the medial temporal lobe (MTL). 2) In processes of mental imagery, neural patterns109

from a previous encoding phase are re-instated in MTL by a cue-based memory retrieval using object identity.110

The retrieved patterns contain spatial information of the object and agent during encoding (their relative111

location to each other and their absolute locations relative to the environment). They are used for spatial112

navigation (here only the navigational goal) and furthermore transformed from world-centred into eye-centred113

reference frames via RSC and LIP for attentional control in FEF.114

2.2.1. Object Recognition115

To implement the capability of recognising and localising objects, the visual part of the computational116

model incorporates key elements of the ventral stream in the primate brain (Beuth, 2019). The input to the117

model is the agent’s current visual field, which is a monocular RGB-image. Only daylight vision is considered,118

which in primates is represented by L,M, and S cones in the retina to process long (L), middle (M) and short119

(S) wavelengths of the visible light spectrum. For this purpose, the image is processed in area V1, which120

includes neurons organised in three channels. These channels are arranged in a retinotopic fashion and include121

cells for the red-green (L-M) and blue-yellow (LM-S) colour contrasts which are commonly found in the lateral122

geniculate nucleus (LGN) (Gegenfurtner & Kiper, 2003). In addition, the channels contain oriented edges123

which are derived from the image using Gabor filters (Jones & Palmer, 1987). Thus, they represent neurons124

with receptive fields commonly found in primary visual cortex (V1) simple cells (Jones & Palmer, 1987). The125

low level colour and orientation features within the field of view are then fed into higher visual areas for126

further processing (Figure 2, red parts).127
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Figure 3: Object localisation for the green crane. Area V4/IT L2/3 consists of 30 neuronal layers/planes. Each plane encodes

cells representing an object from a particular view-point (view-tuned cells). The number of planes is a result of the training

procedure, as for each of the three objects weights were calculated for five different rotations and two sizes (here shown for

the green crane). Thus, for each object we only use 10 images for training. The sum of neuronal activity in V4/IT L2/3 over

all planes/objects (left) as well as activity in the individual planes for the green crane (right) are shown. When the agent is

searching for the green crane (denoted by the red square), these planes are subject to feature-based attention from the prefrontal

cortex. Their neural activity reflects the match of parts of the encoded object with the particular visual image, and the gain via

feature-based attention.

Object recognition requires more narrowly tuned cells that respond selectively to an object or parts of it.128

Hence, V1 features need to be combined in higher visual areas by learning useful representations of objects.129

In our model, we simulate a higher visual area (V4/IT; Figure 2), representing high-level visual cortices130

such as the fourth visual cortex (V4) or the inferior temporal cortex (IT), with cells encoding object views131

(object-view tuned cells) as found in the inferior temporal cortex (Logothetis et al., 1995). V4/IT Layer 4132

(V4/IT L4) encodes these object views, which are created by a convolution of the activities of V1 neurons with133

pre-learned weights. These weights were generated through a process called one-shot learning (Jamalian et al.,134

2016), which generated the weight matrix directly from the output of V1 complex cells in a prior learning135

phase. For training, only 10 images per object (five rotations, two sizes) were used to allow for some degree of136

invariant recognition. Furthermore, spatial pooling of these activities takes place in V4/IT Layer 2/3 (V4/IT137

L2/3). Like Layer 4, Layer 2/3 neurons have still a spatial organisation being selective for different parts of138

the image (Figure 3). Layer 2/3 neurons are subject to feature-based attention from the prefrontal cortex139

(PFC), enhancing the gain of neurons that respond to the target object.140

This object recognition part is comparatively simple compared to deep neural networks. Thus, our emphasis141

is not on recognising a large number of objects, but to allow object recognition on a number of pre-selected142

objects with only a very small amount of training data (Figure 3). Technically, as further processing in143

the network is not dependent on the specific structure of the V1-V4/IT path, one could replace the image144

processing by a deep neural network to provide our model with a feedforward input into V4/IT L4, as we did145
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not implement feedback connections back to V1.146

2.2.2. Saccade Execution147

Activities of object neurons in V4/IT L2/3 are pooled over objects to elicit spatially distributed neural148

activations in the frontal eye fields (FEF; Figure 2, yellow parts). Neural populations in FEF are responsible149

for the processing of spatial information and the preparation of eye-movements, particularly saccade target150

selection. This part is based on a model developed by Zirnsak et al. (2011).151

Our model of the FEF is divided into three parts, namely FEF-visual (FEFv), FEF-visuomovement152

(FEFvm) and FEF-movement (FEFm), inspired by recordings from frontal eye-field neurons (Schall et al.,153

2004). From a functional perspective, FEFv indicates potentially relevant locations by taking the maximum154

activities over features in V4/IT L2/3. Feedforward soft-competition, combined with feedback from eye155

movement preparation in FEFm, activates FEFvm neurons. Feedforward projections from FEFvm to FEFm156

accompanied by strong lateral competitive interactions lead to the potential target of the upcoming saccade.157

If FEFm neurons increase their activation beyond a threshold, a saccade is executed towards the centre of158

gravity of the activation profile at that time. Given the saccade target, the actual movement of the eyes is159

then modelled by an extended version of the saccade generator of Van Wetter & Van Opstal (2008).160

2.2.3. Attention161

Among other tasks, our model is designed to perform object localisation supported by attentive dynamics,162

most notably feature-based and spatial attention. This model component is based on previous models163

that explain attention as an emergent result of neural dynamics, rather than postulating brain circuits that164

exclusively compute attention (Hamker, 2003, 2005b; Zirnsak et al., 2011) and is inspired by biased competition165

(Desimone & Duncan, 1995) and feature-similarity (Treue, 2001) frameworks of attention. The present model166

is built upon a microcircuit of attention proposed by Beuth & Hamker (2015), who compared and fitted their167

model to electrophysiological data of more than 10 different experiments that studied the mutual influence168

of stimuli placed within or near receptive fields in different states of attention. This is to date the most169

exhaustive comparison of a model with data recorded from neurons localised in different visual brain areas170

modulated by attention.171

A top-down signal from PFC amplifies target-feature-specific activities in area V4/IT, independent of the172

location or size of features in the visual field and allows the selection of specific objects (Beuth, 2019). This173

can be seen in the sum of V4/IT L2/3 activity in Figure 3, where feature-based attention amplifies features174

of the green crane. In parallel, spatial attention emerges by feedback from FEFvm cells, which link spatial175

attention to the eye movement plan (Hamker et al., 2008) and can also account for attentional capture, based176

on the attention-related N2pc component of EEG recordings (Novin et al., 2021).177

The here presented integrated model extends spatial attention with an additional loop between FEF and178

LIP. This extension by the LIP circuit is crucial for aspects of spatial cognition as LIP connects visual areas179
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through parietal areas with MTL, where long-term information of objects and the environment are stored. If180

this information is recalled, LIP can, through coordinate transformations which are more closely described in181

the next section, generate an additional spatial attention signal to recalled locations of previously encountered182

and encoded objects. As this attentional signal does not require a feature-search in the entire visual field,183

it acts faster than spatial attention generated in the V4/IT-FEF loop. Also, this spatial attention signal is184

updated during eye movements to ensure that attention is directed to an object in space regardless of gaze185

position.186

The general role of the LIP circuit in spatial attention has previously been motivated by Bisley & Goldberg187

(2003) and Goldberg et al. (2006). The computational model of spatial updating in the parietal cortex was first188

introduced by Ziesche & Hamker (2011) and later extended by Ziesche & Hamker (2014); Bergelt & Hamker189

