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a b s t r a c t

Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) have been linked to age-related 
neurodegeneration and Alzheimer’s disease (AD), but their role in normal aging is poorly understood. We 
used linear mixed models to determine if baseline or rate of yearly change in cerebrospinal fluid (CSF) levels 
of MMP-2; MMP-3; MMP-10; TIMP-123 (composite of TIMP-1, TIMP-2, and TIMP-3); or TIMP-4 predicted 
changes in bilateral entorhinal cortex thickness, hippocampal volume, or lateral ventricle volume in cog
nitively unimpaired individuals. We also assessed effects on the CSF AD biomarkers amyloid-β42 and 
phosphorylated tau181. Low baseline levels of MMP-3 predicted larger ventricle volumes and more en
torhinal cortex thinning. Increased CSF MMP-2 levels over time predicted more entorhinal thinning, hip
pocampal atrophy, and ventricular expansion, while increased TIMP-123 over time predicted ventricular 
expansion. No MMP/TIMPs predicted changes in CSF AD biomarkers. Notably, we show for the first time that 
longitudinal increases in MMP-2 and TIMP-123 levels may predict age-associated brain atrophy. In con
clusion, MMPs and TIMPs may play a role in brain atrophy in cognitively unimpaired aging.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Matrix metalloproteinases (MMPs) are a family of proteases with 
important roles in tissue remodeling and neuroinflammation (Rivera 
et al., 2010). MMPs are expressed in the brain by astrocytes and 
microglia (Nuttall et al., 2007; Thorns et al., 2003) and tightly 
regulated by tissue inhibitors of MMPs (TIMPs). These proteins have 
been implicated in neurodegenerative diseases, such as Alzheimer’s 
disease (AD; Rivera et al., 2019), and have been linked to cognitive 
decline, brain atrophy, and AD biomarkers, such as cerebrospinal 
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fluid (CSF) amyloid-β42 (Aβ42) and phosphorylated tau181 (p-tau181). 
However, their role in normal brain aging is poorly understood, and 
the current study aims to elucidate their longitudinal effects on 
brain atrophy, CSF Aβ42, and p-tau181 in a cognitively unimpaired 
cohort. 

In cognitively unimpaired older adults, MMP-2 levels are reduced 
in those who progressed to mild cognitive impairment (MCI;  
Mattsson et al., 2013). In patients with MCI however, higher CSF 
levels of MMP-10 are associated with an increased risk of progres
sion to dementia (Martino Adami et al., 2022). Elevated CSF MMP-10 
levels have also been associated with disease progression in Par
kinson’s disease (Santaella et al., 2020). It has been suggested that 
these proteins, especially MMP-10, may be associated with general 
neurodegenerative pathways related to aging (Martino Adami et al., 
2022). Indeed, elevated protein expression of MMP-10 has been as
sociated with dermal aging and atherosclerosis (Lago and Puzzi, 
2019; Montero et al., 2006). Changes in the balance between MMPs 
and TIMPs have also been linked to age-related vascular diseases and 
increased neuroinflammation in the aging brain (Brkic et al., 2015). 

Expanding ventricles, reduced hippocampal volumes, and re
duced cortical thickness in areas such as the entorhinal cortex are 
common findings in the aging human brain (Fjell et al., 2014; Fjell 
and Walhovd, 2010); these areas are also well known to be affected 
by age-related diseases such as AD. However, research on associa
tions between MMPs/TIMPs and markers of brain atrophy in normal 
aging is sparse. In AD, MMP expression is increased in response to Aβ 
and tau pathology, and several MMPs play important roles in the 
degradation of Aβ and tau (Hernandez-Guillamon et al., 2015; 
Nübling et al., 2012; Yan et al., 2006). 

CSF levels of MMPs and TIMPs have been studied as potential 
biomarkers for AD, with mixed results; for example TIMP-1 levels 
have been found to be higher, similar and lower in AD patients 
versus cognitively unimpaired controls (Lorenzl et al., 2003; 
Mroczko et al., 2014; Stomrud et al., 2010). Interestingly, CSF levels of 
selected MMPs and MMP/TIMP ratios are higher in cognitively un
impaired individuals with abnormal levels of CSF Aβ42 and p-tau181 

compared to those with normal biomarker levels. In these in
dividuals, CSF levels of MMP-3 and MMP-9 also correlated with p- 
tau181 levels (Stomrud et al., 2010). Furthermore, in cognitively un
impaired individuals above 60 years of age, an exploratory study has 
suggested an Aβ-associated effect of CSF MMP-3 on brain atrophy 
(Mattsson et al., 2014). This indicates that MMPs might be involved 
in early pathogenesis of AD and that MMPs could be associated with 
Aβ- and tau-driven neurodegeneration prior to the development of 
cognitive decline. Moreover, high levels of circulating TIMP-1 have 
been associated with more hippocampal atrophy in patients with 
mild cognitive impairment and lower total brain volume cognitively 
unimpaired individuals (Abe et al., 2020; Romero et al., 2010). Cir
culating TIMP-1, MMP-2, and MMP-9 levels have been associated 
with higher prevalence of large white matter hyperintensities in 
patients with acute stroke and cognitively unimpaired controls 
(Corbin et al., 2014; Jiménez-Balado et al., 2021; Kim et al., 2014; 
Romero et al., 2010). This suggests a more general role for MMPs/ 
TIMPs in aging and brain ischemia, beyond the link to AD pathology. 

