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Novel homozygous variants in PRORP expand the genotypic
spectrum of combined oxidative phosphorylation deficiency 54
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Biallelic hypomorphic variants in PRORP have been recently described as causing the autosomal recessive disorder combined
oxidative phosphorylation deficiency type 54 (COXPD54). COXPD54 encompasses a phenotypic spectrum of sensorineural hearing
loss and ovarian insufficiency (Perrault syndrome) to leukodystrophy. Here, we report three additional families with homozygous
missense PRORP variants with pleiotropic phenotypes. Each missense variant altered a highly conserved residue within the
metallonuclease domain. In vitro mitochondrial tRNA processing assays with recombinant TRMT10C, SDR5C1 and PRORP indicated
two COXPD54-associated PRORP variants, c.1159A>G (p.Thr387Ala) and c.1241C>T (p.Ala414Val), decreased pre-tRNA"® cleavage,
consistent with both variants impacting tRNA processing. No significant decrease in tRNA processing was observed with PRORP
€.1093T>C (p.Tyr365His), which was identified in an individual with leukodystrophy. These data provide independent evidence that
PRORP variants are associated with COXPD54 and that the assessment of 5’ leader mitochondrial tRNA processing is a valuable
assay for the functional analysis and clinical interpretation of novel PRORP variants.
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INTRODUCTION

Biallelic variants in Protein Only RNase P Catalytic Subunit (PRORP)
have recently been associated with a newly defined syndrome,
combined oxidative phosphorylation deficiency 54 (COXPD54)
(MIM #619737), encompassing a phenotypic spectrum of Perrault
syndrome and leukodystrophy [1]. Perrault syndrome (MIM
#233400) is a rare, autosomal recessive, clinically and genetically
heterogeneous disorder characterised by bilateral sensorineural
hearing loss (SNHL) in both sexes and primary ovarian insufficiency
in 46, XX karyotype females [2, 3]. The individuals with biallelic
PRORP variants, reported to date, presented with pleiotropic
phenotypes ranging in clinical severity, with PRORP variant protein
resulting in reduced mitochondrial tRNA processing in vitro [1].
With the small number of reported affected individuals with
COXPD54, genotype—phenotype correlations have yet to be
established and independently replicated. PRORP (MRPP3) is one
of the three subunits constituting the human mitochondrial RNase P
(mtRNase P) complex with MRPP1 (TRMT10C) and MRPP2/SDR5C1
(HSD17B10). This multimeric complex aids mitochondrial tRNA

maturation by catalysing endonucleolytic cleavage of the 5 leader
sequence from polycistronic mitochondrial RNA transcripts [4].

Here, we present three further unrelated families with homo-
zygous, missense PRORP variants. Consistent with the previously
reported cases, the variants are within the functional metallonu-
clease domain and alter highly conserved residues [1]. The
affected individuals have phenotypes overlapping with the
previous reports and provide evidence that the clinical severity
correlates with the degree of mitochondrial tRNA processing
deficit. These findings provide independent supportive evidence
for the association of biallelic PRORP variants with defective
mitochondrial tRNA processing, resulting in a phenotypic spec-
trum encompassing Perrault syndrome and COXPD54.

MATERIALS AND METHODS

Variant identification methodology

Biallelic variants in PRORP were identified by exome sequence analysis in
all three families (see Supplementary information). Segregation analysis
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was undertaken using Sanger sequencing for all unaffected and affected
relatives where available. Details of respiratory chain activity assays,
immunoblotting and mitochondrial tRNA processing assays are also
outlined in detail in the Supplementary information.

RESULTS

The three probands presented with diverse clinical phenotypes
outlined below. Additional clinical, in vitro and protein modelling
data is available in the Supplementary information.

Family F1 is a consanguineous family with a 28-year-old female
proband from Iran who presented with mild intellectual impair-
ment, gait abnormality, behavioural problems and hypothyroid-
ism. There is no evidence of SNHL or ovarian insufficiency;
however, brain MRI demonstrates cerebellar atrophy and multi-
focal leukoencephalopathy (Supplementary Fig. S1A). Menstrua-
tion is irregular (once every 4-6 months), and she has bilateral
polycystic ovaries. Biochemical tests of ovarian function revealed
hormone levels were within follicular phase reference values
(Supplementary Fig. S1B). Exome sequencing revealed a homo-
zygous missense PRORP (NM_014672.4:c.1093T>C (p.Tyr365His))
variant in the proband. The parents of the proband are
heterozygous and her two clinically unaffected siblings, a brother
and sister, are wildtype and heterozygous, respectively (Fig. 1A).