(2016); Jamalian et al. (2017); Ziesche et al. (2017); Bergelt & Hamker (2019). The model has been compared190

to and motivated by studies exploring predictive remapping of attention (Rolfs et al., 2010), lingering of191

attention after saccades (Golomb et al., 2010), a combination of both (Jonikaitis et al., 2013), perisaccadic192

mislocalisation of briefly flashed stimuli (Van Wetter & Van Opstal, 2008), and saccadic suppression of193

displacement (Deubel et al., 1996).194

2.2.4. Coordinate Transformation195

Spatial tasks of embodied agents operating in, and interacting with the world require coordinate transfor-196

mations between different reference frames. Generally speaking, we can distinguish between egocentric and197

allocentric (world-centred) reference frames. Egocentric reference frames include eye-centred or head-centred198

reference frames, while allocentric reference frames could relate to cardinal directions or visual landmarks. In199

our case, visual information about an object, initially processed in an eye-centred reference frame, could then200

be transformed into an allocentric reference frame for storage in long-term memory. It has been proposed that201

gain fields and radial basis functions (Figure 4) can perform these coordinate transformations between eye-202

and head-centred reference frames (Pouget & Sejnowski, 1997; Pouget et al., 2002), and diagonal connection203

patterns for this transformation have recently been observed in Drosophila (Lu et al., 2022). In our model,204

these coordinate transformations are performed in LIP (Ziesche & Hamker, 2011; Bergelt & Hamker, 2019)205

and RSC (Bicanski & Burgess, 2018) (Figure 2, green parts).206

While the agent is searching for an object, retinal (eye-centred) input from area V4/IT is passed to207

LIP, along with a retinotopic spatial signal from FEF, a proprioceptive eye position (EP) signal encoding208

the eye position in a head-centred reference frame, and a corollary discharge (CD) signal encoding the eye209

displacement in an eye-centred reference frame. According to Ziesche & Hamker (2011) and Bergelt & Hamker210

(2019), the retinal signal from V4/IT L2/3 is fed into LIP maps, where it is gain-modulated by the CD signal211

(LIP CD) as well as the EP signal (LIP EP). This produces a combined representation of eye position and212

object position. Reading out the activity in LIP, we receive the perceived spatial position of an object in213

head-centred coordinates stored in Xh (Figure 4; Stimhead). As mentioned above, this process can also be214
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Figure 4: Coordinate transformation in a radial basis function network. In this example, a stimulus position in an eye-centred

reference frame gets transformed into a head-centred reference frame. The eye fixates on a position at 30◦ (EPhead) and the

eye-centred stimulus position is at -10◦ (Stimeye). Thus, the resulting head-centred position of the stimulus is at 20◦ (Stimhead).

Further, planned gaze shifts (and not only eye position) are also used for coordinate transformation. The same principle is

also used for transformations between head- and world-centred reference frames. Importantly, this transformation can also be

performed in the opposite direction (world-centred to head-centred or head-centred to eye-centred).

performed in a top-down fashion to transform a head-centred signal into an eye-centred signal, which is sent215

to FEFv to attend to the retinotopic position of a previously encoded object.216

Object location information and the local environmental layout need to be combined with head direction to217

enable an unambiguous representation of objects and space. This is conducted in the spatial memory pathway218

of the model (Bicanski & Burgess, 2018), which demonstrates how neural representations of head-centred219

(egocentric) experiences interface with world-centred representations in long-term memory. The parietal areas220

of the brain, which we call ’parietal window’ (PW), include head-centred representations of discrete objects221

(PWo) and boundaries (PWb). Here, objects refer to the three potential target objects and boundaries refer222

to the four walls of the room.223

In addition to object information (PWo), during encoding/perception, the parietal window is also driven224

by high-level (head-centred) visual information of boundaries (PWb). This input is externally provided by225

the virtual environment and not explicitly modelled. The resulting activities in PW are fed into RSC, where226

the head direction signal (HD) provides gain-modulation to transform the egocentric representations into227

a world-centred reference frame, similar to related mechanisms proposed for the posterior parietal cortex228

(Pouget & Sejnowski, 1997; Whitlock et al., 2008). This circuit can also further be used in the opposite229

direction, which is required for processes of recall. World-centred information about boundaries and objects230

stored in MTL are then transformed back into a head-centred reference frame in PW via RSC.231
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2.2.5. Spatial Memory and Imagery232

After visuospatial information is transformed into a world-centred reference frame through RSC, the233

resulting allocentric representations located in the medial temporal lobe (MTL; Figure 2, blue parts) can234

contribute to long-term memory (Bicanski & Burgess, 2018). Information in MTL consists of boundary235

information, which is encoded in so called boundary vector cells (BVCs) for the external boundaries of the236

environment (as an allocentric counterpart of PWb cells) and object vector cells (OVCs), which encode the237

position of objects and hippocampal place cells (PCs), which encode an allocentric position of the agent in238

space (see Bicanski & Burgess (2020) for a more in-depth review of the properties of vector coding cells in the239

brain). For a given spatial position encoded by PCs, an explicit subset of BVCs and OVCs are co-active to form240

a high-level representation of the spatial scene. By connecting co-active populations via Hebbian-like learning,241

an allocentric MTL attractor network is formed, which enables spatial long-term memory. Additionally,242

since BVCs and OVCs do not distinguish between specific boundaries and objects, perirhinal neurons (PR),243

high-level neurons of the ventral stream, code for the identity of boundaries (PRb) and objects (PRo). These244

allocentric representations can subsequently be used for memory recall. Cueing a previously encoded object in245

MTL enables the re-instated neuronal activities to drive the transformation circuit in the opposite direction,246

establishing egocentric representations to be reconstructed from memory and thus enabling spatial imagery247

through the parietal window. This egocentric information can then further be used as attentional input for248

LIP and FEF.249

The basis of stable representations of self-location is the agent’s perception of boundaries, which drives250

firing of BVCs. Their activity, in turn, activates corresponding place cell firing, in a manner consistent with251

empirical data (O’Keefe & Burgess, 1996) and with established computational models of place field generation252

by BVCs (Barry et al., 2006). This connectivity has been pre-trained dependent on the perceived layout of253

the room and the agent’s location. Hence the agent treats walls as stable, while smaller objects can move.254

The configuration of BVCs that is consistent with the given location has synaptic connections with a cluster255

of place cells for that given location (and vice versa for recall). For the purposes of the integrated model, the256

spatial memory component assumes that parts of the visual system can extract the distance and egocentric257

directional information of boundaries from retinal inputs. This is not explicitly modelled and relies on cues258

from the VR (Fig. 2, world information). A network that performs these computations could be learned (Lian259

et al., 2023), but this mechanism is beyond the scope of the present manuscript.260

2.2.6. Model Specification261

Spacecog is built on the foundation of several previously published models, and detailed information about262

the neural models and their underlying assumptions can be found in these works as outlined in the previous263

sections. As these models have already been fitted to experimental data, most of the parameters in visual264

and spatial areas remain unchanged. The present model focuses on more holistic aspects, which allows us to265

explore more complex and complete tasks through the integration of memory and vision through parietal266
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areas. This part of the model requires an interaction of visual and spatial neural populations, which operate267

in different coordinate systems. While head-centered information in both Xh and PWo is two-dimensional, the268

representation in PWo changes from a visual field (height and width) to a birds-eye spatial map (left/right,269

radial distance) as visible in Figure 6. Thus, while other populations in the model are fully connected on a270

neural level, this transition requires additional information. During bottom-up encoding processes, only the271

horizontal component of the Xh signal is used and supplemented with externally provided depth information272

from the VR before being used as an object cue for PWo. In return, this loses the height-dimension of the273

visual field, which is stored externally to be used during the back-transformation in the recall phase.274