The main aim of the current study was to test whether baseline 
CSF levels of MMP-2, MMP-3, MMP-10, TIMP-4 or a composite 
measure of TIMP-1, TIMP-2, and TIMP-3 were associated with bi
lateral entorhinal cortex thinning, hippocampal atrophy, or ventricle 
volume expansion in normal aging. Further, we aimed to determine 
if the associations between these MMPs/TIMPs and brain atrophy 
were moderated by CSF Aβ42 or p-tau181. Finally, in a small subset of 
patients who had undergone two lumbar punctures, we explored 
whether changes in MMP/TIMP levels over time were associated 
with brain atrophy or changes in the CSF Aβ42 or p-tau181 levels. 

2. Materials and methods 

2.1. Participants 

We included 111 individuals from the COGNORM cohort (Idland 
et al., 2017), to which cognitively unimpaired individuals aged ≥65 
years scheduled for elective gynecological, urological, or orthopedic 
surgery in spinal anesthesia were recruited during 2012–2013. Ex
clusion criteria for COGNORM were dementia, Parkinson’s disease, 
previous stroke with sequela, or other neurological diseases likely to 
affect cognition at baseline. CSF samples were collected by the an
esthesiologist before spinal anesthesia and the participants under
went brain magnetic resonance imaging (MRI) after surgery. We 
included all patients in COGNORM with measures of MMP/TIMPs in 
CSF and MRI of the brain from baseline. Patients were assessed with 
an extensive battery of cognitive tests before surgery, including the 
Mini Mental Status Examination (MMSE; Folstein et al., 1975); the 
Word List Memory Task (Morris et al., 1989); the Trail Making Tests A 
and B (TMT-A and TMT-B; Reitan, 1958); and phonetic and semantic 
verbal fluency tests (FAS test and animal naming test; Strauss et al., 
2006). Patients were tested with a similar panel of cognitive tests 
annually and with MRIs biannually for up to 9.5 years. A subset of 
patients (n = 32) volunteered for a second lumbar puncture for CSF 
collection after an average of 4.75 years (range = 4.15–5.86 years). 
The study was conducted in accordance with the Declaration of 
Helsinki and approved by the Regional Committee for Ethics in 
Medical Research in Norway (REC South East 2011/2052). All parti
cipants provided written consent. 

2.2. CSF sampling and biochemical analyses 

CSF was collected in polypropylene tubes, centrifuged, and ali
quoted before storage at −80 °C (Idland et al., 2017). CSF Aβ42 and p- 
tau181 concentrations were measured using INNOTEST enzyme- 
linked immunosorbent assays (Fujirebio) at Sahlgrenska University 
Hospital (Mölndal, Sweden). For the subset of patients with CSF from 
two time points, CSF Aβ42 and p-tau181 concentrations were analyzed 
in baseline and follow-up samples in parallel using Lumipulse assays 
(Fujirebio), as previously described (Gobom et al., 2022). CSF MMP-1, 
MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-10, MMP-12, MMP- 
13, TIMP-1, TIMP-2, TIMP-3, and TIMP-4 were determined simulta
neously using a multiplex Disocvery Assay on a Luminex xMAP in
strument at Eve Technologies (Calgary, Canada). All samples were 
measured in duplicate. Samples were sent on dry ice to the re
spective laboratories without any information about the patients. 
Markers that were detectable in less than 70% of samples (MMP-1, 
MMP-7, MMP-9, and MMP-12) were dichotomized as detectable/ 
not-detectable. MMP-8 and MMP-13 were not detectable in any 
markers and were excluded from further analysis. 

2.3. MRI acquisition and processing 

T1-weigthed MPRAGE 3D images were acquired by a 1.5T 
Siemens Avanto scanner using a 12-channel head coil (repetition 
time = 2400 ms, echo time = 3.79 ms, field of view = 240 mm, slice 
thickness = 1.20 mm, and pixel size = 1.25 × 1.25 mm). Images were 
transformed to the Brain Imaging Data Structure format 
(Gorgolewski et al., 2016) and processed in FreeSurfer (https://surfer. 
nmr.mgh.harvard.edu/fswiki; Dale et al., 1999; Fischl et al., 1999) 
with the longitudinal FreeSurfer v.7.1.0 stream (Reuter et al., 2012). 
In short, images were processed first using the cross-sectional 
stream, involving the removal of nonbrain tissues, Talairach trans
formation, intensity correction, tissue and volumetric segmentation, 
cortical surface reconstruction, and cortical parcellation. Then, for 
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each patient an unbiased within-subject template space based on all 
cross-sectional images was created using a robust, inverse consistent 
registration (Reuter et al., 2010). To increase the reliability and sta
tistical power of the cortical thickness estimates, the processing of 
each time point was then reinitialized using common information 
from the within-subject template. Entorhinal thickness, hippo
campal volume, and lateral ventricles volume, averaged across both 
hemispheres, were selected as regions of interest due to their role in 
aging and age-related diseases such as AD. 