The proband from family F2 is a 7-year-old American male of
Mexican background. He presented with severe to profound
bilateral SNHL (Supplementary Fig. S1C), undergoing assessment
aged 3 years, exhibiting global developmental delay, spastic
diplegia and truncal hypotonia. He is also both nonverbal and
non-ambulatory. Brain MRI displayed no white matter lesions. Trio
exome sequencing of the proband revealed a homozygous variant
in PRORP (NM_014672.4:c.1159A>G (p.Thr387Ala)), with no other
candidate variants identified. Both parents are heterozygous for
this variant and unaffected, whilst his healthy younger sibling is
homozygous for the reference allele.

The proband from family F3 is the daughter of a consangui-
neous couple of Arab Muslim background from Israel. She was
affected by isovaleric acidemia detected by newborn screening
and homozygous for the IVD: c.941C>T;p.(Ala314Val) hypomorphic
variant [5, 6]. The proband did not pass the neonatal hearing
screening test on the right ear; however, a formal hearing test was
not performed. She presented at 3.5 months with episodes of
lactic academia (up to 11.5 mmol/l, normal range 2-4 mmol/l),
preceded by a febrile infection, and was additionally diagnosed
with atrial septal defect and severe pulmonary hypertension. She
had repeatedly high lactate levels (2.6-6.4 mmol/l). She was
affected by hypotonia, developmental delay and severe failure to
thrive. Aged 1 year, she suffered a lactic acidosis crisis (8.4 mmol/Il)
with status epilepticus, after which she experienced epilepsy,
extrapyramidal movement disorder and loss of developmental
skills. She died at age 19 months. Brain MRI scans revealed
cerebrospinal space dilation and diffuse restrictive changes in the
perirolandic region and basal ganglia (Supplementary Fig. S1D).
Exome sequencing identified the homozygous PRORP
(NM_014672.4: c.1241C>T (p.Ala414Val)) variant. Both parents
are heterozygous for the variant.

All three novel variants alter highly conserved residues (Fig. 1B)
and are predicted deleterious by in silico analyses (Supplementary
Table S2). The three variants are also absent from gnomAD,
providing supportive evidence for pathogenicity [7].

To assess whether the novel PRORP variants altered mitochon-
drial tRNA processing, we purified recombinant PRORP with the
disease-associated variants and tested the endonucleolytic activity
of the mtRNase P complex in the presence of pre-tRNA" in vitro
(Supplementary Fig. S3). After incubation with pre-tRNA"S,
mtRNase P complex with the p.Thr387Ala (F2) or p.Ala414Val
(F3) PRORP variants significantly diminished the levels of 5’
cleavage product (p=0.0121 and <0.0001 respectively) in
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comparison to wildtype PRORP (Fig. 2). The percentage decreases
in relative intensity were 29% and 59%, respectively. The
p.Tyr365His PRORP variant had little impact on 5 leader
processing, with a modest 4% decrease (p = 0.9330).

We also independently compared the novel p.Thr387Ala and
p.Ala414Val variants to a disease-associated PRORP variant to
assess the reproducibility of the tRNA processing assay [1]. The
p.Arg421Cys and p.Asn412Ser PRORP variants were evaluated in
the tRNA processing assay because they altered the cleavage of
pre-tRNA"® to variable degrees [1]. The novel p.Thr387Ala and
p.Ala414Val PRORP variants significantly reduced cleavage of the
mtRNase P complex by 25% and 52% (p =0.0153 and <0.0001),
whilst the p.Arg421Cys and p.Asn412Ser variants diminished
cleavage of the mtRNase P complex by 13% and 75% (p = 0.2873
and <0.0001) respectively, comparable to values in the previous
report [1]. The variants p.Thr387Ala and p.Ala414Val were
subsequently classified according to ACMG guidelines as likely
pathogenic, whereas p.Tyr365His was classified as a variant of
uncertain significance (VUS), as submitted to ClinVar.

DISCUSSION

Biallelic PRORP variants have been associated with diverse,
overlapping pleiotropic phenotypes, with variable defects in
mitochondrial tRNA processing [1]. The aim of this work was to
independently confirm that novel PRORP variants identified in
additional families are pathogenic and associated with the
COXPD54 phenotypic spectrum.

Because all novel variants were located within the functional
metallonuclease domain (Fig. 1C), we investigated the ability of
mtRNase P complexes with PRORP variants to conduct 5’ leader
processing of pre-tRNA"®. mtRNase P complexes with the novel
PRORP (p.Thr387Ala and p.Ala414Val) variants significantly
decreased the intensity of the cleavage product compared to
wildtype, indicating the function of the mtRNase P complex was
impaired. The defect in 5 leader processing was more
pronounced with the variant from the F3 proband with a more
severe phenotype. Fibroblasts from the affected individual in F3
demonstrated deficiencies in complex | activity (Supplementary
Fig. S2B), highlighting a respiratory chain defect.