Further, a sensible balance between feature-based and spatial attentional mechanisms needs to be found.275

As feature-based attention originates in PFC and directly modulates V4/IT activities, the spatial attention276

pointer during recall originates in OVC and has to be looped back all the way into visual areas. For this,277

in addition to the already established recurrent V4/IT-FEF loop, we expanded the model by a recurrent278

V4/IT→LIP→FEFv→FEFvm→V4/IT loop, consistent with the idea that a connection between these areas279

could act as a simple representation of attentional priority, which is also fed back into visual areas (Bisley &280

Mirpour, 2019). Also the ventral stream model was adapted. Learning was conducted via the more simple281

and fast one-shot learning (Jamalian et al., 2016), rather than Hebb-type trace learning (Beuth, 2019). The282

pooling inside V1 and the pooling from V1→V4/IT was adapted, so the receptive fields of a V4/IT neuron283

are large enough to fit the relevant objects. Thus, some parameters in the mentioned areas were tuned by284

hand to facilitate such behaviour. As a result, the model is able to robustly encode objects into memory and285

to use this knowledge as spatial attentional information to enhance re-localisations of previously encoded286

objects. Further, we will also show that this structure of the model allows for the observation of perceptual287

neglect-like behaviour when a lesion is introduced in the parietal Xh priority map.288

2.2.7. Model Implementation289

The neurocomputational model is implemented with ANNarchy 4.7.1.1 (Vitay et al., 2015). ANNarchy290

(Artificial Neural Networks architect) is a neural simulator designed for distributed rate-coded or spiking neural291

networks. The user-interface is written in Python and uses an equation-oriented mathematical description292

of the neuron and synapse models. From this description, ANNarchy will generate efficient C++ code to293

perform the network simulation on parallel hardware.294

We provide the complete source code for the model and the virtual environment, which is publicly accessible295

through https://github.com/hamkerlab/Burkhardt2023 SpatialCognition. With the provided code, the296

simulations introduced in the present paper can be replicated and freely modified (limited to the pre-trained297

spatial environment of the room and the three target objects). Due to the large size of the model, a complete298

description of the network can be found in the supplementary material. This includes the equations for all299

neural populations as well as all parameters and connections used. More detailed information about the neural300

models and their underlying assumptions can also be found in the previously published works (Bicanski &301
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Burgess (2018); Beuth (2019); Bergelt & Hamker (2019)).302

3. Results303

To evaluate the performance of our model, the cognitive agent Felice has to perform tasks in the virtual304

environment, which were developed to emulate a real-life situation requiring features of spatial cognition such305

as object localisation, attentive dynamics, coordinate transformations, and spatial memory and imagery. We306

first introduce the general structure of an integrated task combining these requirements, and later evaluate it307

through multiple experiments, modifying individual parts of our model and tasks.308

3.1. General Task309

Let us assume the following scenario: Felice first wants to play with one of her toys (e.g. a green toy crane),310

which she is able to localise among several other toys on her desk. She then gets distracted by another task311

and ends up at a different location in the room. From there, Felice decides she wants to again play with the312

toy crane, remembers where she initially found the toy and subsequently walks back to the location where she313

initially spotted the crane in order to localise it again. For this, we will use ego-, and allocentric information314

as outlined in the model description, but not relative information such as ”on the desk”. Decisions about315

’when to do what’ are pre-defined, as decision making is not a particular focus of this study.316

Generally, the task can be divided into an encoding phase and a recall phase. In the encoding phase, Felice317

has to find and encode an object into memory, which incorporates the entire process of using eye-centred visual318

information and transforming it into allocentric representation of objects and space in long-term memory.319

More specifically, starting from an arbitrary position, Felice walks into the vicinity of potential target objects.320

In this case, a random position within a circular area in front of her desk is assigned as a plausible position321

(Figure 5, middle). While Felice is able to move freely within the boundaries of her room, path planning and322

walking is not part of our model and was achieved through a simple A* search algorithm. Once she arrives in323

front of the desk, Felice aims to select one target among other potentially relevant objects. For simplicity, we324

here demonstrate this ability with three objects: A green and a yellow toy crane, as well as a green race car.325

Finding the target among a combination of these objects covers the main challenges for the object localisation,326

namely a similarity in shape and/or colour for the distractor objects. Additionally, features of the room itself327

can also be regarded as distractors, as neurons might respond to edges or colour gradients in them. After328

Felice successfully localises the object, its position and identity as well as the position of Felice are stored in329

long-term memory in MTL (by learning connections between place cells and object vector cells).330

Figure 6 displays the structure and activities of neuronal populations for the encoding phase. First, the331

visual field is pre-processed in V1, features are extracted in V4/IT, and spatial attention emerges from the332

recurrent V4/IT-FEF loop. In parallel, this information is passed to LIP, where a coordinate transformation333

takes place to transform the object position from a retinotopic into a head-centred reference frame in Xh. From334

there, object and spatial boundary information are formed in the parietal window and this (head-centred)335
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information is then transformed into an allocentric reference frame via RSC and encoded into long-term336

memory in MTL populations.337

Felice then walks to a different position, from where the recall phase shown in Figure 7 is triggered. The338

recall phase consists of Felice remembering, walking back to, and re-localising a previously encoded object.339

This process starts by applying an externally provided cue to the PRo neuron coding for the previously340

encoded object (”I want my green crane!”), which can be understood as an ”eyes-closed remembering”, with341

no interference from the current perceptual input. The resulting memory recall re-establishes information342

about the position of Felice and the memorised object from the time of encoding in the MTL attractor343

network. Specifically, Felice is then able to decode her previous position and body orientation from PC and344

HD activities and walks back to this recalled position. For this purpose, we read out PC and HD firing rates345

after memory recall and use this for external navigation. Once she arrives at the desk, Felice again searches346

for her green crane. The re-localisation of the target object can take place in three different ways: In the347

first way, Felice can use feature-based attention from PFC (as in the encoding phase shown in Figure 6) to348

re-localise the object. This can intuitively be construed as Felice remembering that she has previously seen349

the desired object from a particular position (e.g. close to the table), but she has no access to its exact350

location. In the second way, Felice uses recalled spatial memory information that is looped back through the351

PW (Figure 7) and being used for a spatial attention pointer generated in Xh. The spatial attention pointer352

biases the neural dynamics within the visual system to guide visual search (without feature-based attention),353

corresponding to Felice recalling where the target object is located, without remembering its exact identity.354

Third, a combination of both options (feature-based attention combined with a spatial attention pointer) can355

be used, meaning Felice now recalls the location and relative direction as well as the identity of a previously356

encoded object.357

To test these conditions, we introduce two different experimental settings (normal and cluttered scene),358

which cover the integration of vision and memory in slightly different scenarios. As the model operates in a359

realistic setting, we assess its behavioural performance through successful trial completions and the duration360

needed for each object localisation. The main purpose of the evaluation is to demonstrate the spatio-cognitive361

ability by means of a brain-inspired model. Further, we report and discuss differences observed in the sketched362

ways to perform the task.363

3.2. Experiment 1: Spatial memory and object recognition in a normal scene364

Experiment 1 is performed in an environment containing three potential target objects (Figure 8). The365

three possibilities of using attentional mechanisms for object localisation in the recall phase described above366

are used to asses the integration between vision and spatial memory.367

3.2.1. Experiment 1.1: Spatial memory and object recognition using feature-based attention368

Initially, Felice was asked to walk into the vicinity of potential target objects, where the first object369

localisation was performed randomly for one of the three objects. Thus, our model is run by setting an370
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Figure 5: General scenario. The cognitive agent Felice performs a combined task of memory encoding and recall. Illustrated here

is the encoding phase, in which Felice walks into the vicinity of target objects (random position within the white circle shown in

the middle image). Depending on her position, body orientation and head tilt are adjusted to ensure the visibility of all potential

target objects (middle, right). Variability in this adjustment results in different random views of the scene (left). The limiting

factor for the positional variability is the spatial resolution of the visual layers V4/IT, and therefore the size of the objects in the

visual field, which was controlled for by the allowed positions for object localisation (white circle).