2.4. Statistical analysis 

We investigated correlations between all measured CSF bio
markers, see Appendix A: Fig. A1 for the Pearson’s correlation ma
trix. TIMP-1, TIMP-2, and TIMP-3 were highly intercorrelated: 
Pearson’s r = 0.77 for TIMP-1 and TIMP-2; r = 0.66 for TIMP-1 and 
TIMP-3; and r = 0.73 for TIMP-2 and TIMP-3. We created a composite 
variable, TIMP-123, by standardizing the TIMP-1, TIMP-2, and TIMP-3 
levels and averaging the standardized scores. Analyses were run 
with each MMP/TIMP (MMP-2, MMP-3, MMP-10, TIMP-123, or TIMP- 
4) as an independent variable. We performed sensitivity analyses by 
repeating all analyses excluding 18 patients who either (1) had poor 
baseline MMSE results, (2) had poor TMT-A or TMT-B results, or (3) 
were offered referral for further cognitive testing. All analyses were 
run in the R-environment (R Core Team, 2022) using the corrplot 
(Wei and Simko, 2021), ggplot2 (Wickham, 2016), lme4 (Bates et al., 
2015), lmerTest (Kuznetsova et al., 2017), and sjPlot (Lüdecke, 2022) 
packages. 

We used linear mixed models to investigate the effects of base
line levels and rate of change in MMP/TIMP levels on brain atrophy 
(measured by longitudinal change in bilateral entorhinal cortex 
thickness, bilateral hippocampal volume, and bilateral ventricles 
volumes). We calculated the rate of change in MMP/TIMP levels as: 
(MMP/TIMP level at follow up – MMP/TIMP level at baseline)/time in 
years between lumbar punctures. All linear mixed models included 
sex and age at baseline as covariates and patient identifiers as 
random intercepts; for patients with APOE status available (n = 94), 
we ran models including APOE ε4 status as a covariate. For models 
with volumetric measures as the outcome, estimated intracranial 
volume was also included as a covariate. For the MMPs that were 
dichotomized, we investigated the effects of high (i.e. detectable) 
versus low (i.e. non detectable) levels. For models with a significant 
interaction between baseline MMP/TIMP × time on brain atrophy, we 
ran additional models controlling for interactions with (INNOT
EST-measured) CSF Aβ42 or p-tau181 (MMP/TIMP × CSF Aβ42 × time 
and MMP/TIMP × CSF p-tau181 × time). We applied false discovery 
rate (FDR)-correction across all brain regions for each MMP/TIMP 
considering q-values (pFDR) < 0.05 significant. 

For the subset of patients with two lumbar punctures, we per
formed paired-samples t-tests to investigate the changes in CSF 
biomarkers at follow-up compared to baseline. The effect of baseline 
levels and rate of change in MMP/TIMP levels on changes on 
(Lumipulse-measured) CSF Aβ42 and p-tau181 levels were assessed 
with linear mixed models with each MMP/TIMP as an independent 
variable and either CSF Aβ42 or p-tau181 as the dependent variable. 
We applied FDR-correction across each AD biomarker for each MMP/ 
TIMP considering q-values (pFDR) < 0.05 significant. 

3. Results 

3.1. Cohort characteristics 

The baseline characteristics of the cohort are presented in  
Table 1. 

3.2. Relationship between MMPs, TIMPs, and AD biomarkers 

The Pearson’s correlation matrix for all measured CSF biomarkers 
(Aβ42, p-tau181, MMP-2, MMP-3, MMP-10, TIMP-123, and TIMP-4) is 
presented in Fig. 1. CSF Aβ42 levels were weakly correlated with 
TIMP-4, but not with any other markers. CSF p-tau181 levels were 
weakly/moderately correlated with all measured MMPs and TIMPs. 

3.3. Effect of baseline MMP/TIMP levels on brain atrophy 

The models assessing the effects of baseline MMP/TIMP levels on 
brain atrophy are summarized in Table 2. Higher baseline levels of 
MMP-3 were associated with less cortical thinning in the entorhinal 
cortex (β = 3.6 × 10−5, p = 0.02) and a smaller expansion of bilateral 
ventricle volume over time (β = −5.5 × 10−1, p = 0.02), see Fig. 2. Lower 
baseline levels of TIMP-123 were associated with more hippocampus 
atrophy, but this did not survive FDR-correction (β = −5.4, p = 0.13). 
Higher baseline levels of TIMP-4 were associated with a larger ex
pansion of bilateral ventricle volume over time, but this did not 
survive FDR-correction (β = 1.7 × 10−1, p = 0.06). For patients with 
APOE status available, the models were run again including APOE ε4 
status as a covariate. APOE ε4 status was not significantly associated 
with any MMP/TIMP, and inclusion of this covariate did not sig
nificantly affect the effects of baseline MMP/TIMP level on the brain 
atrophy measures. For each MMP/TIMP, we investigated the effects 
of baseline levels on whole brain atrophy, see Appendices B1; B5. 

Detectable levels of MMP-1 were associated with smaller ex
pansion of ventricle volume over time (β = −2.2 × 102, corrected 
p  <  0.01), but not with less entorhinal thinning or hippocampus 
atrophy. MMP-7, MMP-9, and MMP-12 were not associated with any 
measures of brain atrophy. 

3.3.1. Effects of CSF Aβ42 and p-tau181 on MMP/TIMP-related brain 
atrophy 

To determine if the effect of MMP-3 on brain atrophy was in
dependent of and/or moderated by the AD CSF biomarkers, linear 
mixed models controlling for the interactions with (INNOT
EST-measured) Aβ42 × time and p-tau181 × time were run. The effect 
of MMP-3 × time on bilateral entorhinal thickness remained sig
nificant when controlling for interactions with CSF Aβ42 and p-tau181. 
There were no significant interactions between MMP-3 and the AD 
biomarkers. 