In contrast, mtRNase P complexes with PRORP p.Tyr365His did
not significantly reduce pre-tRNA"® 5’ end cleavage. There are
potential explanations for this finding. For example, protein
modelling demonstrates that amino acid 365 is not located in
the vicinity of the active site or any interaction regions
(Supplementary Fig. S4). Furthermore, residues surrounding the
amino acid are less conserved than the residues proximate to
other disease-associated variants (Fig. 1). These observations
indicate this region of the protein may be less essential for regular
endonucleolytic function. The p.Tyr365His variant may also
marginally reduce mtRNase P processing efficacy to levels which
are difficult to detect experimentally but could still diminish
processing in specific tissues. It is also possible that a different
pathogenic mechanism is responsible for this phenotype, or that
this variant does not cause COXPD54.

With the discovery of additional affected families, comparisons
can begin to be made between PRORP variants and associated
phenotypes (Supplementary Table S3). The proband with the
p.Tyr365His PRORP VUS has a similar presentation to the
individuals in the initial discovery study with the p.Arg421Cys
PRORP variant [1]. Affected individuals in both families presented
with leukodystrophy, mild learning disabilities and behavioural
abnormalities, with no hearing impairment or ovarian insuffi-
ciency. Both variants also had little impact on mitochondrial tRNA
processing. The probands from F3 in this study (PRORP
p.Ala414Val) and P3 in the discovery study (PRORP p.Arg445GlIn;p.-
Ser400llefs*6) were also comparable, presenting with severe
childhood-onset features, including lactic acidosis, hypotonia,
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Fig. 1 PRORP family pedigrees, conservation of PRORP variant residues across a selection of species and PRORP variant locations.
A Pedigrees for families F1-F3, each with homozygous PRORP variants in the proband. B Position of variant residues highlighted in orange.
Symbols below the sequence alignments represent level of conservation across species, with * (asterisk) indicating full conservation, : (colon)
indicating strongly similar properties, . (period) indicating weakly similar properties and no symbol indicating no conservation. Visualised
using Clustal Omega alignment software. C Schematic illustrating the location of all established PRORP variants to date. Novel variants are
coloured in orange, whilst previously published variants are in blue. Created using DOG (Domain Graph) software [9]. MTS mitochondrial
targeting sequence, PPR pentatricopeptide repeat, CD central domain.
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Fig. 2 Functional assessment of PRORP variants in tRNA processing assays with mtRNase P. A Cleavage of the pre-tRNA"® 5’ |eader
sequence by mtRNase P containing wildtype (WT) or variant PRORP. The relative intensity of the pre-tRNA"® cleavage product was quantified
with error bars representing the standard error of the mean. N=4, *p <0.05, ****p<0.0001, one-way ANOVA with Dunnett’s multiple
comparisons test, comparing wildtype to variants. B Comparison of mtRNase P activity to previously published PRORP variants. N =5, *p < 0.05,
**¥%p < 0.0001, one-way ANOVA with Dunnett’s multiple comparisons test, comparing wildtype to variants.

and seizures with white matter changes. Both missense variants
reduced the levels of cleaved pre-tRNA"® in vitro, suggesting a
relationship of increased phenotypic severity correlated with
diminished mtRNase P function.

The p.Ala414Val PRORP variant reported here is in close
proximity to the variant p.Asn412Ser reported previously [1], with
both variants resulting in a significant decrease in cleavage
product. Interestingly, the phenotype in individual P2 in the
previous report [1] of isolated SNHL was less severe than that
observed in F3 in this study. This difference in phenotypic severity
could be because the F3 proband is homozygous for the
p.Ala414Val variant, whereas individual P2 was compound
heterozygous for p.Asn412Ser and the less deleterious
c.1301C>A (p.Ala434Asp) PRORP variant.

Utilising the ClinGen scoring criteria for gene-disease validity
[8], the initial PRORP discovery paper scored 9.75, which is
concordant with moderate evidence for disease association. With
the addition of our families, the score was increased to 12,
upgrading the gene-disease association to strong. A third
independent report is required for definitive confirmation that
PRORP variants cause disease.

In summary, these data provide the first independent con-
firmation that biallelic PRORP missense variants can reduce
mitochondrial tRNA processing in vitro and are associated with
variable, overlapping pleiotropic phenotypes consistent with
COXPD54. A possible association between phenotypic severity
and mitochondrial tRNA processing deficit is starting to emerge,
and further cases need to be defined to determine if robust
genotype-phenotype correlations exist. Investigating alternate
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mechanisms of pathology may elucidate how variants with limited
effect on mt-tRNA processing (p.Tyr365His) may cause disease.

DATA AVAILABILITY
The PRORP variants were submitted to ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/)
(GenBank: NM_014672.4; accession numbers SCV002820061-SCV002820063).
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