activation for the target object in PFC, which allows feature-based attention to support target localisation.371

Then, after shifting gaze to the target object, the integrated model encodes the object and positional372

information into long-term memory. This corresponds to the encoding phase displayed in Figure 6 and was373

performed for total of 100 times. In each trial, a random target object and a random agent position (within374

the white circle displayed in Figure 5) were chosen, which resulted in a successful object localisation in 93% of375

trials (Table 1, first row).376

In each trial, Felice then walked to a different position in the room, from which the encoded object was377

not visible and recalled her memory by activating the PRo cell of the previously encoded object. Part of378

this memory is her previous position (encoded by place cells) and the corresponding object location in the379

room (Figure 7). Felice then walked to the recalled position and performed a re-localisation of the previously380

encoded object. In this experiment, she used feature-based attention from PFC, and subsequently performed381

a saccade to the selected candidate object. If the object was correctly re-localised, the trial was labelled as382

successful. We therefore define a successful recall as a correct completion of the complete task, which includes383

the encoding and recall phase. This resulted in a success rate of 95% (Table 1, second row), which marginally384

differs from the encoding phase due to small deviations in Felice’s position during recall.385

We found the success in this experiment to be mainly dependent on two factors: First, the visual part386

of the model performing a correct object localisation and second, the spatial part of the model accurately387

encoding the positional information, enabling Felice to precisely return to the location of the previously388
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encoded target object. However, as the second object localisation in this experiment also only required389

feature-based attention, the positional memory was not required to be extremely accurate. All errors in this390

experiment therefore were a result of the visual part of the model incorrectly localising the object. We will391

consider this result as a baseline and compare it to results from Experiment 1.2 and 1.3.392

Table 1: Performance of the model (N=100).

Task Experiment Attention Success rate Simulation steps (M ± SD)

Encoding 1.1,1.2,1.3 Feature-based 93% 150 ± 57

Recall 1.1 Feature-based 95% 154 ± 59

Recall 1.2 Spatial 83% 172 ± 48

Recall 1.3 Spatial + feature-based 94% 125 ± 10

3.2.2. Experiment 1.2: Spatial memory and object recognition using a spatial attention pointer from memory393

In the second experiment, rather than feature-based attention, a spatial attention pointer from the memory394

recall via LIP was used to perform the second object localisation after Felice returned to the previously395

encoded target object. During recall, allocentric information of the object position are transformed through396

RSC into head-centred activity in the parietal window. After Felice returns to the place where she encoded the397

target object, this information is subsequently used in Xh and LIP to generate a retinocentric spatial attention398

pointer. An advantage of using spatial attention provided by LIP is that it does not require extensive visual399

search to localise the target object.400

We observed that without the aid of feature-based attention, the spatial attention pointer from long-term401

memory alone could generate a success rate of 83% (Table 1). Compared to Experiment 1.1, this is a slight402

decrease in performance, which was mostly caused by two factors: First, even small inaccuracies in the403

positional recall of Felice (decoded from PCs) were able to change the resulting visual field to a degree in404

which the spatial attention pointer was slightly misplaced. Second, inaccuracies in the recalled position due to405

a limited spatial resolution of neural populations (each PWo and OVC cell covers a 7◦ bin of the visual field)406

could also lead to a small, erroneous shift of the attention pointer, even though a weighted average approach407

was used to decode this information. Despite these limitations, only a few additional errors occurred, mostly408

in cases in which two objects were close to each other (Figure 8, Experiment 1.2).409

3.2.3. Experiment 1.3: Spatial memory and object recognition using a combination of feature-based attention410

and a spatial attention pointer from memory411

Experiment 3 combined both information sources about the object, namely spatial and feature-based412

attention, in the recall phase. This increased the performance back to the level of encoding and therefore413

mitigated errors previously introduced by spatial attention (Figure 8, Experiment 1.3). Additionally, as414
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LIP EP/CDLIP

TRb / TRoTRb / TRoRSC

Localization

Search for green crane

Figure 6: A representative subset of neural activity for the encoding phase of the general task of visual search and object memory

(not included: V4/IT L4, FEFv, FEFvm, PRb). For encoding, the visual field (VF) is processed by V1 neurons and fed into

higher visual areas. There, object neurons in V4/IT L2/3 are guided by feature-based attention from PFC and spatial attention

emerges via FEFvm feedback to V4/IT until FEFm triggers a saccade towards the object. Spatial information is transformed

from a retinocentric into a head centred reference frame in area LIP and gives rise to activity in Xh, where it is used as a

head-centred input for parietal window object neurons (PWo) encoding the spatial position of the object relative to the agent

(here ahead-left). This requires externally provided depth information from the virtual environment, while height information has

to be saved for the recall phase. Combined with information of the boundaries of the room (PWb) as well as head direction (HD),

this information is transformed through RSC, resulting in allocentric representations of the object location (OVC), boundaries

(BVC), and agent position (PC) being established in MTL, where they are encoded into long-term memory.
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LIP EP/CDLIP

TRb / TRoTRb / TRoRSC

Localization

Recall green crane

Figure 7: A representative subset of neural activity for the recall phase of the general task of visual search and object memory

(not included: V4/IT L4, FEFv, FEFvm, PRb). From a remote position in the room, a recall of the previously encoded object is

triggered through PRo activation. This re-establishes activity in the MTL attractor network (OVC, BVC, PC) as well as in HD

populations. Through RSC, this information is transformed into a head-centred reference frame in PWo and PWb. Information

of the object position can then be fed back into Xh, from which a retinocentric spatial attention pointer can be established in

area LIP. With this top-down attention signal being applied on FEFv, the position of the object can then be decoded from the

build-up movement neurons in FEFm. Once an activity threshold in FEFm is reached, a saccade is performed towards the target

object.

18



Figure 8: Experiment 1. Felice initially encodes the green race car. Small inaccuracies in the spatial memory can lead to a

slightly different agent position during recall and therefore also a slight shift in the visual field (the red bars display the alteration

in the visual field between encoding and recall phase, which result in a shift to the right). Results from the recall phase of all

three experiments are shown (Experiment 1.1 uses only feature-based attention, Experiment 1.2 uses only a spatial attention

pointer, and Experiment 1.3 utilises both feature-based and spatial attention). Shifts in the visual field do not affect feature-based

attention used in Experiment 1.1, but can lead to ambiguous situations in Experiment 1.2, in which the spatial attention pointer

is placed between two objects. If the spatial attention pointer is however combined with feature-based attention (Experiment

1.3), these ambiguities can be resolved.

the spatial attention pointer was quickly available to assist during feature search, the time required for a415

successful re-localisation was reduced by 27% (Table 1). Therefore, the spatial attention pointer was able416

to guide the object localisation effectively, while feature-based attention compensated potential ambiguities417

through inaccuracies introduced through memory and imagery processes.418
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3.2.4. Neural dynamics for target selection419