Table 1 
Cohort characteristics at baseline      

N (%)  

N 111 (100.0) 
Women 52 (46.9) 
Detectable MMP-1 35 (31.5) 
Detectable MMP-7 18 (16.2) 
Detectable MMP-9 29 (26.1) 
Detectable MMP-12 72 (64.9)  

Median (First quartile; third quartile) 
Age 72 (68; 77) 
MMSE 29 (28; 30) 
CSF Aβ42 (pg/mL)a 764 (514; 864) 
CSF p-tau181 (pg/mL)a 58 (46; 70) 
MMP-2 (ng/mL) 46.2 (41.0; 53.3) 
MMP-3 (pg/mL) 202.0 (152.4; 278.1) 
MMP-10 (pg/mL) 14.1 (7.8; 23.6) 
TIMP-123 −0.15 (−0.7; 0.5) 
TIMP-4 (ng/mL) 1.5 (1.3; 1.8) 

Key: Aβ42, amyloid-β42; CSF, cerebrospinal fluid; p-tau181, phosphorylated tau181; 
MMP, matrix metalloproteinases; TIMP, tissue inhibitors of MMP.  

a Measured by the INNOTEST assay. N = 107.  
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When controlling for the effect of Aβ42 × time, the effect of MMP- 
3 × time on bilateral ventricle volume was no longer significant 
(β = −4.0 × 101, p = 0.26), while there was a significant effect of Aβ42 

× time on ventricle volume (β = −1.2 × 102, p  <  0.01), with higher 
baseline Aβ42 predicting less ventricle volume expansion. There 
were no significant interactions between MMP-3 and the AD 
biomarkers. 

3.4. Effect of yearly change in MMP/TIMP levels on brain atrophy 

At follow-up, all MMP levels were significantly increased from 
baseline, whereas there was no difference in average TIMP-123 or 
TIMP-4 levels at follow-up compared to baseline, see Table 3. All 
follow-up levels were correlated with the baseline measurements, see  
Table 3. 

Table 2 
The effects of baseline MMP/TIMP levels on brain atrophy        

CSF protein Brain region Β Standard 
error 

p pFDR  

MMP-2 × time Entorhinal cortex −3.3 × 10−7 2.0 × 10−7 0.10  
Hippocampus −3.5 × 10−4 2.4 × 10−4 0.15  
Ventricles 0.5 × 10−3 3.2 × 10−3 0.15  

MMP-3 × time Entorhinal cortex 3.6 × 10−5 1.4 × 10−5  < 0.01  0.02 
Hippocampus 8.4 × 10−3 1.7 × 10−2 0.62  0.62 
Ventricles −5.5 × 10−1 2.2 × 10−1 0.01  0.02 

MMP-10 × time Entorhinal cortex 1.1 × 10−4 1.5 × 10−4 0.47  
Hippocampus 1.5 × 10−2 1.8 × 10−1 0.93  
Ventricles −1.9 2.3 0.40  

TIMP-123 × time Entorhinal cortex −3.0 × 10−3 2.2 × 10−3 0.17  0.26 
Hippocampus −5.4 2.6 0.04  0.13 
Ventricles 2.2 × 101 3.5 × 101 0.52  0.53 

TIMP-4 × time Entorhinal cortex 1.5 × 10−6 4.4 × 10−6 0.73  0.90 
Hippocampus 6.8 × 10−4 5.4 × 10−4 0.90  0.90 
Ventricles 1.7 × 10−1 7.1 × 10−2 0.02  0.06 

Key: MMP, matrix metalloproteinases; TIMP, tissue inhibitors of MMP; pFDR, q-values false discovery rate. 
Significant p-values are highlighted in bold.  

Fig. 1. Pearson correlation matrix for the CSF biomarkers. Darker colors and larger circles indicate stronger relationships. Abbreviations: CSF, cerebrospinal fluid.  
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The models assessing the effect of rate of change in MMP/TIMP 
levels on brain atrophy are summarized in Table 4. A larger increase 
in CSF MMP-2 levels over time was associated with more brain 
atrophy, both in terms of more entorhinal thinning (β = −6.1 × 10−6, 
p  <  0.01), smaller hippocampal volume (β = −6.4 × 10−3, p = 0.03) and 
larger ventricle volume (β = 7.2 × 10−2, p = 0.04), see Fig. 3. A larger 
increase in CSF TIMP-123 levels from baseline was associated with 
more ventricle volume expansion over time (β = 1.5 × 102, p  <  0.01), 

see Fig. 3. A larger increase in MMP-10 was associated with more 
hippocampal atrophy over time, but this did not survive FDR-cor
rection (β = −5.1 × 10−1, p = 0.09). 