As the observed time for target selection varies in Experiments 1.1, 1.2, and 1.3 (Table 1), with the420

combination of feature-based and spatial attention being fastest, we analysed the temporal dynamics in the421

model (Figure 9). Feature-based attention operates across the entire visual scene and increases the gain422

of those neural responses where visual input and target template matches. Thus, neural activity in V4/IT423

is enhanced at the target location. Spatial attention recalled from memory traverses via Xh and LIP into424

the visual system and increases the activation at the target location if the recall from memory is correct.425

Recurrent dynamics lead to an exchange of activity across the whole visual parts, but they converge in FEF426

which enforces saccade target selection from FEFv, FEFvm to FEFm cells. If feature-based attention is427

used (Experiment 1.1 and 1.3), V4/IT has a higher activity than in Experiment 1.2, where only a spatial428

attention pointer is used for the localisation of the target object. In contrast, a spatial attention pointer leads429

to higher input from LIP in Experiment 1.2 and 1.3. Together, this results in the fastest rise of activity in430

FEFv for Experiment 1.3 and therefore the earliest initialisation of a saccade through FEFm among all three431

experiments.432

3.3. Experiment 2: Spatial memory and object recognition in a cluttered scene433

The previous experiments were all performed in the same general scene setting, where only the three target434

objects were presented in both encoding and recall phase as shown in Figure 8. Experiment 2 changes this435

by cluttering the scene between the memory encoding and the recall phase by placing additional toys onto436

the desk hiding the targets (Figure 10). This results in a much more challenging scenario and thus allows us437

to gain further insight into the interaction of memory and vision. Again, we distinguish between the three438

possibilities using attentional mechanisms for the object localisation in the recall phase. The summary of the439

results for this experiment is shown in Table 2.440

3.3.1. Experiment 2.1: Feature-based attention441

As the encoding phase is identical to previous experiments, we again observe a success rate of 93%.442

However, in the recall phase the object localisation now has to be performed in the cluttered scene, which443

dropped the performance to 27%, while the time required for a successful localisation increased to 231 steps,444

combined with a significant higher standard deviation, when only feature-based attention was used. As no445

spatial memory was used to aid the object localisation, the reduction in performance can solely be attributed446

to the visual model being unable to rely on enough features of the target objects, which are now substantially447

covered by other objects.448

3.3.2. Experiment 2.2: Spatial attention from memory449

In comparison to Experiment 1.2, this study uses only a spatial attention pointer from memory to perform450

the object localisation in the recall phase. This results in a further drop in performance to 14% and an451

increased localisation time of 239 steps. In addition to features of the target objects being covered by the452
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Figure 9: Analysis of temporal dynamics that lead to different reaction times across experiments. Plotted traces reflect the

activation at the target location in different parts of the model. In conditions where visual search recruits feature-based attention,

V4/IT activity increases due to the match of the visual input with the target template. In conditions where a spatial attention

pointer from memory is recalled, the activation of LIP cells at the target location is increased. As FEFv cells collect information

from those different parts of the model and pass it to FEFm to enforce a final decision about the saccade target, they reflect

both biases in their activation. A saccade can be initialised fastest, if both feature-based attention and a spatial attention pointer

are used. Shown are feature independent, pooled firing rates of V4/IT, Layer 2/3 (top left), and firing rates of LIP (top right)

representing the target location, which both serve as input to FEFv (bottom left), as well as the firing rates of FEFm (bottom

right), which trigger the saccade. Activation of a typical trial in each of the three Experiments 1.1 (red), 1.2 (green), 1.3 (blue)

are plotted over time. The period of the saccade is marked for each experiment.

distractor objects, small inaccuracies in the position of the spatial attention pointer further contribute to453

the reduction in performance like in Experiment 1.2. It is to note that, while previous unsuccessful trials of454

object localisation almost always meant the selection of an incorrect object, in this experiment 84% of errors455

result from a timeout (FEFm activity not reaching a saccade threshold after 600 simulation steps). This is a456

direct limitation introduced by the small codebook of the visual model, which only includes three pre-trained457

objects, and therefore has no knowledge about the identity of the additional distractor objects. As V4/IT458

feeds the FEF, not much activity is transmitted across this pathway, which leads to an overall lesser activity459

in the visual system including FEFm. An additional putative method of compensation would be stronger460

self-excitation parameters in the saccade system to enforce saccade targets even into weakly activated areas.461

However, we kept all parameters unchanged to directly compare the different experiments.462
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3.3.3. Experiment 2.3: Combination of feature-based and spatial attention from memory463

This simulation combines the attentional mechanisms of feature-based attention and the spatial attention464

pointer from memory during recall in a cluttered scene. The performance in this simulation increases to 48%465

while the average time required for a successful object localisation is reduced to 194 simulation steps. The466

main novelty of this simulation can be seen in comparison to Experiment 1, where the combination of both467

attentional mechanisms in Experiment 1.3 only recovered the reduction in performance back to the baseline468

level. This increase in performance for Experiment 2.3 further underscores the advantages of integrating469

spatial memory with vision, especially in challenging environments.470

Table 2: Performance in cluttered scenes (N=100).

Task Experiment Attention Success rate Simulation steps (M ± SD)

Encoding 2.1,2.2,2.3 Feature-based 93% 150 ± 57

Recall 2.1 Feature-based 28% 231 ± 73

Recall 2.2 Spatial 14% 239 ± 99

Recall 2.3 Spatial + feature-based 48% 194 ± 69

3.4. Experiment 3: Visual Neglect471

This simulation aims to further highlight the biological plausibility of our model by demonstrating that a472

simple impairment in a parietal area leads to similar behaviour as observed in patients with visual neglect.473

Visual neglect is one of the most notable impairments resulting from damage to parietal areas of the brain,474

and is known to cause impairments in directional processes of attention and localisation of objects, resulting475

in a lack of responses to stimuli in parts of the visual field (Bartolomeo, 2007). This is thought to correspond476

to damage in a parietal priority map, which integrates goal and stimulus related signals for spatial selection477

(Bays et al., 2010). In our model, we can observe similar effects by introducing an impairment to Xh neurons478

corresponding to the left half of the visual field. This is implemented by removing all connections between479

LIP and the left half of Xh neurons, generating visual perceptual neglect.480

Figure 11 depicts a simulation with two identical objects. Since feature-based attention favours both481

objects, the model converges on one of the cranes, depending on the exact spatial arrangement (position of482

agent and objects). In the depicted scenario, the left crane is chosen as the preferred stimulus, which is mostly483

visible in FEFm and Xh population activity (Figure 11, top). Consequently, a saccade is made to the left484

crane (visualised by the red dot in Figure 11, top right)485

Introducing left visual neglect in an identical simulation results in only the right crane being active in486

the Xh priority map, which then leads to a reduced response of the left crane in LIP. Subsequently, through487

the recurrent LIP-FEF loop, this also creates a bias in FEF (Figure 11, bottom). There, bottom-up visual488
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Figure 10: Experiment 2. In this condition, the scene is cluttered in the recall phase with additional distractor objects which

cover the original target objects to a large degree. This creates a highly challenging task. In Experiment 2.1, the model is not

able to re-localise the yellow crane, as most of its features are hidden behind the teddy bear. Experiment 2.2 with only spatial

attention also fails despite a correct spatial attention pointer as no FEFm activity is formed due to a lack of V4/IT activity. Only

in experiment 2.3 a successful re-localisation of the yellow crane is performed due to the combined application of feature-based

and spatial attention. The red bars indicate the alteration in the visual field during recall, which in this case is the result of

Felice recalling a position slightly closer to the table compared to the encoding phase. Here, this deviation is negligible and does

not result in a misplacement of the spatial attention pointer.

input is modulated by attentional input from LIP, which leads to a saccade directed to the crane on the right489

(red dot in Figure 11, bottom right). Thus, although object recognition and initial spatial attention via FEF490

are unaffected by the impairment, a bias emerges in the additional recurrent LIP-FEF loop, which results in491

behaviour similar to visual neglect. Additionally, as Xh forms a bridge between visual and spatial areas, only492

the position of the right object will be passed to the parietal window and is encoded into memory. Visual493

23



neglect is therefore also present in memory and imagery.494

Figure 11: Visual neglect. In the top row, a typical simulation is shown, which results in the left crane being selected for a

potential saccade (FEFm). When left side visual neglect is introduced in Xh, activities for the right object are projected back

into FEF via LIP, while reentrant processing between LIP and FEF is weakened in the left visual field (bottom row), and as a

result, the right object is selected as the saccade target.

4. Discussion495

We have introduced the Spacecog model, a biologically motivated, large-scale neurocomputational model496

of spatial cognition, which we tested and evaluated in a real-world-like virtual environment. Via a coherent497

processing stream incorporating perceptual vision processes, attentive dynamics, and spatial memory and498

imagery, Spacecog is able to display key traits of spatial cognition. The underlying individual models499

were previously verified on their own and are motivated and grounded by anatomical, behavioural, and500

physiological data. While aspects specific to these individual components have already been described in501

previous publications, we here focused on the integration and interplay between memory and vision through502

parietal areas.503

In three experiments, interactions between visual and spatial areas were evaluated and it was shown504

how the integration enables the agent to successfully perform tasks of object localisation and imagery.505

In all experiments, the agent was able to robustly detect and memorise objects. The introduction of a506

spatial attention pointer from memory by itself was able to generate a high success-rate during recall, but507

also introduced an increase in the time required for localisation due to the interplay of model components508

(Experiment 1.2). An integrated use of spatial and feature-based attention combined the advantages of a quick509

availability of the spatial attention signal from memory with the accuracy of feature-based attention to allow510

for a faster and robust re-localisation of objects (Experiment 1.3). Additional advantages of integrating spatial511

memory with vision were further explored in a cluttered environment, which showed that this integration is512

crucial for an adequate performance in even more challenging tasks (Experiment 2).513
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Notably, in conditions with only feature-based attention (Experiment 1.1/2.1), the agent was already514

successful in localising the target object. It therefore is important to clarify that the conditions for search with515

only feature-based attention were chosen to be optimal, as it was ensured that the agent was in close proximity516

to the objects, and the target object was ensured to be in her field of view. Without this, under normal517

conditions, a more extensive visual search including overt orienting responses would have been necessary. This518

also implies that during phases of recall, the recalled position and head direction are always used to guide the519

agent back to the target object, even when no direct interface between memory and vision through PW and520

LIP was established (Experiment 1.1/2.1). The good performance in only feature-based attention was also521

based on the fact that we did not use heavily cluttered scenes, and feature-based attention was still effective522

in guiding attention to the target. If we were to use more difficult search scenes, the search process would523

require multiple saccades, and thus the benefit of spatial memory would be more obvious. In such cases, the524

model would require an additional circuit to implement inhibition of return (Hamker, 2005a).525

However, the main novelty is not the use of spatial or feature-based signals for object recognition, but the526

ability to establish spatial and object memory and to use this memory to guide vision. If agents are able527

to recall and use information about spatial proximity, gaze direction, feature-based attention, and spatial528

attention, they can accurately and efficiently re-localise previously encoded objects. This is a combination529

which has not yet been demonstrated in previous biologically motivated models. We underlined the robustness530

of this ability by allowing variability in the encoding process, resulting in different views of the scene.531

Furthermore, consistent with the idea that neglect results from damage in a parietal priority map (Bays et al.,532

2010), it was also shown that parietal lesions in our model can produce neglect-like behaviour (Experiment533

3). Our integrated model therefore extends the mechanisms by which previous models accounted for spatial534

representational neglect (Byrne et al., 2007; Bicanski & Burgess, 2018) to neglect in the visual field.535

The present model underlines the importance of the parietal cortex as an interface between vision and536

memory. Early concepts of the parietal cortex have already emphasised its role in providing ’where’ information537

about the object (Mishkin et al., 1983), but were later extended with respect to actions towards objects538

(Milner & Goodale, 1995) and visual attention (Colby & Goldberg, 1999; Gottlieb, 2007), and more recently539

also with its role in episodic memory retrieval (Becker & Burgess, 2000; Cabeza et al., 2008; Sestieri et al.,540

2017; Connor & Knierim, 2017).541

Further, the present model can be compared with experiments on human spatial cognition that show that542

long term spatial memory interacts with visual attention behaviourally, and reflects parieto-prefrontal activity543

related to attention and hippocampal and parahippocampal activity related to the benefit from long term544

memory (Summerfield et al., 2006). Our model can address the behavioural advantage for memory-cued545

locations (Experiment 1.3 and 2.3) and also its relation to the activity in different regions. A prediction from546

our model might be that hippocampal and retrosplenial activity correlate with performance more strongly547

when the target was previously seen in location from a different viewpoint, so that purely visual memories548

cannot give an advantage. Additionally, behavioural hypotheses could further be tested in identical virtual549

25



environments, as gaze behaviour in the context of locomotion was recently shown to be highly similar in550

virtual environments and the real world (Drewes et al., 2021).551

Even though the complexity of the parietal and temporal cortex is much beyond what we cover with our552

model, our account proposes a framework of how memory recall can directly guide visual perception by means553

of transformation from allocentric to egocentric reference frames and visual attention. Thus, our Spacecog554

model demonstrates for the first time an integrated account of memory and vision.555

Despite the model already covering some aspects of spatial cognition, it is by no means complete. Felice556

only uses monocular vision and we do not extract any depth information from the image by stereo vision557

or optic flow. Thus, despite her ability to recall and visit her recalled position in space, her understanding558

of space is limited due to missing depth information. Hence, in the present model, boundary information559

(the walls of the room) is supplemented by the VR and not the result of visual perception. The Spacecog560

model on which she operates also does have only a limited form of scene memory, while humans can store a561

large number of scene representations in visual long-term memory (Konkle et al., 2010), which may support562

self-localisation and allow to locate objects as part of the scene context (Hollingworth, 2007).563

A further limiting factor of the model is computational complexity, which is most visible in the interaction564

of spatial and visual areas. Due to limits in the spatial accuracy of neural populations, small inaccuracies565

can occur during encoding and recall, which can lead to shifts in the position of the agent and its visual566

field, or in the placement of spatial attention. Increasing neural populations to more realistic numbers would567

be an obvious solution in this regard, however a performance-accuracy trade-off has to be made. Further,568

the development of biologically plausible but still efficient methods of object recognition is still an active569

research domain (Teichmann et al., 2021), while machine learning methods that rely on supervised learning570

are presently more powerful.571

With respect to attention, it has been shown that the best possible search template are not necessarily the572

features of the to be searched object, but those features which best discriminate the target from distractor573

objects (Navalpakkam & Itti, 2007; Maith et al., 2021). Our present version of this model does not make use574

of learning a suitable top-down feature-based attention signal, given the context of a scene.575

Finally, an important area of present and future research is the general flexibility of the agent. As outlined576

in the general task, the structure of the task is fairly fixed and Felice by herself is not given the ability to577

decide about her goals, plans and the outcomes of her actions. Thus, our model does not include reinforcement578

learning or other means of action selection. Although Felice is performing well in the specified task, this579

relies mostly on externally provided cues of where to initially walk and which object to attend to. Desired580

objects in encoding and recall are externally cued in the corresponding neural population and no intrinsic581

goal-directed behaviour is shown, as the required cognitive structures are not currently part of the model.582
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4.1. Conclusion583