3.5. Effect of MMP/TIMP levels on change in AD biomarkers over time 

Lumipulse CSF Aβ42 and levels were significantly increased at 
follow-up (mean = 776 pg/mL, standard deviation [SD] = 280.5) 

Table 4 
The effects of yearly change in MMP/TIMP levels on brain atrophy        

CSF protein Brain region Β Standard 
error 

p pFDR  

MMP-2 × time Entorhinal cortex −6.1 × 10−6 2.0 × 10−6 < 0.01 < 0.01 
Hippocampus −5.4 × 10−3 2.3 × 10−3 0.02 0.03 
Ventricles 7.2 × 10−2 3.4 × 10−2 0.04 0.04 

MMP-3 × time Entorhinal cortex 3.5 × 10−5 2.3 × 10−5 0.14  
Hippocampus 1.9 × 10−4 2.7 × 10−2 0.99  
Ventricles −4.5 × 10−1 3.9 × 10−1 0.26  

MMP-10 × time Entorhinal cortex −3.6 × 10−4 2.1 × 10−4 0.09 0.11 
Hippocampus −5.1 × 10−1 2.3 × 10−1 0.03 0.09 
Ventricles 5.7 3.5 0.11 0.11 

TIMP-123 × time Entorhinal cortex −5.3 × 10−3 3.0 × 10−3 0.08 0.08 
Hippocampus −6.3 3.4 0.07 0.08 
Ventricles 1.5 × 102 4.8 × 101 < 0.01 < 0.01 

TIMP-4 × time Entorhinal cortex −4.1 × 10−7 9.8 × 10−6 0.97  
Hippocampus −9.1 × 10−3 1.1 × 10−2 0.42  
Ventricles −2.3 × 10−1 1.6 × 10−1 0.17  

Key: CSF, cerebrospinal fluid; MMP, matrix metalloproteinases; pFDR, q-values false discovery rate; TIMP, tissue inhibitors of MMP. 
Significant p-values are highlighted in bold.  

Table 3 
Baseline and follow-up levels of CSF MMPs/TIMPs        

CSF protein Baseline level Follow-up Pearson’s r Mean difference pa  

MMP-2 (ng/mL)  47.7 (9.0)  54.7 (11.9)  0.86  7.0 (6.2) < 0.01 
MMP-3 (pg/mL)  240.0 (21.8)  302.9 (128.5)  0.88  62.9 (62.0) < 0.01 
MMP-10 (pg/mL)  17.3 (11.1)  28.3 (16.9)  0.61  11.0 (13.4) < 0.01 
TIMP-123  − 0.01 (0.7)  0.08 (0.9)  0.55  0.09 (0.8) 0.52 
TIMP-4 (ng/mL)  1.7 (0.3)  1.7 (0.3)  0.90  −0.04 (0.15) 0.11 

Data is presented as mean (SD), N = 32. 
Key: CSF, cerebrospinal fluid; MMPs, matrix metalloproteinases; TIMPs, tissue inhibitors of MMP; SD, standard deviation. 
Significant p-values are highlighted in bold.  

a p-value is for a paired-samples t-test comparing baseline and follow-up levels.  

Fig. 2. The effect of baseline MMP-3 levels on (A) entorhinal thickness and (B) bilateral lateral ventricles volume over time. The purple line represents MMP-3 levels 1 SD 
below the mean, the green line represents MMP-3 levels 1 SD above the mean. Abbreviations: MMP, Matrix metalloproteinases; SD, standard deviation. 
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compared to baseline (mean = 673.8 pg/mL, SD = 247.5, p = 0.005). 
Similarly, Lumipulse CSF p-tau181 levels were significantly increased 
at follow-up (mean = 58.4 pg/mL, SD = 22.8) compared to baseline 
(mean = 51.3 pg/mL, SD = 18.5, p  <  0.001). Baseline and follow-up 
levels were strongly correlated, Pearson’s r = 0.75 for Aβ42 and 
r = 0.96 for p-tau181. 

The models assessing the effect of baseline MMP/TIMP levels on 
change in AD biomarkers over time are summarized in Table 5. A 
larger increase in MMP-2 levels over time was associated with a 

larger increase in p-tau181 levels over time, but this did not survive 
FDR-correction (β = 5.9 × 10−5, p = 0.08). 

3.6. Sensitivity analysis 

We repeated all analyses excluding the patients (n = 18) with 
poor baseline MMSE, TMT-A, or TMT-B scores and the patients who 
were offered referral for further cognitive testing after baseline 

Fig. 3. The effect of yearly change in MMP-2 and TIMP-123 levels on brain atrophy. (A) The effect of MMP-2 change on entorhinal thickness, (B) the effect of MMP-2 change on 
hippocampal volume, (c) the effect of MMP-2 change on bilateral lateral ventricle volume, (D) the effect of TIMP-123 change on bilateral lateral ventricles volume over time. The 
purple line represents change from baseline 1 SD below the mean, the green line represents change from baseline 1 SD above the mean. Abbreviations: MMP, matrix me
talloproteinase; SD, standard deviation; TIMP, tissue inhibitors of MMP. 
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testing. This did not alter the outcome of any analysis, see Appendix 
A: Sensitivity analysis. 

4. Discussion 

We found that baseline levels and yearly rate of change of se
lected MMP/TIMPs were associated with increased brain atrophy in a 
cognitively unimpaired older cohort. Specifically, we found that low 
baseline MMP-3 levels predicted more entorhinal cortical thinning 
and more ventricle volume expansion over time; the former was 
independent of the CSF AD biomarkers Aβ42 and p-tau181. In our 
longitudinal samples, we found that a larger increase in CSF MMP-2 
from baseline predicted more entorhinal thinning, smaller hippo
campal volumes, and more ventricle volume expansion over time. 
Finally, a larger increase in the composite variable CSF TIMP-123 
from baseline was associated with larger bilateral ventricle volumes 
over time. 