The combination of visual, attentional and spatial components successfully bridges a gap between previously584

disparate areas of neurocomputational modelling. By introducing parietal areas as an interface between585

spatial and visual areas, this most notably creates the novelty of memory guided visual attention, which at586

this level has so far only been addressed by the presented model. In addition to the questions explored above,587

spatial information of previously encoded objects can now be used to explore attentional processes across eye588

movements. This can open up many new avenues concerning the interpretation of neuropsychological data589

in complex tasks of spatial memory and attention. The integrated model therefore also provides a unified590

framework for visuospatial tasks and can further be used as a powerful tool for the assessment of a broad591

spectrum of biologically rooted hypotheses concerning human spatial cognition.592

5. Data Availability593

Code and data are available under https://github.com/hamkerlab/Burkhardt2023 SpatialCognition.594

Due to the size of the network, we will provide the model description as an ANNarchy report in the595

supplementary information.596
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Drewes, J., Feder, S., & Einhäuser, W. (2021). Gaze during locomotion in virtual reality and the real world.675

Frontiers in Neuroscience, 15 , 656913. doi: https://doi.org/10.3389/fnins.2021.656913676

Eliasmith, C., Stewart, T. C., Choo, X., Bekolay, T., Dewolf, T., Tang, Y., & Rasmussen, D. (2012). A677

Large-Scale Model of the Functioning Brain. Science, 338 , 1202-1205. doi: https://doi.org/10.1126/678

science.1225266679

Epstein, R. A., Patai, E. Z., Julian, J. B., & Spiers, H. J. (2017). The cognitive map in humans: spatial680

navigation and beyond. Nature Neuroscience, 20 , 1504-1513. doi: https://doi.org/10.1038/nn.4656681

Gegenfurtner, K. R., & Kiper, D. C. (2003). Color vision. Annual Review of Neuroscience, 26 (1), 181-206.682

doi: https://doi.org/10.1146/annurev.neuro.26.041002.131116683

Goldberg, M. E., Bisley, J. W., Powell, K. D., & Gottlieb, J. (2006). Chapter 10 saccades, salience and684

attention: the role of the lateral intraparietal area in visual behavior. In S. Martinez-Conde, S. Macknik,685

L. Martinez, J.-M. Alonso, & P. Tse (Eds.), Visual perception (Vol. 155, p. 157-175). Elsevier. doi:686

https://doi.org/10.1016/S0079-6123(06)55010-1687

Golomb, J. D., Pulido, V. Z., Albrecht, A. R., Chun, M. M., & Mazer, J. A. (2010). Robustness of the retinotopic688

attentional trace after eye movements. Journal of Vision, 10 (3). doi: https://doi.org/10.1167/10.3.19689

Gottlieb, J. (2007). From thought to action: The parietal cortex as a bridge between perception, action, and690

cognition. Neuron, 53 (1), 9-16. doi: https://doi.org/10.1016/j.neuron.2006.12.009691

Hamker, F. H. (2003). The reentry hypothesis: linking eye movements to visual perception. Journal of Vision,692

3 (14), 808-816. doi: https://doi.org/10.1167/3.11.14693

Hamker, F. H. (2005a). The emergence of attention by population-based inference and its role in distributed694

processing and cognitive control of vision. Computer Vision and Image Understanding , 100 (1), 64-695

106. (Special Issue on Attention and Performance in Computer Vision) doi: https://doi.org/10.1016/696

j.cviu.2004.09.005697

Hamker, F. H. (2005b). The reentry hypothesis: The putative interaction of the frontal eye field, ventrolateral698

prefrontal cortex, and areas v4, it for attention and eye movement. Cerebral Cortex , 15 (4), 431-447. doi:699

https://doi.org/10.1093/cercor/bhh146700

Hamker, F. H. (2015). Spatial Cognition of Humans and Brain-inspired Artificial Agents. KI - Künstliche701

Intelligenz , 29 , 83-88. doi: https://doi.org/10.1007/s13218-014-0338-8702

Hamker, F. H., Zirnsak, M., Calow, D., & Lappe, M. (2008). The peri-saccadic perception of objects and703

space. PLOS Computational Biology , 4 (2). doi: https://doi.org/10.1371/journal.pcbi.0040031704

30



Hollingworth, A. (2007). Object-position binding in visual memory for natural scenes and object arrays.705

Journal of Experimental Psychology: Human Perception and Performance, 33 (1), 31. doi: https://doi.org/706

10.1037/0096-1523.33.1.31707

Jamalian, A., Bergelt, J., Dinkelbach, H. U., & Hamker, F. H. (2017). Spatial attention improves object708

localization: A biologically plausible neuro-computational model for use in virtual reality. 2017 IEEE709

International Conference on Computer Vision Workshops. doi: https://doi.org/10.1109/iccvw.2017.320710

Jamalian, A., Beuth, F., & Hamker, F. H. (2016). The performance of a biologically plausible model of visual711

attention to localize objects in a virtual reality. In International Conference on Artificial Neural Networks712

- ICANN 2016, Lecture Notes in Computer Science 9887 (pp. 447–454). doi: https://doi.org/10.1007/713

978-3-319-44781-0 53714

Jones, J. P., & Palmer, L. A. (1987). An evaluation of the two-dimensional Gabor filter model of simple715

receptive fields in cat striate cortex. Journal of Neurophysiology , 58 (6), 1233-1258. doi: https://doi.org/716

10.1152/jn.1987.58.6.1233717

Jonikaitis, D., Szinte, M., Rolfs, M., & Cavanagh, P. (2013). Allocation of attention across saccades. Journal718

of Neurophysiology , 109 (5), 1425-34. doi: https://doi.org/10.1152/jn.00656.2012719

Konkle, T., Brady, T. F., Alvarez, G. A., & Oliva, A. (2010). Scene memory is more detailed than you720

think: The role of categories in visual long-term memory. Psychological Science, 21 (11), 1551-1556. doi:721

https://doi.org/10.1177/0956797610385359722

Land, M. F. (2009). Vision, eye movements, and natural behavior. Visual neuroscience, 26 (1), 51-62. doi:723

https://doi.org/10.1017/s0952523808080899724

Lian, Y., Williams, S., Alexander, A. S., Hasselmo, M. E., & Burkitt, A. N. (2023). Learning the vector725

coding of egocentric boundary cells from visual data. Journal of Neuroscience. doi: https://doi.org/10.1523/726

JNEUROSCI.1071-22.2023727

Logothetis, N. K., Pauls, J., & Poggio, T. (1995). Shape representation in the inferior temporal cortex of728

monkeys. Current Biology , 5 (5), 552-563. doi: https://doi.org/10.1016/s0960-9822(95)00108-4729

Lu, J., Behbahani, A. H., Hamburg, L., Westeinde, E. A., Dawson, P. M.,Lyu, C., Maimon, G., Dickinson,730

M. H., Druckmann, S., & Wilson, R. I. (2022). Transforming representations of movement from body- to731

world-centric space. Nature, 601 , 98–104. doi: https://doi.org/10.1038/s41586-021-04191-x732

Maith, O., Schwarz, A., & Hamker, F. H. (2021). Optimal attention tuning in a neuro-computational733

model of the visual cortex–basal ganglia–prefrontal cortex loop. Neural Networks, 142 , 534–547. doi:734

https://doi.org/10.1016/j.neunet.2021.07.008735

31



Milner, D., & Goodale, M. (1995). The Visual Brain in Action. Oxford University Press. doi: https://doi.org/736

10.1093/acprof:oso/9780198524724.001.0001737

Mishkin, M., Ungerleider, L. G., & Macko, K. A. (1983). Object vision and spatial vision: two cortical738

pathways. Trends in Neurosciences, 6 , 414-417. doi: https://doi.org/10.1016/0166-2236(83)90190-X739

Moulin-Frier, C., Fischer, T., Petit, M., Pointeau, G., Puigbo, J., Pattacini, U., Low, S. C., Camilleri, D.,740

Nguyen, P., Hoffmann, M., Chang, H. J., Zambelli, M., Mealier, A., Damianou, A., Metta, G., Prescott,741

T. J., Demiris, Y.,Dominey, P. F., & Verschure, P. F. M. J. (2018). Dac-h3: A proactive robot cognitive742

architecture to acquire and express knowledge about the world and the self. IEEE Transactions on Cognitive743

and Developmental Systems, 10 (4), 1005-1022. doi: https://doi.org/10.1109/TCDS.2017.2754143744

Navalpakkam, V., & Itti, L. (2007). Search goal tunes visual features optimally. Neuron, 53 (4), 605–617. doi:745

https://doi.org/10.1016/j.neuron.2007.01.018746

Novin, S., Fallah, A., Rashidi, S., Beuth, F., & Hamker, F. H. (2021). A neuro-computational model of747

visual attention with multiple attentional control sets. Vision Research, 189 , 104-118. doi: https://doi.org/748

10.1016/j.visres.2021.08.009749

O’Keefe, J., & Burgess, N. (1996). Geometric determinants of the place fields of hippocampal neurons. Nature,750

381 , 425-428. doi: https://doi.org/10.1038/381425a0751

Pouget, A., Deneve, S., & Duhamel, J. R. (2002). A computational perspective on the neural basis of752

multisensory spatial representations. Nature Reviews Neuroscience, 3 (9), 741-747. doi: https://doi.org/753

10.1038/nrn914754

Pouget, A., & Sejnowski, T. J. (1997). Spatial Transformations in the Parietal Cortex Using Basis Functions.755

Journal of Cognitive Neuroscience, 9 (2), 222-237. doi: https://doi.org/10.1162/jocn.1997.9.2.222756

Rolfs, M., Jonikaitis, D., Deubel, H., & Cavanagh, P. (2010). Predictive remapping of attention across eye757

movements. Nature Neuroscience, 14 (2), 252-259. doi: https://doi.org/10.1038/nn.2711758

Salsano, I., Santangelo, V., & Macaluso, E. (2021). The lateral intraparietal sulcus takes viewpoint changes759

into account during memory-guided attention in natural scenes. Brain Structure and Function, 226 ,760

989–1006. doi: https://doi.org/10.1007/s00429-021-02221-y761

Schall, J., Thompson, K., Bichot, N., Murthy, A., & Sato, T. (2004). Visual processing in the macaque762

frontal eye field. In C. E. C. Jon H. Kaas (Ed.), The primate visual system (p. 205-230). CRC Press. doi:763

https://doi.org/10.1201/9780203507599764

Sestieri, C., Shulman, G. L., & Corbetta, M. (2017). The contribution of the human posterior parietal cortex to765

episodic memory. Nature reviews. Neuroscience, 18 (3), 183-192. doi: https://doi.org/10.1038/nrn.2017.6766

32



Smith Breault, M. (2020). Monkey brain. Zenodo. Retrieved from https://doi.org/10.5281/zenodo767

.3926117768

Summerfield, J. J., Lepsien, J., Gitelman, D. R., Mesulam, M. M., & Nobre, A. C. (2006). Orienting769

attention based on long-term memory experience. Neuron, 49 (6), 905-916. doi: https://doi.org/10.1016/770

j.neuron.2006.01.021771

Teichmann, M., Larisch, R., & Hamker, F. H. (2021). Performance of biologically grounded models of772

the early visual system on standard object recognition tasks. Neural Networks, 144 , 210-228. doi:773

https://doi.org/10.1016/j.neunet.2021.08.009774

Treue, S. (2001). Neural correlates of attention in primate visual cortex. Trends in Neurosciences, 24 (5),775

295-300. doi: https://doi.org/10.1016/S0166-2236(00)01814-2776

Van Wetter, S. M., & Van Opstal, A. J. (2008). Experimental test of visuomotor updating models that777

explain perisaccadic mislocalization. Journal of Vision, 8 (14). doi: https://doi.org/10.1167/8.14.8778

Vitay, J., Dinkelbach, H., & Hamker, F. H. (2015). Annarchy: a code generation approach to neural779

simulations on parallel hardware. Frontiers in Neuroinformatics , 9 , 19. Retrieved from https://doi.org/780

10.5281/zenodo.6417924 doi: https://doi.org/10.3389/fninf.2015.00019781

Whitlock, J. R., Sutherland, R. J., Witter, M. P., Moser, M.-B., & Moser, E. I. (2008). Navigating from782

hippocampus to parietal cortex. Proceedings of the National Academy of Sciences of the United States of783

America, 105 (39), 14755-14762. doi: https://doi.org/10.1073/pnas.0804216105784

Ziesche, A., Bergelt, J., Deubel, H., & Hamker, F. H. (2017). Pre- and post-saccadic stimulus timing in785

saccadic suppression of displacement – a computational model. Vision Research, 138 . doi: https://doi.org/786

10.1016/j.visres.2017.06.007787

Ziesche, A., & Hamker, F. H. (2011). A computational model for the influence of corollary discharge and788

proprioception on the perisaccadic mislocalization of briefly presented stimuli in complete darkness. Journal789

of Neuroscience, 31 (48), 17392-17405. doi: https://doi.org/10.1523/JNEUROSCI.3407-11.2011790

Ziesche, A., & Hamker, F. H. (2014). Brain circuits underlying visual stability across eye movements -791

converging evidence for a neuro-computational model of area lip. Frontiers in Computational Neuroscience,792

8 , 25. doi: https://doi.org/10.3389/fncom.2014.00025793

Zirnsak, M., Beuth, F., & Hamker, F. H. (2011). Split of spatial attention as predicted by a systems-level794

model of visual attention. European Journal of Neuroscience, 33 (11), 2035-2045. doi: https://doi.org/795

10.1111/j.1460-9568.2011.07718.x796

33

https://doi.org/10.5281/zenodo.3926117
https://doi.org/10.5281/zenodo.3926117
https://doi.org/10.5281/zenodo.3926117
https://doi.org/10.5281/zenodo.6417924
https://doi.org/10.5281/zenodo.6417924
https://doi.org/10.5281/zenodo.6417924

	Introduction
	Methods
	Virtual Environment
	Neurocomputational Model
	Object Recognition
	Saccade Execution
	Attention
	Coordinate Transformation
	Spatial Memory and Imagery
	Model Specification
	Model Implementation


	Results
	General Task
	Experiment 1: Spatial memory and object recognition in a normal scene
	Experiment 1.1: Spatial memory and object recognition using feature-based attention
	Experiment 1.2: Spatial memory and object recognition using a spatial attention pointer from memory
	Experiment 1.3: Spatial memory and object recognition using a combination of feature-based attention and a spatial attention pointer from memory
	Neural dynamics for target selection

	Experiment 2: Spatial memory and object recognition in a cluttered scene
	Experiment 2.1: Feature-based attention
	Experiment 2.2: Spatial attention from memory
	Experiment 2.3: Combination of feature-based and spatial attention from memory

	Experiment 3: Visual Neglect

	Discussion
	Conclusion

	Data Availability
	Declaration of Interest
	Acknowledgements
	Author Contributions