CSF MMP-3 levels have previously been linked to amyloid pa
thology, as reduced levels of MMP-3 are found in CSF with low levels 
of Aβ42 (Mlekusch and Humpel, 2009; Stomrud et al., 2010). How
ever, in our cohort, the effect of baseline MMP-3 levels on entorhinal 
cortex atrophy was independent CSF Aβ42 levels, suggesting that the 
effect of MMP-3 on brain atrophy is not driven by its connection 
with amyloid pathology. In the same vein, while MMP-3 previously 
has been linked to CSF t-tau and p-tau181 (Stomrud et al., 2010), we 
found that the effect of MMP-3 on brain atrophy was tau-in
dependent. Beyond its connections to Aβ and tau pathology, MMP-3 
has important roles in blood brain barrier permeability, inflamma
tion, and apoptotic signaling. MMP-3 expression is increased in re
sponse to cellular stress signals, and MMP-3 triggers microglia to 
produce pro-inflammatory molecules in the extracellular space (Kim 
and Hwang, 2011). Moreover, MMP-3 might be responsible for or
ganizing effective clearance of irreparably damaged neurons by 
triggering several apoptotic pathways (Kim and Hwang, 2011; 
Rosenberg, 2009). It is hypothesized that high MMP-3 might con
tribute to neurodegeneration in diseases such as AD through un
checked inflammation or apoptosis. However, elevated MMP-3 levels 
also have important roles in physiological processes such as re
modeling of the extracellular matrix, synaptic plasticity, remyelina
tion and learning (Kim et al., 2005; Meighan et al., 2006; Skuljec 
et al., 2011). We speculate that in our cognitively unimpaired cohort, 
low levels of MMP-3 might indicate impairment of these physiolo
gical roles, thus resulting in more atrophy over time (Kim et al., 
2005; Meighan et al., 2006; Skuljec et al., 2011). However, the effect 
of baseline MMP-3 levels on ventricle volume expansion 

disappeared when controlling for the effect of Aβ42 on brain atrophy 
over time. This is in line with an exploratory study on cognitively 
unimpaired older individuals suggesting an Aβ-associated effect of 
CSF MMP-3 on brain atrophy in the inferior temporal and inferior 
parietal cortices (Mattsson et al., 2014). 

Previous research has linked CSF levels of MMP-2 in cognitively 
unimpaired older persons to increased risk of progression to mild 
cognitive impairment or dementia (Mattsson et al., 2013, 2014). 
Lower levels of CSF MMP-2 have been seen in cognitively normal 
patients who develop mild cognitive impairment and in patients 
with AD (Fagan and Perrin, 2012; Mattsson et al., 2013). As such, one 
could hypothesize that higher levels of CSF MMP-2 are protective 
and associated with less brain atrophy. However, in the current 
study, baseline MMP-2 levels were not associated with brain 
atrophy, which has also been found previously (Mattsson et al., 
2014). Moreover, a larger increase in MMP-2 from baseline was as
sociated with more brain atrophy over time on all measures. While 
this finding may appear in contradiction with previous studies, in
creased expression of MMP-2 has previously been documented in 
response to ischemic stroke and in associations with gliomas (Nie 
et al., 2014; Ramachandran et al., 2017; Zhang et al., 2019). Together 
with MMP-9, MMP-2 appears to promote and fine-tune neuroin
flammatory processes such as the expression of chemokines and 
pro-inflammatory cytokines (Hannocks et al., 2019); thus it is pos
sible that larger increases in MMP-2 over time associate with more 
brain atrophy because the MMP-2 levels increase in response to 
some underlying pro-inflammatory and neurodegenerative process. 

Intriguingly, we found that a larger increase in CSF TIMP-123 
levels from baseline was associated with larger ventricle volumes at 
follow-up. This is interesting as higher TIMP levels often are con
sidered neuroprotective. For example, TIMP-1 has been found to 
protect against Aβ pathology and ameliorate cognition in model 
systems (Saha et al., 2020). However, increased expression of TIMP-1 
is seen in many neuroinflammatory diseases and higher levels of CSF 
TIMP-2 are found across several neurodegenerative disorders such as 
AD, frontotemporal dementia, vascular dementia, and Parkinson’s 
disease (Bjerke et al., 2011; Boström et al., 2021; Lorenzl et al., 2003). 
Such paradoxical effects are also reported for TIMP-3, where reduced 
levels of TIMP-3 have been linked to impaired cognition in mice 
(Baba et al., 2009), while higher levels of TIMP-3 have been linked to 
higher expression of Aβ and neurofibrillary tangles in the human 
brain (Dunckley et al., 2006; Hoe et al., 2007). Our results suggest 
that in normal aging, increased expression of TIMP-1, TIMP-2, and 
TIMP-3 is associated with accelerated brain atrophy. The underlying 
mechanisms of this effect should be further explored considering the 
TIMPs high number of binding sites and multiple physiological roles. 

It is noteworthy that in this cohort high levels of MMP-3 as
sociate with less brain atrophy, while increases in MMP-2 and TIMP- 
123 over time are associated with more brain atrophy. Both MMP-2 
and MMP-3 activity are regulated by TIMP-1, TIMP-2, and TIMP-3 
(Brew and Nagase, 2010). Moreover, MMP-2 and MMP-3 have pre
viously been shown to be up- or downregulated together in response 
to neurodegenerative diseases or pro-inflammatory stimuli (Brkic 
et al., 2015). Our contrasting findings could be a selection effect 
driven by the participants with the longest follow-up times. How
ever, it is also possible that upregulation of these MMPs and TIMPs 
have differential effects in the aging brain. The mechanisms driving 
these contrasting effects on brain atrophy should be further ex
plored. 

In line with previous studies, the measured MMP/TIMPs were 
more closely associated with p-tau181 than Aβ42. None of the mea
sured MMP/TIMPs could predict a change toward more pathological 
levels of AD biomarkers over time. Of note, this is a population with 
little evidence of AD pathology, as evident by the fact that most 
patients showed a small increase in CSF Aβ42 levels at follow-up. In 

Table 5 
The effects of baseline MMP/TIMP levels on change in CSF Aβ42 and p-tau181 over time        

CSF protein AD biomarker Β Standard 
error 

p pFDR  

MMP-2 × time Aβ42 −2.6 × 10−4 7.8 × 10−4  0.74  0.74  
P-tau181 5.9 × 10−5 2.7 × 10−5  0.04  0.08 

MMP-3 × time Aβ42 −4.5 × 10−2 5.8 × 10−2  0.44   
P-tau181 −1.9 × 10−3 2.2 × 10−3  0.40  

MMP-10 × time Aβ42 3.2 × 10−1 6.5 × 10−1  0.62   
P-tau181 1.2 × 10−2 2.4 × 10−2  1.00  

TIMP-123 × time Aβ42 −1.1 × 101 9.8  0.27   
P-tau181 3.6 × 10−1 3.7 × 10−1  0.34  

TIMP-4 × time Aβ42 −2.5 × 10−3 2.2 × 10−2  0.91   
P-tau181 7.8 × 10−4 8.0 × 10−4  0.34  

Rate of yearly change in MMP/TIMP levels was not a significant predictor of changes in 
either CSF Aβ42 or p-tau181. 
Key: Aβ42, amyloid-β42; AD, Alzheimer’s disease; CSF, cerebrospinal fluid; MMP, ma
trix metalloproteinase; pFDR, q-values false discovery rate; SD, standard deviation; 
TIMP, tissue inhibitors of MMP. 
Significant p-values are highlighted in bold.  
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addition, the sample consists of cognitively unimpaired participants, 
and the relationship with pathology biomarkers may be different in 
patients with AD. As such, MMP/TIMPs appear to have roles in aging- 
related brain atrophy that are independent of underlying neurode
generative diseases such as AD. 

A limitation of the current study is the relatively small cohort 
size. However, several follow-ups and considerable longitudinal data 
enhance our ability to detect change. The population is also very well 
characterized. Another limitation is the lack of paired plasma sam
ples for the included patients. As there are several publications on 
circulating levels of MMP/TIMPs, the inclusion of paired plasma 
samples would have permitted us to better interpret our results 
considering these findings. Moreover, as several MMPs have im
portant roles in blood–brain barrier permeability, markers on 
blood–brain barrier integrity would have contributed to our inter
pretations of the results. Finally, longitudinal information on change 
in the CSF biomarkers was available for only a small subsample, and 
these results should therefore be interpreted with caution. To our 
knowledge, this is the first study exploring the effects of changes in 
MMP/TIMP levels over time on neuroimaging and CSF biomarkers of 
neurodegeneration. 

It is well established that MMP/TIMPs are involved in a plethora 
of both physiological (e.g. angiogenesis and neurogenesis) and pa
thophysiological processes (i.e. neuroinflammation and demyelina
tion) in the brain, for a review see (Rempe et al., 2016). Establishing 
the mechanistic pathways linking alterations in MMP/TIMP levels to 
brain atrophy in cognitively unimpaired aging is beyond the scope of 
this paper. However, it is highly possible that imbalances in MMP or 
TIMP levels contribute to age-related neurodegeneration through 
neuroinflammation, as aging is associated with increased in
flammation and MMPs are known to fine tune inflammatory pro
cesses (Rempe et al., 2016). Further research should explore whether 
low MMP-3 or increases in MMP-2 or TIMP-123 over time are as
sociated with markers of neuroinflammation in cognitively unim
paired older individuals. 

5. Conclusions 

In conclusion, our results suggest that low CSF MMP-3 levels may 
predict age-associated brain atrophy, both dependent on and in
dependent of Aβ pathology. Moreover, we show for the first time 
that increases in MMP-2 and the composite measure of TIMP-1, 
TIMP-2, and TIMP-3 over time may be good predictors of age-asso
ciated brain atrophy. The contrasting direction of these markers on 
brain atrophy should be explored further and selection effects 
should be ruled out. In our study, changes in these markers did not 
predict changes in the AD biomarkers CSF Aβ42 or p-tau181 over time, 
implying that they can also reflect Aβ- and tau-independent age- 
associated neurodegenerative pathways. 
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Appendix A 

See Fig. A1. 

Fig. A1. Pearson correlation matrix for all measured CSF biomarkers. Darker colors and larger circles indicate a stronger relationship. Abbreviations: CSF, cerebrospinal fluid.  
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Sensitivity analysis 

Cohort characteristics 

The cohort characteristics of the entire cohort and the selected sample used in the sensitivity analysis are presented in Table A1. In the 
sensitivity analyses, the patients (n = 18) with poor baseline MMSE, TMT-A or TMT-B scores, and the patients who were offered referral for 
further cognitive testing after baseline testing are excluded. 

Effect of baseline MMP/TIMP levels on brain atrophy 

The models assessing the effects of baseline MMP/TIMP levels on brain atrophy in the selected sample are summarized in Table A2. 

Effects of CSF Aβ42 and p-tau on MMP/TIMP-related brain atrophy 

The effect of MMP-3 × time on bilateral entorhinal thickness remained significant when controlling for interactions with CSF Aβ42 and p-tau. 
There were no significant interactions between MMP-3 and the AD biomarkers. 

Table A1 
Cohort characteristics at baseline        

All  Selected samplea   

N 111  93   
N (%) N (%) 

Longitudinal CSF 32 (28.8) 31 (33.3) 
Women 52 (46.9) 42 (45.2) 
Detectable MMP-1 35 (31.5) 27 (29.0) 
Detectable MMP-7 18 (16.2) 17 (18.3) 
Detectable MMP-9 29 (26.1) 26 (28.0) 
Detectable MMP-12 72 (64.9) 58 (62.4)  

Median (First Q; third Q) Median (First Q; third Q) 
Age 72 (68; 77) 71 (68; 75) 
MMSE 29 (28; 30) 29 (29; 30) 
CSF Aβ42 (pg/mL)b 764 (514; 864) 731 (523; 859) 
CSF p-tau (pg/mL)b 58 (46; 70) 57 (45; 69) 
MMP-2 (ng/mL) 46.2 (41.0; 53.3) 45.7 (39.5; 52.7) 
MMP-3 (pg/mL) 202.0 (152.4; 278.1) 197.4 (154.6; 265.5) 
MMP-10 (pg/mL) 14.1 (7.8; 23.6) 14.1 (7.8; 21.7) 
TIMP-123 −0.15 (−0.7; 0.5) -0.2 (−0.7; 0.4) 
TIMP-4 (ng/mL) 1.5 (1.3; 1.8) 1.5 (1.3; 1.8) 

Key: Aβ42, amyloid-β42; CSF, cerebrospinal fluid; MMP, matrix metalloproteinases; MMSE, Mini Mental Status Examination; p-tau181, phosphorylated tau181; TIMP, tissue inhibitors 
of MMP; TMT, Trail Making Tests.  

a Excluding the patients (n = 18) with poor baseline MMSE, TMT-A or TMT-B scores and the patients who were offered referral for further cognitive testing after baseline testing.  
b Measured by the INNOTEST assay. N = 107 for the full sample, N = 93 for the selected sample. Q: quartile.  

Table A2 
The effects of baseline MMP/TIMP levels on brain atrophy        

CSF protein Brain region β Standard 
error 

p pFDR  

MMP-2 × time Entorhinal cortex −4.0 × 10−7 2.0 × 10−7 0.05  0.15 
Hippocampus 2.2 × 10−1 −3.1 × 10−4 0.22  0.22 
Ventricles 4.7 × 10−3 3.4 × 10−3 0.17  0.22 

MMP-3 × time Entorhinal cortex 4.0 × 10−5 1.43 × 10−5  < 0.01  0.01 
Hippocampus 1.4 × 10−2 1.8 × 10−2 0.45  0.45 
Ventricles −6.1 × 10−1 2.4 × 10−1 0.01  0.04 

MMP-10 × time Entorhinal cortex 1.1 × 10−4 1.6 × 10−4 0.49  
Hippocampus 4.1 × 10−4 2.0 × 10−1 0.99  
Ventricles −2.3 2.5 0.35  

TIMP-123 × time Entorhinal cortex 2.7 × 10−3 2.2 × 10−3 0.22  
Hippocampus −4.6 2.8 0.11  
Ventricles 2.0 × 101 3.8 × 101 0.59  

TIMP-4 × time Entorhinal cortex 1.9 × 10−6 4.5 × 10−6 0.68  0.78 
Hippocampus 1.6 × 10−3 5.7 × 10−3 0.78  0.78 
Ventricles −1.7 × 10−1 7.4 × 10−2 0.02  0.07 

For the dichotomized markers, detectable levels of MMP-1 were associated with more entorhinal cortex thinning (β = 9.1 × 10−2, corrected p = 0.03) and less ventricle volume 
expansion (β = −2.2 × 102, corrected p = 0.003). MMP-7, MMP-9 and MMP-12 were not associated with any measures of brain atrophy. 
Key: CSF, cerebrospinal fluid; MMP, matrix metalloproteinases; TIMP, tissue inhibitors of MMP; pFDR, q-values false discovery rate. 
Significant p-values are highlighted in bold.  
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When controlling for the effect of Aβ42 × time, the effect of MMP-3 × time on bilateral ventricle volume was no longer significant 
(β = −4.2 × 101, p = 0.25), while there was a significant effect of Aβ42 × time on ventricle volume (β = −1.2 × 102, p  <  0.01), with higher baseline 
Aβ42 predicting less ventricle volume expansion. There were no significant interactions between MMP-3 and the AD biomarkers. 

Effect of yearly change in MMP/TIMP levels on brain atrophy 

The models assessing the effect of rate of change in MMP/TIMP levels on brain atrophy are summarized in Table A3. 

Effect of MMP/TIMP levels on change in AD biomarkers over time 

The models assessing the effect of baseline MMP/TIMP levels on change in AD biomarkers over time are summarized in Table A4. 

Appendix B. Supplementary material 

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.neurobiolaging.2023.05.012.  
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Key: Aβ42, amyloid-β42; AD, Alzheimer’s disease; CSF, cerebrospinal fluid; MMP, matrix metalloproteinases; p-tau, phosphorylated tau; TIMP, tissue inhibitors of MMP.  
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